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Foreword

Following on the heels of their successful text Fuzzy Sets, Fuzzy Logic,
Applications, George and Maria Bojadziev have authored a book that
reflects a significant shift in the applications of fuzzy logic—a shift which
has become discernible during the past few years.

To see this shift in a proper perspective, a bit of history is in order.
The initial development of the theory of fuzzy sets was motivated by
the perception that traditional techniques of systems analysis are not
effective in dealing with problems in which the dependencies between
variables are too complex or too ill-defined to admit of characterization
by differential or difference equations. Such problems are the norm in
biology, economics, psychology, linguistics, and many other fields.

A common thread that runs through problems of this type is the
unsharpness of class boundaries and the concomitant imprecision, un-
certainty, and partiality of truth. The concept of a fuzzy set is a re-
flection of this reality—a reflection which serves as a point of departure
for the development of theories which have the capability to model the
pervasive imprecision and uncertainty of the real world.

Most of the initial applications of the theory of fuzzy sets—or fuzzy
logic, as it is commonly referred to today—dealt with languages, au-
tomata theory, and learning systems. In the early seventies, however,
introduction of the concepts of a linguistic variable and fuzzy if-then
rules opened the door to many other applications and especially ap-
plications to control. Today, control is the dominant application area
of fuzzy logic, with close to 1,500 papers on fuzzy logic control pub-
lished annually. More recently, however, the arrival of the information
revolution has made the world of business, finance, and management a
magnet for methodologies which can exploit the ability of modern in-
formation systems to process huge volumes of data at high speed and

xi



xii Foreword

with high reliability. Among such methodologies are neurocomputing,
genetic computing, and fuzzy logic. These methodologies fall under the
rubric of soft computing and, for the most part, are complementary and
synergistic rather than competitive.

Within soft computing, the main contribution of fuzzy logic is a ma-
chinery for computing with words—a machinery in which a major role
is played by the calculus of fuzzy rules, linguistic variables, and fuzzy
information granulation. In this context, Fuzzy Logic for Business, Fi-
nance, and Management provides a reader-friendly and up-to-date ex-
position of the basic concepts and techniques which underlie fuzzy logic
and its applications to both control and business, finance, and manage-
ment. With high skill and sharp insight, the authors illustrate the use of
fuzzy logic techniques by numerous examples and case studies. Clearly,
the writing of Fuzzy Logic for Business, Finance, and Management re-
quired a great deal of time, effort, and expertise. George and Maria
Bojadziev deserve our thanks and congratulations for producing a text
that is so informative, so well-written, and so attuned to the needs of
our information-based society.

Lotfi A. Zadeh
January 20, 1997
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Preface to the
First Edition

The aim of our first book, Fuzzy Sets, Fuzzy Logic, Applications (World
Scientific, 1995), was both to bring fuzzy sets and fuzzy logic into the
university and college curriculum, and to introduce engineers and sci-
entists to the theory and applications of this field.

This book, our second on fuzzy logic, is an interdisciplinary text
written for knowledge workers in business, finance, management, eco-
nomics, and sociology. The objective is to provide guides and techniques
for forecasting, decision making, and control (meaning suggestion for
action) based on “if ... then” rules in environments characterized by
uncertainty, vagueness, and imprecision.

Traditional or classical modeling techniques often do not capture
the nature of complex systems, especially when humans are involved.
In contrast, fuzzy sets and fuzzy logic are effective tools for modeling,
in the absence of complete and precise information, complex business,
finance, and management systems. The subjective judgement of experts
who have used fuzzy logic techniques produces better results than the
objective manipulation of inexact data.

Fuzzy logic stems from the inability of classical logic to capture the
vague language, common-sense reasoning, and problem-solving heuristic
used by people every day. Fuzzy logic deals with objects that are a
matter of degree, with all the possible grades of truth between “yes” and
“no.” It can be viewed as a broad conceptual framework encompassing
the classical logic which divides the world on the basis of “yes” and
“no.”

This book shows the reader in a systematic way how to use fuzzy
logic techniques to solve a wide range of problems and arrive at conclu-

XV
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sions in business, finance, and management. Using these techniques does
not require a level of mathematics higher than that of high school. Real-
life situations are emphasized. Although the core of the book is based
on previously known material, the authors also, as in a monograph,
present original results and innovative treatment of classical problems
using fuzzy logic. The book can also be used as a text for university
and college students in business, finance, management, economics, and
sociology.

Following this preface are seven chapters, each divided into sections.
Each chapter ends with bibliographic references and additional informa-
tion that may interest the reader. A superscript number after a word
or sentence refers the reader to the relevant note at the end of the chap-
ter. The authors have provided a wealth of examples to illustrate their
points. The reader will find applications in 27 case studies listed on
page xvii. The book ends with a list of references and a subject index.

Chapter 1 begins with a brief review of classical sets. It then provides
a basic knowledge of fuzzy sets and fuzzy relations. Fuzzy numbers are
introduced as a particular case of fuzzy sets.

Chapter 2 deals with fuzzy logic. It starts with classical and many-
valued logic since both provide the basis for fuzzy logic. The important
concepts of linguistic variables and linguistic modifiers are introduced.
These concepts are used later to model complex systems in words and
sentences.

Chapter 3 is devoted to forecasting. It is based on the use of the
method of fuzzy averaging as a tool for aggregating the opinions of
individual experts. Applications explained include the Delphi technique
for forecasting technological advances and for time forecasting in project
management.

Chapter 4 covers decision making: a process of problem solving pur-
suing goals under constraints. Two methods are discussed: (1) Decision
making as the intersection of goals and constraints; (2) Decision making
based on fuzzy averaging. Various case studies are presented, includ-
ing pricing models for new products. Multi-expert decision making is
applied to investment models.

Chapter 5 presents fuzzy logic control architecture adjusted for the
needs of business, finance, and management. It shows how decisions,
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evaluations, and conclusions can be made by using and aggregating “if
... then” rules. As an illustration, a client financial risk tolerance model
is designed.

In chapter 6 the fuzzy logic control methodology is applied to a va-
riety of real-life problems: a client asset allocation model, pest manage-
ment, inventory control models, problem analysis, and potential prob-
lem analysis.

Chapter 7 briefly reviews standard relational databases containing
crisp data; these are the foundation for the fuzzy databases. The em-
phasis is on formulating queries of a fuzzy nature to databases in order
to retrieve information that can be used to aid decision making. Appli-
cations are shown for small companies databases, and stocks and mutual
fund databases.
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Chapter 1

Fuzzy Sets

This chapter begins with a brief review of classical sets in order to
facilitate the introduction of fuzzy sets. Next the concept of membership
function is explained. It defines the degree to which an element under
consideration belongs to a fuzzy set. Fuzzy numbers are described as
a particular case of fuzzy sets. Fuzzy sets and fuzzy numbers will be
used in fuzzy logic to model words such as profit, investment, cost,
income, age, etc. Fuzzy relations together with some operations on fuzzy
relations are introduced as a generalization of fuzzy sets and ordinary
relations. They have application in database models. Fuzzy sets and
fuzzy relations play an important role in fuzzy logic.

1.1 Classical Sets: Relations and Functions

Classical sets

This section reviews briefly the terminology, notations, and basic prop-
erties of classical sets, usually called sets.

The concept of a set or collection of objects is common in our every-
day experience. For instance, all persons listed in a certain telephone
directory, all employees in a company, etc. There is a defining prop-
erty that allows us to consider the objects as a whole. The objects in
a set are called elements or members of the set. We will denote ele-
ments by small letters a,b,c,...,x,y,z and the sets by capital letters
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A, B,C,..., X,Y, Z. Sets are also called ordinary or crisp in order to be
distinguished from fuzzy sets.

The fundamental notion in set theory is that of belonging or mem-
bership. If an object x belongs to the set A we write x € A; if = is not
a member of A, we write x € A. In other words for each object x there
are only two possibilities: either = belongs to A or it does not.!

A set containing finite number of members is called finite set; oth-
erwise it is called infinite set. We present two methods of describing
sets.

Listing method

The set is described by listing its elements placed in braces; for example
A =1{1,3,6,7,8}, B = {business, finance, management}. The order in
which elements are listed is of no importance. An element should be
listed only once.
Membership rule

The set is described by one or more properties to be satisfied only by
objects in the set:

A= {x | = satisfies some property or properties}.

This reads: “A is the set of all x such that z satisfies some property
or properties.” For example R = {z | z is real number} reads: “R is
the set of all x such that x is a real number”; Ry = {z|x > 0,z € R}
reads “Ry is the set of all  which are nonnegative real numbers.”
Universal set

The set of all objects under consideration in a particular situation is
called universal set or universe; it will be denoted by U.

Empty set

A set without elements is called empty; it is denoted by ¢.

Interval

The set of all real numbers x such that a1 < x < as, where a1 and ay are
real numbers, form a closed interval [a1,as] = {z | a1 <z < a9,z € R}
with boundaries a1 and as. It is also called interval number.
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Fqual sets

Sets A and B are equal , denoted by A = B, if they have the same
elements.

Subset

The set A is a subset of the set B (A is included in B), denoted by
A C B, if every element of A is also an element of B. Every set is
subset of itself, A C A. The empty set ¢ is a subset of any set. It is
assumed that each set we are dealing with is a subset of a universal set

U.

Proper subset

A is a proper subset of B, denoted A C B, if A C B and there is
at least one element in B which does not belong to A. For instance
{a,b} Cc {a,b,c}. f AC Band B C C, then A C C.

Intersection

The intersection of the sets A and B, denoted by AN B, is defined by
ANB={z | v € A and z € B}; (1.1)
AN B is a set whose elements are common to A and B.

Union

The union of A and B , denoted by AU B, is defined by
AUB={z | x € A or z € B}; (1.2)

AU B is a set whose elements are in A or B, including any element that
belongs to both A and B.

Disjoint sets

If the sets A and B have no elements in common, they are called disjoint.

Complement

The complement of A C U, denoted by A, is the set
A={zeU | x ¢ A}. (1.3)
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The complement of a set consists of all elements in the universal set
that are not in the given set.

Example 1.1
Given the sets
A={1,2,3,4}, B=1{1,3,5,6}, U=1{1,2,3,4,5,6,7},
then using (1.1)—(1.3) we find
ANB={1,3}, AUB=1{1,2,3,4,5,6}, A=1{5,6,7}, B=1{2,4,7}.

Od
Convex sets

Consider the universe U to be the set of real numbers R.
A subset S of R is said to be convez if and only if, for all z1,22 € S
and for every real number A satisfying 0 < A <1, we have

Azy 4 (1= N)ag € 8.

For example, any interval S = [a1,ag] is a convex set since the above
condition is satisfied; [0, 1] and [3, 4] are convex, but [0, 1] U [3, 4] is not.
Venn diagrams

Sets are geometrically represented by circles inside a rectangle (the uni-
versal set U). In Fig. 1.1 are shown the sets AN B and AU B.

A B A

A | G

AN B AUB
Fig. 1.1. Venn diagrams for A N B(intersection), A U B(union).

Ordered pairs

It was noted that the order of the elements of a set is not important.
However there are cases when the order is important. To indicate that
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a set or pair of two elements a and b is ordered, we write (a,b), i.e. use
parentheses instead of braces; a is called first element of the pair and b
is called second element.

Cartestan product

Cartesian product (or cross product) of the sets A and B denoted A x B
is the set of ordered pairs

Ax B={(a,b) |ac Abe B}. (1.4)

Example 1.2

(a) Given
A={1,2,3}, B={1,2},

then according to (1.4) we find
Ax B={(1,1),(1,2),(2,1),(2,2),(3,1),(3,2) };

geometrically it is presented on Fig. 1.2 (a).
(b) If X, Y = R, the set of all real numbers, then

XxY={(z,y)lre X,yeY}=RxR

is the set of all ordered pairs which form the cartesian plane xy (see
Fig. 1.2(b)).

yA v 4
2r [ ] {J [ J
1r [ ] ® [ ]
X X
1 1 L,

(a) (b)

Fig. 1.2. (a) Cartesian product {1,2,3} x {1,2}; (b) Cartesian plane.
a
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Relations

The concept of relation is very general. It is based on the concepts of
ordered pair (a,b), a € A, b € B, and cartesian product of the sets A
and B.

A relation from A to B (or between A and B) is any subset R of
the cartesian product A x B. We say that a € A and b € B are related
by R; the elements a and b form the domain and range of the relation,
correspondingly. Since a relation is a set, it may be described by either
the listing method or the membership rule. The relation R is called
binary relation since two sets, A and B, are related.

Example 1.3

Let A= {x1,29,23} and B = {1,2,3,4}.
We list some binary relations generated by A and B:

Ri = {(21,1), (22,1), (x3,4)},
Ro = {(21,2), (z1,3)}, Rz ={(22,2), (z3,1)},
§R4 = {($1,1),(2111,2),(2111,3),(1‘1,4),(1‘2,1),(1‘4,1)}

are relations from A to B;

are relations from B to A; the empty set ¢ is a relation; the cross
product A x B is a relation from A to B and the cross product B x A

is a relation from B to A.
O

Functions

A function f is a relation R such that for every element x in the domain
of f there corresponds a unique element ¥ in the range of f. For instance
the relations in Example 1.2 are not functions.

We often say that f maps z onto y; y is the image of z under f.
Then we can write f : * — y. However, it is customary to use the
notation y = f(z).
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Generalization

The notions of ordered pair, Cartesian product, relation, and function
can be generalized for higher dimensions than two. For instance when
n = 3 we have:

Ordered triple (a,b,c);

Cartesian product

Ax BxC={(a,b,c)la€ Abe B,ce C};

Relation from A x B to C' is any subset i of A x B x C.
Function z = f(x,y) is a relation such that for every pair (z,y) in
the domain of f there corresponds a unique element z in its range.

Characteristic Function

The membership rule that characterizes the elements (members) of a set
A C U can be established by the concept of characteristic function (or
membership function) pa(x) taking only two values, 1 and 0, indicating
whether or not x € U is a member of A:

1 for x € A,
palz) = { 0 for x & A. (1.5)

Hence pa(z) € {0,1}. Inversely, if a function p4(x) is defined by (1.5),
then it is the characteristic function for a set A C U in the sense that
A consists of the values of x € U for which p4(x) is equal to 1. In other
words every set is uniquely determined by its characteristic function.

The universal set U has for membership function py(x) which is
identically equal to 1, i.e. py(z) = 1. The empty set ¢ has for mem-
bership function pg(x) = 0.

Example 1.4
Consider the universe U = {x1, x9, x3, x4, T5, 26} and its subset A,
A = {x9,x3,25}.

Only three of the six elements in U belong A. Using the notation (1.5)
gives
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Hence the characteristic function of the set A is

1 for T = X9,T3,Ts5,
xTr) =
palz) { 0 for T = x1,T4,Tg;

The set A can be represented as

A= {(331, 0)7 (:E?? 1)7 ((Eg, 1)7 (374,0), (375, 1)7 (‘TG? 0)}

Example 1.5

Let us try to use crisp sets to describe tall men. Consider for instance
a man as tall if his height is 180 cm or greater; otherwise the man is
not tall. The characteristic function of the set A = {tall men} then is

(@) = 1 for 180 < =z,
RAWET =9 for 160 < x < 180.

It is shown in Fig. 1.3, where the universe is U = {z | 160 < z < 200}.

0 160 180 200
Fig. 1.3. Membership function of the set tall men.

Clearly this description of the set of tall men is not satisfactory
since it does not allow gradation. The word tall is vague. For instance,
a person whose height is 179 cm is not tall as well as a person whose
height is 160 cm. Yet a person whose height is 180 is tall and so is
a person with height 200 cm. Also the above definition introduces a
drastic difference between heights of 179 ¢cm and 180 cm, thus fails to

describe realistically borderline cases.?
O

The concept of characteristic function introduced here will facili-
tate the understanding of the concept fuzzy set, the subject of the next
section.
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1.2 Definition of Fuzzy Sets

We have seen that belonging or membership of an object to a set is
a precise concept; the object is either a member to a set or it is not,
hence the membership function can take only two values, 1 or 0. The set
tall men in Example 1.5 illustrates the need to increase the describing
capabilities of classical sets while dealing with words.

To describe gradual transitions Zadeh (1965), the founder of fuzzy
sets, introduced grades between 0 and 1 and the concept of graded
membership.

Let us refer to Example 1.4. Each of the six elements of the universal
set U = {x1, 22,23, 24, 5,26} either belongs to or does not belong to
the set A = {x9,x3,75}. According to this, the characteristic function
pa(x) takes only the values 1 or 0. Assume now that a characteristic
function may take values in the interval [0, 1]. In this way the concept
of membership is not any more crisp (either 1 or 0), but becomes fuzzy
in the sense of representing partial belonging or degree of membership.

Consider a classical set A of the universe U. A fuzzy set A is defined
by a set or ordered pairs, a binary relation,

A={(z,pa(z)) | z € A, palz) € [0,1]}, (1.6)

where pa(x) is a function called membership function; pa(x) specifies
the grade or degree to which any element = in A belongs to the fuzzy set
A. Definition (1.6) associates with each element x in A a real number
wa(z) in the interval [0, 1] which is assigned to z. Larger values of
pa(z) indicate higher degrees of membership.3

Let us express the meaning of (1.6) in a slightly modified way. The
first elements x in the pair (x,pu4(z)) are given numbers or objects of
the classical set A; they satisfy some property (P) under consideration
partly (to various degrees). The second elements u_4(x) belong to the
interval (classical set) [0, 1]; they indicate to what extent (degree) the
elements x satisfy the property P.

It is assumed here that the membership function p.4(x) is either
piecewise continuous or discrete.

The fuzzy set A according to definition (1.6) is formally equal to
its membership function pa(z). We will identify any fuzzy set with
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its membership function and use these two concepts as interchangeable.
Also we may look at a fuzzy set over a domain A as a function mapping
A into [0, 1].

Fuzzy sets are denoted by italic letters A, B,C,... and the corre-
sponding membership functions by p4(z), ug(x), pe(zx),. . ..

Elements with zero degree of membership in a fuzzy set are usually
not listed.

Classical sets can be considered as a special case of fuzzy sets with
all membership grades equal to 1.

A fuzzy set is called normalized when at least one x € A attains
the maximum membership grade 1; otherwise the set is called nonnor-
malized. Assume the set A is nonnormalized; then max pu4(x) < 1. To

normalize the set A means to normalize its membership function p.4(z),
pa(z)
max f14(z)

A is called empty set labeled ¢ if p4(x) = 0 for each x € A.

The fuzzy set A = {(x1,pa(x1))}, where x; is the only value in
A CU and pa(z1) € [0,1], is called fuzzy singleton.

While the set A is a subset of the universal set U which is crisp, the
fuzzy set A is not.

Instead of (1.6), some authors use the notation

A={pa(x)/z,x € A pa(z) €0,1]},

where the symbol / is not a division sign but indicates that the top
number p4(x) is the membership value of the element z in the bottom.

i.e. to divide it by max u4(z), which gives

Example 1.6
Consider the fuzzy set

A= {($1, 01)5 (x27 05)7 (1‘3, 03)5 (.’L‘4, 08)7 (1‘5, 1)7 (x67 02)}
which also can be represented as
A=01/x1 +05/x9 4+ 0.3/x3+0.8/24 + 1/x5 + 0.2/ 26;

it is a discrete fuzzy set consisting of six ordered pairs. The elements
xz;, i =1,...,6, are not necessary numbers; they belong to the classical
set A = {1, 29,23, 24,25, 6} which is a subset of a certain universal
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set U. The membership function p4(x) of A takes the following values
on [0, 1]:

MA(xl) =0.1, MA(’ZEQ) = 0.5, N.A(ml’») = 0.3,
pa(zs) =08, pa(zs) =1,  palze) =0.2.

The following interpretation could be given to p4(x;),i = 1,---,6.
The element x5 is a full member of the fuzzy set A, while the element
x1 is a member of A a little (ua(z1) = 0.1 is near 0); xg and x3 are a
little more members of A; the element x4 is almost a full member of A,
while x5 is more or less a member of A.

The fuzzy set A can be given also by the table

1>

‘:L‘l xo xrs3 Ty T5 T
/0.1 05 03 08 1 0.2

A

where the symbol = means “is defined by.”

Now we specify in two different ways the elements x; in A:

(a) Assume that z;,i = 1,---,6, are integers, namely, x; =
1,20 = 2,23 = 3,24 = 4,25 = b,x¢ = 6; they belong to the set
A = {1,2,3,4,5,6}, a subset of the universe U = N, the set of all
integers. The fuzzy set A becomes

A={(1,0.1),(2,0.5),(3,0.3), (4,0.8), (5,1), (6,0.2)};

its membership function p4(x) shown in Fig. 1.4 by dots is a discrete
one.

(b) Assume now that x;,i = 1,...,6, are friends of George whose
names are as follows: x1 is Ron, x5 is Ted, z3 is John, x4 is Joe, x5 is
Tom, and zg is Sam. They form a set of friends of George,

A = {Ron, Ted, John, Joe, Tom, Sam},

a subset of the universe U (all friends of George). The fuzzy set A here
expresses closeness of friends of George on A C U:

A = {(Ron,0.1), (Ted, 0.5), (John, 0.3), (Joe, 0.8), (Tom, 1), (Sam, 0.2) }
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u
11t .
. !
05! . |
’ f
! ! *
. : 1 i
0 1 2 3 4 5 6 x

Fig. 1.4. Fuzzy set A = {(1,0.1),(2,0.5), (3,0.3), (4,0.8), (5,1), (6,0.2)}.
O

Example 1.7

Let us describe numbers close to 10.
(a) First consider the fuzzy set

1
5

A= {(@pa, @) | @ € 5,151 1ty (@) = {072

where 14, () shown in Fig. 1.5 is a continuous function.
The fuzzy set Ay represents real numbers close to 10.

u

Fig. 1.5. Real numbers close to 10.
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(b) Integers close to 10 can be expressed by the finite fuzzy set
consisting of seven ordered pairs

Ay ={(7,0.1),(8,0.3),(9,0.8), (10,1), (11,0.8), (12,0.3), (13,0.1)}.

The membership function of A5 is shown on Fig 1.6 by dots; it is a
discrete function.

Tl
1y .
08 o o
03 . | e
0.1 . i i % B
J— 1 1 i 1 I I
0 7 8 9 10 11 12 13 x

Fig. 1.6. Integers close to 10.

Example 1.8

We have seen in Example 1.5 that the description of tall men by
classical sets is not adequate. Now we employ for the same purpose
the fuzzy set 7 = {(x, pr(z))}, where x measured in cm belongs to the
interval [160, 200] and p7(x) is defined by (see Fig 1.7)

sy (2 — 140)? for 160 < z < 170,
pr (x) = { 2(30)1 2
—W(a: —200)*+1 for 170 <z < 200.

The membership function p7(z) is a continuous piecewise-quadratic
function. The numbers on the horizontal axis = give height in cm and
the vertical axis u shows the degree to which a man can be labeled tall.
According to the graph in Fig. 1.7, if a person’s height is 160 cm, the
person is a little tall (degree 0.22), 180 cm stands for almost tall (degree
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0.78), 200 cm for tall (degree 1). The segment [0.22,1] of the vertical
axis pu expresses the quantification of the degree of vagueness of the word
tall*

0.78

05

/  Tom |
77— 3 | oz

0 160 170 180 190 200

Fig. 1.7. Description of tall men by fuzzy set.
O

Further we define a-level interval or a-cut, denoted by A, as the
crisp set of elements x which belong to A at least to the degree «:

Ay ={z |z € R pua(x) > a}, «acl0,1]. (1.7)

It gives a threshold which provides a level of confidence o in a decision
or concept modeled by a fuzzy set. We may use the threshold to discard
from consideration those element z in A with grades of membership

pa(z) < a.
Example 1.9

Consider Example 1.8, the set 7, tall men. It has an infinite number
of a-level intervals (a-cuts) denoted by 7, where « varies between 0.22
and 1. Some a-cuts shown in Fig. 1.7 are given below:

76.22 = {ZII’IE € R7 160 <z < 200}7,“’7'(‘7:) > 0227
Tos = {a|z € R, 170 < & < 200}, ur(z) > 0.5,
Toms = {z|r € R,180 < x < 200}, ur(z) > 0.78
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For instance we may choose as a threshold the a-cut 7y 5 thus dis-

carding from consideration men whose height is below 170 cm.
O

A fuzzy set A, where the universe U = R, is convez if and only if
the a-level intervals A, (see (1.7)) are convex for all o in the interval
(0, 1]. In such a case all a-level intervals A, consist of one segment (see
Fig. 1.8(a)). Otherwise the set is nonconvex (see Fig. 1.8(b)).

H H
normalized normalized

nonnormalized | nonnormalized A

@ (b)

Fig. 1.8. (a) Convex fuzzy sets; (b) Nonconvex fuzzy sets.

1.3 Basic Operations on Fuzzy Sets

Consider the fuzzy sets A and B in the universe U,
A = A, pal@)},  palz) €[0,1],
B = {(JI,MB(J}))}, ,U/B(x) € [07 1]'
The operations with A and B are introduced via operations on their
membership functions p4(x) and pp(z).
Equality

The fuzzy sets A and B are equal denoted by A = B if and only if for
every x € U,
pa(x) = pp(x).
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Inclusion

The fuzzy set A is included in the fuzzy set B denoted by A C B if for
every x € U,

pa(z) < pp(z).
Then A is called a subset of B.
Proper subset

The fuzzy set A is called a proper subset of the fuzzy set B denoted
A C B when A is a subset of B and A # B, that is

pa(x) < pp(x) for every x € U,
pa(z) < pp(r) for at least one x € U.

For instance the nonnormalized sets in Fig. 1.8 (a) and (b) are proper.
Complementation
The fuzzy sets A and A are complementary if

j(@) = 1= pa(a) or pale)+ pgla) = 1. (L8)

The membership function p4(x) is symmetrical to p4(x) with re-
spect to the line = 0.5.

Intersection

The operation intersection of A and B denoted as AN B is defined by
IU‘-AQB(‘T) = min(ﬂA(‘T)7ﬂB(w))v zeU. (19)

If a; < ag, min(ay,az) = a;. For instance min(0.5,0.7) = 0.5.

Union

The operation union of A and B denoted as A U B is defined by

paus(z) = max(pa(z), ps(z)), = eU. (1.10)

If a1 < a9, max(ay,as) = az. For instance max(0.5,0.7) = 0.7.
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Example 1.10

Consider the universe U = {z1, z2, 3, 24} and the fuzzy sets A and
B defined by the table

x Tyl T2 X3 T4
pa(z) 102 07 1 0
up(x) 05 03 1 0.1

Using (1.9) and (1.10) gives

x I ) r3 T4
pans(r) 02 03 1 0
waup(z) 1 0.5 07 1 0.1

Schematic representation of operations on fuzzy sets

Fuzzy sets are schematically represented by their membership functions
(assumed continuous) inside of rectangles. In Fig. 1.9 are shown p.4(z)
and pp(z), in Fig. 1.10 the complements pz(z) and pg(z), and in
Fig. 1.11 the union png(x) and the intersection pgng(x).

1 1
M, (X) Hg (X)

U U

Fig. 1.9. Membership function p4(z), ug(x).
Figure 1.11 shows that ANB € AU B.

Law of excluded middle and fuzzy sets

The classical sets possess an important property, the law of excluded
middle,® expressed by AN A = ¢ and AUA = U. It is illustrated in
Fig. 1.12 by the means of Venn diagrams.
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The law of excluded middle is not valid for the fuzzy sets since
ANA# ¢ and AUA# U. This is illustrated in Fig. 1.13.

1 1
\ ﬂ et
) )

Fig. 1.10. Membership function p—(x), uz(z).

1 1

TS Haup (X

U U

Fig. 1.11. Membership function of intersection and union.

U U:

>|

ANA=¢ AUA=U
Fig. 1.12. The law of excluded middle for classical sets.

It is natural that the law of the excluded middle is not valid for
fuzzy sets. In classical sets every object does or does not have a certain
property, expressed by 1 or 0. Fuzzy sets were introduced to reflect the
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existence of objects in reality that have a property to a degree between
0 and 1. There are many shades of gray color between black and white.

1 1

ANA+# ¢ AUA#U
Fig. 1.13. The law of excluded middle is not valid for fuzzy sets.

The lack of the law of excluded middle in fuzzy set theory makes it
less specific than that of classical set theory. However, at the same time,
this lack makes fuzzy sets more general and flexible than classical sets
and very suitable for describing vagueness and processes with incomplete
and imprecise® information.

1.4 Fuzzy Numbers

A fuzzy number® is defined on the universe R as a convex and normalized
fuzzy set. In Figs. 1.14(a),(b) are shown two fuzzy numbers, with a
maximum and with a flat.

For instance, the normalized fuzzy set in Fig. 1.8(a) is a fuzzy num-
ber while the sets in Fig. 1.8(b) are not. The fuzzy set in Fig. 1.7 is also
a fuzzy number.

The fuzzy set in Fig. 1.6 is a fuzzy number in the set of integers
while the fuzzy set in Fig. 1.4 is not. Also we may consider a fuzzy
number with a flat in the set of integers.

The interval [a1, as] is called supporting interval for the fuzzy num-
ber. For z = ajs the fuzzy number in Fig. 1.14 (a) has a maximum.
The flat segment (Fig. 1.14(b)) has maximum height 1; actually it is
the a-cut at the highest confidence level 1.

Fuzzy numbers will be denoted by bold capital letters A,B,C, ...,
and their membership functions by pa (z), us(x), pc(x), ... .
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Fig. 1.14. Fuzzy numbers: (a) with a maximum; (b) with a flat.

Piecewise-quadratic fuzzy number

The membership function pa (z) of a piecewise-quadratic fuzzy number
shown in Fig. 1.15 is bell-shaped, symmetric about the line x = p, has a
supporting interval A = [a1, az], and is characterized by two parameters,
p= %(al +ag) and B € (0,a3 —p). The peak-point (the maximum point)
is (p,1); 20 called bandwidth is defined as the segment (a-cut) at level
= % between the points (p — 3, %) and (p + 3, %), called crossover
points.

1 (p.2)

TG =2

0 a, P-B p p+3 a, X

Fig. 1.15. Piecewise-quadratic fuzzy number.
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The curve on Fig. 1.15 is described by the equations

(a:—al) fora; <z <p- 3,

#( p) forp—pB<z<p+p,

xTr) =
Hal() W( )2 for p+ 8 < < ay,

0 otherwise.

(1.11)

The interpretation for the fuzzy number (1.11) is real numbers close
to the number p. Since the word close is vague and in that sense fuzzy,
it cannot be defined uniquely. That depends on the selection of the
supporting interval and the bandwidth which are supposed to reflect a
particular situation. For instance the fuzzy set tall men (Example 1.8)
is a particular case of (1.11) (left branch) on the interval [160, 200] with
a1 = 140,p = 200, and B = 30.

Example 1.11

The manufacturing price of a product is close to 28. It can be
described by the fuzzy number A in Fig. 1.16 where a; = 23,a2 =
33,p=28,0 =3.

The membership function pa(z) can be obtained from (1.11) by
substituting the specific values of a1, as,p and 3 given above.

u

1

05 3 (31, 0.5)

0 23 25 28 31 33 X

Fig. 1.16. Product price close to 28.



22 Chapter 1. Fuzzy Sets

1.5 Triangular Fuzzy Numbers

A triangular fuzzy number A or simply triangular number with mem-
bership function p14(z) is defined on R by

r—a
. ﬁ for a1 <z < ap,
A =pa(x) = aM_Z2 for apy <z < aog, (1.12)
0 otherwise,

where [a1, az] is the supporting interval and the point (aar,1) is the
peak (see Fig. 1.17). The third line in (1.12) can be dropped.

a

1 (a, .1

Fig. 1.17. Triangular fuzzy number.

Often in applications the point ay; € (a1, az) is located at the middle
of the supporting interval, i.e. apr = % Then substituting this value
into (1.12) gives

21-4L for gy < g < Wfe2
A aacQ—_cill a +; = 2
A=pa(z) =4 2.-% for 452 <z <ay, (1.13)
0 otherwise.

We say that (1.13) represents a central triangular fuzzy number (see
Fig. 1.18(a)). Similarly to the piecewise-quadratic fuzzy number, it is
very suitable to describe the word close (close to apr).

Triangular numbers are very often used in the applications (fuzzy
controllers, managerial decision making, business and finance, social
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sciences, etc.). They have a membership function consisting of two
linear segments A’ (left) and A" (right) joined at the peak (aar,1) (see
Fig. 1.17) which makes graphical representations and operations with
triangular numbers very simple. Also it is important that they can be
constructed easily on the basis of little information.

H H
1 1
0
X -a 0 a X
(b)

Fig. 1.18. (a) Central triangular number; (b) Central triangular number
symmetrical about .

Assume while dealing with an uncertain value we are able to specify
the smallest and largest possible values, i.e. the supporting interval
A = [a1,az]. If further we can indicate a value ajs in [a1, az] as most
plausible to represent the uncertain value, then the peak will be the
point (aps,1). Hence with the three values aj,ag and aps, one can
construct a triangular number and write down its membership function
(1.12). That is why the triangular number is also denoted by

A = (a1,ap, a2). (1.14)

A central triangular number is symmetrical with respect to the axis p

ifin (1.13) a; = —a, a2 = a, hence apr = 0 (see Fig. 1.18(b)). According
to (1.14) it is denoted by

A = (—a,0,a).
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It is very suitable to express the word small. The right branch (segment)
of A = (—a,0,a), i.e. when 0 <z < a, can be used to describe positive
small (PS), for instance young age, small profit, small risk, etc. We can
denote it by A" = (0,0, a).

More generally, the left and right branches of the triangular number
(1.14) can be denoted correspondingly by Al = (a1, anr, anrr) and A" =
(arr, anr,a2). They will be considered as triangular numbers and called
correspondingly left and right triangular numbers. The left triangular
number A' (see Fig. 1.17) is suitable to represent positive large (PL) or
words with similar meaning, for instance old age, big profit, high risk,
etc. provided that aps is large number.

1.6 Trapezoidal Fuzzy Numbers

A trapezoidal fuzzy number A or shortly trapezoidal number (see
Fig. 1.19) is defined on R by

L1 for a1 < x < by,

bi—a1
A . 1 for b1 <z< bg,
A= pale) = o for by <z <ay, (1.15)
0 otherwise.

It is a particular case of a fuzzy number with a flat.

The supporting interval is A = [a1,a2] and the flat segment on
level @ = 1 has projection [by,bs] on the z-axis. With the four values
ai,az2,by, and by, we can construct the trapezoidal number (1.15). It
can be denoted by

A= (al,bl,bg,ag). (1.16)

If by = bs = ayy, the trapezoidal number reduces to a triangular
fuzzy number and is denoted by (ai,ans,an,az). Hence a triangular
number (a1, apr,az2) can be written in the form of a trapezoidal number,
ie. (a1,an,a2) = (a1,an,an,az).

If [aq,b1] = [b2,ag], the trapezoidal number is symmetrical with re-
spect to the line z = 1(by + ba) (see Fig. 1.20). It is in central form and
represents the interval [by, ba] and real number close to this interval.
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u

b2 a, X

u

1

Fig. 1.20. Trapezoidal number in central form.

Similarly to right and left triangular numbers (Section 1.5) we can
introduce right and left trapezoidal numbers as parts of a trapezoidal
number.

The right trapezoidal number denoted A" = (b1, by, b, az) has sup-
porting interval [by,as] and the left denoted A! = (ay,bi,bs,bs) has
supporting interval [a1,bs]. Especially they are suitable to represent

small 2 AT = (0,0,b2,a2) (Fig. 1.21(a)) and large SAl= (a1,b1,b2,b2)
where b; is a large number (Fig. 1.21(b)).
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Fig. 1.21 (a) Right trapezoidal number A" representing small; (b) Left
trapezoidal number A! representing large.

1.7 Fuzzy Relations

Definition of Fuzzy Relation

Consider the Cartesian product
AxB={(z,y) | z€AyeB},

where A and B are subsets of the universal sets U; and Us, respectively.
A fuzzy relation on A x B denoted by R or R(x,y) is define as the
set

R = {((‘Tvy)auR(x7y))’(xay) € Ax B,,uR(x,y) € [07 1]}7 (117)

where pg(x,y) is a function in two variables called membership func-
tion. It gives the degree of membership of the ordered pair (z,y) in R
associating with each pair (z,y) in A X B a real number in the interval
[0, 1]. The degree of membership indicates the degree to which = is
in relation with y. We assume that pug(z,y) is piecewise continuous or
discrete in the domain A x B; it describes a surface. Formally, the fuzzy
relation R is a classical trinary relation; it is a set of ordered triples.
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The definition (1.17) is a generalization of definition (1.6) for fuzzy
set from two-dimensional space (z,ua(x)) to three-dimensional space
(z,y, pa(x,y)).5 Here we also identify a relation with its membership
function.

The fuzzy relation in comparison to the classical relation possesses
stronger expressive power while relating x and y due to the membership
function pg(z,y) which assigns specific values (grades) to each pair
(@,9).

Common linguistic relations that can be described by appropriate
fuzzy relations are: x is much greater than y, x is close to y, x is relevant
to y, x and y are almost equal,  and y are very far, etc.

Example 1.12

Consider the fuzzy relation which consists of finite number of ordered
pairs,
R = {((1,91),0), ((z1,¥2),0.1), ((z1,¥3,0.2),
((2,91,0.7), (22, 2,0.2 (w2, y3,0.3),
(

(z3,91), 1), (23,92),0.6), ((23,¥3),0.2)) };

it can be described also by the table (or matrix)

Yyl Y2 Y3

X

REH 0 01 02
. 0.7 02 03
3 1 06 02

where the numbers in the cells located at the intersection of rows and
columns are the values of the membership function:

pr(z1,y1) =0, pr(z1,92) =01, pgr(zr,ys) = 0.2,

pr(r2,y1) = 0.7,  pr(r2,y2) = 0.2, pr(ze,ys3) = 0.3,

pr(zs,y1) =1, pr(xs,y2) = 0.6, pgr(zrs,ys) =0.2.

Assuming that =1 = 1,20 = 2,23 = 3,41 = L,y2 = 2,y3 = 3, we
can present schematically R by points in the three-dimensional space
(z,y,p) (see Fig. 1.22).
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1.22. Fuzzy relation R describing x is greater than y.

Since the values of the membership function 0.7, 1, 0.6 in the direc-
tion of x below the major diagonal (0, 0.2, 0.2) in the table are greater
than those above in the direction of y, 0.1, 0.2, 0.3, we say that the
relation R describes x s greater than y.

The fuzzy relation R can be expressed also as a fuzzy graph
(Fig. 1.23). The numbers at the segments are the degrees of mem-

bership.
e e
OF 0
0.3

0.6
1 0.2

) e ()

Fig. 1.23. Fuzzy relation R presented as a fuzzy graph.
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Example 1.13

Consider the following two sets whose elements are business
companies: A = {company a;,company az,company as}, B =
{company by, company by}. Let R be a fuzzy relation between the two
sets that represents the linguistic relation very far concerning distance
between companies:

R = {((companya;,companybi),0.9),
((companyay, companybs),0.6),
((companyas, companyb ), 1),
((companyasg, companybs), 0.4),
((companyagz, companyb; ), 0.5),
((companyag, companybs),0.1)}.

The relation can also be presented by the table

‘ company by company bg

A company ap 0.9 0.6
R =

company as 1 0.4

company as 0.5 0.1

The membership values indicate to what degree the corresponding
companies are very far from each other. For instance, company as and
company by are very far (degree of membership 1) while companies a3
and by are not very far (degree of membership 0.1).

O

1.8 Basic Operations on Fuzzy Relations

Let R1 and Ry be two fuzzy relations on A x B,

Ri=A{((z,y), pr,(z,9)},  (z,9) € Ax B,
R ={((z,9), pr,(%,¥))},  (z,y) € AX B,

We use the membership functions g, (z,y) and pr,(z,y) in order
to introduce operations with R; and Ry similarly to operations with
fuzzy sets in Section 1.3.



30 Chapter 1. Fuzzy Sets

FEquality
R1 = Ry if and only if for every pair (x,y) € A x B,

Ry (T,Y) = uR, (2, Y).

Inclusion
If for every pair (z,y) € A x B,
HRy (337 y) < HRo (337 y)a

the relation R is included in Rg or R is larger than R, denoted by
R1 C Ro.
If R1 € Rs and in addition if for at least one pair (z,y),

pr, (@,y) < PRy (7, y),

then we have the proper inclusion R{ C Rs.
Complementation
The complement of a relation R, denoted by R, is defined by

pr(®,y) =1 - pr(z,y), (1.18)
which must be valid for any pair (z,y) € A x B.
Intersection
The intersection of Ry and Rs denoted R1[]Re is defined by

NR10R2($7Z/) = min{,uRl ('x?y)?NRQ (x7y)}’ (l’,y) € AxB. (119)

Union
The union of R and Rs denoted Rq|JRs is defined by
1R UR, (2, y) = max{ug, (z,y), pro (2, y)},  (z,y) €EAX B, (1.20)

The operations intersection and union are illustrated in the following
example.
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Example 1.14
Consider the relations Rq and Ry given by the tables

Y1 Y2 Y3 Y1 Y2 Y3

Az | 0 01 02 A 21|03 03 02
R = z2 | 0 0.7 03 Re = 2|05 0 1
23102 08 1 z3 |07 03 0.1

Using definitions (1.19) and (1.20) for each ordered pair (x;,y;),1,7 =
1,2,3, gives

‘yl Y2 Y3 ‘91 Y2 Y3

Az | 0 01 02 Az |03 03 02
RiNR2 = z2| 0 0 0.3 R1UR2 = 9| 05 07 1
3102 03 0.1 23107 08 1

A comparison between the corresponding membership values in R1N
R2 and R U Ry shows that R; N Ry C Ry URe (proper inclusion).

O
Direct Product
Consider the fuzzy sets A and B

A= {(JI,MA(IL’)), MA(‘T) € [07 1]}7

B={(y,usy), wsly) €[0,1]}.

defined on z € A C Uy and y € B C Us, correspondingly.
We introduce two types of direct products which will be used in the

next chapter.
Direct min product of the fuzzy sets A and B denoted A X B with
membership functions p 4 is a fuzzy relation defined by

A B ={(z,y), min(pa(x), ps(y)), (z,y) € Ax B}, (1.21)

which means that we have to perform the Cartesian product A x B and
at each pair (z,y) to attach as membership value the smaller between

ra(z) and pg(y).
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Direct max product of the fuzzy sets A and B denoted AxB with
membership function H(A%B) (z,y) is a fuzzy relation defined by

AxB = {(z,y), max(pa(z), us(y)), (v,y) € A x B}. (1.22)

Here each pair (x,y) has for membership value the larger between p 4(x)
and ps(y).

Example 1.15
Given the fuzzy sets

A= {(21,0), (22,0.1), (w3, 1)},

B= {(y170'3)7 (y2,1), (y3,0.2), (y470'1)}7

the direct min product and the direct max product according to (1.21)
and (1.22) are the fuzzy relations

X
ASBE 4 0 0 0 0
9 01 01 01 0.1
23 03 1 02 0.1
y‘ Vi Y2 Ys Wa
X
AXB 2 03 1 02 01.
9 03 1 02 01
3 1 1 1 1
O
1.9 Notes

1. The formal development of set theory began in the late 19th cen-
tury with the work of George Cantor (1845-1918), one of the most
original mathematicians in history. Set theory has been used to
establish the foundations of mathematics and modern methods of
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mathematical proof. Cantor’s sets are crisp. Each element under
consideration either belongs to a set or it does not; hence there is
a line drawn between the elements of the set and those which are
not. The boundary of a set is rigid and well defined (see Exam-
ple 1.5). However in reality things are rather fuzzy than crisp.

2. A paradox coming from ancient Greece has caused serious prob-
lems to logicians and mathematicians. Consider a heap of grains
of sand. Take a grain and the heap is still there. Take another
grain, and another grain, and continue the process. Eventually ten
grains are left, then nine, and so on. When one grain is left, what
happens with the heap. Is it still a heap? When the last grain is
removed and there is nothing, does the heap cease to be a heap?
There are many paradoxes of similar nature called “sorites.” This
word comes from “soros” which is the Greek word for heap. For
instance let us apply the above procedure to the cash (say, one
million) of a rich person. He/she spends one dollar and is still
rich; then another dollar and so on. When one hundred dollars
are left, what happens to his/her richness? When does that per-
son cease to be rich? In the crisp set theory such dilemmas are
solved by sort of appropriate assumptions (as in Example 1.5) or
by decree. In the case of the heap a certain natural number n is
to be selected; if the number of sand grains is > n, then the grains
constitute a heap; n—1 sand grains does not form a heap anymore.
This defies common sense. Also how to select the number n? Is
it 100, 1000, or 1,000,000, or larger? Common sense hints that
the concept heap is a vague one. Hence a tool that can deal with
vagueness is necessary. The concept of fuzzy set, a generalization
of Cantor’s sets, is such a tool (see Example 1.7).

The following thoughts by Bertrand Russell (1923) are quoted
very often: “All traditional logic habitually assumes that precise
symbols are being employed. It is therefore not applicable to this
terrestrial life, but only to an imagined celestial one. The law of
excluded middle is true when precise symbols are employed but
it is not true when symbols are vague, as, in fact, all symbols
are.” “All language is vague.” “Vagueness, clearly, is a matter of
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degree.”

An important step towards dealing with vagueness was made by
the philosopher Max Black (1937) who introduced the concept of
vague set.

. The concept of fuzziness was introduced first in the form of fuzzy

sets by Zadeh (1965).

According to dictionaries (see for instance Merriam-Webster’s
Collegiate Dictionary and The Heritage Illustrated Dictionary of
the English Language) and also use in everyday language the words
fuzzy, vague, ambiguous, uncertain, imprecise, and their adverbs,
are more or less closely related in terms of meaning. This state-
ment is supported by the following brief explanations.

Fuzzy: not sharply focused, clearly reasoned or expressed; con-
fused; lacking of clarity; blurred.

Vague: not clearly expressed, defined, or understood; not sharply
outlined (hazy); lack of definite form.

Ambiguous: capable of being understood in two or more possible
ways; doubtful or uncertain (synonym: vague).

Uncertain: not certain to occur; not clearly identified or defined;
lack of sureness about something; lack of knowledge about an
outcome or result.

Imprecise: not precise, inexact, vague.

There are various opinions on the meaning of these words and
their use and misuse in common language, philosophy, and in fuzzy
logic. We leave it to philosophers and linguistists to debate and
deliberate on the subject if they choose to do it. Poper (1979) for
instance sounds quite discouraging: “One should never quarrel
about words, and never get involved in questions of terminology.
One should always keep away from discussing concepts. What we
are really interested in, our real problems, are factual problems,
or in other words, problems of theories and their truth.” There is
some truth in Poper although he goes to an extreme. We think it
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will be useful for the better understanding of this book to provide
a clarification.

Fuzzy, adv. fuzziness, in fuzzy logic is associated with the concept
of graded membership which can be interpreted as degree of truth
(see Section 2.6). The objects under study in fuzzy logic admit of
degrees expressed by the membership functions of fuzzy sets (see
Section 1.2). Problems and events in reality involving components
labeled as vague, ambiguous, uncertain, imprecise are considered
in this book as fuzzy problems and events if graded membership
is the tool for their description. In other words, when gradation
is involved, vagueness, ambiguity, uncertainty, imprecision are in-
cluded into the concept of fuzziness.

Beside the fundamental volume Fuzzy Sets and Applications: Se-
lected Papers by L.A. Zadeh (1987), here we list several impor-
tant books dealing with fuzzy sets and fuzzy logic used in this
text: Kaufmann (1975), Dubois and Prade (1980), Zimmermann
(1984), Kandel (1986), Klir and Folger (1988), Novék (1989), Ter-
ano, Asai, Sugeno (1992).

Fascinating popular books on fuzzy logic are written by McNeill
and Freiberger (1993) and Kosko (1993).

4. The notion of fuzzy set is sometimes incorrectly considered as
a type of probability. Although there are similarities and links
between fuzzy sets and probability, there are also substantial dif-
ferences. For instance, grade or degree of membership is not a
probablistic concept. In Example 1.8 (tall men), a man who is
180 cm tall has a degree of membership 0.78 (or 78%) in the set
tall men. We can say this person is 78% tall (almost tall), but we
can not say that there is a probability of 78% that he is tall.

5. The concept of fuzzy number was introduced after that of fuzzy
set. Valuable contributions to fuzzy numbers were made by Nah-
mias (1977), Dubois and Prade (1978), and Kaufmann and Gupta
(1985) (see also G. Bojadziev and M. Bojadziev (1995)).

In many applications both fuzzy numbers and fuzzy sets can be
used equally well although presentations with fuzzy numbers are
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somewhat simpler. For general studies and also for facilitating
fuzzy logic, fuzzy set theory is a very suitable tool.

6. Fuzzy relations were introduced by Zadeh (1971) as a generaliza-
tion of both classical relations and fuzzy sets.



Chapter 2
Fuzzy Logic

The chapter gives first a short description of classical and many-valued
logics. Classical (two-valued) logic deals with propositions that are ei-
ther true or false. In many-valued logic, a generalization of the classical
logic, the propositions have more than two truth values. Fuzzy logic is
an extension of the many-valued logic in the sense of incorporating fuzzy
sets and fuzzy relations as tools into the system of many-valued logic.
Fuzzy logic provides a methodology for dealing with linguistic variables
and describing modifiers like very, fairly, not, etc. Fuzzy logic facilitates
common sense reasoning with imprecise and vague propositions dealing
with natural language and serves as a basis for decision analysis and
control actions.

2.1 Basic Concepts of Classical Logic

Here, some basic concepts of the classical’ (mathematical) or two-valued
logic are briefly reviewed.

Propositions

A proposition, also called statement, is a declarative sentence that is
logically either true (T) denoted by 1 or false (F) denoted by 0. The set
Ty = {0, 1} is called truth value set for the proposition. In other words
a proposition may be considered as a quantity which can assume one of
two values: truth or falsity.

37
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Example 2.1

Consider the sentences:

(a) The stock market is independent of inflation rates (false proposi-
tion);

(b) Money supply is an economic indicator (true proposition);

(c) The price of a product is x dollars where z > 100 (contains a
variable; neither true nor false, it is not a proposition);

(d) Is the stock market going up? (it is not a proposition).

We use letters, p,q,r,..., to represent propositions.

The propositions (a) and (b) in Example 2.1 are simple.

Compound propositions consist of two or more simple propositions
joined by one or more logical connectives.

Consider the propositions p and ¢ whose truth values belong to the
truth value set {0, 1}. The meaning of the logical connectives is given
by definitions and expressed by equations in which p and ¢ stand for
the truth values of the propositions p and g.

Negation

Negation or denial of p, denoted p (read not p) is true when p is false
and vice versa, hence

p=1-p. (2.1)

Conjunction

Conjunction of p and ¢, denoted p A q (read p and q) is true when p and
q are both true (and is the common and in English);

p A q =min(p,q). (2.2)

Disjunction

Disjunction of p and ¢, denoted p V ¢q (read p or q) is true when p or ¢
is true or both p and ¢ are true;

pV q = max(p,q). (2.3)
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Implication (Conditional proposition)

The proposition p implies q, denoted p — ¢ (also read if p then q) is
true except when p is true and ¢ is false; p and ¢ are called premise
(antecedent) and conclusion (consequent) , correspondingly;

p— q=min(l,1+q— p). (2.4)

It should be emphasized that the truth or falsity of a compound
proposition (formulas (2.1)—(2.4)) is determined only by the truth values
of its simpler propositions p and gq.

Truth tables

A very useful device to deal with the truth values of compound propo-
sitions is the truth table.?

The truth values of the operations (2.1)—(2.4) under all possible
truth value for p and ¢ are presented in Table 2.1 (1 stands for truth(T)
and 0 for false(F)). The right hand sides of (2.1)-(2.4) can be used to
calculate the truth values in a straightforward manner.

Table 2.1. Truth values in the set T = {0, 1} of negation, conjunction,
disjunction, and implication.

pP|q D pPAg pVyq pP—4q
1 —p | min(p, ) | max(p,q) | min(1,1+q—p)
111 0 1 1 1
110 0 0 1 0
01 1 0 1 1
0]0 1 0 0 1
Tautology

Tautology is a compound proposition form that is true under all possible
truth values for its simple propositions.

Contradiction

Contradiction or fallacy is a compound proposition form that is false
under all possible truth values for its simple propositions.
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Example 2.2

The truth values for the proposition forms p A p and p V p are pre-
sented on Table 2.2.

Table 2.2. Truth values for p Ap and p V p.

p|P|PAP|PVD
110 0 1
1 0 1

Hence p A p with truth value 0 is a contradiction (it is called law of
contradiction), while p V p with truth value 1 is a tautology (it is called
the law of excluded middle: every proposition is either true or false).

O

The branch of classical logic dealing with compound propositions is
known as propositional calculus. Its extension is the predicate calculus.

Predicate

Predicate is a declarative sentence containing one or more variables or
unknowns. A predicate is neither true nor false, hence it is not a propo-
sition. Predicates are denoted by p(z),q(x,y),---, where x,y,--- are
unknowns; they are called also logical functions. If in a predicate num-
bers are substituted for variables, the predicate becomes a proposition.
For instance sentence (c) in Example 2.1 is a predicate. If = is substi-
tuted by a number, say 150, then (c) reduces to a proposition. Hence
predicates are closely related to propositions; they can be considered as
generalized propositions or indefinite propositions.

Correspondence between the classical logic and set theory

There is a correspondence between the logical connectives and, or, not,
implication and the set operations intersection, union, complement, in-
clusion (subset), correspondingly, expressed in Table 2.3

It is established that this correspondence (called isomorphism) guar-
antees that every theorem or result in set theory has a counterpart in
two-valued logic and vice versa. They can be obtained from one another
by exchanging the corresponding symbols given in Table 2.3.
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Table 2.3. Correspondence between logical connectives and set opera-
tions.

Logic | Set theory
V U
A N
— -

2.2 Many-Valued Logic

Since the time when in logic the principle every proposition is either
true or false has been declared, there have always been some doubts
about it. One reason for questioning the above principle is the difficulty
arising with estimating truth values of propositions expressing future
events, for instance tomorrow will rain.* Future events are not yet true
or false. Their truth value is unknown; it will be determined when
the events happen. The classical (two-valued) logic is not sufficient to
describe the truth value of these type of events. Hence it looks natural
to allow a third truth value other than pure truth or falsity which leads
to a three-valued logic. Depending on how the third value is defined,
several three-valued logics were introduced.

Here we discuss the three-valued logic® proposed by Lukasiewicz
(1920).

Suppose that a proposition has three truth values: true denoted by
1, false denoted by 0, and neutral or indeterminate denoted by % They
form the truth value set

1
T3 = {07 57 1}

If p and ¢ are propositions, the logical connectives negation (~),
conjunction (N), disjunction (V), and implication (—) are defined as in
classical logic by (2.1)—(2.4) with the difference that the truth values of
p and ¢ belong to Tj.

The truth values of (2.1)—(2.4) with T are given in Table 2.4.
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Table 2.4. Truth values in T3 for negation, conjunction, disjunction,
implication.

S
i

ONI- R RFNl— = = = = <
i)
]

— = RPNR R R ON- l
)

O O O = = = (RS
ONIF = ONF = ONRF = (Q
— = RN O O O3
RO RNk O RN O
OO O ONFI- ONI= | >

Example 2.3

Let us construct the truth table for the compound propositions pAp
and p V p. The result is presented on Table 2.5.

Table 2.5. Truth values in T3 for p Ap and p V p.

P

3
il

o= O >

p

ONI- RS
— o= O3
— ol = <

Since the value % appears in the third and forth columns in Table 2.5,
unlike the two-valued logic (see Table 2.3), p Ap and pV P, respectively,
do not satisfy the law of contradiction and the law of excluded middle.

O

On the basis of Example 2.3 we may say that p A p expresses a more
general law of quasi-contradiction; p V P is a quasi-tautology.

The three-valued logic is a generalization of the two-valued logic. If
the rows in which the truth value % appears are removed from Table 2.4,
then the result will be Table 2.1.

A further generalization allows a proposition to have more than three
truth values. If for any given natural number n > 3, the truth values
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are represented by rational numbers in the interval [0, 1] that subdivide
[0, 1] into equal parts, then they form the truth set T,

1 2 n—2n—1
'n—1"n-1"n-1"n-1

T, = {0 1}.

In the Lukasiewicz n-valued logic the formulas (2.1)—(2.4) for logical
connectives remain valid provided that p and q are substituted by their
truth values in T;,.

If the truth values are represented by all real numbers in [0, 1], i.e.
the truth set is T, = [0, 1], the many-valued logic® is called infinite-
valued logic; it is referred as the standard Lukasiewicz logic. There is
a correspondence (isomorphism) between the fuzzy set theory and the
infinite-valued logic. Complementation (1.14), intersection (1.15), and
union (1.16) in fuzzy sets correspond respectively to negation (2.1), con-
junction (2.2), and disjunction (2.2) in the infinite-valued logic provided
that p and ¢ are substituted by their truth values from T'.

2.3 What is Fuzzy Logic?

The founder of fuzzy logic is Lotfi Zadeh (1973, 1975, 1976, 1978, 1983).
He made significant advancement in the establishment of fuzzy logic as
a scientific discipline.

There is not a unique system of knowledge called fuzzy logic but
a variety of methodologies proposing logical consideration of imperfect
and vague knowledge. It is an active area of research with some topics
still under discussion and debate.

We have seen that there is a correspondence (isomorphism) between
classical sets and classical logic (Table 2.4).

Fuzzy sets are a generalization of classical sets and infinite-valued
logic is a generalization of classical logic. There is also a correspondence
(isomorphism) between these two areas (Section 2.2).

Fuzzy logic uses as a major tool—fuzzy set theory. Basic mathe-
matical ideas for fuzzy logic evolve from the infinite-valued logic, thus
there is a link between both logics. Fuzzy logic can be considered as an
extension of infinite-valued logic in the sense of incorporating fuzzy sets
and fuzzy relations into the system of infinite-valued logic.”
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Fuzzy logic focuses on linguistic variables in natural language and
aims to provide foundations for approximate reasoning with imprecise
propositions. It reflects both the rightness and vagueness of natural
language in common-sense reasoning.

The relations between classical sets, classical logic, fuzzy sets (in
particular fuzzy numbers), infinite-valued logic, and fuzzy logic are
schematically shown on Fig. 2.1.

Major parts of fuzzy logic deal with linguistic variables and linguistic
modifiers, propositional fuzzy logic, inferential rules, and approximate
reasoning.

Infinite-
valued
Logic

Correspondence Correepondy.

Fuzzy Numbers

Fig. 2.1. Evolvement of Fuzzy Logic.

2.4 Linguistic Variables

Variables whose values are words or sentences in natural or artificial
languages are called linguistic variables.

To illustrate the concept of linguistic variable consider the word age
in a natural language; it is a summary of the experience of enormously
large number of individuals; it cannot be characterized precisely. Em-
ploying fuzzy sets (usually fuzzy numbers), we can describe age approx-
imately. Age is a linguistic variable whose values are words like very
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young, young, middle age, old, very old. They are called terms or labels
of the linguistic variable age and are expressed by fuzzy sets on a uni-
versal set U C R4 called also operating domain measured in years. It
represents the base variable age. Each term is defined by an appropriate
membership function. Good candidates for membership functions are
triangular, trapezoidal, or bell-type shapes, without or with a flat, or
parts of these (Chapter 1, Sections 1.4-1.6).

Example 2.4

Let us describe the linguistic variable age on the universal set U =
[0,100] or operating domain of z (base variable) representing age in
years (see Fig. 2.2) by triangular and part of trapezoidal numbers which
specify the terms very young, young, middle age, old, and very old.

Linguistic Variable

very young young middle age old very old

TBp N

25N A ;

0 5 30 45 50 70 95 100
Fig. 2.2. Terms of the linguistic variable age.

The membership functions of the terms are:

1 for 0<z <5,
Hvery ymmg(x) = 30—z for §5< <30

25

=5 for 5 <z <30,
Hyoung () = { 5 T
0

5
20 for 30 <z <50,
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=30 for 30 <z < 50,

Hmiddle age(x) { 7(5693 for 50 <z <70,

30 for 50 <z < 70,
Bz for 70 <z <95,

Hold (:E) =

@)= *® for M0<z<9%,
Hovery old\T) = 1 for 95 <z < 100.

For instance, a person whose age is 45 is young to degree 0.25 and
middle age to degree 0.75. The degrees are found by substituting 45 for
x into the second equation of the term fiyoung() and first equation of
the term fimiddicage (), correspondingly. Hence a person whose age is
45 is less young (degree 0.25) and more middle age (degree 0.75).

Od

Linguistic variables play an important role in applications and in
particular in financial and management systems. For example, truth,®
confidence, stress, income, profit, inflation, risk, investment, etc. can be
understood to be linguistic variables.

2.5 Linguistic Modifiers

Let © € U and A is a fuzzy set with membership function pa(x). We
denote by m a linguistic modifier, for instance very, not, fairly (more
or less), etc. Then by m.A we mean a modified fuzzy set by m with
membership function pi,,4(z).

The following selections for p,4(x) are often used to describe the
modifiers not, very, and fairly:

~—
—~

)

not, Nnot.A( ) =1- :U'.A(x
very, ,U/veryA(x) [ (‘T)

]
faiI'IY7 ﬂfairly.A(w) [ (33‘)

[\

N=

]z.

Example 2.5

Consider the fuzzy set A describing the linguistic value high score
(high) related to a loan scoring model defined as
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x |0 20 40 60 80 100
phigh(®) | 0 02 05 08 09 1

where z is a base variable over U; = {0, 20, 40, 60, 80, 100}, the universal
set; it is numerical in nature and represents a discrete scale of the scores
used in the model.

The graph of fipign () is shown in Fig. 2.3. by dots.

The linguistic value high score can be modified to become not high
score, very high score, and fairly high score by using (2.5)—(2.7). First
let us find not high score:

Hnot high('r) =1- ﬂhigh(m)'

not high .

0 20 40 60 80 100 X

Fig. 2.3. Fuzzy sets high score (dots) and not high score (crosses).

Using the table for jupign(r) we calculate

Pnot high(0) =1 — Nhigh(o) =1-0=1,

Linot high(20) =1 — tpign(20) =1 — 0.2 = 0.8,
ot high(40) =1 — lpign(40) =1 — 0.5 = 0.5,
Unot high(60) =1- [Lhzgh(GO) =1-0.8=0.2,
ot high(80) =1 — Mmgh(80) =1-0.9=0.1,
Lot high(100) =1 — fipign(100) =1 —1 =0.

Hence for the fuzzy set not high score we obtain the table (see Fig. 2.3)
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x |0 20 40 60 80 100
finot high(x) | 1 0.8 05 02 01 0

Similarly we construct the tables for the fuzzy sets very high score
and fairly high score. The results are presented in Fig. 2.4.

ol
14t ®
O
D L ]
fairly high .
O very high
® by ‘ ‘ ‘ ‘
0 20 40 60 80 100 X

Fig. 2.4. Fuzzy sets very high score (dots) and fairly high score (squares).

Hyery high('r) = [:uhigh('r)]Q'

x |0 20 40 60 80 100
Kery high(®) | 0 0.04 025 064 081 1

[N

Hfairly high('r) = [iufast(m)] :

x |0 20 40 60 80 100
[fairty high(z) | 0 0.447 0.707 0.894 0.949 1

Example 2.6

The fuzzy set B describes the linguistic value good credit (good). The
membership function of B is (see Fig. 2.5)
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y |0 20 40 60 80 100
lgood(y) |0 02 04 07 1 1

where y is a base variable over Us = {0, 20,40, 60, 80, 100}, the universal
set; it is a discrete scale for credit rating similar to that in Example 2.5
concerning high score.

u

0 20 40 60 80 100 y
Fig. 2.5. Fuzzy set good credit.

Following Example 2.5 we modify good credit using (2.5)—(2.7). The
results are given below.

y |0 20 40 60 80 100
Hnot good(y) 1 0.8 0.6 0.3 0 0
[very good(y) | 0 0.04 0.16 049 1 1
fairly good(y) | O 0.45 0.63 084 1 1

O
The representation of m.4 should express the meaning of the linguis-
tic modifier adequately. However there is no unique way to do this.
For instance the modifier very described by (2.6) can be expressed
differently by a shift of the membership function u4(z) to the right,

tveryA(z) = pa(x —c), a+c<xz<b+ec,

where ¢ > 0 is a suitable constant (Fig. 2.6). Similarly fairly can be
described by a shift of pa(x) to the left.
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Fig. 2.6. Modifier very expressed by a shift.

Also pa(x) and fyery A(x) can be defined as terms of a linguistic
variable; this was already demonstrated in Example 2.1, Fig. 2.2 (old
and very old, young and very young).

2.6 Composition Rules for Fuzzy Propositions

In two-valued logic a proposition p is true or false (Section 2.1). In many-
valued logic and fuzzy logic the concept of proposition is considered in
a broader context, i.e. a proposition is true to a degree in the interval
[0, 1]. The truth of a proposition p in fuzzy logic is expressed by a fuzzy
set, hence by its membership function.

Below are listed some important propositions involving the fuzzy

sets A = {(z, ja(x))} and B = {(y. u5(y))}-

(i) z is A, proposition in canonical form;
(i) = is mA, modified proposition;
(iii) If = is A then y is B, conditional proposition.

The propositions (i)—(iii) are illustrated in the following example.

Example 2.7

Let high score and good credit be described by the fuzzy sets defined
in Examples 2.5 and 2.6.
(i) Client loan score is high score (canonical form).
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(ii) Client loan score is a very high score (modified proposition).
(iii) If client loan score is high score then client loan credit is good
credit (conditional proposition).
O
Operation composition consists of two propositions p and ¢ joined
by logical connectives.
The propositions are defined by

pEris A, ¢2yis B, (2.8)
where A and B are the fuzzy sets (see Fig. 2.7)

A Zd(wjm(l’))!w ceAcU}, B={(y,us(y))ly € BCUs}. (2.9)

Fig. 2.7. Truth values p4(zo), us(yo)-

We can give here the following interpretation. The membership
grades p4(z) and pg(y) represent the truth values of the propositions
(2.8), correspondingly. Conversely, the truth values of (2.8) are ex-
pressed by the membership functions p4(x) and pg(y). If xg and yo
are specified values on the universes U; and Us, respectively, then the
truth values p4(zo), us(yo) of propositions g is A, yg is B are shown
in Fig. 2.7 where the membership functions are assumed continuous.

Composition conjunction p N\ q

The truth value (tr) of p A g (p and q) is defined by
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tr(p A q) = pyxp(w,y) = min(ua(z), us(y)), (z,y) € A x B, (2.10)

where p 4x5(2,y) is the membership function of the direct min product
(Section 1.8 (1.21)).

Composition disjunction pV q

The truth value of pV g (p or q) is defined by

tr(pV q) = pgsp(@,y) = max(ua(z), ps(y)), (v,y) € Ax B, (2.11)

where 1 45 5(,y) is the membership function of the direct max product
(Section 1.8 (1.22)).

Composition implication p — q

The truth value of p — ¢ (if p ... then q) is defined by

tr(p — ¢q) = min(1,1 — pa(z) + pusy)), (z,y) € A x B, (2.12)

meaning that to each pair (z,y) in the Cartesian product A x B we have
to attach as a membership value the smaller between 1 and 1 — p4(x) +
1B(Y)-

There are also several other definitions for composition implication
(see for instance Mizumoto (1985)).

The rules (2.10)—(2.12) originate from the classical logic and many-
valued logics of Lukasiewicz (see (2.2)—(2.4)).

The right hand sides of (2.10)—(2.12) are membership functions of
fuzzy relations since (x,y) belongs to the Cartesian product A x B C
Uy x Us. Hence the truth values of composition rules are presented by
fuzzy relations.

In formulas (2.10)—(2.12) the notation tr which stands for truth could
be omitted similarly to Chapter 1, Section 2.1.

It should be stressed that the membership functions of A and B
(see 2.9) have different arguments, x and y, correspondingly. From this
point of view the operations min (2.10) and max (2.11) expressing the
logical connectives and and or differ from the operations min (1.9) and
max (1.10) in Section 1.3.
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Example 2.8

Consider two propositions p and ¢ of the type (2.8) in canonical form
defined by

A . . VANNEEN .
p = x is high score, q =y is good credit,

related to a loan scoring model where high score is the fuzzy set A in
Example 2.5 defined on the universe U; (operating domain of x repre-
senting client loan score) and good credit is the fuzzy set B in Exam-
ple 2.6, defined on the universe Uy (operating domain of y representing
client credit rating).

(i) The truth value of composition conjunction (2.10) is the mem-
bership function p 4« 5(w,y) of the relation R presented on Table 2.6.

Table 2.6. Truth value of x is high score and y is good credit.
B

y|0 20 40 60 80 100
x
0 0 0 0 0 0 0
A 20 0 02 02 02 02 02
40 0 02 04 05 05 0.5
60 0 02 04 07 08 08
80 0 02 04 07 09 09
100 0 02 04 07 1 1

To construct the table we use the direct min product (2.10), i.e.
consider all ordered pairs (z;,%;),2; € A,y; € B in the Cartesian prod-
uct A x B and in the cell (x;,y;), located at the intersection of row
x; and column y;, write the smaller value of p4(z;) and pp(y;). For
instance let us calculate the truth values in the third row in Table 2.6
when = 40 and y takes the values in B:

Lhigh(40) = 0.5 > f1500a(0) = 0, 4x5(40,0) =0

hign(40) = 0.5 > 11900a(20) = 0.2, 1, 5(40,40) = 0.2
Lohigh(40) = 0.5 > f15004(40) = 0.4, 1 4;5(40,40) = 0.4
Hhigh(40) = 0.5 < 1400(60) = 0.7, 1 1,5(40,60) = 0.5
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Khigh(40) = 0.5 < 1g00a(80) = 1, 1 4x5(40,80) = 0.5
:uhigh(40) =05< /Lgood(loo) =1, MAXB(407 100) =0.5.

(ii) To find the truth value of composition disjunction (2.11) we
use the direct max product and proceed like in case (i) with the only
difference that in the cell (x;,y;) we write the larger value of p 4(z;) and

15 (Yi)-
(iii) To find the truth value of composition implication (2.12) for

each pair (z;,y;) € A x B we calculate 1 — p4(z;) + pp(y;) and then

take this value if it is smaller than 1; otherwise we take 1.
Od

2.7 Semantic Entailment

Semantic entailment concerns inclusion of fuzzy sets taking part in
propositions. Consider the propositions
VAN A
p=uxis A, qg=uxis B,

both defined on the same universe U. We say that proposition p seman-
tically entails proposition ¢ (or q is semantically entailed by p), denoted
by

p—q (2.13)

if and only if
pa(r) < pp(x), zel. (2.14)

The meaning of (2.13), based upon the concept of subset (2.14) intro-
duced in Section 1.3, is that p brings as an inevitable consequence ¢ in
the sense that ¢ is less specific than p.

Example 2.9
The proposition

A . . .
p = Client loan score is a very high score
semantically entails the proposition

A . . .
q = Client loan score is a high score
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no matter how the linguistic variable high score is defined. Hence from
the proposition Client loan score is a very high score we may infer that
Client loan score is a high score. We say that the semantic entailment
18 strong.

To be more specific assume that high and very high are defined as
they appear in Examples 2.5 (see Figs. 2.3 and 2.4). Clearly (2.14) is
satisfied since

Hyery high(x) < Mhigh(m)'

Example 2.10
The proposition

A . . .
p = Client loan score is not a high score

may or may not semantically entail the proposition

A . .
q = Client loan score is a low score

depending on how the fuzzy sets high and low are defined. In this case
we say the semantic entailment is not strong.

Let us assume that not high is defined as in Example 2.5 (Fig. 2.3)
and low is defined below (the universe U is the same) in two slightly
different ways

x ‘ 0 20 40 60 80 100
pV @ |1 085 06 03 02 01

2|1 07 04 02 015 0.1
Clearly (see Fig. 2.8)

Hnot high(x) < ,"Ll(i'z)u (:17)7 Hnot high(m) ~ /”Ll(gz)u (‘T)7

hence the semantic entailment is not strong; if low is defined by ul(;zv (z),

(2.14) is satisfied; if low is defined by u(2) (x), (2.14) is not satisfied.

low
From the proposition Client loan score is not a high score we may

or may not infer that Client loan score is a low score.
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1®

x O

o
¥ a

0 20 40 60 80 100 X
Fig. 2.8. Fuzzy sets not high (crosses), low (1) (circles), low (2) (squares).
O
Semantic entailment plays an important role in fuzzy logic as a main
rule of inference known as entailment principle in the sense that the
validity of proposition ¢ is inferred from the validity of proposition p
(see (2.13)) if and only if (2.14) holds.

The entailment principle can be generalized for more that two

L. . . A . A . JAN
proposition. For instance, if p = xzis A, ¢ = xis B, r =

x is C,and pa(z), ug(z), pc(x) are the corresponding membership
functions, we have
P—q—rT

if and only if
pA(z) < pp(x) < pe(w).

2.8 Notes

1. Classical (two-valued) logic has its roots in the work of George
Boole (1815-1864) after whom Boolean algebra, a branch of clas-
sical logic, is named.

The modern two-valued logic started with the book Begriffsschrift
(1879) by Gottlob Frege (1848-1925), for whom the meaning of
logic is based on the rules for manipulating symbols and the propo-
sitional connectives not, or, and, if ... then.
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Charles Peirce (1839-1914) who made important contributions to
the two-valued logic in his study On the Algebra of Logic (1880)
may be considered as one of the pioneers of many-valued logic. He
wrote: “Vagueness is no more to be done away with in the world
of logic than friction in mechanics.”

Further advancement in two-valued logic and its use to formalize
mathematics was made by Bertrand Russell (logician and philoso-
pher) and Alfread Whitehead (mathematician and philosopher) in
their fundamental work Principia Mathematica which appeared in
three volumes between 1910-1913.

2. In order to be more precise while denoting propositions and their
truth values in this Chapter we may use tr p to express the truth
value of p. Then for instance formula (2.2) will take the form

tr(p A q) = min(tr p, tr q),
where tr p and tr ¢ belong to the set {0,1}.

3. The truth tables were introduced by the philosopher Lud-
wig Wittgenstein (1889-1951) in Tractatus Logico-Philosophicus
(1922). He made significant contributions to the philosophy of
mathematics.

4. The origins of many-valued logics can be traced back to ancient
Greek philosophy. Aristotle (384-322 B.C.) himself, the father of
logic, made remarks about the problematic truth values of propo-
sitions expressing future events. In Metaphysics he wrote “The
more and less are still present in the nature of things.”

5. The three-valued logic was established independently by J.
Lukasiewicz (1920) and E. Post (1921). They also introduced
many-valued logics.

6. The many-valued logic is a generalization, not a rejection, of the
classical two-valued logic. The many-valued logic only disman-
tles the philosophical illusions about the absoluteness of classical
logic and proposes a more general approach towards solving logical
problems.
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7. A part of fuzzy logic is possibility theory introduced by Zadeh

(1978). The basic concept of possibility theory is that of possi-
bility distribution. The membership function p4(z) of a fuzzy set
A can be considered as a constraint or restriction on the values
(grades, degrees of membership) that can be assigned to x € U.
In other words, the degree of membership u € [0, 1] is interpreted
as a possibility level m € [0,1]. The fuzzy set A is interpreted as
a possibility distribution IT(x); to the membership function p_4(z)
corresponds the function 7(x) describing the possibility distribu-
tion II(x); w(x) € [0, 1]; actually m(x) = pa(x).

. Perhaps the most important linguistic variable is truth. It is de-

scribed by a fuzzy set with membership function figye(x), u € [0, 1]
(we are using true instead of truth). False is interpreted as not
true.

Truth and its terms have been defined differently in fuzzy logic.
We consider first the simplest definition introduced by Baldwin

(1979)
true 2 {(z, ptrue(®)) | © € [0,1], titgye () = x, 1 € [0,1]}.

)
The modifiers (2.5)—(2.7) applied to pirye(x) = = give that
1

Hnot true(:E) = ,ufalse(x) =1—=-2,

Hvery true(:E) = [Ntrue(x)F = :L'27
1 1

K fairly true(x) = [Mtrue(x)] 2 =22

Similarly one can define

1
Hyery false(:p) = (1 - $)27 K fairly false(:p) = (1 - x)Q .
The extreme case * = 1 in pyyue(z) = x gives the singleton
Habsolute true(l) =1 then it follows that Habsolute false (0) =1

The linguistic variables truth and false are shown in Fig. 2.9. On
the same figure are shown also their modifications and the modi-
fied modifications:

Huery very tTue(x) = [Nvery true($)]2 = ZL’4,

:u'veTy very false(x) = [Mvery false(m)]2 = (1 - 17)4-
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H
1 fairly false fairly true
faml_ .
very false - ><tru T very true
- very very true
very very falseT=
absolutely false~ — absolutely true
o 1

X
Fig. 2.9. Linguistic variable truth and various modifications.

Zadeh (1975) defined truth by the membership function (Fig. 2.10)

0 for 0<z<a,
:utrue(:p) = 2(%)2 for a<z< anrl,
1— (=02 for ol <gp <1

U
1
false true
4
S e S
| | ! 1
0 1;a]_—ai a 1+a X
2 2 2

Fig. 2.10. Linguistic variable truth (Zadeh).

Here 1 +% is the crossover point. The parameter a € [0,1] in-
dicates the subjective selection of the minimum value of a in
such a way that for z > a the degree of truth is positive, i.e.
tirue(a) > 0. The membership function of false is defined by

,Ufalse(x) = Mtrue(l_x)- The terms Hvery true (33) and M fairly true ($)
can be calculated from (2.6) and (2.7).
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Chapter 3

Fuzzy Averaging for
Forecasting

Forecasting! provides the basis for any production activity. The ability
to predict and estimate future events requires the study of imprecise
data information coming from a rapidly changing environment, a task
for which fuzzy logic is better suited to deal with than classical methods.
Analysis of complex situations needs the efforts and opinions of many
experts. The experts opinions, almost never identical, are either more
or less close or more or less conflicting. They have to be combined
or aggregated in order to produce one conclusion. In this chapter the
methodology of fuzzy averaging is introduced. It is used as a major
tool for aggregation in various forecasting models (fuzzy Delphi, project
management, forecasting demand). In Chapter 4 fuzzy averaging is
applied to decision making.

3.1 Statistical Average

One of the most important concepts in statistics is the average or mean
of n measurements, readings, or estimates expressed by real numbers
r1,...,Tn. 1t is defined by

n .
Tave = nt n *rn = Zz;l TZ; (31)

61
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the measurements are considered of equal importance. The average
which is typical or representative of n measurements is also known as a
measure of central tendency.

If the measurements r1,...,r, have different importance expressed
by the real numbers Aq,...,\,, correspondingly, then the concept of
weighted average or weighted mean is introduced by the formula

P _)\1T1+“‘+>\nrn
ave — )\l++)\n

n
=wiry + - Fwpr, = Z w;T;. (3.2)
i=1

Here w; called weights are given by

Ai

=3 , 3 ':17”'7 5 n — 7,:]. 3.3
A+ A L n Wy + Tw Zw ( )

i=1

Wi

The weights reflect the relative importance or strength of the measure-
ments ;.

The concept of average, we may call it crisp average, can be gener-
alized by substituting fuzzy numbers for the real numbers r; in formu-
las (3.1) and (3.2). For that purpose arithmetic operations with fuzzy
numbers have to be performed, which in general requires complicated
computations. Here we restrict the generalization procedure to triangu-
lar and trapezoidal numbers. They are used very often in applications
and besides, it is easy to perform arithmetic operations with them; this
is demonstrated in the next section.?

3.2 Arithmetic Operations with Triangular and
Trapezoidal Numbers

Addition of triangular numbers

It can be proved that the sum of two triangular numbers A; =

(agl), ag\f[),agl)) and Ay = (a§2),ag\24), ag2)), is also a triangular number,
At Ay = () a5") + (0, 0 af)

= (" +al,al) + a7 al + o). (3.4)
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This summation formula can be extended for n triangular numbers.
Also it can be applied for left and right triangular numbers (Section 1.5).
For instance:

Aj+ Ay = (ay).ah ) + (o, af? 0y

= (ag\i[) + agz),ag\i[) + ag\/[), agl) + ag )),

Al r Al = @6l ) + (@6, 6
= @ +a?,a) 1o o) 1 2,

Example 3.1

The sum of the triangular numbers
A= (=5-21), Ay=(-3,4,12),
according to (3.4) is the triangular number
Al +Ay=(-5+(-3),-2+4,1+12) =(-8,2,13)
shown on Fig. 3.1.

A +A,
A, 1] A

-8 -5-3 01 1213

Fig. 3.1. Sum of two triangular numbers.
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Figure 3.1 can be interpreted as follows. If A describes real numbers
close to —2 and Ao describes real numbers close to 4, then A; 4+ Ao

represents real numbers close to —2 +4 = 2.
O

Example 3.2

Now let us find the sum of three triangular numbers:
A7=(0,0,2), A;=(1,3,4), A§=(3,6,6);

A7 and A} are right and left triangular numbers. The extended formula
(3.4) gives (see Fig. 3.2)

AT+ A+ AL =(0+143,0+34+6,2+4+6) = (4,9,12).

| |
1A, A, A, Ar+A,+A,

0 1 2 3 4 6 9 12

Fig. 3.2. Sum of A7, Ay, and Ag.

Multiplication of a triangular number by a real number

The product of a triangular number A with a real number r is also a
triangular number,

Ar=rA =r(a1,ap,a2) = (ray, ray, raz). (3.5)
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Division of a triangular number by a real number
This operations is defined as multiplication of A by % provided that
r # 0. Hence (3.5) gives

A 1 ai ap a2
r r(ahaMaaQ) ('I"’ r ) 7") ( )

Example 3.3

(a) The product of A = (2,4,5) by 2 according to (3.5) is (see
Fig. 3.3)
2A = 2(2,4,5) = (4,8, 10).

(b) The division of A = (2,4,5) by 2 using (3.6) produces (Fig. 3.3)

A 1
—=-(2,4,5) = (1,2,2.5).
2 2(775) (775)
(c) Also
2A
5 =
H
1
0 1 2 3 45 8 10

Fig. 3.3. Triangular number A = (2,4,5); product 2A; quotient 5.

O
Operations with trapezoidal numbers can be performed similarly to
those with triangular numbers.
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Addition of trapezoidal numbers

The sum of the trapezoidal numbers A; = (agl), b(l) bé ), agl)) and Ay =
a , ,a is also a trapezoidal number,
(@, 67,68 0y is al dal numb
At ar = @B ) 4 (o2 62 )
= (a ()—I—ag),b(l)+b() b()—l—bg), (1)+a(2)). (3.7)

Formula (3.7) can be generalized for n trapezoidal numbers and also
for left and right trapezoidal numbers.

Multiplication of a trapezoidal number by a real number
Ar =rA = (raj,rby,rba, ras). (3.8)

Division of a trapezoidal number by a real number

A 1 by b
_:_A:(ﬂ7_17_27%)7 T#O (39)
T r r r r r

Sum of triangular and trapezoidal numbers

((1) 1 1)

Consider the triangular number Ay = (a7, a,,,ay ') which can be pre-

sented as a trapezoidal number (ag ), ag\?, g&l),ag )) and the trapezoidal

number Ay = (a§2), bg ), bé ), ag2)) Using (3.7) gives

A +Ay = (agl)7a§w),a§\14),agl)) (ag),b@) b(2) ())
= (" +a{?,af) + 6, afy) +02,al" +af). (3.10)

3.3 Fuzzy Averaging

Triangular average formula

Consider n triangular numbers A; = (ag ), ag&), ag)) i=1,...,n. Using
addition of triangular numbers and division by a real number (see (3.4)
and (3.6)) gives the triangular average (mean) A gye,
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A - Mt tA
ave - n
1 1 n n
o) ot )
n
_ (i a@’ D i1 ag\l/[), D1 ag))
n )
which is a triangular number,
Aave—(mlymMamQ Z 7 Zag)aﬁzag)) (311)
i=1 = i=1

Example 3.4

(a) The triangular numbers A; and Ay in Example 3.1 have average
A+ Ay _ (—8,2,13)
2 2

(b) The triangular numbers A%, Ay, and A} in Example 3.2 have
average

Aave =

= (—4,1,6.5).

AT+ Ay + A (4,9,12)
3 3

Agpe = = (1.33,3,4).

Weighted triangular average formula

If the real numbers \; represent the importance of A; = (ag ), ag&), ag)),
i =1,...,n, then following (3.2), using (3.3), and similarly to (3.11) we
obtain the weighted triangular average (mean),

AW o )\lAl + )\nAn
ave T )\1 N )\

= o el a0, )

= (wlag ),wlag\?,wlag )) 4+ (wnag ),wnagw),wgn))

= (wlagl) + -+ wnag )7 w1a§&[) -+ wnagw)7

wlagl) +-- 4 wnagn)),
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which can be written as
n i n
AL, = (my,my,my) = (> widl”, S wal), sz . (3.12)

Average formulas for trapezoidal numbers which can be derived sim-
ilarly to (3.11) and (3.12) are presented below.

Trapezoidal average formula

IfA; = (agz), bgi), bgi),agi)),i =1,...,n, are trapezoidal numbers, then
Aave = (mlvalamM27m2)
00 ) 4l 00, o)
n
_ (it agz)7 2iz1 bgl)a 2iz1 bg)a 2iz1 agl)) ' (3.13)
n

Weighted trapezoidal average formula

Agve = (mivﬂmﬁ)/[pmzl\u@?mév)
_ (agl),b(l) b(l) (1)) ~~-+wn(a§"),bg”),bg"),a§”))
= (szal ,sz 1 ,Zwibg),ZwiaS)). (3.14)
i=1 i=1 i=1

The triangular and trapezoidal average and weighted average formu-
las (3.11)—(3.14) produce a result which can be interpreted as follows.
It is a conclusion or aggregation of all combined meanings expressed
by triangular and trapezoidal numbers A4,..., A, considered either of
equal importance or of different importance expressed by weights w;.

Based on the arithmetic operations in Section 3.2, we can state that:

1) Formulas (3.11)-(3.14) remain valid when some of A; are left or
right triangular or trapezoidal numbers.

2) Formulas (3.13) and (3.14) for trapezoidal numbers remain valid
when some A; are triangular numbers since they can be expressed in
the form of trapezoidal numbers.
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The process of averaging presented here is a cross section of classical
statistics and fuzzy sets theory; it belongs to a new branch of science—
fuzzy statistics.

Defuzzification of fuzzy average

The aggregation defined by a triangular or trapezoidal average number
((3.11)—(3.14)) very often has to be expressed by a crisp value which
represent best the corresponding average. This operation is called de-
fuzzification.

First consider the defuzzification of Ay, = (m1, mar, ma) given in
(3.11). It looks plausible to select for that purpose the value m s in the
supporting interval [m1,ma] of Agpe; mas has the highest degree (one)
of membership in A ... In other words, A, attains its maximum at

Tmax = MM (3.15)

which we call mazimizing value.

However the operation defuzzification can not be defined uniquely.
Here we present three options for defuzzifying A e = (my, mar, m2)
which are essentially statistical average formulas:

mi1 + mpy + mo

1 1 —

( ) $max 3 ’

(2) aff), =TI (316)
(3) LB M +4mp + ma

6

Contrary to (3.15), the values (3.16) take into consideration the
contribution of m1 and my but give different weight to m,.

If the triangular number A ;.. is close to a central triangular number
(see Fig. 1.18 (a)) meaning that myy is almost in the middle of [my, ma],
then (3.15) gives a good crisp value . = mys. Then the three average
formulas (1)—(3) in (3.16) also produce numbers (maximizing values)
close to mjs hence there is no need to be used. Usually in applications
the triangular average numbers appear to be in central form. However,
the experts dealing with a given situation have to use their judgement
when selecting a maximizing value.
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The defuzzification procedure is presented as a block diagram in

Chapter 3. Fuzzy Averaging for Forecasting

Fig. 3.4.
Triangular Fuzzy Maximizing
Numbers Average Aggregation Value
A; ::1 Ai A e Tmax
i=1,---,n " xggéz),@)

Fig. 3.4. Defuzzification of fuzzy average A, = (mq, mo, ms).

For the defuzzification of AY,, = (m{’,mYy,, my) formulas (3.15)
and (3.16) remains valid provided mY,my,,my are substituted for
mi, myr, My correspondingly.

The defuzzification of the trapezoidal average Ague = (m1,mur,
mp,, m2) can be performed by an extension of (3.15) and (3.16) using
instead of mjs the midpoint of the flat segment m;, mys, at maximum

level a = 1. The maximizing values are as follows:

My, + Mo,

Tmax = 5 , (3.17)
and
(1) _r(l) _ mq + w + mo
max 3 )
(2) 2, =TT ZmMQ tme (3.18)
my + 2(mag, + mag,) + me
(3) xlgl?é)ix = - 6 2 N

For the defuzzification of Ay, = (my,my,,my,,my) formulas
(3.17) and (3.18) hold but my’, my; ,my;,, my have to be substituted
for mq, mpr,, mar,, Mma.

Similar block diagrams like that on Fig. 3.4. can be constructed to

illustrate defuzzification for the fuzzy averages (3.12)—(3.14).
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3.4 Fuzzy Delphi Method for Forecasting

Fuzzy Delphi method is a generalization of the classical method for long
range forecasting in management science known as Delphi method.

It was developed in the sixties by the Rand Corporation at Santa
Monica, California. The name comes from the ancient Greek oracles of
Delphi who were famous for forecasting the future.

The essence of Delphi method can be described as follows:

(i) Experts with high qualification regarding a subject are requested
to give their opinion separately and independently of each other about
the realization dates of a certain event, say in science, technology, or
business. They may be asked to forecast the general state of the market,
economy, technological advances, etc.

(ii) The data which have subjective character are analyzed statisti-
cally by finding their average (see (3.1)) and the results are communi-
cated to the experts.

(iii) The experts review the results and provide new estimates which
are analyzed statistically and sent again to the experts for estimation.

(iv) This process could be repeated again and again until the out-
come converges to a reasonable solution from the point of view of a
manager or a governing body. Usually two or three repetitions are suf-
ficient.

However, long range forecasting problems involve imprecise and in-
complete data information. Also the decisions made by the experts rely
on their individual competence and are subjective. Therefore it is more
appropriate the data to be presented by fuzzy numbers instead of crisp
numbers. Especially triangular numbers are very suitable for that pur-
pose since they are constructed easily by specifying three values, the
smallest, the largest, and the most plausible (see Section 1.5). Instead
of crisp average, the analysis will be based on fuzzy average.

The Fuzzy Delphi method was introduced by Kaufman and Gupta
(1988). It consists of the following steps.

Step 1. Experts E;,i = 1,...,n, are asked to provide the possible
realization dates of a certain event in science, technology, or business,

namely: the earlist date agi), the most plausible date ag\l/[), and the latest

date ag). The data given by the experts F; are presented in the form
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of triangular numbers
Ai=(a{,a}),ad)), i=1,....n. (3.19)

Step 2. First, the average (mean) Agpe = (mi,mar,mo) of all A; is
computed (see (3.11)).

Then for each expert E; the deviation between A, and A; is com-
puted. It is a triangular number defined by

Ape — A = (ml ag),mM — (Ig\/[),mg — ag))
RS CE SO
— (n;al a; ,n;aM ay,

n

~3al) - aé”) . (3.20)

n 4
=1

The deviation A, —A; is sent back to the expert E; for reexamination.

Step 3. Each expert E; presents a new triangular number

B, = ), b0 5, i=1,... n. (3.21)

This process starting with Step 2 is repeated. The triangular av-
erage B,, is calculated according to formula (3.11) with the difference

that now ag),ag&),ag) are substituted correspondingly by bgi),b%[),bg).

If necessary, new triangular numbers C®) = (cgz),cg\/[),cg)) are gener-
ated and their average C,, is calculated. The process could be repeated
again and again until two successive means A 4e, Bave;s Cave, - - - become
reasonably close.
Step 4. At a later time the forecasting may be reexamined by the
same process if there is important information available due to new
discoveries.

Fuzzy Delphi method is a typical multi-experts forecasting procedure

for combining views and opinions.

Case Study 1 Time Estimation for Technical Realization of an Inno-
vative Product®

A group of 15 computer experts are asked to give estimation us-
ing Fuzzy Delphi method for the technical realization of a brand new
product, say a cognitive information processing computer. They are
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ranked equally hence their opinions carry the same weight. The trian-
gular numbers A;,;i = 1,...,15 (see (3.19)) presented by the experts
are shown on Table 3.1.

Table 3.1. Triangular numbers A; presented by experts (first request).

E; | A; | Earliest date | Most plausible date | Lates date

B | A | alY =1995 al) = 2003 al?) = 2020
By | Ay | al? =1997 a(? = 2004 af? = 2010
Es | As | oY =2000 a?) = 2005 al? = 2010
Ey | Ay | ol = 1908 al) = 2003 a$? = 2008
Es | As | o' =2000 a) = 2005 al” = 2015
Es | Ag | d\% =1995 ¥ = 2010 al? = 2015
E: | Az | df7 =2010 a{) = 2018 a$” = 2020
Bs | As | o =1995 ay) = 2007 al¥ = 2013
Ey | Ag | o =1995 a) = 2002 al?) = 2007
B | A | al'” = 2008 (190 — 2009 {19 — 2020
B | Ay | ol =2010 (D = 2020 al'™ = 2024
Eip | App | al'® = 1996 al? = 2002 a8 = 2006
Fis | Ags | ol = 1998 (%) — 2006 al™ = 2010
Fu | Ay | ol = 1997 (19 — 2005 al™ = 2012
Eis | Ags | ol = 2002 (15 — 2010 (%) = 2020

To find the average A .. the sums of the numbers in the last three
columns are calculated

15 15 15
3 al? = 29996, 3" af) = 30109, 3ol = 30210
=1 i=1 i=1

and substituted into (3.11) which gives

29996 30109 30210
15 7 15 7 15

Agve = ( ) = (1999.7,2007.3,2014)
or approximately
Ag,. = (2000,2007,2014).

ave
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The deviations (3.20) between A%

% and A; are presented in Ta-

ble 3.2.

Table 3.2. Deviation A{,. — A;.
E;, | m — agl) my; — ag\z/[) mo — ag)
FEr 5 4 —6
Es 3 3 4
Es 0 2 4
Ey 2 4 6
Es 0 2 -1
FEg 5 -3 -1
Er —10 —11 —6
Eg 5 0 1
Ey 5 5 7
FEq -8 —2 -6
FEq —10 —-13 —-10
Eis 4 5 8
Eq3 2 1 4
I 3 2 2
Eis -2 -3 —6

Table 3.2 shows the divergence of each expert’s opinion from the
average. A quick glance gives that the experts E3, E5, Eg, F3, E14 are
close to the average while Fr, F11 are not.

Since the word close is fuzzy a more detailed study requires some
clarification. It can be based on the concept of distance d;; between two
triangular numbers A; and A;. If all d;; are calculated and recorded
in a table (in our case consisting of 15 rows and columns), then we
will have a better grasp on how close are various pairs of A; and A;.
Here we do not give a formula for calculating the distance d;; (there are
several),* but refer to Kaufmann and Gupta (1988).

Suppose the manager is not satisfied with the average (2000, 2007,
2014). Then the deviation (mj — agl),mM - CLS\Z),’I’)’LQ - ag)) is given to
each expert E; for reconsideration. The experts suggest new triangular
numbers B; (see (3.21)) presented on Table 3.3.
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Table 3.3. Triangular numbers presented by experts (second request).

FE; B, | Earliest date | Most plausible date | Lates date
B | By | oY =1996 bl = 2004 b = 2018
By | By | b =1997 b\Y = 2004 b = 2011
BEs | By | Y =2000 b3 = 2005 b = 2011
Ey | By | (Y =1998 b\Y) = 2003 b = 2010
BEs | B; | 5”) =2000 b\?) = 2005 b = 2015
Es | Bs | b\¥ =1997 b\%) = 2009 ) = 2015
E: | By | " =2005 b\") = 2015 b = 2016
Es | Bs | ¥ =1996 b\ = 2007 b = 2013
Ey | By | b\” =1997 b\ = 2004 b = 2010
Eyo | By | b = 2004 b = 2009 b1 = 2017
Ey | By | oY = 2004 Y = 2015 b = 2016
Erp | By | 0" = 1996 bi1? = 2004 b = 2006
Eis | By | b{*® = 1998 b3 = 2006 b = 2010
By | By | 0" =1997 bilY) = 2004 b = 2012
Eys | Bys | b* = 2001 bi) = 2009 b = 2015

The experts E5, E19, and F13 have not change their first estimate.
Other experts, for instance Fs, E3, Eg, 14, made very small changes.
Using again (3.11), this time to find By, gives

Bave = (1999.07,2006.9,2013.2)

which is approximately B¢, . = (1999,2007,2013).

The manager is satisfied that A gye and Bgye, also A%, and B¢ ., are
very close (see Fig. 3.5), stops the fuzzy Delphi process, and accepts the
triangular number B¢ . as a combined conclusion of experts’ opinions.
The interpretation is that the realization of the invention will occur in
the time interval [1999, 2013], the supporting interval of the triangular

number B?, . which is almost in central form. The most likely year for
the realization according to the defuzzification formula (3.15) is 2007.

Formulas (3.16) produce numbers close to 2007.
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H
R
Bae \ Ade
X
01999 2000 2007 2013 2014
Fig. 3.5. Average triangular numbers A{ . and B ..

3.5 Weighted Fuzzy Delphi Method

In business, finance, management, and science, the knowledge, experi-
ence, and expertise of some experts is often preferred to the knowledge,
experience, and expertise of other experts. This is expressed by weights
w; assigned to the experts (Section 3.3). The experts using Fuzzy Del-
phi Method (Section 3.4) were considered of equal importance, hence
there was no need to introduce weights. Now we consider the case when
expert judgements or opinions carry different weights. That leads to
Weighted Fuzzy Delphi Method.

Assume that to expert E;,i = 1,...,n, is attached a weight w;,i =
1,...,n,wy + -+ +w, = 1. The four steps in Fuzzy Delphi Method
remain valid with some modifications, namely: in Steps 2 and 3 the
weighted triangular average AY = (see (3.12)) appears instead of the
triangular average Ag,e; in Step 4 similarly AY, . ,Bw ., CY ... take
part instead of Agye, Bave, Cave - - --

Case Study 2 Weighted Time Estimation for Technical Realization of
an Innovative Product

Consider Case Study 1 where 15 experts present their opinions ex-
pressed by triangular numbers A; given on Table 3.1. Assume now that
the experts E1, E3, E5, Eg, and Eq3 are ranked higher (weight 0.1) than
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the rest (weight 0.05); the sum of all weights is one. To facilitate the
calculation of the weighted triangular average we construct Table 3.4.

Table 3.4. Experts, weights, and weighted data.

(@)

(@)

(@)

Ei (o w; X a; Wi X Qpr | Wi X Gy
En 0.1 199.5 200.3 202
Ey | 0.05 99.85 100.2 100.5
Es 0.5 200 200.5 201
E; |0.05 99.9 100.15 100.4
E5 0.1 200 200.5 201.5
Eg | 0.05 99.75 100.5 100.75
E; | 0.05 100.5 100.9 101
Ly 0.1 199.5 200.7 201.3
E9 | 0.05 99.75 100.1 100.35
Eyp | 0.05 100.4 100.45 101
Eyp | 0.05 100.5 101 101.2
E15 | 0.05 99.8 100.1 100.3
Fhs 0.1 199.8 200.6 201
Ey4 | 0.05 99.85 100.25 100.6
Ei5 | 0.05 100.1 100.5 101
Total 1 1999.2 2006.75 2013.9

Substituting the totals from the last row in Table 3.4 into (3.12)
gives the weighted triangular average

AY = (1999.2,2006.75,2013.9)

or approximately A% = (1999,2007,2014). It is almost the same result
obtained in Case Study 1. The defuzzification of AY% according to
(3.15) produces the year 2007. Formulas (3.16) give close result. If the
average Al is defuzzied instead of A and then the maximizing value
is rounded up, the same year 2007 is obtained.

a

3.6 Fuzzy PERT for Project Management

Project management is a complicated enterprise involving planning of
various activities which have to be performed in the process of develop-
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ment of a new product or technology.

Projects have a specified beginning and end. For convenience they
are subdivided into activities which also have specified beginnings and
ends. The activities have to be performed in order, some before others,
some simultaneously. The time required for completion of each activity
has to be estimated.

Classical PERT and CPM

Two important classical techniques have been developed to facilitate
planning and controlling projects: “Project Evaluation and Review
Technique” (PERT) and “Critical Path Method” (CPM).

Table 3.5. Material handling system design, fabrication, and assembly
planning data.

Activity Activities | Activities | Activities | Comple-
Description | Preceding | Concurrent | Following | tion time
required
(days)
A | Mechanical — — B.C 35
Design
B Electrical A C D 35
Design
C' | Mechanical A B E 55
Fabrication
D Electrical B C,E F 35
Fabrication
E | Mechanical C D F 50
Subassembly
F Electrical D, E — G 30
Installation
G Piping F - G 30
Installation
H Start-up, F — — 10
Test, Ship
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PERT was developed by the U.S.A. Navy while planning the produc-
tion of Polaris, the nuclear submarine. CPM was developed about the
same time by researchers from Remington Rand and DuPont for chem-
ical plant maintenance. There are some similarities between PERT and
CPM and often they are used together as one technique.

To illustrate PERT and CPM we present a simplified and mod-
ified version of a real project considered by Fogarty and Hoffmann
(1983). It is schematically given in Table 3.5. The project, called
Material handling system design, involves design, fabrication, assem-
bly, and testing. The project is subdivided into eight activities labeled
A,B,C,D,E,F,G,H. The completion time for each activity in the last
column in Table 3.5 is estimated by managers in charge of activities.

Network planning model

PERT and CPM construct a network planning model from the data in a
table. The model corresponding to Table 3.5 is shown in Fig. 3.6. Each
activity is represented by a square, rectangle, or circle inside of which
is its label and completion time in days.

A C E F G H
35 55 50 30 30 10
B D
35 35

Fig. 3.6. Network planning model for Material handling system.

The network planning model gives explicit representation of the se-
quential relationship between the activities.

Critical path

Critical path is defined as the path of connected-in-sequence activities
from beginning to the end of the project that requires the longest com-
pletion time. Hence the total time for completion of the project is the
time needed to complete the activities on the critical path.
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The network planning model helps to determine the critical path.
The critical path on Fig. 3.6 is shown by tick arrows connecting activities
A,C E, F,G, and H. The total time for project completion is 354 55+
504-304+30+10 = 210 days. From Fig. 3.6 one can also see that activities
B and D are not on the critical path. They may not be completed as
planned, but delay should be no more than 35 days. Otherwise activity
F on the critical path will be delayed.

Probabilistic PERT

Time estimation or forecasting for activities completion is inherently
uncertain. To deal with uncertainty, researchers extended the capability
of PERT by employing statistics and probability. PERT requires from
experts three estimates for each activity time completion: the optimistic
time t1, the time required to complete the activity if everything goes
very well; the most likely time ty;, the time required to complete the
activity if everything goes according to the plan; the pessimistic time
to, the time for completion if there are difficulties or things go wrong.
The single time for activity completion is calculated by the weighted
average formula

= t1 + 4ty + Lo (3.22)
6

applied for each activity. Formula (3.22) is exactly (3.16) (3) when ¢ is
substituted for m. The total time T, for completion of the project is the
time for completion the activities on the critical path. The times cal-
culated from (3.22) for the network planning model on Fig. 3.6 will be
close to those presented in the squares and in general will provide a bet-
ter estimate. The total time 7T, (close to 210 days) will be more realistic
than 210 days. Further PERT proceeds with calculation of standard
deviation for t. and other probabilistic analysis. We will propose an
alternative to the probabilistic PERT which is less complicated.

The three time estimates t1,ts,to for each activity come from ex-
perts who use their knowledge, experience, and whatever relevant in-
formation is available; they are subjective, but not arbitrary. Hence
the nature of uncertainties involved in those types of problems is rather
fuzzy than probabilistic. PERT does not suggest a technique for finding
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t1,ta, to; only states that they have to be estimated and combined by
the statistical weighted average formula (3.22).

FPuzzy PERT for time forecasting

We propose to improve PERT by using Fuzzy Delphi (Section 3.4) for
estimating tq,tps, %o for each activity. Experts represent each time for
activity completion by triangular numbers of the type (t1,tas,t2). For
each activity the triangular average number is calculated. To find a
crisp activity time value we have to use defuzzification (Section 3.3).
Simply we may take the maximizing value (formula (3.15)) or resort to
the average formulas (3.16)(1)—(3).
The Fuzzy PERT is illustrated in the following case study.

Case Study 3 (Part 1) Time Forecasting for Project Management of
a Material Handling System

Let us consider the material handling system design on Table 3.5
and Fig. 3.6 and discard the time estimates obtained by the classical
PERT. Now each time activity is to be estimated by three experts; some
may participate in the estimation time for several activities. The top
manager of the project may take part in all group estimates.

The experts are asked to estimate the optimistic, most likely, and
pessimistic completion time of activities A, B,..., H, expressed as tri-
angular numbers T{l,Tf, e ,TZH,i =1,2,3.

Suppose that the experts designated to estimate the completion time
for activity A produce the results on Table 3.6.

Table 3.6. Estimated completion time for activity A.

Expert T Optimistic | Most likely | Pesimistic
time time time
E| T4 33 35 38
Ey T 33 34 37
Ej3 T4 32 36 39
Total 2 TA 98 105 114

The aggregated experts opinions (see (3.11)) give the average time
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for completion of A in days
98 105 114
A
Tave = (?7 Ta T
To find a crisp time for completion we have to defuzzify vae. Ob-
serving that Ty, is almost a central triangular number (the midpoint
of the interval [32.67, 38] is 35.335, close to 35, we use formula (3.15)
which gives t.x = 35.
Just for comparison let us apply to T
formulas (3.16). We get

(1) _ 32.67+35+38

) = (32.67,35,38) ~ (33,35, 33).

A

ive the three defuzzification

1) ¢ ; = 35.22,
@) @) = 32.67 + 24(35) +38 _ oo
@) 1) — 32.67 + 46(35) 38 _ e

numbers close to 35. Besides, when counting days in those type of
projects, it is irrelevant to keep decimals; we round them off and work
with full days. Usually decimals appear when working with average
formulas.

Similarly the other seven groups of experts can give estimates and
construct tables like Table 3.6. We do not give details but assume
that the rounded average times T5 ., TH

aves wwe are those presented in
Table 3.7 (T4, is also included).

Table 3.7. Average times for activities completion.

Average | Optimistic | Most likely | Pesimistic
Activity | activity time time time

time tl t M t2
A T2, 33 35 38
B TS, 32 35 38
C T, 51 54 58
D TD . 32 34 36
E TE | 46 50 53
F Tk . 27 30 33
G T¢, 27 29 32
H T 7 10 12




3.6. Fuzzy PERT for Project Management 83

Each triangular number representing the average activity time (the
second column in Table 3.7) has to be defuzzified to produce a crisp
number expressing the activity completion time. These triangular num-
bers are almost in central form, hence we can apply formula (3.15) for
defuzzification which produces the numbers in the fourth column labeled
tar. The use of formulas (3.16) gives close results.

The defuzzified times can be presented in an improved network plan-
ning model (see Fig. 3.7)

A C E F G H
35 54 50 30 29 10
B D
35 34

Fig. 3.7. Improved network planning model by using Fuzzy PERT.

The total time for project completion expressed by the triangular
number T is the time for completion the activities on the critical path.
Adding the numbers in the three columns in Table 3.7 designated by
t1,tar, to, excluding those belonging to activities B and D, gives

T = vae + T(?Ue + TaEve + T(I;UE + TllG'l)e + T(Ii)e = (1927 2087 226)'

Hence the project duration will be between 192 days and 226 days,
most likely 208 days. The last number 208 is the result of defuzzifica-
tion of T using (3.15). The application of formulas (3.16) for deffuzifi-
cation generates the crisp numbers T%gx = 208.67, Tg;)m = 208.50, and
ngx = 208.33; they are close to 208. As a conclusion the completion

time for the project is forecasted to be 208 days.
O

Schedule allocation of resources

Activity time duration and allocation of resources, material and human,
are in a close relationship.
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It is accepted as common practice that prior to allocation of re-
sources to a project the critical path network should be established.

The forecasting of activity completion times assumes implicitly that
the needed resources are available and could be allocated to activities
at an efficient rate so that the project proceeds without interruption.
In reality various difficulties may arise and complicate the work.

Often management has the option to apply additional resources to
reduce the activity completion time. This may increase the cost. Short-
ening project length may be desirable because of rewards; late comple-
tion may be penalized.

PERT helps the analysis of issues like those mentioned above and
others concerned with scheduling resources (see for instance, Fogarty
and Hoffmann (1983)). For issues requiring estimations, PERT could
be combined with Fuzzy Delphi in a fashion similar to activity time
forecasting and finding the critical path.

Case Study 3 (Part 2) Fuzzy PERT for Shortening Project Length

Following PERT we introduce the notations: t,—mnormal time for
completing an activity as planned, t.—crash time (shorten time) for
completing an activity, C',—mnormal cost for completing an activity, C'.—
crash cost (increased cost) for completing an activity in crash time. For
each activity, t.,t,,C,, and C. have to be estimated.

We illustrate here Fuzzy PERT for shortening project length on the
material handling system discussed in Case Study 3 (Part 1).

To shorten project length means to shorten the time for completion
the critical path., i.e. to shorten the total time T, = 208 days. Short-
ening duration time of activities not on the critical path (B and D, see
Fig. 3.6) will not reduce Tyax. However, some resources allocated to B
and D could be reallocated to activities C and D in order to shorten
their completion time (internal reallocation). Here we consider shorten-
ing activities time on the critical path without internal reallocation of
resources.

The normal time ¢, for each activity is already estimated; it is the
time tmax = tayr shown in Table 3.7, the fourth column.

The crash time t., the normal cost C},, and the crash cost C for each
activity could be forecasted similarly to the normal time t,, applying
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Fuzzy Delphi. The defuzzified values based on formula (3.15) will be
denoted by t. max, Cn max, and C. max, correspondingly.

Here estimation is presented for the normal cost C,, for activity A;
t. and C, can be estimated similarly.

Three experts are asked to estimate the normal cost for completion
activity A in the form of a triangular number C,, = (Cy1, Cpar, Cr2),
where C},1 is the lowest cost, Cy,ps is the most likely cost, and C,2 is
the highest cost. Assume the experts estimates are those in Table 3.8.

Table 3.8. Experts estimate for completion activity A at normal cost
Ch.

Expert | Lowest cost C,1 | Most likely cost C,,5s | Highest cost Cja
By 18,000 20,000 22,000
E, 19,500 21,000 22,000
Es 17,000 19,500 21,000
Total 54,500 60,500 65,000

A

2 ave fOr com-

Using formula (3.11) gives the average normal cost C
pleting activity A,
CA = (18,166.67, 20,166.67, 21,666.67).

n ave

Neglecting in C4_ _ the decimals and rounding off the last three

digits to 000, 500, or 1000, gives
cA = (18,000, 20,000, 21,500).

n ave

The defuzzification of C#,,. according to (3.15) produces 20,000
(formulas (3.16) give numbers close to 20,000).

Further, groups of experts forecast t., C,,, and C. for the other
activities on the critical path, then defuzzify, and round off as above.
Assume that the defuzzified results for the activities on the critical path
are those presented in Table 3.9.

To select activities for shortening duration time, PERT uses the

notion of cost slope. With our notations it is presented as (see Fig. 3.8)

k = cost slope = Cn max — Ce max . (3.23)

n max tc max
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Figure 3.8 shows that as normal time ¢,, na.x decreases approaching
the crash time ¢, yax, the normal cost C), ax increases approaching the
crash cost C,. max-

Activity cost
Coma +._ Crash point
Normal
Coma | » point
o max t max Activity duration

Fig. 3.8. Cost slope for shortening activity time.

Table 3.9. Defuzzified normal and crash times and costs for activities
in Material Handling System.

Normal | Crash | Normal | Crash Cost

Activity time time cost cost slope
tn max te max Cn max Oc max $ per day

A 35 25 20,000 | 26,000 600

C 54 30 30,500 | 40,500 417

E 50 32 28,000 | 35,000 389

F 30 22 18,500 | 25,000 813

G 29 20 15,000 | 19,000 444

H 10 8 7,000 8,000 500

The cost slope coefficient (3.23) calculated for activity A gives

1 Cr max — Ce max ‘20, 000 — 26, 000‘ ‘ —6000
A= = =

35— 25 10 ‘ = 600.

tn max ~ tc max

The cost slope coefficients for the other activities are calculated simi-
larly. The results are displayed in the last column of Table 3.9.
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In general additional resources should be applied first to activities
with the smallest cost slope.
The activities in Table 3.9 are ranked in Table 3.10 according to
their cost slopes—from the smallest to the largest.

Table 3.10. Ranked activities according to cost slope.

Rank | Activity | Reduced time | Additional cost | Cost slope
tn max -~ tc max Cc max Cn max $ per day

1 E 18 7,000 389

2 C 24 10,000 417

3 G 9 4,000 444

4 H 2 1,000 500

5 A 10 6,000 600

6 A 8 6,500 813

Assume that the management wants to reduce the length of the
project from 208 days to 180 days, a reduction of 28 days. Of the
activities on the critical path, activity E ranked first (Table 3.10) has
the smallest k, $ 389 per day. By investing $ 7,000 the time duration
for activity £ can be reduced by 18 days, meaning that the project can
be reduced by 18 days. A further reduction of 10 days must be found.
A good candidate is activity C ranked second on Table 3.10. A 10-day
reduction will cost 10 x 417 = 4,170 dollars. However, if there are some
reasons against shortening the activity time for F or for C, or for both,
other options must be examined.

O

3.7 Forecasting Demand

The concept of demand is basic in business and economics. Essentially
demand is composed of two components expressing: (1) the quantity
of a product wanted at a specified price and time; (2) willingness and
ability to purchase a product.

Demand for a new product should be forecasted. Forecasting suc-
ceeds better when history of demand for a similar product is available.
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Unless the product is innovative, even in today’s rapidly changing envi-
ronment, some basic links between the past and the future are present.

The demand for a given inventory item is subdivided into indepen-
dent demand and dependent demand (Orlicky, 1975). Demand is inde-
pendent when it is not related or derived from demand for other items or
products. Otherwise demand is called dependent. Independent demand
must be forecasted while dependent demand should be determined from
the demand of related items.

Example 3.5

Five experts are asked to forecast the annual demand for a new

product using Fuzzy Delphi technique which requires use of triangular
numbers A; = (agi), ag\i/[), ag)),i = 1,...,5. Here agi) is the smallest
number of units to be produced, ag&) is the most likely number of units,
and ag) is the largest number of units. The experts opinions are shown

on Table 3.11.

Table 3.11. Experts estimates for annual demand for a new product.

E; | A; Smallest Most likely Largest
number agi) number ag\i/[) number aéi)
E | Ay 10,000 12,000 13,000
Ey, | Ay 11,000 13,000 15,000
Es | As 10,000 11,000 14,000
Ey | Ay 12,000 13,000 14,000
Es | As 11,000 12,000 13,000
Total 54,000 61,000 69,000

Substituting the total values into (3.11) gives

Aave =

54,000 61,000 69,000
( e E ):(10800,12200,13800).

The defuzzified A 4, according to (3.15) is 12200. Hence this number
can be adopted to represent the annual demand for the new product.
O
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3.8 Notes

1. Forecasting in business, finance, and management, regardless of
the methodology used, is a controversial subject. A wide range
of opinions exist, from claims that forecasting is impossible, to
categorical statement that it is a must. Here we present some
quotations on the matter by experts and scientists well acquainted
with classical techniques for forecasting; there is no evidence that
they have knowledge of fuzzy theory.

“The ability to forecast accurately is central to effective plan-
ning strategies. If the forecasts turn out to be wrong, the real
cost and opportunity costs ... can be considerable. On the
other hand, if they are correct they can provide a great deal
of benefit—if the competitors have not followed similar planning
strategies” (Makridakis, 1990).

“To produce an accurate forecast under conditions of stability,
the forecaster has merely to conclude that the future will be just
like the past. Forecasting may also come out reasonably well if
trends change in a way favorable to the organization, for example,
if markets grow faster than predicted. Then at least extrapolation
does little harm. Typically is overestimation that causes the prob-
lems, for example, by projecting a higher demand for a company’s
products than actually materializes” (Mintzberg, 1994).

“To claim that forecast is impossible is, of course, a rather extreme
way of drawing attention to the frequency with which decision-
makers are prone to suffer expensive surprise” (Earl, 1995).

“The significance of science lies precisely in this: To know in order
to foresee .... There is a difference in the degree of foresight and
precision achieved in the various sciences.” (Leon Trotsky, in The
Age of Permanent Revolution: A Trotsky Anthology, 1964). The
last sentence written in 1940 shows that Trotsky was intuitively
close to the concept of fuzziness.

2. Arithmetic operations with fuzzy numbers and in particular with
triangular and trapezoidal numbers can be defined by using op-
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erations with a-level intervals, level by level (see Kaufmann and
Gupta (1985) and G. Bojadziev and M. Bojadziev (1995)).

3. Case Study 1 is based on Kaufmann and Gupta (1988).

4. A simple approximate formula for distance between triangular
numbers is given by G. Bojadziev and M. Bojadziev (1995).



Chapter 4

Decision Making in a Fuzzy
Environment

Decision making is a process of problem solving which results in an
action. It is a choice between various ways of getting an end accom-
plished. Decision making plays an important role in business, finance,
management, economics, social and political science, engineering and
computer science, biology, and medicine. It is a difficult process due
to factors like incomplete and imprecise information, subjectivity, lin-
guistics, which tend to be presented in real-life situations to lesser or
greater degree. These factors indicate that a decision-making process
takes place in a fuzzy environment. The main objective of this chap-
ter is to consider two methods for decision making based on fuzzy sets
and fuzzy logic. First to be introduced is the Bellman-Zadeh (1970)
approach, according to which decision making is defined as intersection
of goals and constraints described by fuzzy sets. The second approach
for making decisions combines goals and constraints using fuzzy aver-
aging. Applications are made to various real-life situations requiring
selection or evaluation type decisions and to pricing models. Also a
budget allocation procedure is discussed.

91
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4.1 Decision Making by Intersection of Fuzzy
Goals and Constraints

Decision making is characterized by selection or choice from alternatives
which are available, i.e. they are found or discovered. In the process
of decision making, specified goals have to be reached and specified
constraints have to be kept.

Consider a simple decision-making model consisting of a goal de-
scribed by a fuzzy set G with membership function pg(z) and a con-
straint described by a fuzzy set C with membership function pc(z),
where z is an element of the crisp set of alternatives A ;.

By definition (Bellman and Zadeh (1970)) the decision is a fuzzy set
D with membership function up(z), expressed as intersection of G and
C7

D=6GNC={(x,up(x)x € [d1,ds], up(z) € [0,h < 1]} (4.1)

It is a multiple decision resulting in selection the crisp set [d1,d2]
from the set of alternatives Agy; up(x) indicates the degree to which
any x € [dy,dz] belongs to the decision D. A schematic presentation
is shown on Fig. 4.1 when x € Ay C R and G and C have monotone
continuous membership functions.

U

Fig. 4.1. Fuzzy goal G, constraint C, decision D, max decision Zax.
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Using the membership functions and operation intersection (1.9),
formula (4.1) gives

pp(x) = min(ug(z), pe(x)), = € Aay. (4.2)

The operation intersections is commutative, hence the goal and con-
straint in (4.1) can be formally interchanged, ie. D =GNC =CND.
Actually there are real situations in which, depending on the point of
view, goal could be considered as constraint and vice versa. Sometimes
there is no need to specify the goal and constraint; we simply call them
objectives or aspects of a problem.

Usually the decision makers want to have a crisp result, a value
among the elements of the set [d1,ds] C Ay which best or adequately
represents the fuzzy set D. That requires defuzzification of D. It is
natural to adopt for that purpose the value x from the selected set
[d1,d2] with the highest degree of membership in the set D. Such a
value = maximizes pup(z) and is called mazimizing decision (Fig. 4.1).
It is expressed by

Tmax = {|maxpp(r) = max min(ug(x), pc(x))}- (4.3)

The process of decision making is shown as a block diagram on
Fig. 4.2.

Goal G Fuzzy Maximizing
Constraint C - Intersection =| decision | decision
AlternativesA,; gnc D Tmax

Fig. 4.2. Process of decision making by intersection.

Formulas (4.1)-(4.3) have been generalized for decision-making mod-
els with many goals and constraints (Bellman and Zadeh (1970)). For
n goals G;,i = 1,...,n, and m constraints C;, j = 1,...,m, the decision
is

D=GiN---G,NCiN---NCp, (4.4)

the membership function of D is

pp(@) = min(ug, (2), .., g, (1), iy (@), - pe,, (@), (45)
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and the maximizing decision is given by
Tmax = {&|pp(x) is max}. (4.6)

If A, is not a continuous set, for instance a subset of N, the set of
integers, formulas (4.1)—(4.6) remain valid.
Example 4.1

On the set of alternatives A,y = {1,2,3,4,5,6} consider the goal G
and constraint C given by the discrete fuzzy sets

Using the decision formula (4.2) gives (see Fig. 4.3)
D=gnC = {(1,min(0,1)),(2,min(0.2,0.9)), (3, min(0.4,0.7)),

)
(4,min(0.6,0.6)), (5, min(0.8,0.2)), (6, min(1,0))}
= {(1,0),(2,0.2),(3,0.4), (4,0.6),(5,0.2),(6,0)}.

1
1 X °
X
C [ ] G
X
06 ®
© :
O] D X
X
C ‘ X
0 1 2 3 4 5 6

Fig. 4.3. Goal G (dot), constraint C (cross), fuzzy decision D (circle).

Here [d1,d2] = {1,2,3,4,5,6}, h = 0.6; the maximizing decision (see
(4.3)) is Tmax = 4 with the highest degree of membership 0.6 in D.
O
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We would like to stress that Bellman and Zadeh (1970) made an
important comment according to which the definition (4.4) expressing
a decision as intersection of goals and constraints is not the only one
possible:

“In short, a broad definition of the concept of decision may be stated
as Decision = Confluence of Goals and Constraints.”

Instead of operation intersection (and) defined as min, other opera-
tions of fuzzy theory could be used to define a decision (see for instance
Zimmermann (1984) and Novak (1989)).

We will come back to this point in Section 4.4 where fuzzy averaging
is used for decision making.

4.2 Various Applications

Case Study 4 Dividend Distribution

In a company the board of directors is willing to pay an attractive
dividend to the shareholders but on the other hand, it should be modest.
Attractive dividend, a linguistic value, is regarded as a goal G described
by a fuzzy set defined on a certain set of alternatives A, = {z]|0 < z <
a}, where x is measured in dollars. The membership function pg(x)
is increasing on the interval A,;. Modest dividend is a constraint C
described by a fuzzy set on A, with a decreasing membership function
pe(x). Good candidate for membership functions are part of triangular
or trapezoidal members; also bell-shaped curves could be used.

Assume that the fuzzy set goal G, attractive dividend, is defined on
the set of alternatives Ay = {z]|0 < z < 8} as

N 0 for 0<x<1,
G=pg(x) =< &L for 1<z <5,
1 for 5<x <8,

and the fuzzy set constraint C, modest dividend, is given on A,y by
1 for 0<x <2,

26 for 2< <6,

A
C=pc(x)=1 —
0 for 6 <x <8.
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According to (4.1) the fuzzy set decision D is represented by its
membership function shown on Fig. 4.4. The crisp set [d1,ds] is the
interval [1 6). The intersection point of the straight lines = £ and
= —521is (3.5,0.625), i.e. Tmax = 3.5,h = max up(x) = 0.625. The
d1v1dend to be paid is $3.5.

u

0 1 2 35 5 6 8
Fig. 4.4. Goal G, constraint C, decision D, maximizing decision zmax.
O

Case Study 5 Job Hiring Policy

A company advertises a position for which candidates xp, k =
1,...,p, apply; they form the discrete set of alternatives A,; =
{z1,...,2p}. The hiring committee requires candidates to possess cer-
tain qualities like experience, knowledge in specified areas, etc.! which
are considered as goals G;,7 = 1,...,n. The committee also wants to
impose some constraints C;,j = 1,...,m, like modest salary, etc.. At
the end of the interviewing process each candidate xj is evaluated from
point of view of goals and constraints on a scale from 0 to 1. The score
(grade) given to the candidate xj concerning the goals G; is denoted by
ar, and that concerning the constraints C is denoted by b;. Using the
scores, committee members construct discrete fuzzy sets G; and C; on
the set of alternatives Ag;:

QZ- = {(xl,ali),...,(:cp,api)}, izl,...,n,
Cj = {(Jil,blj),...,(l’p,bpj)}, jzl,,m (47)
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The decision formula (4.4) gives
D=GiN-GuNCiN- NCo,

which with (4.5) produces

D= {(xh:ul)?‘”?(mpﬂﬂp)}? (4.8)

where

uk:min(akl,...,akn,bkl,...,bkm), kzl,...,p.

The candidate with the highest membership grade among p1,. .., pp
will be considered as the best candidate for the job.

The decision in the numerical Example 4.1 is a particular case of
formula (4.8).

Assume that the company wants to fill a position for which there
are five candidates x;,7 = 1,...,5, who form the set of alternatives,
Aar = {21,292, 23,24, 25}. The hiring committee has three objectives
(goals) which the candidates have to satisfy: (1) experience, (2) com-
puter knowledge, (3) young age. Also the committee has a constraint,
the salary offered should be modest. After a serious discussion each
candidate is evaluated from point of view of the goals and the con-
straint. The committee constructs the following fuzzy sets on the set of
alternatives (they are a particular case of (4.7) when n =3 and m = 1):

G = {(21,0.8),(x2,0.6), (x3,0.3),(x4,0.7),25,0.5)},
Gy = {(21,0.7),(x2,0.6), (x3,0.8),(x4,0.2),25,0.3)},
Gs = {(21,0.7),(x2,0.8),(x3,0.5), (x4,0.5),x5,0.4) },
C = {(z1,0.4),(x2,0.7), (x3,0.6), (24,0.8),z5,0.9)}.

Here Gp represents experience; Go, computer knowledge; G3, young
age; and C gives the readiness of the candidates to accept a modest
salary.

The use of the decision formula (4.8) gives

D = {(x1,0.4), (x2,0.6), (x3,0.3), (24,0.2), z5,0.3) }.
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The candidate zo has the largest membership grade 0.6, hence
he/she is the best candidate for the job.

The decision model for job hiring, formulas (4.7) and (4.8), can be
applied to similar situations framed formally into the same model. The
following three case studies fall into that category.

O

Case Study 6 Selection for Building Construction

Four buildings are planned for construction consequently in a city,
but the order is not determined.?

A construction company wants to select the building which will be
constructed first. The buildings labeled b;,7 = 1,...,4, form the set
of alternatives A,;. The company prefers (has goals) to construct a
building which is not very important but is highly profitable and the con-
struction time is rather long. The company is also aware that the city
council prefers the first building to be wvery important, with short con-
struction time, and reasonable construction cost; these are constraints
for the company. The management of the company describes the goals
and constraints by the following fuzzy sets (b stays for building):

g1 2 ot very important b = {(b1,0), (b2,0.4), (b3,0.3), (b4,0.8)},

G» 2 hightly profitable b = {(b1,0.5), (b2, 0.6), (b3, 0.7), (bs,0.3)},

Gs 2 long construction time = {(b1, 0.8), (b2,0.7), (b3, 1), (b4,0.2)},
C1 2 very important b = {(b1,1), (b2, 0.6), (b3,0.7), (bg,0.2)},

Co 2 Short construction time = {(b1,0.3), (b2,0.4), (b3,0.5), (bg,0.7)},
Cs 2 leasonable cost = {(b1,0.3), (b2,0.4), (b3,0.7), (bg,0.2) }.

The decision according to (4.8) is

D = GiNGaNGsNCiNCaNCs
— (b1, 0), (b, 0.4), (b3, 0.3), (bs,0.2)}.

The company management decision is to propose for construction
to the city council the building by with maximum membership value
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0.4 in the set D. This decision meets best the goals and constraints.
If the proposal is not accepted by the city council, the management is
ready to propose for construction building b3 which is a second choice
(membership value 0.3 in D).

A . . A
Note that Gi = not very important b is a complement to C; =
very important b, ie. jpc, (b)) = 1 — pg, (b) (see (1.8)). However,
Ca
A . . . ..
Gs = long duration, i.e. pc,(b) ~ 1 — pg,(b). The linguistic values
short and long are words with opposite meaning and could be described
by fuzzy sets which almost complement each other, i.e. short = not
long; pishort() = 1 = ong(T) = finotiong(x). However, one has to be
careful with the interpretation of words with opposite meaning.

1>

short duration is close but not equal to the complement of

O
Case Study 7 Housing Policy for Low Income Families

A city council wants to introduce a housing policy for low income
families living in an old apartment building located on a big lot. Three
alternative projects are under discussion: p; (renovation and housing
management), ps (ownership transfer program), and ps (new construc-
tion). The set of alternatives is Ay = {p1,p2, ps}. Projects p; and p3
will require partial and full relocation of families.

The city council, using the analysis of experts and various interested
groups, after long discussions states three goals and one constraint de-
scribed by fuzzy sets on A,y as follows:

G1 2 improved quality of housing = {(p1,0.2), (p2,0.4), (p3,0.8)},
Go 2 nore housing units = {(p1,0.1), (p2,0), (p3,0.9)},

Gs 2 petter living enviromnent = {(p1,0.4), (p2,0.5), (p3,0.8)},
Ci 2 reasonable cost = {(p1,0.8), (p2,0.9), (p3,0.4) }.

The decision according to (4.8) is

D = {(p1,0.1), (p2,0), (p3,0.4)}.

Project ps with the greatest membership degree 0.4 is preferred over
p1 and po; it is superior when goals are concerned, but not that satis-
factory as far as cost is concern. |
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Case Study 8 Job Selection Strategy

A professional person, say Mary, is offered jobs by several compa-
nies ¢q, . . ., ¢p; they form the set of alternatives Ay = {c1,...,¢n}. The
salaries differ, but Mary while having the goal to earn a high salary, also
has in mind certain requirements such as interesting job, job within
close driving distance, company with future, opportunity for fast ad-
vancement, etc. Those requirements are aspects of the problem and
could be considered as constraints (see Section 4.1). Mary expresses
the goal of a high salary by a set G with membership function ug(z)
which is continuously increasing in the universal set of salaries located
in R4 measured in dollars. She constructs also the set of constraints
on the set of alternatives A,;; by attaching to each company a member-
ship value according to her judgement. However the decision making
formulas in Section 4.1 are valid for goals and constraints defined on
the same set of alternatives. Here the goal is defined on R, while the
constraints are defined on the set A, of companies, hence an adjust-
ment is necessary. The set of salaries can be converted to a set located
in A,;. For that purpose the salaries sq,...,s, offered by companies
C1,-..,Cn, correspondingly, are substituted into pg(z) and the values
1g(s1), -y pug(Sm), attached to ¢q,...,c,, form the set high salary on
At

Gair = {(c1,1g(s1)) - -5 (Cms t(5m)) }-

Assume that Mary must choose one of three jobs? offered to her by
three different companies c1, co, and c3; hence the set of alternatives is
Aar = {c1,c2,c3}. The salaries in dollars per year are given on the table

Company‘ c1 C2 c3
Salary ‘40,000 35,000 30,000

Mary has the goal to earn a high salary subject to the constraints (as-
pects): (1) interesting job, (2) job within close driving distance, and
(3) company with future. Mary uses her subjective judgement to define
the goal and the first two constraints. Regarding the third, she uses
her knowledge accumulated by reading the book, Ezcelarate: Growing
in the New Economy, by Beck (1995). She describes the constraints by
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the discrete fuzzy sets

Ci = {(c1,0.5),(c2,0.7),(c3,0.8)},
C2 = {(61,0.3),(02,0.8),(63,1)},
Cg = {(Cl, 0.3), (CQ, 0.7), (Cg, 0.5)},

on the set of alternatives (this is the universal set for Cy,Cs, and C3) and
the goal G of a high salary by the continuous membership function

N 0 for 0 <z < 25000,
G=pg(z)=1¢ L5800 for 25000 <z < 45000,
1 for 45000 < z

on the universal set Ry of salaries (see Fig. 4.5).

u

0.75

05

0.25

25000 45000 X

Fig. 4.5. Goal G—high salary.

In order to apply a decision-making formula of the type (4.4) Mary
has to deal with one universal set, that of the alternatives. For that
purpose she generates membership values by substituting in pg(z), for
x, the salaries corresponding to the alternatives,

11g(40,000) = 0.75,  pg(35,000) = 0.5,  ug(30,000) = 0.25.

As a consequence, the fuzzy set goal G on the universe R is now
substituted by the fuzzy set goal G,;; on the set of the alternatives,

galt = {(Cl, 0.75), (CQ, 0.5), (Cg, 025)}



102 Chapter 4. Decision Making in a Fuzzy Environment

The decision is then (see (4.4))
D=Gu:NCiNCyNC3 = {(Cl, 0.3), (c2,0.5), (3, 0.25)}.

The maximum membership value in D is 0.5, hence Mary has to
take the job with company co if she wants to satisfy best her objectives.
O

Case Study 9 Evaluation of Learning Performance*

The management of a company established an annual university
undergraduate scholarship to support a high school student with ex-
cellent performance in science (Mathematics, Physics, Chemistry) and
in English. Fzxcellent is a linguistic label which the management de-
scribed separately for science (ES) and English (EE) on Fig. 4.6 (a)
and (b), correspondingly, using part of trapezoidal numbers on the uni-
verse [0,100] of scores.

" "
1+ 1+
: : X P X
o "8 9 100 0o /80 9 95100
(a) (b)
Fig. 4.6. (a) Excellent in Science; (b) Ezcellent in English.
The using of (1.15) gives the membership functions
A 0 for 0 <2x <80,
ES = pgs(z) ={ 2% for 80 <z <90, (4.9)

1 for 90 <z < 100;
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A 0 for 0 <z <80,
EE = pgg(z) = 59 for 80 <z < 95, (4.10)
1 for 95 <z <100.

A student’s score of 90 in Science has grade of membership 1 in the
set ES while the same score in English has grade of membership of only
0.67 in the set EE.

Five students are candidates for the scholarship, x1 = Henry, xo =
Lucy, x3 = John, x4 = George, x5 = Mary. The students’ scores are
presented in the table bellow.

Table 4.1. Students’ scores in Science and English.

Mathematics | Physics | Chemistry | English
Henry(zq) 86 91 95 93
Lucy(x2) 98 89 93 90
John(z3) 90 92 96 88
George(xy) 96 90 88 89
Mary(xs) 90 87 92 94

The set of alternatives is Ay = {21, T2, T3, 24, X5}

Substituting the students scores in Mathematics, Physics, Chemistry
into (4.9) and those in English into (4.10) gives the degrees of excellence
corresponding to the scores. They are shown on Table 4.2.

Table 4.2. Students’ degrees of excellence in Science and English.

Mathematics | Physics | Chemistry | English
Henry(xy) 0.6 1 1 0.87
Lucy(x2) 1 0.9 1 0.67
John(x3) 1 1 0.53
George(zy) 1 1 0.8 0.60
Mary(zs) 1 0.7 1 0.93

The degrees of excellence, attached to each student, produce the
fuzzy sets of excellence in Science and English which form the objectives
or aspects of the problem:

Ezxcellent in Mathematics 2 g1
= {(xh 0'6)7 (3727 1)7 ($37 1)7 ($47 1)7 (375, 1)}7



104 Chapter 4. Decision Making in a Fuzzy Environment

Ezxcellent in Physics = Go

= {(z1,1), (x2,0.9), (z3,1), (x4, 1), (x5,0.7)},
Ezxcellent in Chemistry 2 g3

={(z1,1), (22,1), (3,1), (4,0.8), (25, 1)},

Ezxcellent in English 2 Gu

= {(1,0.87), (22, 0.67), (x3,0.53), (x4,0.6), (x5,0.93)}.

The decision formula (4.4) gives

D = GiNGaNGzNGy
= {(.rl, 0.6), (.CL‘Q, 0.67), (.1:3, 0.53), (.1:4, 0.6), (.1:5, 0.7)},

hence the conclusion is that x5, i.e. Mary with the degree of membership
0.7 in D is the student with the best performance.
Similar approach could be used to evaluate different types of em-

ployee performance in a company or industry.
O

4.3 Pricing Models for New Products

Pricing a new product by a company is a complicated task. It requires
the combined efforts of financial, marketing, sales, and management
experts to recommend the initial price of a new consumer product. It
is also a responsible task since overpricing could create a market for the
competitor.

Here we develop a pricing model using the decision method in Sec-
tion 4.1. The model is based on requirements R; (rules or objectives)
designed by experts. Below are listed some typical requirements®:

Ry = The product should have low price;

Ry = The product should have high price;

Rs 2 The product should have close price to double (4.11)
manufacturing cost;

1>

Ry The product should have close price to competition price;
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More requirements or rules relevant to a particular situation could
be added. For instance,

Ry = The product should have slightly higher price

than the competition price.

The linguistic values low price, high price, close price can be modi-
fied by the modifiers very and fairly (Section 2.3) which leads to modified
requirements.

A particular pricing model should contain at least two requirements.

Considering the requirements as objectives or aspects of a problem
the decision-making procedure in Section 4.1 can be applied without
any need to specify goals and constraints.

The conflicting linguistic values low price and high price can be de-
scribed by right and left triangular or trapezoidal numbers on the set of
alternatives, a subset of R, measured in dollars. The linguistic value
close price can be described by triangular numbers. We denote the
fuzzy number describing the linguistic value in requirement R; by A,.
To show the use of pricing requirements in establishing pricing policy
we discuss three closely related models.

Case Study 10 Pricing Models with Three Rules

Model 1. Consider a pricing model consisting of the three rules
(requirements) Rp, R3 and R4 stated in (4.11). Assume that the com-
petition price is 25 and the double manufacturing cost is 30. Assume
also that the set of alternatives A, is the interval [10, 50|, meaning
that the price of the product should be selected from the numbers in
this interval.

The model is shown on Fig. 4.7. The linguistic values in the rules
are described by fuzzy numbers as follows: R; is represented by the
right triangular number Ay (low price), Rs and Ry are represented by
the triangular numbers Ag (close to competition price) and Ay (close
to double manufacturing cost), correspondingly.

The analytical expressions of Aq, Ao, and Ag are

A =440 for 10 < z < 40,
A= 127-%) (:E) = { 30 -

0 otherwise,
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A I_TQO for 20 <z < 25,

Az = pa,(z) =4 =50 for 25 < 2 < 30,
0 otherwise,

. =25 for 25 < x < 30,

Ay =pa,(z) = %”5 for 30 < x < 35,
0 otherwise.

0 10 20 25%w= 30 35 40 50 x

Fig. 4.7. Pricing model with rules Ry, R3, R4.

Using (4.5) gives the decision D (Fig. 4.7) in the interval [25, 30],

D £ jip(z) = min(ia, (z), pa, (@), pa, (2)).

Solving together p = _“’34640 and p = x_525 gives the maximizing
decision
Tmax = 27.14,

interpreted as price for the product. The experts accept this price as a
recommendation. For instance, 14 cents in the price is not customary.
The experts may consider a price close to 27.14 in the interval [25, 30],
say 27, 26.95, or 26.99.

One can observe from Fig. 4.7 that the triangular number A3 (close
to competition price) contributes to the fuzzy decision D, but does not
have any impact on the maximizing decision xpax. Only the triangular
numbers Ay (close to double manufacturing cost) and Aq (low price)
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contribute to Tmax. A major role is played by A4 whose peak with
maximum membership grade 1 is at x = 30, the double manufacturing
cost. Due to the influence of A; the maximizing price is 27.14.

Model 2. Now we study the pricing Model 1 when the requirement
Ry defined by A; is modified by the modifiers: (a) very; (b) fairly.

(a) The modified Ry by very reads

veryRy 2 The product should have very low price.
According to (2.6) the membership function of very A; is

(=2+40)2 - for 10 < 2 < 40,

Hoerya, () = (1.4, (fU))Q = { 0 0 otherwise

It is a parabola in the interval [10, 40] (Fig. 4.8).

H
1 VeryA, A Ay
i !
0 10 20 25X%w= 30 35 40 50 x

Fig. 4.8. Pricing model with rules very R, R3, R4.

The decision D has a membership function pp(z) in the interval
[25,30] (Fig. 4.8),

/LD('r) = min(ﬂveryA1 (-r)> LAs ('r)> LAy, ('r))

To find @yax here we have to solve together = (=5540)% and p =

x_525 which gives the quadratic equation x? — 260z + 6100 = 0 with
solutions 26.08 and 233.92. The solution in [25, 30], i.e. Tpax = 26.08 ~

26, gives the suggested product price.
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The modifier very gives more emphasis on low price. That is why
here we get 26, a smaller price than 27.14 obtained in Model 1 (although
both models have the same domain).

Here, similarly to Model 1, A3 (close to competition price) con-
tributes to the fuzzy decision D but not to the maximizing decision.

(b) The modified R; by fairly reads

fairly Ry 2 The product should have fairly low price.

Using (2.7) gives the membership function of fairly A;.

30 _
0 otherwise

NI

;ufairlyAl = (,UAl (ﬂj‘)) = { ( ) o ST s 44U,

which is a parabola in the interval [10, 40] (Fig. 4.9).

U
1 faryA, As A

| 1 !
0 10 20 25X 30 35 40 50 x

Fig. 4.9. Pricing model with rules fairly Ry, R3, R4.

From the figure is clear that the rule fairly Ry (fairly low price) does
not contribute to the fuzzy decision D with membership function pp(z)
on the domain D = [25,30]. Only the rules R3 and Ry, i.e. A3 and Ay
contribute to D. The maximizing decision is the midpoint of [25, 30],

Tmax = 27.9.
O

Pricing models like Model 1 and Model 2(a) in Case Study 10 pro-
duce maximizing decisions based on low price and doubled manufac-
turing cost without reflecting the competition price which takes part in
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the model.5 A company with such product pricing policy may create
favorable market conditions for the competitor. As a consequence the
company may incur loses leading to actions as price cutting, redesign-
ing the product, or dropping it from the market. Real-life examples
(Managing in a Time of Great Change, Drucker” (1995)) tell us that it
may be more important for a company to consider seriously competition
price than to try to make a quick profit of premium pricing. “The only
sound way to price is to start out with what the market is willing to
pay—and thus, it must be assumed, what competition will charge—and
design to that price specification.” The next model illustrates Drucker’s
suggestion: “price-led costing.”

Cast Study 11 A Price-Led Costing Model

A simple model to reflect “price-led costing” consists of two rules,
R (low price) and R3 (close to competition price) (see (4.11)). Assume
R and Rj3 are described by the triangular numbers A and Ag defined
in Model 1 (Case Study 10); they are shown in Fig. 4.10.

u

0 10 20 25 30 35 40 50 x

Fig. 4.10. A price-led costing model with rules R; and Rs.
The fuzzy decision D on the domain D = [20, 30] is

A .
D 2 ip(z) = min(pia, (), 114, ().
The maximizing decision in [20, 30] is the solution of equations yu =
rgﬁ and p = _9”;640; it is Zmax = 22.66, below the competition price of

25 due to the requirement low price.
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This pricing model, contrary to the models in Case Study 10, does
not include a requirement concerning manufacturing cost. The price
22.66 should be considered as a suggestion. The product should be
designed, produced, and marketed at cost to ensure that profit could be
made if the price of the product is 22.66 or close to it.

O

If a product is new on the market and there is no competition then a
reasonable price which consumers are willing to pay should be suggested.
A possible model can be based on rules Ry, Re, and Ry in (4.11).

If a product is superior to the product of competition then this
should be reflected in the model by including rule R5. A more sophisti-
cated and general model could contain instead of Rj rules of the type:

“If the product is superior to the product of competition, the product
price should be higher than that of competition.”

This is a conditional statement (Chapter 2, Section 2.3). Models
with if ... then rules are discussed in Chapter 6.

We have seen that in some pricing models (Case Study 10) there are
rules which do not contribute to the decision. The root of the problem
lies in the decision-making procedure based on intersection. Formula
(4.3) does not always assure contribution from all rules that participate
in the model. In those cases decision making by intersection may not be
the most appropriate technique to be used. Another approach towards
decision making which takes contribution from all goals and constraints
(or rules) is based on fuzzy averaging. It is presented in the next section.

4.4 Fuzzy Averaging for Decision Making

In this section the fuzzy averaging technique (Chapter 3, Section 3.1)
is used for making decisions. Goals and constraints, or requirements
(rules) are described by triangular or trapezoidal numbers. If they are
ranked according to importance, the weighted fuzzy averaging is applied.
The result (conclusion, aggregation) is a triangular or trapezoidal num-
ber D interpreted as decision. We call this approach averaging decision
making. To find a maximizing decision we consider the value in the
supporting interval of D for which pp(z) has maximum membership
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degree (it is one)(see (3.15) and (3.17)). Also the statistical averages
(3.16) and (3.18) could be used.

Case Study 12 Dividend Distribution by Fuzzy Averaging and
Weighted Fuzzy Averaging

1. Let us apply the fuzzy averaging technique for the problem dis-
cussed in Case Study 4 (Section 4.1). The goal G (attractive dividend)
and the constraint C (modest dividend) (Fig. 4.3 and Fig. 4.11) are right
and left trapezoidal numbers. They can be presented as (see Section 1.6)

G=(1,5828), C=(0,0,26).

Using direct calculations (or the trapezoidal average formula (3.13))
gives the trapezoidal number

G+C  (1,5,8,8) +(0,0,2,6)
2 2
(1,5,10,14)

= T = (05,25,5,7)

D= Acwe =

which represents the decision (see Fig. 4.11).

vl
X -6 x=1
M= H= ——
1 - 4 4
! Xmax\ ! !
0 1 2 25 3.75 5 6 7 8 X

Fig. 4.11. Decision D, xmax = 3.75.

The membership function up(x) of the decision has a flat segment
whose projection on z-axis is the interval [2.5, 5]. The numbers in this
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interval have the highest degree of membership in D. We define the
maximizing decision as the midpoint of the flat interval (see (3.17)), i.e.

2545 75
x = = — =3.75.
ma 2 2

The maximizing decision obtained in Case Study 4 by the intersec-
tion method is 3.5. It is up to the board of directors to decide which
value to take.

2. Assume now that the board of directors gives different weight
to G and C, for instance wg = 0.4 and wc = 0.6, meaning that the
constraint (modest dividend) is a little more important than the goal
(attractive dividend). Then following (3.14) gives the decision

D=AY. =

ave

0.4)G + (0.6)C

0.4)(1,5,8,8) + (0.6)(0,0,2,6)
0.4,2,3.2,3.2) + (0,0,1.2,3,6)
0.4,2,4.4,6.8)

A~~~ I~/

expressed as a trapezoidal number with a flat interval [2, 4.4]. The
midpoint of the flat (formula (3.17)) gives the maximizing decision

2+44 64
Tmax = 5  — g = 3.2

which as expected is smaller than 3.75, the case without preference.

Case Study 13 Two Pricing Models

Model 1. Consider the pricing Model 1 (Case Study 10) presented on
Fig. 4.7 and again on Fig. 4.12. The rules R, R3, and R4 are described
by triangular numbers which can be written in the form of

A, =(10,10,40), A3 =(20,25,30), A4 =(25,30,35).
Using the triangular average formula (3.13) or direct calculations
one gets the decision

A +As+Ay

D = Aave =
3
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(10, 10, 40) + (20,25, 30) + (25, 30, 35)
3

(55, 65, 105)
3
= (18.33,21.67,35).

It is a triangular number shown in Fig. 4.12.

u

0 10 20 25 30 35 40 50 x

Fig. 4.12. Pricing model with rules R;, R3, R,.

The maximizing decision according to (3.15) is Zpax = 21.67 since
at this value the membership function pp(x) is maximum. The max-
imizing decision for Model 1, Case Study 10, is 27.14. The difference
between the two decisions is not small. Then which value is the cor-
rect one? There is no definitive answer to this question. Both decisions
should be considered as suggestions. The experts have to make a final
decision. The value 27.14 is too high; it does not reflect competition
price presented by As. On the other hand side, the value 21.67 looks too
small; it is not around A4 although it is influenced by it. A compromise
could be to take the number (average) between 21.67 and 27.14 which
is 24.405 ~ 24.4.

Model 2. Let us describe rule R; in Model 1 in a slightly different
way; the rest remains unchanged. The new right triangular number is
A; =(10,10,25) (see Fig. 4.13); it has the same peak 1 as the old A;.

Using the new A1, and Az and A4 from Model 1, the triangular
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averaging gives

(10,10,25) + (20,25, 30) + (25, 30, 35)
3

D = Aave =

(55,65,90)
3
= (18.33,21.67, 30)

It is a triangular number shown on Fig. 4.13. The maximizing deci-
sion is Tmax = 21.67; the same as in Model 1.

H
' I Ay D A A,
i 1 ; I
0 10 20 25 30 35 40 50 x

Fig. 4.13. Pricing model with rules R3, R4, and slightly different R;.

Just to make a comparison, let us apply the decision-intersection
method to the same model. Noticing that A4 intersects A3 but not Ay
above the x-axis, the decision D,

D é up = min(uAl ($),MA3($)7/LA4($))7

which is supposed to be a fuzzy set, degenerates into the point (25,0).
Recall that when performing operation min the smallest value of u for
each x takes part in D. The number 25 looks like a maximizing decision,
but since its degree of membership is zero, the decision intersection
method is not the proper tool to be used in this case.
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4.5 Multi-Expert Decision Making

Analysis of complex problems requires the efforts and opinions of many
experts. Expert opinions are expressed by words from a natural and
professional language. They can be considered as linguistic values, hence
described and handled by fuzzy sets and fuzzy logic.

It is unlikely that expert opinions are identical. Usually they are
either close or conflicting to various degrees. They have to be combined
or reconciled in order to produce one decision. We call this multi-expert
decision-making procedure aggregatoin; it is a conflict resolution when
the opinions are confliction. The aggregation is obtained by applying
the fuzzy averaging (Section 3.3). It is illustrated on two case studies
concerning individual investment planning policy proposed by experts
whose opinions are in the first case close and in the second case conflit-
ing.

Case Study 14 Investment Model Under Close Experts Opinions

Consider a simplified individual investment planning model that pro-
duces an aggressive or conservative policy depending on wheter the in-
terest rates are fallign or rising (see Cox (1995)).

The words aggresive and conservative are linguistic variables, i.e.
fuzzy concepts. The financial experts dealing with the investment model
agree to describe aggressive (aggressive investment policy) by a suit-
able left trapezoidal number on a scale from 0 to 100 (universal set —
the interval [0, 100]) and conservative by a right trapezoidal number
on a scale from —100 to O (universal set [—100,0]). The numbers on
the joined scale from —100 to 100 have a certain meaning accepted by
the experts. For instance 50 and —50 can be interpreted as indicators
for moderately aggressive investment and moderately conservative in-
vestment, correspondingly; 70 and —70 as aggressive and conservative
investments, etc.

Assume that interest rates are falling and three experts F;,7 = 1, 2, 3,
have the opinion that the investment policy should be agreessive. Their
description of aggressive is given in the form of left trapezoidal numbers
(see Fig. 4.14)

A, = (40,70,100,100), Ay = (45,80,100,100), Az = (70,85,100,100).
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The aggregation of the close experts opinions (assumed of equal im-
portance) according to the trapezoidal average formula (3.13) produces

A B AL +As+ Ag
ave - 3
(40,70, 100, 100) + (45,80, 100, 100) + (70, 85,100, 100)
N 3
155, 235, 300, 300

_ 1%, _— ) _ (51.66, 78.33, 100, 100).

u

1l

o# 40 100 x

Fig. 4.14 Investment planning policy: three close experts opinions; ag-
gregated decision Agye; maximizing decision 2,4z .

Defuzzification of Agye using (3.17) gives the maximizing value
7&3327“00 = 89.16 ~ 90. The interpretation of this number is very ag-
gressive investment policy.

Assume now that the three experts are evaluated differently by their
peers on a scale from 0 to 10 as follows: r; = 6 is the ranking of expert
FEy,ro = 10 is the ranking of expert E3, and r3 = 4 is the ranking
of expert E3. The weights w;,i = 1,2,3, which express the relative
importance of E; can be calculated from (3.3):

: 1 1
i W= 03w = 205, wy = — — 0.2.

Y e e trs 20 20 20
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Substituting these values into the weighted trapezoidal average for-
mula (3.14) gives

AY = 0.3A;+0.5A,+0.2A3
— (12,21, 30,30) + (22.5,40, 50, 50) + (14, 17, 20, 20)
—  (43.5,78,100,100).

Using again (3.17) for defuzzification gives w = 89; this number
suggests very aggressive investment policy.

There is a little difference between A, and AY,. and also between
the maximized (defuzzified) values 89.16 and 89. Hence the ranking of
the experts in this case has no significance on the final conclusion. This
is mainly due to the fact that the experts opinions are more or less close
and also to the fact that the second expert Fy which opinion is closest
to Agye was ranked as the best (rq = 10).

If the interest rates are not falling but raising the same methodology

can be applied.
O

Case Study 15 Investment Model Under Conflicting Experts Opinions

Consider the investment model studied in Case Study 14 when in-
terest rates are falling but assume now that the experts have conflicting
opinions.® This means that some experts are reccommending aggressive
policy (scale from 0 to 100) while at the same time others are recc-
ommending conservative policy (scale from —100 to 0); also there is a
possibility that some experts may express opinions which are almost in
the middle between aggressive and conservative policy.

Suppose that three experts present their opinions on the matter
(they are of equal importance) by the fuzzy numbers (see Fig. 4.15):

A, = (-100,-100,-50,—30),
Ay = (—10,10,30),
A; = (60,90,100,100);
A; (describing conservative) is a right trapezoidal number, Agy (de-

scribing slightly aggressive) is a triangular number, and A3 (describing
aggressive) is a left trapeziodal number.
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To use (3.13) for aggregation of the three conflicting opinions ex-
pressed by A1, Ao, and Ag, first Ao must be presented as a trapezoidal
number, Ay = (—10, 10, 10,30) (Section 3.2). The result is (Fig. 4.15)

Aave = Al + A2 + A3
(—100,—100, —50, —30) + (—10, 10, 10, 30) + (60, 90, 100, 100)

3
—50,0, 60, 100
_ ) _ (—16.67,0, 20, 33.33).

3
u
A ave

\ A,

i X i

| max X
; / L o
100 - -10 0 10 20 30 60 90100

Fig. 4.15. Investment planning policy: three conflicting experts opin-
ions; aggragated decision Agye; maximizing decision gz .

The maximizing value according to (3.17) is M = 10. It suggests

a policy on the aggressive side of the scale but a Very caustious one.

Now consider the case when the opinions of the three conflicting
experts have different importance on a scale from 0 to 10. The ranking
of experts E1, Eo, and Ej3 is assumed to be 4, 6, and 10, correspondingly.
The weights w; for E; calculated from (3.3) are

Ai 4 6 10

= = = 0.2, =0.3 = — =0.5.
TN s YT 20 T Ty
Using (3.14) to aggragate the conflicting experts opinions gives
A,. = 02A;+03A2+05A3

= (=20,-20,—10,—6) + (—3,3,3,9) -+ (30, 45, 50, 50)
= (7,28,43,53)
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whose maximizing value (3.15) iS Zae = % = 35.54. It indicates
that the investment policy should be cautiously aggressive.

There is some difference between A, and AY . and also between

the defuzzified values 10 and 35.5 due to the high ranking of expert Ej

who favors aggressive investment policy.
O

4.6 Fuzzy Zero-Based Budgeting

Government agencies and companies often use the zero-based budgeting
method for budget planning with crisp data. Since the available infor-
mation is usually imprecise and ambiguous, it is more realistic to use
fuzzy data instead of crisp data. This is the justification for the estab-
lishment of a more general method known as fuzzy zero-based budgeting
(Kaufmann and Gupta (1988)).

The fuzzy zero-based budgeting method uses triangular numbers to
model fuzziness in budgeting. It is a decision-making procedure different
from the two methods discussed in this chapter, decision making by
intersection and fuzzy averaging. Since fuzzy zero-based budgeting uses
addition of triangular numbers, from this point of view it is close to
fuzzy averaging. It will be illustrated on a particular situation.

Consider a company with several decision centers, say A, B, and C.
Assume that the decision makers agree on some preliminary budgets
using a specified number of budget levels for each center depending on
its importance. The budgets are expressed in terms of triangular fuzzy
numbers obtained by certain procedure (it might be the Fuzzy Delphi
method or some other way).

The following possible budget levels were suggested:

for the centerA, Ag < A < Ao,
for the center B, By < By,
for the centerC,Cy < Cq < Co.

They are schematically presented in Table 4.3.
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Table 4.3 Suggested budgets for three centers.

level 2 @
level 1 @
level 0
center A B C

The budget with a subscript zero (level 0) represents a minimal
budget; if a center is given this budget, it might be closed. Budgets with
subscript one (level 1) are normal budgets; those with subscript two or
greater than two (level 2 or higher levels if such exist) are improved.

The total budget available to the company is limited but it is flexible
and could be expressed by a right trapezoidal number L of the type
shown in Fig. 4.16 with membership function

for 0<z<y,
pr(x) = lf:lé for L <z <ly, (4.12)
0 otherwise.

I, I, X

Fig. 4.16. Total available budget.
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The decision makers follow a step by step budget allocation proce-
dure according to the importance of each center in their opinion. They
select a budget for a center beginning at zero level and continue until all
budgets on Table 4.3 are specified. A budget on a higher level includes
that on a lower level for the same center. The procedure is shown in
Table 4.4; the selected budgets are presented by shaded area. From the
table we see that first (Step 1) an initial budget Cj is allocated to the
center C' considered to be the most important. After that (Step 2) the
center A gets support Ay. Then again (Step 3) the center C' is cho-
sen; its budget is increased from Cj to C; before even center B to be
selected. Clearly center B is the last priority. The selection procedure
continuous (Table 4.4). Step 7 for instance indicates that while centers
C and A are selected for allocation at level 2 the center B is given bud-
get on level 0; only in the last Step 8 this center gets budget on level
1.

The cumulative budgets according to Table 4.4 after dropping the
lower level budgets from any center when a budget on higher level is
selected, listed step by step are:

S1 = Cy,

Sy = Ap+ Cy,
S3 = Ao+ Cy,
Si = Ap+Cy,

4.13
Ss = Ag+Bo+Co, (4.13)
SG = A1 + BO + 027
S7 = Ax+Bg+ Ca,
Ss = Ax+B;+Co.
The budgets S;,7 = 1,...,8 are triangular numbers since they are

sums of triangular numbers (Section 3.2 (3.4)). They can be presented
in the form S; = (sgi), sg\i/f), sgi)).

The final budget has to be selected from (4.13). The company wants
to have an optimal fuzzy budget S, = (51, 5w, s2) with peak (spr, 1)
consistent with the available budget L. Hence it is reasonable and pru-
dent to require

Sopt = (51,5M,52) C L, (4.14)



122 Chapter 4. Decision Making in a Fuzzy Environment

where ] .
S)f = max sg&) <l, S9 = max sg) <ls, (4.15)
i.e. sps is the largest sg\? <1 and s9 is the largest sg) <lg,i=1,...,8

(see Fig. 4.16 for [ and la).

Table 4.4. Procedure for budget selection.
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The inclusion (4.14) interpreted as a requirement that the budget
Sopt does not exceed the available budget L essentially means that S,
entails L (see Section 2.7 (2.14)).

If a crisp budget is needed, the company could take as such the
maximizing value (see (3.15)) Tmax = sy in (4.14).

Condition (4.14) with (4.15) is suitable for a conservative budget. A
company expecting additional funding which may or may not material-
ize or willing to take risk may decide to relax the inclusion (4.14) and
substitute it with

Sopt ~ L.

In such a case the first condition (4.15) is required, the second is
dropped or vise versa, or both conditions (4.15) are dropped but sub-

stituted instead by s;; = min sg\z/f) > 1.

Case Study 16 Application of Fuzzy Zero-Based Budgeting

Let us assign specified values to the fuzzy numbers in the particular
situation considered above.
The limited available budget L (see (4.12)) given by

1 for 0 < 2 < 40000,
L) = —z=46000 g 40000 < x < 46000, 4.16
12 6000
0 otherwise

is shown in Fig. 4.17 and the eight budgets on Table 4.3 are selected as
follows

Ay = (10000,11000,12000),
A; = (12000, 13000, 15000),
A, = (14000, 15000, 17000),
By = (7000,9000,11000),

11000, 12000, 13000),
7000, 9000, 12000),

11000, 13000, 15000),
15000, 18000, 19000).

Qw
o R
Il
e e N R e e e

For the cumulative budgets (4.13) using addition of triangular fuzzy
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numbers (Section 3.2) we find

S; = Cg = (7000,9000,12000),
Sy = Ag+ Co = (17000,20000, 24000),
S; = Ag+ C; = (21000,24000,27000),

S, = Ag+ Cy = (25000,29000,31000),

S5 = A+ Bg+ Cy = (32000, 38000, 42000),
S¢ = A;+By+ Cy = (34000, 40000, 45000),
S; = A+ Bg+ Cy = (36000, 42000, 47000),
Ss = A, + B+ Cy = (39000, 45000, 49000).

The budgets S1,S2,S3, and S4 are too small in comparison to the
limiting budget L. Hence the company discards them and considers the
rest, Ss5,S¢,S7, and Sg shown in Fig. 4.17 together with L. However
the budgets S; and Sg violate condition (4.14).

The budgets S5 and Sg have a peak 1 for 35\‘? = 38000 and sg\(}) =
40000, correspondingly, but since 55\54) < 55\64) = [ = 4000 and 5&5) <
sgﬁ) < lp = 4600, the optimal budget (see (4.14) and (4.15)) is Sg =
(34000, 40000, 45000) and the crisp budget is Zmayx = s\ = 40000. If
the company accepts this budget, recalling that S¢ = A; + By + Cs,
the center A gets budget A; (crisp 13000), the center B gets budget By
(crisp 9000), and the center C' gets budget Cy (crisp 18000).

M

1 S — S—

/) 1 ‘ i ‘
0 32000 34000 36000 3900040000 42000 46000 49000 X

Fig. 4.17. Cumulative budgets.

The budget of center B is at level 0 (smaller than normal ); the deci-
sion makers may consider the option to close this center and redistribute



4.7. Notes 125

the money to the other two centers which are more important.

If the company management wants to be more flexible and have rea-
sons to be more optimistic, then the budget S7 = (36000, 42000, 47000)
could be considered (crisp 42000). This budget satisfies the condition
that sg\? is the smallest 35\9 > [y = 4000.

O

4.7 Notes

1. According to Nuala Beck (1995) “the skills that all of us need to
get ahead in this challenging times” are: “the ability to work as
part of a team, ... the ability to communicate, ... the ability to
use a computer, ... the ability to do basic math.”

Nuala Beck in her book (1992) on the new economy writes: “Ar-
tificial intelligence and fuzzy logic systems, already in use experi-
mentally in insurance and banking and defense, will find their way
indo education ....” “Each era has its winners and losers. It’s not
too early to predict that the losers of tomorrow will include many
of winners of today. If a successful company starts believing it
has all the answers—or that its tree will grow to the sky—it is
already heading down the wrong track. If a Microsoft, for exam-
ple, doesn’t go beyond software and make the leap into artificial
intelligence and commercialize fuzzy logic on a massive scale, then
its star will inevitably fall.”

2. The idea for Case Study 6 comes from Novédk (1989).

3. The specific data concerning job selection by Mary (Case Study
8) are modification of data given by Klir and Folger (1988).

4. Case Study 9 is based on material in the book by Li and Yen
(1995).

5. Some of the requirements (rules) concerning pricing of new prod-
ucts (Section 4.3) are based on Cox (1995); the linguistic values
in his book are described by bell-shaped fuzzy numbers.
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6. Grant (1993) in the chapter on assessing profit prospects in his

book writes: “To survive and prosper in the face of price compe-
tition requires that the firm establishes a low-cost position.”

. One of the five deadly business sins according to Drucker (Man-

aging in a Time of Great Change, 1995) is “cost-driven pricing.”
Further he writes: “The only thing that works is price-driven cost-
ing. Most American and practically all European companies arrive
at their prices by adding up costs and putting a profit margin on
top .... Their argument? We have to recover our costs and make
a profit. This is true but irrelevant: customers do not see it as
their job to ensure manufacturers a profit ... Cost-driven pricing
is the reason there is no American consumer-electronics industry
anymore. It had the technology and the products. But it op-
erated on cost-led pricing—and the Japanese practiced price-led
costing.”

. Case studies 14 and 15 in Section 4.5 deal with individual plan-

ning policy wihch depends on falling or rising prime interest rates.
This reflects only one facet of the problem. The experts also
should relay on data concerning the state of the stock market,
the trade balance, unemployment rate, level of inventory stock-
age, etc. In that connection, and to stress the complexity of that
type of problems in business and finance where many factors are
involved and interrelated, and also to focus on a moral issue, we
make a quote from the article “Wanted, Economic Vision That
Focuses on Working People” by B. Herbert (International Herald
Tribune, July 10, 1996). “Last Friday, a kernel of good news on
the employment front caused a panic on Wall Street. The consen-
sus: The Fed will have to raise interest rates to ensure that any
improvement do not get out of hand.”



Chapter 5

Fuzzy Logic Control for
Business, Finance, and
Management

Fuzzy logic control methodology has been developed mainly for the
needs of industrial engineering. This chapter introduces the basic ar-
chitecture of fuzzy logic control for the needs of business, finance, and
management. It will show how decisions can be made by using and
aggregating if ... then inferential rules. Instead of trying to build con-
ventional mathematical models, a task almost impossible when complex
phenomena are under study, the presented methodology creats fuzzy
logic models reflecting a given situation in reality and provides solution
leading to suggestion for action. Application is made to a client financial
risk tolerance ability model.

5.1 Introduction

Complex systems involve various types of fuzziness and undoubtedly
represent an enormous challenge to the modelers.

The classical control methodologies developed mainly for engineer-
ing are usually based on mathematical models of the objects to be con-
trolled. Mathematical models simplify and conceptualize events in na-
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ture and human activities by employing various types of equations which
must be solved. However, the use of mathematical models gives rise to
the question how accurate they reflect reality. In complicated cases the
construction of such models might be impossible. This is especially true
for business, financial, and managerial systems which involve a great
number of interacting factors, some of socio-psychological nature.

Fuzzy logic models employ fuzzy sets to handle and describe im-
precise and complex phenomena and uses logic operations to arrive to
conclusion.

Fuzzy sets (in particular fuzzy numbers) and fuzzy logic applied to
control problems form a field of knowledge called fuzzy logic control
(FLC).! Tt deals with control problems in an environment of uncer-
tainty and imprecision; it is very effective when high precision is not
required and the control object has variables available for measurement
or estimation.

Imitating human judgment in common sense reasoning FLC uses
linguistic values framed in if ... then rules. For instance: if client’s
annual tncome is low and total networth is high, then client’s risk toler-
ance is moderate. Here the linguistic variables annual income and total
networth are inputs; the linguistic variable risk tolerance is output; low,
high, and moderate are values (terms or labels) of linguistic variables.

The implementation of FLC requires the development of a knowledge
base which would make possible the stipulation of if ... then rules by
using fuzzy sets. Important role here plays the experience and knowl-
edge of human experts. They should be able to state the objective of
the system to be controlled.

The goal of control in engineering is action. In business, finance,
and management we expand the meaning of control and give broader
interpretation of action; it might be also advise, suggestion, instruction,
conclusion, evaluation, forecasting.

This chapter introduces the basic architecture of FLC. It shows how
control problems can be solved by if ... then inferential rules without
using conventional mathematical models. The presented methodology
of heuristic nature can be easily applied to numerous control problems
in industry, business, finance, and management. FLC is effective when
a good solution is sought; it cannot be used to find the optimal (best)
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solution. However in the real world it is difficult to determine what is
meant by the best.

A block diagram for control processes is depicted in Fig. 5.1. The
meaning of each block is explained in the sections in this chapter.

Real problem FUZZY LOGIC CONTROL MODEL

INPUT

Aggregation:

Defuzzification
fuzzy output
Rules
evauaion | | |
Linguistic
variables .
. Crisp output:
described by If ... thenrules

fuzzy sets ACTION

Fig. 5.1. Block diagram for fuzzy logic control process.

The FLC process will be illustrated step by step on a simplified
client financial risk tolerance model.

5.2 Modeling the Control Variables

Control problems have inputs and outputs considered to be linguistic
variables.

Here we explain the FLC technique on a system with two inputs A, B
and one output C. The same technique can be extended and applied to
problems with more inputs and outputs. It can be applied also in the
case when the problem has only one input and one output.

Linguistic variables are modeled by sets A, B,C (see Section 2.4)
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containing certain number of terms A;, B;, Cy:

A = {A17"'7Ai7-/4i+17"'7“4n}7
B = {Bi,....B;.Bisr,.... B}, (5.1)
C = {Cl,...,Ck,CkH,...,Cl}.

The terms A;, B;, and C, are fuzzy sets defined as

A = {(z,pq,(z)|ze A Ccli}, i=1,...,n,
B] {(ya,qu (y))|y € B] - U2}7 J = 17 cee,Mm, (52)
C = {(zpe,(2)|zeCrCUs}, k=1,...,1L

The design of the sets (5.2) requires:

(i) Determination of the universal sets Uy, Us, Us (or operating do-
mains) of the base variables z,y, z for the linguistic variables de-
scribed by A, B,C (see Section 2.4).

(ii) Selection of shapes, peaks, and flats of the membership functions
of A;,B;,Ci (the terms). Most often triangular, trapezoidal, or
bell-shaped types of membership functions are used (or part of
these), hence then (5.2) are fuzzy numbers.

(iii) Specifying the number of terms in (5.1), i.e. the numbers n,m,
and [. Usually these numbers are between 2 and 7.

(iv) Specifying the supporting intervals (domains) for the terms
Ai, B, Cy.

Case Study 17 (Part 1) A Client Financial Risk Tolerance Model

Financial service institutions face a difficult task in evaluating clients
risk tolerance. It is a major component for the design of an investment
policy and understanding the implication of possible investment options
in terms of safety and suitability.

Here we present a simple model of client’s risk tolerance ability which
depends on his/hers annual income (Al) and total networth (TNW).
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The control objective of the client financial risk tolerance policy
model is for any given pair of input variables (annual income, total

networth) to find a corresponding output, a risk tolerance (RT) level.
Suppose the financial experts agree to describe the input variables

annual income and total networth and the output variable risk tolerance
by the sets (particular case of (5.1)):

Annual invcome 2 A = {A1, A2, A3} = {L,M,H},
Total networth 2 B = {B1,B2,B3} = {L,M,H},
Risk tolerance 2 C = {C1,Cs,C3} = {L,MO, H},

hence the number of terms in each term set is n = m = [ = 3. The terms
have the following meaning: L = low,M 2 medium, H 2 high, and
MO 2 moderate. They are fuzzy numbers whose supporting intervals
belong to the universal sets U; = {x x 103|0 < z < 100},U; = {y x
10%0 < y < 100}, U3 = {20 < z < 100} (see Figs. 5.2-5.4). The
real numbers x and y represent dollars in thousands and hundred of
thousands, correspondingly, while z takes values on a psychometric scale
from 0 to 100 measuring risk tolerance. The numbers on that scale have
specified meaning for the financial experts.

The terms of the linguistic variables annual income, total networth,
and risk tolerance described by triangular and part of trapezoidal num-
bers formally have the same membership functions presented analyti-
cally below (see (1.13) and (1.15)):

(v) = 1 for 0<w <20,
HEWT = 802w for 20 < v < 50,
v=20 for 20 < v <50
— 30 =Y = ’
ar(v) { 8020 for 50 < v < 80, (5:3)
(v) = =50 for 50 < v < 80,
HHWWI =Y 17 for 80 < v < 100.

Here v stands for x,y, and z, meaning x substituted for v in (5.3) gives
the equations of the terms in Fig. 5.2, y substituted for v produces the
equations of terms in Fig. 5.3, and z substituted for v gives the equations
of the terms in Fig. 5.4 (the second term pps(v) should read ppro(2)).
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Bl L M H

3
x %10

0 20 50 80 100

Fig. 5.2. Terms of the input annual income.

4
y X 10

0 20 50 80 100

Fig. 5.3. Terms of the input total networth.

0 20 50 80 100

Fig. 5.4. Terms of the output risk tolerance.
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5.3 If ... and ... then Rules

Next step is setting the if ... and ... then rules of inference called also
control rules or production rules.

The number of the rules is nm, the product of the number of terms
in each input linguistic variable A and B (see (5.1)).2 The rules are
designed to produce or have as a conclusion or consequence [ < nm
different outputs (I is the number of terms in the output variable C).

The rules with the possible fuzzy outputs labeled C;; are presented
symbolically on the rectangular nxm (n rows and m columns) Table 5.1
called decision table where C;;,i = 1,...,n, j=1,...,m, are renamed
elements of the set {C1,...,Ci}.

Table 5.1. Decision table: if ... and ... then rules.

| B || B | Bisa [---] B |
Ay Ciu |-+ | Cyij Cij+1 | - | Cim
Az‘ C;l e C;j Cz’,g"+1 e sz
Aig1 || Cisra | -+ | Cigrj | Cixrj+1 | - | Cigim
An C;ll e C;lj Cn,'j-ﬁ-l e Cr;m

The actual meaning of the if ... and ... then rules is
If x is A; and y is Bj then z is Cy. (5.4)

On Table 5.1, C;, renamed C;; is located in the cell at the intersection of
ith row and jth column. Denoting

Di 2 5is Ai,  qj 2 y is B, 1y 2 4 is Ck» (5.5)
we can write (5.4) as
If pi and q; then ry, T, = rij. (5.6)
The and part in (5.4) and (5.6), called precondition,

x is A; and y is B, i.e. p; and g;, (5.7)
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is defined to be composition conjunction (2.10). It is a fuzzy relation in
A x B C U; x Uy with membership function

DiNgj = min(ﬂAi ('r)mqu (y))a (l’,y) € Ax B C U xUs. (58)

The if ... then rule of inference (5.6) is implication. It expresses
the truth of the precondition. There are several ways to define this
rule. Here following Mamdani (1975) we define the rule of inference
as a conjunction-based rule expressed by operation A(min); ry is called
conclusion or consequent. Hence (5.6) can be presented in the form

DiNG N1 = min(,uAi ((17), UB; (y)7 He;; (Z))7 Tk = Tij, (59)

i=1,...,n5=1,....om;k =1,...,l; and (x,y,2) € Ax BxC C
U1 X U2 X Ug.

This presentation gives the truth value of the rule which is the result
of the min operation on the membership functions of the fuzzy sets A, B,
and C.

Case Study 17 (Part 2) A Client Financial Risk Tolerance Model

For the client financial risk tolerance model in Case Study 17 (Part
1), n = m =1 = 3. Hence the number of if ... then rules is 9 and
the number of different outputs is 3. Assume that the financial experts
selected the rules presented on the decision Table 5.2.

Table 5.2. If ... and ... then rules for the client financial risk tolerance
model.
Total networth B —

| v [ M| H ]
L| L | L MO
M| L |MO| H
H|MO| H | H

Annual income A |

The rules have as a conclusion the terms in the output C (see 5.3).
They read:
Rule 1: If client’s annual income (CAI) is low (L) and client’s total
networth (CTN) is low (L), then client’s risk tolerance (CRT) is low

(L);
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Rule 2: If CAI is L and CTN is medium (M), then CRT is L;

Rule 3: If CAI isL and CTN tis high (H), then CRT is moderate (MO);
Rule 4: If CAI is M and CTN is L, then CRT is L;

Rule 5: If CAI is M and CTN is M, then CRT is MO;

Rule 6: If CAI is M and CTN is H, then CRT is H;

Rule 7: If CAI is H and CTN is L, then CRT is MO;

Rule 8: If CAI is H and CTN is M, then CRT is H;

Rule 9: If CAI is H and CTN is H, then CRT is H.

Using the notations (5.5)—(5.8) the above rules can be presented in
the form (5.9):

Rule 1: pi Agp Aryp = min(ug,(z)

Rule 2: p1 Aga Arig = min(ug,(z),

Rule 3: p1 Agz Aris = min(ug(z)

Rule 4: po Aqp Arer = min(un(x), 1 )
Rule 5: pa A gz Arag = min(um(z), v (y), pvo(2)),
Rule 6: p2 A g3 Ares = min(un(x), 1 )
Rule 7: ps Aqp Arsy = min(

Rule 8: p3 A gy Arge = min(

Rule 9: p3 A g3 Arss = min(

These rules stem from everyday life. It is quite natural for a person
with low income and low networth to undertake a low risk and a person
with high annual income and high networth to afford high risk. However,
for various reasons a client may not want to tolerate high risk or on the
contrary, may be willing to accept it regardless of income and networth.
The experts, following a discussion with the client eventually have to
redesign the rules. For instance, in the first case when the client prefers
not to take a high risk, the conclusion part of the rules could be changed:
in rules 3, 5, and 7, MO could be substituted by L; in rules 6 and 8,
H could be substituted by MO. That will ensure a lower risk tolerance
for the client which will lead to a more conservative investment policy.

O
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5.4 Rule Evaluation

If the inputs to the FLC model are z = x¢ and y = yg, then we have to
find a corresponding value of the output z. The real numbers xy and g
are called readings; they can be obtained by measurement, observation,
estimation, etc. To enter the FLC model, z¢ and yy have to be translated
to proper terms of the corresponding linguistic variables.

A reading has to be matched against the appropriate membership
functions representing terms of the linguistic variable. The matching is
necessary because of the overlapping of terms (see Figs. 5.2, 5.3); it is
called coding the inputs.

This is illustrated in Fig. 5.5 where to the reading xg € U; there cor-
respond two constant values, ju4,(xo) and pi4,,, (zo) called fuzzy reading
inputs. They can be interpreted as the truth values of x( related to A;
and to A;41, correspondingly.

In the same way we can obtain the fuzzy reading inputs correspond-
ing to the reading yo € Uy (Fig. 5.6). In both figures only several terms
of the fuzzy sets A and B (see (5.1)) are presented.

u

Ha, (Xo)

Ma, (%)

0 Xo
Fig. 5.5. Fuzzy reading inputs corresponding to reading z.
The straight line passing through x( parallel to x axis intersects only
the terms A; and A;11 of A in (5.1) thus reducing the fuzzy terms to

crisp values (singletons) denoted pi4,(z0), pta,,, (o). The line z = o
does not intersect the rest of the terms, hence we may say that the
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intersection is empty set with membership function 0. Similarly the
line passing through yg intersects only the terms B; and By of B in
(5.1) which gives the crisp values (singletons) pz,(y0), 18, (Vo)

Bj—l B] Bj+1 Bj+2

1t

He, (Yo)

0 Y,
Fig. 5.6. Fuzzy reading inputs corresponding to reading yq.

The decision Table 5.1 with z = x¢ and y = yg, and the terms
substituted by their corresponding membership functions, reduces to
Table 5.3 which we call induced decision table.

Table 5.3. Induced decision table and active cells.

L0 ]| psiyo) | pBii(wo) |- |0]
0 01 --- 0 0 )
HA; (‘TO) 0]-- HC; (Z) HC; j1a (Z) - 10
HA; (‘TO 0]--- HCitq (Z) HCiy1 41 (Z) - 10
0 ol--- 0 0 R )

Only four cells contain nonzero terms. Let us call these cells active.
This can be seen from rules (5.8); if for x = ¢ and y = yy at least one
of the membership functions is zero, the min operator produces 0.
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5.5 Aggregation (Conflict Resolution)

The application of a control rule is also called firing. Aggregation or
conflict resolution is the methodology which is used in deciding what
control action should be taken as a result of the firing of several rules.

Table 5.3 shows that only four rules have to be fired. The rest will
not produce any results.

We will illustrate the process of conflict resolution by using those four
rules numbered for convenience from one to four; they form a subset of
(5.4):

Rule 1: If x is .AZ(.O) and y s B](-O) then z is Cyj,

Rule 2: If x is AZ(-O) and y 1is B](-E)r)l

Rule 3: If x is Ag’?l and y is B](-O) then z is Ciy1,5,

Rule 4: If = is .AZ(.S)F)I and y 1s B](-S)r)l then z is Ciy1 j41,

The and part of each rule, i.e. the precondition, called here strength
of the rule or level of firing is denoted by

then z 1is Ci7j+1;

aij = pa; (o) A ps; (Yo) = min(u4, (o), s, (o)),

Qi +1 = KA, (.To) A HBjiq (Z/O) = min(/"L-Ai (.To), KBjiq (Z/O))7 (5 10)
Qit1,5 = HA;4q ($0) N KB; (yO) = min(ﬂAHJ ($0)7 UB; (yO))v .
Qi+1,5+1 = HA; 11 (:Iio) A HBj i1 (?JO) = min(/"L-AiJrl (51;0)7 KBjiq (Z/O))~

The equalities (5.10) can be obtained from (5.8) for z = x¢ and
y = yo. The real numbers o;;, o; j11, 41,5, and o;11 ;41 are placed in
the Table 5.4 called here rules strength table.

Table 5.4. Rules strength table.

0| m5;(Wo) | 8 (o) | -~ | O

0 0l - 0 0 )
pa(zo) [0 ) -] oy Qijy1 |- |0
PAia (@0 || O] -+ | aig1 Q141 |- |0
0 0l - 0 0 )
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Table 5.4 is very similar to Table 5.3 with the difference that the
active cells in Table 5.4 are occupied by the members expressing the
strength of the rules while the same cells in Table 5.3 are occupied by
fuzzy sets (outputs). We use the elements in the four active cells in
both tables to introduce the notion control output.

Control output (CO) of each rule is defined by operation conjunction
applied on its strength and conclusion as follows:

CO of rule 1: a;; A pe;;(2) = min(aij, pey; (2)),
CO of rule 2:: Qjj+1 N\ HC; 11 (Z) = min(ai7j+17 HCi j11 (Z))7
CO of rule 3: ;i1 A e,y ,;(2) = min(ait15, gy, (2)),  (5.11)

CO of rule 4 : Qit1,5+1 A HCiy1 511 (Z) = min(ai+1,j+la HCiy1,41 (Z))

These control outputs can be obtained from (5.9) for x = 29,y = yo.
This is equivalent to performing operation conjunction or min on the
corresponding elements in the active cells in Table 5.4 and Table 5.3 as
shown below

Table 5.5. Control outputs of rules 1-4.

i A pey; (2) i jt1 A Pe; 40 (2)
Qit1,5 N\ HCitq (Z) Qit1,5+1 N HCit1 41 (Z)

The nonactive cells have elements zero; they are not presented in
Table 5.5.

The outputs of the four rules (5.11) located in the active cells (Ta-
ble 5.5) now have to be combined or aggregated in order to produce one
control output with membership function pagq(2). It is natural to use
for aggregation the operator V (or) expressed by max:

Lagg(2) = (vij A pe;(2)) V(g1 A pey i (2))
V(@it1, A pici ;(2)) V (Qit1,41 A Bei g (2)
= max{(aij A pic;; (2))s (i1 Apic ;14 (2)),
(g1, A BCi1; (2))s (@it a1 A peig 10 (2))} (5.12)
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Note that in (5.11) and (5.12) operation A (min) is performed on a
number and a membership function of a fuzzy set. Previously we have
been using operation min on two numbers, two crisp sets, and two fuzzy
sets, hence now some clarification is needed. Suppose we have the real
number « and the fuzzy set C with membership function pe(z). Then
we define

Hanue (2) = a A pe(z) = min(pa(2) = @, pe(2)) (5.13)

where 1, (2) = «a is a straight line parallel to z-axis; geometrically this
is a truncation of the shape of pc(2).

The membership function (5.13) is shown in Fig. 5.7 for the two most
often used shapes of u¢(z), triangular and trapezoidal; it represents a
clipped fuzzy number (a nonnormalized fuzzy set).

H H
1 H.(2) 1l H.(2)
al/ N\ M@= o (Mo (D=0
“u/\c (Z) / uu/\c (Z)
0 z z

Fig. 5.7. Clipped triangular and trapezoidal numbers.

The aggregated membership function (5.12) also represents a non-
normalized fuzzy set consisting of parts of clipped membership functions
(5.13) of the type shown on Fig. 5.7 (or similar). In order to obtain a
crisp control output action, decision, or command we have to defuzzify
agg(2); this is the subject of the next section.

Case Study 17 (Part 3) A Client Financial Risk Tolerance Model

Consider Case Study 17 (Parts 1 and 2) assuming readings: x¢ = 40
in thousands (annual income) and yo = 25 in ten of thousands (total
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networth). They are matched against the appropriate terms in Fig. 5.8
(for the terms see Figs. 5.2 and 5.3). The fuzzy inputs are calculated
from (5.3). Note that z = 40 and y = 25 are substituted for v instead
of 40,000 and 250,000 since x and ¥y are measured in thousands and ten
of thousands. The result is

1 2 5 1
40) = — 40) = — 25) = — 25) = —.
1. (40) 3 pn (40) 3 p1(25) 5 pn(25) 5

For z = x¢p = 40 and y = yo = 25 the decision Table 5.2 (a particular
case of Table 5.1) reduces to the induced Table 5.6 (a particular case of
Table 5.3).

5/6
23—\ ;

3

: xx10 U8/
0 20 40 50 80 0 25 50

Fig. 5.8. Fuzzy reading inputs for the clients financial risk tolerance
model. Readings: ¢ = 40 and yo = 25.

Table 5.6. Induced decision table for the clients financial risk tolerance
model.

| #(25) =3 | pm(25) =5 | O]
pr,(40) = £ pL(2) pL(2) 0
pinv(40) = 3 pr(z) pvo(z) |0
0 0 0 0

There are four active rules, 1,2,4,5 given in Case Study 17 (Part 2).
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The strength of these rules (the and part) according to (5.10) is

calculated as follows:

a1 = pr(40) A py,(25) = min(%, 2) = %,

o1z = p(40) A pm(25) = ln(é é) = é, (5.14)
91 = MM(40) A [LL(25) = min 3> 6) = 3> ’
g = pni(40) A pni(25) = min(%, 1) = 1.

These results are presented in the rules strength Table 5.7, a partic-

ular case of Table 5.4.

Table 5.7. Rules strength table for the clients financial risk

tolerance model.

| pe(25) = § | pw(25) =5 | 0|
=11 1 I [0
pv(40) = 3 i g 0
0 0 0 0

For the control outputs (CO) of the rules we obtain from (5.11) with

(5.14)

CO of rule 1:
CO of rule 2
CO of rule 3 :
CO of rule 4

a1 A u;fz% mlnE%,pLEz;?
T A pL(2 min(z, ur(2)),

a9 A pr(z) = mln(g,pL(z) , (5.15)
022 /\,“MO(Z = n(%,/LMo(Z)),

which is equivalent to performing operation min on the corresponding
cells in Table 5.7 and Table 5.6. The result concerning only the active
cells (a particular case of Table 5.5) is given on Table 5.8.

Table 5.8. Control outputs for the client financial risk tolerance model.

é A pr(2) % A pr(z)

2Apn(2) | 3 Apmo(z)
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The procedure for obtaining Table 5.8 can be summarized on the
scheme in Fig. 5.9 which consists of 12 triangular and trapezoidal fuzzy
numbers located in 4 rows and 3 columns.

The min operations in (5.14) between the fuzzy inputs located in
the first two columns (Fig. 5.9) produce correspondingly the strength
of the rules %, %, %,% which give the level of firing shown by dashed
horizontal arrows in the second column in the direction to the triangles

and trapezoidals in the third column.

Rule 1
Moy Moy Mo
min(1/3, 5/6) 56 CTAmIn(/S My, @)

M
L
y = T z
Rule 3 1
TR M L L
| AR min(2/3,5/6)  5/6 > min(2/3,l,,(2)____
T,
z
X y
Rule 4
H M ¥ MO
2/ £-\_min(2/3,1/6)
i 1,
= Z z

X

Fig. 5.9. Firing of rules for the client financial risk tolerance model.

The min operations in (5.15) in the sense of (5.13) and Fig. 5.7 result
in the sliced triangular and trapezoidal numbers by the arrows (Fig. 5.9)
thus producing the trapezoids 77,75, 73, and 74.
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To aggregate the control outputs (5.15) presented also on Table 5.8
we use (5.12). Geometrically this means that we have to superimpose
trapezoids on top of one another in the same coordinate system (z, ).
However, the outputs of rule 1 and rule 2 are included in the output of
rule 3 which has the largest strength % This is shown in Fig. 5.9; the
trapezoids 7; and 75 are contained in 73. Hence we may only consider
aggregation of rule 3 and rule 4.

The aggregated output

praga(2) = max{min( . (2)), min (2, pnro (=)} (5.16)

is geometrically presented in Fig. 5.10. The trapezoids 73 and 74 in
Fig. 5.9 are superimposed a top one another.

u

2/3

16

20 50 80

Fig. 5.10. Aggregated output for the client financial risk tolerance
model.
O

5.6 Defuzzification

Defuzzification for average triangular and trapezoidal numbers was pre-
sented in Chapter 3, Section 3.3 and for a fuzzy set representing decision
in Chapter 4, Section 4.1. Here we deal with a more complicated type
of defuzzification.
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Defuzzification or decoding the outputs is operation that produces
a nonfuzzy control action, a single value %, that adequately represents
the membership function pag4(2) of an aggregated fuzzy control action.

There is no unique way to perform the operation defuzzification.
The several existing methods for defuzzification® take into consideration
the shape of the clipped fuzzy numbers, namely length of supporting
intervals, height of the clipped triangles and trapezoids, closeness to
central triangular numbers, and also complexity of computations.

We describe here three methods for defuzzification.

Center of area method (CAM)

Suppose the aggregated control rules result in a membership function
Hagg(2), z € [20, 24, shown in Fig. 5.11.

V]
1
R~___P
Pl ;
3 Has(2)
p‘agg (ZZ / *
g
uagg (Zl EEA N uagg(zqfl)
! n@ﬁh; N
0 Z, Zﬂlzz Z, Azc Zl AZm Zz Zq—l Zq

Fig. 5.11. Defuzzification by the center of area method (CAM).

Let us subdivide the interval [z, z,] into ¢ equal (or almost equal)
subintervals by the points 21, 22,...,2¢—1.

The crisp value Z. according to this method is the weighted average
of the numbers zj, (see (3.2) where now 7, = z;, and Ay = pagg(2k)),

-1

s ZZ:l Zklufagg(zk)

c = 1 .
ZZ:1 Nagg(zk)

The geometric interpretation of Z. is that it is the first coordinate
(abscissa) of the center (Z,puc) of the area under the curve pgg4(2)

(5.17)
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bounded below by the z-axis. The physical interpretation is that if this
area is cut off from a thin piece of metal or wood, the center of the area
will be the center of gravity. That is why CAM is called also center of
gravity method.

This method for defuzzification, perhaps the most popular, is quite
natural from point of view of common sense. However, the required
computations are sometimes complex.

Mean of mazimum method (MMDM)

Consider the same membership function ji444(2) as in the center of area
method (Fig. 5.11). The function has two flat segments (parallel to z
axis). The projection of the flat segment P; P, with maximum height
on z axis is the interval [(1, (2] (see Fig. 5.11). Then neglecting the
contribution of the clipped triangular number with flat segment (1Q2
we define 2, to be the midpoint of the interval [(y, (2], i.e.

. C1+ ¢
z

m 2

. (5.18)

This is a simple formula but not very accurate.
Height defuzzification method (HDM)

This is a generalization of mean of maximum method. It uses all clipped
flat segments obtained as result of firing rules (see Fig. 5.11). Besides
the segment P; P>, with height p there is another flat segment (Q1Q2 with
lower height ¢. The midpoint of the interval [n1,72], the projection of
Q102 on z, is W Then the HDM produces Zj:

S PRt GG md (5.19)
p+q 2 2
ie. 2, is the weighted average (3.2) of the midpoints of [(1,(2] and
[m1,m2] with weights w; = Wy = 1%11’ where p and ¢ are the heights
of the flat segments.

If there are more than two segments, formula (5.19) can be extended
accordingly.

HDM could be considered as both a simplified version of CAM and
a generalized version of MMM.

p
p+q’
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Case Study 17 (Part 4) A Client Financial Risk Tolerance Model

Let us defuzzify the aggregated output for the client financial risk
tolerance model (Case Study 17 (Part 3)) by the three methods.

First we express analytically the aggregated control output with
membership function fie44(2) shown on Fig. 5.12 (see also (5.10)). It
consists of the four segments Py Ps, PoQ), QQ)2, and Q23 located on the
straight lines p = %, = 5%62, = %, and p = 8%6Z, correspond-
ingly. Solving together the appropriate equations gives the projections
of Py, Q, Q2 on z axis, namely 30, 45, 75 (Fig. 5.12). They are used to

specify the domains of the segments forming f1444(2). Hence

2 for 0< z< 30,

50—z <
agy(2) = 0 for 30 < z < 45,

% for 45 <z < 75,

—2480 for 75< z <80

20__30 40, _50 80
25 45 75

Fig. 5.12. Defuzzification: client financial risk tolerance model.

Center of area method

It is convenient to subdivide the interval [0,80] (Fig. 5.12) into eight
equal parts each with length 10.
The substitution of z; = 10,20, ...,70 into pagq(2) gives

z |10 20 30 40 50 60 70
moog3) [ 35 5 3 5§ 5 6
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According to (5.17) we find,

L 10(3) +20(2) +30(3) +40(3) 4+ 50() + 60(%) + 70(3)
c 2 2 2 1 1 1 1
3T3T3T3TeT5T56

= 2041.

Mean of mazrimum method

The points P;, P, form the highest flat segment, (; = 0 and (o = 30.
Then (5.18) gives
. 0+30

Zm 2 15.

Height defuzzification method

Substituting pu = % into p = Zggo gives the number 25, the projection of

the point ()1. Hence the flat segments P; P> and Q1Q2 in Fig. 5.12 have
projections [0,30] and [25, 75|, and heights % and %, correspondingly,
ie. (1 =0,00 = 30,m = 25,1 = 75,p = %,q = %. The result of

substituting these values in (5.19) is

20430 4 125475
3 2 6

2 =99,

2 1
375

The defuzzification results z, = 29.41 = 29, 2, = 15, and 2, = 22
obtained by the three methods are close. MMM is very easy to apply but
produces here an underestimated result since it neglects the contribution
of rule 4 whose firing level % intersects the output MO; 2, lies in the
middle of the supporting interval of output L. CAM requires some
calculations but takes into consideration the contributions of both rules,
3 and 4. The value Z. looks more realistic than Z,,. The HDM results
in a value 2, = 22; it is easy to apply and similarly to CAM reflects the
contributions of rules 3 and 4.

The financial experts could estimate the clients financial risk toler-
ance given that his/her annual income is 40,000 and total networth is
250,000 to be 22 on a scale from 0 to 100 if they adopt the HDM (29 if
they adopt CAM). Accordingly they could suggest a conservative risk

investment strategy.
O
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5.7 Use of Singletons to Model Outputs

A segment or interval [0,h],h < 1 is its height, parallel to the vertical
axis p is considered as a fuzzy singleton (see Section 1.2).

Aggregation procedure and defuzzification calculations can be car-
ried out more easily in comparison to those introduced in Sections 5.5
and 5.6 if singletons with height one are chosen to represent the terms
Ci (see 5.2) of the output C (see 5.1).

This is illustrated on the client financial risk tolerance model (Case
Study 17 (Parts 1-4)).

Case Study 18 Use of Singletons for a Client Financial Risk Tolerance
Model

Assume that the financial experts use singletons to model the output
risk tolerance (see Fig. 5.13(a)) while the inputs are defined as in Case
Study 17 (Part 1). Hence instead of the three fuzzy numbers in Fig. 5.4
now there are three singletons in Fig. 5.13(a).

H H
1 L MO H 1 L MO
L, M, H, L, "™,
213 P
13l |P 3
vel |2 Q
L, M, H, L M |
0 10 50 90 Z 0 10 50 90 z
@ (b)

Fig. 5.13. (a) Terms of the output risk tolerance presented by singletons.
(b) Firing of rules and defuzzification.

Consider the same if ... and ... then rules given in Table 5.2. Now
L, MO, and H are singletons, not triangular and trapezoidal numbers.
Also adopt the same readings as in Case Study 17 (Part 3) shown on
Fig. 5.8. Then formula (5.14) expressing the strength of the rules is
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valid. The control outputs (5.15) are valid but now pur(z) and pno(2)
are substituted by the singletons L and MO shown in Fig. 5.13 (a).

The firing of the rules follows the procedure schematically presented
in Fig. 5.9. The first two columns of figures remain without change.
There is a difference only in the third column—the terms L, L, L, and
MO are substituted by the corresponding singletons.

The min operations (5.15) expressing the control outputs now result
in sliced singletons presented in one figure (Fig. 5.13 (b))—mnot in four
as in Fig. 5.9. The firing of rules 1 and 2 cut the segments L, P; and
L1 P, out from the singleton L. The firing of rule 3 cut the segment
L1 P out from the singleton L; it includes the segments L1 P, and L1 Ps.
The firing of rule 4 cut the segment M;(Q out from the singleton MO.
Hence only two segments, L1 P and M;(Q) form the aggregated output
(Fig. 5.13 (b)).

Operation defuzzification is performed by calculating the weighted
average (see (3.2)) of the points L; and M; representing 10 and 50:

2(10) + £(50)

1 2
6+§

z =

Essentially this is a particular case of formula (5.17), CAM, and also
particular case of (5.19), HDM.

The resulting number 18 is more conservative than 29 and 22 pro-
duced correspondingly by CAM and HDM when the terms of the output
C were described not by singletons but by fuzzy numbers (see Case Study
17 (Part 4)).

O

When using singletons, we can expect results close (or equal) to those
which we could get by using fuzzy terms, but not better. Advantage:
simplified calculations. Disadvantage: disconnected segment outputs
(see Fig. 5.13 (b)) weakened the protection of partly overlapping fuzzy
outputs against a model which might be good to lesser degree.

5.8 Tuning of Fuzzy Logic Control Models

In Section 5.2 four steps for designing the terms A;,B;, and Cj (see
(5.2)) have been presented. In Section 5.3 if ... then rules involving



5.8. Tuning of Fuzzy Logic Control Models 151

these terms (see (5.4)) have been formally constructed. That, together
with the readings, predetermines the final result obtained by applying
FLC. However in some situations the experts may find the results to be
somewhat not very satisfactory from common-sense point of view and
this may raise doubt in their own judgement. Then the experts have
the option to improve the FLC model by modification and revision of
the shapes and number of terms, location of peaks, flats, supporting
intervals. Also they may reconsider and redesign the control rules. This
revision is called tuning or refinement. Unfortunately there is no unique
method for such tuning. There are some suggestions in the engineering
literature but this is out of the scope of the book. The experts who
designed the FLC model using their good knowledge and experience
would simply have to do more work and thinking to improve the model
if they feel that this may bring better results.

As an illustration again we use the model in Case Study 17 (Parts
1-4).

Case Study 19 Tuning of a Client Financial Risk Tolerance Model

Assume the experts consider the conclusion of the FLC model,
namely the crisp value 22(HDM) measuring the risk tolerance on the
scale from 0 to 100 to be too small for a person with annual income
40,000 and total networth 250,000. Hence they decide to tune the model
making slight change to the terms of output C-risk tolerance. The mod-
ified terms are shown on Fig. 5.14.

HTL MO H
1

z
0 20 40 80 100

Fig. 5.14. Modified terms of the output risk tolerance.
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In comparison to Fig. 5.4 there are several changes: (1) The new
terms L and H have new supporting intervals [0, 40] instead of [0, 50]
and [40, 100] instead of [50, 100], correspondingly; (2) the new term
MO has its peak shifted to the left by 10 units; it is still a triangular
number but not in central form.

Assuming everything else in the model in Case Study 17 (Parts 1—
4) stays without change, firing of the same rules produces here the
aggregated output given in Fig. 5.15.

vl
b MO e
b= L 20
20 S
/3 R R
IJ:80—2
/ / 40
16 Q l ————— Q ~Q;
: : Qs z
0 2 40 80

Fig. 5.15. Aggregated outputs and defuzzification for the tuned client
financial risk tolerance model.

Solving together y = % and p = 4%62, w= % and p = Z;go,p = %

and pu = 8062 we find that the projections of Py P, and Q1Q2 are [0, %

and [?, %]
The HDM (formula (5.19)) gives the nonfuzzy control output
200% 15
2t — 3 2 6 3 =30
h 2 1 :
315

This value is larger than 22 of the initial model obtained by HDM.

It suggests a quite moderate financial risk tolerance.
O

5.9 One-Input—One-Output Control Model

It was noted in the beginning of Section 5.2 that the control methodol-
ogy can be applied to the simple case of one-input—one-output.
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Let us consider as an illustration one input A and one output C each
consisting of four terms of triangular shape (see Figs. 5.16 and 5.17).

Hi A A A
10t 15 & 3 !
15
2/3 -\ A
=X
s
13—/ ;
| X
0 x,=1015 25 40

Fig. 5.16. Input A; terms of A. Reading x¢ and fuzzy reading inputs.

M c c
1 C:l:lo—z ~ 3 )
10
_25—
=z M0
10
Z

0 10 25 0

Fig. 5.17. Output C; terms of C.

The number of the if ... then rules is four — that is the number of
terms in the input A. Since there is no second input, the rules do not
contain the and connective; they are of the type (5.4) but and and B;
are missing.

Assume the rules are

Rule 1: If x is Ay then Cq,

Rule 2: If x is Ay then Co,

Rule 3: If x is Az then Cg,

Rule 4: If z is Ag then Cy,

It is not necessary for C; to take part in rule ¢,4 = 1,...,4. That
depends on the meaning of A; and C; in a particular situation.
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15—z
15

Assume reading xg = 10. Then substituting 10 for z into u =
and p = {¢ gives the fuzzy reading inputs é and % (see Fig. 5.16).
Since there is only one input, the strengths or the rules or levels of
firing (5.10) reduce to a; = =

3 and ag = %, hence two rules are to be
fired.

The control output (CO) of each rule (see 5.11) is

CO of rule 1: aj A pe, (2) = min(%, ue, (2)),

CO of rule 2: az A pc,(z) = min(3, uc, (2))-

The firing of these rules produces independently two clipped trian-
gular numbers. The operation is presented in one figure (Fig. 5.18).

1 H
1A A, 11 C1 C,
T /A W Ruez | \R R
20| A W W lel! ,e,>1 ,Q,,l . in uagg (Z)
0 15 25 X 0 7,10 25 z

Fig. 5.18. Firing of two rules. Aggregated output fi444(%2).

The sliced triangular numbers C; and Cy give two trapezoids whose
aggregated output is f14¢4(2) shown on Fig. 5.18 with tick lines,

pagal) = max(min (3, e, (2)),min (3, iy (2)):

it is a particular case of (5.12).

For defuzzification we apply the HDM. Substituting ¢ = =
10—z

3 into
_ _ 2 _ z : _ 25—z s
p = =5 and p = 5 into p = {5 and into p = =5z= gives the numbers
20 20
3730

15, hence the projections of P; P> and Q1Q)> are [?, 15] and [0, ?]
Using formula (5.19) we obtain
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5.10 Notes

1. The conceptual base for fuzzy logic control was established by
Zadeh (1973) in the paper Outline of a New Approach to the
Analysis of Complex Systems and Decision Processes. Zadeh’s
paper inspired Mamdani to introduce a specific fuzzy control
methodology (Mamdani and Assilian (1975)) which was later de-
veloped further, extended, and applied by many researchers to
different industrial engineering problems. A modern monograph
book on fuzzy modeling and control has been written by Yager
and Filev (1994).

2. Consider more than two inputs (but one output), say three having
correspondingly n, m, and p terms. Then the inference rules will
be of the type if ... and ... and ... then involving two logical
connectives and. The number of the rules is determined by the
product n x m x p. Accordingly this can be generalized for more
inputs. For instance, if n = m = p = 3, the number of rules is
3 x3x3=3%=27 If another (fourth) input also with three
terms is added, the number of rules becomes 27 x 3 = 3% = 81,
etc. Naturally more than two inputs will cause difficulties and
they will increase faster than the increase of the number of inputs.
The use of computer programs helps. In Chapter 6, Section 6.4, a
simplified FLC technique is used in a case with three inputs. Also
it is possible to have models with more than one output. The
number of outputs requires the same number of decision tables.
A two-input—three-output FLC models is presented in Chapter 6,
Section 6.1.

3. Six defuzzification methods are described and analyzed by Hellen-
doorn and Thomas (1993).
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Chapter 6

Applications of Fuzzy Logic
Control

This chapter demonstrates the usefulness and capability of the fuzzy
logic control (FLC) methodology presented in Chapter 5. It is applied
to a variety of real life problems: investment advisory models, pest
management, inventory control models, problem analysis, and potential
problem analysis.!

6.1 Investment Advisory Models

Financial service organizations have developed various advisory invest-
ment models for clients based on age and risk tolerance. The objective is
to advice clients how to allocate portions of their investments across the
three main asset types: savings, income, and growth (asset allocation).

The concepts age and risk tolerance are measured on suitable scales.
Age is partitioned into three groups, for instance young (< 30 years),
middle age (between 30 and 60 years), and old (> 60 years). The risk
tolerance is partitioned on a psychometric scale from 0 to 100 into low
(< 30), moderate (between 30 and 70), and high (> 70). A questionary
filled by the client help financial experts to determine his/her risk tol-
erance group (low, moderate, or high). Knowing the client’s age and
risk tolerance group and using results from previous studies presented

157
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in tables and charts, the financial experts are in a position to advise a
client how to allocate money into savings, income, and growth.

A deficiency in this model is that a person 31 years old is middle age
as well as a person who is 45 years old. All ages in the interval [31, 59
have the same status; they equally qualify to be middle age; there is no
gradation level of belonging to the interval. The same is valid for those
who are young and old. Similar difficulty arises with the notion of risk
tolerance.

Classical (crisp) models of this type can be improved by using FLC
methodology. This is illustrated in the following case study.

Case Study 20 Client Asset Allocation Model

The inputs (linguistic variables) in the fuzzy logic client asset alloca-
tion model are age and risk tolerance (risk). The risk can be estimated
as in Case Study 17, Parts 1-4, Chapter 5. It is important to observe
that here, in comparison to Case Study 17, there are three outputs
(linguistic variables), savings, income, and equity. Hence this is a two-
input—three-output model. Nevertheless the technique in Chapter 5 can
be applied but that requires the design of three decision tables (see
Notes, 2, Chapter 5).

The control objective is for any given pair (age, risk) which reflects
the state of a client to find how to allocate the asset to savings, income,
and growth.

Assume that the financial experts describe the two input and three
output variables by the terms of triangular and trapezoidal shape as
follows:

Age 2 {Y (young), MI(middle age), OL(0ld)},
Risk 2 {L(low), MO (moderate), H(high)},
Saving 2 {L(low), M(medium), H(high)},
Income = {L(low), M(medium), H(high)},
Growth 2 {L(low), M(medium), H(high)}.

They are shown on Figs. 6.1-6.3.
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=
<

Ml oL

[EnY

y
0 20 45 70 100

Fig. 6.1. Terms of the input age.

T

MO H
1

y
0 20 50 80 100

Fig. 6.2. Terms of the input risk tolerance.

HEL M H
1

Z;
0 20 50 80 100

Fig. 6.3. Terms of the output variables savings, income, growth.

The universal sets (operating domains) of the input and output vari-
ables are U; = {z|0 < x < 100} where the base variable x represents
years, Uy = {y|0 <y < 100} with base variable y measured on a pschy-
chometric scale, Us = {20 < z; < 100, = 1,2,3} where the base
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variables z; take values on scale from 0 to 100.

The terms of linguistic variables risk, savings, income, and growth
are described by the same membership functions as the linguistic vari-
ables in Case Study 17 (see (5.3)). The variable age (Fig. 6.1) differs
slightly from the other variables; the membership functions of its terms
are

1 for x <20,

Hy(®) = { 5w for 20 < a < 45,

=20 for 20< x <45
s 5 - - ’
pnar() W02 for 45 <z <70, (6.1)
(2) = 45 for 45 <z <70,
HOLT) =19 4 for 70 < z.

There are nine if ... and ... then rules like in Case Study 17 but
each inference rule produces three (not one) conclusions, one for savings,
one for income, and one for growth. Consequently the financial experts
have to design three decision tables. Assume that these are the tables
presented below.

Table 6.1. Decision table for the output savings.
Risk tolerance —

Low | Moderate | High
Age Young | M L L
l Middle | M L L
Old H M M

Table 6.2. Decision table for the output income.
Risk tolerance —

Low | Moderate | High
Age Young | M M L
l Middle | H H M
Old H H M
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Table 6.3. Decision table for the output growth.
Risk tolerance —

Low | Moderate | High
Age Young | M H H
l Middle | L M H
Old L L M

For instance the first two if ... then rules read:

If client’s age is young and client’s risk tolerance is low, then asset
allocation is: medium in savings, medium in income, medium in growth.

If client’s age is young and client’s risk tolerance is moderate, then
asset allocation is: low in savings, medium in income, high in growth.

Consider a client whose age is xog = 25 and risk tolerance level is
yo = 45. Matching the readings 25 and 45 against the appropriate
terms in Figs. 6.1 and 6.2 and using Egs. (5.3) and (6.1) gives the fuzzy
reading inputs

4 1 1 )
25) = - 25) = - 45) = = 45) = —.
py(25) = =, pwa(25) = =, pu(4) = &, Mo (45) = &
The strength of the rules calculated using (5.10) are:
41 1
a1 = py (25) A pr(45) = mln(g, 6) =5
.45 4
a1z = py(25) A pvo(45) = min(¢, ) =+,
a1 = pvir(25) A g, (45) = min(=, =) = =
21 = MMI HL = 56’ 6
.15 1
9y = MM1(25) A ,U,Mo(45) = mln(g, 6) = g

The control outputs of the rules are presented in the active cells in
three decision tables (a particular case of Table 5.5).

Table 6.4. Control output savings.

Low Moderate
Young | ¢ A pma(z1) | 2 A pw(z1)
Middle | § A pw(21) | 5 A pn(21)
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Table 6.5. Control output income.

Low Moderate
Young | ¢ A pm(22) | 5 A ()
Middle | & Apm(z2) | & A pa(z2)

Table 6.6. Control output growth.

Low Moderate
Young | § Apm(z3) | 5 A pm(zs)
Middle | & A pr(zs) | 5 A pn(zs)

The outputs in the four active cells in Tables 6.4—6.6 have to be
aggregated separately. The results (see Figs. 6.4-6.6) obtained by fol-
lowing Case Study 17 (Part 3) are:

faga (1) = maas{min(g, pna(=1)), min(z o (1)}

Haga(72) = maas{min(  pna(z2)), min( s (22))}

Haga(25) = maas{min 5, ana(25)), min (2, (20)), i (g, e (23))}

The aggregated outputs shown on Figs. 6.4—6.6 are defuzzified by
using HDM. The results are given in the same figures.

‘i L M _z-20
ysP ok, o
' ' _50-z
~ 30
N _80-7;
LM a0
ve; £ Q,
. Z
0 20 50 80

Fig. 6.4. Aggregated output savings. Defuzzification.
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1 M H ****** _z,-50
e
45! P, P | 30
_z,-20 |
= ; 80-2
30 y ‘
N N1 "0
15, Q. N\ Q
‘ ‘ Z,
0 20 50 2, 80 100

0 20 50 5,80 100

Fig. 6.6. Aggregated output growth. Defuzzification.

The projections of the flat segments can be easily found using their
height and the relevant equations of inclined segments indicated in the

figures. For instance, consider Fig. 6.4. Substituting % for pin p = 503;0“
gives the projection of P to be 26. Substituting % for pin p = 213;020 and

w= 803;0“ gives the projections of ()1 and @2 to be 25 and 75. Similarly

one can find that the projections of P; P, and ()1Q)2 in Fig. 6.5 are the
intervals [44,56] and [56, 100]. There are three flat segments Py Ps, Q1Q2,
and RjRs in Fig. 6.6. Their projections are [74,100], [26, 74], and [0,
45].

Then using the defuzzification formula (5.19) we find

0426 25475
Zpy = 22 ha
= 1
n

2 = 19.38(saving),

(SIS

ol



164 Chapter 6. Applications of Fuzzy Logic Control

444456 | 156+100
Zpo =525 2 —5560(income),
515
4744100 | 126474 | 10445
Zp3 =2 02— = 71.44(growth).
= + = + =
57576

The sum Zp,1 + Zp2 + 253 = 146.42 represents the total asset (100%).
To convert each Zy;,7 = 1,2, 3, into percentage we use the formula

1002, _ 100
Zni+ Zna + 2ns 1464270

=0.68%2;, 1 =1,2,3.

This gives the following asset allocation of the client whose age is 25
and risk tolerance 45:

Savings : 0.68(19.38)% = 13.18%,
Income : 0.68(55.60)% = 37.81%,
Growth : 0.68(71.44)% = 48.58%.

Rounding off gives savings 13%, income 38%, and growth 49%.

These numbers can be used by financial experts as a base for making
an asset allocation recommendation suitable for a person whose age is
25 and risk tolerance is 45 (on a scale from 0 to 100). O

6.2 Fuzzy Logic Control for Pest Management

There is no definite knowledge in science to tell us how to model in
a unique way processes in nature, and in particular population behav-
ior. Ecological and bio-economical systems involve various types of un-
certainties and vague phenomena which makes their study extremely
complicated. The better understanding of these complex systems will
create conditions for better and more rational resource management and
efficient control policies for restriction of undesirable growth.

In this section the fuzzy logic control (FLC) methodology is applied
to population dynamics, in particular to a predator—prey system. The
same methodology can be applied with some modifications to other
types of interactions, for instance competition between two populations.
Also it can be applied to more than two interacting populations.
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Consider the prey to be a pest which serves as a host for the preda-
tor, a parasite. The pest population has size (density) x and the parasite
population has size (density) y. It is assumed that the system is ob-
servable, hence the population sizes can be counted or estimated.

The predator—prey interaction takes place in a fuzzy environment
due to climate conditions, diseases, harvesting, migration, interaction
with other species not accounted in the system, etc. Age, sex, and
genotype differences are presented in the system, and the changes in
density of the populations are not only instantaneous but may depend
on the past history (time-lag).

No mathematical model can describe satisfactory such a complex
system. The theoretical modelers who want to derive behavior rules
of general nature about the interacting populations are bound to make
simplifying assumptions. They may present interesting results and ele-
gant theorems. Unfortunately often the relation between theorems and
reality is not close. Hence it is natural to look for alternative method-
ologies.

The control objective of the resource management is to design a
growth restriction policy for the pest population (eventually extinction)
by using as a control output the change (increase) in the size of the
parasite; in other words to release (stock) predators in order to control
pests.

We will illustrate the FLC on a case study.

Case Study 21 Control of a Parasite—Pest System

The number of both pests and parasites in a certain environment is
assumed to vary between 0 and 16,000.

The following selections are made: inputs—pest population size and
parasite population size; output—increase of size of parasites. They are
modeled by sets of the type (5.1) each containing six terms of triangular
shape. The labels of the terms are indicated in Figs. 6.7-6.9. The base
variables x and y for the inputs and the base variable Ay for the output
represent numbers measuring the population sizes x and y, and the
increase Ay of the size of parasites in thousands. Equations of the
segments which will be used are given in Figs. 6.7-6.8.
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Fig. 6.8. Terms of the input parasite population size.
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Fig. 6.9. Terms of the output increase of parasite population size.
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The selected rules by the resource management are presented in the
decision Table 6.7.

Table 6.7. If ... and ... then rules for parasite—pest system.
Parasite population size —

Y S MS M| ML |L

x

Pest

population S 0 0 0 0 0
size MS S 0 0 0 0
| M My|Syv |0 0 0
ML Ly M| S 0 0
L VL L M| S 0

There are 25 rules. We present only those which will be used later.

(a) If pest population is medium and parasite population is small
then exert medium increase of parasite population size.

(b) If pest population is medium and parasite population is medium
small then exert small increase of parasite population.

(¢) If pest population is medium large and parasite population is
small then exert large increase of parasite population size.

(d) If pest population is medium large and parasite population is
medium small then exert medium increase of parasite population size.

Assume that at a certain time ¢y the number of pest population is
estimated by resource management experts to be 11,000 or xg = 11
in thousands and the number of parasite population is estimated to be
2,500 or yp = 2.5 in thousands. The matching against appropriate terms
of the input variables is shown in Figs. 6.7 and 6.8.

Using the membership function of the triangular numbers in Figs. 6.7
and 6.8 we calculate the fuzzy readings as follows. The value xg = 11

is consequently substituted for x into equations y = 124_“’” and p = IT_S
which gives % and %. Similarly yo = 2.5 substituted for y into equations
= 47Ty and p = ¥ produces % and 2, correspondingly. Hence
(e0) = 30 inanlao) =5, psluo) = o, pnaso) = -
BMATo _47 HML 0 _47 H1s Yo _87 Hnms Yo _8
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Then the induced decision Table 5.3 reduces to the marked cells in
Table 6.7 (the rest of the cells are nonactive).

The four rules to be fired are (a)—(d) induced by the marked cells in
Table 6.7.

To find the levels of firing (strength of the rules) according to Sec-
tion 5.5 we use formulas (5.10) which give

1 1
a1 = pm(@o) A pis(yo) = min(Z, §> Ty
2 = pMm(ZTo) N pMS \Yo) = 1’ T
a3 = pmL(zo) A ps(yo) = min(%, g) — g,
.35 5
oy = pmr(zo) A pvs (Vo) = mln(z, §) = 3

The control outputs of the rules (see (5.11)) are
.1
(a) a1 Apm(Ay) = mm(Z,uM(Ay)),
.1
(b) a2 A ps(Ay) = min(7, us(Ay)),

(©) ay A pn(Dy) = min(Z, (D))

. D
(d) a4 A pm(By) = min(g, pm(By))-
Noticing that the output of rule (a) is included into rule (d), the
aggregation of the control outputs of rules (b)—(d) according to formula
(5.12) produces

Haga(5) = max{min (5, s (Sy), min (5, o (59)), min 3, ina(29) -

This is a union of the three triangular fuzzy numbers S, M, L,
presented in Fig. 6.9, sliced correspondingly with the straight lines pu =
%, W= %, W= %, and placed on top one other. The result is shown in
Fig. 6.10 (the thick segments).
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Fig. 6.10. Aggregated output for the parasite—pest system.

The mean of maximum method (MMM) is very suitable to be ap-
plied for defuzzification since precision is not important in the complex
parasite—pest system under consideration. The crisp output is A¢,,, = 4
(M is a central triangular fuzzy number, Section 1.5.).

Hence the control action which the management should undertake
is to increase the parasite population by 4 x 103 = 4000 members.

The MMM reflects only the firing of rule (d). However, the neglected
rules (b) and (c) produce clipped triangulars on both sides of M which
almost balance each another. Actually the clipped L (level of firing %)
is a little bit stronger that the clipped S (level of firing %), hence MMM
in this case gives a slightly conservative value which is justified from the
biological point of view.

In order to make comparison, let us apply the HDM. Note that the
midpoints of the flat segments of the clipped triangular numbers S, M,
and L are 2, 4, and 6, correspondingly. Then the extended formula
(5.19) (Section 5.6) gives Ay, = 4.2, which is close to Ay, = 4.

Later at a properly selected time t1, the numbers of the prey and
predator populations are to be counted or estimated. Assume they are
x1 and y; correspondingly. Then the whole process is to be repeated
using x1 for zg and y; for yg. The new calculated crisp values Ag,,,1 will
indicate what control action is needed (increase of parasite population
size) to keep the pest population below 16 x 103. Again and again the
same process is to be repeated.

O
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6.3 Inventory Control Models

Storage cost is a major concern of production. Classical inventory mod-
els have been constructed to deal with minimizing storage cost. Their
aim is to maintain enough quantities of needed parts to produce a prod-
uct without incurring excessive storage cost. The product is supposed
to satisfy the demand on the market. The basic inventory management
problem is to decide when new parts should be ordered (order point) and
in what quantities to minimize the storage cost. This is a complicated
optimization problem (see for instance Fogarty and Hoffmann (1983)).
Unfortunately the existing classical mathematical methods may produce
a solution quite different from the real situation.

A good alternative to those methods is the FLC methodology. Its
purpose is not to minimize cost directly but to maintain a proper in-
ventory level reflecting the demand at a given time. The experience
and knowledge of the managers in charge is of great importance in con-
structing an inventory FLC model.

The fuzzy inventory models discussed here have two input variables:
demand value D for a product and quantity-on-hand parts (in stock)
QOH needed to build the product (see Cox (1995)). There is one output
variable—the inventory action IA which suggests reordering of parts,
reducing the number of the already existing, or no action at that time.

The reduction of number of parts can be done in various ways de-
pending on a specific situation, for instance returning parts to supplier
at some nominal loss, sending parts to a sister company, etc. If this
options are not available or the management decides not to use them,
then the parts can be kept with anticipation demand to improve.

Inventory model 1—parts reduction possible

Following Cox (1995) we model the inputs by sets containing five terms
and the output by a set containing seven terms (while Cox uses bell-
shaped fuzzy numbers, we employ triangular and trapezoidal numbers):

Demand(D) £ {F,D,S,1, R},

A . JAN JAN A A
where F = falling, D = decreased, S = steady, I = increased, R =
18INg;
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Quantity-on-hand(QOH) 2 {M,L,A H E},

A . A A A . A
where M = minimal, L = low, A = adequate, H = high, E =
excessive;

Inventory action ( IA ) 2 {NL,NM, NS, O,PS,PM, PL},

1>

NL 2

. A A .. A .
negative small, O = zero, PS = positive small, PM = positive moderate,

where negative large, NM 2 negative moderate, NS

PL 2 positive large. The terms of Inventory action mean corresponding
change to quantity-on-hand; negative stands for reduction of number of
parts, positive for ordering, and zero for no action.

According to Section 5.3 the number of rules to be design is 25.
They must have as a conclusion the terms of the output. Assume the
management constructs the decision Table 6.8.

Table 6.8. If ... and ... then rules for the inventory control model.
Quantity—on—hand —

Minimal | Low | Adequate | High | Ezxcessive
Demand M L A H E
l Falling F @) O NS NM NL
Decreased D PS O NS NM NM
Steady S PM PS O NS NM
Increased 1 PM PM PS (0] O
Rising R PL PL PM PS O

The rules leading to inventory action are listed below.
Rule 1: If D is falling and QOH is minimal, then do nothing;
Rule 2: If D is falling and QOH is low, then do nothing;
Rule 3: If D is falling and QOH is adequate, then reduce action is

negative small;

Rule 4: If D is falling and QOH is high, then reduce action is negative

moderate;

Rule 5: If D is falling and QOH is excessive, then reduce action is

negative large;
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Rule 6: If D is decreased and QOH is minimal, then order action is
positive small;

Rule 7: If D is decreased and QOH is low, then do nothing;

Rule 8: If D is decreased and QQOH is adequate, then reduce action is
negative small;

Rule 9: If D is decreased and QOH is high, then reduce action is negative
moderate;

Rule 10: If D is decreased and QOH is excessive, then reduce action is
negative large;

Rule 11: If D is steady and QOH is minimal, then order action is
positive moderate;

Rule 12: If D is steady and QOH 1is low, then order action is positive
small;

Rule 13: If D is steady and QOH is adequate, then do nothing;

Rule 14: If D is steady and QOH is high, then reduce action is negative
small;

Rule 15: If D is steady and QOH is excessive, then reduce action is
negative moderate;

Rule 16: If D is increased and QQOH is minimal, then order action is
positive moderate;

Rule 17: If D is increased and QOH is low, then order action is positive
moderate;

Rule 18: If D is increased and QQOH is adequate, then order action is
positive small;

Rule 19: If D is increased and QOH is high, then do nothing;

Rule 20: If D is increased and QOH is excessive, then do nothing;
Rule 21: If D is rising and QOH is minimal, then order action is positive
large;

Rule 22: If D is rising and QOH is low, then order action is positive
large;

Rule 23: If D is rising and QQOH is adequate, then order action is
positive moderate;

Rule 24: If D s rising and QOH is high, then order action is positive
small;

Rule 25: If D is rising and QOH is excessive, then do nothing.
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Inventory model 2—parts reduction not possible

The input variables D and QOH are the same introduced in Inventory
model 1. Since now reduce action is not available, the output inventory
action is partition into four terms instead of seven,

Inventory action (IA) = {O,PS,PM, PL},

where O,PS,PM, and PL have the same meaning as in Inventory
model 1.

The decision table is Table 6.8 with terms O above the major diag-
onal.

Table 6.9. If ... and ... then rules for Inventory model 2.
Quantity-on-hand —

| M| L | A |H|E]
F (0] (0] (0] OO0
Demand "DPS| O | O | O |O
! S|PM|[PS| O |[O]O
I|\PM|PM| PS| O |O
R|PL | PL | PM|PS| O
The rules producing the inventory action (the if ... and ... then

rules) can be obtained from those for Inventory model 1 if in rules 3, 4,
5, 8,9, 10, 14, and 15 the then part (conclusion) is substituted with do
nothing; the rest of the rules remain unchanged.

The control actions discussed in this section are of qualitative nature.
In order to produce a crisp action initial data (readings) are needed.
This is illustrated in the following case study.

Case Study 22 An Inventory Model with Order and Reduction Control
Action.

Assume that the input demand (D) is defined on the interval
[—50,50] (universal set) (Fig. 6.11) and the input gquantity-on-hand
(QOH) is defined on the interval [100, 200] (Fig. 6.12).

While the scale = (base variable) on which the terms of demand are
defined is predetermined, the scale y depends on the type and number
of QOH parts in a real situation.
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Fig. 6.11. Terms of the input variable demand D.
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Fig. 6.12. Terms of the input variable quantity-on-hands (QOH).

Assume also that the output inventory action (IA)is defined on the
interval [—50,50] (Fig. 6.13). It is a percentage scale z (base variable)
whose selection depends on an estimate of the maximum number (in
percentage) by which the number of inventory parts could be increased
or decreased.

The terms of the inputs and the output are triangular and parts of
trapezoidal numbers whose membership functions can be easily written
(see Sections 1.5 and 1.6). Those to be used later (depending on the
readings) are given in the figures.
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NL NM NS 1/0 PS PM PL

-50-45-30 -15 0 15 30 4550 =z

Fig. 6.13. Terms of the output variable inventory action (IA).

Assume that at time ¢y the demand (it has to be estimated using
for instance the technique in Chapter 3, Section 4, or by other means)
is o = 32 and quantity-on-hand is yg = 165. These readings have
to be matched against appropriate terms in Fig. 6.11 and Fig. 6.12.

Substituting xg into p = 40261’ and p = %, and yo into u = 173—0_9 and
= y—2%)50 gives

2 3 1 3
2) == 2) =2, pa(165) = - 165) = =
/LI(?’ ) 57 ,U/R(3 ) 57 ,U/A( 65) 4’ ,U/H( 65) 4

The induced decision Table 5.3 reduces to Table 6.10 where only the
active cells are shown.

Table 6.10. Induce decision table for the inventory model.

| #a(165) = § | pu(165) = 3 |
pa(32) = £ pps(2) po(2)
pr(32) =2 pem(2) pps(2)

The four rules to be fired are 18, 19, 23, 24.
The strengths of these rules are (see (5.10)):

21

1
.23 2
o2 = 32) g (165) = min 2,3 = 2
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.31 1

a3 = pur(32) A pa(165) = mm(g, -) = T

.33, 3

The control outputs (CO) of the rules are (see (5.11)):
CO of rule 18: a3 A ups(z) = min(%,pps(z)),

CO of rule 19: as A po(z) = min(%, no(z)),
CO of rule 23: a3 A ppm(z) = min(5, ppm(2)),
CO of rule 24: a4 A ups(z) = min(%, ups(2)).
The output of the rule 18 is included into that of rule 24. Hence the
aggregation of the control outputs (see (5.12)) gives (Fig. 6.14):

1

page(2) = mac{min(2, 1o (2)), min( . pena(2)), min 2, s (2)) ).

5

35| 7
2[5

. '
\
. '
[ U4
o '
/
/
| \
' ‘o
/

15 0 15 30 45 2

Fig. 6.14. Aggregated output for the inventory model. Defuzzification.

Similar to Case Study 21 (see Fig. 6.10), we can use for defuzzifi-

cation MMM which gives 2, = 15 (PS is triangular number in central

form). Since rule 19 has level of firing % which is stronger than %, that

of the rule 23, Z,, = 15 is a little bit optimistic value meaning that
ordering of parts is not on the conservative side. Of course the HDM,
which will produce a smaller value than 15, could be easily applied (see
Case Studies 20 and 21).
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Now we have to translate Z,, = 15 (in percentage) into a corre-
sponding inventory action. If the QOH at the time ¢y of the study
(zo = 32,y9 = 165) denoted (QOH)cyrrent is considered as unit 1 (or
100%), then it has to be increased by 15 %. This gives 1+ ;25 = 1.15
called adjustment factor (AF). The control action leads to a new
QOH denoted (QOH) e, which is (QOH)cyrrent multiplied by (AF),
i.e. 165 x 1.15 = 188.75 ~ 199. The difference 199 — 165 = 34 suggests
that 34 new parts are to be ordered.

The following general formula can be used:

(QOH)new = (QOH)current X AF7

where

A~

z
AF =1+ —;
T 100°

2 is a defuzzified value obtained by one of the available methods.
If Z > 0 like in the case discussed, the control action is ordering of

new parts; if Z < 0, the control action is reduction.
Od

6.4 Problem Analysis

Problem analysis or deviation performance analysis deals with problems
created when there are undesirable deviations from some expected stan-
dard performance. The cause of such deviations is an unplanned and
unanticipated change (see Kepner and Tregoe (1965) and Simon (1960)).

The manager or a managerial body in charge of certain areas of op-
eration must recognize an undesirable deviation if such has developed or
occurred. Also several deviations may occur concurrently. The manager
must find what is wrong and what is the cause for it in order to do the
necessary correction. A good knowledge of the expected performance
standards in each area of operation will help the manager to identify de-
viations from such performance. Some deviations are permissible within
certain limits established by the manager or a governing body. They
have to be watched; no correction at that time is needed.

Once the manager has made sure that the deviations are identified,
they have to be ranked according to their importance.
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Kepner and Tregoe (1965) who contributed to classical problem anal-
ysis suggest that several important questions have to be addressed by
the manager:

(1) How urgent is the deviation?

(2) How serious is the deviation?

(3) What is the deviation growth potential?

(4) What is the priority of the deviation?

The answer to these questions requires experience and skills from the
manager. Valuable instructions and examples are provided by Kepner
and Tregoe (1965).

Our approach in dealing with the above questions is different. We
use the tools of fuzzy logic control (FLC) to quantify more realistically
the classical problem analysis and arrive to conclusion.

Urgent, serious, and growth potential are considered here as linguis-
tic variables; they are the inputs. The output variable is priority of
deviation. Since high precision is not needed, we model each variable
by three terms (using triangular and trapezoidal numbers):

Urgent(U) 2 {N,S,V},

Serious(S) = {N,S,V},

Growth potential(GP) 2 {L,M, H},
Priority of deviation(POD) 2 {L,M, H},

where N = not, S = somewhat, V = very, H = high, L = low,
M 2 medium.

Since we are dealing with three inputs according to Chapter 5
(Notes,2) we have to design 3 x 3 x 3 = 27 rules of the type if ...
and ... and ... then. For instance, if deviation (D) is somewhat urgent
and D 1is very serious and D growth potential is medium then priority
of deviation is high.

From these rules eight have to be fired hence the aggregated conclu-
sion will consists of eighth (or less) superimposed clipped fuzzy numbers.
This can be done but is complicated.

In order to simplify the control procedure we consider as in Chap-
ter 5, Section 5.9, the input variables to be independent of each other
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meaning that the rules will be of the type if ... then without using and
(precondition) part. This approach reduces the number of rules from
27 to 9. They are listed below in three groups concerning urgent (U),
serious (), and growth potential (GP); in each group there is one input
and one output.

Rule 1:  If D is NU then POD 1us L,
Rule 2: If D is SU then POD is M, (6.2)
Rule 3: If D is VU then POD is H,

Rule 4: If D is NS then POD is L,
Rule 5:  If D is SS then POD is M, (6.3)
Rule 6: If D is VS then POD is H,

Rule 7:  If D is with LGP then POD is L,
Rule 8 If D is with MGP then POD is M, (6.4)
Rule 9:  If D is with HGP then POD is H.

For instance, the first rule reads: if deviation is not urgent then
priority of deviation is low.

The FLC is applied separately for each group of rules and the ob-
tained conclusions are aggregated. In practice this means that we have
to apply the simplified procedure in Section 5.9 three times for one-
input—one-output control model and then to aggregate the three out-
puts.

Details are presented in the following case study.

Case Study 23 Fuzzy Logic Control for Problem Analysis

Let us assume that the three input variables and the output variable
are defined on a psychometric scale [0, 100] as shown in Figs. 6.15-6.18.

Assume that the manager detects a deviation performance and gives
the assessments (readings) x¢ = 40,yp = 20,29 = 75 of the base vari-
ables x,y, and z measuring how urgent is the deviation, how serious is
it, and what is its growth potential on the scale [0, 100].

The fuzzy reading inputs generated by x¢,yg, and zy are shown in
Figs. 6.15-6.17. They are actually the strength of the rules (the levels
of firing).
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Fig. 6.15. Terms of the input variable urgent.
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Fig. 6.16. Terms of the input variable serious.

5/8

3/8

0

10 50 75 90 100

Fig. 6.17. Terms of the output variable growth potential.

Now the technique in Case Study 18 has to be applied three times
since the three inputs U, S, and GP are considered as independent which

is reflected in the th
FLC requires that t

ree groups of rules (6.1)—(6.3). For each group the
wo rules are to be fired at specified levels. When
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combined they produce three independent control outputs i, (v), fty (v),
and p(v) whose aggregation will give the membership function 11444 (v)
of the final conclusion concerning priority of deviation (POD).

oL M H
1

\%
0 10 50 90 100

Fig. 6.18. Terms of the output variable priority of deviation.

The procedure is performed in Fig. 6.19. Only the relevant terms
are presented.

T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Hx(V)

50 90100

Fig. 6.19. Firing of rules for three independent inputs.
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The aggregation of 1,(v), py(v), and p(v) using operation max gives
the output
Hagg(v) = max(pz(v), 1y (v), 2 (v))
geometrically presented in Fig. 6.20. It is obtained by superimposing
e (), py(v), and p,(v) a top one other (see Section 5.5).

“1 L H
34 P2 .
581N /i " 2

S VA L v
0 10 20 40 50 60 75 90 100

Fig. 6.20. Aggregation of the independent inputs. Defuzzification.

To defuzzify pqgq(v) we use the HDM. Since the projections of the
flat segments P P», Q1Q2, and R;Rs are [0,20], [40, 60], and [75, 100],
the extended formula (5.19) gives

30420 | 340460 , 575+100
i3 Ti 3 T8§

2 —46.91 ~ 47.

Vp =

3 3 5
1T1T3g

The interpretation is that the priority of deviation is almost medium;
on a scale from 0 to 100 it is ranked 47. The manager will act accord-

ingly.
O

6.5 Potential Problem Analysis

This section is closely connected to Section 6.4—Problem Analysis.
The aim of potential problem analysis is to prevent occurrence of
possible problems (in the sense of undesirable deviations from certain ex-
pected performance). The bottom line is to minimize the consequences
of potential problems if they do occur (see Kepner and Tregoe (1965)).
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Here we use FLC methodology to model some aspects of classical
problem analysis considered by Kepner and Tregoe (1965).2

A manager in charge of a project may find several potential problems
with various degrees of risk for the project. The manager has to con-
centrate to those that are more dangerous on the project. The following
questions are important and deserve consideration:

(1) How serious will be for the project if a potential problem (devia-
tion) occurs?

(2) How possible is that a potential problem might occur?
(3) In what degree (magnitude) a potential problem might happen?

(4) Which are the potential problems that require attention or re-
sponse?

Serious (concerning consequence of occurence of potential problem),
possible (concerning occurence of potential problem), and degree (ex-
tent, magnitude, concerning partial occurence of a potential problem)
are inputs; response is the output. They are described by fuzzy sets
containing three terms.

Serious (S) 2 {A,HU,F},
Possible (P) 2 {N,S,V},
Degree (D) 2 {L,M,H},
Response (R) 2 {I, WP, MP},

where A = annoying, HU = hurt, F = fatal, N = not, S =
somewhat, V = very, L = low, M = medium, H = high, 1 = ignore,
WP = want to prevent (or minimize effects), MP = must prevent.

Similarly to Section 6.4 (Problem Analysis) we can apply the sim-
plified FLC technique considering the input variables as independent.
Then the rules are reduced to 9; they are of the type (6.2)-(6.4). De-
noting potential problem or potential deviation by PD, the selected rules
are:
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Rule 1: If PD is AS then R is 1,
Rule 2: If PD is HUS then R is WP, (6.5)
Rule 3: If PD is FS then R is MP,

Rule 4: If PD is NP then R is 1,
Rule 5:  If PD is SP then R is WP, (6.6)
Rule 6: If PD is VP then R is MP,

Rule 7: If PD s LD then R is 1,
Rule 8 If PD is MD then R is WP, (6.7)
Rule 9: If PD is HD then R is MP.

The first rule for instance reads: if potential deviation is annoyingly
sertous then response s ignore.

Case Study 24 Fuzzy Logic Control for Potential Problem Analysis

We will specify the inputs S, P, D, and the output R introduced
above similarly to the variables in Case Study 23. However to avoid
repetition we can define the variables under consideration using those
in Case Study 23 as follows.

Urgent (U) (Fig. 6.15) is substituted by Serious (.5),

Serious (S) (Fig. 6.16) is substituted by Possible (P),

Growth potential (GP) (Fig. 6.17) is substituted by Degree (D),
Priority of deviation (POD) (Fig. 6.18) is substituted by Response (R).

Also the terms of the variables U, .S, GP, and POD in Case Study
23 are substituted by the terms of S, P, D, and R in this case study,
correspondingly.

Then the rules (6.2)-(6.4) are substituted by the rules (6.5)-(6.7),
respectively.

To make a full use of the calculations in Case Study 23 here we as-
sume the same readings: z¢ = 40,y = 20, zp = 75 on a scale [0,100] but
now the base variables have different meaning; = stands for seriousness,
y for possibility, and z for degree.

The firing of the rules (Fig. 6.19), the aggregation (Fig. 6.20), and
the defuzzified value 0, ~ 47 remain valid.
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The manager, in response to the potential deviation evaluated to be

47 on a scale from 0 to 100, wants to prevent it and he/she will work to
do this. The project will be hurt in case of no action.

O

6.6 Notes

1. Graham and Jones (1988) outlined financial applications where
fuzzy methods were employed (some concern if ...then rules).
They listed various computer products, suppliers, and areas of use.
Cox’s book (1995) contains interesting applications in business and
finance; it includes two discs and provides the CT code listings
for programs, demonstrations, and algorithms used in the book.

2. Kepner and Tregoe wrote in 1965 (it is still of interest today):

“The systematic analysis of potential problem is still rare. Yet
it is not difficult to show that skill in analyzing and preventing
or minimizing potential problems can provide the most returns
for the effort and time expended by a manager. The point is so
well-known that it has become an axiom: an ounce of prevention
is worth a pound of cure. So few managers apply the axiom, how-
ever, that it is reasonable to assume there are major obstacles
preventing them from doing so. Omne obstacle is that managers
are generally far more concerned with correcting today’s prob-
lems than with preventing or minimizing tomorrow’s. This is not
surprising, of course, since the major rewards in money and pro-
motion so often go to those who show the best records of solving
current problems in management, and there is rarely a direct re-
ward for those whose foresight keeps problems from occurring.
There are also other reasons why so few managers analyze and
deal with potential problems. There is the common tendency to
overlook the critical consequences of an action. Such consequences
may be missed because they seem too disagreeable or unpalatable
to face, or the consequence may be literally invisible.”
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Chapter 7

Fuzzy Queries from
Databases: Applications

Database is an organized structure designed with the help of computer
science to store, relate, and retrieve data. Standard databases contain
crisp data which can be retrieved by formulating crisp queries. The
concept of standard database has been generalized by the means of fuzzy
sets and fuzzy logic in order to include and handle vague, incomplete,
and contradictory data. In this chapter we concentrate on formulating
queries of fuzzy nature to the database for instance “which funds have
a big asset increase and high return.” These types of fuzzy queries can
be used as a decision aid in various business, finance, and management
activities. Applications involve small companies, stocks, and mutual
funds.

7.1 Standard Relational Databases

There are many types of standard databases with crisp data called also
classical databases. We review briefly only relational databases'; they
provide the foundation for the fuzzy databases.?

A standard relational database consists of a group of relations ex-
pressed as tables made of columns and rows. The names of the columns
are called attributes. The cells in a column form the domain of the
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attribute. The rows called tuples contain records or entries each occu-
pying a cell. Several tables having common domains connected together
represent a relational database.

Example 7.1

Typical inventory records contain whatever data are relevant such
as part number, part name, standard cost, quantity, specification, size,
color, weight, supplier, etc. Table 7.1 formed by three connected tables
represent a simplified inventory relational database of a small aircraft
component manufacturing company.

Table 7.1. Inventory relational database of a small aircraft component
manufacturing company.

PART
P#| PNAME | SPECIFICATION SIZE CITY
P1 | Solidrod | QA 225/6 144in | Pico Rivera(CA)
P2 | Plate MS 516-02 6912 si| LosAngeles(CA)
P3| Sheet QA 250/5 45 o Los Angeles (CA)
P4 | Rubber MS 2221 96in Tukwilla (WA)
\
SUPPLIER SI—JI PPl 5\IG
S# | SNAME CITY S# | P# | QUANTITY
S1 | Aero-Space Metals | Pico Rivera YR 30
S2 | Ruber and Meta Tukwilla S2 | P1 20
S3 | Meta Products LosAngeles S2 | P4 120
| 3/ P3| 15
S3| P4 55

This relational database above is made of three related tables:
PART, SUPPLIER, and SHIPPING. For instance in the table labeled
PART the first row or tuple starting with P1 is usually represented as
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< Pp,Solid rod, QA225/6, 144in, Pico Rivera (CA) >. The attributes
in PART are P#, P NAME, SPECIFICATION, SIZE, CITY; the do-
main of the attribute P NAME consists of solid rod, plate, sheet, rubber.
The framework of the database can be written as

PART (P#, P NAME, SPECIFICATION, SIZE, CITY),

SUPPLIER (S#, S NAME, CITY),

SHIPPING (S#, P#, QUANTITY).

O

Searching and finding data of interest out of a database is a pro-
cess called retrieval of data. For the retrieval of data from a standard
database a query language call SEQUEL (Structured English Query
Language) was design (see Chamberlin and Boyce (1974)).

Access to the data is made by the SELECT command followed
by clarifications FROM and WHERE (or WITH). SELECT command
means to select attributes FROM one or more specified tables. WHERE
means to select in the query process rows from a table that meet certain
specified condition. The attributes are considered to be crisp objects;
the query is called standard query.

Example 7.2

Consider the standard query from the relational database in Ta-
ble 7.1 (Example 7.1):

SELECT NAME

FROM PART

WHERE QUANTITY < 100
The outcome of the query is given in Table 7.2.

Table 7.2. Parts whose quantity is smaller than 100.

S# | P# | QUANTITY
S1 | Pl 30
52 | P2 20
S3 | P3 15
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7.2 Fuzzy Queries

The query language SEQUEL has been used also to retrieve data when
the query is of fuzzy nature (Tahani (1977)). By this we mean that the
attributes of the database are considered to be linguistic variables.

The difference between standard and fuzzy query is outlined in the
following case study.

Case Study 25 (Part 1) Retrieval from a Small Company Employee
Database

Consider an employee database of a small company shown in Ta-
ble 7.3. The employees are labeled by E;,i =1,...,16.

Table 7.3. Employee database of a small company.

NAME | AGE | SALARY
Ey 30 28,000

Es 25 | 24,000
E; 30 | 35,000
E, 34 | 38,000

Es 20 | 24,000
Eg 55 | 76,000
E; 25 | 30,000
Es 40 | 80,000
Eo 36 | 42,000
E1o 54 | 65,000
Ey 38 | 40,000
E1s 28 | 34,000
o 46 | 50,000
Eu 50 | 110,000
Eus 63 | 40,000
Eis 42 | 72,000

1. Standard retrieval of data

A simple standard query from the database in Table 7.3 involving only
two attributes, name and age, can be presented in the form
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SELECT NAME
FROM EMPLOYEE
WHERE 35 < AGE < 45
The intent of the query is to select middle age employees where
middle is defined by the interval [35,45] on a scale measured in years.
Table 7.4 shows the result of the query.

Table 7.4. Standard query where age is between 35 and 45.

NAME | AGE
Es 40
Eo 36
En 38
Ei 42

Employee Eg, whose age is 40—in the middle of the interval [35,
45]—fits best the intent of the query. Then follow employees E1; and
F1g, and employee Eg who, although close to the lower boarder 35, is
still inside the interval.

From Talbel 7.3 we see that employee F4 (age 34) lacks one year to
be considered as middle age and employee E13 (age 46) is one year older
than the upper boarder 45; they do not qualify for inclusion in Table 7.4.
However, they could be included with a note that they are close to the
boundaries (cut-off points) of the interval [35, 45]. Another option is to
change the boundaries of the interval describing middle age. Assume
the new interval is [30, 50]. Then five more employees, E1, E3, Ey4, E3,
and F4 are to be added to Table 7.4. But then employees E; (age 30),
Es5 (age 30), and Fq4 (age 50) who are borderline cases qualify equally
to be on the list middle age as employee Eg (age 40). In other words,
there is no graduation concerning age between the employees.

A further extension of the interval to [25, 55] will include employees
E, (age 25), E7 (age 25), and Eo (age 54) into Table 7.4. But who will
accept a person of 25 years to be characterized as being middle age.

We encounter similar difficulty with a query from the database on
Table 7.3 when dealing with the attributes name and salary:

SELECT NAME
FROM EMPLOYEE
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WHERE SALARY > 80,000
The intent of the query is to select employees with high salary defined
as 80,000 or greater. The search produces Table 7.5 with only two
employees.

Table 7.5. Standard query where salary > 80,000.

NAME | SALARY
Es 80,000
Eis | 110,000

Employee Eg (salary 76,000) does not qualify to be in the table.
Moving the boundary down, from 80,000 to 75,000 will include Eg, but
not Eig (salary 72,000). Also there is no gradation between 80,000 and
110,000.

From the standard queries considered here arise the questions: does
the definitions of middle age and high salary lacking any gradation re-
flect the intention of the query? If we start changing the boundaries of
the defining intervals, where we have to stop?

The problem is rooted in the words middle age and high salary. They
are linguistic values and can be defined better by recognizing their fuzzy
nature.

2. Puzzy retrieval of data

The attribute name on Table 7.3 is crisp but the attributes age and
salary are fuzzy. They are linguistic variables (see Section 2.4). For
instance in Example 2.4 (Section 2.4) age is described by five terms
while in Case Study 20 (Section 6.1) it is described by three terms.
That depends on the context in which age is seen, say by a medical
doctor, financial expert, or a personnel officer.

Suppose that for the present study the financial experts find it rel-
evant to partition age and salary into the following terms (linguistic
values):

Age = {young,middle,old},
Salary = {low, medium, high}

shown in Fig. 7.1 and Fig. 7.2.
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0O 5 10 15 20 25 35 40 45 55 60 65

Fig. 7.1. Terms of the linguistic variable age in a Small Company Em-
ployee Database.

H low middle high
1t

0 20 30 40 50 60 70 80

Fig. 7.2. Terms of the linguistic variable salary in a Small Company
Employee Database.

The base variables x and y represent age in years and salary in
thousands of dollars, correspondingly.

The membership functions of the terms in Fig. 7.1 and Fig. 7.2
overlap partially on the universal sets years and dollars. In Fig. 7.1
there is no overlapping on the intervals [15, 25], [35, 45], and [55, 65];
in Fig. 7.2 there is no overlapping on the intervals [20, 30], [40, 70],
and [80, 100]. In most cases the terms are design to overlap entirely on
the universal set, but this is not a mandatory requirement. It depends
on the opinion of the experts dealing with a particular situation. Note
that the terms of age in Fig. 7.1 have different supporting intervals from
those of age in Case Study 20.
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Now we make two simple fuzzy queries involving only one fuzzy
attribute.

Query 1. Of employee database of a small company (Table 7.3) select
employees who are middle age:

SELECT NAME

FROM EMPLOYEE

WHERE AGE IS MIDDLE

We have to match (Section 5.4) each entry in the second column

(attribute AGE) (Table 7.3) with the term middle (Fig. 7.1) meaning to
calculate the corresponding degree of membership. The term middle is
represented by a triangular number on the supporting interval [25, 55].
The entries in the domain of AGE which fall in this interval substituted
for x in p = II525 for 25 < x < 40 and p = 5515’6 for 40 < x < 55
produce the ranked data in Table 7.6.

Table 7.6. Fuzzy query from a Small Company Employee Database:
employee whose age is middle.

NAME | AGE MIDDLE | MEMBERSHIP DEGREE
Ey 40 1.00
By 38 0.87
Eqg 42 0.87
Ey 36 0.73
Ey 34 0.60
Eis 46 0.60
Ey 30 0.33
b3 30 0.33
By 50 0.33
Eno 28 0.20
Eqp 54 0.07

Employee Ep has a very small membership grade 0.07, i.e. belongs
little to the term middle age. The experts may decide to exclude E1g
from the table if they establish a threshold value (see Section 1.3, pp. 14—
15) for the membership grades, say 0.1. Then any grade below 0.1 is
practically reduced to zero. Usually the threshold value is specified at
the beginning of the query.
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Employee FEj is full member of the fuzzy set (term) middle age (mem-
bership degree 1), F1; and Ej are almost full members (degree 0.87),
Eyg is close to full member (degree 0.73). In contrast, when classical
query was used (Table 7.4), those employees had equal status as being
of middle age. In the case of extended interval [30, 50] (classical query),
employees F3 and F14 who had the same status as Eg, now when the
query is fuzzy belong to middle age only to degree 0.33.

Query 2. Of all employee in Table 7.3 select those with high salaries,
ie.

SELECT NAME

FROM EMPLOYEE

WHERE SALARY IS HIGH

The term high salary has a zero degree membership value below

(including) 70,000 (see Fig. 7.2). Salaries above 70,000 qualify as high
to various degrees. The entries 76,000, 80,000, 110,000, and 72,000 into
the attribute salary in Table 7.3 have to be substituted for y in p = yg—om
for 70 < y < 100; for y > 100 the degree is one. The query produces

the ranked Table 7.7.

Table 7.7. Fuzzy query from a Small Company Employee Database:
employee with high salary.

NAME | SALARY HIGH | MEMBERSHIP DEGREE
By 110,000 1.00
Ey 80,000 0.33
Eg 76,000 0.20
Eig 72,000 0.07

Now let us compare Table 7.7 to Table 7.5 (classical query). Em-
ployee E14 (Table 7.7) is full member of the term high salary, Eg has
degree of membership 0.33, i.e. has a salary that is a little high. Ac-
cording to the classical query, both, F14 adn Eg have high salary, i.e.
have equal membership in the classical set salary > 80,000. Employees
Eg and FEqg are included in Table 7.7 but not in Table 7.5. Actually
F16 whose membership degree is very low, only 0.07—below a threshold
value 0.1, may be excluded from the list. While the standard query
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has to specify a rigid salary (80,000) as a lower boundary below which
salaries do not qualify as high, the fuzzy query using grades of the term
high (Fig. 7.2) can include for consideration salaries close to 80,000 from
below.

O

7.3 Fuzzy Complex Queries

Queries based on logical connectives

Most often a fuzzy SEQUEL query involves two or more fuzzy attributes
in the WHERE predicate. They are joined by the logical connectives
conjunction (and) and disjunction (or) defined by min and max in Sec-
tion 2.1 formulas (2.2) and (2.3), correspondingly. The truth values of
p and ¢ in (2.2) and (2.3) are expressed by membership grades.

The asking of fuzzy complex queries is illustrated in a case study
(continuation of Case Study 25 (Part 1)).

Case Study 25 (Part 2) Fuzzy Complex Query from a Small Company
Employee Database by Logical Connectives

Query 3. Of all employee in Table 7.3 select those whose age is middle
and salary is high:

SELECT NAME
FROM EMPLOYEE
WHERE AGE IS MIDDLE
AND SALARY IS HIGH

In this query there are three attributes; name is a crisp one, age and
salary are fuzzy (connected by and).

To facilitate the complex query we combine Table 7.3 with Table 7.6
and 7.7 into one containing the degree of membership of high salary and
middle age (first five columns in Table 7.8).

The following abrievations are introduced in Table 7.8: A=AGE,
N=NAME, DM=DEGREE MIDDLE, SAL=SALARY, DH=DEGREE
HIGH, AVE=AVERAGE.

The task is to establish a list of employees who satisfy to various
degrees the query.



7.3. Fuzzy Complex Queries 197

Table 7.8. Fuzzy complex queries from a Small Company Employee
Database.

N | A | DM SAL DH | AND | OR | AVE
E; |30 | 0.33 | 28,000 0 0 0.33 | 0.17
Ey |25] O 24,000 0 0 0 0
Es |30 | 0.33 | 35,000 0 0 0.33 | 0.17
Es | 34| 0.60 | 38,000 0 0 06 | 0.3
Es |20 O 24,000 0 0 0 0
Eg |55 ] O 76,000 | 0.2 0 0.20 | 0.10
E; |25] O 30,000 0 0 0 0
Eg |40 | 1.00 | 80,000 |0.33 | 0.33 | 1.0 | 0.67
Ey |36 | 0.73 | 42,000 0 0 0.73 | 0.37
Ei9 | 54 | 0.07 | 65,000 0 0 0.07 | 0.04
Ey; | 381 0.87 | 40,000 0 0 0.87 | 0.44
Ei9 | 28 1 0.20 | 34,000 0 0 0.20 | 0.10
Ey3 | 46 | 0.60 | 50,000 0 0 0.60 | 0.30
Ey4 | 50 | 0.33 | 110,000 | 1.00 | 0.33 | 1.00 | 0.67
Ei5 163 0 40,000 0 0 0 0
Eig | 42 1 0.87 | 72,000 | 0.07 | 0.07 | 0.87 | 0.44

For instance, for the first tuple in Table 7.3, < E1, 30, 28,000 >, £
has the membership values pmigare(30) = 0.33 and jupigh(28) = 0 in the
terms middle age and high salary (see Table 7.8). The degree to which
employee E; satisfies the query according to (2.2) is min(0.33,0) = 0.
Hence E7 is not included in the list. This is true for the employ-
ees who have at least one membership value equal to zero. Only the
employees in the 8th,14th, and 16th tuples qualify to be in the list.
For Eg, min(1.00,0.33) = 0.33; for F14, min(0.33,1.00) = 0.33, and for
FE16,min(0.87,0.07) = 0.07 (below threshold value 0.1). These results
are registered in Table 7.8 in the 6th column labeled AND. We can
say that they reflect the degree of membership of each employee in the
conclusion in the query.

The fact that the degree of membership in the conclusion cannot
be stronger (greater) than the weakest (smallest) individual grade is a
conservative requirement. In some cases it can be a severe restriction on
the query. For instance if a grade in one term is zero no matter what is
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the value of the grade in the other terms, the degree of membership in
the conclusion is also zero. That is why in Table 7.8, column AND, only
three grades are different from zero. An alternative approach based on
averaging is discussed at the end of this section.

Query 4. Of all employee in Table 7.3 select those whose age is middle
or salary is high:
SELECT NAME
FROM EMPLOYEE
WHERE AGE IS MIDDLE
OR SALARY IS HIGH

In this query the two fuzzy attributes age and salary are connected
by or (max), hence formula (2.3) applies. The employees who are ei-
ther in Table 7.6 or in Table 7.7, or in both, qualify to be in the list.
For instance, for employee E1,max(0.33,0) = 0.33, for Ey, max(0,0) =
0, for E3,max(0.33,0) = 0.33, for E4,max(0.60,0) = 0.60,..., for
E16, max(0.87,0.07) = 0.87. The results are presented in Table 7.8,
7th column labeled OR.

In conclusion, the numbers in the AND and OR columns indicate to
what degree an employee satisfies the corresponding query. The degree
is also interpreted as truth value for the query concerning each employee.

O

Queries based on averaging

The joining of attributes in the WHERE predicate by the logical con-
nective and can be replaced by the average (see (3.1), Section 3.1) of
the individual degrees of membership. This technique ensures that each
individual membership grade contributes to the degree of membership
in the conclusion.

Case Study 25 (Part 3) Fuzzy Complex Query from a Small Company
Employee Database by using Averaging

Consider again Query 8 but instead of the connective and (min) let
us use the average. From 3th and 5th columns of Table 7.8 we calculate:
for By, 23340 = 0.17,. . ., for Fg, 2920 = 0.10, .. ., for Es, 12933 = 0.67,
etc. The results are presented in Table 7.8 in the last column labeled
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AVE. There are 12 employees in the list produced by the query while
there were only three when then the connective and (min) was used.
a

7.4 Fuzzy Queries for Small Manufacturing
Companies

Cox (1995) used a database consisting of small companies to show the
advantage fuzzy queries have against standard queries. Here we present
a case study which is typical of small manufacturing companies. The
database is a modification of that considered by Cox. Also we model
the attributes by triangular and trapezoidal numbers while in Cox they
are described by bell-shaped fuzzy numbers.

Case Study 26 Fuzzy Complex Queries of Database of Small Manu-
facturing Companies

The database consists of 12 small companies labeled C;,i =
1,...,12, listed in Table 7.9, ranked in 1996 according to their age
measured in years.

Table 7.9. Database of small manufacturing companies in 1996.

CN | AGE | AR | PC | EC | PR | EPS
Cy 44 52 2 81 | 0.8 | 0.5
Cs 42 38 2 30 | 1.0 | 1.6
Cs 34 105 | 12 | 120 | 3.2 | 3.0
Cy 26 34 1 18 {-0.3 | 0.3
Cs 24 47 6 64 | 1.4 | 2.5
Cs 23 92 8 70 | 2.6 | 2.2
Cy 17 68 ) 48 0 0.2
Cs 16 65 6 | 44 | 2.0 | 5.0
Cy 12 90 4 50 | 1.0 | 24
Cho 8 70 3 1109 | -0.8 0

Cn 3 59 7 72 | 1.7 | 1.7
Ci2 2 84 9 91 | 2.1 | 3.2
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In this table only the first attribute—company—is crisp. The other
six are considered to be fuzzy attributes (linguistic variables).

In Table 7.9 we use the notations: CN=COMPANY NAME,
AR=ANNUAL REVENUE (in millions), PC=PRODUCT COUNT,
EC=EMPLOYEE COUNT, PR=PROFIT (in millions), EPS = EARN-
ING PER SHARE (in dollars).

To be able to make fuzzy queries we model the attributes by fuzzy
sets (terms) shown below. The equations of the segments to be used
later are given in the figures.

u, young
lhew mature established old

X
0O 5 10 15 20 25 35 40 45
Fig. 7.3. Terms of company age.
H zero low moder ate medium high
1l
_y 60
T 40
\
0 10 20 30 40 50 60 70 80 100 110

Fig. 7.4. Terms of annual revenues.
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H few some many

z
0 1 2 3 4 5 6 7 8 10 11 12
Fig. 7.5. Terms of product count.
H small moderate medium high
1
_u _40-u _ 80-u
=20 / \F 20 W10
.
_u-20
W20
! u
0 10 20 30 40 50 60 70 80 100 110 120
Fig. 7.6. Terms of employee count.
H moderate profit big profit
bigloss moderateloss small loss small profit 35—
1 _V-5, p==2V
M= 15
v

-40-35 -25-20 -10-5 0 5 10 20 30 3540

Fig. 7.7. Terms of profit; negative profit is loss.



202 Chapter 7. Fuzzy Queries from Databases: Applications

H poor acceptable good excellent
1 _
u:W -2 UZU
2 2
\ e
W
0 1 2 3 4 5 6

Fig. 7.8. Terms of earnings per share.

The base variables defined on the universal sets are measured as
follows: x in years, y and v in millions of dollars, w in dollars, z and u
are integer numbers.

We will use the database in Table 7.9 to make four complex queries.

Query 1 Consider the companies in Table 7.9.

SELECT NAME

FROM COMPANY

WHERE AGE IS MATURE

AND ANNUAL REVENUE IS HIGH

AND PRODUCT COUNT IS SOME

AND EMPLOYEE COUNT IS MODERATE
AND PROFIT IS MODERATE

AND EARNING PER SHARE IS GOOD

In this query all six attributes are involved. We have to repeat six
times the matching procedure used in Case Study 25 (Part 1), Query 1.
This will give the degree of membership of each entry in every term in
the query which belongs to an appropriate attribute.

For instance the term mature in the attribute age (Fig. 7.3) is de-
scribed by a triangular number on the supporting interval [5, 20] as
follows: p = %‘5 for 5 <x <10 and p = 201696 for 10 < z < 20. The
values (entries) 8, 12, 16, 20 of the domain of age which belong to [5, 20]
have to be matched against the term mature. Substituting 8 (row C1g)
into the first equation, 12 (row Cy), 16 (row Cs), and 17 (row C7) into
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the second equation gives p the values 0.6, 0.8, 0.4, 0.3 correspondingly.
The other entries of the domain of age are not in [5, 20]; they have zero
degree of membership in the term mature. These results are recorded
in Table 7.10, the second column—age is mature.

The same procedure is applied to the other five terms, high,
some, moderate, moderate, good shown in Figs. 7.4-7.8, correspond-
ingly. The membership degrees obtained are recorded in Table 7.10,
third to seventh columns. The following short notations are used
in Table 7.10: CN=COMPANY NAME, DMA=DEGREE MATURE,
H=HIGH, S=SOME, DMOE=DEGREE MODERATE (concerning em-
ployee count), DMOP = DEGREE MODERATE PROFIT, DG = DE-
GREE GOOD.

The attributes in the query are connected by and (min). Most
of the companies (excluding Cs and Cy9) have at least one entry 0,
hence the outcome of the min operation is also 0 (column AND in Ta-
ble 7.10). For instance, for company Cs, min(0,1,0,0,0.2,0.5) = 0;
for Cg we calculate min(0.4,0.125,1,0.9,1,0.5) = 0.125 and for Cy,
min(0.8,0.75,0.5,0.75,0.33,0.2) = 0.2.

Table 7.10. Fuzzy complex Querie 1 from the database of small manu-
facturing companies.

CN | DMA H S | DMOE | DMOP | DG | AND | AVE
Ch 0 0 0 0 0.2 0 0 0.03
Cs 0 0 0 0.5 0.33 0 0 0.14
Cs 0 1 0 0 0.2 0.5 0 0.28
Cy 0 0 0 0 0 0 0 0

Cs 0 0 1 0.4 0.6 0.25 0 0.38
Cs 0 0.8 0.5 0.25 0.6 0.1 0 0.38
C 0.3 0.2 |0.75 0.8 0 0 0 0.34
Cs 0.4 |0.125 1 0.9 1 0.5 | 0.125 | 0.6
Cy 0.8 0.75 | 0.5 0.75 0.33 0.2 0.2 | 0.56
Cio| 0.6 0.25 | 0.25 0 0 0 0 0.18
Cn 0 0 0.75 0.2 0.8 0 0 0.29
Ci2 0 0.6 |0.25 0 0.93 0.6 0 0.40

One can observe that as the number of and connections in the
WHERE predicate increases the likelihood is that the membership grade
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in the conclusion (AND) decreases. The contrary is true when the con-
nection is or (see Query 2 which follows).

Let us use averaging instead of and (min) to connect the at-
tributes (see Queries based on averaging, in Section 7.3). The results
are recorded in the last column AVE in Table 7.10. For instance,
for company C3 we get the membership degree in the conclusion by
adding the six entries in the same row and dividing the sum by 6,

ie Olt0#040.240.5 — (028  Similarly for company Cs we calculate
0.440.1254140.941+0.5 __ 0.65
5 = 0.65.

Query 2.

SELECT NAME
FROM COMPANY
WHERE AGE IS MATURE
OR ANNUAL REVENUES ARE HIGH
OR PRODUCT COUNT IS SOME
OR EMPLOYEE COUNT IS MODERATE
OR PROFIT IS MODERATE
OR EARNING PERSHARE IS GOOD
This query formally can be obtained from Query 1 by changing AND
by OR. Hence now the attributes are connected by or (max). For com-
pany C3 (Table 7.10) for instance we get max(0,1,0,0,0.2,0.5) = 0.5;
for Cg, max(0.4,0.125,1,0.9,1,0.5) = 1. The results for all companies
are given in the second column OR in Table 7.11.

Query 3.

SELECT NAME
FROM COMPANY
WHERE AGE IS MATURE
AND ANNUAL REVENUES ARE HIGH
AND EARNING PER SHARE IS GOOD
This query does not involve all attributes in the database. We use
from Table 7.10 only the columns labeled DMA, H, and DG to find the
membership degree in the conclusion AND (see Table 7.11).
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Table 7.11. Fuzzy complex Queries 2, 3, 4 from the database of small
manufacturing companies.

Query 2 | Query 3 | Query 4
CN OR AND | AND/OR
C 0.2 0 0
Cy 0.5 0 0
Cs 0.5 0 0
Cy 0 0 0
Cs 1 0 0.25
Cs 0.8 0 0.1
Cy 0.8 0 0.2
Cs 1 0.125 0.5
Cy 0.8 0.2 0.75
Cho 0.6 0 0.25
C1y 0.8 0 0
Ch2 0.93 0 0

Query 4
SELECT NAME

FROM COMPANY

WHERE AGE IS MATURE
AND ANNUAL REVENUES ARE HIGH
OR EMPLOYEE COUNT IS MODERATE
AND EARNING PER SHARE IS GOOD

Four attributes take part in the WHERE predicate. They are joined
by both connectives and and or. The membership grades for each tuple

can be calculated from the schematically presented formula

IMATURE and HIGH] or [MODERATE and GOOD]

which can be written as

max[min(MATURE, HIGH), min (MODERATE, GOOD)],

(7.1)

where the terms are substituted by the appropriate entries in the tuples.
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We use the entries forming the domains of DMA, H, DMOE, and
DG in Table 7.10. For instance for company Cg formula (7.1) gives

[max[min(0.4,0.125), min(1,0.5)]] = max[0.125,0.5] = 0.5

Similarly the rest of the membership grades are calculated and pre-

sented in the column AND/OR in Table 7.11.
O

7.5 Fuzzy Queries for Stocks and Funds
Databases

Common stocks represent one of the most complex and varied fields of
investment. The stock market is an arena in which success measured
in profit depends not only on combination of skills, information, and
knowledge, but also on unforeseen events of political and social char-
acter, drastic changes in nature, and on the subjectivity of investors
expectations and confidence. There are thousand of stocks in the world
that are traded in hundreds of stock exchanges. For a common investor
to play on the stock market is both risky and time consuming. Stock
markets go up and down generally along an increasing saw-line curve
but also on rare occasions catastrophes called crashes happened. For
instance the largest decline in one day in the history of the stock mar-
ket, “Black Monday,” occured on Monday, October 19, 1987. Then the
Dow Jones Industrial Average in U.S.A. declined by 23 %; other coun-
tries also had a fast and large decline in their stock market. The worst
stock market crash occured on 29 October, 1929. The consequences for
millions of people were devastating.

Mutual funds are financial vehicles that offer portfolio diversifica-
tion and professional management. One advantage is a great deal of
time saved for the investor, but funds, in general less risky than stocks,
are not risk-free. There are thousands of funds managed by financial
corporations, companies, banks, and trusts. They are in fierce compe-
tition trying to perform better and attract more costumers. Fund man-
agers are presenting their investment strategy and recommendations in
various reports and letters. Buy and sell decisions usually reflect the
consensus of several managers in charge of funds in a group.
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Since the 1960s the stock markets have experienced fast changes.
One major factor for that has been the advances in computer technology.

Computer selected stocks

Of particular interest is using computers to select stocks or funds in
order to outperform the market. While there are activities in this area
not much can be found in the literature.*

One such case was reported on a single page by Mandelman (1979).
All U.S.A. stocks were screened with a computer. Aim: to select those
that met five requirements:

“Low debt in the underlying company’s capital structure.

A high return on equity.

A high dividend yield on the stock.

A very low PE ratio.

A low stock price.”

Here PE means price—earnings ratio; it is a tool for comparing the
relative merit of different stocks. For instance if a company A produces
a product that has estimated year-end earnings of $2 per share and the
trading at the moment is $12 per share, the PE ratio is 172 = 6. Another
company B produces similar product with the same earnings of $2 per
share but the trading is $16 per share, hence the PE ratio is 1—26 = 8.
Then normally one could expect that company A is more attractive.

It is not explained how the border lines for “low debt,” “high return,”
“high dividend,” “very low PE ratio,” and “low stock price” were de-
termined. This might be a difficult task since the words “low debt” and
“low stock price” require analysis and clarifications; “high dividend” is
easier to define, say above $4.50. Only nine stocks were selected and
bought on March 12, 1979. On Oct. 16, after seven months, the gain
was 15.7% (28.4% if annualized). This is considered in the report as
a good gain under the specific circumstances at that time: “New York
market was drifting sideways for much of the summer, and that we’ve
taken the prices of the stocks on October 16—well after the big slump
that began October 8.” The author concludes “Our experiment con-
firms our belief that a computer can be a worthwhile tool in selecting
stocks.”

Essentially this is a standard retrieval from a large database—all

stocks in U.S.A.
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Fuzzy logic approach

The fuzzy logic methodology can produce better results. Each require-
ment stated by Mandelman (1979) has to be characterized by the lin-
guistic variables: debt, return, dividend yield, PE ratio, and stock price.
Low, very low, and high are terms of appropriate linguistic variables.
The financial experts should be able to describe the above variables
(see Chapter 5, Section 5.2) and initiate a fuzzy complex query using
computers:
SELECT NAME
FROM STOCKS
WHERE DEBT IS LOW
AND RETURN IS HIGH
AND DIVIDEND YIELDS IS HIGH
AND PE RATIO IS VERY LOW
AND STOCK PRICE IS LOW
There are financial institutions in various countries using fuzzy logic
for portfalio management, but it is very difficult to obtain information
about their activities.? In a short note, Schwartz (1990) reports: “Fuzzy
information processing takes place every day at Yamaichi Securities, the
first securities-trading company to offer a fund with purchases based
on fuzzy-system decisions. Currently, the system monitors over 1100
stocks, but makes only a few trades each day. Employing fuzzy reason-
ing, expert system technology, and conventional number crunching, the
system is tuned daily by Yamaichi trading experts. The fund has been
operating for approximately nine months and claims to be sporting a
40-percent annual return for investors.*”
We illustrate the fuzzy logic approach on a small database containing
funds.

Case Study 27 Fuzzy Query from the 20 Biggest Mutual Funds in
Canada

Consider the database presented in Table 7.12.
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Table 7.12. The 20 biggest mutual funds in Canada ranked by total

assets at 31 Dec. 1995; in billions of dollors.

TOTAL ASSET RETURN %
N 51712795 T 31708791 | O Ay T3Y [5Y
F | 408 2.31 76.6 | 14.1 | 17.3 | 194
F | 319 157 | 103.2 | 14.2 | 18.2 | 21.7
Fy | 303 359 | —15.6 | 115 | 6.6 | 8.0
F | 261 1.86 40.3 | 188 | 9.8 | 10.8
Fy | 245 2.58 ~53 103 | 83 | 9.1
Fs | 244 1.81 348 | 9.9 | 14.3 | 136
F | 236 2.43 —30 | 63 | 52 | 64
Fy | 213 0.64 | 232.8 | 11.7 | 14.6 | n/a
Fy | 210 1.31 60.3 | 10.6 | 13.3 | 12.2
Fio| 204 279 | -269|129| 7.8 | 9.8
Fii | 200 1.70 17.6 | 14.8 | 19.6 | 24.6
Fip | 1.98 1.60 238 [11.9 | 129 | 9.6
Fis | 1.94 2.03 —44 | 6.1 | 49 | n/a
Fiu| 192 222 | —13.5|14.3 | 11.0 | 11.3
Fi5| 1.88 1.46 288 |15.3 | 18.2 | 17.6
Fig | 181 1.16 56.0 | 16.7 | 20.8 | 23.9
Fiz | 179 0.97 84.5 |15.0 | 14.1 | 13.4
Fig| 164 1.72 4.7 193] 92 | 108
Fio | 1.59 1.68 —5.4 |19.9 | 23.0 | n/a
Fy | 144 1.20 20.0 |10.7 | 15.9 | 15.8

We use the abrivations: FN=FUND NAME, CH=CHANGE, 1 Y=1
YEAR, 3 Y=3 YEAR, and 5 Y=5 YEAR. Table 7.12 is taken from
“The Mutual Fund Advisory” written and edited by C. Tidd (February
1996). We do not give the real names of the funds; here they are labeled
Fi=1,...,20.

The author reminds “that the single purpose of this particular ex-
ercise is to determine shifts into (and out of) the country’s 20 largest
Mutual Funds” and also makes a short analysis based on the data cov-
ering 21 months (31 March 1994 to 31 December 1995).

Our aim is to use the real data in Table 7.12 for making fuzzy queries.
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We consider change and return as linguistic variables. They are
partitioned into terms (linguistic values) presented in Fig. 7.9 (change)
and Fig. 7.10 (one-, two-, and three-year return).

u
NB NM NS 10 PS PM _150-x PB
100
e

-150 -100 -50 -505 50 100 150

Fig. 7.9. Terms of change for the 20 biggest mutual funds in Canada.

oL MO Mu=20_yi H

= =

Yi

0 2 5 10 20 30

Fig. 7.10. Terms of one-,three-,five-year return for the 20 biggest mutual
funds in Canada; y; = 1,3, 5.

The terms of change are defined as follows: NB = negative big,
NM = negative medium, NS = negative small, O = zero, PS = POSI-
tive small, PM = positive medium, PB = positive big. The base vari-
able x is measured in percentage.

The terms of return (1, 3, and 5 year) are defined by O = zero,

L = low, MO = moderate, M = medium, H = high. The base
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variable y;,7 = 1,3,5, is expressed in percentage; y; is positive since
the return for all funds (Table 7.12) is gain. In situations with negative
return (loss) Fig. 7.10 has to be extended to the left symmetrically about
the p-axis.

Now we consider three queries.

Query 1

SELECT FUND

FROM TABLE 7.12

WHERE CHANGE IS POSSITIVE BIG
AND 1 YEAR RETRUN IS HIGH
AND 3 YEAR RETRUN IS HIGH
AND 5 YEAR RETRUN IS HIGH

The aim of this query is to identify funds picking up huge amount
of money (meaning more business) while producing consistently high
returns.

Following the procedure for calculating the membership values in
this chapter we obtain the results in Table 7.13. (second to fifth
columns), where CHPB= CHANGE POSITIVE BIG and 1,3,5 YH = 1,
3,5 YEAR HIGH. We present the calculations only for fund F7. Substi-
tuting 76.6 from Table 7.12 for x into equation pu = ocl—O%O (see Fig. 7.9)
gives 0.27. Substituting 14.1 for yy, 17.3 for y3, and 19.4 for y5 from the
same table correspondingly into equation pu = yi1—0107 1 =1,3,5, gives
0.41, 0.73, and 0.94.

The aggregation by and is given in the sixth column labeled AND
and that by averaging in the seventh column labeled AVE. For the
fund F; aggregation by and gives min(0.27,0.41,0.73,0.94) = 0.27 and
aggregation by averaging produces 0'27+0‘41j1'0‘73+0‘94 = 0.59. For the
fund Fg 5 year return is not available (n/a); the fund is younger than 5
years. The aggragation for Fg is based on the presented data, i.e. for
operation and, min(1,0.17,0.46) = 0.17, for average, Ho'lgw = 0.54.

We can use the membership values in the conclusions AND and
AVE in Table 7.13 to rank the funds which satisfy the query. Also
we can use a threshold value @ = 0.2, which means that the funds
with membership values below 0.2 are to be dropped. The results are
presented in Table 7.14.
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Table 7.13. Membership grades for Query 1 from 20 biggest mutual
funds in Canada (31 March 1994 to 31 December 1995).

FN | CHPB |1YH |3YH |5YH | AND | AVE
Fy 0.27 0.41 0.73 0.94 0.27 | 0.59
F 0.53 0..42 | 0.82 1.00 0.42 | 0.69
F3 0 0.15 0 0 0 0.04
Fy 0 0.88 0 0.08 0 0.24
Fy 0 0.03 0 0 0 0.01
Fg 0 0 0.43 0.36 0 0.20
Fy 0 0 0 0 0 0

Fy 1 0.17 0.46 n/a 0.17 | 0.54
Fy 0.10 0.06 0.33 0.22 0.06 | 0.18
Fig 0 0.29 0 0 0 0.07
Fiq 0 0.48 0.96 1.00 0 0.61
Fio 0 0.19 0.29 0 0 0.12
Fi3 0 0 0 n/a 0 0

Fiy 0 0.43 0.10 0.13 0 0.17
Fis 0 0.53 0.82 0.76 0 0.53
Fig 0.04 0.67 1.00 1.00 0.04 | 0.68
Fi7 0.35 0.50 0.41 0.34 0.34 | 0.40
Fig 0 0.93 0 0.08 0 0.25
Fig 0 0.99 1.00 n/a 0 0.66
Fy 0 0.07 0.59 0.58 0 0.31

If a threshold value o = 0.1 is addopted, then more funds have to
be included in the ranked tables (Table 7.14) as follows. The fund Fjg
goes to the first table (AND) and the funds Fy and Fi4 join the second
table (AVE).

Both aggragation procedures, and and average, rank fund Fs at first
place but after that there is considerable difference. It was already
indicated that and procedure is quite conservative (Section 7.3). In
this case it emphasizes too much the linguistic variable change: namely
funds whose positive change is below 50% do not qualify. On the other
hand side, fund Fy with the biggest increase of 232.8% is not included
for ranking since one-year return of 11.7% has a low membership value
0.17. The fund managers may decide to tune the model representation
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of the linguistic variables change and return (see Section 5.8) shifting to
the left the lower boundaries 50 of PB and 10 of H. Actually for Query
1 only the terms PB (Fig. 7.9) and H (Fig. 7.10) are needed. Having
the other terms allows the making of various queries.

Table 7.14. Ranking the biggest mutual funds in Canada produced by
Query 1.

RANK | FN | AVE
1 | 5 | 069
2 | Fig | 068
3 | F | 0.66
RANK | FN | AND 4 | Fu | 061
5 | | 059

1 | 5 | 042
6 | Fy | 054

o | Fn| 034
O I R 7 | Fs | 053
! i 8 Fi7 | 0.40
9 | By | 031
10 | Fis | 025
1 | 5| o024
12 | B | 020

Query 2

SELECT FUND
FROM TABLE 7.13
WHERE CHANGE IS POSITIVE MEDIUM
AND 1 YEAR RETURN HIGH
AND 3 YEAR RETURN IS HIGH
AND 5 YEAR RETURN IS MEDIUM
This query is focused on funds which are expanding their business
and producing high returns in the last three years thus improving their
performance.
The final results are presented in Table 7.15 where CHPM=CHANGE
POSITIVE MEDIUM and 5YM=5 YEAR MEDIUM. The attributes 1
YH and 3 YH have the same domain as those in Table 7.13.
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Table 7.15. Membership grades for Query 2 from 20 biggest mutual
funds in Canada (31 March 1994 to 31 December 1995).

FN [CHPM [1YH |3 YH]|5YM|AND | AVE
F1 | 073 | 041 | 0.73 | 0.06 | 0.06 | 0.48
F2 | 047 | 042 | 082 | 0 0 | 043
F3 0 015 | 0 | 060 | 0 |0.19
F4 | 064 | 08 | 0 | 092 | 0 |06l
F5 0 033 | 0 | 08 | 0 |029
F6 | 054 0 | 043 | 057 | 0 | 039
F7 0 0 0 | 014 | 0 |004
F8 0 017 | 046 | n/a | 0 | 021
F9 | 090 | 0.06 | 0.33 | 0.78 | 0.06 | 0.52
F10 0 029 | 0 | 096 | 0 | o031
F11| 023 | 048 | 096 | 0 0 | 042
F12| 034 | 019 | 029 | 092 | 0.19 | 0.44
F13 0 0 0 | n/a | 0 0
F14 0 043 | 010 | 087 | 0 | 035
F15| 043 | 053 | 0.82 | 0.24 | 0.24 | 0.51
F16 | 094 | 0.67 | 1.00 | 0 0 | 065
F17 | 066 | 050 | 0.41 | 0.66 | 0.41 | 0.56
F18 0 093 | 0 | 092 | 0 | 046
F19 0 099 | 1.00 | n/a | 0 | 0.66
F20 | 027 | 0.07 | 059 | 0.42 | 0.07 | 0.34

Query 3

SELECT FUND
FROM TABLE 7.13
WHERE CHANGE IS NEGATIVE SMALL
AND 1 YEAR RETURN IS MODERATE
AND 3 YEAR RETRUN IS MODERATE
OR LOW
The query wants to depict funds that are lossing business (the worst
case is —26.9%) and also having an unimpressive return during the last
three years in comparison to their competitors. In the one-year perfor-
mance there is no fund with low return while in the three-year there is
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one such fund. This explains the introduction of or connective into the
WHERE predicate concerning the attribute 3 YEAR in Table 7.12.

The calculations are similar to those in the previous queries discussed
in this chapter. We have to construct a table similar to Table 7.13 and
7.15 having top row

| FN [ CNNS | 1YMO | 3YMO | 3YL | AND/OR |

where CNNS=CHANGE NEGATIVE SMALL, 1YMO=1 YEAR MOD-
ERATE, 3YMO=3 YEAR MODERATE, and 3YL=3 YEAR LOW.

The membership grades for each tuple can be calculated according
to the formula

CNNS and 1YMO and (3YMO or 3YL)
which can be expressed by min and max in the form
min (CNNS, 1YMO, max (3YMO, 3YL)).

Here CNNS, 1YMO, 3YMO, and 3YL have to be substituted by the
appropriate entries in the tuples. Note that here the connective or
(max) appears in a different place than or (max) in Case Study 26,

Query 4.
O

7.6 Notes

1. Research on database began with a paper on a relational data
model by Codd (1960), a researcher at the IBM Santa Terresa in
San Jose, California.

2. According to Terano, Asai, and Sugeno (1987), the term fuzzy
database was first used by Kunii (1976). Fuzzy databases are
briefly considered by Klir and Folger (1988).

3. Graham and Jones (1988) made the comment “One major diffi-
culty in surveying financial applications is the secrecy and even
paranoia which surrounds successful ones. Because one of their
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chief benefits is the competitive edge they provide this is hardly
surprising, but as with the defence sector a certain amount of
knowledge is in the public domain. Although this is manifest it is
also possible that some of the secrecy could have arisen from the
vested interests of the developers, who are concerned not to expose
their infant and struggling applications to the glare of publicity
until they are proved to be robust.”

. Management Intelligenter Technologien GmbH, Promenade 9,

52076 Aachen, Germany, advertises a software tool based on fuzzy
logic and neural networks for analyzing complex tasks that was
successfully used for the forecasting of the Standard & Poor’s 500
Index.



References

Aristotle (1966) The Metaphysics (H. G. Apostle, trans.), Indiana
University Press, Bloomington.

Baldwin, J. F. (1979) A New Approach to Approzimate Reasoning
Using a Fuzzy Logic, FSS 2, pp. 309-325.

Beck, N. (1992) Shifting Gears, Harper Collins Publishers Ltd.,
Toronto.

Beck, N. (1995) Excelerate: Growing in the New Economy, Harper
Collins Publishers Ltd., Toronto.

Bellman, R. E. and Zadeh, L. A. (1970) Decision Making in a Fuzzy
Enviroment, Management Science, 17:4, pp. 141-164; also in Fuzzy Sets
and Applications: Selected Papers by L. A. Zadeh, John Wiley & Sons,
New York, pp. 53-79 (1987).

Black, M. (1937) Vagueness: An Ezercise in Logical Analysis, Phi-
losophy of Science, 4, pp. 472-455.

Bojadziev, G. and Bojadziev, M. (1995) Fuzzy Sets, Fuzzy Logic,
Applications, World Scientific, Singapore.

Chamberlin, D. D. and Boyce, R. F. (1974) SEQUEL: A Structured
English Query Language, Proceedings of ACM-SIGFIDET Workshop,
Ann Arbor (May 1974).

Codd, E. F. (1970) A Relational Model for Large Shared Data Banks,
Communications of the ACM, 13, pp. 377-387.

217



218 References

Cox, D. E. (1995) Fuzzy Logic for Business and Industry, Charles
River Media, Inc., Rockland, Massachusetts.

Drucker, P. F. (1995) Managing in a Time of Great Change, Truman
Talley Books/Dutton, New York.

Dubois, D. and Prade, H. (1978) Operations on Fuzzy Numbers, Int.
Journal System Sciences, 9(6), pp. 613-626.

Dubois, D. and Prade, H. (1980) Fuzzy Sets and Systems: Theory
and Applicaitons, Academic Press, New York.

Earl, E. (1995) Microeconomics for Business and Marketing, Edward
Elgar Publishing Ltd., England.

Fogarty, D. W. and Hoffmann, T. R. (1983) Production and Inven-
tory Management, South-Western Publishing Co., Cincinnati.

Frege, G. (1879) Begriffsschrift, eine der Arithmetischen Nachge-
bildete Formelsprache des reinen Denkens, Halle.

Graham, I. G. and Jones, P. L. (1988) Ezpert Systems: Knowledge,
Uncertainty and Decision, Chapman and Hall, London.

Grant, R.M. (1993) Contemporary Strategy Analysis, Blackwell Pub-
lishers, Cambridge, Massachussetts.

Hellendoorn, H. and Thomas, C. (1993) Defuzzification Fuzzy Con-
trollers, Journal of Intelligent and Fuzzy Systems, 1, pp. 109-123, John
Wiley and Sons, Inc.

Herbert, B. (1996, July 10) Wanted, Economic Vision that Focuses
on Working People, International Herald Tribune, published with New
York Times & Washington Post, Frankfurt.

Kandel, A. (1986) Fuzzy Mathematical Techniques with Applications,
Addison-Wesley Publishing Company, Reading, Massachutts.

Kaufmann, A. (1975) Introduction to the Theory of Fuzzy Subsets,
Academic Press, New York.



References 219

Kaufmann, A. and Gupta, M. M. (1985) Introduction to Fuzzy Arith-
metic: Theory and Applications, Van Nostrand Reinhold, New York.

Kaufmann, A. and Gupta, M. M. (1988) Fuzzy Mathematical Models
in Engineering and Management Science, North-Holland, Amsterdam.

Kepner, C. H. and Tregoe, B. B. (1976) The Rational Manager,
Kepner-Tregoe Inc., Princeton.

Klir, G. J. and Folger, T. A. (1988) Fuzzy Sets, Uncertainty, and
Information, Prentice Hall, Englewood Cliffs, New Jersey.

Kosko, B. (1993) Fuzzy Thinking, Hyperion, New York.

Kunii, T. L. (1976) DATA PLAN: An Interface Generator for
Database Semantics, Information Sciences, 10, pp. 279-298.

Li, H. X. and Yen, V. C. (1995) Fuzzy Sets and Fuzzy Decision
Making, CPC Press, Boca Raton, Florida.

Lukasiewicz, J. (1920) On 3-valued logic, Ruch Filozoficzny, 5, pp.
169-171 (in Polish).

Makridakis, S. (1990) Forecasting, Planning, and Strategy for the
21st Century, Free Press, New York.

Mamdani, E. H. and Assilian, S. (1975) An Ezperiment in Linguistic
Synthesis with a Fuzzy Logic Controller, Int. Journal Man—Machine
Studies 7, pp. 1-13.

Mandelman, A. (1979, Nov.12) Computer Select Stocks Outperform
the Market, The Money Letter, 3 (29), Publisher Ron Hume, Willow-
dale, Ontario.

Mintzberg, H. (1994) The Rise and Fall of Strategic Planning, Free
Press, New York.

McNeill, D. and Freiberger, P. (1993) Fuzzy Logic: The Discovery-
and how it is Changing our World, Simon & Schuster, New York.

Mizumoto, M. (1985) Ezxtended Fuzzy Reasoning, in Approximate



220 References

Reasoning in Expert Systems, eds. M. Gupta et al, North-Holland,
Amsterdam, pp. 71-85.

Nahmias, S. (1977) Fuzzy Variables, Fuzzy Sets Syst. 1 (2), pp. 97—
110.

Novak, V. (1989) Fuzzy Sets and their Applications, Techno House,
Bristol.

Orlicky, J. (1975) Material Requirements Planning, McGraw-Hill
Book Company, New York.

Peirce, C. S. (1885) On the Algebra of Logic, American Journal of
Mathematics, 7.

Peirce, C. S. (1965-1966) Collected Papers of Charles Sauders
Peirce, eds. Charles Hartshorne, Paul Weiss, and Artur Burks, 8, Hard-
vard University Press, Cambridge, Mass.

Poper, K. R. (1979) Objective Knowledge, Oxford University Press,
Oxford.

Post, E. L. (1921) Introduction to a General Theory of Elementary
Propositions, American Journal of Mathematics, 43, pp. 163-185.

Russell, B. (1923) Vagueness, Australian Journal of Psychology and
Phylosophy, 1, pp. 84-92.

Schwartz, T. J. (1990, Feb.) Fuzzy Systems Come to Life in Japan,
IEEE Expert, pp. 77-78.

Simon, H. A. (1960) The New Science of Management Decision,
Harper & Row, New York.

Tahani, V. (1977) A Conceptual Framework for Fuzzy Query
Processing—A Step toward Intelligent Database Systems, Information
Processing & Management, 13, pp. 289-303.

Terano, T., Asai, K., and Sugeno, M. (1992) Fuzzy Systems Theory
and its Applications, Academic Press, Boston.



References 221

Tidd, C. (1996, Feb.) The 20 Biggest Mutual Funds in Canada, The
Mutual Fund Advisory, 3 (1), Odlum Brown.

Trotsky, L. (1940) from Fourth International; in The Age of Perma-
nent Revolution: A Trotsky Anthology, ed. 1. Deutscher, Dell Publishing
Co., New York (1964).

Whitehead, A. N. and Russell, B. (1927) Principia Mathematica,
2nd ed., Cambridge University Press, Cambridge.

Wittgenstein, L. (1922) Tractatus Logico-Philosophicus, Routledge
and Kegan Paul Ltd., London.

Yager, R. R. and Filev, D. P. (1994) FEssentials of Fuzzy Modeling
and Control, John Wiley & Sons, Inc., New York.

Zadeh, L. A. (1965) Fuzzy Sets, Information and Control, 8, pp. 338—
353; also in Fuzzy Sets and Applications: Selected Papers by L. A.
Zadeh, John Wiley & Sons, New York, pp. 28-44 (1987).

Zadeh, L. A. (1971) Similarity Relations and Fuzzy Orderings, In-
formation Sciences, 3, pp. 177-200; also in Fuzzy Sets and Applications:
Selected Papers by L. A. Zadeh, John Wiley & Sons, New York, pp. 81—
104 (1987).

Zadeh, L. A. (1973) Outline of a New Approach to the Analysis of
Complex Systems and Decision Process, IEEE Trans. Systems, Man,
and Cybernetics, SMC-3, pp. 28-44; also in Fuzzy Sets and Applica-
tions: Selected Papers by L. A. Zadeh, John Wiley & Sons, New York,
pp. 105-146 (1987).

Zadeh, L. A. (1975) The Concept of a Linguistic Variable and its
Application to Approximate Reasoning, Parts 1 and 2, Information Sci-
ences, 8, pp. 199-249, 301-357; also in Fuzzy Sets and Applications:
Selected Papers by L. A. Zadeh, John Wiley & Sons, New York, pp. 219—
327.

Zadeh, L. A. (1976) The Concept of a Linguistic Variable and its
Application to Approzimate Reasoning, Part 3, Information Sciences, 9,



222 References

pp. 43-80; also in Fuzzy Sets and Applications: Selected Papers by L.
A. Zadeh, John Wiley & Sons, New York, pp. 329-366.

Zadeh, L. A. (1978) Fuzzy Sets as a Basic for a Theory of Possibility,
Fuzzy Sets and Systems, 1, pp. 3-28; also in Fuzzy Sets and Applica-
tions: Selected Papers by L. A. Zadeh, John Wiley & Sons, New York,
pp. 193-218 (1987).

Zadeh, L. A. (1978) PRUF—A Meaning Representation Language
for Natural Languages, Int. Journal Man—Manchine Studies, 10,

pp- 395-460; also in Fuzzy Sets and Applications: Selected Papers by
L. A. Zadeh, John Wiley & Sons, New York, pp. 499-568 (1987).

Zadeh, L. A. (1983) The Role of Fuzzy Logic in the Management of
Uncertainty in Expert Systems, Fuzzy Sets and Systems 11, pp. 199-227;

also in Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh,
John Wiley & Sons, New York, pp. 413-441 (1987).

Zimmermann, H. J. (1984) Fuzzy Set Theory and its Applications,
Kluwer-Nijhoff Publishing, Boston.



Index

Action
aggregated fuzzy control, 145
broader interpretation of, 128
in control, 128, 137
suggestion for, xiii
Active cells, 137
Activity completion cost, 84
Activity completion time, 80,
81, 83
shortening of, 87
Aggregation
in control (conflicting reso-
lution), 138
in forecasting models, 61
of control outputs, 143
of experts opinions, xiv, 81,
115, 116, 118
of independent outputs, 182
of trapezoidal numbers, 68,
69
of triangular numbers, 68,
69
a-cut (a-level interval), 14, 15,
89
Allocation
of investment (asset alloca-
tion), 157
of resources, 83

223

to activities, 84
Ambiguous, ambiguity, 34, 35
Antecedent (premise), 39
Approximate reasoning, 44
Arbitrary, 80
Aristotle, 57
Asai, K., 35, 215
Aspects (objectives) of a prob-

lem, 93, 103
Assilian, S., 155
Average (mean) or crisp aver-
age, 61, 71, 82
weighted, 62, 80, 81
weights of, 62

Baldwin, J. F., 58
Bandwidth, 20
Base variable, 45, 47
Beck, N., 100, 125
Bellman, R. E., 91-93, 95
Black, M., 34
Bojadziev, G., 35, 90
Bojadziev, M., 35, 90
Boole, G., 56
Boolean algebra, 56
Boyce, R. F.,; 189
Budget

allocation, 91, 121



224

crisp, 123
cummulative, 121
fuzzy, 121
planning, 119
selection, 121

Cantor, G., 32, 33

Cartesian plane, 5

Cartesian product (cross prod-
uct), 5, 6, 7, 53

Chamberlin, D. D., 189

Characteristic (membership) func-
tion of a set, 7, 9

Classical control, 127

Classical (two-valued) logic, xiii,
37,42, 44, 50, 52, 56, 57

Classical PERT, 78, 79, 81, 84,

86
Client asset allocation model,
xv, 158

Client financial risk tolerance
model, xiv, 127, 134,
135, 140-142
Codd, E. F., 215
Coding the inputs, 136
Common-sense reasoning, xiii,
37, 44, 128
Common stocks, 206
Complex phenomena, 127
Complex systems, 127
Competition, 104
price, 104
Composition rules for fuzzy propo-
sitions, 50
conjunction, 51, 134
disjunction, 52

Index

implication, 52, 134
Confidence, 46
level of, 14
Conflicting linguistic values, 105
Conflict resolution of experts
opinions (see aggrega-
tion), 115
Consequent, 39
Contradiction (fallacy), in clas-
sical logic, 39
law of, 40, 42
Control, xiii
action, 37
output, 139
of rules, 139
rules, 133
Correspondence
between classical logic and
sets, 40, 41, 43, 44
between infinite-valued logic
and fuzzy sets, 43, 44
Cost, 85
crash, 84, 86
normal, 84-86
Cost-driven pricing, 126
Cost slope, 86, 87
Cox, E. D., 115, 125, 170, 185,
199
Critical path, 79, 83, 84, 85
time for completion, 84
Critical Path Method (CPM),
78, 79
Crossover points, 20

Database, 1, 187
fuzzy, xv



Index

standard, 187
relational, xv, 187, 188
Decision, 14, 95
aggregated, 118
analysis, 37
maximizing, 93-96, 106, 108,
110, 112-114, 118
multiple, 92
table(s), 133
induced, 137
Decision making, xiv, xv, 61, 91,
92, 119
by averaging, 110, 119
by intersection, xiv, 92, 104,
110, 112, 114, 119
fuzzy averaging for, xiv, 61,
91, 110
Defuzzification, 69, 93, 144, 145
center of area (or gravity)
method, 145, 147

height defuzzification method,

146, 148
mean of maximum method,
146
of fuzzy average, 69, 70, 81,
82, 116
maximizing value (formula),
69, 75, 77, 81, 84, 123
Degree (grade) of membership,
9, 26, 35, 58
Delphi method in forecasting,
xiv, 71
Demand, 87
annual, for a new product,
88
dependent, 88

225

independent, 88
on the market, 170
Direct max product, 32, 52, 54
Direct min product, 31, 52
Distance between triangular num-
bers, 74, 90
Dividend distribution, 95, 111,
112
Drucker, P., 109, 126
Dubois, D., 35
DuPont, 79

Earl, E., 89
Employee performance, 104
Entailment principle, entails, 56,
123
Estimation, 84
Evaluation, 96
from point of view of goals
and constraints, 97
of learning performance, 102
Excluded middle, law of, 17-19,
33
in logic, 40, 42
in sets, 17
Experts, 80
experience of, 80
groups of, 85
opinions, 61, 76, 115
close, 115, 117
conflicting, 115, 117, 118
ranking of, 116, 117, 118
weights assign to, 76

False, falsity
in classical logic, 37
in fuzzy logic, 58, 59



226

in three-valued logic, 41
Filev, D. P., 155
Firing of rules, 138
Fogarty, D. W., 79, 84, 170
Folger, T. A., 35, 215
Forecasting, xiii, xiv, 61, 71, 89
activity completion time, 84
by Fuzzy Delphi method, 72
fuzzy averaging for, 61, 72
in business, 89
in finance, 89
in management, 89
project completion time, 83
Freiberger, P., 36
Function, 6, 7
Fuzzy, fuzziness, 21, 33-35, 80,
119, 127
Fuzzy averaging (average), xiv,
61, 66, 71, 91, 95, 110,
111, 115, 119
Fuzzy complex queries, 196, 197,
203
based on averaging, 198, 204
based on logical connectives,
196, 204
conclusion of, 197
truth value of, 198
for small manufacturing com-
panies, 199
for stocks and funds, 206,
207
from 20 biggest mutual funds
in Canada, 208, 212
Fuzzy Delphi method, 61, 71,
72, 75, 76, 81, 84, 88,
119,

Index

weighted, 76
Fuzzy environment, 91, 165
Fuzzy graph, 28
Fuzzy logic, xiii-xv, 1, 35-37,
43, 50, 60, 61, 91, 115,
128, 178, 187
Fuzzy logic control, xi, 127, 128,
151, 157, 183
for business, finance, and
management, 127
for pest management, 164
for potential problem anal-
ysis, 189
for problem analysis, 179
Fuzzy logic models, 127, 128
Fuzzy number(s), xiv, 1, 19, 34,
35, 44, 71, 128
arithmetic operations with,
62, 89
bell-shaped, 20, 125, 170
describing large, 24-26
describing small, 24-26
piecewise-quadratic, 20
trapezoidal, 24, 25, 45
arithmetic operations with,
62, 66, 89
central, 24, 25, 62, 102
clipped, 140, 145
left, 24
right, 24
symmetrical, 24
triangular, 22-24, 45, 62,
71, 72, 81, 85, 119
arithmetic operations with,
62, 66, 89
central, 22, 23, 69, 83



Index

clipped, 140, 145
left, 25
right, 25
symmetrical, 23
Fuzzy outputs, 133
Fuzzy PERT, 77, 81, 84
for project management, 77
for shortening project length,
84
for time forecasting, 81
Fuzzy reading inputs, 136, 137
Fuzzy relation(s), xiv, 1, 26, 27,
36, 52
complement of, 30
direct max product, 32
direct min product, 31
equality of, 30
inclusion of, 30
intersection of, 30
union of, 30
Fuzzy set(s), xiii-xv, 1, 8-10,
18, 27, 33-36, 43, 44,
58, 69, 91, 92, 115, 128,
187
complement, complementa-
tion, of, 16, 17, 99
convex, 19, 19
discrete, 96
empty, 10
equality of, 15
inclusion of, 16, 54, 123
intersection of, 16, 18, 91,
93
nonconvex, 195
nonnormalized, 15
normalized, 15

227

proper subset of, 16
union of, 16, 18
Fuzzy singleton, 10, 149, 150
Fuzzy statistics, 69

Fuzzy zero-based budgeting method,

119, 123

Goals, 91, 93, 110

Greece, paradox from, 33

Greek oracles of Delphi, 71

Greek philosophy, 57

Graham, I. G., 185, 215

Grant, R. M., 126

Gupta, M. M., 35, 71, 74, 90,
119

Hellendoorn, H., 155
Herbert, B., 126

Heuristic, xiii, 128
Hoffmann, T. R., 79, 84, 170
Housing policy, 99

If ... then rules, xiii, xiv, 127,
128, 133, 155
Imprecise, imprecision, xiii, 34,
35
environment of, 128
Income, 46

Individual investment planning
policy, 115-117
aggresive, 115, 117, 118
conservative, 115, 117

Induced decision table, 137

Inferential rules, 44, 127
Infinite-valued logic, 43, 44
Inflation, 46

Information, xi



228

ambiguous, 119
imprecise, 19, 61, 71, 119
incomplete, 19, 91
Input(s) (in control), 129
Interest rates, 115
falling, 115, 125
rising, 115, 125
Internal reallocation, 82
Interval, 2
number, 2
Inventory action, 174
Inventory control models, xv,
170, 173
adjustment factor, 177
classical, 170

fuzzy, 170
if ... and ... then rules for,
171-173

inputs: demand and quantity-
on-hand, 170, 171, 173
output: inventory action,
170, 171, 173
Investment advisory models, 157

Japanese, 126

Job hiring policy, 96-98
Job selection strategy, 100
Jones, P. L., 185, 215

Kandel, A., 35

Kaufmann, A., 35, 71, 74, 90,
119

Kepner, C. H., 177, 178, 182,
183, 185

Klir, G., 35, 215
Knowledge base, 128

Index

Knowledge of human experts,
80, 128

Knowledge workers, xiii

Kosko, B., 36

Kunii, T. L., 215

Li, H. X., 125
Linguistic modifiers, xiv, 44, 46,
47, 49
fairly, 46, 49, 105
not, 46
very, 46, 49, 105
Linguistic relations, in set the-
ory, 27
Linguisitc variable(s), xv, 37,
44, 46, 190
age (human), 44, 45, 192
age (company), 200
annual income, 128, 131
annual revenues, 200
change (of fund asset), 209,
210
demand (for a product), 170
dividend, 96
earning per share, 202
employee count, 201
false, 58
growth potential, 179
parasite population, 164, 165
pest population, 164, 165
priority of deviation, 179,
180
product count, 201
profit (or loss), 201
return, 210
risk tolerance, 131



Index

salary, 192
serious, 178, 180
terms (labels, values) of, 44,
45
total networth, 131
truth, true, 58, 59
modifications of, 58, 59
Loan scoring model, 4648, 53
Logical connectives, 38, 41, 196
conjunction (and), 38, 40,
41, 196
disjunction (or), 38, 40, 41,
196
implication, 39—41
negation (not), 38, 40, 41
Lukasiewicz, J., 41, 43, 52, 57

Makridakis, S., 89
Mamdani, E. H., 155
Management Intelligenter Techno-
gien GmbH, 216
Mandelman, A., 207, 208
Many-valued logic, 37, 41, 50,
52, 57
Material handling system de-
sign, 79
Mathematical models, 127, 128
McNeill, D., 36
Membership degree (see degree
of membership)
Membership function
of fuzzy relations, 26
of fuzzy sets, 9, 17, 51
Mintzberg, H., 89
Mizumoto, M., 52
Modifiers (see linguistic modi-

229

fiers), 37
Money supply, 38
Multi-experts decision making,
xiv, 115
Multi-experts forecasting, 72
Mutual funds, 206

Nahmias, S., 35
Network planning model, 79
for material handling sys-
tem, 79
improved by using fuzzy PERT,
83
Novak, V., 35, 95
n-valued logic, 43

One-input—one-output control model,
152, 179

Ordered pair, 4, 5, 26

Ordered triple, 26

Orlicky, J., 88

Output(s) (in control), 129

Overpricing, 104

Peirce, C. S., 57
PERT (see Classical PERT)
Pest management, xv
fuzzy logic control for, 164
Poper, K., 34
Possibility theory, 58
Post, E. L., 57
Potential problem analysis, xv,
182
fuzzy logic control for, 184
Prade, H., 35
Precondition, 133
Predicate, 40



230

Predator (parasite)—prey (pest)
system, 165
control of, 165
Price
competition, 104, 105, 108,
109, 113, 126
initial, 104
of a product, 38
suggested, 107
Price-led (driven) costing, 109,

126
model, 109
Pricing models, xiv, 91, 104,
105, 110, 112

for new products, 104
requirements for, 104, 105
modified, 105, 107, 108
Pricing policy, 105
Probability, probabilistic, 35, 80
PERT, 80, 84
Problem analysis, xv, 177, 182
fuzzy logic control for, 179
Product of competition, 110

Production rules (see control rules),

133
Profit, 24, 46, 109, 126
Project completion time, 79, 80,
83
estimation (forecasting), 80,
81
Project management, 77
of a material handling sys-
tem, 78, 79, 81
Project reduction time, 87
Proposition(s) (statement), 37,
40, 41

Index

compound, 38, 39
truth value of, 39
imprecise, 44
simple, 38
truth value of, 39
expressing future events, 57
Propositional fuzzy logic, 44
Propositions of fuzzy logic, 50
canonical form of, 50
composition rules of, 50
conjunction, 51
disjunction, 52
implication, 52
conditional, 50
modified, 50
true to a degree, 50
truth value of, 51, 57

Quasi-contradiction, 42
Quasi-tautology, 42
Queries, 187
crisp (standard), 187, 189,
190, 195, 199
fuzzy, xv, 187, 194, 195, 199

Rand Corporation, 71
Readings (measurements), 61,

135

Relation(s), in set theory, 6, 7,
36

Remington Rand, 79

Risk, 24

Rule evaluation, in fuzzy logic
control, 136
Rule of inference, in fuzzy logic
control, 133
compositional, 155



Index

conjunction based, 155
Rules strength table, 138
Russell, B., 33, 57

Schwartz, T. J., 208
Selection for building construc-
tion, 98
Semantic entailment, 54-56
SEQUEL, 189, 190
Set(s), classical, xiv, 1, 2, 9, 10,
32, 44
complement of, 3, 40
convex, 4
disjoint, 3
empty, 3
equal, 3
finite, 2
infinite, 2
intersection of, 3, 4, 40
listing method, to define, 2
members of, 1
membership rule, to define,
2
subset of, 3, 40
union of, 3, 4, 40
universal, 2, 7, 45
Simon, H. A., 177
Singleton, 2, 58
Standard & Poor’s 500 index,
216
Standard relational databases,
187, 188
retrieval of data from, 189,
190, 207
Statistics
classical, 61, 69, 71, 80

231

fuzzy, 69
Stock market, 38, 126, 206, 207

crash, 206
Storage cost, 170
Strength of a rule, 138, 139
Stress, 46
Subjective, subjectivity, 71, 80,

91

judgement of experts, xi
Sugeno, M., 35, 215
Supporting interval, 19, 22, 23
Systems, 128

business, 128

financial, 128

managerial, 128

Tahani, V., 190

Tautology, in classical logic, 39,
40

Terano, T., 35, 215

Terms of linguistic variables (see
linguistic variables), 44,
45

Thomas, C., 155

Three-valued logic, 41

Tidd, C., xv, 209

Trapezoidal numbers (see Fuzzy
numbers)

Tregoe, B. B., 177, 178, 182,
183, 185

Treshold, 14, 15, 194, 197

Triangular numbers (see Fuzzy
numbers)

Trotsky, L., 89

Truth, true, 46

degree (grade) of, 35



232

in classical logic, 37

in fuzzy logic, 50

in three-valued logic, 41
Truth tables, 39, 57
Truth value set

in classical logic, 37

in infinite-valued logic, 43

in many-valued logic, 43

in three-valued logic, 41, 42
Tuning of FLC models, 150, 151
Two-valued logic (see classical

logic)

Uncertain, uncertainty, xiii, 23,
35, 80
environment of, 128

U.S.A. Navy, 79

Vague, vagueness, xiii, 8, 14, 19,
21, 33-35, 43, 44, 57
Venn diagrams, 4, 17

Wall Street, 126

Whitehead, A. N., 57

Wittgenstein, L., 57

Words with opposite meaning,
99

Yager, R. R., 155
Yamaichi securities, 208
Yen, V. C., 125

Zadeh, L. A., xv, 9, 34-36, 43,
58, 59, 91-93, 95, 155

Zero-based budgeting method,
119

Zimmermann, H. J., 35, 95

Index



	Contents
	Foreword
	Preface to the Second Edition
	Preface to the First Edition
	List of Case Studies
	1 Fuzzy Sets
	1.1 Classical Sets: Relations and Functions
	1.2 De nition of Fuzzy Sets
	1.3 Basic Operations on Fuzzy Sets
	1.4 Fuzzy Numbers
	1.5 Triangular Fuzzy Numbers
	1.6 Trapezoidal Fuzzy Numbers
	1.7 Fuzzy Relations
	1.8 Basic Operations on Fuzzy Relations
	1.9 Notes

	2 Fuzzy Logic
	2.1 Basic Concepts of Classical Logic
	2.2 Many-Valued Logic
	2.3 What is Fuzzy Logic?
	2.4 Linguistic Variables
	2.5 Linguistic Modifiers
	2.6 Composition Rules for Fuzzy Propositions
	2.7 Semantic Entailment
	2.8 Notes

	3 Fuzzy Averaging for Forecasting
	3.1 Statistical Average
	3.2 Arithmetic Operations with Triangular and Trapezoidal Numbers
	3.3 Fuzzy Averaging
	3.4 Fuzzy Delphi Method for Forecasting
	3.5 Weighted Fuzzy Delphi Method
	3.6 Fuzzy PERT for Project Management
	3.7 Forecasting Demand
	3.8 Notes

	4 Decision Making in a Fuzzy Environment
	4.1 Decision Making by Intersection of Fuzzy Goals and Constraints
	4.2 Various Applications
	4.3 Pricing Models for New Products
	4.4 Fuzzy Averaging for Decision Making
	4.5 Multi-Expert Decision Making
	4.6 Fuzzy Zero-Based Budgeting
	4.7 Notes

	5 Fuzzy Logic Control for Business, Finance, and Management
	5.1 Introduction
	5.2 Modeling the Control Variables
	5.3 If ... and ... Then Rules
	5.4 Rule Evaluation
	5.5 Aggregation (Conict Resolution)
	5.6 Defuzzification
	5.7 Use of Singletons to Model Outputs
	5.8 Tuning of Fuzzy Logic Control Models
	5.9 One-Input–One-Output Control Model
	5.10 Notes

	6 Applications of Fuzzy Logic Control
	6.1 Investment Advisory Models
	6.2 Fuzzy Logic Control for Pest Management
	6.3 Inventory Control Models
	6.4 Problem Analysis
	6.5 Potential Problem Analysis
	6.6 Notes

	7 Fuzzy Queries from Databases: Applications
	7.1 Standard Relational Databases
	7.2 Fuzzy Queries
	7.3 Fuzzy Complex Queries
	7.4 Fuzzy Queries for Small Manufacturing Companies
	7.5 Fuzzy Queries for Stocks and Funds Databases
	7.6 Notes

	References
	Index



