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Preface

Petroleum refining and the petrochemical industry account for a major share of the
world energy and industrial market. In many situations, they represent the eco-
nomic back-bone of industrial countries. Today, the volatile environment of the
market and the continuous change in customer requirements lead to constant
pressure to seek opportunities that properly align and coordinate the different
components of the industry. In particular, petroleum refining and petrochemical
industry coordination and integration is gaining a great deal of interest. Previous
attempts in the field either studied the two systems in isolation or assumed limited
interactions between them.

This book aims at providing the reader with a detailed understanding of the
planning, integration and coordination of multisite refinery and petrochemical
networks using proper deterministic and stochastic techniques. The book consists
of three parts:

� Part 1: Background
� Part 2: Deterministic Planning Models
� Part 3: Planning under Uncertainty

Part 1, comprised of one chapter, introduces the reader to the configuration of
petroleum refining and the petrochemical industry. It also discusses key classifica-
tions of petrochemical industry feedstock from petroleum products. The final part
explains and proposes possible synergies between the petroleum refinery and the
petrochemical industry.

Part 2, comprised of four chapters, focusses on the area of planning in petroleum
refining and the petrochemical industry under deterministic conditions. Chapter 2
discusses the model classes used in process planning (i.e., empirical models, and
first principle models) and provides a series of case studies to illustrate the concepts
and impeding assumptions of the different modeling approaches. Chapter 3 tackles
the integration and coordination of a multisite refinery network. It addresses the
design and analysis of multisite integration and coordination strategies within a
network of petroleum refineries through a mixed-integer linear programming
(MILP) technique. Chapter 4 explains the general representation of a petrochemical
planning model which selects the optimal network from the overall petrochemical
superstructure. The system is modeled as a MILP problem and is illustrated via a
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numerical example. Chapter 5 addresses the integration between the multisite
refinery system and the petrochemical industry. The chapter develops a framework
for the design and analysis of possible integration and coordination strategies of
multisite refinery and petrochemical networks to satisfy given petroleum and
chemical product demand. The main feature of the proposed approach is the
development of a methodology for the simultaneous analysis of process network
integration within a multisite refinery and petrochemical system. Part 2 of this book
serves as a foundation for the reader of Part 3.
Part 3, comprised of four chapters, tackles the area of planning in the petroleum

refinery and the petrochemical industry under uncertainty. Chapter 6 explains the
use of two-stage stochastic programming and the incorporation of risk management
for a single site refinery plant. The example used in this chapter is simple enough for
the reader to grasp the concept of two-stage stochastic programming and risk
management and to be prepared for the larger scale systems in the remaining
chapters. Chapter 7 extends the proposed model in Chapter 3 to account for model
uncertainty by means of two-stage stochastic programming. Parameter uncertainty
was considered and included coefficients of the objective function and right-hand-
side parameters in the inequality constraints. Robustness is analyzed based on both
model robustness and solution robustness, where each measure is assigned a
scaling factor to analyze the sensitivity of the refinery plan and the integration
network due to variations. The proposed technique makes use of the sample average
approximation (SAA)method with statistical bounding techniques to give an insight
on the sample size required to give adequate approximation of the problem.
Chapter 8 addresses the planning, design and optimization of a network of petro-
chemical processes under uncertainty and robust considerations. Similar to the
previous chapter, robustness is analyzed based on both model robustness and
solution robustness. Parameter uncertainty considered in this part includes process
yield, raw material and product prices, and lower product market demand. The
expected value of perfect information (EVPI) and the value of the stochastic solution
(VSS) are also investigated to illustrate numerically the value of including the
randomness of the different model parameters. Chapter 9 extends the petroleum
refinery and petrochemical industry integration problem, explained in Chapter 5, to
consider different sources of uncertainties in model parameters. Parameter uncer-
tainty considered includes imported crude oil price, refinery product price, petro-
chemical product price, refinery market demand, and petrochemical lower level
product demand. The sample average approximation (SAA) method is within an
iterative scheme to generate the required scenarios and provide solution quality by
measuring the optimality gap of the final solution.
All chapters are equipped with clear figures and tables to help the reader under-

stand the included topics. Furthermore, several appendices are included to explain
the general background in the area of stochastic programming, chance constraint
programming and robust optimization.
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Part One
Background
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1
Petroleum Refining and Petrochemical Industry Overview

Petroleum refining and the petrochemical industry account for a major share in the
world energy and industrialmarket. Inmany situations, they represent the economic
back-bone of industrial countries. Today, the volatile environment of the market and
the continuous change in customer requirements lead to constant pressure to seek
opportunities that properly align and coordinate the different components of the
industry. In particular, petroleum refining and petrochemical industry coordination
and integration is gaining a great deal of interest.

In this chapter, we will give an overview of the process configurations of petroleum
refining and the petrochemical industry.Wewill also discuss the key classifications of
petrochemical industry feedstock from petroleum products and explain and propose
possible synergies between the petroleum refinery and the petrochemical industry.

1.1
Refinery Overview

The first refinery was built in Titusville, Pennsylvania in 1860 at a cost of $15 000
(Nelson, 1958). This refinery and other refineries at that time only used batch
distillation to separate kerosene and heating oil from other crude fractions. During
the early years, refining separation was performed using batch processing. However,
with the increase in demand for petroleum products, continuous refining became a
necessity. The first widely recognized continuous refinery plants emerged around
1912 (Nelson, 1958). With the diversity and complexity of the demand for petroleum
products, the refining industry has developed from a few simple processing units to
very complex production systems. A simplified process flow diagram of a typical
modern refinery is shown in Figure 1.1. For a detailed history of the evolution of
refining technologies, we refer the reader to Nelson (1958) and Wilson (1997).

Typically, a refinery ismadeup of several distinct components that constitute a total
production system, as shown in Figure 1.2. These components include:

j3
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. Crude Supply and Blending: This area includes receiving facilities and a tank area
(tank farm) where all crude oil types are received and either blended or sent
directly to the production system.

. Production Units: Production units separate crude oil into different fractions or
cuts, upgrade and purify some of these cuts, and convert heavy fractions to light,
more useful fractions. This area also includes the utilities which provide the
refinery with fuel, flaring capability, electricity, steam, cooling water, fire water,
sweet water, compressed air, nitrogen, and so on, all of which are necessary for the
safe operation of the refinery.

. Product Blending andTransportation: In this area thefinal products are processed
according to either predetermined recipes and/or to certain product specifica-
tions. This area also includes the dispatch (terminals) of finished products to the
different customers.

1.2
Mathematical Programming in Refining

The petroleum industry has long made use of mathematical programming and its
different applications. The invention of both the simplex algorithm by Dantzig in
1947 and digital computers was the main driver for the widespread use of linear
programming (LP) applications in the industry (Bodington and Baker, 1990).
Since then, many early applications followed in the area of refinery planning
(Symonds, 1955; Manne, 1958; Charnes and Cooper, 1961; Wagner, 1969; Addams
and Griffin, 1972) and distribution planning (Zierer, Mitchell and White, 1976).

Figure 1.2 Schematic diagram of standard refinery configuration.

1.2 Mathematical Programming in Refining j5



One of themain challenges that inspiredmore research in the area of refining was
the blending or pooling problem (Bodington and Baker, 1990). The inaccurate and
inconsistent results from the use of linear blending relations led to the development
ofmany techniques to handle nonlinearities. The nonlinearities arisemainly because
product properties, such as octane number and vapor pressure, assume a nonlinear
relationship of quantities and properties of each blending component (Lasdon and
Waren, 1983). In this context, we will describe two commonly used approaches in
industry and commercial planning softwares to tackle this problem. They are linear
blending indices and successive linear programming (SLP).

Linear blending indices are dimensionless numerical figures that were developed
to represent true physical properties ofmixtures on either a volume or weight average
basis (Bodington andBaker, 1990). They can be used directly in the LPmodel and span
themost important properties in petroleumproducts, including octane number, pour
point, freezing point, viscosity, sulfur content, and vapor pressure. Many refineries
and researchers use this approximation. Blending indices tables and graphs can often
be found in petroleum refining books such as Gary and Handwerk (1994) or can be
proprietorially developed by refining companies for their own use.

Crude Oil

Desalting Furnace

Crude Unit

Vacuum Unit

Vacuum Residue

Vacuum Gas Oil

Heavy Gas Oil

Light Gas Oil

Kerosene

Heavy Naphtha

Light Naphtha

LPG, Off Gas

Atmospheric Bottoms

Figure 1.3 Process flow diagram of crude oil distillation process.
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Successive linear programming, on the other hand, is amore sophisticatedmethod
to linearize blending nonlinearities in the pooling problem. The idea of SLP was first
introduced by Griffith and Stewart (1961) of the Shell Oil Company where it was
named themethod of approximation programming (MAP). They utilized the idea of a
Taylor series expansion to remove nonlinearities in the objective function and con-
straints then solving the resulting linearmodel repeatedly. Every LP solution is used as
an initial solution point for the next model iteration until a satisfying criterion is
reached. Bounding constraints were added to ensure the new model feasibility.
Following their work, many improvement heuristics and solution algorithms were
developed to accommodate bigger and more complex problems (Lasdon and
Waren,1980).Mostcommercialblendingsoftwaresandcomputational toolsnowadays
are based on SLP, such as RPMS byHoneywell Process Solutions (previously Booner
and Moore, 1979) and PIMS by Aspen Technology (previously Bechtel Corp., 1993).
However, such commercial tools are not built to support studies on capacity expansion
alternatives, design of plants integration and stochastic modeling and analysis.

All in all, the petroleum industry has invested considerable effort in developing
sophisticated mathematical programming models to help planners provide overall
planning schemes for refinery operations, crude oil evaluation, and other related
tasks.

1.3
Refinery Configuration

1.3.1
Distillation Processes

Crude oil distillation is the heart of andmajor unit in the refinery. Distillation is used
to separate oil into fractions by distillation according to their boiling points. Prior to
distillation, crude oil is first treated to remove salt content, if higher than 10 lb/
1000 bbl, using single or multiple desalting units. This is required in order to
minimize corrosion and fouling in the downstream heating trains and distillation
columns. As illustrated in Figure 1.3, distillation is usually divided into two steps,
atmospheric and vacuum fractionation according to the pressure at which fraction-
ation is achieved. This is done in order to achieve higher separation efficiencies at a
lower cost. After heating the crude to near its boiling point, it is introduced to the
distillation column in which vapor rising through trays in the column is in direct
contact with down-flowing liquid on the trays. During this process, higher boiling
point fractions in the vapor phase are condensed and lighter fractions in the liquid are
vaporized. This continuous process allows the various fractions of the crude oil with
similar boiling points to achieve equilibrium and separate. Liquid can then be drawn
off the column at different heights as product and sent for further treating or storage.
Common products from the atmospheric distillation column include liquefied
petroleum gas (LPG), naphtha, kerosene, gas oils and heavy residues.

1.3 Refinery Configuration j7



The atmospheric bottom, also known as reduced oil, is then sent to the vacuum
unit where it is further separated into vacuum gas oil and vacuum residues. Vacuum
distillation improves the separation of gas oil distillates from the reduced oil at
temperatures less than those at which thermal cracking would normally take place.
The basic idea on which vacuum distillation operates is that, at low pressure, the
boiling points of any material are reduced, allowing various hydrocarbon compo-
nents in the reduced crude oil to vaporize or boil at a lower temperature. Vacuum
distillation of the heavier product avoids thermal cracking andhence product loss and
equipment fouling.

1.3.2
Coking and Thermal Processes

Nowadays more refineries are seeking lighter and higher quality products out of the
heavy residues. Coking and other thermal processes convert heavy feedstocks,
usually from distillation processes, to more desirable and valuable products that
are suitable feeds for other refinery units. Such units include coking and visbreaking.

One of the widely used coking processes is delayed coking. It involves severe
thermal cracking of heavy residues such as vacuum oil, thermal tars, and sand
bitumen. The actual coking in this process takes place in the heater effluent surge
drum and for this reason the process is called �delayed coking�. The coke produced
by this process is usually a hard and porous sponge-like material. This type of coke
is called sponge coke and exists in a range of sizes and shapes. Many other types of
coke are commercially available in the market and have a wide range of uses, see
Table 1.1. Other coking processes, including flexicoking and fluid coking, have been
developed by Exxon.

Theother thermal crackingprocess is visbreaking. This is amilder thermal process
and is mainly used to reduce the viscosities and pour points of vacuum residues to

Table 1.1 End use of coke products (Gary and Handwerk, 2001).

Application Coke type End use

Carbon source Needle Electrodes
Synthetic graphite

Sponge Aluminum anodes
TiO2 pigments
Carbon raiser
Silicon carbide
Foundries
Coke ovens

Fuel use Sponge Space heating in Europe/Japan
Industrial boilers

Shot Utilities
Fluid Cogeneration
Flexicoke Lime

Cement
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meet some types of fuel oil specifications and also to increase catalytic cracker
feedstock. The two widely used processes in visbreaking are coil visbreaking and
soaker visbreaking. In coil visbreakingmost of the cracking takes place in the furnace
coil whereas in soaker visbreaking, cracking takes place in a drum downstream of
the heater, called the soaker. Each process offers different advantages depending on
the given situation.

1.3.3
Catalytic Processes

There are two types of catalytic conversion units in the refinery, cracking and
alteration processes. Catalytic cracking converts heavy oils into lighter products that
can be blended to produce high value final products, such as gasoline, jet fuels and
diesel. Whereas, catalytic altering processes convert feedstocks to higher quality
streams by rearranging their structures. These processes include reforming, alkyl-
ation and isomerization units. Catalytic processes produce hydrocarbon molecules
with double bonds and form the basis of the petrochemical industry.

1.3.3.1 Cracking Processes
Cracking processes mainly include catalytic cracking and hydrocracking. Catalytic
cracking involves breaking down and rearranging complex hydrocarbons into
lighter molecules in order to increase the quality and quantity of desirable products
such as kerosene, gasoline, LPG, heating oil, and petrochemical feedstock. Catalytic
cracking follows a similar concept to thermal cracking except that catalysts are used to
promote and control the conversion of the heavier molecules into lighter products
under much less severe operating conditions. The most commonly used process in
the industry is fluid catalytic cracking (FCC) in which oil is cracked in a fluidized
catalyst bed where it is continuously circulated between the reaction state and the
regeneration state.

Hydrocracking on the other hand is a process that combines catalytic cracking and
hydrogenationwhere the feed is cracked in the presence of hydrogen to producemore
desirable products. This process mainly depends on the feedstock characteristics and
the relative rates of the two competing reactions, hydrogenation and cracking. In the
case where the feedstock has more paraffinic content, hydrogen acts to prevent the
formationofpolycyclic aromatic compounds.Another important role of hydrogen is to
reduce tar formation and prevent buildup of coke on the catalyst.

1.3.3.2 Alteration Processes
Alteration processes involve rearranging feed streammolecular structure in order to
produce higher quality products. One of the main processes in this category is
catalytic reforming. Reforming is an important process used to convert low-octane
feedstock into high-octane gasoline blending components called reformate. The
kinetics of reforming involves a wide range of reactions such as cracking, polymer-
ization, dehydrogenation, and isomerization taking place simultaneously. Depend-
ing on the properties of the feedstock, measured by the paraffin, olefin, naphthene,
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and aromatic content (PONA), and catalysts used, reformates can be produced with
very high concentrations of toluene, benzene, xylene, and other aromatics. Hydro-
gen, a by-product of the reforming process, is separated from the products and used
as a feed in other refining processes.

Another alteration process is alkylation which is used to produce higher octane
aviation gasoline and petrochemical feedstock for explosives and synthetic rubber.
An isomerization process is also used to produce more material as an alkylation
feedstock.

1.3.4
Treatment Processes

Treatment processes are applied to remove impurities, and other constituents that
affect the properties of finished products or reduce the efficiency of the conversion
processes. A typical example of a treating process is hydrotreating.

Catalytic hydrotreating is a hydrogenation process used to remove about 90% of
contaminants such as nitrogen, sulfur, oxygen, and metals from liquid petroleum
fractions. These contaminants, if not removed from the petroleum fractions, can
have a negative impact on the equipment, the catalysts, and the quality of the finished
product. Hydrotreating is mainly used prior to catalytic reforming to reduce
catalyst contamination and before catalytic cracking to reduce sulfur and improve
product yields. It is also used to upgrade middle-distillate petroleum fractions into
finished kerosene, diesel fuel, and heating fuel oils and converts olefins and
aromatics to saturated compounds. One of the emerging applications of this process
is the treatment of pyrolysis gasoline (pygas), a by-product from the manufacture of
ethylene, in order to improve its quality. Typically, the outlet for pygas has beenmotor
gasoline blending, a suitable route in view of its high octane number. However, only
small portions can be blended untreated owing to the unacceptable odor, color,
and gum-forming tendencies of this material. The quality of pygas, which is
high in diolefin content, can be satisfactorily improved by hydrotreating, whereby
conversion of diolefins into mono-olefins provides an acceptable product for motor
gas blending.

1.3.5
Product Blending

Blending is the process of mixing hydrocarbon fractions, additives, and other
components to produce finished products with specific properties and desired
characteristics. Products can be blended in-line through a manifold system, or batch
blended in tanks and vessels. In-line blending of gasoline, distillates, jet fuel, and
kerosene is accomplished by injecting proportionate amounts of each component
into the main stream where turbulence promotes thorough mixing. Additives,
including octane enhancers, metal deactivators, anti-oxidants, anti-knock agents,
gum and rust inhibitors, detergents, and so on, are added during and/or after
blending to provide specific properties not inherent in hydrocarbons.
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1.4
Petrochemical Industry Overview

The petrochemical industry is a network of highly integrated production processes.
The products of one plant may have an end use but may also represent rawmaterials
for another process.Most chemicals can be produced bymany different sequences of
reactions and production processes. This multiplicity of production schemes offers
the opportunity for switching between production methods and raw materials
utilization.

Petroleum feedstock, natural gas and tar represent the main production chain
drivers for the petrochemical industry (Bell, 1990). From these, many important
petrochemical intermediates are produced, including ethylene, propylene, buty-
lenes, butadiene, benzene, toluene, and xylene. These essential intermediates are
then converted to many other intermediates and final petrochemical products,
constructing a complex petrochemical network. Figure 1.4 depicts a portion of the
petrochemical alternative routes to produce cellulous acetate.

Figure 1.4 is in fact a small extract from much larger and comprehensive flow
diagrams found in Stanford Research Institute (SRI) reports. Note that certain
chemicals, acetaldehyde and acetic acid for example, appear in more than one place
in the flowchart. This reflects the different alternative production routes available for
most chemicals. In the industry, many chemicals are products of more than one

Figure 1.4 A Single Route of petroleum feedstock to petrochemical products (Bell, 1990).
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process, depending upon local conditions, corporate polices, and desired by-products
(Bell, 1990).

The flexibility in the petrochemical industry production and the availability of
many process technologies require adequate strategic planning and a comprehensive
analysis of all possible production alternatives. Therefore, a model is needed to
provide the development plan of the petrochemical industry. The model should
account for market demand variability, raw material and product price fluctuations,
process yield inconsistencies, and adequate incorporation of robustness measures.

The realization of theneed and importance of petrochemical planninghas inspired
a great deal of research in order to devise different models to account for the overall
system optimization. Optimization models include continuous and mixed-integer
programming under deterministic or parameter uncertainty considerations. Related
literature is reviewed at a later stage in this book, based on the chapter topic.

1.5
Petrochemical Feedstock

The preparation of intermediate petrochemical streams requires different proces-
sing alternatives depending on the feedstock quality. In our classification of petro-
chemical feedstockswe closely follow that ofGary andHandwerk (1994) consisting of
aromatics, olefins, and paraffin/cyclo-paraffin compounds. The classification of
petrochemical feedstocks into these clusters helps to identify the different sources
in the refinery that provide suitable feedstock and, therefore, to better recognize areas
of synergy between the refinery and petrochemical systems.

1.5.1
Aromatics

Aromatics are hydrocarbons containing a benzene ring which is a stable and
saturated compound. Aromatics used by the petrochemical industry are mainly
benzene, toluene, xylene (BTX) as well as ethylbenzene and are produced by catalytic
reforming where their yield increases with the increase in reforming severity (Gary
and Handwerk, 1994). Extractive distillation by different solvents, depending on the
chosen technology, is used to recover such compounds. BTX recovery consists of an
extraction using solvents that enhances the relative volatilities of the preferred
compound followed by a separation process based on the boiling points of the
products. Further processing of xylenes using isomerization/separation processes is
commonly required to produce o-, m-, and p-xylene mixtures, depending on market
requirements. Benzene, in particular, is a source of a wide variety of chemical
products. It is often converted to ethylbenzene, cumene, cyclohexane, and nitro-
benzene, which in turn are further processed to other chemicals including styrene,
phenol, and aniline (Rudd et al., 1981). Toluene production, on the other hand, is
mainly driven by benzene and mixed xylenes demand. Mixed xylene, particularly in
Asia, is used to produce para-xylene and polyester (Balaraman, 2006).
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The other source of aromatics is the pyrolysis gasoline (pygas) which is a byproduct
of naphtha or gas oil steam cracking. This presents an excellent synergistic oppor-
tunity between refinery, BTX complex and stream cracking for olefins production.

1.5.2
Olefins

Olefins are hydrocarbon compounds with at least two carbon atoms and having a
double bond. Their unstable nature and tendency to polymerize makes them one of
the very important building blocks for the chemical andpetrochemical industry (Gary
and Handwerk, 1994). Although olefins are produced by fluid catalytic cracking in
refineries, the main production source is through steam cracking of liquefied
petroleum gas (LPG), naphtha or gas oils.

The selection of steam cracker feedstock is mainly driven by market demand as
different feedstock qualities produce different olefins yields. One of the commonly
used feed quality assessmentmethods in practice is the Bureau ofMines Correlation
Index (BMCI) (Gonzalo et al., 2004). This index is a function of average boiling point
and specific gravity of a particular feedstock. The steam cracker feed quality improves
with a decrease in the BMCI value. For instance, vacuum gas oil (VGO) has a high
value of BMCI and, therefore, is not an attractive steam cracker feed. The commonly
used feedstocks in industry are naphtha and gas oil.

Steam cracking plays an instrumental role in the petrochemical industry in terms of
providing the main petrochemical intermediates for the downstream industry. The
steam cracker olefin production includes ethylene, propylene, butylene and benzene.
These intermediates are further processed into a wide range of polymers (plastics),
solvents, fibers, detergents, ammonia and other synthetic organic compounds for
general use in the chemical industry (Rudd et al., 1981). In a situationwhereworldwide
demand for these basic olefins is soaring, more studies are being conducted to maxi-
mize steam cracking efficiency (Ren, Patel and Blok, 2006). An alternative strategy
would be to seek integration possibilities with the refinery as they both share feed-
stocks and products that can be utilized to maximize profit and processing efficiency.

1.5.3
Normal Paraffins and Cyclo-Paraffins

Paraffin hydrocarbon compounds contain only single bonded carbon atoms which
give them higher stability. Normal paraffin compounds are abundantly present in
petroleum fractions but are mostly recovered from light straight-run (LSR) naphtha
and kerosene. However, the non-normal hydrocarbon components of LSR naphtha
have a higher octane number and, therefore, are preferred for gasoline blending
(Meyers, 1997). For this reason, new technologies have been developed to further
separate LSR naphtha into higher octane products that can be used in the gasoline
pool and normal paraffins that are used as steam cracker feedstock (e.g., UOP
IsoSiv� Process). The normal paraffins recovered from kerosene, on the other hand,
are mostly used in biodegradable detergent manufacturing.
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Cyclo-paraffins, also referred to as naphthenes, are mainly produced by dehydro-
genation of their equivalent aromatic compounds; such as the production of
cyclohexane by dehydrogenation of benzene. Cyclohexane is mostly used for the
production of adipic acid and nylon manufacturing (Rudd et al., 1981).

1.6
Refinery and Petrochemical Synergy Benefits

Process integration in the refining and petrochemical industry includes many
intuitively recognized benefits of processing higher quality feedstocks, improving
the value of byproducts, and achieving better efficiencies through sharing of
resources. Table 1.2 illustrates different refinery streams that can be of superior
quality when used in the petrochemical industry. The potential integration alter-
natives for refining and petrochemical industries can be classified into three main
categories; (i) process integration, (ii) utilities integration, and (iii) fuel gas upgrade.
The integration opportunities discussed below are for a general refinery and a
petrochemical complex. Further details and analysis of the system requirements
can be developed based on the actual system infrastructure, market demand, and
product and energy prices.

1.6.1
Process Integration

The innovative design of different refinery processes while considering the down-
stream petrochemical industry is an illustration of the realization of refining and

Table 1.2 Petrochemical alternative use of refinery streams (Anon, 1998).

Refinery Stream Petrochemical Stream Alternative Refinery Use

FCC offgas Ethylene Fuel gas
Refinery propylene (FCC) Propylene Alkylation/polygasoline
Reformate Benzene, toluene, xylenes Gasoline blending
Naphtha and LPG Ethylene Gasoline Blending
Dilute ethylene (FCC and
delayed coker offgas)

Ethylbenzene Fuel gas

Refinery propylene (FCC product) Polypropylene, Cumene,
Isopropanol, Oligomers

Alkylation

Butylenes (FCC and delayed coker) MEK (methyl ethyl ketone) Alkylation, MTBE
Butylenes (FCC and delayed coker) MTBE Alkylation, MTBE
Refinery benzene and hydrogen Cyclohexane Gasoline blending
Reformate o-xylene Gasoline blending
Reformate p-xylene Gasoline blending
Kerosine n-paraffins Refinery product
FCC light cycle oil Naphthalene Diesel blending
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petrochemical integration benefits. This is demonstrated by the wide varieties of
refinery cracking and reforming technologies thatmaximize olefinproduction. Some
of the available technologies include cracking for high propylene and gasoline
production (Fujiyama et al., 2005), maximum gasoline and LPG production, and
low-pressure combination-bed catalytic reforming for aromatics (Wang, 2006). Other
technologies include different extractive treatments of refinery streams, for example,
aromatic recovery from light straight-run (LSR) naphtha. The normal paraffins of the
LSR, on the other hand, are typically used as a steamcracker feedstock (Meyers, 1997).

Reforming, as mentioned above, is the main source of aromatics in petroleum
refining where their yield increases with the increase in reforming severity. Aro-
matics in the reformate streams are recovered by extractive distillationusing different
solvents, depending on the chosen technology. The benzene-toluene-xylenes (BTX)
complex is one of the petrochemical processes thatmakes use ofmany of the benefits
of integration with petroleum refining. The integration benefits are not only limited
to the process side but also extend to the utilities, as will be explained in the following
section.

Pyrolysis gasoline (pygas), a byproduct of stream cracking, can be further pro-
cessed in the BTX complex to recover the aromatic compounds and the raffinate after
extraction can be blended in the gasoline or naphtha pool (Balaraman, 2006). If there
is no existing aromatics complex to further process the pygas, it could alternatively be
routed to the reformer feed for further processing (Philpot, 2007). However, this
alternativemay not be viable in general asmost reformers run onmaximumcapacity.
Pygas from steam cracking contains large amounts of diolefins which are undesir-
able due to their instability and tendency to polymerize yielding filter plugging
compounds. For this reason, hydrogenation of pygas is usually recommended prior
to further processing.

1.6.2
Utilities Integration

Petroleum refining and the basic petrochemical industry are the most energy
intensive processes in the chemical process industry (Ren, Patel and Blok, 2006).
The energy sources in these processes assume different forms including fuel oil, fuel
gas, electrical power, and both high and low pressure steam. The different energy
requirements and waste from the whole range of refinery and petrochemical units
present intriguing opportunities for an integrated complex. Integration of energy
sources and sinks of steam cracking, for instance, with other industrial processes,
particularly natural gas processing, can yield significant energy savings reaching up
to 60% (Ren, Patel and Blok, 2006). Furthermore, gas turbine integration (GTI)
between petrochemical units and ammonia plants can lead to a reduction in energy
consumption by up to 10% through exhaust-heat recovery (Swaty, 2002). This can be
readily extended to the refinery processing units which span a wide variety of
distillation, cracking, reforming, and isomerization processes.

Hydrogen is another crucial utility that is receivingmore attention recently,mainly
due to the stricter environmental regulations on sulfur emissions. Reduction of
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sulfur emissions is typically achieved by deeper desulfurization of petroleum fuels
which in turn requires additional hydrogen production (Crawford, Bharvani and
Chapel, 2002). A less capital intensive alternative to alleviate hydrogen shortage is to
operate the catalytic reformer at higher severity. However, higher severity reforming
increases the production of BTX aromatics which consequently affect the gasoline
pool aromatics specification. Therefore, the BTX extraction process becomes a more
viable alternative for the sake of aromatics recovery as well as maintaining the
gasoline poolwithin specification (Crawford, Bharvani andChapel, 2002). The capital
cost for the implementation of such a project would generally be lower as the BTX
complex and refinery would share both process and utilities streams.

1.6.3
Fuel Gas Upgrade

Refinery fuel gas is generated from refinery processes and is mainly comprised of
C1/C2 fractions and somehydrogen.Considerable amounts of light hydrocarbons are
produced from the different conversion units in the refinery and are collected in the
common fuel gas system. For instance, FCC off gas contains significant amounts of
ethylene and propylene which can be extracted and processed as petrochemical
feedstocks. A number of integrated U.S. and European refineries have recognized
and capitalized on this opportunity by recovering these high value components
(Swaty, 2002). This type of synergy requires proper planning and optimization
between the petroleum refining and petrochemical complexes.

The other major component is hydrogen which typically accounts for 50–80% of
the refinery fuel gas. This substantial amount of hydrogen is passed to the fuel gas
system from different sources in the refinery. The most significant source, however,
is the catalytic reforming. Hydrogen recovery using economically attractive technol-
ogies is of great benefit to both refineries and petrochemical systems, especially with
the increasing strict environmental regulations on fuels.
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2
Petroleum Refinery Planning

The petroleum refining industry accounts for a major share in the world energy and
industrial market. Through proper planning and the use of adequate mathematical
models for the different processing units, many profit improving opportunities can
be realized and acquired. The development and selection of suitable mathematical
modeling techniques is an art that requires practice, good understanding of the
process interactions, and experience.

In this chapter, we give an overview of planning and scheduling practices in the
refinery industry and discuss mathematical modeling classes used in process
planning. We also provide a series of examples to illustrate the use of mathematical
models in the planning of refinery processes. The readers should be able to apply and
extend the same techniques explained in this chapter to their own refinery system.
The chapter concludes with some reflections of the current difficulties and chal-
lenges in the planning of petroleum refineries.

2.1
Production Planning and Scheduling

Planning and scheduling can be defined as developing strategies for the allocation
of equipment, utility or labor resources over time to execute specific tasks in
order to produce single or several products (Grossmann, van den Heever and
Harjunkoski, 2001). In most research dealing with planning and scheduling, there
seems to be no clear cut division between the two.Hartmann (1998) andGrossmann,
van denHeever andHarjunkoski (2001) pointed out some of the differences between
aplanningmodel and a schedulingmodel. In a general sense, processmanufacturing
planning models consider high level decisions such as investment on longer time
horizons. This coarse aggregation approach results in a loss of manufacturing detail
such as the sequence or the order inwhich specificmanufacturing steps are executed.
Schedulingmodels, on the other hand, are concernedmore with the feasibility of the
operations to accomplish a given number and order of tasks. Scheduling involves
determining a feasible sequence and timing of production operations at different
pieces of equipment so as to meet the production goals laid out by the planning
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model. A key characteristic of scheduling operations is the dynamic and extensive
information required to describe the system. Customer orders, resource availability,
and manufacturing processes undergo relatively rapid changes, resulting in a
compelling need for efficient management of information and resources.

Planning problems can mainly be distinguished as strategic, tactical or opera-
tional, based on the decisions involved and the timehorizon considered (Grossmann,
van den Heever and Harjunkoski, 2001). The strategic level planning considers a
time span of more than one year and covers the whole width of an organization. At
this level, approximate and/or aggregate models are adequate and mainly consider
future investment decisions. Tactical level planning typically involves a midterm
horizon of a few months to a year, where the decisions usually include production,
inventory, and distribution. Operational level covers shorter periods of time, span-
ning from one week to three months, where the decisions involve actual production
and allocation of resources. For a general process operations hierarchy, planning is at
the highest level of command. As shown in Figure 2.1, enterprise-wide planning
provides production targets for each individual site, where each site transforms the
plans into schedules and operational/control targets.

Despite the differences, it is obvious that production planning, scheduling, and
operations control are all closely-related activities. Decisions made at the production
planning levelhaveagreat impact at thescheduling level,while thescheduling in itself
determines the feasibility of executing the production plans with the resulting

Enterprise-wide planning

Single Site Production Planning

On-line Scheduling/Supervisory Control

Sequence Control

Regulatory Control

Figure 2.1 Process operations hierarchy (Shah, 1998).
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decisions dictating operations control. Ideally, all three activities should be analyzed
and optimized simultaneously, hence the need for integration between planning,
scheduling, and operational activities, with the expectation that this would greatly
enhance the overall performance of not only the refinery or process plant concerned,
but also the parent governing organization. It is desirable to extend the scope of this
hierarchy to include thehighest levelof strategicdecisionmaking, that is, theplanning
and design of production capacities required for future operations.While these levels
can be viewed to constitute a hierarchy, the requirements of the hierarchy dictate that
these levels communicate in a two-way interactive dynamics, with the lower levels
communicating suitably aggregated performance limits and capacities to the upper
levels. This is essentially the challenge of integrating the planning, scheduling, and
operations functions of a process plant, primarily theflowof informationbetween the
various levels. In petroleum refineries, this problem stands out, for example, when
dealing with activities such as crude oil procurement, logistics of transportation, and
schedulingofprocesses.Formore informationon thedevelopmentof suchhierarchal
operations and their challenges, we refer the interested readers to Reklaitis (1991),
Rippin (1993), Shah (1998), and Grossmann (2005).

2.2
Operations Practices in the Past

Inmost non-integrated situations, strategic planning is performedby one entity close
to themarketing and supply functions, but not part of them. Planning activities serve
to consolidate feedstock purchases, commitments, and sales opportunities by
attempting to set achievable targets for the plant. Scheduling is undertaken
by another entity that stands betweenplanning and operations. It attempts to produce
a schedule that is feasible, if not optimal, to meet commitments. Process operations
are handled by yet another entity, usually compartmentalized by processes, that
operates the processes to the best capability, given the information available from
planning and scheduling activities. The three entities have different objectives and
possibly have different reward motivations and reward structures, which lead to
different philosophies of what constitutes a job well done (Bodington, 1995).

The petroleum industry has invested considerable effort in developing sophisti-
cated mathematical programming models to help planners provide strategies and
directions for refinery operations, crude oil evaluation, and other related tasks.
Likewise, there has been substantial development and implementation of tools for
scheduling, as well as considerable efforts towards advanced process control for
process plants to achieve optimal operations. Unfortunately, a gap will always exist
between the three activities when working in isolation from each other. Typically, the
refinery scheduler attempts to use themonthly linear programming (LP) model plan
to develop a detailed day-to-day schedule based on scheduled crude and feedstock
arrivals, product lifting, and process plant availabilities and constraints. The schedule
usually includes details of the operation of each process unit, the transfer of
intermediates to and from the tank farm, and product blending schedules. However,
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the scheduling is performed for each tank instead of for a pool. Moreover, most
refinery schedulers have few extensive computing tools to accomplish this task.Many
use spreadsheets that contain individual operating modes for the primary processes
and for the main feedstocks, based on the same data employed in the LPmodel. The
scheduler utilizes the spreadsheet to generate manufacturing plans on a daily or
weekly basis. Compounding the problem is the fact that deficiencies in planning or
operations often create problems that appear in the scheduling process. Operating
deficiencies or inferior data on the status of the production process could potentially
lead to customer service problems. These problems may also occur due to either a
planning activity with an overly optimistic estimate of available capacity or a poor
understanding of the production capabilities.

2.3
Types of Planning Models

Mathematical models can be classified in different ways depending on the type of
analysis involved. For example, one can classify them according to their composing
variables into linear and nonlinear models, or according to the nature of their
variables and parameters into deterministic and stochastic models, or according to
their component state into static and dynamic models. However, from a process
engineering perspective, we are interested in the inherent representation of the
mathematical model of the actual physical system. Based on this, there are two
general model classes: (i) mechanistic models, and (ii) empirical models. Mecha-
nistic models are those based on a theoretical understanding of the system and the
interactions between its process variables. They are often based on the application of
conservation principles (i.e., material and energy balances) and equilibrium relation-
ships. The main advantage of such fundamental models is the ability to construct
themprior to putting the system into operation. Empiricalmodels, on the other hand,
also known as black box and data drivenmodels, are usefulwhenmechanisticmodels
are difficult to implement due to complexity or resource limitation. In empirical
models the system is viewed in terms of its inputs, outputs, and the relation between
them, without any knowledge of the internal mechanism of the system.

In the next sections, we will present a series of empirical model based case studies
that illustrate different planning techniques commonly used in practice by many
refineries.

2.4
Regression-Based Planning: Example of the Fluid Catalytic Cracker

In large-scale plants, such as refinery processing plants, even a small increase in yield
can lead to a significant impact on profitability. This, and the increasing feed
heaviness, as well as the more stringent demands on product qualities and envi-
ronmental regulations (Anabtawi et al., 1996)make it necessary to developmodels for
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refinery operations that can be used to optimize the various processes and also to
predict product yields and properties.

The purpose of this case study is to illustrate how to develop suchmodels. Since the
FCC process is the most important and widely used process in a petroleum refinery,
the present work is concerned with predicting yields and properties for this process.
The consideration of other processes can be undertaken in a similar manner.

2.4.1
Fluid Catalytic Cracking Process

Figure 2.2 shows a simplified process flow chart of the FCC unit. The cracking
reactions are carried out in a vertical reactor vessel in which vaporized oil rises and
carries along with it, in intimate contact, small-fluidized catalyst particles. The
reactions are very rapid, and only a few seconds of contact time are necessary for
most applications. Simultaneously with the desired reactions, a carbonaceous
material of low hydrogen-to-carbon (H/C) ratio, �coke� deposits on the catalyst and
renders it inactive for all practical purposes. The spent catalyst and the converted oils
are then separated, and the catalyst is passed down-flow to a separate chamber, the
regenerator, where the coke is combusted, rejuvenating the catalyst. The regenerated
catalyst is then conveyed down-flow to the bottom of the reactor riser, where the cycle
begins again.

A number of mechanistic modeling studies to explain the fluid catalytic cracking
process and to predict the yields of valuable products of the FCC unit have been
performed in the past. Weekman and Nace (1970) presented a reaction network
model based on the assumption that the catalytic cracking kinetics are second order
with respect to the feed concentration and on a three-lump scheme. The first lump
corresponds to the entire charge stock above the gasoline boiling range, the second
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Slurry
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Figure 2.2 Fluid catalytic cracker unit.
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lump represents the gasoline range hydrocarbon products, and the third lump
corresponds to the coke and C1–C4 products. Themajor advantages of theWeekman
andNacemodel are its simplicity in describing the cracking reactions and its ability to
provide an estimation of gas oil and gasoline yields. The major disadvantage is the
lumping of coke with light gases. Despite this shortcoming, the model is currently
being used in many FCC simulation studies.

Jacob, Voltz andWeekman (1976) proposed a kinetic-based FCC reaction network
consisting of ten kinetic lumps. In this model, the feed is lumped into paraffins,
naphthenes, aromatic rings, and aromatic groups in both the heavy and light
fractions of the charge stock, see Figure 2.3. The products are divided into two
lumps: gasoline, and coke andC1–C4 gases. The advantage of thismodel is that yields
of different products can be estimated. The major disadvantage is the complicated
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Figure 2.3 Ten-lump FCC reaction network.
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mathematics, the necessity of analyzing the feed composition beforehand, and, as in
the three-lumpmodel, the lumping of coke and light gases in one component, despite
the different role these components play in the behavior of the FCC unit. Arbel
et al. (1995) presented an extension to the Jacobs et al.model that takes into account
catalyst characterization based on experimental data.

Models that distinguish between coke and light gases have also appeared in the
literature. Lee et al. (1989) proposed such a model with a four-lump kinetic network.
Their results showed that the calculated yield values for gasoline, coke, and gas oil
were consistent with experimental data. Corella and Frances (1991) have also
proposed a model that distinguishes between coke and light gases. Their model is
based on a five-lump kinetic scheme: feedstock, gas oil, gasoline, light gases, and
coke. This scheme suggests that the feedstock cracks to gas oil, which makes it more
applicable to hydrocracking units.

From the above discussion, it is clear that the performance of the FCC process
depends upon a number of factors such as: feedstock quality, conversion level, and
operating conditions. When carrying out performance studies or when comparing
competing processes, mechanistic models are usually not the best course of action.
Experienced operators have relied in the past on light gas correlations based on
industrial yield data (e.g.,Gary andHandwerk, 2001;Maples, 1993). These are usually
charts that give a general description of light gas yields as a function of feed
conversion and feed gravity. In this section we will illustrate the development of
linear and non-linear regression models that give the FCC product yields and
properties. The feedstock properties are the primary correlation parameters. The
models can be based on data collected from the plant itself or from various other
sources from the literature on pilot and commercial plants. The main utility of these
models is their ease of integration within general mathematical programming
models for planning and scheduling of refinery operations. The correlations that
we present below have the ability to predict the yield and product properties that a
typical FCC unit would achieve in practice. Although the operating conditions have a
great effect on the FCCprocess, these are excluded because they are not really needed
to evaluate differences in product yields and properties for different feedstocks.

2.4.2
Development of FCC Process Correlation

In order to develop a general correlation for the FCC process, data was collected from
various sources on pilot and commercial plant operations (Maples, 1993; Venuto and
Habib, 1979; Vermilion, 1971; Young et al., 1991). In the data, the yield using a zeolite
catalyst was given for the following products:

1) Propylene
2) Isobutane
3) Butylene
4) Butane
5) Gasoline
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6) Coke
7) Heavy cycle oil
8) Light cycle oil
9) Propane
10) Gas (lighter than C2)
11) Normal butane

The yields for the various products were given as a function of the properties of the
feedstocks and the volume percent conversion. The feedstock properties are the feed
sulfur content expressed as a weight percent, the feed API and Watson character-
ization factor, K. The API is related to specific gravity by the following equation:

API ¼ 141:5
standard specific gravity

�131:5

where the standard specific gravity (SG) is the ratio of the material density at 60 �F to
the water density at the same temperature. The characterization factorK is defined as
(Watson and Nelson, 1933):

K ¼ ðTmabpÞ
1
3

SG

where Tmabp is the mean average boiling point of the petroleum fraction in degrees
Rankin.

Thedata encompass awide range of conditions for the FCCprocess. Table 2.1 gives
the range of data collected. Histograms of the yields of the products of the unit and of
the carbonConradson residue (CCR)number are given inFigure 2.4. Thehistograms
are all bell-shaped and illustrate the wide range of data assembled.

Table 2.1 Ranges of data collected.

Variable Minimum value Maximum value

Feed K 11.3 12.2
LV% 24.5 93
Feed API 12.9 39.4
Feed S 0.1 6
Propane (C3) yield 0.6 5.6
n-Butane (nC4) yield 0.3 3.8
Butane(C4) 4.6 32.2
Isobutane (iC4) yield 0.3 14
Propylene (C3¼) yield 1.6 12
Butylene (C4¼) yield 2 15.2
Light gas yield 0.5 15.4
Gasoline yield 18.2 73
Light cycle oil (LCO) yield 1.1 68
Heavy cycle oil (HCO) yield 1.0 40
Coke yield 1.3 11.7
Carbon Conradson number (CCR) 0 4.2
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Figure 2.4 Histograms showing the variation of data collected.
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To simplify the discussion, let:

X1¼ Feed characterization factor
X2¼ Liquid volume percent conversion
X3¼ Feed API
X4¼ Feed sulfur content

Let also Yi denote product i yield and Zij denote property j for product i. The
functional relationship for each dependent variable Yi (or Zij) can be first assumed to
be a linear additive function of the four independent variables, that is,

Ŷ i ¼ Ai þBiX1 þCiX2 þDiX3 þ EiX4 þ ei

The error term ei in the above equation is the deviation of the value of Ŷ i from
the true value Ŷ i. A least square analysis was carried out for each dependent
variable Ŷ i with the objective of finding the best linear equation that fits the data
with respect to the criteria: minimizing the sum of the error square (i.e., minimize
PNd

i¼1
ðYi�Ŷ iÞ2 ¼

PNd

i¼1
e2i ) Where Nd is the number of data points collected for the

variable Yi.
Table 2.2 gives properties of some of the important FCC unit products. All

correlations are linear and with a good fit, where the correlation coefficient R is
close to 1. In Table 2.3 the yields of the various FCC products are given as linear
equations. The utility of these equations is their ease of integration within linear
programming (LP) software for a refinery. The correlation coefficient R is also given
in Table 2.3. As can be seen, most yield equations have a coefficient that is close to 1.
For those equations with a poor linear fit, a nonlinear model would be more
appropriate. The procedure to obtain nonlinear functional forms for yield equations
with good predictions is a trial and error one. Various forms have been tried that
include different nonlinear terms (e.g., cross terms, logs, exponentials, etc.). The
obtained correlations are shown in Table 2.4. The predictions of these models are
more accurate than those of the linear models. However, their use in refinery
planning programs would increase the computation burden. In addition, with a
linear program sensitivity and post optimality can be easily carried out; unlike
nonlinear programs that require resolving the model.

Improvement in the accuracy of the linear yield equations might be obtained by
using more independent variables in the prediction process. For instance, the use of
aniline point and volumetric average boiling point (VABP) might lead to better
accuracy. Unfortunately, the published data do not include these two variables.

Table 2.2 FCC unit product properties.

Wt.% sulfur in hydrogen sulfide¼�0.0683 þ 0.451Wt.% in feed R¼ 0.999
Wt.% sulfur in LCO¼�0.203 þ 1.21Wt. % in feed R¼ 1
Wt. % sulfur in HCO¼�0.365 þ 2.16Wt. % in feed R¼ 1
Clear Research Octane Number¼ 87.1 þ 0.27 X2� 0.27 (Gaso) R¼ 0.998
Gasoline API¼ 64.9� 0.193 X2 þ 0.0687 (GASO) R¼ 1
LCO API¼�3.24� 0.482 X2 þ 2.15 X3 R¼ 1
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2.4.3
Model Evaluation

The models presented in the previous section are evaluated by comparing their
predictions to actual plant data and also to the predictions of correlations proposed by
previous researchers. The models give predictions that are close to the actual data.
The average relative percent error between the predicted values and the actual values
ranges from 0 to 10% for the proposed models. Figure 2.5 represents cross plots of
the predicted versus the actual product yields and properties. As can be seen, all data
points lie close to the 45� line, indicating a good fit.

The predictions of the proposed correlations are compared to those of
Maples (1993), Gary and Handwerk (2001), and Jones (1995). Tables 2.5–2.7 give
the percent error for the predictions of the various models. As can be seen, the
predictions of the present correlations are always closer to the actual data.

2.4.4
Integration within an LP for a Petroleum Refinery

An LPmodel for a petroleum refinery would consist of a number of modules for the
different units (e.g., FCC, hydrocracker, fluid delayed coker, etc.). Each of these

Table 2.3 Linear regression models for predicting FCC product yields.

(C3¼)¼�0.615 X1 þ 0.208 X2� 0.0465X3 þ 0.7 X4 þ 0.07 R¼ 0.923
(I-C4)¼ 1.32 X1 þ 0.155 X2 þ 0.056 X3� 0.0517 X4� 19.7 R¼ 0.938
(C4¼)¼ 0.957 X1 þ 0.166 X2� 0.0916 X3 þ 1.17 X4� 13.9 R¼ 0.944
(C4)¼ 3.43 X1 þ 0.235 X2 þ 0.216 X3 þ 0.443 X4 �47.8 R¼ 0.948
(GASO)¼�0.66 X1 þ 0.754 X2� 0.362 X3� 1.333 X4 þ 19.8 R¼ 0.962
(COKE)¼ 1.11 X1 þ 0.0663 X2� 0.118 X3 þ 0.185 X4� 9.96 R¼ 0.836
(HCO)¼�3.13 X1� 0.47 X2 þ 0.207 X3 þ 3.75 X4 þ 71.4 R¼ 0.883
(LCO)¼ 1.82 X1� 0.44 X2� 0.018 X3� 2.72 X4 þ 30 R¼ 0.776
(GAS)¼ 0.756 X1� 0.0349 X2 þ 0.0188 X3� 0.373 X4� 4.31 R¼ 0.738
(N-C4)¼ 0.159 X1 þ 0.0136 X2� 0.00135 X3� 0.0743 X4� 1.57 R¼ 0.785
(C3)¼�0.74 X1 þ 0.0175 X2 þ 0.0598 X3� 0.267 X4 þ 0.54 R¼ 0.647

Table 2.4 Nonlinear regression models for predicting FCC product yields.

LOG(HCO)¼�0.303 X1� 0.0194 X2 þ 0.0207 X3 þ 0.0882 X4 þ 5.38 R¼ 0.952
(COKE)¼ 40.9LOG X1 þ 12.2 LOG X2� 0.0082 X3/X4� 60.8 R¼ 0.911
LOG(LCO)¼�0.98 LOG X1� 0.782 EXP(0.01X2)� 0.00077 X3

�X4/X1 þ 3.93 R¼ 0.921
(GAS)¼ 1.66 X3/X1� 2.43 EXP(0.01X2)� 2.58 EXP(0.1X4) þ 6.54 R¼ 0.951
LOG(N-C4)¼ 3.05 LN X1 þ 0.252 EXP (0.01X2) þ 0.184 EXP
(0.05 X3)� 0.891 EXP (0.095X4)� 7.59

R¼ 0.906

(C3)¼�186 LOG X2� 0.0461 X2 (X1 þ X3 þ X4)/100 þ 0.0747
X2

2� 0.35 X2
2 (X1 þ X3 þ X4)/100 þ 5X2

2(X1 þ X3 þ X4)/100)
2)

�12((X1 þ X3 þ X4)/100)
2) þ 303

R¼ 0.910
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modules represents the material balances for the unit. The interconnections among
units would be appropriately represented by information flows. For instance, to
indicate that the product of one unit would be the feed to another unit, the variables
are defined in such a way that the information flow is in the same direction as the
material flow.

The material balance equations for the FCC unit are easily expressed in terms of
the yield equations presented earlier. If F represents the total inlet feed (barrels per
day, BPD) to the FCC unit and Yi is the yield of product i as read from Tables 2.3
and 2.4, then the production of product i can be simply obtained by multiplying the
feed to the unit by the yield of product i (i.e., FYi). Such material balance equations
must be written for all units of a refinery in order to prepare a mathematical

Figure 2.5 Predicted yields versus measured yields for the various FCC products considered.
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programming (planning) model. In addition, other constraints must also be gener-
ated, such as capacity constraints, component blending restrictions, quality speci-
fications and demand constraints.

2.5
Artificial-Neural-Network-Based Modeling: Example of Fluid Catalytic Cracker

Refinery operations are complex processes and no thorough model has yet been
developed for them. These processes are characterized by large dimensionality and a
strong interaction among the process variables. Their modeling usually requires the
application of mass and heat transfer, fluid mechanics, thermodynamics, and
kinetics. The result is a system of nonlinear, coupled algebraic and/or differential
equations. A large number of equations is usually required for their description and
many parameters have to be estimated. In addition to the above complications,
refinery processes are inherently flexible processes that are able to take a variety of
feedstocks and to operate at various conditions to be able to meet seasonal and other
changing product demand patterns.

A neural-network-based simulator can overcome the above complications because
the network does not rely on exact deterministic models (i.e., based on the physics
and chemistry of the system) to describe a process. Rather, artificial neural networks
assimilate operating data from an industrial process and learn about the complex
relationships existing within the process, evenwhen the input–output information is
noisy and imprecise. This ability makes the neural-network concept well suited for
modeling complex refinery operations. For a detailed review and introductory
material on artificial neural networks, we refer readers to Himmelblau (2008), Kay
and Titterington (2000), Baughman and Liu (1995), and Bulsari (1995). We will
consider in this section themodeling of the FCC process to illustrate themodeling of
refinery operations via artificial neural networks.

2.5.1
Artificial Neural Networks

Artificial neural networks (ANN) are computing tools made up of simple, inter-
connected processing elements called neurons. The neurons are arranged in layers.
The feed-forward network consists of an input layer, one or more hidden layers, and
an output layer. ANNs are known to be well suited for assimilating knowledge about
complex processes if they are properly subjected to input–output patterns about the
process.

In order to develop an ANNmodel for a refinery unit that is able to predict product
yields and properties, one must first decide on the important inputs and outputs of
the process. The choice of these inputs and outputs is the most important factor in
successfully preparing an ANNmodel. These inputs and outputs must be chosen by
carefully examining plant data. A good expertise in relation to the process is
necessary.
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Another important factor in developing an ANN model is deciding the archi-
tecture of the network. This decision is often made on a trial and error basis. First, a
network with one hidden layer only and with a fixed number of neurons is chosen.
The predictions of the network are then compared to actual plant data. The number
of neurons is increased slowly and the predictions of the network are checked
continuously. If the predictions are still poor, then one opts to use one additional
hidden layer. For each architecture used, the network is trained to learn the
input–output pattern fed to it. Training means the determination of the connection
weights among the various neurons. Various algorithms can be used to train a
neural network. In this study, the back-propagation algorithm is used. When the
neural network is trained with this algorithm, the errors between the estimated
outputs from the network and the actual outputs are calculated and propagated
backward through the net. These errors are used to update the connection
weights among the neurons. This operation is repeated until the network outputs
are within a pre-specified tolerance of the actual outputs. More details about
the back-propagation algorithm and appropriate references can be found in
Elkamel (1998).

The formula used in implementing the back-propagation algorithm is given by:

Wt ¼ Wt�1 þ grf ðXt;Wt�1Þ ðYt�f ðXt;Wt�1ÞÞ t ¼ 1; 2; . . . ð2:1Þ
The index t in the above equation corresponds to the training instance, X is

the vector of input variables, Y is the vector of target variables, g is a learning rate,
f(Xt, Wt�1) is a shorthand notation for network output, and !f is the gradient of f
with respect to the weights W. Note that the weights in the neural network are
adjusted according to the error between the target values and the values predicted by
the network. In order to speed up the convergence properties of the back-propagation
algorithm amomentum term is used along with a variable learning rate. In addition,
the Levenberg–Marquardt algorithm is used to perform the optimization over
network weights.

2.5.2
Development of FCC Neural Network Model

In order to develop anANNmodel for the FCCprocess, we use here the same data set
as in the previous section (Section 2.4). This data set was divided into two sets, one set
for training and one set for testing the neural network. The prepared network model
is able to predict the yields of the various FCC products and also the CCR number.
During training of the neural network, first, only one hidden layer with five neurons
was used. This network did not performwell against a pre-specified tolerance of 10�3.
The number of neurons in the hidden layer was therefore increased systematically. It
was found that a network of one hidden layer consisting of twenty neurons, as shown
in Figure 2.6, performed well for both the training and testing data set. More details
about the performance of this network will be given later. The network architecture
depicted in Figure 2.6 consists of an input layer, a hidden layer, and an output layer.
Each neuron in the input layer corresponds to a particular feed property. The neurons
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in the output layer correspond to the yields of the products of the FCC unit. In
addition, there is a neuron corresponding to the CCR number.

The performance of the neural network model is assessed by comparing its
predictions with the actual plant measurements. The percent relative errors between
the values predicted by the network and the actual valueswere calculated, as shown in
Table 2.8. The average percent error is always less than 4.1% (column 4 of Table 2.8).
In the table the maximum and minimum percent errors are also shown (columns 2
and 3, respectively). As can be seen, the predictions of the neural network are always
good. The performance of the prepared neural network was also checked against the
testing data set that was not used while preparing the network. As can be seen from
Table 2.8 (column 7), the average percent error for this set is always less than 6.3%
indicating again the good performance of the neural network model for the FCC
process. Cross plots for the predicted quantities and the actual quantities for both the
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Figure 2.6 Neural network architecture for the FCC model.
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training and testing data sets also confirm the good predictions of the network (i.e.,
all data lies very close to the 45� line, Figure 2.7).

2.5.3
Comparison with Other Models

The predictions of the neural networkmodel are compared to those ofMaples (1993),
Gary and Handwerk (2001), Jones (1995), and the regression models of Section 2.4
(see also Al-Enezi, Fawzi and Elkamel (1999)). Gary and Handwerk presented
different charts for estimating the yields of the products of the FCC process. The
yields are given either in terms of volume percent conversion and �API or volume
percent conversion and Watson characterization factor. The Maple charts also give
yields of the products of the FCC process in terms of volume percent conversion and
�API. The charts provided by Jones are based on the processing of Sassan crude. This
is a light 34 �API crude that contains low metals. Tables 2.9 and 2.10 give a
comparison of the differentapproaches. In each case, the percent relative error
between the predicted value and the actual value is reported. As can be seen, the
predictions of the neural network model are consistently closer to the actual values.

To further check the performance of the neural network model, its predictions are
compared to those of an existing simulator available at a local refinery. The simulator
is based on modeling the FCC unit from first principles. No indications were given,
however, on the type of lumping used. The output of the simulator gives the yields of
all products of the unit. Typical operating conditionswere used in simulating theFCC
process. Ten different case studies were considered, see Table 2.11. The results from
the FCC simulator were compared to those of the ANNmodel, see Tables 2.12–2.14.

Table 2.8 Evaluation of the FCC ANN in terms of relative error percent.

Network
predicted

Training data set Testing data set

Property Maximum
error

Minimum
error

Average
error

Maximum
error

Minimum
error

Average
error

C3 yield 19.231 0.000 3.020 21.875 0.000 2.208
NC4 yield 16.674 0.001 2.816 21.447 0.004 6.233
C4 yield 10.929 0.000 0.630 3.620 0.000 0.041
IC4 yield 18.745 0.006 3.641 19.856 0.014 6.322
C3¼ yield 8.333 0.000 0.321 0.725 0.000 0.053
C4¼ yield 14.755 0.000 1.836 11.030 0.000 1.686
Light gas yield 11.907 0.000 1.173 2.799 0.005 0.684
Gasoline yield 9.778 0.002 1.663 4.533 0.011 0.929
LCO yield 13.945 0.001 3.251 12.416 0.053 3.758
HCO yield 19.110 0.000 3.540 15.907 0.011 4.497
Coke yield 27.123 0.000 4.103 18.154 0.013 4.222
CCR 15.811 0.004 1.693 6.585 0.004 2.125
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As can be seen from the tables, the ANNmodel consistently gives better predictions.
Themain reason is that the simulator required a lot of input informationwhichhad to
be estimated while the neural network model required only four feed properties.
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The artificial neural network model of the FCC gives good predictions of the
product yields of the process. The feedproperties, feed �API,Watson characterization
factorK, feed sulfur content, and liquid volume percent conversion LV%, are the only
required inputs. This network can contribute significantly to enhancing the perfor-
mance of the unit and can be used for selection of feedstocks. The demand for
products of the FCC unit is seasonal and fluctuates very often. The network model
can be used to properly plan the operation of a refinery according to fluctuating
demand. In addition, the preparedmodel can be optimized to determine the blend of
feedstocks appropriate for yielding a pre-specified product distribution. This can be
done by invoking the inverse property of artificial neural networks. Once the network
has been trained properly and the connectingweights amongneurons are obtained, a
nonlinear optimization can be carried out to obtain feedstock properties that lead to
the desired blend of production. The neural network model can also be used to train

Table 2.11 Simulation case studies.

Ser. no. FDK CONV FD API FD S

1 11.5 70 22 0.1
2 11.8 65.2 29.6 0.4
3 11.8 62.6 22 0.1
4 11.8 61.6 22 0.1
5 11.8 59.1 30.7 0.8
6 11.8 56 29.6 0.4
7 11.8 55.9 28.5 0.4
8 11.8 55.5 29.6 0.4
9 11.8 54.5 25.1 0.3
10 12 45.2 25.1 0.4

Table 2.12 Comparison of ANN models and simulation results for coke and gasoline yields.

Ser. no. Coke
measured

Coke predicted
(simulator)

Coke
predicted
(ANN)

Gaso.
measured

Gaso.
predicted
(simulator)

Gaso
predicted
(ANN)

1 6 4.6287 5.02 56.3 66.5211 58.01
2 5.1 4.3881 5.11 46.6 58.2994 46.59
3 4.1 4.6288 4.09 53 66.5221 53.49
4 4.1 4.6261 4.06 51.1 66.5201 51.08
5 3.9 4.4525 3.84 41.9 58.0339 41.21
6 3.9 4.3897 3.7 39.1 58.2996 39.23
7 3.9 4.3689 3.89 40.8 58.2295 40.81
8 3.9 4.3888 3.91 40.5 58.2968 40.21
9 2.9 4.4697 3.02 43.5 61.7550 43.49
10 3.6 4.4767 3.6 33.8 61.6403 33.80
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new operators of the FCCunit and illustrate to them the effect of changing feedstocks
on the outcome of the unit.

Themajor advantage of the prepared neural network FCCmodel is that it does not
require a lot of input information. In addition, the model can be updated whenever
new input–output information for the FCC unit is made available. This can be done
by retraining theneural network starting from the old connectionweights as an initial
guess for the optimization process and by including the new set of data within the
overall set used to train the network.

2.6
Yield Based Planning: Example of a Single Refinery

In this section, we use a simplified refinery model in order to demonstrate the
concept of usingmathematical programming for the planning of process-yield-based

Table 2.13 Comparison of ANN models and simulation results for coke and gasoline.

Ser. no. C3 measured C3 predicted
(simulator)

C3 predicted
(ANN)

IC4 measured IC4 predicted
(simulator)

IC4 predicted
(ANN)

1 2.5 3.6629 2.4 6.3 6.9124 5.1
2 2.9 3.9543 2.9 8.8 7.6583 8.68
3 1.7 3.6633 1.69 4.0 6.9129 4.13
4 1.8 3.6620 1.81 4.6 6.9106 4.48
5 2.1 4.2086 2.10 9.5 7.9318 9.34
6 2.1 3.9550 2.09 7.1 7.6594 6.67
7 2.0 3.6664 2.00 8.0 7.3335 8.80
8 1.9 3.9530 1.92 7.5 7.6575 7.17
9 2.8 3.5632 2.80 6.1 7.0456 6.05
10 2.3 3.5529 2.30 4.2 7.0357 4.18

Table 2.14 Comparison of ANN models and simulation results for n-butane and butylene yields.

Ser. no. NC4

measured
NC4

predicted
(simulator)

NC4

predicted
(ANN)

C4¼
measured

C4¼ predicted
(simulator)

C4¼ predicted
(ANN)

1 1.4 1.9785 1.10 5.7 3.0975 6.33
2 2.6 2.1920 2.60 5.7 3.4311 5.70
3 1.0 1.9786 0.92 5.5 3.0977 5.50
4 1.1 1.9779 1.16 5.9 3.0967 5.90
5 2.2 2.2706 2.20 5.0 3.5538 5.00
6 1.9 2.1924 1.94 5.4 3.4316 5.39
7 2.2 2.0988 2.20 4.2 3.2853 4.20
8 2.1 2.1918 2.00 4.7 3.4307 4.74
9 1.5 2.0163 1.50 3.8 3.1566 3.80
10 1.1 2.0134 1.10 4.2 3.1521 4.20
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models. We use the refinery production planning example proposed by Allen (1971).
This example illustrates the planning of petroleum refinery operations as an ordinary
single objective linear programming (LP) problem of total daily profit maximization.

Figure 2.8 is a blockdiagram representation of a refinery that is essentiallymadeup
of a primary crude distillation unit (CDU) and a middle distillates cracker, widely
known as a catalytic cracker in modern settings. The refinery processes crude oil to
produce gasoline, naphtha, jet fuel, heating oil, and fuel oil. The primary unit splits
the crude into naphtha (13wt% yield), jet fuel (15wt%), gas oil (22wt%), cracker feed
(20wt%), and residue (30wt%). Gasoline is blended fromnaphtha and cracked blend
stock in equal proportions.Naphtha and jet fuel products are straight run.Heating oil
is a blend of 75% gas oil and 25% cracked oil. Fuel oil can be blended from primary
residue, cracked feed, gas oil, and cracked oil, in any proportions. The process yields
of the cracker unit are flared gas (5 wt%), gasoline blend stock (40wt%) and cracked
oil (55wt%).All the variables are in the sameunits of ton/day, symbolically denoted as
t/day, and are first assigned to process streams flowrate, see Figure 2.8. Since, in
linear programming, decision variables cannot feasibly be negative, assigning a
variable to a stream also defines its direction of flow and prevents the possibility of
reverse flow.

Theminimumnumber needed to define a system fully should be identified. In this
example, it is three since, for example, fixing x1 determines x7, x4, x8, x9, and x10;
fixing x2 then determines x11, x16, x3, x14, x17, x20, and x15; and finally fixing x5 then
determines x12, x18, x13, x19, and x6. An LP model could be formulated using only
these three structural variables or any other suitable three variables. In this case, the
solution would only give values of the three variables and the remainder (if needed)
would have to be calculated from them afterwards. It is usually more convenient to
include additional variables in LP programs.
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Figure 2.8 Refinery block flow diagram.
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2.6.1
Model Formulation

In this section we construct the mathematical formulation that describes the above
refinery.

2.6.1.1 Limitations on Plant Capacity
In this example, the feed rates of crude oil to the primary unit and cracker, averaged
over a period of time, can be anything from zero to themaximum plant capacity. The
constraints are:

primary distillation unit : x1 � 15 000 ð2:2Þ

cracker : x14 � 2500 ð2:3Þ

2.6.1.2 Material Balances
Material balance constraints are in the form of equalities. There are three types of
such constraints: fixed plant yield, fixed blends or splits, and unrestricted balances.
Except in some special situations, such as planned shutdown of the plant or storage
movements, the right hand-side of the balance constraints is always zero. For the
purpose of consistency, flow into the plant or stream junction has negative coeffi-
cients and flows out have positive coefficients. The constraints are as follows:

Fixed Plant Yield For the primary distillation unit:

�0:13x1 þ x7 ¼ 0 ð2:4Þ

�0:15x1 þ x4 ¼ 0 ð2:5Þ

�0:22x1 þ x8 ¼ 0 ð2:6Þ

�0:20x1 þ x9 ¼ 0 ð2:7Þ

�0:30x1 þ x10 ¼ 0 ð2:8Þ
For the cracker:

�0:05x14 þ x20 ¼ 0 ð2:9Þ

�0:40x14 þ x16 ¼ 0 ð2:10Þ

�0:55x14 þ x17 ¼ 0 ð2:11Þ

Fixed Blends For gasoline blending:

0:5x2�x11 ¼ 0 ð2:12Þ

0:5x2�x16 ¼ 0 ð2:13Þ
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For heating oil blending:

0:75x5�x12 ¼ 0 ð2:14Þ

0:25x5�x18 ¼ 0 ð2:15Þ

Unrestricted Balances

Naphtha : �x7 þ x3 þ x11 ¼ 0 ð2:16Þ

Gas oil : �x8 þ x12 þ x13 ¼ 0 ð2:17Þ

Cracker feed : �x9 þ x14 þ x15 ¼ 0 ð2:18Þ

Cracked oil : �x17 þ x18 þ x19 ¼ 0 ð2:19Þ

Fuel oil : �x10�x13�x15�x19 þ x6 ¼ 0 ð2:20Þ

2.6.1.3 Raw Material Limitation and Market Requirement
The constraints considered so far are concerned with the physical nature of the plant.
Constraints are also needed to define the availability of raw materials and product
requirements over a time period. For this example, there are no restrictions on crude
oil availability or the minimum production required. The maximum production
requirement constraints, in t/day, are as follows:

Gasoline : x2 � 2700 ð2:21Þ

Naphtha : x3 � 1100 ð2:22Þ

Jet fuel : x4 � 2300 ð2:23Þ

Heating oil : x5 � 1700 ð2:24Þ

Fuel oil : x6 � 9500 ð2:25Þ
Since linear programming variables cannot feasibly be negative, an additional

constraint to be specified is:

x1; x2; . . . ; x20 � 0 or xi � 0; i ¼ 1; 2; . . . 20 ð2:26Þ

2.6.1.4 Objective Function
The objective function can assume different representation with regards to the
system under study. A commonly used objective of an industrial process is to
maximize profit or to minimize the overall costs. The former is adopted in this
work. In this model, the whole refinery is considered to be one process, where the
process uses a given petroleum crude to produce various products in order to achieve
specific economic objectives. Thus, the objective of the optimization at hand is to
achieve maximum profitability given the type of crude oil and the refinery facilities.
Nomajor hardware change in the current facilities is considered in this problem. The
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cost of acquiring the rawmaterial crude oil and transforming it tofinished products is
subtracted from the gross revenues accruing from the sale of finished products. The
sign convention denotes costs as negative and realization from sales as positive. Each
element consists of the product of coefficient of unit cost or unit sales price ($/ton)
and a production flowrate variable (t/day). The objective function is as follows:

maximize
xi

z ¼ �8:0x1 þ 18:5x2 þ 8:0x3 þ 12:5x4 þ 14:5x5 þ 6:0x6�1:5x14

ð2:27Þ
2.6.2
Model Solution

Thedeterministic LPmodelwas set up onGAMSand solvedusingCPLEX. Table 2.15
illustrates the computational results for the refinery Model. The planning model
suggested producing 2000 t/day of gasoline, 625 t/day of naphtha, 1875 t/day of jet

Table 2.15 Computational results for deterministic model from GAMS/CPLEX.

Decision
variable

Value (t/day) Dual price/
marginal
($/ton)

Slack or
surplus
variable

Value
(t/day)

Dual price/
marginal
($/ton)Lower limit Level Upper limit

x1 0 12 500 þ1 0 s1 2 500 0
x2 0 2 000 þ1 0 s2 0 3.575
x3 0 625 þ1 0 s3 700 0
x4 0 1 875 þ1 0 s4 475 0
x5 0 1 700 þ1 0 s5 425 0
x6 0 6 175 þ1 0 s6 0 8.5
x7 0 1 625 þ1 0 s7 3 325 0
x8 0 2 750 þ1 0 a8 0 8.0
x9 0 2 500 þ1 0 a9 0 12.5
x10 0 3 750 þ1 0 a10 0 6.0
x11 0 1 000 þ1 0 a11 0 9.825
x12 0 1 275 þ1 0 a12 0 6.0
x13 0 1 475 þ1 0 a13 0 0
x14 0 2 500 þ1 0 a14 0 29.0
x15 0 0 þ1 �3.825 a15 0 6.0
x16 0 1 000 þ1 0 a16 0 8.0
x17 0 1 375 þ1 0 a17 0 29.0
x18 0 425 þ1 0 a18 0 6.0
x19 0 950 þ1 0 a19 0 6.0
x20 0 125 þ1 0 a20 0 8.0

a21 0 6.0
a22 0 9.825
a23 0 6.0
a24 0 6.0

Total Profit ($/day) 23 387.50
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fuel, 1700 t/day of heating oil and 6175 t/day of fuel oil. The total profit associated
with this plan was 23 387.50US$/day.

2.6.3
Sensitivity Analysis

In this section, we will illustrate the concept of sensitivity analysis on both objective
function coefficients and right-hand side parameters. In general, sensitivity analysis
for the objective function coefficients determines the lower and upper limits of each
coefficient thatmaintains the original optimal solution. Table 2.16 displays the results
of these limits in which the original solution or �basis� remains optimal. The
allowable increase column indicates the amount by which an objective function
coefficient can be increased with the current basis remaining optimal. Conversely,
the allowable decrease column is the amount bywhich the objective coefficient can be
decreased with the current basis remaining optimal. We observe that nine out of the
20 decision variables have positive infinity as an upper limit for their associated
coefficients. This is reasonable since all decision variables are positive and since the
objective is a profit maximization. For example, decision variable x2 denoting the
production flowrate of gasoline has an objective function coefficient value of $18.50/

Table 2.16 Sensitivity analysis for the objective function coefficients.

Decision
variable

Objective function coefficient ranges ($/ton)

Allowable
decrease

Lower Limit Current
value

Upper limit Allowable
increase

x1 0.715 000 �8.715 000 �8.000 000 �7.235 000 0.765 000
x2 4.468 750 14.031 25 18.500 000 þ1 þ1
x3 14.300 000 �6.300 000 8.000 000 13.884 615 5.884 615
x4 4.766 667 7.733 333 12.500 000 17.600 000 5.100 000
x5 8.500 000 6.000 000 14.500 000 þ1 þ1
x6 1.134 921 4.865 079 6.000 000 7.062 500 1.062 500
x7 5.500 000 �5.500 000 0.000 000 5.884 615 5.884 615
x8 3.250 000 �3.250 000 0.000 000 3.477 273 3.477 273
x9 3.575 000 �3.575 000 0.000 000 3.825 000 3.825 000
x10 2.383 333 �2.383 333 0.000 000 2.550 000 2.550 000
x11 8.937 500 �8.937 500 0.000 000 þ1 þ1
x12 11.333 333 11.333 333 0.000 000 þ1 þ1
x13 3.250 000 3.250 000 0.000 000 3.477 273 3.477 273
x14 3.575 000 �5.075 000 �1.500 000 þ1 1
x15 þ1 �1 0.000 000 3.825 000 3.825 000
x16 8.937 500 �8.937 500 0.000 000 þ1 þ1
x17 6.500 000 �6.500 000 0.000 000 þ1 þ1
x18 34.000 000 �34.000 000 0.000 000 þ1 þ1
x19 6.500 000 �6.500 000 0.000 000 34.000 000 34.000 000
x20 71.500 000 �71.500 000 0.000 000 þ1 þ1
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ton. The price of gasoline can be as low as $4.47/ton without changing the
solution basis. The knowledge of such limits extends the refinery flexibility to
negotiate prices so long as it is within the bounds of each coefficient, as determined
in Table 2.16, especially in the volatile market of spot trading of crude oil and the
commodities.

The sensitivity analysis for the right-hand side of constraintswas studied, as shown
in Table 2.17. The upper limits for some of the constraints are positive infinity while
the lower limits vary. Lower limits for most of the constraints assumed a negative
value. Constraints whose upper limits are allowed to go to positive infinity imply that
they are not critical to the production process. As an illustration, the demand for
heating oil can be decreased without inflicting a change in the current optimal basis.
The other constraints can be analyzed in a similar manner.

The values of the slack or surplus variables and the dual prices in Table 2.15 provide
the most economical average operating plan for a 30-day period. For instance, it
indicates that the primary distillation unit is not at full capacity as the solution

Table 2.17 Sensitivity analysis for right-hand side of constraints of deterministic model.

Constraints Right-hand side of constraints ranges (t/day)

Allowable
decrease

Lower limit Current
value

Upper
limit

Allowable
Increase

(2.1) 2 500.000 000 12 500.000 000 15 000.000 000 þ1 þ1
(2.2) 1 340.909 058 1 159.090 94 2 500.000 000 3 000.000 000 500.000 000
(2.3) 625.000 000 �625.000 000 0.000 000 475.000 000 475.000 000
(2.4) 1 875.000 000 �1 875.000 000 0.000 000 425.000 000 425.000 000
(2.5) 1 475.000 000 �1 475.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.6) 500.000 000 �500.000 000 0.000 000 961.538 510 961.538 513
(2.7) 3 750.000 000 �3 750.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.8) 125.000 000 �125.000 000 0.000 000 þ1 þ1
(2.9) 475.000 000 �475.000 000 0.000 000 350.000 000 350.000 000
(2.10) 950.000 000 �950.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.11) 625.000 000 �625.000 000 0.000 000 475.000 000 475.000 000
(2.12) 475.000 000 �475.000 000 0.000 000 350.000 000 350.000 000
(2.13) 1 475.000 000 �1 475.000 000 0.000 000 1 275.000 000 1 275.000 000
(2.14) 950.000 000 �950.000 000 0.000 000 425.000 000 425.000 000
(2.15) 625.000 000 �625.000 000 0.000 000 475.000 000 475.000 000
(2.16) 1 475.000 000 �1 475.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.17) 500.000 000 �500.000 000 0.000 000 961.538 510 961.538 513
(2.18) 950.000 000 �950.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.19) 6 175.000 000 �6 175.000 000 0.000 000 3 325.000 000 3 325.000 000
(2.20) 700.000 000 2 000.000 000 2 700.000 000 þ1 þ1
(2.21) 475.000 000 625.000 000 1 100.000 000 þ1 þ1
(2.22) 425.000 000 1 875.000 000 2 300.000 000 þ1 þ1
(2.23) 1 700.000 000 0.000 000 1 700.000 000 3666.6666 1 966.666 626
(2.24) 3 325.000 000 6 175.000 000 9 500.000 000 þ1 þ1
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generates a production mass of 12 500 t/day against its maximum production
capacity of 17 300 t/day (as given by the summation of the right-hand-side values
of constraints (2.21)–(2.25). Another analytical observation reveals that themaximum
production requirement is only met for heating oil.

By definition, the dual price or �shadow price� of a constraint of a linear
programming model is the amount by which the optimal value of the objective
function is improved (increased in a maximization problem and decreased in a
minimization problem) if the right-hand-side of a constraint is increased by one unit,
with the current basis remaining optimal. Apositive dual pricemeans that increasing
the right-hand side in question will improve the objective function value. A negative
dual price means that increasing the right-hand side will have a reverse effect. Thus,
the dual price of a slack variable corresponds to the effect of a marginal change in the
right-hand-side of the appropriate constraint (Winston and Venkataramanan, 2003).

The dual prices of slacks on mass balance and product requirement rows can be
interpreted more specifically. Consider a mass balance constraint:

�x1�x2 þ x3 ¼ 0 ð2:28Þ
where x3 is the product stream. Introducing the artificial slack variable an and then
rearranging, we obtain:

�x1�x2 þ x3 þ an ¼ 0
x1 þ x2 ¼ x3 þ an

ð2:29Þ

The product stream is increased by an and the feed streams x1 and x2must increase
correspondingly. The dual price of an indicates the effect of makingmarginally more
products without taking into account its realization (which is on x3), that is, it
indicates the cost added by producing one extra item of the product, or, in other
words, the marginal cost of making the product. In addition to that, consider the
product requirement constraint:

x3 � 1100
Y x3 þ sm ¼ 1100
Y x3 ¼ 1100�sm

ð2:30Þ

The dual price of the slack variable sm on this constraint indicates the effect of
selling this product at the margin, that is, it indicates the marginal profit on the
product. If the constraint is slack, so that the slack variable is positive (basic), the profit
at the margin must obviously be zero and this is in line with the zero dual price of all
basic variables. Since cost þ profit¼ realization for a product, the sum of the dual
prices on its balance and requirement constraints equals its coefficient in the original
objective function.

In this problem, there are two balance constraints on heating oil, as given by
Equations 2.14 and 2.15, the dual prices of which are both $6.00/ton. This is the
marginal cost of diverting gas oil and cracked oil from fuel oil to heating oil. The dual
price for the constraint on heating oil production as given by inequality (2.24) is
$8.50/ton and this is themarginal profit on heating oil, in line with the realization of
$14.50/ton in the objective function, as given by the coefficient of x5.
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2.7
General Remarks

The planning and utilization of production capacity is one of the most important
responsibilities for managers in the manufacturing industry in general and petro-
leum refineries in particular. Planning of petroleum refineries typically encompasses
different areas, including crude oil management, process unit optimization, and
product blending. Crude management entails crude segregation and crude unit
operation. Process unit optimization deals with downstream (of the crude distillation
unit (CDU)) process unit operations that handle crude unit intermediates. Product
blending handles the development of a product shipment schedule and an optimum
blend recipe based on information from process unit optimization and current
operating data. A major problem in refinery planning is prevalent even at the very
foundation: optimization of the CDUand its associated product yields. In addition to
uncertainty surrounding the future price of crude oils, the actual composition of
crude oils (or crudes, for short) is often only an educated guess. Crudes vary from
shipment to shipment because of the mixture of sources actually shipped. It is
expected that the quality of crudes does not change significantly over a short period of
time, although this assumption could also render a plan to be inaccurate or, worse,
infeasible. If the actual crude composition does not closely agree with that modeled,
then an error is committed that often propagates through the rest of a refinery
planning model.

An equally common source of error in optimizing the submodel for theCDUis the
assumption that the fractions from the distillation curve for the crude unit, simply
referred to as the swing cuts of distillates, are produced as modeled. Frequently, in
practice,models are not even adjusted to show cut overlaps, just because ofwishing to
take the easy way out in developing crude cut yields and distillates. One of the typical
crude cutting procedures assigns distillation temperatures directly from the true
boiling point crude analysis, in which no adjustment is made for the actual refinery
degree of fractionation. This is a particularly bad procedure for certain types of
gasoline that have tight 90% point limits. The fractionation efficiency of gasoline and
distillate components fromall processeswould have a significant effect in controlling
aromatics and other types of hydrocarbons. Therefore, planners and decision
makers ought to be more diligent by constantly reviewing the supposed optimized
plans and comparing them to actual situations in an effort to improve the prediction
accuracy of their models.

The third component of the refinery planning involves product blending, where
this is usually handled by preparing both a short-range and a long-range plan, using
the same model for the blending process. The long-range plan, typically covering 30
days, provides aggregate pools of products for a production schedule. The short-range
plan, typically spanning seven days, fixes the blend schedule and creates recipes for
the blender. Desired output from the long-range model includes (i) detailed product
blend schedule; (ii) optimal blend recipes; (iii) predicted properties of blend recipes;
(iv) product and component inventories; (v) component qualities, rundown rates, and
costs; (vi) product prices; and (vii) equipment limits. For the short-range model, the
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desired outputs are: (i) a detailed product blend schedule; (ii) optimal blend recipes;
(iii) predicted properties of blend recipes; and (iv) product and component inven-
tories as a function of time (Fisher and Zellhart, 1995).
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3
Multisite Refinery Network Integration and Coordination

The use of mathematical programming models on an enterprise-wide scale to
address strategic decisions considering various process integration alternatives
yields substantial benefits. These benefits not only materialize in terms of economic
considerations, but also in terms of process flexibility and improvements in the
understanding of the process interactions and systems limitations.

In this chapter, we tackle the integration design and coordination of a multisite
refinery network. The main feature of the chapter is the development of a simul-
taneous analysis strategy for process network integration through a mixed-integer
linear program (MILP). The performance of the proposed model in this chapter is
tested on several industrial-scale examples to illustrate the economic potential and
trade-offs involved in the optimization of the network.

3.1
Introduction

With the current situation of high crude oil prices and the everlasting pressure to
reduce prices of final petroleum products, refiners are faced with a very challenging
situation. This nature of the petroleum economic environment provides a pressing
motive for refineries to operate at an optimal level and continue to seek opportunities
to increase their profit margin. This requires appropriate high level decision-making
to utilize all available resources, not only on a single facility scale, but also in a more
comprehensive outlook on an enterprise-wide scale. Such an approach provides an
enhanced coordination and objectives alliance towards achieving a global optimal
production strategy (Chopra and Meindl, 2004). The benefits projected from the
coordination of multiple sites are not only in terms of expenses but also in terms of
market effectiveness and responsiveness (Shah, 1998).Most of the time, there will be
some necessity for a degree of independent management at each operating entity.
However, the need for a coordinated response and the desire to minimize costs,
imply that the various entities should be treated as parts of one large production
system (Wilkinson, 1996). Planning for this system should be carried out centrally,
allowing proper interactions between all operating facilities and, consequently, an

Planning and Integration of Refinery and Petrochemical Operations. Khalid Y. Al-Qahtani and Ali Elkamel
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efficient utilization of available resources. The understanding of such benefits has
attractedmuch research in the areas of strategic planning in general and supply chain
design and coordination in particular.

The objective of this chapter is to develop a methodology that can be applied for
designing and analyzing process integration networks and production capacity expan-
sions in a multiple refineries complex using different combinations of feedstocks,
Figure 3.1. The integration strategy will allow the optimal coordination of the entire
operating systemthroughexchangeof intermediate andproduct streams, aswell as the
efficient utilization of available resources in the different operating sites. The integra-
tionofutilitystreamsbetweenthedifferentsitesmaybeconsideredinasimilar fashion.
The proposed model is formulated as a mixed-integer linear programming (MILP)
problem that minimizes the annualized operating and capital cost of the system. The
application of the proposed methodology to achieve an integration and coordination
strategy for the oil refining industry adds more complications and challenges. This is
because refining is one of the most complex chemical industries comprising compli-
cated processes and various configurations and structural alternatives. Although the
MILP model is developed and applied to the refining industry in this book, it can be
extended to any network of chemical processes. Since the decisions are of a long-term
planning horizon, a linear model formulation is adequate to capture the required
details of refinery processes (Zhang and Zhu, 2006). All capital cost investments are
discounted over a time horizon in order to support a net present worth analysis.

Bok, Grossmann and Park (2000) explained a classification of chemical process
networks and characterized them as either dedicated or flexible processes. Dedicated
processes operate at one mode and for high volume products whereas flexible
processes operate at different modes and produce different products at different
times. In the formulation introduced in this chapter, we account for different

Figure 3.1 Refinery supply chain with process network integration.
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operatingmodes. This should not be confusedwith flexible processes as the different
modes in this study represent different product yields and do not require any set up
costs or changeover times.

The remainder of this Chapter 3 is organized as follows. In Section 3.2 we will
provide a literature review of process expansions and multisite planning and
coordination studies in the chemical process industry. Then we will explain the
problem statement and proposed model formulation in Sections 3.3 and 3.4,
respectively. In Section 3.5, we will illustrate the performance of the model through
various industrial-scale refinery examples and scenarios. The chapter endswith some
concluding remarks in Section 3.6.

3.2
Literature Review

There has been quite a large stream of research concerned with capacity expansions
and retrofit problems in the chemical and operations research literature. In this
section, however, we will concentrate on expansion and strategic multisite planning
studies. Single site short-term and mid-term planning and scheduling studies are
beyond the scope of this book and the interested reader is referred to the work by
Bodington and Baker (1990), Pinto, Joly and Moro (2000), and Kallrath (2005).

One of the early attempts in the operations research literature that considered
multiple echelons and sites seems to be that of Williams (1981). Williams investi-
gated different heuristic techniques of varying sophistication for production–dis-
tribution scheduling. Although he used simplifying assumptions, his work is one of
the early attempts in the operations research literature to use coordinated planning
across multiple echelons and sites. In the process systems engineering community,
large scalemultisite planning and coordinationmodels have had a bigger share of the
literature just recently.

Many earlier studies tackled different expansion problems in the chemical industry
including theNLP formulation byHimmelblau andBickel (1980) and themultiperiod
MILPmodel by Grossmann and Santibanez (1980) and the recursive MILPmodel by
Jimenez and Rudd (1987). A common drawback among these studies was their
limitation of problem size due to computational burden. Other papers on capacity
expansions can be found in Roberts (1964), Manne (1967) and Florian, Lenstra and
Rinnooy Khan (1980) where discussions of how relevant these problems are to the
industry are also provided. More recently, Sahinidis et al. (1989) developed
a multiperiodMILPmodel for strategic planning in terms of selection and expansion
of processes given forecasted demands and prices. In their study, they investigated
several solution strategies to reduce model computational burden. The strategies
included branch and bound, integer cuts, cutting planes, Benders decomposition and
other heuristics. This model was later reformulated by Sahinidis and Grossmann
(1991a, 1992) by identifying a lot sizing problem structure within the long-range
problem formulation. The new reformulation improved the solution efficiency
through tighter linear relaxation to the MILP model. The model was expanded to
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include continuous and batch flexible and dedicated processes (Sahinidis and
Grossmann, 1991b). Along the same lines, Norton and Grossmann (1994) extended
the work by Sahinidis et al. (1989) to account for dedicated and flexible processes in
termsof feedstocks, products and the combinationof continuous andbatchprocesses.
They illustrated their work with an example on a petrochemical complex.

Wilkinson, Shah and Pantelides (1996) proposed an approach that integrates
production and distribution in multisite facilities using the resource task network
representation proposed by Pantelides (1994). They applied this technique to an
industrial case across a whole continent that involved production and distribution
planning among different factories and markets. In a similar problem, McDonald
and Karimi (1997) studied multiple semicontinuous facilities in a number of
geographically distributed customers. The aim was to find an optimal allocation
of recourses to tasks to meet a certain demand over a time horizon. They included
anumber of additional supply chain type constraints such as single sourcing, internal
sourcing, and transportation times.

Iyer and Grossmann (1998) revisited the work by Sahinidis et al. (1989) and used
a bilevel decomposition approach to reduce the computational complexity of the
problem with the objective of solving larger scenarios. In a similar effort, Bok
et al. (2000) extended the work by Norton and Grossmann (1994) to incorporate
operational decisions, such as inventory profile, changeover cost, and intermittent
supplies over multiple operating sites, over a short term horizon. They also used
a bilevel decomposition approach to reduce computational time and illustrated their
approach by several examples dealing with a petrochemical complex. Their model
addressed short-term operating decisions and provided no insight on designing or
retrofitting the process network.

Shah (1998) presented a review of the production planning and scheduling in
single and multiple facilities. He pointed out that multisite problems have received
little attention and are potential candidates for future research. Bunch, Rowe and
Zentner (1998) developed the MILP model to find the lowest cost alternative among
existing geographically distributed pharmaceutical facilities to satisfy a given de-
mand. The model was used to find optimal assignment of products to facilities and
production quantities over a time horizon. They used a commercial scheduling
software (VirtECS) for both problem representation and solution. In their study, there
was no clear underlying structure of the problemor systematic approach to themodel
formulation. Furthermore, the solution approach did not guarantee optimality.

Timpe and Kallrath (2000) developed a multi-period MILP model for a complete
supply chain management of a multisite production network. The problem was
formulated and applied to the food industry. The model concentrated on the
coordination of the different echelons of the food supply chain and did not cover
developing an integration scheme for themultisite facilities. Swaty (2002) studied the
possibility of integrating a refinery and an ethylene plant through the exchange of
process intermediate streams. The analysis was based on a linear programming (LP)
model for each plant and profit marginal analysis of possible intermediate plant
exchange. The study was implemented on a real life application in western Japan.
Jackson and Grossmann (2003) proposed a multiperiod nonlinear programming
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model for production planning and distribution over multisite facilities. They used
a temporal decomposition technique to reduce the scale of the problem.

Lasschuit and Thijssen (2003) pointed out the importance of developing integrated
supply chain planning models on both strategic and tactical levels in the petroleum
and chemical industry. They also stressed the issues that need to be accounted for
when formulating these models. Neiro and Pinto (2004) proposed a general frame-
work for modeling operational planning of the petroleum supply chain. They
developed an MINLP model for the planning of multiple existing refineries,
terminals and pipeline networks. Decisions included the selection of oil types and
scheduling plan to the refineries subject to quality constraints as well as processing
units, operating variables, product distribution, and inventory management. The
model was applied to an industrial case in Brazil. Due to the high computational
burden, the model was only solved for two time periods. The authors suggested that
decompositionmethods should be applied to yield a smallerMINLP orMILPmodel.
Their approach did not consider the design problem of a network of operating
facilities as their formulation addressed only operational type decisions.

RyuandPistikopoulos (2005)presentedanMILPmodel for thedesignofenterprise-
wide supply chains in the chemical industry. They investigated three different
operating policies, namely, competition, cooperation and coordination. Their model
was based on the assumption that plants will always havemuch larger capacities than
demand. Furthermore, their work was mainly concerned with optimizing the oper-
atingpolicies among thedifferent echelonsof the supply chainanddidnot account for
designing an integration policy between the multisite production facilities.

Khogeer (2005) developed an LP model for multiple refinery coordination. He
developed different scenarios to experiment with the effect of catastrophic failure
and different environmental regulation changes on the refineries performance. This
work was developed using commercial planning software (Aspen PIMS). In his
study, there was no model representation of the refineries systems or clear simul-
taneous representation of optimization objective functions. Such an approach
deprives the study of its generalities and limits the scope to a narrow application.
Furthermore, no process integration or capacity expansions were considered.

Another streamof research tackledmodelinguncertainty incapacity expansionand
supply chain studies in the process industry. Ierapetritou and Pistikopoulos (1994)
developed a two-stage stochastic programmingmodel for short to long-termplanning
problems. They proposed a decompositionmethodbased on the generalizedBenders
decomposition algorithm where they used a Gaussian quadrature to estimate the
expectation of the objective function. Liu and Sahinidis (1995, 1996, 1997) studied
design uncertainty in process expansion through sensitivity analysis, stochastic
programming and fuzzy programming, respectively. In their stochastic model, they
usedMonte Carlo sampling to calculate the expected objective function values. Their
comparison over the differentmethodologies of including uncertainty was in favor of
stochastic models when random parameter distributions are not available.

On a larger scale, Tsiakis, Shah and Pantelides (2001) developed a supply chain
design for multiple markets and plants of steady-state continuous processes. Sim-
ilarly, Ryu, Dua and Pistikopoulos (2004) presented a bilevel framework for planning
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an enterprise-wide network under uncertainty of some product demands on plant
and warehouse capacities as well as resource availability. They considered the
hierarchy of the supply chain and allowed for optimizing different levels of the
chain individually.

The above discussion clearly points out the importance of multisite planning and
indicates that such a problem is attracting a great deal of interest as the realization of
the coordinated benefits became more vivid. However, to the best of our knowledge,
no previous work has tackled developing a general framework for designing
a network between multiple refineries in terms of material exchange. The aim of
this study is to provide a methodology for the design of an integration and
coordination policy of multiple refineries to explore potential synergies and efficient
utilization of resources across an enterprise or multiple enterprises. The expansions
of the facilities and the construction of the integration network are assumed to be
implemented simultaneously in a single time horizon in order to minimize future
process interruptions. Although our discussionwill consistently refer to a network of
refineries, the methodology that we will present can be readily extended to other
chemical process networks.

3.3
Problem Statement

The optimization of refining processes involves a broad range of aspects varying from
economical analysis and strategic expansions to crude oil selection, process levels
targets, operating modes, and so on. The focus of this study is the development of
amethodology for designing an integrated network and production expansion across
multiple refineries as well as the establishment of an operating policy that sets
feedstock combinations, process levels and operating mode preferences to satisfy
a given demand. Such integration will provide appropriate means for improving the
coordination across the whole network production system.

The general integration problem can be defined as:
A set of products cfr 2 CFR to be produced at multiple refinery sites i 2 I is given.

Each refinery consists of different production units m 2 MRef that can operate at
different operating modes p 2 P. An optimal feedstock from different available
crudes cr 2 CR is desired. Furthermore, the process network across the multiple
refineries is connected in a finite number of ways and an integration superstructure
is defined. Market product prices, operating cost at each refinery, and product
demands are assumed to be known.

The problem consists of determining the optimal integration for the overall
network and associated coordination strategies across the refinery facilities as well
as establishing an optimal overall production and determining the operating levels
for each refinery site. The objective is to minimize the annualized cost over a given
time horizon by improving the coordination and utilization of excess capacities in
each facility. Expansion requirements to improve production flexibility and reliability
are also considered.
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For all refinery processes within the network we assume that all material balances
are expressed in terms of linear yield vectors. Even though this might sound
restrictive asmost, if not all, refinery processes are inherently nonlinear, this practice
is commonly applied in the petroleum refining business. Moreover, the decisions in
this study are of a strategic level in which such linear formulation is adequate to
address the required level of details involved at this stage. It is also assumed that
processes have fixed capacities and the operating cost of each process and production
mode is proportional to the process inlet flow. In the case of product blending, quality
blending indices are used to maintain model linearity. Blending indices tables and
graphs can often be found in petroleum refining books such as Gary and Hand-
werk (1994) or can be proprietorially developed by refining companies for their own
use. It is also assumed that all products that are in excess of the local demand can be
exported to a global market. Piping and pumping installation costs to transport
intermediate streams as well as the operating costs of the new system were lumped
into one fixed-charge cost. All costs are discounted over a 20 years time horizon and
with an interest rate of 7%. No inventories will be considered since the model is
addressing strategic decisions which usually cover a long period of time. We also
assume perfect mixing and that the properties of each crude type are decided by
specific key components. Properties of the oil mixture, such as viscosity, do not affect
the strategic decisions of network design immensely and are therefore not consid-
ered in the model. Such considerations render the model unnecessarily complicated
and are even tolerable on studies of operational planning and scheduling level (Lee
et al., 1996; Jia and Ierapetritou, 2003, 2004).

3.4
Model Formulation

Themodel is formulated based on the state equipment network (SEN) representation
(Yeomans andGrossmann, 1999). The general characterization of this representation
includes three elements: state, task and equipment. A state includes all streams in
a process and is characterized by either quantitative or qualitative attributes or both.
The quantitative characteristics includeflow rate, temperature and pressure, whereas
the qualitative characteristics include other attributes such as the phase(s) of the
streams. A task, on the other hand, represents the physical and chemical transforma-
tions that occur between consecutive states. Equipment provides the physical devices
that execute a given task (e.g., reactor, absorber, heat exchanger).

The SEN allows for two types of task to equipment assignment: Thefirst type is one
task–one equipment (OTOE) assignment where tasks are assigned to equipment
a priori. This type of assignment yields an identical representation to the state task
network (STN) by Kondili, Pantelides and Sargent (1993). The second type is the
variable task equipment assignment where the actual assignment of tasks to
equipment is considered as part of the optimization problem. The use of this
representation provides a consistent modeling strategy and an explicit handling of
units that operate under different modes, which is common in the refining industry.
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In treating streammixing, themixing device was defined as part of the designated
refinery operation itself. This approach was also undertaken by Zhang and
Zhu (2006). Therefore the only mixers considered are where the final blending
takes place. This approach distinguishes the contribution of each feedstock to the
final product. With this type of formulation, all variables and attributes of interme-
diate streams will depend on the crude type.

The problem is formulated as an MILP model where binary variables are used for
designing the process integration network between the refineries and deciding on
the production unit expansion alternatives. Linearity in the model was achieved by
defining component flows instead of individual flows and associated fractions. The
planning problem formulation is as follows.

3.4.1
Material Balance

The material streams, states, and their balances are divided into four categories;
namely; raw materials, intermediates, products, and fuel system. All material
balances are carried out on a mass basis. However, volumetric flow rates are used
in the case where quality attributes of some streams only blend by volume.

Constraint (3.1) below illustrates the refinery raw materials balance in which
throughput to each refinery crude distillation unit p 2 P

0
at plant i 2 I from each

crude type cr 2 CR is equal to the available supply SRefcr;i .

zcr;p;i ¼ SRefcr;i 8 cr 2 CR; i 2 I where

p 2 P
0 ¼ fSet of CDU processes 8 plant ig

ð3:1Þ

The intermediate material balances within and across the refineries can be
expressed as shown in constraint (3.2). The coefficient acr;cir;i;p can assume either
a positive sign if it is an input to a unit or a negative sign if it is an output from
a unit. The multirefinery integration matrix jcr;cir;i;p;i0 accounts for all possible
alternatives of connecting intermediate streams cir 2 CIR of crude cr 2 CR from
refinery i 2 I to process p 2 P in plant i

0 2 I
0
. Variable xiRef

cr;cir;i;p;i0 represents the
trans-shipment flow rate of crude cr 2 CR, of intermediate cir 2 CI R from plant
i 2 I to process p 2 P at plant i

0 2 I. The process network integration superstructure
that constitutes all possible configuration structures can be defined a priori through
suitable engineering and process analysis of all possible intermediate streams
exchange.

X

p2P
acr;cir;i;pzcr;p;i þ

X

i0 2I

X

p2P
jcr;cir;i0 ;p;i xi

Ref
cr;cir;i0 ;p;i

�
X

i0 2I

X

p2P
jcr;cir;i;p;i0 xi

Ref
cr;cir;i;p;i0 �

X

cfr 2CFR

wcr;cir;cfr;i�
X

rf 2FUEL

wcr;cir;rf ;i ¼ 0

8 cr 2 CR; cir 2 CIR; i& i 2 I where i 6¼ i
0

ð3:2Þ

The material balance of final products in each refinery is expressed as the
difference between flow rates from intermediate steams wcr;cir;cfr;i for each
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cir 2 CIR that contribute to the final product pool and intermediate streams that
contribute to the fuel systemwcr;cfr;rf ;i for each rf 2 FUEL as shown in constraint (3.3).
In constraint (3.4) we convert themass flow rate to volumetric flow rate by dividing it
by the specific gravity SGcr;cir of each crude type cr 2 CR and intermediate stream
cir 2 CB. This is done as somequality attributes blend only by volume in the products
blending pools.

X

cr2CR

X

cir2CB
wcr;cir;cfr;i�

X

cr2CR

X

rf 2FUEL

wcr;cfr;rf ;i ¼ xRefcfr;i 8 cfr 2 CFR; i 2 I

ð3:3Þ

X

cr2CR

X

cir2CB

wcr;cir;cfr;i

sgcr;cir
¼ xvRefcfr;i 8 cfr 2 CFR; i 2 I ð3:4Þ

Constraint (3.5) is the fuel system material balance where the term cvrf ;cir;i
represents the caloric value equivalent for each intermediate cir 2 CB used in the
fuel system at plant i 2 I. The fuel production system can either consist of a single or
combination of intermediates wcr;cir;rf ;i and products wcr;cfr;rf ;i. The matrix bcr;rf ;i;p
corresponds to the consumption of each processing unit p 2 P at plant i 2 I as
a percentage of unit throughput.

X

cir2FUEL

cvrf ;cir;i wcr;cir;rf ;i þ
X

cfr2FUEL

wcr;cfr;rf ;i

�
X

p2P
bcr;rf ;i;p zcr;p;i ¼ 0 8 cr 2 CR; rf 2 FUEL; i 2 I

ð3:5Þ

3.4.2
Product Quality

In general, the quality of a blend is composed ofmultiple components and is given by
the following blending rule (Favennec et al., 2001):

Q ¼
P

qiXiP
Xi

whereQ is the quality attribute of the blend, Xi is the quantity of each component in
the blend, and qi is the quality attribute of each blending component. However, when
dealing with a large variety of blended products, as in the case of refining, we need to
distinguish between attributes or components that blend by weight, such as sulfur
content, and others that blend by volume, such as vapor pressure and octane number
of gasoline. Furthermore, it is important to replace certain quality measurements
such as viscosity values with certain blending indices in order to maintain model
linearity. Blending indices tables and graphs can be found in petroleum refining
books such as Gary and Handwerk (1994) or can be proprietorily developed by
refining companies for their own use.
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Constraints(3.6)and(3.7),respectively,expressthelowerandupperboundonquality
constraints for all products that blend either by mass q 2 Qw or by volume q 2 Qv.

X

cr2CR

X

cir2CB
attcr;cir;q2Qv

wcr;cir;cfr;i

sgcr;cir
þ attcr;cir;q2Qw wcr;cir;cfr;i�

X

rf 2FUEL

wcr;cfr;rf ;i

2

4

3

5

0

@

1

A

� qLcfr;q2Qvxv
Ref
cfr;i þ qLcfr;q2Qw xRefcfr;i 8 cfr 2 CFR; q ¼ fQw;Qvg; i 2 I

ð3:6Þ

X

cr2CR

X

cir2CB
attcr;cir;q2Qv

wcr;cir;cfr;i

sgcr;cir
þ attcr;cir;q2Qw wcr;cir;cfr;i�

X

rf 2FUEL

wcr;cfr;rf ;i

2

4

3

5

0

@

1

A

� qUcfr;q2Qv xv
Ref
cfr;i þ qUcfr;q2Qw xRefcfr;i 8 cfr 2 CFR; q ¼ fQw;Qvg; i 2 I

ð3:7Þ

3.4.3
Capacity Limitation and Expansion

Constraint (3.8) represents the maximum and minimum allowable flow rate to each
processing unit. The coefficient cm;p represents a zero-onematrix for the assignment
of production unit m 2 MRef to process operating mode p 2 P. As an example, the
reformer is a production unit that can operate at high or low severity modes. The
selection of the mode of operation will be considered as part of the optimization
problem where variable task–equipment assignment (VTE) will be used. The term
AddCm;i;s represents the additional expansion capacity for each production unit
m 2 MRef at refinery i 2 I for a specific expansion size s 2 S. Production systems
expansion through the addition of new units requires detailed analysis and is usually
quoted not only based on the unit flow rate but also on many other factors. For this
reason, developing cost models of such expansions only as a function of the unit flow
rate does not generally provide a good estimate. In our formulation, we only allowed
the addition of predetermined capacities whose pricing can be acquired a priori
through design companies� quotations. The integer variable y expRefm;i;s represents the
decision to expand a production unit and it can take a value of one if the unit
expansion is required or zero otherwise.

MinCm;i �
X

p2P
cm;p

X

cr2CR
zcr;p;i � MaxCm;i

þ
X

s2S
AddCm;i;s y exp

Ref
m;i;s 8m 2 MRef ; i 2 I

ð3:8Þ

Constraint (3.9) sets an upper bound on intermediate streams� flow rates between
the different refineries. The integer variable y pipeRefcir;i;i0 represents the decision of
exchanging intermediate products between the refineries and takes on the value of
one if the commodity is transferred from plant i 2 I to plant i0 2 I or zero otherwise,
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where i 6¼ i0. When an intermediate stream is selected to be exchanged between two
refineries, its flow rate must be below the transferring pipeline capacity FU

cir;i;i0.
X

cr2CR

X

p2P
jcr;cir;i;p;i0 xi

Ref
cr;cir;i;p;i0 � FU

cir;i;i0 y pipe
Ref
cir;i;i0

8 cir 2 CIR; i
0
& i 2 I where i 6¼ i

0
ð3:9Þ

3.4.4
Product Demand

Constraint (3.10) stipulates that the final products from each refinery xRefcfr;i less the
amount exported eRef

cfr 0 ;i for each exportable product cfr
0 2 PEX from each plant i 2 I

must satisfy the domestic demand DRef cfr .

X

i2I
xRefcfr;i�eRefcfr 0 ;i

� �
� DRef cfr 8 cfr and cfr

0
where cfr 2 CFR; cfr

0 2 PEX

ð3:10Þ

3.4.5
Import Constraint

The imports or resources constraint (3.11) imposes upper and lower bounds on the
available feedstock cr 2 CR to the refineries. The lower bound constraint might be
useful in the cases where there are protocol agreements to exchange or supply crude
oil between countries.

IML
cr �

X

i2I
SRefcr;i � IMU

cr 8 cr 2 CR ð3:11Þ

3.4.6
Objective Function

The objective function considered in this study is given by:

Min
X

cr2CR

X

i2I
CrCostcr S

Ref
cr;i

þ
X

p2P
OpCostp

X

cr2CR

X

i2I
zcr;p;i

þ
X

cir2CIR

X

i2I

X

i02I
InCosti;i0 y pipe

Ref
cir;i;i0

þ
X

i2I

X

m2MRef

X

s2S
InCostm;s y exp

Ref
m;i;s

�
X

cfr2PEX

X

i2I
PrRefcfr eRefcfr;i

where i 6¼ i
0 ð3:12Þ
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The above objective represents a minimization of the annualized cost which
comprises crude oil cost, refineries operating cost, refineries intermediate exchange
piping cost, production system expansion cost, and export revenue. The operating
cost of each process is assumed to be proportional to the process inlet flow and is
expressed on a yearly basis.

3.5
Illustrative Case Study

In this section, we present two examples with different scenarios. The first example
illustrates the performance of the model on a single site total refinery planning
problemwhere we compare the results of themodel to an industrial scale study from
Favennec et al. (2001). This example serves to validate our model and to make any
necessary adjustments. The second example extends the scale of the model appli-
cation to cover three complex refineries in which we demonstrate the different
aspects of themodel. The refineries considered are of large industrial-scale refineries
and actuallymimic a general set-up ofmany areas around the world. The decisions in
this example include the selection of crude blend combination, design of process
integration network between the three refineries, and decisions on production units�
expansion options and operating levels.

The modeling system GAMS (Brooke et al., 1996) was used for setting up the
optimization models and the problems are solved by BDMLP 1.3 on a Pentium M
processor 2.13GHz.

3.5.1
Single Refinery Planning

Figure 3.2 provides a SEN representation of the refinery considered in this example.
The planning horizon was set to one month in order to compare the model results
with those of Favennec et al. (2001). As shown in Figure 3.2, the refinery uses two
different feedstocks (e.g., Arabian light andKuwait crudes)where the optimumblend
is used to feed the atmospheric crude unit. The atmospheric crude unit separates
crude oil into several fractions including LPG, naphtha, kerosene, gas oil and
residues. The heavy residues are then sent to the vacuum unit where they are
further separated into vacuum gas oil and vacuum residues. Depending on the
production targets, different processing and treatment processes are applied to the
crude fractions. In this example, the naphtha is further separated into heavy and
light naphtha. Heavy naphtha is sent to the catalytic reformer unit to produce high
octane reformates for gasoline blending and light naphtha is sent to the light
naphtha pool and to an isomerization unit to produce isomerate for gasoline
blending. The middle distillates are combined with other similar intermediate
streams and sent for hydrotreating and then for blending to produce jet fuels and
gas oils. Atmospheric and vacuum gas oils are further treated by catalytic cracking
and in other cases by hydrocracking or both to increase the gasoline and distillate
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yields. In some refineries, vacuum residues are further treated using cooking and
thermal processes to increase light products yields. The final products in this
example consist of liquefied petroleum gas (LPG), light naphtha (LT), two grades of
gasoline (PG98 and PG95), No.4 jet fuel (JP4), No.6 gas oil (GO6), and heating fuel
oil (HFO). The major capacity limitations as well as availability constraints are
shown in Table 3.1.

We slightly adjusted our model to allow for spot market buying and selling of
heavy naphtha, vacuum gas oil and all products in order to demonstrate actual total
site refinery planning and compare our results with those of Favennec et al. (2001).
The model results and a comparison are shown in Table 3.2.

Figure 3.2 Refinery 1 layout using SEN representation.
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This example illustrates the capability and flexibility of our formulation to capture
the details of a tactical or a medium-term planning horizon of one month. There are
someminor differences in the results. This is because we were not able to access the
detailed model used in their study and hence were not able to match their
assumptions.

However, our proposed modeling methodology is of great benefit to refiners as
they can align their long and medium plans through a common purpose model.

Table 3.1 Major refinery capacity constraints for single refinery planning.

Lower limit 1000 t/month Higher limit 1000 t/month

Production Capacity
Distillation — 700
Reformer
95 severity 2 —

Total — 60
Isomerization — 15
Fluid catalytic cracker — 135
Total Desulfurization — 150

Crude availability
Crude 1 — 400
Crude 2 260 —

Table 3.2 Model results and comparison of single refinery planning.

Process variables Results (1000 t/month)

Case Study Proposed model

Crude oil supply Crude 1 278.6 268.1
Crude 2 260 260
Total 538.6 528.1

Production levels Crude 538.6 528.1
Reformer 95 2 2
Reformer 100 57.72 58.00
Isomerization 11.72 11.63
FCC gasoline mode 0 0
FCC gas oil mode 130.5 128.4
Des Gas oil 119.9 118.2
Des cycle gas oil 23.8 23.0

Intermediate import Heavy naphtha 7.38 8.62
Final product import GO6 0 1
Exports PG95 12.78 13.6

JP4 5 0
Total cost ($/month) 90 177 91 970
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3.5.2
Multisite Refinery Planning

In this example, we extend the scale of the case study to cover strategic planning for
three complex refineries by which we demonstrate the performance of our model
under different considerations. The three refineries considered represent indus-
trial-scale size refineries and an actual configuration that can be found in many
industrial sites around the world. See Figures 3.3 and 3.4 for the second and third
refinery layouts, respectively. These are in addition to the refinery case study of the
single refinery planning in Section 3.5.1. The three refineries are assumed to be in
one industrial area, which is a common situation in many locations around the
world. The refineries are coordinated through a main headquarters, centralized
planning is assumed, and feedstock supply is shared. The final products of the three

Figure 3.3 Refinery 2 layout using SEN representation.
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refineries consist of liquefied petroleum gas (LPG), light naphtha (LT), two grades
of gasoline (PG98 and PG95), No. 4 jet fuel (JP4), military jet fuel (ATKP), No.6
gas oil (GO6), diesel fuel (Diesel), heating fuel oil (HFO), and petroleum coke
(coke). We will now consider several practical scenarios to demonstrate the
advantage of the proposed integration model and its robustness under different
considerations.

3.5.2.1 Scenario-1: Single Feedstock, Multiple Refineries with No Integration
In this scenario, the three refineries are using a single feedstock type, Arabian
Light, and operate centrally with no network integration alternatives. The major
model constraints and results are shown in Tables 3.3 and 3.4, respectively. The
three refineries collaborate to satisfy a given local market demand where the

Figure 3.4 Refinery 3 layout using SEN representation.
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model provides the production and blending level targets for the individual sites.
Products that exceeded local market demand are either sold in the spot market or
exported. The annual production cost across the facilities was found to be
$7 118 000.

3.5.2.2 Scenario-2: Single Feedstock, Multiple Refineries with Integration
In this scenario, we allowed the design of an integration network between the three
refineries using the same set of constraints as in Scenario-1. The cost parameters for
pipelines installation were calculated as cost per distance between the refineries, and
then multiplied by the required pipe length in order to connect any two refineries.
The pipeline diameter considered in all cases was 8 inches.

As shown from the results with this scenario in Table 3.5, by allowing the design of
an optimal integration network between the refineries, we were able to achieve
annual savings exceeding $230 000. The savings will increase as the number of
plants, production units and integration alternatives across the enterprise increase.
However, benefits are not only limited to reducing cost, but also include improved

Table 3.3 Major refineries capacity constraints for multisite refinery planning, Scenario-1 and 2.

Higher limit (1000 t/year)

Production Capacity R1 R2 R3

Distillation 4500 12 000 9900
Reforming 1000 2000 1800
Isomerization 200 — 450
Fluid catalytic cracker 1700 1700 —

Hydrocracker — 2000 2500
Delayed coker — — 2200
Des gas oil 1900 3000 2400
Des cycle gas oil 200 750 —

Des ATK — 1200 1680
Des Distillates — — 700

Crude availability
Crude 1 31 200
Crude 2 —

Local Demand
LPG 432
LN 312
PG98 540
PG95 4440
JP4 2340
GO6 4920
ATK 1800
HFO 200
Diesel 480
Coke 300
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flexibility and sustainability of production as well as proper utilization and allocation
of resources among the refineries network. As an example, diesel production in the
first scenario (no integration) was barely satisfying local demand of 480 000 t/year
and only 2400 t/year were left for export. With such a thin production margin, the
plant did not have enough flexibility to face variations in diesel demand. In Scenario-
2, however, the production margin of diesel increased from 2400 to 320 600 t/year.
The benefits were in terms of increasing exports and, hence, profit, and also gaining
more diesel production flexibility to meet any variations in local market demand.

3.5.2.3 Scenario-3: Multiple Feedstocks, Multiple Refineries with Integration
In this scenario, we provide multiple feedstocks, namely; Arabian Light and Kuwait
crude, to the refineries complex and demonstrate the selection of crude combinations
to each refinery as well as how the integration network will change. All sets of
constraints remained the same except for the crude supply as we imposed a higher
availability limit of 20 000 t/year of each crude type. The results of the model are
shown in Table 3.6.

Table 3.4 Model results of multisite refinery planning; Scenario-1.

Process variables Results (1000 t/year)

R1 R2 R3

Crude oil supply Crude 1 4500 12 000 9900
Crude 2 — — —

Total 4500 12 000 9900
Production levels Crude unit 4500 12 000 9900

Reformer 95 163.0 250.0 502.2
Reformer 100 410.1 1574.6 1239.5
Isomerization 140.3 — 450
FCC gasoline mode 954 899.3 —

FCC gas oil mode — — —

Hydrocracker — 1740.4 2098.8
Delayed coker — — 1402.4
Des Gas oil 1395 2753.9 2383.8
Des cycle gas oil 200 401.1 —

Des ATK — 1200 1447.1
Des Distillates — — 338

Exports PG95 214.3
JP4 1427
GO6 3540.1
HFO 1917.4
ATK 1508
Coke 176.8
Diesel 2.40

Total cost ($/yr) 7 118 000
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The total crude oil supply to the refineries complex remained the same. However,
the overall utilization of some major production units has changed. The capacity
utilization of thermal and catalytic reactors has increased whereas reforming utili-
zation has slightly decreased. This is because Kuwait crude containsmore heavy ends
than Arabian light which has more of the lighter ends. The selection of crude supply
type was in favor of Arabian Light as it was processed up to its maximum availability
level of 20 000 t/year where the remaining required crude was fulfilled by Kuwait
crude. Due to the shortage in Arabian Light supply, the model used Kuwait crude to
satisfy local market demand although it yields a higher overall annual production
cost of $ 7 263 000. This scenario illustrates theuse of different combinations of crude
types and how this affects the overall utilization of production units, refineries net-
work integration, and total annual cost. In thenext scenariowewill seehowexpanding
some processes will increase the utilization of other production units� capacity.

Table 3.5 Model results of multisite refinery planning; Scenario-2.

Process variables Results (1000 t/year)

R1 R2 R3

Crude oil supply Crude 1 4500 12 000 9900
Crude 2 — — —

Total 4500 12 000 9900
Production levels Crude unit 4500 12 000 9900

Reformer 95 — — 887.2
Reformer 100 573.1 2000 686.9
Isomerization 140.3 — 450
FCC gasoline mode 616.3 1500 —

FCC gas oil mode — — —

Hydrocracker — 1105 2436.54
Delayed coker — — 2066
Des Gas oil 1390 2822.6 2383.8
Des cycle gas oil 200 669 —

Des ATK — 762 1680
Des Distillates — — 498

Intermediate
streams exchange

From R1 VGO — — 337.7
VRSD — — 350

R2 VRSD — — 319.5
R3 HN — 283.6 —

CoGO — 350 —

Exports PG95 334.1
JP4 1433.6
GO6 3862
HFO 1203
ATK 1251.7
Coke 402.4
Diesel 230.6

Total cost ($/yr) 6 885 000

3.5 Illustrative Case Study j73



3.5.2.4 Scenario-4: Multiple Feedstocks, Multiple Refineries with Integration
and Increased Market Demand
In all previous scenarios, we did not change themarket demand and, therefore, there
was no expansion in the production unit capacities of the refineries. In this scenario,
we will simulate a change in market demand and examine the modifications
suggested by the model. Table 3.7 illustrates the new major operating constraints.

In general, developing cost models of production system expansions only as
a function of the unit flow rate does not provide a good capital cost estimate. For this
reason, and as we mentioned earlier, our formulation only allowed the addition of
predetermined capacities whose price can be acquired a priori through design
companies� quotations.

Table 3.8 shows the new strategic plan for all refineries in terms of crude oil supply
combinations, production expansions, and integration network design between the
refineries. In response to the increase in the diesel production requirements bymore

Table 3.6 Model results of multisite refinery planning; Scenario-3.

Process variables Results (1000 t/year)

R1 R2 R3

Crude oil supply Crude 1 3536 11 835 4629
Crude 2 964 — 5271
Total 4500 11 835 9900

Production levels Crude unit 4500 11 835 9900
Reformer 95 227 — —

Reformer 100 736 1804 1074
Isomerization 144 — 450
FCC gasoline mode 485 1395 —

FCC gas oil mode — — —

Hydrocracker — 1741 2431
Delayed coker — — 2066
Des Gas oil 1121 2727 2127
Des cycle gas oil 200 622 —

Des ATK — 1200 1676
Des Distillates — — 498

Intermediate
streams exchange

From R1 VGO — 265 —

VRSD — — 24
R3 HN 226 — —

Exports JP4 837
GO6 2860
HFO 2390
ATK 1794
Coke 402.4
Diesel 230.6

Total cost ($/yr) 7 263 000
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than two-fold, the new plan suggests the installation of a new thermal coker and a
distillates desulfurization unit in Refinery 3. This change has a clear effect on the
integration network design among the refineries. As an illustration, the new plan
suggests to increase the level of intermediate exchange of vacuum residues from
Refineries 1 and 2 to Refinery 3 in order to efficiently utilize the additional capacities
of the coker and distillates desulfurization units. The total annual cost has increased
to $ 21 463 000 due to the capital and operating costs of the additional units.

3.6
Conclusion

A mixed-integer programming model for minimizing cost in the strategic planning
of a multiple refineries network was presented. The objective was to develop a
methodology for designing a process integration network and production capacity
expansions in amultiple refinery complex using different feedstock alternatives. Two

Table 3.7 Major refineries capacity constraints for multisite refinery planning, Scenario-4.

Higher limit (1000 t/year)

Production Capacity R1 R2 R3

Distillation 5000 12 000 11 000
Reforming 1000 2000 1800
Isomerization 200 — 450
Fluid catalytic cracker 1700 1700 —

Hydrocracker — 2000 2500
Delayed coker — — 2200
Des gas oil 1900 3000 2400
Des cycle gas oil 200 750 —

Des ATK — 1200 1680
Des Distillates — — 700

Crude availability
Crude 1 20 000
Crude 2 20 000

Local Demand
LPG 432
LN 312
PG98 540
PG95 4440
JP4 2340
GO6 4920
ATK 1800
HFO 200
Diesel 1200
Coke 300
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examples withmultiple scenarios of large-scale refineries were solved to illustrate the
performance of the proposed design methodology and to show the economic
potential and trade-offs involved in the optimization of such systems. The integration
specifically addressed intermediate material transfer between processing units at
each site. In the formulation, bilinear mixing equations were avoided by introducing
individual component flows in order to maintain linearity.

Petroleum refining is a central and crucial link in the oil supply chain and has
received extensive attention over the last decades. However, despite all the progress
that has been made in developing planning and scheduling models, a general

Table 3.8 Model results of multisite refinery planning; Scenario-4.

Process variables Results (1000 t/year)

R1 R2 R3

Crude oil supply Crude 1 3077 8293 6059
Crude 2 1923 1333 4420
Total 5000 9626 10 479

Production levels Crude unit 5000 9626 10 479
Reformer 95 276 — 19
Reformer 100 724 2000 610
Isomerization 163 — 450
FCC gasoline mode 751 1595 —

FCC gas oil mode — — —

Hydrocracker — 1065 2500
Delayed coker — — 3490
Des Gas oil 1900 3000 1089
Des cycle gas oil 200 712 —

Des ATK — 1200 1258
Des Distillates — — 841

Intermediate
streams exchange

From R1 GO — 52 —

VGO — 216 —

VRSD — — 400
R2 VRSD — — 400
R3 HN 242 332 —

GO 400 400 —

ATK — 240 —

UCO — 23 —

Process Expansions Delayed Coker — — 1380
Des Distillates — — 600

Exports JP4 543
GO6 2655
HFO 1217
ATK 1272
Coke 886
Diesel —

Total cost ($/yr) 21 463 000
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purpose model is still a target (Grossmann, 2005). A general model that can be used
for different planning levels, short, medium and long range will be of great benefit in
terms of seamless interactions of these functions. In this work we showed the
capability of the proposed model in capturing all details required for medium-range
and tactical planning, as illustrated by Example 1. This is a step forward in achieving
such vertical integration among all planning hierarchies.

In this chapter, all parameters were assumed to be deterministic. However, the
current situation of fluctuating petroleum crude oil prices and demands is an
indication that markets and industries everywhere are impacted by uncertainties.
For example, source and availability of crude oils as the raw material; prices of
feedstock, chemicals, and commodities; production costs; and future market
demand for finished products will have a direct impact on final decisions. Thus,
acknowledging the shortcomings of deterministic models, the next Chapters will
consider uncertainties in the design problem.

References

Bodington, C.E. and Baker, T.E. (1990) A
history ofmathematical programming in the
petroleum industry. Interfaces, 20, 117.

Bok, J.K., Grossmann, I.E., and Park, S. (2000)
Supply chain optimization in continuous
flexible processes. Industrial & Engineering
Chemistry Research, 39, 1279.

Brooke, A., Kendrick, D., Meeraus, A., and
Raman, R. (1996) GAMS–A User�s Guide,
GAMS Development Corporation,
Washington DC.

Bunch, P.R., Rowe, R.L., and Zentner, M.G.
(1998) Large scale multi-facility planning
usingmathematical programmingmethods.
AIChE Symposium Series, Proceedings of the
Third International Conference of the
Foundations of Computer-Aided Process
Operations. Snowbird, Utah, USA, July 5–10,
American Institute of Chemical
Engineering, 94, p. 249.

Chopra, S. andMeindl, P. (2004) Supply Chain
Management: Strategy, Planning, and
Operations, 2nd edn, Pearson Education,
New Jersey.

Favennec, J., Coiffard, J., Babusiaux, D., and
Trescazes, C. (2001) Refinery Operation
and Management, vol. 6, Editions Technip,
Paris.

Florian, M.K., Lenstra, J.K., and
Rinnooy Khan, A.H. (1980) Deterministic
production planning: Algorithms and
complexity. Management Science, 26, 669.

Gary, J.H. and Handwerk, G.E. (1994)
Petroleum Refining: Technology and
Economics, Marcel Dekker Inc., New York.

Grossmann, I.E. (2005) Enterprise-wide
optimization: a new frontier in process
systems engineering. AIChE Journal, 51,
1846.

Grossmann, I.E. and Santibanez, J. (1980)
Application of mixed-integer linear
programming in process synthesis.
Computers & Chemical Engineering, 4, 205.

Himmelblau, D.M. and Bickel, T.C. (1980)
Optimal expansion of a hydrodesulfu-
rization process. Computers & Chemical
Engineering, 4, 101–112.

Ierapetritou, M.G. and Pistikopoulos, E.N.
(1994) Novel optimization approach of
stochastic planning models. Industrial &
Engineering Chemistry Research, 33, 1930.

Iyer, R.R. and Grossmann, I.E. (1998) A
bilevel decomposition algorithm for long-
range planning of process networks.
Industrial & Engineering Chemistry
Research, 37, 474.

Jackson, J.R. and Grossmann, I.E. (2003)
Temporal decomposition scheme for
nonlinear multisite production planning
and distribution models. Industrial &
Engineering Chemistry Research, 42, 3045.

Jia, Z. and Ierapetritou, M. (2003) Refinery
short-term scheduling using continuous
time formulation: crude-oil operations.

References j77



Industrial & Engineering Chemistry Research,
42, 3085.

Jia, Z. and Ierapetritou, M. (2004) Efficient
short-term scheduling of refinery operations
based on a continuous time formulation.
Computers & Chemical Engineering, 28, 1001.

Jimenez, G.A. and Rudd, D.F. (1987) Use of
a recursive mixed-integer programming
model to detect an optimal integration
sequence for the Mexican petrochemical
industry. Computers & Chemical Engineering,
11, 291.

Kallrath, J. (2005) Solving planning and design
problems in the process industry using
mixed integer and global optimization.
Annals of Operations Research, 140, 339.

Khogeer, A.S. (2005) Multiobjective
multirefinery optimization with
environmental and catastrophic failure
effects objectives. Ph.D. Thesis. Colorado
State University.

Kondili, E., Pantelides, C.C., and Sargent,
R.W.H. (1993) A general algorithm for short-
term scheduling of batch operations-I. MILP
formulation. Computers & Chemical
Engineering, 17, 211.

Lasschuit, W. and Thijssen, N. (2003)
Supporting supply chain planning and
scheduling decisions in the oil & chemical
industry, in Proceedings of Fourth
International Conference on Foundations of
Computer-Aided Process Operations (eds I.E.
Grossmann and C.M. McDonald), Coral
Springs, CAChE, p. 37.

Lee, H., Pinto, J.M., Grossmann, I.E., and
Park, S. (1996) Mixed-integer linear
programming model for refinery short-term
scheduling of crude oil unloading with
inventory management. Industrial &
Engineering Chemistry Research, 35, 1630.

Liu, M.L. and Sahinidis, N.V. (1995)
Computational trends and effects of
approximations in an MILP model for
process planning. Industrial & Engineering
Chemistry Research, 34, 1662.

Liu, M.L. and Sahinidis, N.V. (1996)
Optimization in process planning under
uncertainty. Industrial & Engineering
Chemistry Research, 35, 4154.

Liu, M.L. and Sahinidis, N.V. (1997)
Process planning in a fuzzy environment.
European Journal of Operational Research,
100, 142.

Manne, A.S. (1967) Investment for Capacity
Expansion Problems, MIT Press, Cambridge,
MA.

McDonald, C.M. and Karimi, I.A. (1997)
Planning and scheduling of parallel
semicontinuous processes. 1. Production
planning. Industrial & Engineering Chemistry
Research, 36, 2691.

Neiro, S.M.S. and Pinto, J.M. (2004) A general
modeling framework for the operational
planning of petroleum supply chains.
Computers & Chemical Engineering, 28, 871.

Norton, L.C. and Grossmann, I.E. (1994)
Strategic planning model for complete
process flexibility. Industrial & Engineering
Chemistry Research, 33, 69.

Pantelides, C.C. (1994) Unified frameworks
for optimal process planning and
scheduling, in Proceeding of the Second
Conference on Foundations of Computer-Aided
Operations, CAChE Publications, p. 253.

Pinto, J.M., Joly, M., and Moro, L.F.L. (2000)
Planning and schedulingmodels for refinery
operations. Computers & Chemical
Engineering, 24, 2259.

Roberts, S.M. (1964) Dynamic Programming
in Chemical Engineering and Process Control,
Academic Press, New York.

Ryu, J. and Pistikopoulos, E.N. (2005) Design
and operation of an enterprise-wide process
network using operation policies. 1. Design.
Industrial & Engineering Chemistry Research,
44, 2174.

Ryu, J., Dua, V., and Pistikopoulos, E.N. (2004)
A bilevel programming framework for
enterprise-wide process networks under
uncertainty. Computers & Chemical
Engineering, 28, 1121.

Sahinidis, N.V. and Grossmann, I.E. (1991a)
Reformulation of multiperiod MILP models
for planning and scheduling of chemical
processes. Computers & Chemical
Engineering, 15, 255.

Sahinidis, N.V. and Grossmann, I.E. (1991b)
Multiperiod investment model for
processing networks with dedicated and
flexible plants. Industrial & Engineering
Chemistry Research, 30, 1165.

Sahinidis, N.V. and Grossmann, I.E. (1992)
Reformulation of multi-period MILP
model for planning and scheduling of
chemical processes. Operations Research,
40, S127.

78j 3 Multisite Refinery Network Integration and Coordination



Sahinidis, N.V., Grossmann, I.E., Fornari,
R.E., and Chathrathi, M. (1989)
Optimizationmodel for long range planning
in chemical industry. Computers & Chemical
Engineering, 13, 1049.

Shah, N. (1998) Single- andmultisite planning
and scheduling: current status and future
challenges. AIChE Symposium Series:
Proceedings of the Third International
Conference of the Foundations of Computer-
Aided Process Operations, Snowbird, Utah,
USA, July 5–10, American Institute of
Chemical Engineering, 94, p. 75.

Swaty, T.E. (2002) Consider over-the-fence
product stream swapping to raise
profitability. Hydrocarbon Processing, 81, 37.

Timpe, C.H. and Kallrath, J. (2000) Optimal
planning in large multisite production
networks. European Journal of Operational
Research, 126, 422–435.

Tsiakis, P., Shah, N., and Pantelides, C.C.
(2001) Design of multiechelon supply chain
networks under demand uncertainty.

Industrial & Engineering Chemistry Research,
40, 3585.

Wilkinson, S.T. (1996) Aggregate Formulation
for Large-Scale Processing Scheduling
Problems, Ph.D. Thesis. Imperial College.

Wilkinson, S.J., Shah, N., and Pantelides, C.C.
(1996) Integrated production and
Distribution shedueling on a Europe-Wide
Basis. Computers & Chemical Engineering,
S20, S1275.

Williams, J.F. (1981) Heuristic techniques for
simultaneous scheduling of production and
distribution in multi-echelon structures.
Management Science, 27, 336.

Yeomans, H. and Grossmann, I.E. (1999) A
systematic modeling framework of
superstructure optimization in process
synthesis. Computers & Chemical
Engineering, 23, 709.

Zhang, N. and Zhu, X.X. (2006) Novel
modeling and decomposition strategy for
total site optimization.Computers & Chemical
Engineering, 30, 765.

References j79





4
Petrochemical Network Planning

The structure of the petrochemical industry is a highly interactive and complex
structure as it involves hundreds of chemicals and processes with products of one
process being the feedstocks of many others. For most chemicals, the production
route from feedstock to final products is not unique, but includes many possible
alternatives. As complicated as itmay seem, this structure is comprehensible, at least
in a general sense.

This chapter explains the general representation of a petrochemical planning
model which selects the optimal network from the overall petrochemical superstruc-
ture. The system ismodeled as amixed-integer linear programming (MILP) problem
and illustrated via a numerical example.

4.1
Introduction

The petrochemical industry is a network of highly integrated production processes
where products of one plantmay have an end use ormay also represent rawmaterials
for other processes. This flexibility in petrochemical products production and the
availability of many process technologies offer the possibility of switching between
production methods and raw materials utilization. The world economic growth and
increasing population will keep global demand for transportation fuels and petro-
chemical products growing rapidly for the foreseeable future. One half of the
petroleum consumption over the period 2003–2030 will be in the transportation
sector, whereas the industrial sector accounts for 39% of the projected increase in
worldoil consumption,mostly for chemical andpetrochemical processes (EIA, 2006).
Meeting this demandwill require large investments andproper strategic planning for
the petrochemical industry.

The objective of this chapter is to give an overview of the optimization of
petrochemical networks and to set up the deterministic model which will be used
in the analysis of parameter uncertainties in Chapter 8.

The remainder of this Chapter 4 is organized as follows. In Section 4.2 we will
review the related literature in the area of petrochemical planning. Then, we will
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discuss the deterministicmodel formulation for the petrochemical network planning
and illustrate its performance through an industrial case study in Sections 4.3
and 4.4, respectively. The chapter ends with concluding remarks in Section 4.5.

4.2
Literature Review

Therealizationof theneedforpetrochemicalplanningalongwith its important impact
has inspired a great deal of research in order to devise differentmodeling frameworks
and algorithms. These include optimization models with continuous and mixed-
integer programming under both deterministic and uncertainty considerations.

The seminal work of Stadtherr and Rudd (1976, 1978) defined the petrochemical
industry as a network of chemical process systems with linear chemical transforma-
tions and material interactions. They showed that the model provided a good
representation of the petrochemical industry and can be used as a tool for estimating
the relative effectiveness of available and new technologies and their impact on the
overall industry. Their objective was to minimize feedstock consumption. A similar
LP modeling approach was adapted by Sokic and Stevancevic (1983). Sophos,
Rotstein and Stephanopoulos (1980) presented a model that minimizes feedstock
consumption and entropy creation (lost work). Fathi-Afshar and Yang (1985) devised
a multiobjective model of minimizing cost and gross toxicity emissions. Modeling
the petrochemical industry using linear programming may have shown its ability to
provide relatively reliable results through different technology structures. However,
the need for approximating non-linear objective functions or the restriction of
process technology combination alternatives mandated different modeling techni-
ques involving mixed-integer programming.

Some of the first mixed-integer programming models that tackled this problem
were proposed by Jimenez, Rudd andMeyer (1982) and Jimenez and Rudd (1987) for
the development of the Mexican petrochemical industry. The proposed models were
used to plan the installation of new plants with profitable levels as opposed to
importing chemical products.However, therewere no capacity limitation constraints
on the processes. Al-Amir, Al-Fares and Rahman (1998) developed an MILP model
for the development of Saudi Arabia�s petrochemical industry maximizing profit.
The model included the minimum economic production quantity for the different
processes and accounted for domestic consumption and global market exports. This
model was further extended by Al-Fares and Al-Amir (2002) to include four main
product categories: propylene, ethylene, synthesis gas and aromatics and their
derivatives. They devised a non-linear objective function of production investment
cost at different production levels and derived a linear representation of the function
through piece-wise linear approximation. Al-Sharrah et al. (2001), and Al-Sharrah,
Alatiqi and Elkamel (2002) presented MILP models that took sustainability and
strategic technology selection into consideration. The models included a constraint
to limit the selection of one technology to produce a chemical achieving a long term
financial stability and an environmental consideration through a suitable objective.
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Sustainability was quantified by a health index of the chemicals and increasing profit
was represented by the added value of each process in the network. This work was
later extended by Al-Sharrah, Alatiqi and Elkamel (2003) with the aim of identifying
long-range and short-range disturbances that affect planning in the petrochemical
industry. Al-Sharrah, Hankinson and Elkamel (2006) further developed their petro-
chemical planning framework into a multiobjective model accounting for economic
gain and risk from plant accidents. The above body of research did not take into
account parameter uncertainties.

The above discussion shows the importance of petrochemical network planning in
process system engineering studies. In this chapter we develop a deterministic
strategic planning model of a network of petrochemical processes. The problem is
formulated as a mixed-integer linear programming model with the objective of
maximizing the added value of the overall petrochemical network.

4.3
Model Formulation

The optimization of petrochemical network design involves a broad range of aspects,
including economic and environmental analysis, strategic selection of processes and
production capacities. The deterministic model presented in this study is slightly
modified from that of Al-Sharrah et al. (2001), Al-Sharrah, Hankinson and Elk-
amel (2006). A set of CP number of chemicals involved in the operation of Mpet

processes is assumed to be given. Let xPetm be the annual level of production of process
m 2 Mpet, FPet

cp the amount of chemical cp 2 CP as a feedstock, and dcp;m the
input–output coefficient matrix of material cp in process m 2 Mpet, and DL

Pet cp and
DU

Pet cp represent the lower and upper level of demand for product cp 2 CP, respec-
tively. Then, the material balance that governs the operation of the petrochemical
network can be expressed as shown in constraints (4.1) and (4.2):

FPet
cp þ

X

m2MPet

dcp;m xPetm � DL
Pet cp 8 cp 2 CP ð4:1Þ

FPet
cp þ

X

m2MPet

dcp;m xPetm � DU
Pet cp 8 cp 2 CP ð4:2Þ

For a given subset of chemicals, where cp 2 CP, these constraints control the
production of different processes based on the upper and lower demands of the
petrochemical market for the final products. In constraint (4.3), defining the binary
variables yPetproc m for each process m 2 MPet is required for the process selection
requirement as yPetproc m will equal 1 only if process m is selected or zero otherwise.
Furthermore, if only processm is selected, its production level must be at least equal
to the process minimum economic capacity BL

m for each m 2 MPet, where KU is a
valid upper bound.. This can be written for each process m as follows:

BL
m yPetproc m � xPetm � KU yPetproc m 8m 2 MPet ð4:3Þ
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In the casewhere it is preferred to choose only one process technology to produce a
single chemical, constraints (4.4) and (4.5) can be included for each intermediate and
product chemical type, respectively:

X

cp2CIP
yPetproc m � 1 8m 2 MPet that produces cp 2 CIP ðintermediateÞ ð4:4Þ

X

cp2CFP
yPetproc m � 1 8m 2 MPet that produces cp 2 CFP ðfinalÞ ð4:5Þ

Finally, we can specify limitations on the supply of feedstock SPetcp for each chemical
type cp though constraint (4.6):

FPet
cp � SPetcp 8 cp 2 CP ð4:6Þ

The economic objective in the model can either be represented as operating cost
minimization or added-value maximization. In the case of added-value maximiza-
tion, product prices are subtracted from the cost of feedstocks for each process. If
PrPetcp is the price of chemical cp, the added-value objective function can be repre-
sented as:

Max
X

cp2CP

X

m2MPet

PrPetcp dcp;m xPetm ð4:7Þ

4.4
Illustrative Case Study

The case study presented in this book is based on Al-Sharrah, Hankinson and
Elkamel (2006). The petrochemical network included 81 processes connecting the
production and consumption of 65 chemicals. Simplified networks of processes and
chemicals included in thepetrochemicalnetworkaregiven inFigure4.1andTable4.1;
respectively. The chemicals are classified according to their function as follows:

1) Primary raw material (PR)
2) Secondary raw material (SR)
3) Intermediate (I)
4) Primary final product (PF)
5) Secondary final product (SF).

PR chemicals are derived from petroleum and natural gas and other basic feed-
stocks, whereas the SR chemicals are those needed as additives or in small quantities.

The chemicals classified as I are those produced and consumed in the petro-
chemical network. Finally, the PFand SF chemicals are the selected final products by
selected processes and the associated byproducts in the network, respectively.

The modeling system GAMS (Brooke et al., 1996) is used for setting up the
optimization models. The computational tests were carried out on a Pentium M
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Figure 4.1 A simplified network of processes in the model.
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Table 4.1 A list of chemicals included in the model.

Chemical Function

Acetaldehyde SF þ I
Acetic acid I þ PF
Acetone PF
Acetylene I
Acrylic fibers PF
Acrylonitrile I
Acrylonitrile–butadiene–styrene PF
Ammonia PR
Benzene SF þ I
Butadiene I
Butenes (mixed n-, iso-,-dienes, etc.) SF þ PR
C-4 fraction (mixed butanes, -enes, etc.) SF þ PR
Carbon dioxide SR
Carbon monoxide I
Chlorine PR
Chlorobenzene I
Coke PR
Cumene I þ PF
Ethane PR
Ethanol I
Ethyl benzene I
Ethylene SF þ I
Ethylene dichloride I
Formic acid SF
Fuel gas SF
Fuel oil SF þ PR
Gas oil PR
Gasoline SF
Hydrochloric acid SR
Hydrogen SR þ SF
Hydrogen cyanide I
Hydrogen peroxide I
Isopropyl alcohol I
Methane PR þ SF
Methanol I
Methyl acrylate SR
Methyl methacrylate SR
Naphtha PR
n-Butane PR
n-Butylenes (1- and 2-) PR
Pentane SR
Phenol PR
Polybutadiene rubber SR
Polystyrene (crystal grade) I þ PF
Polystyrene (expandable beads) PF
Polystyrene (impact grade) PF
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processor 2.13 GHz. The MILP model was solved using CPLEX (CPLEX Optimi-
zation Inc., 1993).

Themodel in this form ismoderate in size and the solution indicated the selection
of 22 processes out of the 81 processes proposed. The selected processes and their
respective capacities are shown in Table 4.2. This case study represents an ideal
situation where all parameters are known with certainty.

The final petrochemical network suggests the use of lighter petroleum refining
feedstocks. The petrochemical network mainly used ethane, propane, C-4 fractions
(mixed butanes, -enes, etc.), pentane, and refinery grade propylene. In the case of
lower lighter petroleumproduct availability, the networkwill suggest the use of steam
cracking of naphtha or gas oil. This will be required in order to obtain the main
petrochemical building blocks for the downstream processes that include ethylene
and chemical grade propylene. The annual production benefit of the petrochemical
network was found to be $ 2 202 268.

4.5
Conclusion

In this chapter we presented an MILP deterministic planning model for the
optimization of a petrochemical network. The optimization model presents a tool

Table 4.1 (Continued)

Chemical Function

Poly(vinyl acetate) I
Poly(vinyl alcohol) SR
Poly(vinyl chloride) PF
Propane SF þ PR
Propylene (chemical grade) SF þ I
Propylene (refinery grade) PR
Propylene oxide SF
Sodium carbonate SR
Sodium hydroxide SR
Styrene I
Sulfuric acid I
Sulfur PR
Synthesis gas 3:1 I
Synthesis gas 2:1 SF
Toluene PR þ SF
Vinyl acetate I þ PF
Vinyl chloride I
Xylene (mixed) SR þ SF

The potential function of each chemical is also indicated: PR¼ primary rawmaterial, SR¼ secondary
raw material, I¼ intermediate, PF¼primary final product, SF¼ secondary final product.
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that simplifies the process of decision-making for such large and complex petro-
chemical systems.

However, considering this type of high level strategic planning model, especially
with the current volatilemarket environment and the continuous change in customer
requirements, the impact of uncertainties is inevitable. In fact, ignoring uncertainty
of key parameters in decision problems can yield non-optimal and infeasible
decisions (Birge, 1995). For this reason, the scope of the next section of this book
is to extend the deterministic petrochemical planning model to account for
uncertainties in model parameters and include the risk notion in decision-making
using proper robust optimization techniques.

Table 4.2 Deterministic model solution.

Process selected Production Capacity
(103 t/year)

acetaldehyde by the one-step oxidation from ethylene 1015.5
acetic acid by air oxidation of acetaldehyde 404.6
acetone by oxidation of propylene 169.8
acetylene by submerged flame process 179.8
acrylic fibers by batch suspension polymerization 246
acrylonitrile by cyanation/oxidation of ethylene 294.9
ABS by suspension/emulsion polymerization 386.9
benzene by hydrodealkylation of toluene 432.3
butadiene by extractive distillation 96.7
chlorobenzene by oxychlorination of benzene 73.0
cumene by the reaction of benzene and propylene 72.0
ethylbenzene by the alkylation of benzene 458.8
ethylene by steam cracking of ethane–propane (50–50 wt%) 1068.3
hydrogen cyanide by the ammoxidation of methane 177.0
phenol by dehydrochlorination of chlorobenzene 61.4
polystyrene (crystal grade) by bulk polymerization 66.8
polystyrene (expandable beads) by suspension polymerization 51.5
polystyrene (impact grade) by suspension polymerization 77.1
poly(vinyl chloride) by bulk polymerization 408.0
styrene from dehydrogenation of ethylbenzene 400.0
vinyl acetate from reaction of ethane and acetic acid 113.9
vinyl chloride by the hydrochlorination of acetylene 418.2
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5
Multisite Refinery and Petrochemical Network Integration

Achieving optimal integration between refineries and the petrochemical industry
was, until recently, a far-fetched target. Nowmany refiners are engaging in feasibility
studies to include and expand their share in the petrochemical market.

In this chapter, we present a model for the design of optimal integration and
coordination of a refinery and petrochemical network to satisfy given demand for
chemical products. The main feature of the approach is the development of
a methodology for the simultaneous analysis of process network integration within
a multisite refinery and petrochemical system, thus achieving a global optimal
production strategy by allowing appropriate trade-offs between the refinery and the
downstream petrochemical markets. The performance of the proposed model is
tested on industrial-scale examples of multiple refineries and a polyvinyl chloride
(PVC) complex to illustrate the economic potential and trade-offs involved in the
optimization of the network.

5.1
Introduction

In view of the current situation of high oil prices and the increasing consciousness
and implementation of strict environmental regulations, petroleum refiners and
petrochemical companies have started to seek opportunities for mergers and
integration. This is evident in the current projects around the world for building
integrated refineries and the development of complex petrochemical industries that
are aligned through advanced integration platforms. Figure 5.1 illustrates a typical
refining and petrochemical industry supply chain. The realization of coordination
and objective alignment benefits across the enterprise has been the main driver of
such efforts (Sahinidis et al., 1989; Shah, 1998).

Despite the fact that petroleumrefining andpetrochemical companieshave recently
engaged inmore integration projects, relatively little research has been reported in the
open literature, mostly due to confidentiality reasons. Such concerns render the
development of a systematic framework of network integration and coordination
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difficult. The studies published in the open literature were mainly developed by
consulting and design firms, as well as the operating companies, and generally lack a
structuredmethodology for evaluating the projects feasibility. Just tomention a few of
the studies published, Swaty (2002) studied the possibility of integrating a refinery and
an ethylene plant through the exchange of process intermediate streams. The analysis
was based on a linear programmingmodel for each plant and profit marginal analysis
of possible intermediate plant exchange. The study was implemented on a real life
application in western Japan. Gonzalo et al. (2004) highlighted the benefits of refining
and petrochemical integration. They discussed a project dealing with the installation
of a hydrocracker inRepsol�s refinery inSpain andhow it improved theoverall synergy
between the refinery and a stream cracker plant.

In the academic arena, Sadhukhan, Zhang, andZhu (2004) developed an analytical
flowsheet optimization method for applications in the petroleum refining and
petrochemical industry. The proposed methodology consisted of three main steps:
market integration, facility network optimization through economicmargin analysis
and load shifting, and elimination of less profitable processes. They demonstrated
their method on two case studies: a single site refinery and a petrochemical complex.
Li et al. (2006) proposed a linear programming (LP) model for the integration of
a refinery and an ethylene cracker. They evaluated different schemes iteratively for
different crude types to optimize the refinery and ethylene cracker operations. The
best scheme was selected based on the highest profit from the cases studied. More

Figure 5.1 Refinery and petrochemical industry supply chain.
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recently, Kuo and Chang (2008) developed a short termmulti-period planningmodel
for a benzene–toluene–xylene (BTX) complex. They modeled the system as a mixed-
integer linear programming (MILP) model with binary variables mainly for mode
switching and inventory control (backlog and surplus indicators). They divided the
processing units into two sets, (i) reaction processes: reforming, isomerization units
and tatory units, and (ii) separation processes: aromatics extraction units, xylene
fractionation units and the parex units. Optimization of the other refinery units,
blending levels and olefin cracking processes were not considered. The decisions in
their study mainly included the optimal throughput and operation mode of each
productionunit, inventory levels and feedstock supplies. Formoredetails on strategic
multisite planning studies, multisite refinery optimization, and petrochemical
industry planning the interested reader is referred to the previous chapters and the
references given herein.

The integration of petroleum refining and petrochemical plants is gaining a great
deal of interest with the realization of the benefits of coordination and vertical
integration. Previous research in the field assumed either no limitations on refinery
feedstock availability for the petrochemical planning problem or fixed the refinery
production levels assuming an optimal operation. However, in this chapter we
present a mathematical model for the determination of the optimal integration and
coordination strategy for a refinery network and synthesize the optimal petrochem-
ical network required to satisfy a givendemand fromany set of available technologies.
Therefore, achieving a global optimal production strategy by allowing appropriate
trade-offs between the refinery and the downstream petrochemical markets. The
refinery and petrochemical systems were modeled as MILP problems that will also
lead to overall refinery and petrochemical process production levels and detailed
blending levels at each refinery site. The objective function is a minimization of the
annualized cost over a given time horizon among the refineries by improving the
coordination and utilization of excess capacities in each facility and maximization of
the added value in the petrochemical system. Expansion requirements to improve
production flexibility and reliability in the refineries are also considered.

The remainder of Chapter 5 is organized as follows. In Section 5.2, we explain the
problem statement of the petroleum refinery and petrochemical integration. Then,
we discuss the proposed model formulation in Section 5.3. In Section 5.4, we
illustrate the performance of the model through an industrial-scale case study. The
chapter ends with some concluding remarks in Section 5.5.

5.2
Problem Statement

The optimization of refining and petrochemical processes involves a wide range of
aspects, varying from economical analysis and strategic expansions to crude oil
selection, process levels targets, operating modes, and so on. The focus of this
chapter is to develop a mathematical programming tool for the simultaneous design
of an integrated network of refineries and petrochemical processes. On the refinery
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side, the model provides the optimal network integration between the refineries,
process expansion requirements, operating policy based on different feedstock com-
bination alternatives, process levels and operating modes. On the petrochemical
side, the model establishes the design of an optimal petrochemical process network
from a range of process technologies to satisfy a given demand. The simultaneous
network design and optimization of the refining and petrochemical industry pro-
vides appropriatemeans for improving the coordination across the industrial system
and can develop an overall optimal production strategy across the petroleum chain.

The general problem under study can be defined as follows: A set of refinery
products cfr 2 CFR produced at multiple refinery sites i 2 I and a set of petrochem-
ical products cp 2 CFP is given. Each refinery consists of different production units
m 2 MRef that can operate at different modes p 2 P while a set of wide range
petrochemical and chemical process technologiesm 2 MPef is available for selection.
Furthermore, different crude oil slates cr 2 CR are available and given. The petro-
chemical network selects its feedstock from three main sources; namely, refinery
intermediate streams FiPetcr;cir;i of an intermediate product cir 2 RPI, refinery final
products Ff Petcr;cfr;i of a final product cfr 2 RPF, and non-refinery streams FnPetcp of
a chemical cp 2 NRF. The process network across the refineries and petrochemical
system is connected in a finite number of ways. An integration superstructure
between the refinery processes is defined in order to allow exchanging intermediate
streams. Market product prices, operating cost at each refinery and petrochemical
system, as well as product demands are assumed to be known.

The problem is to determine the optimal integration and coordination strategy for
the overall refinery network and to design the optimal petrochemical network
required to satisfy a given demand from the available process technologies. The
proposed approach will also provide overall refinery and petrochemical process
production levels and detailed blending levels at each refinery site. The objective
function is a minimization of the annualized cost over a given time horizon among
the refineries by improving the coordination and utilization of excess capacities in
each facility and maximization of the added value in the petrochemical system.
Expansion requirements to improve production flexibility and reliability in the
refineries are also considered.

For all refinery and petrochemical processes within the network we assume that all
material balances are expressed in terms of linear yield vectors. Even though this
might sound restrictive, as most if not all refinery and petrochemical processes are
inherently nonlinear, this practice is commonly appliedwith such large scale systems.
Moreover, the decisions in this study are of a strategic level in which such linear
formulation is adequate to address the required level of detail involvedat this stage. It is
also assumed that processes have fixed capacities and the operating cost of each
process and production mode is proportional to the process inlet flow. In the case of
refinery product blending, quality blending indices are used to maintain model
linearity. It is also assumed that all products that are in excess of the local demand
can be exported to a global market. Piping and pumping installation costs to transport
refinery intermediate streams between the different refinery sites as well as the
operating costs of the new system are lumped into one fixed-charge cost. All costs are
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discounted over a 20 years timehorizon andwith an interest rate of 7%.No inventories
will be considered since the model is addressing strategic decisions which usually
cover a long period of time. We also assume perfect mixing in the refineries and that
the properties of each crude oil slate are decided by specific key components.

5.3
Model Formulation

The proposed formulation addresses the problem of simultaneous design of an
integrated network of refineries and petrochemical processes. The proposedmodel is
based on the formulations proposed in this dissertation. All material balances are
carried out on a mass basis with the exception of refinery quality constraints of
properties that only blend by volume where volumetric flow rates are used instead.
The model is formulated as follows:
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The above objective function (5.1) represents a minimization of the annualized
cost which consists of crude oil cost, refineries operating cost, refineries interme-
diate exchange piping cost, refinery production system expansion cost, less the
refinery export revenue and added value by the petrochemical processes. The
operating cost of each refinery process is assumed to be proportional to the process
inlet flow and is expressed on a yearly basis. Inequality (5.2) corresponds to each
refinery raw materials balance where throughput to each distillation unit p 2 P

0
at

plant i 2 I from each crude type cr 2 CR is equal to the available supply SRefcr;i .
Constraint (5.3) represents the intermediate material balances within and across
the refineries where the coefficient acr;cir;i;p can assume either a positive sign if it is
an input to a unit or a negative sign if it is an output from a unit. The multi-refinery
integration matrix jcr;cir;i;p;i0 accounts for all possible alternatives of connecting
intermediate streams cir 2 CIR of crude cr 2 CR from refinery i 2 I to process
p 2 P in plant i

0 2 I
0
. Variable xiRef

cr;cir;i;p;i0 represents the trans-shipment flow rate of
crude cr 2 CR, of intermediate cir 2 CIR from plant i 2 I to process p 2 P at plant
i
0 2 I. Constraint (5.3) also considers the petrochemical network feedstock from the
refinery intermediate streams FiPetcr;cir;i of each intermediate product cir 2 RPI. The
material balance of final products in each refinery is expressed as the difference
between flow rates from intermediate streams wcr;cir;cfr;i for each cir 2 CIR that
contribute to the final product pool and intermediate streams that contribute to the
fuel system wcr;cfr;rf ;i for each rf 2 FUEL less the refinery final products Ff Petcr;cfr;i for
each cfr 2 RPF that are fed to the petrochemical network, as shown in con-
straint (5.4). In constraint (5.5) we convert the mass flow rate to volumetric flow
rate by dividing it by the specific gravity SGcr;cir of each crude type cr 2 CR and
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intermediate stream cir 2 CB. This is needed in order to express the quality
attributes that blend by volume in blending pools. Constraint (5.6) is the fuel
system material balance where the term cvrf ;cir;i represents the caloric value
equivalent for each intermediate cir 2 CB used in the fuel system at plant i 2 I.
The fuel production system can consist of either a single or combination of
intermediates wcr;cir;rf ;i and products wcr;cfr;rf ;i. The matrix bcr;rf ;i;p corresponds to
the consumption of each processing unit p 2 P at plant i 2 I as a percentage of unit
throughput. Constraints (5.7) and (5.8), respectively, represent lower and upper
bounds on refinery quality constraints for all refinery products that either blend by
mass q 2 Q w or by volume q 2 Q v. Constraint (5.9) represents the maximum and
minimum allowable flow rate to each processing unit. The coefficient cm;p is a zero-
one matrix for the assignment of production unit m 2 MRef to process operating
mode p 2 P. The term AddCm;i;s accounts for the additional refinery expansion
capacity of each production unitm 2 MRef at refinery i 2 I for a specific expansion
size s 2 S. In this formulation, we only allow the addition of predetermined
capacities whose pricing can be acquired a priori through design companies�
quotations. The integer variable yexpRefm;i;s represents the decision of expanding a
production unit and it can take a value of one if the unit expansion is required or
zero otherwise. Constraint (5.10) sets an upper bound on the flow rates of
intermediate streams between the different refineries. The integer variable
ypipeRefcir;i;i0 represents the decision of exchanging intermediate products between
the refineries and takes on the value of one if the commodity is transferred from
plant i 2 I to plant i

0 2 I or zero otherwise, where i 6¼ i
0
. When an intermediate

stream is selected to be exchanged between two refineries, its flow rate must be
below the transferring pipeline capacity FU

cir;i;i0 . Constraint (5.11) stipulates that the
final products from each refinery xRefcfr;i less the amount exported eRef

cfr 0 ;i for each
exportable product cfr

0 2 PEX from each plant i 2 I must satisfy the domestic
demand DRef cfr . Resources are limited by constraint (5.12) which imposes upper
and lower bounds on the available feedstock cr 2 CR to the refineries.

Constraints (5.13) and (5.14) represent the material balance that governs the
operation of the petrochemical system. The variable xPetm represents the annual level
of production of process m 2 MPet where dcp;m is the input–output coefficient
matrix of material cp in process m 2 MPet. The petrochemical network receives its
feed from potentially three main sources. These are, (i) refinery intermediate
streams FiPetcr;cir;i of an intermediate product cir 2 RPI, (ii) refinery final products
Ff Petcr;cfr;i of a final product cfr 2 RPF, and (iii) non-refinery streams FnPetcp of a
chemical cp 2 NRF. For a given subset of chemicals cp 2 CP, the proposed model
selects the feed types, quantity and network configuration based on the final
chemical and petrochemical lower and upper product demand DPet

L
cp and DPet

U
cp

for each cp 2 CFP, respectively. In constraint (5.15), defining a binary variable
yprocPetm for each processm 2 Mpet is required for the process selection requirement
as yprocPetm will equal 1 only if processm is selected or zero otherwise. Furthermore, if
only processm is selected, its production level must be at least equal to the process
minimum economic capacity BL

m for each m 2 Mpet, where KU is a valid upper
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bound. In the case where it is preferred to choose only one process technology to
produce a chemical, constraints (5.16) and (5.17) can be included for each
intermediate product cp 2 CIP and final product cp 2 CFP, respectively. Finally,
we can specify limitations on the supply of feedstock FnPetcp for each chemical type
cp 2 NRF through constraint (5.18). Bear in mind that the limitations on the
refinery intermediate product FiPetcr;cir;i and final product Ff Petcr;cfr;i that are fed to the
petrochemical network are dictated by the model based on both refinery and
petrochemical demand and price structure.

5.4
Illustrative Case Study

In this section we demonstrate the performance of the proposed model on an
industrial-scale case study. Instead of considering the full scale petrochemical
network which may have limited application, we consider a special case of the
integration problem. Although the proposed formulation covers the full scale
refinery network and petrochemical systems, the case study will consider the
integration of a petrochemical complex for the production of polyvinyl chloride
(PVC)with amulti-refinery network. PVC is one of themajor ethylene derivatives that
has many important applications and uses, including pipe fittings, automobile
bumpers, toys, bottles and many others (Rudd et al., 1981).

Direct integration of refining and ethylene cracking is considered as the essential
building block in achieving the total petrochemical integration (Joly, Moro, and
Pinto, 2002; Li et al., 2006). This problem has received more attention lately due to
soaring motor gasoline prices and the directly related prices of ethylene feedstocks
(Lippe, 2007). This kind of volatility in prices has prompted a shift in ethylene
feedstock selection and economics to either lighter or heavier refinery product slates
(Lippe, 2008). Shifting from one feedstock to another will mainly depend on the
market price structure and demand for refinery products. Some researchers believe
that the tendency of ethylene feedstock shift would mainly be towards heavier
refinery streams including heavy and vacuum gas oils due to the diminishing
reserves of sweet crudes and decreasing demand for heavy fraction fuels (Singh
et al., 2005; Van Geem et al., 2008). This change in ethylene feedstock selection and
the direct effect on the refinery products requires adequate decision making and
analysis that takes into account both refining and petrochemical markets.

In the case study, we consider the planning for three complex refineries by which
we demonstrate the performance of ourmodel in devising an overall production plan
as well as an integration strategy among the refineries. The state equipment network
(SEN) representation for the overall topology of the refineries network is given in
Figure 5.2.

The atmospheric crude unit separates crude oil into several fractions including
LPG, naphtha, kerosene, gas oil and residues. The heavy residues are then sent to the
vacuum unit where they are further separated into vacuum gas oil and vacuum
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residues. Depending on the production targets, different processing and treatment
processes are applied to the crude fractions. In this example, the naphtha is further
separated into heavy and light naphtha. Heavy naphtha is sent to the catalytic
reformer unit to produce high octane reformates for gasoline blending and light
naphtha is sent to the light naphtha pool and to an isomerization unit to produce
isomerate for gasoline blending too, as in refineries 2 and 3. Themiddle distillates are
combined with other similar intermediate streams and sent for hydrotreating and
then for blending to produce jet fuels and gas oils. Atmospheric and vacuum gas oils
are further treated by catalytic cracking, as in refinery 2, or by hydrocracking, as in
refinery 3, or by both, as in refinery 1, to increase the gasoline and distillate yields. In
refinery 3, vacuumresidues are further treatedusing coking and thermal processes to
increase light products yields. The final products of the three refineries network
consists of liquefied petroleum gas (LPG), light naphtha (LT), two grades of gasoline
(PG98 and PG95), no. 4 jet fuel (JP4), military jet fuel (ATKP), no. 6 gas oil (GO6),
diesel fuel (Diesel), heating fuel oil (HFO), and petroleum coke (coke). The major
capacity constraints for the refinery network are given in Table 5.1. Furthermore, the

Table 5.1 Major refinery network capacity constraints.

Production Capacity Higher limit (103 t/year)

R1 R2 R3

Distillation 45 000. 12 000.0 9900.0
Reforming 700.0 2000.0 1800.0
Isomerization 200.0 — 450.0
Fluid catalytic cracker 800.0 1400.0 —

Hydrocracker — 1800.0 2400.0
Delayed coker — — 1800
Des gas oil 1300.0 3000.0 2400.0
Des cycle gas oil 200.0 750.0 —

Des ATK — 1200.0 1680.0
Des distillates — — 450.0
Crude availability
Arabian light 31 200.0

Local Demand
LPG 432.0
LN —

PG98 540.0
PG95 4440.0
JP4 2340.0
GO6 4920.0
ATK 1800.0
HFO 200.0
Diesel 400.0
Coke 300.0
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three refineries are assumed to be in one industrial area,which is a commonsituation
in many locations around the world, and are coordinated through a main headquar-
ters sharing the feedstock supply. The cost parameters for pipelines installation were
calculated as cost per distance between the refineries, and then multiplied by the
required pipe length in order to connect any two refineries. The pipeline diameter
considered in all cases was 8 inches.

The petrochemical complex for the production of PVC starts with the production
of ethylene from the refineries feedstocks. The main feedstocks to the ethylene
plant in our study are light naphtha (LN) and gas oil (GO). The selection of the
feedstocks and, hence, the process technologies is based on the optimal balance and
trade-off between the refinery and petrochemical markets. The process technol-
ogies considered in this study for the production of PVC are list in Table 5.2. The
overall topology of all petrochemical technologies for PVC production is shown in
Figure 5.3.

From the refinery side, the proposed model will provide the optimal network
integration between the refineries, process expansion requirements, operating
policy based on different feedstock combination alternatives, process levels and
operating modes. On the petrochemical side, the model will establish the design
of an optimal petrochemical process network for the production of PVC from the
range of process technologies and feedstocks available to satisfy a given demand.

Table 5.2 Major products and process technologies in the petrochemical complex.

Product Sale price
($/ton)a)

Process technology Process
index

Min econ.
prod.
(103 t/year)

Ethylene (E) 1570 Pyrolysis of naphtha (low severity) 1 250
Pyrolysis of gas oil (low severity) 2 250
Steam cracking of naphtha
(high severity)

3 250

Steam cracking of gas oil
(high severity)

4 250

Ethylene
dichloride (EDC)

378 Chlorination of ethylene 5 180

Oxychlorination of ethylene 6 180
Vinyl chloride
monomer (VCM)

1230 Chlorination and
Oxychlorination of ethylene

7 250

Dehydrochlorination of ethylene
dichloride

8 125

Polyvinyl
chloride (PVC)

1600 Bulk polymerization 9 50

Suspension polymerization 10 90

a) All chemical prices in this study were obtained from latest CW Price Reports in the Chemical
Week journal.
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This problem was formulated as an MILP with the overall objective of mini-
mizing total annualized cost of the refinery and maximizing the added value
from the PVC petrochemical network. Maximizing the added value of the
petrochemical network is appropriate since the feedstock costs contribute to
the majority of the total cost. For instance, the feedstock cost of an ethylene plant
contributes to more than 87% of the total cost when naphtha is used and 84%
and 74% when propane and ethane are used, respectively (NBK MENA Equity
Research, 2007).

The modeling system GAMS (Brooke et al., 1996) is used for setting up the
optimization models. The computational tests were carried out on a Pentium M
processor 2.13 GHz and the MILP problems were solved with CPLEX (CPLEX
Optimization, Inc., 1993).

The problem was first solved for the refinery network separately in order
to compare and illustrate the effect of considering the PVC complex on the
refinery network design and operating policies. Table 5.3 shows the optimal
network integration design and operating policies of the refineries. The three
refineries collaborated to satisfy a given local market demand and the
model proposed the production and blending level targets for the individual
sites. The annual production cost across the facilities was found to be
$9 331 000.

The model was then solved for the total refinery network and the PVC
petrochemical complex. As shown in Table 5.4, the proposed model redesigned
the refinery network and operating policies and also devised the optimal
production plan for the PVC complex from all available process technologies.
The model selected gas oil, an intermediate refinery stream, as the refinery
feedstock to the petrochemical complex as opposed to the normally used light
naphtha feedstock in industrial practice. In fact, this selection provided the
optimal strategy as the light naphtha stream was used instead in the gasoline

Figure 5.3 SEN representation of the PVC petrochemical complex possible routes.
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pool for maximum gasoline production. PVC production was proposed by first
the high severity steam cracking of gas oil to produce ethylene. Vinyl chloride
monomer (VCM) is then produced through the chlorination and oxychlorination
of ethylene and, finally, VCM is converted to PVC by bulk polymerization. The
simultaneous optimization of the refinery and petrochemical network had an
impact on both the refinery intermediate exchange network and production
levels, as shown in Tables 5.3 and 5.4. For example, the capacity utilization of the
desulfurization of gas oil process increased from 83%, 92%, 99% in refineries 1,
2, and 3, respectively, to 100% in all refineries when the petrochemical network
was considered in the model. The annual production cost across the facilities
was found to be $8 948 000.

Table 5.3 Model results of multi-refinery network.

Process variables Results (103 t/year)

R1 R2 R3

Crude oil supply 4500.0 12 000.0 9900.0
Production levels Crude unit 4500.0 12 000.0 9900.0

Reformer 573.1 1824.5 1800.0
Isomerization 200.0 — 450.0
FCC 640.0 1400.0 —

Hydrocracker — 1740.4 2400
Delayed coker — — 1484
Des gas oil 1084.6 2763.7 2383.8
Des cycle gas oil 200.0 600.0 —

Des ATK — 1200.0 1654.8
Des distillates — — 360

Intermediate
streams exchange

From R1 VGO — — 446.0 to
HCU

VRSD — — 380.4 to
Coker

R2 LN — — 340.0 to
Isomer

R3 LN 86.1 to
Isomer

— —

VGO — 144.7 to FCC —

UCO — 130.1 to FCC —

Exports PG95 273.2
JP4 1359.5
GO6 3695.7
HFO 1579.8
ATK 1767.5
Coke 203.9
Diesel 109.7

Total cost ($/yr) 9 331 000
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5.5
Conclusion

A mixed-integer programming model for designing an integration and coordina-
tion policy among multiple refineries and a petrochemical network was presented.

Table 5.4 Deterministic model results of refinery and petrochemical networks.

Process variables Results (103 t/year)

R1 R2 R3

Refinery Crude oil supply 4500.0 12 000.0 9900.0
Production levels Crude unit 4500.0 12 000.0 9900.0

Reformer 573.1 1824.6 1793.5
Isomerization 200.0 — 450.0
FCC 640.0 1400.0 —

Hydrocracker — 1740.4 2400.0
Delayed coker — — 1440.0
Des gas oil 1300.0 3000.0 2400.0
Des cycle gas oil 200.0 600.0 —

Des ATK — 1200.0 1654.8
Des distillates — — 360.0

Intermediate
streams
exchange

From R1 VGO — 204.4 to
HCU

301.2 to
HCU

R2 LN — — 321.2 to
Isom

VRSD — — 267.6 to
Coker

R3 LN 68.0 to
Isom

UCO — 100.3 to
FCC

—

Exports PG95 265.2
JP4 1365.5
GO6 1503.4
HFO 1658.9
ATK 1767.5
Coke 178.8
Diesel 84.0

Petrochemical Refinery feed to
PVC complex

Gas oil 1162.4 920.0 71.3

Production levels S. Crack GO (4) 552.2
Cl and OxyCl E (7) 459.1
Bulk polym. (9) 204.0

Final Products PVC 204.0
Total cost
($/yr)

$8 948 000
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The objective was to develop a simultaneous methodology for designing a process
integration network between petroleum refining and the petrochemical industry. A
large-scale three refinery network and a PVC petrochemical complex were inte-
grated to illustrate the performance of the proposed design methodology and to
show the economic potential and trade-offs involved in the optimization of such
systems. The study showed that the optimization of the downstream petrochemical
industry has an impact on the multi-refinery network integration and coordination
strategies. This result emphasizes the importance of the developed methodology.

In this Chapter, however, all parameters were assumed to be knownwith certainty.
Nevertheless, the current situation of fluctuating and high petroleum crude oil
prices, changes in demand, and the direct effect this can have on the downstream
petrochemical system underlines the importance of considering uncertainties. For
example, the availability of crude oils, feedstock and chemicals prices, and market
demands for finished products will have a direct impact on the output of the highly
strategic decisions involved in our study. Acknowledging the shortcomings of
deterministic models, the next part of this book will consider uncertainties in the
integration problem.
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6
Planning Under Uncertainty for a Single Refinery Plant

In this chapter, we study petroleum refining problems under uncertainty through
a simplified example in order to explain the concept of stochastic programming.
In particular, we concentrate on two-stage stochastic programming and explain the
physical meaning of recourse concept and how it applies to the petroleum industry.
We also explain the idea of risk management through different mathematical
representations and provide detailed analysis of two main risk measures; namely,
(i) variance and (ii) mean-absolute deviation. The different models are numerically
explained using the refinery LP model introduced in Chapter 2.

6.1
Introduction

Chemical process systems are subject to uncertainties due to many random events
such as rawmaterial variations, demand fluctuations, equipment failures, and so on.
In this chapter we will utilize stochastic programming (SP) methods to deal with
these uncertainties that are typically employed in computationalfinance applications.
These methods have been very useful in screening alternatives on the basis of the
expected value of economic criteria as well as the economic and operational risks
involved. Several approaches have been reported in the literature addressing the
problem of production planning under uncertainty. Extensive reviews surveying
various issues in this area can be found in Applequist et al. (1997), Shah (1998),
Cheng, Subrahmanian, and Westerberg (2005) and M�endez et al. (2006).

Problems of design and planning of chemical processes and plants under
uncertainty have been effectively addressed in the process systems engineering
(PSE) literature using the two-stage stochastic programming (SP) with recourse
model. Under this framework, the problem is posed as one of optimizing an
objective function that consists of two stages. The first corresponds to decisions
on the global or planning variables, whose fixed values are selected ahead of
the realization of the uncertain events. The second term represents the expected
value of the decisions due to the production variables, whose flexible values will be
adjusted to achieve feasibility during operation (Acevedo and Pistikopoulos, 1998).
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The presence of uncertainty is translated into the stochastic nature of the
recourse costs associated with the second-stage decisions. Hence, the goal in the
two-stage modeling approach to planning decisions under uncertainty is to
commit initially to the planning variables in such a way that the sum of the
first-stage costs and the expected value plus deviations of the typically more
expensive random second-stage recourse costs is minimized (Swamy and
Shmoys, 2006). Approaches differ primarily in the way the expected value and its
deviation terms are evaluated.

6.2
Problem Definition

Themidterm refinery production planning problem addressed in this chapter can be
stated as follows. It is assumed that the physical resources of the plant are fixed and
that the associated prices, costs, and demands are externally imposed. The objective is
to determine the optimal production plan by computing the amount ofmaterials that
are processed at each time in each unit, in the face of threemajor uncertainty sources.
The uncertainty is considered in terms of (i) market demand for products; (ii) prices
of crude oil and products; and (iii) product yields of crude oil from the crude
distillation unit. A hybrid stochastic programming technique is applied within a
framework of the classical two-stage stochastic programmingwith recourse. The risk
analysis in our problem follows themean-variance (E-VorMV) portfolio optimization
formulation of Markowitz (1952) in both profit and the recourse penalty costs. A
numerical study based on the deterministic refinery planning model of Ravi and
Reddy (1998) and Allen (1971) is utilized to demonstrate the implementation of the
proposed approaches without loss of generality. The single-objective linear program-
ming (LP) model is first solved deterministically and is then reformulated with the
addition of the stochastic dimension according to principles and approaches outlined
under the general model development below.

6.3
Deterministic Model Formulation

The basic framework for the deterministic planning model is based on the formu-
lation presented by Ierapetritou and Pistikopoulos (1994). Consider the production
planning problem of a typical refinery operation with a network of M continuous
processes andNmaterials, as shown inFigure 6.1. Let j2 J index the set of continuous
processes whereas i2 I indexes the set of materials. These products are produced
during n time periods indexed by t2T to meet a prespecified level of demand during
each period. Given also are the prices and availabilities of materials as well as
investment and operating cost data over a time period. A typical aggregated mixed-
integer linear planning model consists of the following sets of constraints and
objective function.
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1) Production capacity constraints:

xj;t ¼ xj;t�1 þCEj;t 8j 2 J ð6:1Þ

yj;tCE
L
j;t � CEj;t � yj;tCE

U
j;t 8j 2 J; 8t 2 T ð6:2Þ

where

yj;t ¼ 1 if there is an expansion

0 otherwise

�

ð6:3Þ

2) Demand constraints:

Si;t þ Li;t ¼ di;t; 8i 2 I0; 8t 2 T ð6:4Þ

dLi;t � Si;t � dUi;t; 8i 2 I0; 8t 2 T ð6:5Þ

3) Availability constraints:

pLt � Pt � pUt ; 8i 2 I0; 8t 2 T ð6:6Þ
4) Inventory requirements:

If min
i;t � I fi;t � If max

i;t 8i 2 I0 ð6:7Þ

Ifi;t ¼ Isi;tþ 1; 8i 2 I0; 8t 2 T ð6:8Þ

This constraint is needed to indicate that a certain level of inventory must be
maintained at all times to ensure material availability, in addition to the amount
of materials purchased and/or produced. Equation 6.8 simply states that Isi;tþ 1,
the starting inventory of material i in period t þ 1 is the same as Ifi;t, the

Figure 6.1 General block flow diagram of a refinery/chemical plant.
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inventory ofmaterial i at the end of the preceding period t (if t¼ 1, then Ifi;t ¼ Ifi;1
denotes the initial inventory).

5) Material balances:

Pt þ Isi;t þ
X

j2J
bi; jxj;t � Si;t � Ifi;t ¼ 0; 8i 2 I0; 8t 2 T ð6:9Þ

6) Objective function: a profit maximization function over the time horizon is
considered as the difference between the revenue due to product sales and the
overall costs, with the latter consisting of the cost of rawmaterials, operating cost,
investment cost, and inventory cost:

max profit z0¼
X

t2T

X

i2I
ci;tSi;tþ

X

i2I
~ci;tI

f
i;t�

X

i2I
li;tPi;t�

X

i2I
~li;tI

s
i;t�

X

j2J
Cj;txj;t

�
X

i2I
hi;tHi;t�

X

j2J
ðaj;tCEj;tþbj;tyj;tÞ�ðrtRtþotOtÞ

2

6
6
6
4

3

7
7
7
5

ð6:10Þ

6.4
Stochastic Model Formulation

In spite of the resulting exponential increase in the problem size with the number
of uncertain parameters, the scenario analysis approach has been used considerably
in the literature and has been proven to provide reliable and practical results for
optimization under uncertainty (Gupta andMaranas, 2003). Hence, in this chapter, it
is adopted for describing uncertainty in the stochastic parameters. Representative
scenarios are constructed to model uncertainty in the random variables of prices,
demands, and yields within the two-stage stochastic programming (SP) framework.
Wewill refrain at this stage fromexplaningmethods to quantify the required number
of scenarios to achieve a given confidence interval. This subject will be explained
thourougly in Chapter 7.

6.4.1
Appraoch 1: Risk Model I

Thefirst approach adopts the classicalMarkowitz�sMVmodel to handle randomness
in the objective function coefficients of prices, in which the expected profit is
maximized while an appended term representing the magnitude of operational risk
due to variability or dispersion in price, as measured by variance, is minimized
(Eppen, Martin, and Schrage, 1989). The model can be formulated as minimizing
risk (i.e., variance) subject to a lower bound constraint on the target profit (i.e., the
mean return).

Malcolm and Zenios (1994) presented an application of the MV approach by
adopting the robust optimization framework proposed by Mulvey, Vanderbei, and
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Zenios (1995) to the problem of capacity expansion of power systems. The problem
was formulated as a large-scale nonlinear program with variance of the scenario-
dependent costs included in the objective function. Another application using
variance is employed by Bok, Lee, and Park (1998), also within a robust optimi-
zation framework of Mulvey, Vanderbei, and Zenios (1995), for investment in the
long-range capacity expansion of chemical process networks under uncertain
demands.

6.4.1.1 Sampling Methodolgy
A collection of scenarios is generated that best captures the trend of raw material
prices of the different types of crude oil and the sales prices of the saleable refining
products for a representative period of time based on available historical data. A
probability ps, with index s denoting the sth scenario, is assigned to each scenario to

reflect the likelihood of each scenario being realized with
X

s2S
ps ¼ 1.

6.4.1.2 Objective Function Evaluation
To represent the different scenarios accounting for uncertainty in prices, the price-
related random objective function coefficients comprising: (i) li;t for the costs of
different types of crude oil that can be handled by the crude distillation unit of a
refinery and (ii) ci;t for the sales prices of the refinedproducts, are addedwith an index
s subscript, each with an associated probability ps. For ease of reference, both groups
of price (or cost) parameters are redefined as the parameter ci,s,t or cicr;s;t; the difference
between the two is in the use of the index icr (and the corresponding set of Icr) to refer
to �products� that are actually crude oils, as distinguished from the index i that is used
to indicate the saleable products. Since the objective function given by Equation 6.10
is linear, it is straightforward to show that the expectation of the random objective
function with random price coefficients is given by:

E½z0�¼
X

t2T

X

i2I

X

s2S
psci;s;tSi;tþ

X

i2I
~ci;tI

f
i;t�

X

i02Icr

X

s2S
pscicr ;s;tPt�

X

i2I
~li;tI

s
i;t�

X

i2I
hi;tHi;t

�
X

j2J
ðaj;tCEj;tþbj;tyj;tÞþrtRtþotOt

2

6
6
6
4

3

7
7
7
5

ð6:11Þ

Consideration of the expected value of profit alone as the objective function,
which is characteristic of the classical stochastic linear programs introduced by
Dantzig (1955) and Beale (1955), is obviously inappropriate for moderate and high-
risk decisions under uncertainty sincemost decisionmakers are risk averse in facing
important decisions. The expected value objective ignores both the risk attribute of
the decision maker and the distribution of the objective values. Hence, variance
of each of the random price coefficients can be adopted as a viable risk measure of
the objective function, which is the second major component of the MV approach
adopted in Risk Model I.
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6.4.1.3 Variance Calculation
Variance for the expected value of the objective function (6.10) is expressed as:

Vðz0Þ ¼
X

t2T

X

i2I
S2i;tVðci;s;tÞþ

X

t2T

X

i02I0
P2
i0;tVðci0;s;tÞ ð6:12Þ

Since the above derivation does not explicitly evaluate variances of the random price
coefficients as given by Vðci;s;tÞ and Vðci0;s;tÞ, we consider the following alternative
definition for variance from Markowitz (1952) that yields:

Vðz0Þ ¼ ps1 ðzs1 � E½z0�Þ2 þ ps2ðzs2 �E½z0�Þ2 þ � � � þ psvðzsv �E½z0�Þ2 ð6:13Þ
The objective function for the stochastic model is now given by:

max z1 ¼ E½z0� � q1Vðz0Þ
subject to constraints ð6:1Þ toð6:8Þ ð6:14Þ

Themodel is subject to the same set of constraints as the deterministicmodel, withq1
as the risk trade-off parameter (or simply termed the risk factor) associated with risk
reduction for the expected profit. q1 is varied over the entire range of (0, 1) to
generate a set of feasible decisions that havemaximum return for a given level of risk,
which is equivalent to the �efficient frontier� portfolios for investment applications.

It is noteworthy that from a modeling perspective, q1 is also a scaling factor, since
the expectation operator and the variance are of different dimensions. If it is desirable
to obtain a term that is dimensionally consistent with the expected value term, then
the standard deviation of z0 may be considered, instead of the variance, as the risk
measure (in which standard deviation is simply the square root of variance).
Moreover, q1 represents the weight or weighting factor for the variance term in a
multiobjective optimization setting that consists of the components� mean and
variance.

However, the primary difficulty in executing model (6.14) is in determining a
suitable set of values for q1 that caters to decision makers who are either risk-prone
or risk-averse. An approach to circumvent this problem is available in which the
variance (or the standard deviation) of the objective function isminimized as follows:

max z1 ¼ �Vðz0Þ
ðor max z1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

Vðz0Þ
p Þ ð6:15Þ

while adding the inequality constraint for the mean of the objective function that
stipulates a certain target value for the desired profit to be achieved:

E½z0� � Target profit ð6:16Þ

Thus, the final form of Risk Model I is given by:

max z1 ¼ �Vðz0Þ
subject toE½z0� � Target profit

Constraints ð6:1Þ � ð6:10Þ
ðRM1Þ

116j 6 Planning Under Uncertainty for a Single Refinery Plant



To determine a suitable range for the target profit value, a test value is assumed
and the corresponding solution is computed. Then, the test value is increased or
decreased, with the solution computed each time to investigate and establish the
range of target values that ensures solution feasibility.

6.4.2
Approach 2: Expectation Model I and II

In Approach 2, the MV model developed in Approach 1 is incorporated within a
two-stage SP with fixed recourse framework to handle randomness in the right-hand
side (RHS) and left-hand side (LHS) coefficients of the related constraints.

6.4.2.1 Demand Uncertainty
Uncertainty inmarket demand introduces randomness in constraints for production
requirements of intermediates and saleable products, as given by Equation (6.4). The
sampling methodology employed for scenario construction is similar to the case of
price uncertainty in Approach 1, involving the generation of representative scenarios
of demand uncertainty for N number of products with the associated probabilities
that indicate their comparative frequency of occurrence.

One of the main consequences of uncertainty within the context of decision-
making is the possibility of infeasibility in the future. The two-stage recourse
modeling framework provides the liberty of addressing this issue by postponing
some decisions into the second stage; however, this comes at the expense of the use
of corresponding penalties in the objective function. Decisions that can be delayed
until after information about the uncertain data is available almost definitely offer an
opportunity to adjust and adapt to the new information received. There is generally
value associated with delaying a decision, when it is possible to do so, until after
additional information is obtained.

In devising the appropriate penalty functions, we resort to the introduction of
compensating slack variables in the probabilistic constraints to eliminate the
possibility of second-stage infeasibility. Additionally, the recourse-based modeling
philosophy requires the decision maker to assign a price as a penalty to remedial
activities that are undertaken in response to uncertainty. For applications in pro-
duction planning, these can be assumed as fixed standard costs. However, under
some circumstances, it may be more appropriate to accept the possibility of
infeasibility, provided that the probability of this event is restricted below a given
threshold. This is addressed in the subsequent approaches by appending an
appropriate risk measure to the objective function.

Compensating slack variables accounting for shortfall and/or surplus in produc-
tion are introduced in the stochastic constraints with the following results:
(i) inequality constraints are replaced with equality constraints; (ii) numerical
feasibility of the stochastic constraints can be ensured for all events; and
(iii) penalties for feasibility violations can be added to the objective function. Since
a probability can be assigned to each realization of the stochastic parameter vector
(i.e., to each scenario), the probability of feasible operation can be measured. In this
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work, a non-negative second-stage recourse slack variable zþ
i;s quantifies the shortfall

in production, which is penalized in the objective function according to the cost of
purchasing this make-up product from the open market. Likewise, for overproduc-
tion (surplus) with respect to market demands, the recourse slack variable z�

i;s is
penalized based on the inventory cost for storing the excess of production. The
expected values of the recourse penalty costs of cþi and c�i for infeasibility due to
shortfall and surplus of production, respectively, are minimized in the objective
function in an effort to maximize the expected profit. Thus, the expected recourse
penalty for the second-stage costs due to uncertainty in the demand for product i
for all considered scenarios is given by:

Es;demand ¼
X

i2I

X

s2S
psðcþi zþ

i;s þ c�i z�
i;s Þ ð6:17Þ

To ensure that the original information structure associated with the decision
process sequence is honored, for each of the products whose demand is uncertain,
the number of new constraints to be added to the stochastic model counterpart,
replacing the original deterministic constraint, corresponds to the number of
scenarios. Herein lies a demonstration of the fact that the size of a recourse model
increases exponentially since the total number of scenarios grows exponentially with
the number of random parameters. In general, the new constraints take the form:

Si;t þ zþ
i;s � z�

i;s ¼ di;t;s; 8i 2 IP; 8t 2 T ; 8s 2 S ð6:18Þ

6.4.2.2 Process Yield Uncertainty
Uncertainty in product yields introduces randomness in the material balances that
are given by Equation (6.9). The scenario construction to model yield uncertainty
of products k from material i is similar to the approach for modeling demand
uncertainty. Note that in order to ensure that thematerial balances are satisfied, the
summation of yields must be equal to unity. The non-negative second-stage
recourse slack variables yþi;k;s and y�i;k;s represent shortage and excess in yields,
respectively, with their corresponding fixed unit recourse penalty costs given by qþ

i;k
and q�i;k . Thus, the expected recourse penalty for the second-stage costs due to yield
uncertainty is:

Es;yield ¼
X

i2I

X

s2S

X

k2K
psðqþ

i;k y
þ
i;k;s þ q�

i;k y
�
i;k;sÞ ð6:19Þ

Ns new constraints to represent the Ns number of scenarios dealing with yield
uncertainty are introduced for each product whose yield is uncertain, with the
general form of the new constraints given by:

Pt þ Isi;t þ
X

j2J
bi; jxj;t þ yþi;k;s � y�i;k;s � Si;t � Ifi;t ¼ 0; i 2 I; k 2 K ; s 2 S ð6:20Þ

The two major assumptions that enable the combination of the sub-scenarios are
that: (i) the uncertain parameters of prices, demands, and yields in each scenario are
highly-correlated; and (ii) each of the random variables (or equivalently, each of
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the scenarios) is assumed to be independent of any another. These assumptions lead
to two implications: (i) they obviate the need to construct a joint probability
distribution function (in the sampling methodology) that encompasses scenarios
of all the possible combinations of the three random variables (this means that, for
instance, the possibility of a scenario in which prices are �average� with demand
being �above average� and yield being �below average� is not considered); (ii) the
covariance term in the MV model becomes equal to variance (Bernardo 1999).

The corresponding expected recourse penalty for the second-stage costs is
given by:

Es¼Es;demandþEs;yield¼
X

i2I

X

s2S
ps½ðcþi zþi;sþc�i z�i;sÞþðqþi yþi;sþq�i y�i;s Þ�¼

X

i2I

X

s2S
psjs

ð6:21Þ
where ji;s¼ðcþi zþi;sþc�i z�i;sÞþðqþi yþi;k;sþq�i y�i;k;sÞ. Thus, Expectation Model I is for-
mulated as:

max z2¼z1�Es¼½z0��q1Vðz0Þ�Es

subject to constraintsð6:1Þ�ð6:3Þ; ð6:6Þ�ð6:8Þ; ð6:18Þandð6:20Þ ðEM1Þ

As remarked in Approach 1, a potential complication with Expectation Model I lies
in computing a suitable range of values for the operational risk factor q1. Therefore,
an alternative formulation of minimizing variance while adding a target profit
constraint is employed for Expectation Model II:

max z2¼�Vðz0Þ�Es

subject toE½z0��Targetprofit

constraintsð6:1Þ�ð6:3Þ;ð6:6Þ�ð6:8Þ; ð6:18Þandð6:20Þ
ðEM2Þ

6.4.3
Approach 3: Risk Model II

The goal of Approach 3 is to append an operational risk term to the mean-risk model
formulation in Approach 2 to account for the significance of both financial risk
(as considered by Approach 1) and operational risk in decision-making.

Variance for the various expected recourse penalty for the second-stage costs Vs is
derived as:

Vs ¼
X

s2S
psðjs �Es0 Þ2 ¼

X

s2S
ps js �

X

s02S0
ps0js0

 !2

YVs ¼
X

s2S
ps

(
X

i2I

ðcþi zþ
i;s þ c�i z�

i;s Þ
þ ðqþ

i yþi;k;s þ q�
i y�i;k;sÞ

" #

�
X

i2I

X

s02S0
ps0

ðcþi zþ
i;s0 þ c�i z�

i;s0 Þ
þ ðqþ

i yþi;k;s0 þ q�
i y�i;k;s0 Þ

" #)2

ð6:22Þ
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Note that the index s0 and the corresponding set S0 is used to denote scenarios for
the evaluation of the inner expectation term to distinguish them from the original
index s used to represent the scenarios. Vs is weighted by the operational risk factor
q22 (0, 1). The formulation of Risk Model II is:

max z3 ¼ z2 � q2Vs ¼ E½z0� � q1Vðz0Þ�Es0 � q2Vs

Constraints ð6:1Þ � ð6:3Þ; ð6:7Þ � ð6:9Þ; ð6:24Þ and ð6:26Þ
ðRM2Þ

6.4.4
Approach 4: Risk Model III

Konno and Yamazaki (1991) proposed a large-scale portfolio optimization model
based on mean-absolute deviation (MAD). This serves as an alternative measure of
risk to the standard Markowitz�s MVapproach, which models risk by the variance of
the rate of return of a portfolio, leading to a nonlinear convex quadratic programming
(QP) problem. Although both measures are almost equivalent from a mathematical
point-of-view, they are substantially different computationally in a few perspectives,
as highlighted by Konno andWijayanayake (2002) and Konno and Koshizuka (2005).
In practice, MAD is used due to its computationally-attractive linear property.

Therefore, in this approach, we develop Risk Model III as a reformulation of Risk
Model II by employing the mean-absolute deviation (MAD), in place of variance,
as the measure of operational risk imposed by the recourse costs to handle the same
three factors of uncertainty (prices, demands, and yields). To the best of our
knowledge, this is the first such application of MAD, a widely-used metric in the
area of system identification and process control, for risk management in refinery
planning.

The L1 risk of the absolute deviation function is given by Konno and Yamazaki
(1991):

WðxÞ ¼ E
Xn

j¼1

Rjxj � E
Xn

j¼1

Rjxj

" #�
�
�
�
�

�
�
�
�
�

" #

ð6:23Þ

Thus, the corresponding mean-absolute deviation (MAD) of the expected penalty
costs is formulated as:

W ¼
X

s2S
ps js�Es0j j ¼

X

s2S
ps js�

X

s02S
ps0js0

�
�
�
�
�

�
�
�
�
�

YW ¼
X

s2S
ps
X

i2I

ðcþi zþ
i;s þ c�i z�

i;s Þ
þðqþi yþi;s þ q�i y�i;s Þ

" #

�
X

i2I

X

s02S0
ps0

ðcþi zþ
i;s0 þ c�i z�

i;s0 Þ
þðqþi yþi;k;s0 þ q�i y�i;k;s0 Þ

" #�
�
�
�
�

�
�
�
�
�

ð6:24Þ
This nonlinear function can be linearized by implementing the transformation
procedure outlined by Papahristodoulou and Dotzauer (2004), in which W must
satisfy the following conditions:
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W � �
X

s2S
ps
X

i2I

ðcþi zþ
i;s þ c�i z�

i;s Þ
þðqþi yþi;s þ q�i y�i;s Þ

" #

�
X

i2I

X

s02S0
ps0

ðcþi zþ
i;s0 þ c�i z�

i;s0 Þ
þðqþi yþi;k;s0 þ q�i y�i;k;s0 Þ

" #( )

ð6:25Þ

W �
X

s2S
ps
X

i2I

ðcþi zþ
i;s þ c�i z�

i;s Þ
þðqþi yþi;s þ q�i y�i;s Þ

" #

�
X

i2I

X

s02S0
ps0

ðcþi zþ
i;s0 þ c�i z�

i;s0 Þ
þðqþi yþi;k;s0 þ q�i y�i;k;s0 Þ

" #( )

ð6:26Þ

W � 0 ð6:27Þ
Similar to Risk Model II, the adoption of MAD is weighted by the operational risk

factor q3 (0<q3<1) in Risk Model III, to give the following formulation:

maxz4 ¼ z2 � q3 W ¼ E½z0� � q1 Vðz0Þ�Es0 � q3 W

Constraints ð6:1Þ � ð6:3Þ; ð6:6Þ � ð6:8Þ; ð6:18Þ and ð6:20Þ
MAD linearization conditions ð6:25Þ � ð6:27Þ

ðRM3Þ

6.5
Analysis Methodology

In the context of production planning, robustness can generally be defined as a
measure of the resilience of the planning model to respond in the face of parameter
uncertainty and unplanned disruptive events, (Vin and Ierapetritou, 2001). To
investigate and interpret the behavior and overall robustness of the proposed
multiobjective optimization models in this chapter, we carry out a series of rigorous
computational experiments to establish the effectiveness of the stochastic models in
hedging against uncertainties posed by randomness in prices, demands, and yields.
Two performance metrics that have been previously utilized in the optimization
literature are considered to quantitatively measure and account for characteristics
of planning under simultaneous uncertainty in prices, demands, and yields. The
two metrics are: (i) the concepts of solution robustness and model robustness, and
(ii) the coefficient of variation Cv.

6.5.1
Model and Solution Robustness

It is desirable to demonstrate that the proposed stochastic formulations provide
robust results. According to Mulvey, Vanderbei, and Zenios (1995), a robust solution
remains close to optimality for all scenarios of the input data while a robust model
remains almost feasible for all the data of the scenarios. In refinery planning, model
robustness or model feasibility is as essential as solution optimality. For example, in
mitigating demand uncertainty, model feasibility is represented by an optimal
solution that has almost no shortfalls or surpluses in production. A trade-off exists
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between solution optimality andmodel-and-solution robustness. To investigate these
trends, the following parameters are analyzed from the raw computational results
of the refinery production rates for the models:

. the expected deviation in profit as measured by variance V(z0);

. the expected total unmet demand (i.e., production shortfall);

. the expected total excess production (i.e., production surplus);and the expected
recourse penalty costs Es.

6.5.2
Variation Coefficient

To interpret the solutions obtained from the stochastic models, we propose to
investigate their corresponding coefficient of variation Cv. Cv for a set of values is
defined as the ratio of the standard deviation to the expected value or mean and is
usually expressed as a percentage. It is calculated as:

Cv ¼ standard deviation
mean

� 100% ¼ s

m
� 100% ¼

ffiffiffiffi
V

p

E
� 100% ð6:28Þ

Statistically, Cv is a measure of reliability, or evaluated from the opposite but
equivalent perspective, it is also indicative of the degree of uncertainty. It is
alternatively interpreted as the inverse ratio of data to noise in the data in signal-
processing-related applications. Thus, it is apparent that a small value of Cv is
desirable as it signifies a small degree of noise or variability (e.g., in a data set) and,
hence, reflects low uncertainty.

In stochastic optimization,Cv can be purposefully employed to investigate, denote,
and compare the relative uncertainty inmodels being studied. In a riskminimization
model, as the expected value is reduced, the variability in the expected value (for
example, as measured by variance or standard deviation) is reduced. The ratio of
this change can be captured and described by Cv. Consequently, a comparison of
the relative merit of models in terms of their robustness can be represented by their
respective values ofCv, in the sense that amodel with a lowerCv is favored since there
is less uncertainty associated with it. In fact, Markowitz (1952) advocates that the
use of Cv as a measure of risk would equally ensure that the outcome of a decision-
making process still lies in the set of efficient portfolios for the case of operational
investments.

In a data set of normally distributed demands, if theCv of demand is given as a case
problemparameter, the standard deviation is computed bymultiplication ofCv by the
deterministic demand. Hence, increasing values of Cv result in increasing fluctua-
tions in the demand and this is again undesirable.

Computation of Cv is based on the objective function of the formulated model.
Table 6.1 displays the expressions to compute Cv for the proposed stochastic model
formulations. Note thatCv for the deterministic case of each stochasticmodel should
be equal to zero, by virtue of its standard deviation assuming a value of zero since it is
based on the expected value solution.
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6.6
Illustrative Case Study

We demonstrate the implementation of the proposed stochastic model formulations
on the refinery planning linear programming (LP) model explained in Chapter 2.
The original single-objective LP model is first solved deterministically and is then
reformulated with the addition of the stochastic dimension according to the four
proposed formulations. The complete scenario representation of the prices, de-
mands, and yields is provided in Table 6.2.

The deterministic objective function of the LP model is given by:

maximize z ¼ � 8:0x1 þ 18:5x2 þ 8:0x3 þ 12:5x4 þ 14:5x5 þ 6:0x6 � 1:5x14
ð6:29Þ

in which the negative coefficients denote the purchasing and operating costs
while the positive coefficients are the sales prices of products. If c is the row vector
of the price (or cost) and x is the column vector of production flow rate, then the
objective function can be generally written as:

z¼ cTx¼
X

s2S

X

i2I
ci;sxi

 !

; i¼ f1;2;3;4;5;6;14g 2 Irandomprice � I; s¼ f1;2;3g 2 S

ð6:30Þ

Table 6.1 Determination of the coefficient of variation Cv for the deterministic and stochastic
models.

Approach Model Objective function Coefficient of variation

Cv ¼ s

m
¼

ffiffiffiffi
V

p

E

Deterministic cTx Cv¼ 0

1 Risk Model I max z1 ¼ E½z0��q1Vðz0Þ Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðz0Þ

p

E½z0�
or max z1 ¼ �Vðz0Þ

2 Expectation
Models I and II

I: max z2 ¼ E½z0��q1Vðz0Þ�Es Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðz0Þ

p

E½z0��Es

II: max z2 ¼ �Vðz0Þ�Es

3 Risk Model II max z3 ¼ E½z0��q1Vðz0Þ�Es�q2Vs Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðz0ÞþVs

p

E½z0��Es

4 Risk Model III
(MAD)

max z3 ¼ E½z0��q1Vðz0Þ
�Es�q3WðpsÞ

Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðz0ÞþWðpsÞ

p

E½z0��Es
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6.6.1
Approach 1: Risk Model I

In this section we demonstrate the capability of our formulation in dealing with
variations in the objective function prices, based on historical data. We present the
uncertainty in terms of three scenarios: (i) the �above average� or optimistic scenario

Table 6.2 Scenario formulation for uncertainty in prices, market demands, and product yields.

Product Type (i) Scenario 1 Scenario 2 Scenario 3

Above
average

Average
(expected

value/mean)

Below
average

Price uncertainty
Objective function coefficient
of price, ci,s ($/ton)

Variance of price v(ci,s)
(($/ton)2)

Crude oil (1) �8.8 �8.0 �7.2 0.352
Gasoline (2) 20.35 18.5 16.65 1.882 375
Naphtha (3) 8.8 8.0 7.2 0.352
Jet fuel (4) 13.75 12.5 11.25 0.859 375
Heating oil (5) 15.95 14.5 13.05 1.156 375
Fuel oil (6) 6.6 6.0 5.4 0.198
Cracker feed (14) �1.65 �1.5 �1.35 0.012 375

Demand uncertainty
Right-hand-side coefficient of constraints
for production requirement (t/day)

Penalty cost incurred
per unit ($/ton)

Shortfall in
production
(cþi;s )

Surplus in
production
(c�i;s)

Gasoline (2) 2835 2700 2565 25 20
Naphtha (3) 1155 1100 1045 17 13
Jet fuel (4) 2415 2300 2185 5 4
Heating oil (5) 1785 1700 1615 6 5
Fuel oil (6) 9975 9500 9025 10 8
Yield uncertainty

Left-hand-side coefficient of mass
balances for fixed yields (unitless)

Penalty cost incurred
per unit ($/unit)

Yield
decrement
(qþi;k;s)

Yield
increment
(q�i;k;s)

Naphtha (7) �0.1365 �0.13 �0.1235 5 3
Jet fuel (4) �0.1575 �0.15 �0.1425 5 4
Gas oil (8) �0.231 �0.22 �0.209 5 3
Cracker feed (9) �0.21 �0.20 �0.19 5 3
Residuum (10) �0.265 �0.30 �0.335 5 3
Probability ps 0.35 0.45 0.20
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denoting a representative 10% positive deviation from the mean value; (ii) the
�average� or realistic scenario that takes the expected values or mean; and (iii) the
�below average� or pessimistic scenario, denoting a representative 10% negative
deviation from the mean value.

The formulation for Risk Model I is:

max z1 ¼ �Vðz0Þ ¼
X

s2S

X

i2I
psðci;s ��ci;sÞ2x2i

" #

ðRM1Þ

subject to E½z0� ¼
X

s2S

X

i2I
psci;sxi

 !

� Target profit value

i ¼ f1; 2; 3; 4; 5; 6; 14g 2 Irandomprice � I; s ¼ f1; 2; 3g 2 S

deterministic constraints (first stage) in the LP model.
As themain focus of this chapter is on the risk-incorporatedmodels of RiskModels

II and III, the computational results for Risk Model I are not presented here.

6.6.2
Approach 2: Expectation Models I and II

For simplicity of demonstration, it is assumed that there is no alternative source of
production; hence, in a case of a shortfall in production, the demand is actually lost.
Thus, the corresponding model considers the case where the in-house production
of the refinery has to be anticipated at the beginning of the planning horizon.

A 5% standard deviation from the mean value of market demand for the saleable
products in the LPmodel is assumed to be reasonable based on statistical analyses of
the available historical data. To be consistent, the three scenarios assumed for price
uncertainty with their corresponding probabilities are similarly applied to describe
uncertainty in the product demands, as shown in Table 6.2, alongside the corre-
sponding penalty costs incurred due to the unit production shortfalls or surpluses for
these products. To ensure that the original information structure associated with the
decision process sequence is respected, three new constraints tomodel the scenarios
generated are added to the stochastic model. Altogether, this adds up to 3� 5¼ 15
new constraints in place of the five constraints in the deterministic model.

On the other hand, three representative scenarios are considered formodeling yield
uncertainty for the left-hand side coefficient of fixed yields from the primary
distillation unit. Each scenario corresponds to the depiction of �average product
yield,� �above average product yield,� and �below average product yield,� with a 5%
deviation. To ensure satisfactionof thematerial balances, yields for thebottomproduct
of crude unit are determined by subtracting the summation of yields for the other four
products from unity. This does not distort the physics of the problem as the yield of
residuum is relatively negligible anyway in a typical atmospheric distillation unit. In
Chapter 8, we demonstrate a more general approach for handling yield uncertainty.

The penalty costs incurred per unit of shortages or excesses of crude oil yields are
also shown in Table 6.2. The expectation Model I is formulated as:
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max z2 ¼
X

i2I

X

s2S
psCi;sxi � q1

X

s2S

X

i2I
psðCi;s � �Ci;sÞ2x2i

" #

�
X

i2I

X

s2S
ps

ðcþi zþ
i;s þ c�i z�

i;s Þ
þ ðqþ

i yþi;s þ q�
i y�i;s Þ

" #

ðEM10Þ

subject to : deterministic constraints ðfirst stageÞ in the LPmodel;

stochastic constraintsðsecond stageÞ:

xi þ zþ
i;s � z�

i;s ¼ di;s; 8i 2 I; 8s 2 S ð6:31Þ

Tix1 þ xi þ yþi;k;s � y�i;k;s ¼ 0; i 2 I; k 2 K ; s 2 S ð6:32Þ

i ¼ f1; 2; 3; 4; 5; 6; 14g 2 Irandomprice � I; s ¼ f1; 2; 3g 2 S:

The alternative Expectation Model II is expressed as:

max z2 ¼ �
X

s2S

X

i2I
psðCi;s � �Ci;sÞ2x2i

" #

�
X

i2I

X

s2S
ps½ðcþi zþ

i;s þ c�i z�
i;s Þ

þ ðqþ
i yþi;s þ q�

i y�i;s Þ�

subject to: E½z0� ¼
X

s2S

X

i2I
psCi;sxi

 !

� target profit value;

ðEM20Þ

deterministic constraints in the LP model;
stochastic constraints ð6:31Þ and ð6:32Þ;

i ¼ f1; 2; 3; 4; 5; 6; 14g 2 Irandomprice � I; s ¼ f1; 2; 3g 2 S:

As in the case of Risk Model I, the computational results for Expectation Models I
and II are not presented here as the emphasis of this chapter is on explaining the
concept of risk analysis.

6.6.3
Approach 3: Risk Model II

The formulation ofRiskModel II for the numerical example is given by the following:

max z3 ¼
X

i2I

X

s2S
psCixi�q1

X

i2I
x2i VðCiÞ�

X

i2I

X

s2S
ps

ðcþi zþi;s þc�i z�i;s Þ
þðqþi yþi;s þq�i y�i;s Þ

" #

�q2
X

s2S
ps

X

i2I
½ðcþi zþi;s þc�i z�i;s Þþðqþi yþi;k;sþq�i y�i;k;sÞ�

�
X

i2I

X

s02S0
ps0 ½ðcþi zþi;s0 þc�i z�i;s0 Þþðqþi yþi;k;s0 þq�i y�i;k;s0 Þ�

8
>><

>>:

9
>>=

>>;

2 ðEM20Þ
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subject to : deterministic constraints in the LPmodel;
stochastic constraints ð6:31Þand ð6:32Þ;

i¼f1;2;3;4;5;6;14g2 Irandomprice � I; s¼f1;2;3g2 S:

Tables 6.3–6.5 show the computational results for Risk Model II over a range of
values of risk parameter q2 with respect to different recourse penalty costs, for three
representative cases of q1¼ 1E � 10, 1E � 7, and 1.55E � 5, respectively. An
example of the detailed results is presented in Table 6.6 for q2¼ 50 of the first case.
Figure 6.2 illustrates the corresponding efficient frontier plot for RiskModel II while
Figure 6.3 provides the plot of the expected profit for different levels of risk.

A number of different parameters are of interest in observing the robustness
trends in bothmodel and computed solution. Figure 6.3 shows that smaller values of
q1 correspond to higher expected profit. With increasingly larger q1, the declining
expected profit becomes almost constant and plateaus at $81 770. The converse is also
true with increasingly smaller q1 resulting in rising expected profit that eventually
becomes roughly constant at the value of $79 730.

Although increasing q2 with fixed value of q1 corresponds to decreasing expected
profit, it generally leads to a reduction in expected production shortfalls and
surpluses. Therefore, a suitable operating range of q2 values should be selected to
achieve a proper trade-off between expected profit and expected production feasi-
bility. Increasing q2 also reduces the expected deviation in the recourse penalty costs
under different scenarios. This, in turn, translates to increased solution robustness.
In that sense, the selection of q1 and q2 values depends primarily on the policy
adopted by the decision maker.

In general, the coefficients of variation decrease with smaller values of q2. This
is definitely desirable since it indicates that for higher expected profits there is
diminishing uncertainty in the model, thus signifying model and solution robust-
ness. It is also observed that for values of q2 approximately greater than or equal to 2,
the coefficient of variation remain at a static value of 0.5237, thus indicating overall
stability and a minimal degree of uncertainty in the model.

Since variance is a symmetric riskmeasure, profits both below and above the target
levels are penalized equally, when it is actually desirable to only penalize the former
instance. In other words, constraining or minimizing the variance of key perfor-
mance metrics to achieve robustness may result in models that overcompensate for
uncertainty, as highlighted by Samsatli, Papageorgiou, and Shah (1998). Eppen,
Martin, and Schrage (1989) pointed out that another problem with using variance is
that points on the MV efficient frontier may be stochastically dominated by other
feasible solutions. A solution xI is stochastically dominated by another solution xII
if for every scenario, the profit generated by xII is at least as large as the profit given by
xI and yields a strictly greater profit for at least one scenario; a condition known
as Pareto optimality in the multiobjective optimization literature Barbaro and
Bagajewicz (2004). Ogryczak and Ruszczynski (2002) further explained that the
mean-risk approach may produce inferior conclusions when typical dispersion
statistics, such as variance, are employed as the risk measure.
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To handle some of these shortcomings, Barbaro and Bagajewicz (2004) pro-
posed a multiobjective optimization approach of simultaneous profit maximiza-
tion and risk minimization for each profit target, which has been extensively
applied in subsequent work by Bagajewicz and his coworkers (Aseeri and Baga-
jewicz, 2004; Bonfill et al., 2004). On the other hand, Eppen, Martin, and
Schrage (1989) accounted for the expected downside risk in solving a real-world
problem in the automobile industry. In his approach, a decisionmaker sets a target
value for the desired profit; hence, the risk associated with a decision is measured
by the failure to meet the target profit. A more general approach to ensure
robustness was proposed by Samsatli, Papageorgiou, and Shah (1998), which can
be tailored to various types of constraints to be imposed on the system and on
specific suitable performance metrics. Other potentially more representative risk
measures should also be considered with Kristoffersen (2005) providing a recent
review of a wide choice of risk measures applicable within a two-stage stochastic
programming framework.

Table 6.6 Detailed computational results for Risk Model II for q1¼ 1E� 10, q2¼ 50.

First-
stage
variable

Stochastic
solution

Product (i) Production shortfall zþij or surplus z�ij (t/d)
Scenario 1 Scenario 2 Scenario 3

zþi1 z�i1 zþi2 z�i2 zþi3 z�i3

x1 15 000 Demands RHS coefficients randomness
x2 2000 Gasoline (2) 835.0 0 700.0 0 565.0 0
x3 1155 Naphtha (3) 0 0 0 55.00 0 110.0
x4 3638 Jet fuel (4) 0 1223 0 1338 0 1453
x5 3598 Heating oil (5) 0 1813 0 1898 0 1983
x6 9738 Fuel oil (6) 237.5 0 0 237.5 0 712.5
x7 2155
x8 4635 Production yields LHS coefficients randomness
x9 4350 Naphtha (7) 0 107.5 0 205.0 0 302.5
x10 5475 Jet fuel (4) 0 1275 0 1388 0 1500
x11 1000 Gas oil (8) 0 1170 0 1335 0 1500
x12 2698 Cracker feed (9) 0 1200 0 1350 0 1500
x13 1937 Residuum (10) 0 1500 0 975.0 0 450.0
x14 2500
x15 1850 E(Penalty Costs) 18 980 24 410 10 850
x16 1000 Etotal 54 230
x17 1375
x18 899.4
x19 475.6
x20 125.0
Expected
profit z
($/day)

79 730
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Figure 6.3 Risk Model II plot of expected profit for different levels of risk as represented by the
economic risk factor q1 and the operational risk factor q2.

Figure 6.2 Risk Model II efficient frontier plot.

132j 6 Planning Under Uncertainty for a Single Refinery Plant



In the following section we illustrate how the mean-absolute deviation (MAD) is
employed as the measure of operational risk.

6.6.4
Approach 4: Risk Model III

Risk Model III for the numerical example is formulated as follows:

max z4¼Eðz0Þ�q1Vðz0Þ�
X

i2I

X

s2S
ps½ðcþi zþis þc�i z�is Þþðqþi yþis þq�i y

�
is Þ�

�q3
X

s2S
ps
X

i2I

ðcþi zþi;sþc�i z�i;sÞ
þðqþi yþi;sþq�i y�i;s Þ

" #

�
X

i2I

X

s02S0
ps0

ðcþi zþi;s0 þc�i z�i;s0 Þ
þðqþi yþi;k;s0 þq�i y

�
i;k;s0 Þ

" #�
�
�
�
�

�
�
�
�
�

ðRM30Þ

subject to : deterministic constraints in the LPmodel;

stochastic constraintsð6:31Þandð6:32Þ;
MAD linearization conditionsð6:25Þ�ð6:27Þ:

From Table 6.7 and the corresponding efficient frontier plot in Figure 6.4, similar
trends to Risk Model II (and also the expected value models) are observed in which
decreasing values of q1 correspond to higher expected profit until a certain constant
profit value is attained ($81 770). The converse is also true in which a constant
profit of $59 330 is reached in the initially declining expected profit for increasing
values of q1.

One of the reasons why the pair of decreasing values of q1 with a fixed value of q3
leads to increasing profit is due to the decrease in production shortfalls and, at the
same time, increase in production surpluses. Typically, the fixed penalty cost for
shortfalls is lower than surpluses. A good start would be to select a lower operating
value ofq1 to achieve both highmodel feasibility aswell as increased profit.Moreover,
lower values of q1 correspond to decreasing variation in the recourse penalty costs,
which implies solution robustness.

6.7
General Remarks

In a general sense, sensitivity analysis is used to study the robustness of solutions to
a linear programming (LP) model. However, in many cases, the output of sensitivity
analysis could be misleading when used to assess the impact of uncertainty. As
compared to stochastic programming, it would merely to help address the impact of
uncertainty without providing the measures to hedge against it. As argued by many
researchers, sensitivity analysis is a post-optimality analysis rather than a tool to
account for uncertainty. On the other hand, stochastic programming is a constructive
approach that is superior to sensitivity analysis. With stochastic linear programming
(SLP) models, the decision maker is afforded the flexibility of introducing recourse
variables to take corrective actions rather than reactive actions.
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Nomenclature and Notation

Sets and Indices

I0 set of materials or products i
J set of processes j
T set of time periods t
S set of scenarios s
K set of products with yield uncertainty k

Deterministic Parameters

di,t,s, dLi;t;s, d
U
i;t;s demand for product i in period t per realization of scenario s, with its

corresponding constant lower (superscript L) and upper (superscript
U) bounds

Pt amount of crude oil purchased in period t
pLt , p

U
t lower andupper bounds of the availability of crude oil during period t

If minn
i;t , If max

i;t minimumandmaximum required amount of inventory formaterial
i at the end of period t

bi,j stoichiometric coefficient for material i in process j
ci,t unit sales price of product type i in period t
li,t unit purchase price of crude oil type i in period t

Figure 6.4 Risk Model III efficient frontier plot.
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~li;t value of the starting inventory of material i in period t
~ci;t value of the final inventory of material i in period t
Cj,t operating cost of process j in period t
hi,t unit cost of subcontracting or outsourcing the production of product

type i in period t
rt, ot cost per man-hour of regular and overtime labor in period t,

respectively
aj,t variable-size cost coefficient for the investment cost of capacity

expansion of process j in period t
bj,t fixed-cost charge for the investment cost of capacity expansion of

process j in period t
q1, q2, q3 risk factors or weighting factors (weights) for multiobjective opti-

mization procedure

Stochastic Parameters

ps probability of scenario s
ci,s,t unit sales price of product type i in period t per realization of scenario s
lt unit purchase price of crude oil in period t per realization of scenario s
di,s,t demand for product i in time period t per realization of scenario s

Recourse Parameters

cþi fixed penalty cost per unit demand di,s of underproduction (shortfall) of product
i per realization of scenario s (also the cost of lost demand)

c�i fixed penalty cost per unit demand di,s of overproduction (surplus) of product i
per realization of scenario s (also the cost of inventory to store production
surplus)

qþ
i;k fixed unit penalty cost for shortage in yields from material i for product k
q�
i;k fixed unit penalty cost for excess in yields from material i for product k

Deterministic Variables (First-Stage Decision Variables)

xj,t production capacity of process j during period t
xj,t� 1 production capacity of process j during period t � 1
CEj,t, CEL

j;t, CE
U
j;t capacity expansion of the plant for process j that is installed in

period t, with its corresponding constant lower (superscript L) and
upper (superscript U) bounds

yj,t binary decision variable that equals one (1) if there is an expansion
for process j at the beginning of period t, and zero (0) otherwise

Si,t amount of product i sold in period t
Li,t amount of lost demand for product i in period t
Pt amount of crude oil purchased in period t
Isi;t, I

f
i;t initial and final amount of inventory of material i in period t
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Hi,t amount of product type i to be subcontracted or outsourced in
period t

Rt, Ot regular and overtime working or production hours in period t,
respectively

Stochastic Recourse Variables (Second-Stage Decision Variables)

zþ
i;s amount of unsatisfied demand for product i due to underproduction per

realization of scenario s
z�
i;s amount of excess product i due to overproduction per realization of scenario s
yþi;k;s amount of shortage in yields frommaterial i for product type kper realization of

scenario s
y�i;k;s amount of excess in yields from material i for product type k per realization

of scenario s
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7
Robust Planning of Multisite Refinery Network

In Chapter 3 of this book we discussed the problem of multisite refinery integration
under deterministic conditions. In this chapter, we extend the analysis to account for
different parameter uncertainty. Robustness is quantified based on both model
robustness and solution robustness, where eachmeasure is assigned a scaling factor
to analyze the sensitivity of the refinery plan and integration network due to
variations. We make use of the sample average approximation (SAA) method with
statistical bounding techniques to generate different scenarios.

7.1
Introduction

Today the petroleum refining industry is facing a challenging task to remain
competitive in a globalized market. High crude oil prices and growing stringent
international protocols and regulations force petroleum companies to embrace every
opportunity that increases their profit margin. A common solution is to seek
integration alternatives, not only within a single facility but also on an enterprise-
wide scale. This will provide enhanced utilization of resources and improved
coordination and, therefore, achieve a global optimal production strategy within
the network. However, considering such highly strategic planning decisions, par-
ticularly in the current volatile market leads to uncertainties playing a paramount
role in the final decision making.

The remainder of this Chapter 7 is organized as follows. In Section 7.2 we will
give a review of the related literature. Section 7.3 will present a model formulation
for petroleum refining multisite network planning under uncertainty and using
robust optimization. Then we will briefly explain the sample average approxi-
mation (SAA) method in Section 7.4. In Section 7.5, we will present computa-
tional results on industrial case studies consisting of a single refinery and a
network of petroleum refineries. The chapter ends with concluding remarks in
Section 7.6.

Planning and Integration of Refinery and Petrochemical Operations. Khalid Y. Al-Qahtani and Ali Elkamel
Copyright � 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32694-5
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7.2
Literature Review

Different approaches have been devised to tackle optimization under uncertainty
including stochastic optimization (two-stage, multistage) with recourse based on the
seminal work of Dantzig (1955), chance-constrained optimization (Charnes and
Cooper, 1959), fuzzy programming (Bellman andZadeh, 1970), and design flexibility
(Grossmann and Sargent, 1978). These early works on optimization under uncer-
tainty have undergone substantial developments in both theory and algorithms
(Sahinidis, 2004). In this book, we employ stochastic programming with recourse
which deals with problems with uncertain parameters of a given discrete or
continuous probability distribution. The most common formulation of stochastic
programmingmodels for planning problems is the two-stage stochastic program. In
a two-stage stochastic programming model, decision variables are cast into two
groups: first stage and second stage variables. The first stage variables are decided
upon prior to the actual realization of the random parameters. Once the uncertain
events have unfolded, further design or operational adjustments can be made
through values of the second-stage (alternatively called recourse variables at a
particular cost). Stochastic programming with recourse commonly gives rise to
large-scale models that require the use of decomposition methods and proper
approximation techniques due to the high number of samples encountered (Liu
and Sahinidis, 1996). However, recent developments in sampling techniques may
help keep the stochastic program to a manageable size.

More recent applications and developments in the chemical engineering arena
include the work by Ierapetritou and Pistikopoulos (1994) who proposed an algo-
rithm for a two-stage stochastic linear planning model. The algorithm is based on
design flexibility by finding a feasible subspace of the probability region instead of
enumerating all possible uncertainty realizations. They also developed a Benders
decomposition scheme for solving the problem without a priori discretization of the
random space parameters. This was achieved by means of Gaussian quadrature
numerical integration of the continuous density function. In a similar production
planning problem, Clay and Grossmann (1997) developed a successive disaggre-
gation algorithm for the solution of two-stage stochastic linear models with discrete
uncertainty. Liu and Sahinidis 1995, 1996, 1997 studied the design uncertainty in
process expansion using sensitivity analysis, stochastic programming and fuzzy
programming, respectively. In their stochastic model, they used Monte Carlo
sampling to calculate the expected objective function values. Their comparison of
the different methodologies was in favor of stochastic models when the parameter
distributions are not available. Ahmed, Sahinidis and Pistikopoulos (2000) proposed
a modification to the decomposition algorithm of Ierapetritou and Pistikopou-
los (1994). They were able to avoid solving the feasibility subproblems and instead
of imposing constraints on the random space, they developed feasibility cuts on the
master problem of their decomposition algorithm. The modification mitigates
suboptimal solutions and develops amore accurate comparison to cost and flexibility.
Neiro and Pinto (2005) developed a multiperiod MINLP model for production
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planning of refinery operations under uncertain petroleum and product prices and
demand. They were able to solve the model for 19 periods and five scenarios.

Another stream of research considered risk and robust optimization. The repre-
sentation of risk management using variance as a risk measure was proposed by
Mulvey, Vanderbei and Zenios (1995) who referred to this approach as robust
stochastic programming. They defined two types of robustness: (i) solution robust-
ness referring to the optimalmodel solution when it remains close to optimal for any
scenario realization, and (ii) model robustness representing an optimal solution
when it is almost feasible for any scenario realization. Ahmed and Sahinidis (1998)
proposed the use of an upper partial mean (UPM) as an alternative measure of
variability with the aimof eliminating nonlinearities introduced by using variance. In
addition to avoiding nonlinearity of the problem, UPM presents an asymmetric
measure of risk, as opposed to variance, by penalizing unfavorable risk cases. Bok,
Lee and Park (1998) proposed amultiperiod robust optimizationmodel for chemical
process networks with demand uncertainty and applied it to the petrochemical
industry in SouthKorea. They adopted the robust optimization framework ofMulvey,
Vanderbei and Zenios (1995) where they defined solution robustness as the model
solution when it remains close to optimal for any demand realization, and model
robustness when it has almost no excess capacity and unmet demand.More recently,
Barbaro and Bagajewicz (2004) proposed a new risk metric to manage financial risk.
They defined risk as the probability of notmeeting a certain target profit, in the case of
maximization, or cost, in the case of minimization. Additional binary variables are
then defined for each scenario where each variable assumes a value of 1 in the case of
not meeting the required target level; either profit or cost, and zero otherwise.
Accordingly, appropriate penalty levels are assigned in the objective function. This
approach mitigates the shortcomings of the symmetric penalization when using
variance, but, on the other hand, adds computational burden through additional
binary variables. Lin, Janak and Floudas (2004) proposed a robust optimization
approach based on a min–max framework where they considered bounded uncer-
tainty without known probability distribution. The uncertainty considered was in
both the objective function coefficients and the right-hand-side of the inequality
constraints and was then applied to a set of MILP problems. This approach allowed
the violation of stochastic inequality constraints with a certain probability and
uncertainty parameters were estimated from their nominal values through random
perturbations. This approach, however, could result in large infeasibilities in some of
the constraints when the nominal data values are slightly changed. This work was
then extended by Janak, Lin and Floudas (2007) to cover known probability distribu-
tions andmitigate the large violations of constraints in Lin, Janak and Floudas (2004)
via bounding the infeasibility of constraints and finding �better� nominal values of
the uncertain parameters. It is worthmentioning that thework of both Lin, Janak and
Floudas (2004) and Janak, Lin and Floudas (2007) is based on infeasibility/optimality
analysis and does not consider recourse actions. For recent reviews on scheduling
problems under uncertainty, we refer the interested reader to Janak, Lin and
Floudas (2007), and for reviews on single and multisite planning and coordination
to the review provided in see Chapter 3 of this book.
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In this chapter, we extend the deterministic modeling for the design and analysis
of multisite integration and coordination within a network of petroleum refineries
proposed in Chapter 3 to consider uncertainty in raw materials and final product
prices aswell as products demand. The chapter considers bothmodel robustness and
solution robustness, following the Mulvey, Vanderbei and Zenios (1995) approach.
The stochasticmodeling consists of a two-stage stochasticMILPproblemwhereas the
robust optimization is formulated as an MINLP problem with nonlinearity arising
from modeling the risk components. We discuss parameter uncertainty in the
coefficients of the objective function and the right-hand-side of inequality con-
straints. Furthermore, we describe how the sample average approximation (SAA)
method within an iterative scheme is employed to generate required samples.
Solution quality is statistically assessed by measuring the optimality gap of the final
solution. The approach was applied to industrial scale case studies of a single
petroleum refinery and a network of refineries.

7.3
Model Formulation

7.3.1
Stochastic Model

The formulation addresses the problem of determining an optimal integration
strategy across multiple refineries and establishing an overall production and oper-
atingplanforeachindividualsite.ThedeterministicmodelwasexplainedinChapter3.
In this chapter, uncertainty is accounted for using two-stage stochastic programming
with recourse. Parameter uncertainties considered include uncertainties in the
importedcrudeoilpriceCrCostcr ,productpricePrRefcfr , (uncertainties in thecoefficients
of the objective function) and the market demandDRef cfr (uncertainties in the right-
hand-side of inequality constraints). Uncertainty is modeled through the use of
mutually exclusive scenarios of the model parameters with a finite number N of
outcomes. For each jk ¼ ðCrCostcr;k;PrRefcfr;k;DRef cfr;kÞ where k ¼ 1; 2; . . . ;N, there
correspondsaprobabilitypk.Thegenerationof thescenariosaswellasmodelstatistical
bounding will be explained in a later section. The stochastic model is given by:

Min
X

cr2CR

X
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X
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pk CrCostcr;k S

Ref
cr;i þ
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þ
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ð7:1Þ
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Subject to

zcr;p;i ¼ SRefcr;i 8 cr 2 CR; i 2 I where p 2 P0 ¼ fSet of CDU processes 8 plant ig
ð7:2Þ
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The above formulation is a two-stage stochasticmixed-integer linear programming
(MILP) model. Objective function (7.1) minimizes the first stage variables and the
penalized second stage variables. Similar to the analysis of inventory problems
(Ahmed, Çakman and Shapiro, 2007), the production over the target demand is
penalized as an additional inventory cost of each ton of refined products. Similarly,
shortfall in a certain product demand is assumed to be satisfied at the product spot
market price. The recourse variablesVRef þ

cfr;k andVRef�
cfr;k in Equation 7.11 represent the

shortfall and surplus for each random realization k 2 N, respectively. These will
compensate for the violations in Equation 7.11 and will be penalized in the objective
function using appropriate shortfall and surplus costsCRef þ

cfr andCRef�
cfr , respectively.

Uncertain parameters are assumed to follow a normal distribution for each outcome
of the random realization jk. Although this might sound restrictive, this assumption
brings no limitation to the generality of the proposed approach as other distributions
can easily be used instead. The recourse variables VRef þ

cfr;k and VRef�
cfr;k in this formu-

lation will compensate for deviations from the mean of the market demand.

7.3.2
Robust Model

The above stochastic model takes a decisionmerely based on first-stage and expected
second-stage costs leading to an assumption that the decision-maker is risk-neutral.
The generic representation of risk can be written as:

Minx;y c
TxþE½Qðx; jðvÞÞ� þ lf ðv; yÞ

where f is a measure of variability of the second-stage costs and l is a non-negative
scalar representing risk tolerance which is usually decided by the modeler. This
representation is referred to as a mean-risk model (Ahmed, Çakman and
Shapiro, 2007). This formulation follows the representation of the Markowitz
mean-variance (MV) model (Markowitz, 1952). The variability measure can be
modeled as variance, mean-absolute deviation or financial measures of value-at-risk
(VaR) and conditional value-at-risk (CVaR).

Risk is modeled in terms of variance in both prices of imported crude oil CrCostcr
and petroleum products PrRefcfr , represented by first stage variables, and forecasted
demand DRef cfr , represented by the recourse variables. The variability in the prices
represents the solution robustness in which the model solution will remain close to
optimal for all scenarios. On the other hand, variability of the recourse term represents
the model robustness in which the model solution will almost be feasible for all
scenarios. This technique gives rise to amultiobjective optimizationproblem inwhich
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scaling factors are used to evaluate the sensitivity due to variations of each term. The
variations in the raw material and product prices are scaled by q1 and the deviation
from forecasted demand is scaled byq2. Different values ofq1 andq2 are used in order
to observe the sensitivity of each term on the final solution of the problem. The
objective function with risk consideration can be written as shown in (7.13):
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By expanding the mean and variance terms of CrCostcr;k, PrRefcfr;k, V

Ref þ
cfr;k andVRef�

cfr;k ,
the objective function (7.13) can be recast as:
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In order to understand the effect of each term on the overall objective function of
the system, different values of q1 and q2 are evaluated to construct the efficient
frontier of expected cost versus risk measured by standard deviation. This will be
demonstrated in the illustrative case studies.

7.4
Sample Average Approximation (SAA)

7.4.1
SAA Method

The solution of stochastic problems is generally very challenging as it involves
numerical integration over the random continuous probability space of the second
stage variables (Goyal and Ierapetritou, 2007). An alternative approach is the
discretization of the random space using a finite number of scenarios. This
approach has received increasing attention in the literature since it gives rise to a
deterministic equivalent formulation which can then be solved using available
optimization algorithms. A common approach is Monte Carlo sampling where
independent pseudo-randomsamples are generated and assigned equal probabilities
(Ruszczy�nski and Shapiro, 2003).

The use of numerical integration through Gaussian quadratures and cubatures
was studied by Pistikopoulos and Ierapetritou (1995). Acevedo and Pistikopou-
los (1996) compared the Gaussian numerical integration methods with the Monte
Carlo sampling technique and suggested the use of cubature methods for smaller
dimensional problems and sampling-based methods for larger problems. The
sampling-based methods were further classified by Verweij et al. (2003) to either
�interior� or �exterior� sampling. In the interior sampling approach, samples can be
adjusted during the optimization procedure either by adding additional samples to
the previously generated ones, taking subsets of the samples, or even by generating
completely new samples. Examples of this approach include the stochastic decom-
position algorithm by Higle and Sen (1991) and the branch and bound algorithm by
Norkin, Pflug and Ruszczysk (1998). On the other hand, exterior sampling includes
the class of problems where samples are generated �outside� the optimization
algorithm and then the samples are used to construct and solve the problem as
a deterministic equivalent. The sample average pproximation (SAA) method, also
knownas stochastic counterpart, is an example of an exterior sampling approach. The
sample average approximation problem can be written as (Verweij et al., 2003):

nN ¼ min
x2X

cTxþ 1
N

X

k2N
Qðx; jkÞ ð7:15Þ

It approximates the expectation of the stochastic formulation (usually called the
�true� problem) and can be solved using deterministic algorithms. The SAAmethod
was used among others by Shapiro and Homem-de-Mello (1998), Mark, Morton and
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Wood (1999), Linderoth, Shapiro and Wright (2002) for stochastic linear problems,
Kleywegt, Shapiro and Homem-De-Mello (2001), Verweij et al. (2003) for stochastic
integerproblems, andWeiandRealff (2004),Goyal andIerapetritou (2007) forMINLP
problems.Problem(7.15)canbesolvediteratively inorder toprovidestatisticalbounds
on theoptimality gapof theobjective functionvalue.Fordetails andproofs seeNorkin,
Pflug and Ruszczysk (1998) and Mark, Morton and Wood (1999). The procedure
consists of a number of steps as described in the following section.

7.4.2
SAA Procedure

. Generate R independent sample batches (denoting the number of sample
replication) each with sample size of N, that is, jj1; . . . ; jjN , j ¼ 1; . . . ;R. For
each sample size Nsolve the sample average approximation problem defined as:

n
j
N ¼ min

x2X
cTxþ 1

N

X

k2N
Qðx; jk jÞ ð7:16Þ

The objective values n1N ; . . . n
R
N of problem (7.16) and their corresponding

solutions x̂1N ; . . . x̂
R
N are then obtained.

. Calculate:

�nN ¼ 1
R

X

j2R
n
j
N ð7:17Þ

s2�nN
R

¼ 1
RðR�1Þ

X

j2R
ðnjN��nNÞ2 ð7:18Þ

According to Mark, Morton and Wood (1999) and Norkin, Pflug and Ruszc-
zysk (1998), the value of �nN in (7.17) is less than or equal to the true optimal value
n� obtained by solving the �true� problem, seeAppendixC for proof. Therefore, �nN

is a statistical lower bound to the true optimal valuewith a variance estimator of
s2�nN
R

calculated by Equation 7.18.
. Select any candidate solution x̂1N ; . . . ; x̂

R
N obtained from the previous steps.

However, it is preferable to select the optimal solution with the minimum
objective function value, that is:

x̂� 2 arg min
�
vRN : x̂1N ; x̂

2
N ; . . . ; x̂

R
N

� ð7:19Þ

Fix the solution value to the point obtained from the above minimization in (7.19);
generate an independent sample N 0 ¼ j1; . . . ; jN

0
and compute the value of the

following objective function:

n̂N 0 ¼ min
x̂�

cT x̂� þ 1
N 0

X

k2N 0
Qðx̂�; jkÞ ð7:20Þ
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Considering the relatively less computational effort required to solve prob-
lem (7.20), the value of N 0 is typically chosen to be quite larger than N in order to
obtain an accurate estimation of n̂N 0 (Verweij et al., 2003). Since x̂� is a feasible
point to the true problem,wehave n̂N 0 � n�.Hence, n̂N 0 is a statistical upper bound
to the true problem with a variance estimated by Equation 7.21:

s2n̂N0

N 0 ¼ 1
N 0ðN 0�1Þ

X

k2N0
ðcTx̂� þQðx̂�; jkÞ�n̂N 0 Þ2 ð7:21Þ

From the above procedure, we can estimate the ð1�aÞ confidence interval of the
optimal gap. For a given tn�1;a=2 where t is the critical value of the t-distribution
with ðn�1Þ degrees of freedom, the following can be estimated:

~el ¼ tn�1;a=2
s�nNffiffiffiffi
R

p and ~eu ¼ tn�1;a=2
sn̂N0
ffiffiffiffiffi
N 0p

Then, the optimality gap can be constructed as:

½0; fn̂N 0��nNgþ þ~eu þ~el� where fygþ � maxðy; 0Þ: ð7:22Þ
Note that due to sampling error we may find that n̂N 0 < �nN . For this reason the

confidence interval obtained by (7.22) provides a more conservative bounding.
The above procedure for the validation of a candidate solution was originally
suggested by Norkin, Pflug and Ruszczysk (1998) and further developed byMark,
Morton and Wood (1999).

7.5
Illustrative Case Study

This section presents computational results of the models and the sampling scheme
proposed in this chapter. The refinery examples considered represent industrial-scale
size refineries and an actual configuration that can be found in many industrial sites
around the world. In the presentation of the results, we focus on demonstrating the
sample average approximation computational results as we vary the sample sizes and
compare their solution accuracy and the CPU time required for solving the models.

The modeling system GAMS (Brooke et al., 1996) is used for setting up the opti-
mizationmodels. The computational tests were carried out on a PentiumMprocessor
2.13 GHz. The models were solved with DICOPT (Viswanathan and Gross-
mann, 1990). The NLP subproblems were solved with CONOPT2 (Drud, 1994), while
theMILPmaster problemswere solvedwithCPLEX (CPLEXOptimization Inc, 1993).

7.5.1
Single Refinery Planning

This example illustrates the performance of the proposed approach on a single site
total refinery planning problem. The refinery scale, capacity and configurationmimic
an existing refinery in theMiddle East. Figure 7.1 is a state equipment network (SEN)
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representation of a multiple refineries network, where in this example we will study
Refinery 1. The refinery uses a single feedstock (Arabian Light) to feed the atmo-
spheric crude unit where it separates crude oil into several fractions including LPG,
naphtha, kerosene, gas oil and residues. The heavy residues are then sent to the
vacuum unit where they are further separated into vacuum gas oil and vacuum
residues. In general, depending on the production targets, different processing and
treatment processes are applied to the crude fractions. In our case, the naphtha is
further separated into heavy and light naphtha. Heavy naphtha is sent to the catalytic
reformer unit to produce high octane reformates for gasoline blending and light
naphtha is sent to the light naphtha pool and to an isomerization unit to produce
isomerate for gasoline blending too.

The middle distillates are combined with other similar intermediate streams and
sent for hydrotreating and then for blending to produce jet fuels and gas oils.
Atmospheric and vacuumgas oils are further treated by either fluid catalytic cracking
(FCC) or hydrocracking (HC) in order to increase the gasoline and distillate yields.
These distillates from both FCC and HC are desulfurized in the cycle gas oil
desulfurization and ATK desulfurization processes. The final products in this
example consist of liquefied petroleum gas (LPG), light naphtha (LT), two grades
of gasoline (PG98 and PG95), No.4 jet fuel (JP4),military jet fuel (ATKP), No.6 gas oil
(GO6), and heating fuel oil (HFO).

The major capacity limitations as well as the availability constraints are shown in
Table 7.1. Raw materials, product prices, and demand uncertainty were assumed to

Table 7.1 Major capacity constraints of single refinery planning.

Higher limit (1000 t/year)

Production Capacity
Distillation 12 000
Reforming 2000
Fluid catalytic cracker 1000
Hydrocracker 2000
Des gas oil 3000
Des cycle gas oil 100
Des ATK 1200

Crude availability
Arabian Light 12 000

Local demand
LPG N (320,20)
LN N (220,20)
PG98 N (50,5)
PG95 N (1600,20)
JP4 N (1300,20)
GO6 N (2500,50)
ATKP N (500,20)
HFO N (700,20)
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follow a normal distribution. However, this assumption brings no restriction to the
generality of the proposed modeling approach as other sampling distributions can
easily be used instead. Prices of crude oil and refined products reflect the current
market prices and assume a standard deviation of $10US. The problem is formulated
as an LP since there is no integration or capacity expansion requirement in this case
study.

Table 7.2 and Figure 7.2 show different confidence interval values of the optimality
gap when changing the sample sizes N and N 0, while fixing the number of
replications R to 30. The replication number R need not be very large since usually
5–7 replications are sufficient to get an idea about the variability of �nN (Qian and
Shapiro, 2006). It can be seen that increasing the sample size N has more weight on
reducing the optimality gap, and, therefore, the variability of the objective function,
than increasingN 0.

However, the increase in the sample sizeN will depend on computational time and
available computer memory. In our particular case studies, we run into memory
limitations when we increase the sample size N beyond 2000 samples. Table 7.3
shows the solution of the single refinery problem using the SAA scheme with
N ¼ 2000 and N 0 ¼ 20000. The proposed approach required 553CPU s to converge
to the optimal solution.

The single refinery was then solved considering risk in terms of variations in the
price of imported crudeoil, prices offinal products and forecasteddemand toprovide a

Table 7.2 Computational results with SAA of single refinery planning.

U B sample
size

Number of
samples: R¼ 30

Lower bound
sample size¼N

500

1000 1500 2000

N0 ¼ 5000 LB estimate: �nN 2 888 136 2 888 660 2 888 964 2 888 978
LB error: ~elða ¼ 0:975Þ 1834 1446 1050 1036
UB estimate: n̂N 0 2 889 367 2 889 076 2 889 720 2 887 545
UB error: ~euða ¼ 0:975Þ 3636 3693 3653 3637
95% Conf. interval [0,6701] [0,5555] [0,5458] [0,4673]
CPU (s) 26 33 41 49

N0 ¼ 10 000 LB estimate: �nN 2 887 536 2 889 941 2 888 123 2 888 526
LB error: ~elða ¼ 0:975Þ 2367 1311 1045 1332
UB estimate: n̂N 0 2 887 864 2 890 973 2 888 884 2 888 706
UB error: ~euða ¼ 0:975Þ 2574 2608 2601 2619
95% Conf. interval [0,5269] [0,4951] [0,4407] [0,4131]
CPU (s) 109 113 117 128

N0 ¼ 20 000 LB estimate: �nN 2 888 639 2 889 023 2 888 369 2 888 293
LB error: ~elða ¼ 0:975Þ 2211 1604 1190 1090
UB estimate: n̂N 0 2 889 593 2 889 033 2 888 527 2 888 311
UB error: ~euða ¼ 0:975Þ 1841 1847 1835 1840
95% Conf. interval [0,5006] [0,3462] [0,3183] [0,2949]
CPU (s) 534 536 545 553
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more robust analysis of the problem. The problemwas formulated as anNLPproblem
with nonlinearity due tomodeling risk in terms of variance. Asmentioned earlier, the
problemwill have amore robust solution as the results will remain close to optimal for
all scenarios throughminimizing variations of the rawmaterial and product prices. In

Table 7.3 Model results of single refinery planning.

Process variables Results (1000 t/year)

Production levels Crude unit 12 000
Reformer 95 —

Reformer 100 1824
FCC gasoline mode 96
FCC gas oil mode 708
Hydrocracker 1740
Des gas oil 2891
Des cycle gas oil 45
Des ATK 1200

Exports PG95 463
JP4 502
GO6 1293
ATKP 1036
HFO 1253

Total cost ($/yr) 2 887 687

Figure 7.2 Single refinery planning optimality gap variations with sample size.
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a similar analogy, themodelwill bemore robust aswe areminimizing the variations of
the recourse variables (demand) leading to a solution that is almost feasible for all
scenarios. The effect of each robustness term was evaluated by varying their scaling
factors. The model was repeatedly solved for different values of q1 (price variations)
and q2 (demand variations) in order to construct the efficient frontier plot of expected
cost versus risk measured by standard deviation.

Figure 7.3 illustrates the change in cost with respect to different values of q1 (price
variations) and q2 (demand variations). The cost tends to increase as higher scaling
values are given to the standard deviation of prices and demand. It can be seen from
the graph that the problem shows more sensitivity to variations in raw material and
product prices than to the variations in demand. Figure 7.4 illustrates the trade-off
between the expected cost vs. risk, represented by the total standard deviation of
prices and demand. The expected cost decreases at higher values of risk in terms
of price and demand variations with respect to different q1 and q2 values. Generally,
the values of q1 and q2 will depend on the policy adopted by the investor or the plant
operator whether they are risk-averse or risk takers, and can be read directly from the
efficient frontier plots.

7.5.2
Multisite Refinery Planning

In this example, we extend the scale of the case study to cover strategic planning for
three complex refineries by which we demonstrate the performance of our model to

Figure 7.3 Cost variation with different values of q1 and q2 for single refinery planning.
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devise an overall production plan and an integration strategy. See Figure 7.1 for the
overall topology of the refineries and Table 7.4 for major capacity constraints. The
three refineries are assumed to be in one industrial area,which is a commonsituation
in many locations around the world, and are coordinated through a main headquar-
ters sharing the feedstock supply. The cost parameters for pipeline installation were
calculated as cost per distance between the refineries, and then multiplied by the
required pipe length in order to connect any two refineries. The pipeline diameter
considered in all cases was 8 inches. The final products of the three refineries consist
of liquefied petroleum gas (LPG), light naphtha (LT), two grades of gasoline (PG98
and PG95), No. 4 jet fuel (JP4), military jet fuel (ATKP), No.6 gas oil (GO6), diesel
fuel (Diesel), heating fuel oil (HFO), and petroleum coke (coke). This problem
was formulated as anMILP with the overall objective ofminimizing total annualized
cost.

Similar to the single refinery planning example in Section 7.5.1, the problem
was solved for different sample sizes N and N 0 to illustrate the variation of
optimality gap confidence intervals, as shown in Table 7.5 and Figure 7.5. The
results illustrate the trade-off between model solution accuracy and computa-
tional effort. Furthermore, the increase in the sample size N has a more
pronounced effect on reducing the optimality gap, however, due to computa-

Figure 7.4 Trade-off between cost and risk at different q2 values while varying q1 for single refinery
planning.
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tional and memory limitations we did not increase the sample size N beyond
2000 samples.

Table 7.6 shows the solution of the refineries network using the SAA scheme with
N ¼ 2000 and N 0 ¼ 20000 where the proposed model required 790CPU s to
converge to the optimal solution. In addition to the master production plan devised
for each refinery, the solution proposed the amounts of each intermediate stream to
be exchanged between the different processes in the refineries. The formulation
considered the uncertainty in the imported crude oil prices, petroleum product
prices and demand. The three refineries collaborate to satisfy a given local market
demand where the model provides the production and blending level targets for the
individual sites. The annual production cost across the facilities was found to be
$6 650 868.

When considering risk, in an analogous manner to the single refinery case, the
problem was solved for different values of q1 and q2 to construct the efficient

Table 7.4 Major refineries capacity constraints for multisite refinery planning.

Production Capacity Higher limit (1000 t/year)

R1 R2 R3

Distillation 4500 12 000 9900
Reforming 1000 2000 1800
Isomerization 200 — 450
Fluid catalytic cracker 800 1200 —

Hydrocracker — 2000 2500
Delayed coker — — 1500
Des gas oil 1300 3000 2400
Des cycle gas oil 200 750 —

Des ATK — 1200 1680
Des distillates — — 350

Crude availability
Arabian Light 31 200

Local demand
LPG N (432,20)
LN N (250,20)
PG98 N (540,20)
PG95 N (4440,50)
JP4 N (2340,50
GO6 N (4920,50)
ATK N (1800,50)
HFO N (200,20)
Diesel N (400,20)
Coke N (300,20)
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Table 7.5 Computational results with SAA of the multisite refinery planning.

UB sample
Size

Number of
Samples: R¼ 30

Lower bound
sample size¼N

500 1000 1500 2000

N0 ¼ 5000 LB estimate: �nN 6 647 411 6 647 713 6 647 569 6 647 109
LB error: ~elða ¼ 0:975Þ 4752 3185 2667 2516
UB estimate: n̂N 0 6 661 697 6 658 832 6 656 480 6 652 869
UB error: ~euða ¼ 0:975Þ 7877 7850 7746 7769
95% Conf. interval [0,26915] [0,22154] [0,19325] [0,16044]
CPU (s) 38 44 60 69

N0 ¼ 10 000 LB estimate: �nN 6 647 660 6 649 240 6 648 294 6 650 178
LB error: ~elða ¼ 0:975Þ 3868 3750 2280 2105
UB estimate: n̂N 0 6 656 195 6 658 611 6 656 763 6 655 654
UB error: ~euða ¼ 0:975Þ 5447 5550 5463 5550
95% Conf. interval [0,17850] [0,18671] [0,16213] [0,13132]
CPU (s) 147 158 160 173

N0 ¼ 20 000 LB estimate: �nN 6 647 296 6 649 123 6 649 634 6 649 421
LB error: ~elða ¼ 0:975Þ 3924 3248 2173 1720
UB estimate: n̂N 0 6 656 006 6 656 778 6 656 684 6 654 684
UB error: ~euða ¼ 0:975Þ 3923 3924 3895 3879
95% Conf. interval [0,16557] [0,14828] [0,13118] [0,10862]
CPU (s) 748 763 770 790

Figure 7.5 Multisite refinery planning optimality gap variations with sample size.
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frontier plot. Figure 7.6 illustrates how cost increases with respect to higher
values of q1 and q2. The cost of operating the multisite refinery network will
depend on the scaling values assigned to prices and demand variations. Figure 7.7
demonstrates the trade-off between the cost and the total standard deviation of
both prices and demand, denoted as risk. The figures show that the cost of
production and designing the integration network between the refineries is more
sensitive to variations in crude cost and product prices when compared to
demand variations.

Furthermore, for values of q1 and q2 exceeding 100, themodel did not recommend
exchange of intermediate streams between the refineries due to the high risk
associated with such investment. However, the values of both q1 and q2 are left to
the decision maker�s preference.

Table 7.6 Model results of the multisite refinery planning.

Process variables Results (1000 t/year)

R1 R2 R3

Crude oil supply Arabian Light 4500 12 000 9900
Production levels Crude unit 4500 12 000 9900

Reformer 95 172 539 —

Reformer 100 401 1285 1772
Isomerization 200 — 450
FCC gasoline mode 616 1033 —

FCC gas oil mode — — —

Hydrocracker — 1740 2436
Delayed coker — — 1100
Des gas oil 1035 2760 2378
Des cycle gas oil 200 536 —

Des ATK — 1200 1680
Des distillates — — 264

Intermediate
streams
exchange

From R1 VGO — — 338 to
HCU

CGO — 75 to DCGO —

R2 LN 60 to Isom. — 295 to
Isom.

R3 UCO — 134 to FCC —

Exports PG95 296
JP4 1422
GO6 3657
HFO 1977
ATK 1837
Coke 40

Total cost ($/yr) 6 650 868
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Figure 7.6 Cost variation with different values of q1 and q2 for multisite refinery planning.

Figure 7.7 Trade-off between cost and risk at different q2 values while varying q1 for multisite
refinery planning.
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7.6
Conclusion

In this chapter, we proposed a two-stage stochastic MILP model to design an
integration strategy under uncertainty and plan capacity expansions, as required,
in a multisite refinery network. The proposed method employs the sample average
approximation (SAA)methodwith a statistical bounding and validation technique. In
this sampling scheme, a relatively small sample sizeN is used tomakedecisions,with
multiple replications, and another independent larger sample is used to reassess the
objective function value while fixing the first stage variables and solving for the
second stage variables. In addition, robust optimization of the refinery network
integration model was also evaluated. The proposed approach led to results that are
more stable against variability in imported crude oil and product prices (solution
robustness) as well as forecasted product demand (model robustness). Furthermore,
the study showed that the refinery models are more sensitive to variations in the
prices of imported crude oil and exported final products as opposed to variations in
product demand. The scaling values of the solution andmodel robustness depend on
the policy adopted by the investor, whether being risk-averse or a risk taker, and can be
read directly from the efficient frontier plots presented in this chapter.
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8
Robust Planning for Petrochemical Networks

This chapter addresses the planning, design and optimization of a network of
petrochemical processes under uncertainty and robust considerations. Similar to
the previous chapter, robustness is analyzed based on both model robustness and
solution robustness. Parameter uncertainty includes process yield, raw material and
product prices, and lower product market demand. The expected value of perfect
information (EVPI) and the value of the stochastic solution (VSS) are also investi-
gated to illustrate numerically the value of including the randomness of the different
model parameters.

8.1
Introduction

The discussions on planning under uncertainty in Chapter 7 and planning in the
petrochemical networks earlier in Chapter 4 underline the importance of modeling
uncertainty and considering risk in process system engineering studies. In this
chapter, we extend the model presented in Chapter 4 to address the strategic
planning, design and optimization of a network of petrochemical processes under
uncertainty and robust considerations. Robustness is analyzed based on both model
robustness and solution robustness, where eachmeasure is assigned a scaling factor
to analyze the sensitivity of the integration network to variations. The stochastic
model is formulated as a two-stage stochastic MILP problem whereas the robust
optimization is formulated as an MINLP problem with nonlinearity arising from
modeling the risk components. Both endogenous uncertainty, represented by
uncertainty in the process yield, and exogenous uncertainty, represented by uncer-
tainty in raw material and product prices, and lower product market demand are
considered. The concept of expected value of perfect information (EVPI) and the
value of the stochastic solution (VSS) are also investigated to illustrate numerically
the value of including randomness of the different model parameters. The consid-
eration of uncertainty in these parameters provided a more robust and practical
analysis of the problem, especially at a time when fluctuations in petroleum and
petrochemical products prices and demands are soaring. For a literature review on

Planning and Integration of Refinery and Petrochemical Operations. Khalid Y. Al-Qahtani and Ali Elkamel
Copyright � 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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planning of petrochemical networks, planning under uncertainty, andmodeling risk,
we refer the reader to Chapters 4 and 7.

The remainder of this Chapter is organized as follows. In Section 8.2 we will
discuss model formulation for petrochemical network planning under uncertainty
and with uncertainty and risk consideration, referred to as robust optimization.
Then we will briefly explain the concept of value of information and stochastic
solution, in Section 8.3. In Section 8.4, we will illustrate the performance of the
model through an industrial case study. The chapter ends with concluding remarks
in Section 8.5.

8.2
Model Formulation

8.2.1
Two-Stage Stochastic Model

This formulation is an extension to the deterministic model presented earlier in
this book. In Chapter 4 all parameters of the model were assumed to be known
with certainty. However, the current situation of fluctuating high petroleum crude
oil and petrochemical product prices and demands is an indication of the high
market and industry volatility. Acknowledging the shortcomings of deterministic
models, parameter uncertainty is considered in the process yield dcp;m, raw
material and product prices PrPetcp , and lower product demand DL

Pet cp. The problem
is formulated as a two-stage stochastic programming model. The uncertainty is
considered through discrete distribution of the random parameters with a finite
number S of possible outcomes (scenarios) jk ¼ (PrPetcp;k, dcp;m;k, DL

Pet cp;k) corre-
sponding to a probability pk. The formulation of the stochastic model is as
follows:

Max
X

cp2CP

X

m2MPet

X

k2N
pk Pr

Pet
cp;k dcp;m;k x

Pet
m

�
X

cp2CFP

X

k2N
pk C

Petþ
cp VPetþ

cp;k �
X

cp2CFP

X

k2N
pk C

Pet�
cp VPet�

cp;k

ð8:1Þ

Subject to

FPet
cp þ

X

m2MPet

dcp;m xPetm þVPetþ
cp2CFP;k�VPet�

cp;k ¼ DL
Pet cp;k 8 cp 2 CP k 2 N

ð8:2Þ

FPet
cp þ

X

m2MPet

dcp;m xPetm � DU
Pet cp2CFP 8 cp 2 CP k 2 N ð8:3Þ

BL
m yPetproc m � xPetm � KUyPetproc m 8m 2 MPet ð8:4Þ
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X

cp2CIP
yPetproc m � 1 8m 2 MPet that produces cp 2 CIP ðintermediateÞ

ð8:5Þ

X

cp2CFP
yPetproc m � 1 8m 2 MPet that produces cp 2 CFP ðfinalÞ ð8:6Þ

FPet
cp � SPetcp 8 cp 2 CP ð8:7Þ

The above formulation is a two-stage mixed-integer linear programming (MILP)
model. The recourse variablesVPetþ

cp;k andVPet�
cp;k represent the shortfall and surplus for

each random realization k 2 S, respectively. These will compensate for the violations
in constraints (8.2) and will be penalized in the objective function using the
appropriate shortfall and surplus costs CPetþ

cp and CPet�
cp , respectively. Uncertain

parameters are assumed to follow a normal distribution for each outcome of the
random realization jk. The scenarios for all random parameters are generated
simultaneously. The recourse variables VPetþ

cp;k and VPet�
cp;k in this formulation will

compensate for deviations from the mean of the lower market demands DL
Pet cp and

process yield dcp;m. In this way, the use of an independent recourse action and
compensation for the violation in the constraint due to process yield uncertainty
alone is avoided. Although thismay not allow for an explicit analysis for process yield
uncertainty, it instead circumvents the complication of treating these types of
endogenous uncertainties.

8.2.2
Robust Optimization

The stochastic model with recourse in the previous section takes a decision merely
based onfirst-stage and expected second-stage costs leading to an assumption that the
decision-maker is risk-neutral (Sahinidis, 2004). In order to capture the concept of
risk in stochastic programming, Mulvey, Vanderbei and Zenios (1995) proposed the
following amendment to the objective function:

Minx;y c
TxþE½Qðx; jðvÞÞ� þ l f ðv; yÞ

where E½Qðx; jðvÞÞ� is the fixed recourse, f is a measure of variability (i.e., second
moment) of the second-stage costs, and l is a non-negative scalar representing risk
tolerance. The representation through risk management using variance as a risk
measure is often referred to as robust stochastic programming (Mulvey, Vanderbei
and Zenios, 1995). This is also a typical riskmeasure following theMarkowitz mean-
variance (MV)model (Markowitz, 1952). The robustness is incorporated through the
consideration of highermoments (variance) of the randomparameter distribution jk
in the objective function, and, hence, measuring the trade-offs between mean value
and variability.
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In this study, operational risk was accounted for in terms of variance in both
projected benefits, represented by first stage variables, and forecasted demand,
represented by the recourse variables. The variability in the projected benefit
represents the solution robustness where the model solution will remain close to
optimal for all scenarios. On the other hand, variability of the recourse term
represents the model robustness where the model solution will almost be feasible
for all scenarios. This approach gives rise to amultiobjective analysis inwhich scaling
factors are used to evaluate the sensitivity due to variations in each term. The
projected benefits variation was scaled by q1, and deviation from forecasted demand
was scaled by q2, where different values of q1 and q2 were used in order to observe the
sensitivity of each term on the final petrochemical complex. The objective function
with risk consideration can be written as follows:

Max
X

cp2CP

X

m2MPet

X

k2N
pk Pr

Pet
cp;k dcp;m;k x

Pet
m

�
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Pet�
cp VPet�

cp;k

�q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðProfit uncertaintyÞp �q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðRecourse uncertaintyÞp

ð8:8Þ

Since the randomness in the profit uncertainty term is a product of two random
parameters, process yield dcp;m;k and chemical pricesPrPetcp;k, its variance can be written
based on the variance of a product of two variables x and y (Johnson and Tetley, 1955),
that is:

varxy ¼ varx vary þ varx my þ vary mx

where varx and mx represent the variance and mean value of a random number x,
respectively. Hence, the objective function can be expressed as:
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By expanding the mean and variance terms of PrPetcp;k, dcp;m;k, V
Petþ
cp;k and VPet�

cp;k , the
objective function can be recast as:
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In order to understand the effect of each term on the overall objective function of

the petrochemical network, different values of q1 and q2 should be evaluated, as will
be shown in the illustrative case study.

8.3
Value to Information and Stochastic Solution

Since stochastic programming adds computational burden to practical problems, it is
desirable to quantify the benefits of considering uncertainty. In order to address this
point, there are generally two values of interest. One is the expected value of perfect
information (EVPI) which measures the maximum amount the decision maker is
willing to pay in order to get accurate information on the future. The second is the
value of stochastic solution (VSS) which is the difference in the objective function
between the solutions of themean value problem (replacing randomeventswith their
means) and the stochastic solution (SS) (Birge, 1982).

A solution based on perfect information would yield optimal first stage decisions
for each realization of the random parameter j. Then the expected value of these
decisions, known as �wait-and-see� (WS) can be written as (Madansky, 1960):

WS ¼ Ej½Min zðx; jÞ�
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However, since our objective is profit maximization, the EVPI can be calculated as:

EVPI ¼ WS�SS ð8:11Þ
The other quantity of interest is the VSS. In order to quantify it, we first need to

solve the mean value problem, also referred to as the expected value (EV) problem.
This can be defined as Min zðx;E½j�Þ where E½j� ¼ �j (Birge, 1982). The solution of
the EVproblem provides the first stage decisions variables evaluated at expectation of
the random realizations. The expectation of the EV problem, evaluated at different
realization of the random parameters, is then defined as (Birge, 1982):

EEV ¼ Ej½Min zð�xð�jÞ; jÞ�
where �xð�jÞ is evaluated from the EV model, allowing the optimization problem to
choose second stage variables with respect to j. Similarly, since our objective is profit
maximization, the value of the stochastic solution can be expressed as:

VSS ¼ SS�EEV ð8:12Þ
The value of the stochastic solution can also be evaluated as the cost of ignoring

uncertainty in the problem. These concepts will be evaluated in our case study.

8.4
Illustrative Case Study

Anumber of case studies have beendeveloped to demonstrate the performance of the
optimization models and illustrate the effect of process yield, raw material and
product prices, and lower product market demand variations. The case study in this
chapter is based onAl-Sharrah,Hankinson and Elkamel (2006) and is the same as the
example presented in Chapter 4. The petrochemical network included 81 processes
connecting the production and consumption of 65 chemicals which gave rise to 5265
uncertain process yield parameters. In addition, the model included 11 uncertain
product demand parameters and 65 uncertain parameters representing raw materi-
als and product prices. This gives a total of 5341 uncertain parameters which were
modeled with a total number of 200 scenarios for each randomparameter. Due to the
high number of uncertain parameters and the fact that this type of data is generally
stored in spreadsheets, all scenarios were generated in Excel spreadsheets using
a pseudo-random number generator. The input data was then imported to GAMS
using the GAMS-Excel interface. All uncertain parameters were assumed to have
a normal distribution. However, this assumption places no restriction on the
generality of the proposed modeling approach as other sampling distributions can
be easily used instead.

Themodeling systemGAMS (Brooke et al., 1996) is used to set up the optimization
models. The computational tests were carried out on a Pentium M processor
2.13 GHz. The models were solved with DICOPT (Viswanathan and Gross-
mann, 1990). The NLP subproblems were solved with CONOPT2 (Drud, 1994),
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while the MILP master problems were solved with CPLEX (CPLEX Optimization
Inc, 1993).

8.4.1
Solution of Stochastic Model

The two-stage mixed-integer stochastic program with recourse that includes a total
number of 200 scenarios for each randomparameter is considered in this section. All
random parameters were assumed to follow a normal distribution and the scenarios
for all random parameters were generated simultaneously. Therefore, the recourse
variables account for the deviation from a given scenario as opposed to the deviation
from a particular random number realization.

Table 8.1 shows the stochastic model solution for the petrochemical system. The
solution indicated the selection of 22 processes with a slightly different configuration
and production capacities from the deterministic case, Table 4.2 in Chapter 4. For
example, acetic acid was produced by direct oxidation of n-butylenes instead of the air
oxidation of acetaldehyde. Furthermore, ethylene was produced by pyrolysis of
ethane instead of steam cracking of ethane–propane (50–50wt%). These changes,
as well as the different production capacities obtained, illustrate the effect of the
uncertainty in process yield, raw material and product prices, and lower product

Table 8.1 Stochastic model solution.

Process selected Production Capacity (103 t/year)

acetaldehyde by the one-step oxidation from ethylene 991.0
acetic acid by direct oxidation of n-butylenes 397.6
acetone by oxidation of propylene 169.6
acetylene by submerged flame process 179.7
acrylic fibers by batch suspension polymerization 245.8
acrylonitrile by cyanation/oxidation of ethylene 300.9
ABS by suspension/emulsion polymerization 419.6
benzene by hydrodealkylation of toluene 767.4
butadiene by extractive distillation 104.9
chlorobenzene by oxychlorination of benzene 146.0
cumene by the reaction of benzene and propylene 144.3
ethylbenzene by the alkylation of benzene 692.8
ethylene by pyrolysis of ethane 1051.8
hydrogen cyanide by the ammoxidation of methane 180.6
phenol by dehydrochlorination of chlorobenzene 122.7
polystyrene (crystal grade) by bulk polymerization 133.4
polystyrene (expandable beads) by suspension polymerization 102.8
polystyrene (impact grade) by suspension polymerization 154.1
poly(vinyl chloride) by bulk polymerization 407.6
styrene from ethylbenzene by hydroperoxide process 607.7
vinyl acetate from reaction of ethylene and acetic acid 113.8
vinyl chloride by the hydrochlorination of acetylene 417.8
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demands. In fact, ignoring uncertainty of the key parameters in decision problems
can yield non-optimal and infeasible decisions (Birge, 1995). The annual profit of the
petrochemical network studied under uncertainty was found to be $2 698 552.

However, in order to properly evaluate the added-value of including uncertainty of
the problem parameters, we will investigate both the EVPI and the VSS.

In order to evaluate theVSSwefirst solved the deterministic problem, as illustrated
in the previous section, and fixed the petrochemical network and the production rate
of the processes. We then solved the EEV problem by allowing the optimization
problem to choose second stage variables with respect to the realization of the
uncertain parameters j. From (8.12), the VSS is:

VSS ¼ 2 698 552�EEV
EEV ¼ 2 184 930
VSS ¼ 513 622

This indicates that the benefit of incorporating uncertainty in the different model
parameters for the petrochemical network investment is $ 513 622. On the other
hand, the EVPI canbe evaluated byfirstfinding the �wait-and-see� (WS) solution. The
latter can be obtained by taking the expectation for the optimal first stage decisions
evaluated at each realization j. From (8.11), the EVPI is:

EVPI ¼ WS�2 698 552
WS ¼ 2 724 040
EVPI ¼ 25 488

This implies that if it were possible to know the future realization of the demand,
prices and yield perfectly, the profit would have been$2 724 040 instead of $2 698 552,
yielding savings of $25 488. However, since acquiring perfect information is not
viable, we will merely consider the value of the stochastic solution as the best result.
These results show that the stochastic model provided an excellent solution as the
objective function value was not too far from the result obtained by the WS solution.

However, as mentioned in the previous section, the stochastic model takes
a decision based on first-stage and expected second-stage costs, and, hence, does
not account for the decision-maker risk behavior (risk-averse or risk taker). For this
reason, a more realistic approach would consider higher moments where the trade-
off between the mean value and the variations of different scenarios is appropriately
reflected.

8.4.2
Solution of the Robust Model

Considering risk in terms of variations in both projected benefits and recourse
variables provided a more robust analysis of the problem. As explained earlier, the
problem will have a more robust solution as the results will remain close to optimal
for all given scenarios throughminimizing the variations of the projected benefit. On
the other hand, the model will be more robust as minimizing the variations in the
recourse variables leads to a model that is almost feasible for all the scenarios
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considered. In order to investigate the effect of each termon the original problem, the
spectrum of results generated by varying the scaling factors must be explored. For
this reason, the model was repeatedly solved for different values of q1 (profit
variations) and q2 (recourse variables variations) in order to construct the efficient
frontier plot of expected profit versus riskmeasured by standard deviation. Figure 8.1
illustrates the change in profit with different values of profit variations, denoted byq1,
and recourse variables variations, denoted by q2. The graph shows the decline in
expected profit as we penalize the variations in process yield, profit, and demand by
increasing the values of q1 and q2. These values will depend on the policy adopted by
the investor, whether being risk-averse or risk taker, and can be read directly from the
efficient frontier plots. Figure 8.2 demonstrates the trade-off between profit with risk,
represented by the total standard deviation in prices and demand, with respect to
different values of q1 and q2. Furthermore, it was found that the problem is more
sensitive to variations in product prices than to variations in product demand and
process yields for values of q1 and q2 that maintain the final petrochemical structure.
As the values of q1 and q2 increase some processes became too risky to include in
the petrochemical network, and, instead, importing some final chemicals became a
more attractive alternative. This type of analysis requires accurate pricing structure of
the localmarket under study as compared to the globalmarket. In this study, however,
we restricted the range of the variations of the scaling parameters q1 and q2 to values
that will maintain all processes obtained from the stochastic model. This approach
was adopted as the objective of the studywas to include all required processes thatwill
meet a given demand.

Figure 8.1 Profit variation for different values of q1 and q2.
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8.5
Conclusion

A robust mixed-integer nonlinear programming model for maximizing profit in the
design of petrochemical networks was presented. Uncertainty in process yield, raw
material and product prices, and lower product market demand were considered. In
addition, operational risk was accounted for in terms of variance in projected
benefits, process yield and forecasted demand. Including these different sources
of uncertainty in the problem as well as modeling risk provided a more robust
analysis for this type of highly strategic planning application in the chemical industry.
The proposed approach increased solution robustness and model robustness by
incorporating penalty terms for deviation from both projected benefits and recourse
variables, respectively.

The results of the model considered in this Chapter under uncertainty and with
risk consideration, as one can intuitively anticipate, yielded different petrochemical
network configurations and plant capacities when compared to the deterministic
model results. The concepts of EVPI and VSS were introduced and numerically
illustrated. The stochasticmodel provided good results as the objective function value
was not too far from the results obtained using the wait-and-see approach. Further-
more, the results in this Chapter showed that the final petrochemical network was
more sensitive to variations in product prices than to variation inmarket demand and
process yields when the values of q1 and q2 were selected to maintain the final
petrochemical structure.

Figure 8.2 Trade-off between profit and risk at different q2 values while varying q1.
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9
Stochastic Multisite Refinery and Petrochemical Network
Integration

In this final chapter, we study the multisite refinery and petrochemical integration
problem, explained in Chapter 5, under uncertainty. The randomness considered
includes both the objective function and right-hand side parameters of inequality
constraints. As pointed out in the previous chapters, considering such strategic
planningdecisions requires proper handling of uncertainties as they play amajor role
in the final decision making process.

9.1
Introduction

The main focus of this chapter is to develop a mathematical programming tool for
simultaneous design of an integrated network of refineries and petrochemical pro-
cesses under uncertainty. The proposed model not only addresses the integration
betweenthemultiple refineriesanddevises theirdetailedplans,but alsoestablishes the
design of an optimal petrochemical network from a range of process technologies to
satisfy a given demand. In this study we treat parameter uncertainty in terms of
imported crude oil price, refinery product price, petrochemical product price, refinery
market demand, and petrochemical lower level product demand. The problem is
modeled as anMILP two-stage stochasticmodelwith recourse. Furthermore, we apply
the sample average approximation (SAA) method within an iterative scheme to
generate the required scenarios. The solution quality is then statistically evaluated by
measuring the optimality gap of the final solution. The objective function is aminimi-
zation of the annualized cost over a given time horizon among the refineries by
improving the coordination and utilization of excess capacities in each facility and
maximization of the added value in the petrochemical system. The proposed formu-
lation is applied to an integrated industrial scale case study of a petrochemical complex
for the production of polyvinyl chloride (PVC) and a network of petroleum refineries.

The remainder of this Chapter 9 is organized as follows. In Section 9.2 we will
explain the proposed model formulation for the refinery and petrochemical inte-
gration problem under uncertainty. Then, in Section 9.3, we will explain the scenario
generation methodology adopted. In Section 9.4, we present the computational
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results and the performance of the proposed approach on an industrial scale case
study. The chapter ends with concluding remarks in Section 9.5.

9.2
Model Formulation

The proposed formulation addresses the problem of planning an integrated network
of refineries and petrochemical processes. The proposed model is based on the
formulation proposed in the previous chapters of this book. The general problem
under study was defined in Chapter 5. In this study, uncertainty was accounted for by
using two-stage stochastic programming with a recourse approach. Parameter
uncertainties considered in this study included uncertainties in the imported crude
oil price CrCostcr , refinery product price PrRefcfr , petrochemical product price PrPetcp ,
refinery market demand DRef cfr , and petrochemical lower level product demand
DL

Pet cp. Uncertainty ismodeled through the use ofmutually exclusive scenarios of the
model parameters with a finite number N of outcomes. For each jk ¼ (CrCostcr;k,
PrRefcfr;k,Pr

Pet
cp;k,DRef cfr;k,DL

Pet cp;k) where k ¼ 1; 2; . . . ;N, there corresponds a probability
pk. The generation of the scenarios will be explained in a later section. The proposed
stochastic model is as follows:
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BL
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X
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yPetproc m � 1 8m 2 MPet that produces cp 2 CIP ð9:16Þ

X

cp2CFP
yPetproc m � 1 8m 2 MPet that produces cp 2 CFP ð9:17Þ

FnPetcp � SPetcp 8 cp 2 NRF ð9:18Þ

The above formulation is an extension of the deterministic model explained in
Chapter 5. We will mainly explain the stochastic part of the above formulation. The
above formulation is a two-stage stochastic mixed-integer linear programming
(MILP) model. Objective function (9.1) minimizes the first stage variables and the
penalized second stage variables. The production over the target demand is penalized
as an additional inventory cost per ton of refinery and petrochemical products.
Similarly, shortfall in a certain product demand is assumed to be satisfied at the
product spot market price. The recourse variables VRef þ

cfr;k , VRef�
cfr;k , VPetþ

cp;k and VPet�
cp;k in

Equations 9.11 and 9.13 represent the refinery production shortfall and surplus as
well as the petrochemical production shortfall and surplus, respectively, for each
random realization k 2 N. These variables will compensate for the violations in
Equations 9.11 and 9.13 and will be penalized in the objective function using
appropriate shortfall and surplus costs CRef þ

cfr and CRef�
cfr for the refinery products,

and CPetþ
cp and CPet�

cp for the petrochemical products, respectively. Uncertain para-
meters are assumed to follow a normal distribution for each outcome of the random
realization jk. Although this might sound restrictive, this assumption imposes no
limitation on the generality of the proposed approach as other distributions can be
easily incorporated instead. Furthermore, in Equation 9.13 an additional term xiPetcp

was added to the left-hand-side representing the flow of intermediate petrochemical
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stream of cp 2 CIP. This term may be set to zero under the assumption that
intermediate petrochemical streams produced by any process are consumed within
the petrochemical network. However, this assumption may not be valid when
considering a subsystem of the petrochemical network.

9.3
Scenario Generation

The solution of stochastic problems is generally very challenging as it involves
numerical integration over the random continuous probability space of the second
stage variables (Goyal and Ierapetritou, 2007). An alternative approach is the
discretization of the random space using a finite number of scenarios. A common
approach is the Monte Carlo sampling where independent pseudo-random samples
are generated and assigned equal probabilities (Ruszczy�nski and Shapiro, 2003). The
sample average approximation (SAA) method, also known as stochastic counterpart,
is employed. The SAA problem can be written as (Verweij et al., 2003):

nN ¼ min
x2X

cT xþ 1
N

X

k2N
Qðx; jkÞ ð9:19Þ

It approximates the expectation of the stochastic formulation (usually called the
�true� problem) and can be solved using deterministic algorithms. Problem (9.19)
can be solved iteratively in order to provide statistical bounds on the optimality gap of
the objective function value. The iterative SAA procedure steps are explained in
Section 7.5 of Chapter 7.

9.4
Illustrative Case Study

This section presents the computational results of the proposedmodel and sampling
scheme. We examine the same case study considered in Chapter 5 of the three
refineries and the PVC complex. We consider uncertainty in the imported crude oil
price, refinery product price, petrochemical product price, refinery market demand,
and petrochemical lower level product demand. The major capacity constraints for
the refinery network are given in Table 9.1 and the process technologies considered
for the production of PVC are listed in Table 9.2. The representation for the topology
of the refineries network and petrochemical technologies for the PVC production are
given in Figures 5.2 and 5.3, respectively, in Chapter 5. In the presentation of the
results, we focus ondemonstrating the sample average approximation computational
results as we vary the sample sizes and compare their solution accuracy and the CPU
time required for solving the models.

The modeling system GAMS (Brooke et al., 1996) is used for setting up the
optimization models. The computational tests were carried out on a Pentium M
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processor 2.13 GHz and the MILP problems were solved with CPLEX (CPLEX
Optimization Inc, 1993).

The problem was solved for different sample sizes N and N 0 to illustrate the
variation of optimality gap confidence intervals, while fixing the number of replica-
tionsR to 30. The replication numberRneednot be very large to get an insight into �nN
variability. Table 9.3 shows different confidence interval values of the optimality gap
when the sample size ofN assumes values of 1000, 2000, and 3000 while varyingN 0

from 5000, 10 000, to 20 000 samples. The sample sizes N and N 0 were limited to
these values due to increasing computational effort. In our case study, we ran into
memory limitations when N and N 0 values exceeded 3000 and 20 000, respectively.
The solution of the three refineries network and the PVC complex using the SAA
scheme with N¼ 3000 and N 0 ¼ 20 000 required 1114 CPU s to converge to the
optimal solution.

Table 9.4 depicts the results of the optimal integration network between the three
refineries and the PVC petrochemical complex. As shown in Table 9.4, the proposed

Table 9.1 Major refinery network capacity constraints.

Production capacity Higher limit (103 t/year)

R1 R2 R3

Distillation 45 000. 12 000.0 9900.0
Reforming 700.0 2000.0 1800.0
Isomerization 200.0 — 450.0
Fluid catalytic cracker 800.0 1400.0 —

Hydrocracker — 1800.0 2400.0
Delayed coker — — 1800
Des gas oil 1300.0 3000.0 2400.0
Des cycle gas oil 200.0 750.0 —

Des ATK — 1200.0 1680.0
Des distillates — — 450.0

Crude availability
Arabian Light 31 200.0

Local demand
LPG N (432,20)
LN —

PG98 N (400,20)
PG95 N (4390,50)
JP4 N (2240,50)
GO6 N (4920,50)
ATK N (1700,50)
HFO N (200,20)
Diesel N (400,20)
Coke N (300,20)
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Table 9.2 Major products and process technologies in the petrochemical complex.

Product Sale price
($/ton)

Process technology Process
index

Min Econ.
Prod.

(103 t/year)

Ethylene (E) N (1570,10) Pyrolysis of naphtha (low severity) 1 250
Pyrolysis of gas oil (low severity) 2 250
Steam cracking of naphtha
(high severity)

3 250

Steam cracking of gas oil
(high severity)

4 250

Ethylene
dichloride (EDC)

N (378,10) Chlorination of ethylene 5 180
Oxychlorination of ethylene 6 180

Vinyl chloride
monomer (VCM)

N (1230,10) Chlorination and Oxychlorination
of ethylene

7 250

Dehydrochlorination of ethylene
dichloride

8 125

Polyvinyl
chloride (PVC)

N (1600,10) Bulk polymerization 9 50
Suspension polymerization 10 90

Table 9.3 Computational results with SAA for the stochastic model.

Lower bound sample size¼N

1000 2000 3000

UB sample size Number of samples: R¼ 30
N0 ¼ 5000 LB estimate: �nN 8 802 837 8 804 092 8 804 456

LB error: ~elða ¼ 0:975Þ 3420 2423 1813
UB estimate: n̂N 0 8 805 915 8 805 279 8 805 578
UB error: ~euða ¼ 0:975Þ 7776 7715 7778
95% Conf. interval [0,14274] [0,11324] [0,10713]
CPU (s) 65 112 146

N0 ¼ 10 000 LB estimate: �nN 8 800 071 8 802 080 8 804 305
LB error: ~elða ¼ 0:975Þ 3356 2527 2010
UB estimate: n̂N 0 8 803 310 8 803 204 8 803 414
UB error: ~euða ¼ 0:975Þ 5473 5833 5410
95% Conf. interval [0,12068] [0,9484] [0,7420]
CPU (sec) 196 224 263

N0 ¼ 20 000 LB estimate: �nN 8 796 058 8 801 812 8 802 511
LB error: ~elða ¼ 0:975Þ 3092 2345 1755
UB estimate: n̂N 0 8 802 099 8 804 121 8 802 032
UB error: ~euða ¼ 0:975Þ 3837 3886 3880
95% Conf. interval [0,12970] [0,8540] [0,5635]
CPU (s) 1058 1070 1114

9.4 Illustrative Case Study j179



model redesigned the refinery integration network topology and operating policies
when compared to the deterministic solution obtained in Chapter 5. However,
similar to the deterministic solution the model selected gas oil, an intermediate
refinery stream, as the refinery feedstock to the petrochemical complex as opposed to
the typically used light naphtha feedstock. This selection emphasizes the importance
of sparing the light naphtha stream for the gasoline pool to get maximum gasoline
production.

PVC production, on the other hand, is carried out by first high severity steam
cracking of gas oil to produce ethylene. Vinyl chloride monomer (VCM) is then

Table 9.4 Stochastic model results of refinery and petrochemical networks.

Process variables Results (103 t/year)

R1 R2 R3

Refinery Crude oil supply 4500.0 12 000.0 9900.0
Production levels Crude unit 4500 12 000 9900

Reformer 612.5 1824.6 1784.6
Isomerization 160 — 450
FCC 378 1174.2 —

Hydrocracker — 1740.4 2400
Delayed coker — — 1440
Des gas oil 1300 3000 2400
Des cycle gas oil 168.6 600 —

Des ATK — 1200 1654.8
Des distillates — — 366.2

Intermediate
streams
exchange

From R1 VGO — — 576.1 to
HCU

R2 LN — — 112.4 to
Isom

R3 VGO — 274.8
to FCC

—

Exports PG95 439.8
JP4 1101.9
GO6 2044.2
HFO 1907.8
ATK 1887.6
Coke 110.7
Diesel 5.1

Petrochemical Refinery feed to
PVC complex

Gas oil 788.6 1037.0 71.3

Production levels S. Crack GO (4) 486.8
Cl & OxyCl E (7) 475.4
Bulk polym. (9) 220.0

Final products PVC 220.0
Total cost
($/yr)

$8 802 000

180j 9 Stochastic Multisite Refinery and Petrochemical Network Integration



produced through the chlorination and oxychlorination of ethylene and finally, VCM
is converted to PVC by bulk polymerization. The annual production cost across the
refineries and the PVC complex was $8 802 000.

9.5
Conclusion

In this chapter, a two-stage stochastic mixed-integer programming model for
designing an integration and coordination policy among multiple refineries and a
petrochemical network under uncertainty was described. Uncertainty was consid-
ered in the parameters of imported crude oil price, refinery product price, petro-
chemical product price, refinery market demand, and petrochemical lower level
product demand. The approach employs the sample average approximation method
with a statistical bounding and validation technique. In this sampling scheme, a
relatively small sample size N is used to make decisions, with multiple replications,
and another independent larger sample is used to reassess the objective function
value while fixing the first stage variables. The proposed model performance was
illustrated on a network of three large-scale refineries and a PVC petrochemical
complex. The formulation captured the simultaneous design of both the refinery and
petrochemical networks and illustrated the economic potential and trade-offs. The
consideration of uncertainties in this type of high level strategic planning model,
especially with the current volatile market environment, presented an adequate
treatment of the problem and a proper optimization tool.
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Appendix A:
Two-Stage Stochastic Programming

In a standard two-stage stochastic programming model, decision variables are
divided into two groups; namely, first stage and second stage variables. First stage
variables are decided upon before the actual realization of the random parameters.
Once the uncertain events have unfolded, further design or operational adjustments
can be made through values of the second-stage or alternatively called recourse
variables at a particular cost. This concept of recourse has had many applications to
linear, integer, and non-linear programming.

A standard formulation of the two-stage stochastic linear program is:

MinxcTxþE ½Qðx; jðvÞÞ�
subject to Ax ¼ b; x � 0

ðA:1Þ

where Qðx; jðvÞÞ is the optimal value of the second stage problem:

MinxqTy

subject to TxþWy ¼ h; y � 0
ðA:2Þ

where x and y are vectors of the first and second stage decision variables, respectively.
The second stage problem depends on the data j ¼ ðq; h;T ;WÞ where any or all
elements can be random. The expectation in (A.1) is with respect to the probability
distribution of jðvÞ.MatricesTandWare called technological and recoursematrices,
respectively. The second stage problem (A.2) can be considered as penalty for the
violation of the constraint Tx¼ h.

There are two different ways of representing uncertainty. The first approach is the
continuous probability distribution where numerical integration is employed over
the random continuous probability space. This approach maintains the model
size but on the other hand introduces nonlinearities and computational difficulties
to the problem.The other approach is the scenario-based approachwhere the random
space is considered as discrete events. Themain disadvantage of this approach is the
substantial increase in computational requirements with an increase in the number
of uncertain parameters. The discrete distribution with a finite numberK of possible
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outcomes (scenarios) jk ¼ ðqk; hk;Tk;WkÞ corresponds to the probability pk. Hence,
Equations (A.1) and (A.2) can be written as a deterministic equivalent problem and
represented as follows:

Minx;y1;...yk c
Txþ

XK

k¼1

pkq
T
k yk

subject to Ax ¼ b

TkxþWkyk ¼ hk k ¼ 1; . . . ;K

x � 0; yk � 0 k ¼ 1; . . . ;K

ðA:3Þ

Due to the complexity of numerical integration and the exponential increase in
sample size with the increase of the random variables, we employ an approximation
scheme know as the sample average approximation (SAA) method, also known as
stochastic counterpart. The SAA problem can be written as:

nN ¼ min
x2X

cTxþ 1
N

X

k2N
Qðx; jkÞ ðA:4Þ

It approximates the expectation of the stochastic formulation (usually called the
�true� problem) and can be solved using deterministic algorithms.
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Appendix B:
Chance Constrained Programming

The philosophy of the previous methods of stochastic programming was to ensure
feasibility of the problem through the second-stage problem at a certain penalty cost.
In the chance-constrained approach, some of the problem constraints are expressed
probabilistically, requiring their satisfaction with a probability greater than a desired
level. This approach is particularly useful when the cost and benefits of second-stage
decisions are difficult to assess as the use of second-stage or recourse actions is
avoided. These intangible components include loss of goodwill, cost of off-specifi-
cation products and outsourcing of production.

For a typical linear programming model:

Minxc
Tx subject to Ax � b; x � 0 ðB:1Þ

assume that there are uncertainties in the matrix A (left-hand-side coefficient) and
in the right-hand-side vector b and the above constraint must be satisfied with
a probability p 2ð0; 1Þ. Then the probabilistic model can be expressed as follows:

Minxc
Tx subject to PðAx � bÞ � p; x � 0 ðB:2Þ

If we consider a single constraint, for the sake of simplicity, then the above becomes
Pðatx � bÞ � p. Furthermore, assume the randomness is only in the right-hand-side
with a distribution of F. When FðbÞ ¼ p, then the constraint can be written as
FðatxÞ � p! atx � b. In this case, the model yields a standard linear program.
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Appendix C:
SAA Optimal Solution Bounding

Here we present a proof of the SAA bound on the true optimal solution of the
stochastic problem. The proof is rather intuitive for the upper bound since it starts
from a feasible solution. However, the lower bound proof is more involved and is as
follows:

Proposition
For any R independent and identically distributed sample batches (denoting the number
of sample replication) each with sample size of N, that is, jj1; . . . ; jjN , j ¼ 1; . . . ;R, the

E½njN � � n� is always valid.

Proof
For any feasible point x0 that belongs to the solution set X , the inequality below is
valid:

f̂Nðx0Þ � min
x2X

f̂NðxÞ

By taking the expectations of both sides and minimizing the left-hand-side, we get:

min
x2X

E½ f̂NðxÞ� � E½min
x2X

f̂NðxÞ�

Since E½ f̂ NðxÞ� ¼ f ðxÞ, it follows that n� � E½njN �.
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