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Preface 

And there I was, waiting for the big door to open, the big door that stood 
between me and my archnemesis. I found little comfort and protection, if 
any, sitting in what seemed my thin tin tank, looking around and searching 
for people in my same dire straits. Then, with a deep rumble, the big steel 
door of the ship opened, engines were started, and I followed the slow stream 
of cars. I drove by rather uninterested police officers, and there it was, my 
archnemesis: the first roundabout in Dover. 

For European continental drivers like me, used to drive on the right side 
of the street (and yes, I do mean right), the first driving experience in the 
Land of Albion has always been a challenge. That difficulty compounded 
with the lack of roundabouts in Italy at the time, turning the whole thing 
into sheer nightmare. Yet, after a surprisingly short timespan, maybe thanks 
to the understanding and discipline of the indigenous drivers, I got so used 
to driving there, and to roundabouts as well, that after my return to Calais I 
found driving back in supposedly familiar lanes somewhat confusing. 

I had overcome my fear, but I am digressing, am I? Well, this book should 
indeed be approached like a roundabout: There are multiple entry and exit 
points, and readers are expected to take their preferred route among the many 
options, possibly spinning a bit for fun. I should also mention that, however 
dreadful that driving experience was to me, it was nothing compared with the 
exam labor of my students of the terrifying quantitative methods course. I 
hope that this book will help them, and many others, to overcome their fear. 
By the same token, I believe that the book will be useful to practitioners 
as well, especially those using data analysis and decision support software 
packages, possibly in need of a better understanding of those black boxes. 

I have a long teaching experience at Politecnico di Torino, in advanced 
courses involving the application of quantitative methods to production plan-
ning, logistics, and finance. A safe spot, indeed, with a fairly homogeneous 
population of students. Add to this the experience in teaching numerical 
methods in quantitative finance master's programs, with selected and well-
motivated students. So, you may imagine my shock when challenged by more 
generic and basic courses within a business school (ESCP Europe, Turin Cam-
pus), which I started teaching a few years ago. The subject was quite familiar, 
quantitative methods, with much emphasis on statistics and data analysis. 

XIX 
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However, the audience was quite different, as the background of my new stu-
dents ranged from literature to mathematics/engineering, going through law 
and economics. When I wondered about how not to leave the whole bunch 
utterly disappointed, the "mission impossible" theme started ringing in my 
ears. I must honestly say that the results have been occasionally disappoint-
ing, despite my best efforts to make the subject a bit more exciting through 
the use of business cases, a common mishap for teachers of technical subjects 
at business schools. Yet, quite often I was delighted to see apparently hope-
less students struggle, find their way, and finally pass the exam with quite 
satisfactory results. Other students, who had a much stronger quantitative 
background, were nevertheless able to discover some new twists in familiar 
topics, without getting overly bored. On the whole, I found that experience 
challenging and rewarding. 

On the basis of such disparate teaching experiences, this possibly overam-
bitious book tries to offer to a hopefully wide range of readers whatever they 
need. 

• Part I consists of three chapters. Chapter 1 aims at motivating the 
skeptical ones. Then, I have included two chapters on calculus and linear 
algebra. Advanced readers will probably skip them, possibly referring 
back to refresh a few points just when needed, whereas other students 
will not be left behind. Not all the material provided there is needed; 
in particular, the second half of Chapter 3 on linear algebra is only 
necessary to tackle Parts III and IV. 

• Part II corresponds to the classical core of a standard quantitative 
methods course. Chapters 4-10 deal with introductory topics in proba-
bility and statistics. Readers can tailor their way through this material 
according to their taste. Especially in later chapters, they can safely 
skip more technical sections, which are offered to more mathematically 
inclined readers. Both Chapter 9, on inferential statistics, and Chapter 
10, on linear regression, include basic and advanced sections, bridging 
the gap between cookbook-oriented texts and the much more demand-
ing ones. Also Chapter 11, on time series, consists of two parts. The 
first half includes classical topics such as exponential smoothing meth-
ods; the second half introduces the reader to more challenging models 
and is included to help readers bridge the gap with the more advanced 
literature without getting lost or intimidated. 

• Part III moves on to decision models. Quite often, a course on quan-
titative methods is declined in such a way that it could be renamed as 
"business statistics," possibly including just a scent of decision trees. In 
my opinion, this approach is quite limited. Full-fledged decision models 
should find their way into the education of business students and pro-
fessionals. Indeed, statistics and operations research models have too 
often led separate lives within academia, but they do live under the same 
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roof in the new trend that has been labeled "business analytics." Chap-
ter 12 deals mostly with linear programming, with emphasis on model 
building; some knowledge on how these problems are actually solved, 
and which features make them computationally easy or hard, is also 
provided, but we do not certainly cover solution methods in detail, as 
quite robust software packages are widely available. This part also relies 
more heavily on the advanced sections of Chapters 2 and 3. Chapter 
13 is quite important, as it merges all previous chapters into the fun-
damental topic of decision making under risk. Virtually all interesting 
business management problems are of this nature, and the integration 
of separate topics is essential from a pedagogical point of view. Chapter 
14 concludes Part III with some themes that are unusual in a book at 
this level. Unlike previous chapters, this is more of an eye-opener, as 
it outlines a few topics, like game theory and Bayesian statistics, which 
are quite challenging and can be covered adequately only in dedicated 
books. The message is that no one should have blind faith in fact-based 
decisions. A few examples and real-life cases are used to stimulate crit-
ical thinking. This is not to say that elementary techniques should be 
disregarded; on the contrary, they must be mastered in order to fully 
understand their limitations and to use them consciously in real-life 
settings. We should always keep in mind that all models are wrong 
(G.E.P. Box), but some are useful, and that nothing is as practical as a 
good theory (J.C. Maxwell). 

• Part IV completes the picture by introducing selected tools from mul-
ti variate statistics. Chapter 15 introduces the readers to the challenges 
and the richness of this field. Among the many topics, I have chosen 
those that are more directly related with the previous parts of the book, 
i.e., advanced regression models in Chapter 16, including multiple lin-
ear, logistic, and nonlinear regression, followed in Chapter 17 by data 
reduction methods, like principal component analysis, factor analysis, 
and cluster analysis. There is no hope to treat these topics adequately 
in such a limited space, but I do believe that readers will appreciate the 
relevance of the basics dealt with in earlier chapters; they will hopefully 
gain a deeper understanding of these widely available methods, which 
should not just be used as software black boxes. 

Personally, I do not believe too much in books featuring a lot of simple and 
repetitive exercises, as they tend to induce a false sense of security. On the 
other hand, there is little point in challenging students and practitioners with 
overly complicated problems. I have tried to strike a fair compromise, by 
including a few of them to reinforce important points and to provide readers 
with some more worked-out examples. The solutions, as well as additional 
problems, will be posted on the book Webpage. 

On the whole, this is a book about fact- and evidence-based decision mak-
ing. The availability of information-technology-based data infrastructures has 
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made it a practically relevant tool for business management. However, this is 
not to say that the following simple-minded equation holds: 

Data = Decisions 

This would be an overly simplistic view. To begin with, there are settings in 
which we do not have enough data, because they are hard or costly to collect, 
or simply because they are not available; think of launching a brand-new and 
path-breaking product or service. In these cases, knowledge, under the guise 
of subjective assessments or qualitative insights, comes into play. Yet, some 
discipline is needed to turn gut feelings into something useful. Even without 
considering these extremes, it is a fact that knowledge is needed to turn rough 
data into information. Hence, the equation above should be rephrased as 

Data + Knowledge = Decisions 

Knowledge includes plenty of things that are not treated here, such as good 
and sensible intuition or the ability to work in a team, which must be learned 
on the field. I should also mention that, in my teaching, the discussion of 
business cases and the practical use of software tools play a pivotal role, but 
cannot be treated in a book like this. Yet, I believe that an integrated view 
of quantitative methods, resting on solid but not pedantic foundations, is a 
fundamental asset for both students and practitioners. 

Use of software. In writing this book, a deliberate choice has been not 
to link it with any software tool, even though the application of quantita-
tive methods does require such a support in practice.1 One the one hand, 
whenever you select a specific tool, you lose a share of readers. On the other 
hand, there is no single software environment adequately covering the wide 
array of methods discussed in the book. Microsoft Excel is definitely a nice 
environment for introducing quantitative modeling, but when it comes, e.g., 
to complex optimization models, its bidimensional nature is a limitation; fur-
thermore, only dedicated products are able to cope with large-scale, real-life 
models. For the reader's convenience, we offer a nonexhaustive list of useful 
tools: 

• MATLAB (ht tp : //www. mathworks. com/) is a numerical computing en-
vironment, including statistics and optimization toolboxes.2 Indeed, 
many diagrams in the book have been produced using MATLAB (and 
a few using Excel). 

1 The software environments that are mentioned here are copyrights and/or trademarks of 
their owners. Please refer to the listed Websites. 
2The virtues of MATLAB are well illustrated in my other book: P. Brandimarte, Numerical 
Methods in Finance and Economics: A MATLAB-Based Introduction, 2nd. ed., Wiley, New 
York, 2006. 
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• Stata (ht tp : //www . s t a t a . com/) and SAS (ht tp : //www. s a s . com/) are 
examples of rich software environments for statistical data analysis and 
business intelligence. 

• Gurobi (ht tp : //www. gurobi . com/) is an example of a state-the-art op-
timization solver, which is necessary when you have to tackle a large-
scale, possibly mixed-integer, optimization model. 

• AMPL (ht tp : //www.ampi.com/) is a high-level algebraic modeling lan-
guage for expressing optimization models in a quite natural way. A tool 
like AMPL provides us with an interface to optimization solvers, such 
as Gurobi and many others. Using this interface, we can easily write 
and maintain a complex optimization model, without bothering about 
low-level data structures. We should also mention that a free student 
version is available on the AMPL Website. 

• COIN-OR (ht tp: / /www.coin-or .org/) is a project aimed at offering 
a host of free software tools for Operations Research. Given the cost of 
commercial licenses, this can be a welcome resource for students. 

• By a similar token, the R project (h t tp : //www. r -p ro j e c t . org/) offers 
a free software tool for statistics, which is continuously enriched by free 
libraries aimed at specific groups of statistical methods (time series, 
Bayesian statistics, etc.). 

Depending on readers' feedback, I will include illustrative examples, using 
some of the aforementioned software packages, on the book Website. Inci-
dentally, unlike other textbooks, this one does not include old-style statistical 
tables, which do not make much sense nowadays, given the wide availability 
of statistical software. Nevertheless, tables will also be provided on the book 
Website. 
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1 
Quantitative Methods: 

Should We Bother? 

If you are reading this, chances are that you are on your way to becoming 
a manager. Or, maybe, you are striving to become a better one. It may 
also be the case that the very word manager sounds dreadful to you and con-
jures up images of unjustified bonuses; yet, you might be interested in how 
good management decisions should be made or supported, in both the pri-
vate and public sectors. Whatever your personal plan and taste, what makes 
a good manager or a good management decision? The requirements for a 
career in management make a quite long list, including interpersonal commu-
nication skills, intuition, human resource management, accounting, finance, 
operations management, and whatnot. Maybe, if you look down the list of 
courses offered within master's programs in the sector, you will find quantita-
tive methods (QMs). Often, students consider this a rather boring, definitely 
hard, maybe moderately useful subject. I am sure that a few of my past stu-
dents would agree that the greatest pleasure they got from such a course was 
just passing the exam and forgetting about it. More enlightened students, 
or just less radical ones, would probably agree that there is something useful 
here, but you may just pay someone else to carry out the dirty job. Indeed, 
they do have a point, as there are plenty of commercially available software 
packages implementing both standard and quite sophisticated statistical pro-
cedures. You just load data gathered somewhere and push a couple of buttons, 
so why should one bother learning too much about the intricacies of QMs? 
Not surprisingly, a fair share of business schools have followed that school of 
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thought, as the role of QMs and management science in their curricula has 
been reduced,1 if they have not been eliminated altogether. 

Even more surprisingly however, there is another bright side of the coin. 
The number of software packages for data analysis and decision support is 
increasing, and they are more and more pervasive in diverse application fields 
such as supply chain management, marketing, and finance. Their role is 
so important that even books aimed at non specialists try to illustrate the 
relevance of quantitative methods and analytics to a wide public; the key 
concept of books like Analytics at Work and The Numerati is that these tools 
make an excellent competitive weapon.2 Indeed, if someone pays good money 
for expensive software tools, there must be a reason. How can we explain such 
a blatant contradiction in opinions about QMs? The mathematics has been 
there for a while, but arguably the main breakthrough has been the massive 
availability of data thanks to Web-based information systems. Add to that 
the availability of cheap computing power and better software architectures, 
as well as smart user interfaces. These are relatively recent developments, and 
it will take time to overcome the inertia, but the road is clear. 

Still, one of the objections above still holds: I can just pay a specialist 
or, maybe, learn a few pages of a software manual, without bothering with 
the insides of the underlying methods. However, relying on a tool without a 
reasonable knowledge of its traps and hidden assumptions can be quite dan-
gerous. The role of quantitative strategies in many financial debacles has been 
the subject of heated debate. Actually, the unpleasing outcome of bad surgery 
executed by an incompetent person with distorted incentives can hardly be 
blamed on the scalpel, but it is true that quantitative analysis can give a 
false sense of security in an uncertain world. This is why anyone involved in 
management needs a decent knowledge of analytics. If you are a top man-
ager, you will not be directly involved in the work of the specialists, but you 
should share a common language with them and you should be knowledge-
able enough to appreciate the upsides and the downsides of their work. At 
a lower level, if you get an esoteric error message when running a software 
application, you should not be utterly helpless; by the same token, if there are 
alternative methods to solve the same problem, you should figure out what is 
the best one in your case. Last but not least, a few other students of mine 
accepted the intellectual challenge and discovered that studying QMs can be 
rewarding, interesting, and professionally relevant, after all.3 

' The actual term that is often used is "dumbed down," but this could sound not too 
politically correct to some. 
2See Refs. [1, 7], as well as T.H. Davenport, Competing on Analytics, Harvard Business 
Review, Jan. 2006, pp. 1-9. 
3 I am quite proud to say that one of my best QMs master's students had a degree in classics, 
from Oxford University. I am also proud to say that a few of them changed their mind 
about statistics: "You know, prof, last year I got a pretty good grade in statistics, but I 
couldn't figure out why..." 
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I will spend quite a few pages trying to convince you that a good working 
knowledge of QMs is a useful asset for your career. 

• When information is available, decisions should be based on data. True, 
a good manager should also rely on intuition, gut feelings, and the abil-
ity to relate to people. However, there are notable examples of managers 
who were considered geniuses after a lucky decision, and eventually de-
stroyed their reputation, endangered their business, and went to jail in 
some remarkable cases. Without going to such extremes, even the best 
manager may make a wrong decision, because something absolutely un-
predictable can happen. A good decision should be somewhat robust, 
but when things go really awry, being able to justify your move on a 
formal analysis of data may save your neck. 

• QMs can make you a sort of universal blood donor. The mathematics 
behind is general enough to be applied in different settings, such as 
supply chain management, finance, and marketing. QMs can open many 
doors for you. Indeed, throughout the book I will insist on this point 
by alternating examples from quite different areas. 

• Even if you are not a specialist, you should be able to work with con-
sultants who have specialized quantitatively. You should be able to 
interact constructively with them, which means neither refusing good 
ideas merely because they seem complicated, nor taking for granted that 
sophistication always works. At the very least, you should be aware of 
what they are doing. 

I have met some people whose idea of applying QMs is collecting data and 
coming up with a few summary measures, maybe some fancy plots to spice 
up a presentation, and that's it. In fact, QMs are much more than collecting 
basic descriptive statistics: 

1. If QMs are to be of any utility to a manager, they should help her in 
making decisions. Unfortunately, modeling to make decisions is a rather 
hard topic. 

2. By the same token, basic probability and statistics are not enough to 
meet the challenge of a complex reality. Multivariate analysis tools have 
been applied, but there is a gap between books covering the standard 
procedures and those at an advanced level. 

We will try to bridge that gap, which is somewhat hard to do by just walking 
through a lengthy and dry list of theorems and proofs. In this chapter I will 
illustrate a few toy examples, that will hopefully provide you with enough 
motivation to proceed. 

We have emphasized the role of data to make decisions. If we knew all of 
the relevant data in advance, then our task would be considerably simplified. 
Nevertheless, we show in Section 1.1 that even in such an ideal situation some 
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quantitative analysis may be needed. More often than not, uncertainty makes 
our life harder (or more interesting). In Section 1.2 we deal with different ex-
amples in which we have to make a decision under uncertainty. The standard 
tools that help us in such an endeavor are provided by probability and statis-
tics, which constitute a substantial part of the book. Nevertheless, we will 
show that some concepts, such as probability, can be somewhat dependent on 
the context. Indeed, many features of real life may make a straightforward 
application of simple methods difficult, and we will see a few examples in 
Section 1.3. Finally, in Section 1.4 we will discuss how, when, and why QMs 
can be useful, while pointing out their limitations. 

1.1 A DECISION PROBLEM WITHOUT UNCERTAINTY: PRODUCT 
MIX 

Product mix decisions are essentially resource allocation problems. We have 
limited resources, such as machines, labor, and raw materials, and the problem 
calls for their optimal use in order to maximize profit, which is earned by 
producing and selling a set of items. The decision problem consists of finding 
the right amounts to produce for each item over a certain timespan. Profit 
depends on the cost of producing each item and the price at which they can 
be sold. Produced quantities should comply with several constraints, such 
as production capacity and market limitations, since we should not produce 
what we are not going to sell anyway. 

One of the fundamental pieces of information we need is demand. The time 
period we work with can be a day, a week, or a month. In practice, demand 
varies over time and can be quite uncertain. Here we consider an idealized 
problem in which demand is known and constant over time. Furthermore, 
demand is not completely exogenous in real life, as we might influence it by 
pricing decisions. Price can be more or less under direct control, depending 
on the level of competition and the type of market we deal with; in a product 
mix problem we typically assume that we are price takers. 

In the first example below, products are similar in the sense that they 
consume similar amounts of resources. In the second one, we will complicate 
resource consumption a bit. 

1.1.1 The case of similar products 

A firm4 produces red and blue pens, whose unit production cost is 15 cents 
(including labor and raw material). The firm incurs a daily fixed cost, amount-
ing to €1000, to run the plant, which can produce at most 8000 pens per day 
in total (i.e., including both types). Note that we are expressing the capacity 

4This example is based on Chapter 2 of Ref. [5]. 
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constraint in terms of the total number of pens produced, which makes sense 
if resource requirements are the same for both products; in the case of radi-
cally different products (say, needles and air carriers), this makes no sense, as 
we shall see in the next section. We are not considering changeover times to 
switch production between the two different items, so the above information 
is all we need to know from the technological perspective. 

From the market perspective, we need some information about what the 
firm might sell and at which price. The blue pens sell for 25 cents, whereas 
things are a tad more complicated for the red ones. On a daily basis, the 
first 5000 red pens can be sold for 30 cents each, but additional ones can be 
sold for only 20 cents. This may sound quite odd at first, but it makes sense 
if we think that the same product can be sold in different markets, where 
competition may be different, as well as general economic conditions. Such a 
price discrimination can be maintained if markets are separated, i.e., if one 
cannot buy on the cheaper market and resell on the higher-priced market.5 

In general, there may be a complex relationship between price and demand, 
and in later chapters we will consider QMs to estimate and take advantage of 
this relationship. 

The problem consists of finding how many red and how many blue pens we 
should produce each day. Note that we are assuming constant demand; hence, 
the product mix is just repeated each day. In the case of time-varying demand 
and changeover costs, there could be an incentive to build some inventory, 
which would make the problem dynamic rather than static. 

1. The production manager, an ugly guy with little business background, 
decides to produce 5000 red and 3000 blue pens, yielding a daily profit 
of €50 (please, check this result). This may not sound too exciting, but 
at least we are in the black. 

2. A brilliant consultant (who has just completed a renowned master, in-
cluding accounting classes) argues that this plan does not consider how 
the fixed cost should be allocated between the two product types. Given 
the produced quantities, he maintains that €625 ( | of the fixed cost) 
should be allocated to red pens, and €375 to blue pens. Subtracting 
this fraction of the fixed cost from the profit contribution by blue pens, 
he shows that blue pens are not profitable at all, as their production 
implies a loss of €75 per day! Hence, the consultant concludes that the 
firm should just produce red pens. 

What do you think about the consultant's idea? Please, do try finding an 
answer before reading further! 

5International students may be familiar with book editions that are marked as "Not for 
sale in the USA." 
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A straightforward calculation shows that the second solution, however rea-
sonable it might sound, implies a daily loss: 

1000 - 5000 x (0.30 - 0.15) - 3000 x (0.20 - 0.15) = €100 

It is also fairly easy to see that the simple recipe of the production manager 
is just based on the idea of giving priority to the item that earns the largest 
profit margin. Apart from that, we should realize that the fixed cost is not 
really affected by the decisions we are considering at this level. If the factory 
is kept open, the fixed cost must be paid, whatever product mix is selected. 
However, this does not mean that the fixed cost is irrelevant altogether. At 
a more strategic decision echelon, the firm could consider shutting the plant 
down because it is not profitable. The point is that any cost is variable, at 
some hierarchical level and with a suitably long time horizon. 

From a formal point of view, what we have been trying to solve is a problem 
such as 

max n(xr,Xb) 
s.t. xr + xb < 8000 

In this mathematical statement of the problem we distinguish the following: 

• Two decision variables, xr and Xb, which are the amounts of red and 
blue pens that we produce, respectively. 

• An objective function, w(xr, Xb), representing the profit we earn, depend-
ing on the selected mix, i.e., on the value assigned to the two decision 
variables. Our task is maximizing profit with respect to decision vari-
ables. 

• A set of constraints on the decision variables. We should maximize profit 
with respect to the decision variables, subject to (s.t. in the model formu-
lation) this set of constraints. The first constraint here is an inequality 
corresponding to the capacity limitation. Further, we have included 
nonnegativity requirements on sold amounts. Granted, unless you are 
pretty bad with marketing, you are not going to sell negative amounts, 
which would reduce profit. Yet, from a mathematical perspective, man-
ufacturing negative amounts of an item could be an ingenious way to 
create capacity for another item, which makes little sense and must be 
forbidden. Constraints pinpoint a feasible region, i.e., a set of solutions 
that are acceptable, among which we should find the best one, according 
to our criterion. 

The feasible region in our case is just the shaded triangle depicted in 
Fig. 1.1. If you have trouble understanding how to get that figure, you 
might wish to refer to Section 2.3; yet, we may recall from high school 
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Fig. 1.1 The feasible set for the problem of red and blue pens. 

A7t(X) 

/'T\ 

Fig. 1.2 Shifting a function up and down does not change the optimal solution. 

mathematics that an equation like ax\ + bxi = c is the equation of a 
line in the plane; an inequality like ax\ + bx2 < c represents one of the 
two half-planes separated by that line. To see which one, the easy way 
is checking if the origin of the plane, i.e., the point of coordinates (0, 0) 
satisfies the inequality, in which case it belongs to the half-plane, or not. 

Intuitively, since the firm makes money by selling whatever pen it produces, 
the capacity constraint should be binding at the optimal solution, which means 
that we should look for solutions on the line segment joining points of coordi-
nates (0, 8000) and (8000, 0). In Chapter 2 we will see how one can maximize 
a profit function (or minimize a cost function) in simple cases; a more thor-
ough treatment will be given in Chapter 12. For now, we may immediately 
see why the fixed cost should be ignored in finding the optimal mix. Assume, 
for the sake of simplicity, that we have just one decision variable and consider 
the objective function π(χ) in Fig. 1.2. Let us denote the optimal solution 
of the maximization problem, maxf ( ï ) , by x*. We see that if the function 
is shifted up (or down) by a given amount K, i.e., if we solve maxf(2;) + K, 
the optimal solution does not change. Yet, the optimal value does, and this 
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may make the difference between a profitable business and an unprofitable 
one. Whether this matters or not depends on the specific problem we are 
addressing. 

Takeaways Even from a simple problem like this, there are some relevant 
lessons that deserve being pointed out: 

• A simple decision problem consists of decision variables, constraints on 
them, and some performance measure that we want to optimize, such 
as minimizing cost or maximizing profit. 

• Not all costs are always relevant; this may depend on the level at which 
we are framing the problem. 

• The relationship between price and demand can be complex. In real 
life, data analysis can be used to quantify their link, as well as the 
uncertainty involved. 

1.1.2 The case of heterogeneous products 

We solved the previous example by a simple rule: Let us pick the most prof-
itable item and try producing as much as we can; if we hit a market limitation, 
consider the next most profitable item, and go on until we run out of resource 
availability. However, there must be something more to it. To begin with, 
we had just one resource; what if there are many? Well, maybe one of them 
will prove to be the bottleneck and will limit overall production. But there 
is another issue, as we expressed the capacity constraint as the number of 
overall items that we could produce each day. What if each item consumes a 
different amount of each resource? In order to see that things may be a tad 
more complicated, let us consider another toy example.6 

We are given 

• Two item types (PI and P2) that we are supposed to produce and sell 

• Four resource types (machine groups A, B, C, and D) that we use to 
produce our end items 

Note that all of the above resources are needed to produce an item of either 
type; they are not alternatives, and each part type must visit all of the ma-
chine groups in some sequence. The information we have to gather from a 
production engineer is the time that each piece must spend being processed on 
each machining center. This information is given in Table 1.1, where columns 
labeled TA , · · ·, Tb are the processing times (say, minutes) for each part type 
on each machine type. At this level, we are not really interested in the exact 

This example is based on Chapter 16 of Ref. [10]. 
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Table 1.1 Data for the optimal mix problem. 

Item 

PI 
P2 

TA 

15 
10 

TB 

15 
35 

Te 

15 
5 

TD 

25 
15 

Cost 

45 
40 

Price 

90 
100 

Demand 

100 
50 

sequence of machine visits; probably, some technological reason will force a 
sequence of operations, but we want to determine how many pieces we pro-
duce during each period. To make this point clearer, let us say that we want 
to find a weekly production mix. Someone else will have the task to specify 
what has to be processed on each machine, on each hour of each day during 
the week. In most problem settings there is a decision hierarchy, whereby 
we first specify an aggregate plan, that becomes progressively more detailed 
while going down the hierarchy. 

From Table 1.1 we immediately see that end items differ in their resource 
requirements. Hence, it makes no sense to express a capacity constraint in 
terms of the total number of items that we can produce each week. What we 
need to know is how many minutes of resource availability we have each week. 
This depends on the work schedule, labor and machines available, etc. Each 
machine group may consist of many similar or identical machines; hence, we 
are interested in the aggregate capacity, rather than the time that each single 
physical machine is available. To consider a simple case, let us assume that 
machine availability is the same for all of the four groups: 2400 minutes. Note 
that this is the availability, or capacity, for each machine group. 

Another limitation on production stems from market size. If demand is 
limited, there is no point in making something we can't sell (remember that, 
according to our assumptions, both capacity and demand are constant over 
time, so there is no point in building and carrying any inventory). Further-
more, we should consider the cost of producing an item and the price at which 
we may sell it. These market and economical data are given in the last three 
columns of Table 1.1. The cost given in the third column from the right refers 
to each single item and it may also include raw material, labor, etc. Further 
to that, let us say that we also incur a fixed cost of €5000 per week. We have 
already pointed out that this will not influence the optimal mix, but it makes 
the difference between being in the black or in the red. In the two last columns 
we see the price at which we sell each unit, which we assumed constant and 
independent from the number of items produced, and the weekly demand for 
each part type, which places an upper bound on sales. 

Our task is to find the optimal production mix, i.e., a production plan 
maximizing profit. The task is not that difficult, as we just need two numbers. 
Let us denote by x\ and £2 the amounts of item PI and P2 that we produce, 
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respectively. Yet, we must be careful to meet all of the capacity and market 
size constraints. 

A trial-and-error approach One thing we may try is to apply the same principle 
of the red and blue pens: P2 looks more profitable, since its profit margin is 
100 - 40 = €60, which is larger than the 90 - 45 = €45 of item PI . So, let us 
try to maximize production of item P2. From the technological data, we see 
immediately that the bottleneck machine group, on which P2 spends the most 
time, is machining center B. An upper bound on xi is obtained by assuming 
that we use all of the capacity of group B to manufacture P2: 

35x2 < 2400 => x2 < 68.57 

One could object that the true bound is 68, as we cannot manufacture frac-
tional amounts of an item. Anyway, we cannot sell more than 50 pieces, so we 
set X2 = 50, and then we maximize production of PI using residual capacity. 
We should figure out which of the four capacity constraints will turn out to 
be binding. We can write the following set of inequalities, one per machine 
group, and check which one actually limits production: 

15xi + 10 ■ 50 < 2400 =*► xi < 126.67 
15xi + 35 · 50 < 2400 => xi < 43.33 
15xi + 5 · 50 < 2400 => xi < 143.33 

25xi + 15 · 50 < 2400 => xi < 66 

which yields xi =43.33. For the sake of simplicity, let us assume that we are 
indeed able to make fractional amounts of items. This is somewhat true when 
we deal with things such as paint, and it is a sensible approximation for large 
numbers; rounding 1,000,000.489 up or down induces a small error. We will 
see in Chapter 12 why forcing integrality of decision variables may complicate 
things, and we should do it only when really needed. The production plan 
Xi = 43.33, X2 = 50 is feasible; unfortunately, total profit is negative: 

45 x 43.33 + 60 x 50 - 5000 = -50 

What went wrong? Maybe this is the best we can do, and we should just 
shut the business down, or try reducing cost, or try increasing price without 
reducing demand too much. Or maybe we missed something. With red and 
blue pens, resource consumption was the same for both items, but in our case 
P2 features the larger resource consumption on machine B. Maybe we should 
somehow consider a tradeoff between profit and resource consumption; maybe 
we should come up with a ratio between profit contribution and resource 
consumption. It is not quite clear how we should do this, since it is not true 
that P2 requires more time than PI on all of the four resources. Nevertheless, 
it could well be the case that, carrying out this analysis, PI would turn out 
to be more profitable. So, let us see what we get if we maximize production 
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of PI first. In this case, machine group D is the bottleneck, and the same 
reasoning as above yields 

25a;i < 2400 => xi < 96 

Now we do not reach the market bound, which is 100 for PI , but then, since 
we use all of the capacity of group D for item PI , we must set x? = 0. Fair 
enough, but profit is even worse than before: 45 · 96 — 5000 = —680. 

Hopefully, the reader is starting to see that even for a toy problem such 
as this one, the art of quick calculations based on plausible and intuitive 
reasoning may fall short of our expectations. But before giving up, let us try to 
see if there is a way to make the problem simpler. After all, the difficulty comes 
mainly form capacity constraints and differentiated resource consumption. 
If we look a bit more carefully at Table 1.1, we see something interesting. 
Consider resources A and B: Are they equally important? Note that a plan 
that is feasible for group B must be feasible for A as well: PI requires the 
same amount of time on both groups, whereas P2 has a larger requirement 
on B. We may conclude that group A will never be a binding resource. If we 
compare resource requirements for groups B and C, we immediately reach a 
similar conclusion. In fact, only resources B and D need to be considered.7 

Now the perspective looks definitely better: We just need to find a solution 
which uses all of the resources B and D, as this will maximize production. 
Unless we hit a market constraint, there is no point in leaving critical resources 
unused. We should find two values for our two decision variables, χχ and X2, 
such that both machine groups B and D are fully utilized. This results in a 
system of two equations: 

15x1+35x2 = 2400 . . 
25xi + 15x2 = 2400 ^ ' 

We will see a bit more about solving such a system of linear equations in Chap-
ter 3. For now, let us just say that solving this system yields the production 
mix x\ = 73.84 and X2 — 36.92, rounding numbers down to the second deci-
mal digit; this results in a total profit of €538.46, which is positive! Intuition 
worked pretty well for the red and blue pens problem, but this solution is a 
bit harder to get by sheer intuition. 

If this seems too hard, please have a reality check. We had to solve just a 
toy problem, ignoring all of the complications that make real life so fun: 

• We had to deal with just two end items (they may easily be thousands). 

• Demand was known with certainty (you wish). 

7A whole managerial philosophy, called the theory of constraints, has been born, based on 
the principle that you may simplify a problem and better focus your effort by concentrating 
on bottlenecks, i.e., the factors that really limit performance. 
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• All of the relevant data were constant over time (same as above). 

• We did not consider interactions between demands for different end 
items (if a customer wants both items PI and P2, and we have not 
enough of one of them, we might well lose the whole order). 

• We did not consider availability of raw materials (one of the most amus-
ing moments you might experience in life is when you cannot finish the 
assembly of a $100,000 item because you miss a little screw worth a few 
cents). 

• We did not consider changeover times between different item types (on 
very old press lines in the-automotive industry, setting up production 
for another model required 11 hours). 

• We did not consider detailed execution and timing. 

• We did not consider substitution between raw materials; in some blend-
ing processes (food and oil), there are some degrees of freedom making 
the choice even more complicated (we cover blending problems in Sec-
tion 12.2.3). 

• We did not include integrality constraints on the decision variables, 
which would probably make our approach unsuitable (we will see how 
to cope with this complication in Section 12.6.2). 

If we realize the true complexity of a real-life problem, it is no surprise that 
sometimes even getting a feasible solution (let alone an optimal one) may be 
difficult without some quantitative support. Hence, we need a more systematic 
approach. 

A model-based approach In the case of red and blue pens, we hinted at the 
possibility of building a mathematical representation of a decision problem. 
Maybe, this can be helpful in a complex setting. To begin with, we want to 
maximize profit. Formally, this means that we want to maximize a function 
such as 

45IEI + 60x2 

We have already remarked that fixed costs do not change where the optimal 
solution is, so subtracting €5,000 is inconsequential. From the work we have 
carried out before, we see that capacity constraints can be represented as a 
set of inequalities: 

15xi + 10x2 < 2400 
15xi + 35x2 < 2400 
15xi + 5x2 < 2400 
25xi + 15x2 < 2400 
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If we also include nonnegativity of decision variables and market bounds, we 
end up with the following mathematical problem: 

max 45xi + 60x2 (1-2) 
s.t. 15χι + 10x2 < 2400 

15χι + 35x2 < 2400 
15χι + 5χ2 < 2400 
25a;i + 15x2 < 2400 
0 < χι < 100 
0 < χ2 < 50 

This is an example of a linear programming problem, where linear is due to 
the fact that decision variables occur linearly: you do not see products such 
as x\ ■ X2, powers such as x\, or other weird functions such as sin £2· Real-life 
problems may involve thousands of decision variables, but they can be solved 
by many computer packages implementing a solution strategy called the sim-
plex method, and (guess what?) using this magic you get the optimal solution 
above. By the way, good software will also spot and get rid of irrelevant 
constraints to speed up the solution process. 

More on this in Chapter 12, but in this simple case we may visualize things 
graphically in order to better understand why the first simple-minded ap-
proach failed. 

A graphical solution As with red and blue pens, we are dealing here with a 
bidimensional problem. Each (linear) inequality corresponds to a half-plane. 
Since we must satisfy a set of such constraints, the set of feasible solutions is 
the intersection of half-planes, and is illustrated in Fig. 1.3. The shaded figure 
is a polyhedron, resulting from the intersection of the relevant constraints: 
these are the capacity constraints for groups B and D, and the market bound 
for item P2. 

The parallel lines shown in the figure are the level curves of the profit 
function. For instance, to visualize all of the product mixes yielding a profit 
contribution of €2000 (neglecting the fixed cost), we should draw the line 
corresponding to the linear equation 

45xi + 60x2 = 2000 

Changing the desired value of profit contribution, we draw a set of parallel 
lines; three of them are displayed in Fig. 1.3. It is also easy to see that profit 
increases by moving in the northeast direction, i.e., by increasing production 
of both part types. 

There is an infinite set of feasible mixes (barring integrality requirements 
on decision variables), but we see that a only a very few of them are relevant: 
those corresponding to the vertices (or extreme points) of the polyhedron, 
i.e., points Mo, M i , . . . , Μ4. Point Mo, the origin of the axes, corresponds to 
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Fig. 1.3 Graphical solution of the optimal mix problem. 

making nothing and is not quite interesting. Point M\ corresponds to making 
50 items of P2, and none of PI; in fact, during our first attempt, we moved 
to that point first, and then to point M2, with coordinates (43.33, 50), which 
was our first mix. Point M4, with coordinates (96, 0), represents the second 
tentative mix we came up with. We see that the second solution was worse 
than the first one by checking the level curves of profit. Since level curves 
are parallel lines, and we should move along the direction of increasing profit, 
we see that the optimal solution must be a feasible point that "touches" the 
level curve with the highest profit. This happens at point M3, which in fact 
corresponds to the optimal mix. 

The slope of the level curves depends on the profit margin of each item. 
For instance, if we increase the profit margin of PI , the lines rotate clockwise; 
if profit margin of PI is increased enough, the optimal mix turns out to be 
point M4. In general, changing the economics of the problem will result in 
different optimal mixes, as expected, but they will always be extreme points of 
the feasible set, and there are not so many of them. Whatever profit margins 
are, only points M2, M3, and M4 can be candidate optimal solutions. If level 
curves happen to be parallel to an edge of the feasible set, we have an infinite 
number of optimal solutions, but we may just consider one corresponding to a 
vertex. In fact, the standard approach to solving a linear programming model, 
via the simplex method, exploits this property to find an optimal solution 
with stunning efficiency even for large-scale problems involving thousands of 
variables and constraints. 

Incidentally, if we insist on producing integer amounts, we should only con-
sider points with integer coordinates within the polyhedron. We may draw 
this feasible set as a grid of discrete points. Doing so, the optimal mix turns 
out to be x\ = 73, £2 = 37, with total profit 505. Understandably, profit is 
reduced by adding a further constraint on production volume. It is tempting 
to conclude that we may easily get this solution by solving the previous prob-
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lem and then rounding the solution to the closest integer point on the grid. 
Unfortunately, this is not always the case, and quite sophisticated methods 
are needed to solve problems with integer decision variables efficiently. 

Takeaways 

• Intuition may fail when tackling problems with many constrained deci-
sion variables. 

• Mathematics may yield an optimal solution for the model. Because 
modeling calls for simplification, this need not be the best solution of 
our problem, but it may be a good starting point. 

• Sophisticated software packages are available to tackle mathematical 
model formulations. Hence, we need to concentrate on modeling rather 
than on complicated solution procedures. Indeed, in Chapter 12 we 
focus on models for decision making, while just giving a glimpse of the 
computational solution procedures. This is extended in Chapter 13 to 
cope with uncertainty. 

• Nevertheless, a suitable background in calculus and algebra is needed 
to gain a proper understanding of the involved approaches; this is the 
subject of Chapters 2 and 3. 

1.2 THE ROLE OF UNCERTAINTY 

We often have to make decisions here and now, without complete knowledge 
about problem data or the occurrence of future events. In distribution logis-
tics, significantly uncertain demand must be faced; in finance, several sources 
of risks affect the return of an investment portfolio. In all of these settings, 
the future effect of actions is not known for sure. Uncertainty can take several 
forms. In the simplest case, we may be able to gather past information and 
use that to generate a set of plausible future scenarios. This is where the 
standard tools of probability and statistics come into play. They will be the 
subject of Part II of the book, and are typically considered the core of any 
course on QMs. To get gradually acquainted with them, let us consider a few 
toy problems. 

1.2.1 A problem in supply chain management 

In the product mix problem, we assumed perfect knowledge of future demand, 
but, unfortunately, exact demand forecasts are a bit of scarce commodity in 
the true world. Indeed, the standard trouble in supply chain management is 
purchasing an item for which demand information is quite uncertain. If we 
order too much, one or more of the following scenarios might occur: 
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• Finance will suffer, as money is tied up in inventories. 

• Items may become obsolete because of fads or product innovation, and 
money will be lost in inventory writeoffs. 

• Perishable items may run out of their shelf life before being sold, and 
money will be lost again. 

On the other hand, if we do not order enough items, we may not be able to 
meet customer demand and revenue will suffer (as well as our career; life is 
hard, isn't it?). 

To take our first baby steps, let us consider a relatively simple version of 
the problem. We are in charge of purchasing an item with a very limited 
shelf life. Both purchased quantities and demand are given as small integer 
numbers, which makes sense for a niche product. Items are purchased for 
delivery at the beginning of each week, and any unsold item is scrapped at 
the end of the same week; hence, each time we face a brand-new problem, 
in the sense that nothing is left in inventory from the previous time periods. 
Demand for the next week is not known, but we do have some information 
about past demand. The following list shows demand for the past 20 weeks: 

0, 1, 3, 2, 3, 2, 2, 4, 5, 2 ,.. „. 
1, 2, 2, 3, 5, 2, 3, 2, 4, 1 y ' 

The big question is: How many items should we order right now? 

When asked this question, most students suggest considering the average de-
mand, which is easily calculated as 

- 3 + 1 + 3 + 2 + · · · + 4 + 1 _ 5 2 
20 ~ 20 ~ ' 

Not too difficult, even though this result may leave us a bit uncertain, as 
we cannot really order fractional amounts of items. Yet, it seems that a 
reasonable choice could be between 2 and 3. 

Other students suggest that we should stock the most likely value of de-
mand. To see what this means exactly, it would be nice to see some more 
structure in the demand history, maybe by counting the frequency at which 
each value has occurred in the past. If we sort demand data, we get the 
following picture: 

1, 1, 1, 2, 2, 2, 2 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5 
3 times 8 times 5 times 2 times 2 times 

These numbers provide us with the frequencies at which each value occurred 
in the observed timespan. If we divide each frequency by the number of 
observations, we get relative frequencies. For instance, the relative frequency 



THE ROLE OF UNCERTAINTY 19 

Table 1.2 Frequencies (F), relative frequencies (FTe\), and cumulated (relative) fre-
quencies (Fcum) for demand data. 

Value 

1 
2 
3 
4 
5 

F 

3 
8 
5 
2 
2 

Frei 

0.15 
0.40 
0.25 
0.10 
0.10 

1 cum 

0.15 
0.55 
0.80 
0.90 
1.00 

of the value 2 is ^ — 0.4 or, in percentage terms, 40%. We may also calculate 
average demand by using relative frequencies: 

D = 
3x1+8x2+5x3+2x4+2x5 _ 

3 8 5 2 2 
= — x H x2H x3H x4H x 5 

20 20 20 20 20 
= 0.15 x 1 + 0.40 x 2 + 0.25 x 3 + 0.10 x 4 + 0.10 x 5 
= 2.6 

Not surprisingly, we get the same average as above. We see that average 
demand is a weighted average of observed values, where weights correspond 
to relative frequencies. If we believe that the future will reflect the past, 
relative frequencies provide us with useful information about the likelihood of 
each demand value in the future. 

Frequencies and relative frequencies are tabulated in columns 2 and 3 of 
Table 1.2. Be sure to note that relative frequencies cannot be negative and 
add up to 1, or 100%. Frequencies and relative frequencies may also be visual-
ized using a histogram, as shown in Fig. 1.4. The observed values are reported 
on the horizontal axis (abscissa); the vertical axis (ordinate) may represent 
frequencies (a) of relative frequencies (b). The two plots are qualitatively the 
same, as relative frequencies are just obtained by normalizing frequencies with 
respect to the number of observations. After a quick glance at the graphi-
cal representation of relative frequencies, the intuitive idea of a "likelihood 
measure" of each demand value comes to mind rather naturally. Indeed, it is 
possible to interpret relative frequencies as probabilities. However, some cau-
tion should be exercised and we will see in Chapters 5 and 14 that probability 
is not such a trivial concept, as there are alternative interpretations. Still, 
this intuitive interpretation may be useful in many practical cases. 

Looking at Table 1.2, we see that the most likely value (or the most fre-
quent value in the past, to be honest with ourselves) is 2, which is not too 
different from the average value. In descriptive statistics, the most likely value 
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Fig. 1.4 Histograms visualizing frequencies and relative frequencies for demand data. 

Fig. 1.5 Two skewed distributions. 

is called mode. Since we get similar solutions by considering either mean or 
mode, we could be tricked into believing that we will always make a sensible 
choice by relying on them. Before we get so overconfident, let us consider the 
histograms of relative frequencies in Fig. 1.5. In histogram (a), we see that 
the most likely value is zero, but would we really stock nothing? Probably 
not. The two histograms in Fig. 1.5 are two examples of asymmetric cases. 
They are "skewed" into opposite directions, and we probably need a way to 
characterize skewness. We will deal with this and other summary measures in 
Chapter 4, but it is already clear that mean and mode do not tell the whole 
story and they are not always sufficient to come up with a solution for a de-
cision problem. Lack of symmetry is likely to affect our stocking decisions, 
but there is still another essential point that we are missing: dispersion. Con-
sider the two histograms in Fig. 1.6. Histogram (a) looks more concentrated, 
which arguably suggests less uncertainty about future demand with respect 
to histogram (b). We need some ways to measure dispersion as well, and to 
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Fig. 1.6 The role of dispersion. 

figure out how it can affect our choice. Indeed, we need some ways to char-
acterize uncertainty, and this motivates the study of descriptive statistics (to 
be carried out in Chapter 4). This is fine, but it is utterly useless, unless we 
find a way to use that information to come up with a decision. It is impor-
tant to realize how many points we are missing, if we just consider relative 
frequencies. 

The role of economics. If we have a stockout, i.e., we run out of stock and 
do not meet the whole customer demand, how much money do we lose? 
And what if we have an overage, i.e., we stock too much and have to 
scrap perished or obsolete items? To see the point, consider the following 
problem. We have to decide how many T-shirts to make (or buy) for an 
upcoming major sport event. Producing and distributing a T-shirt costs 
€5; each T-shirt sells for €20, but unsold items at the end of the event 
must be sold at a markdown price, resulting in a loss.8 Let us assume 
that the discount on sales after the event is 80%, so that the markdown 
price is €4. A credible forecast, based on similar events, suggests that 
the expected value of sales is 12,000 pieces. We will clarify what we 
mean by expected value exactly, but you may think of it as the "best 
forecast" given our knowledge. However, demand is quite uncertain. 
A consultant, considering demand uncertainty and the risk of unsold 
items, suggests to keep on the safe side and produce just 10,000 pieces. 
Is this a good idea? 

Please! Wait and think about the question before going on. 

8 The example may not sound too significant, but this kind of situation is typical of fashion 
items and, given the pace of technological innovation, presents some features shared by 
huge markets such as consumer electronics. 
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When we sell a T-shirt, our profit is €15; if we have to mark down, we 
lose only € 1 . Given that, most people would probably suggest a more 
aggressive strategy and buy a bit more than the expected value. Indeed, 
most fashion stores mark prices down at some time, which means that 
they tend to overstock. Would you change your idea if profit margin 
were €2 and the cost of an unsold item were €5? Economics must 
play a role here, as well as dispersion. Without any information about 
uncertainty, we cannot specify how much above or below the expected 
value of demand we should place our order. A plain point forecast, i.e., 
a single number, is not enough for robust decision making, a point that 
we will stress again in Chapters 10 and 11, when dealing with regression 
and time series models for forecasting. 

Predictable vs. unpredictable variability. Consider once again the de-
mand data in (1.3), but this time imagine that the time series, in chrono-
logical order, is 

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5 

Mean, mode, etc., are not affected by this reshuffling of data, but should 
we neglect the clear pattern that we see? There is a trend in demand, 
which is not captured by simple summary measures. And what should 
we do with a demand pattern such as the following one? 

1, 2, 3, 4, 3, 2, 1, 2, 3 ,4 , 3, 2, 1, 2 , . . . 

In this case, we notice a seasonal pattern, with regular up- and down-
swings in demand. Trend and seasonality contribute to demand vari-
ability, but we should set predictable and unpredictable components of 
variability apart. In chapter 11 we describe some simple methods for 
doing so. 

The role of time and intertemporal dependence. The previous point 
shows that time does play a role, when we can identify partially pre-
dictable patterns such as trend and seasonality. Time may also play 
a role when our assumptions about ordering and shelf life are less re-
strictive. Assume that the shelf life is longer than the time between 
the orders we issue to suppliers. In making our decision, we should also 
consider the inventory level, and this would make the problem dynamic 
rather than static. A safe guess is that this is no simplification. 

An even subtler point must be considered in order to properly represent 
unpredictable variability. I will illustrate it with a real-life story. A 
few years ago in Turin, where I live, there was a period of intense rain 
followed by an impressive flood. A weird thing with such an event is that 
there is way too much water in the streets, but you do not get any from 
your water tap at home. In that case, the high level of the main river in 
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the city prevented the pumping stations from working. This problem, 
as I recall, was solved quickly, but the immediate consequence was a 
race to buy any bottle of mineral water around (with plenty of amicable 
exchange of ideas between tactful customers at retail stores). Now, if 
you were the demand manager for a company selling mineral water, 
would you interpret that spike in demand as a signal of an increasing 
market share? Well, not really, I guess. On the contrary, you could 
expect a period of low demand, when households deplete their unusually 
high inventories. More generally, if consumption of an item is relatively 
steady over time, a spike in demand (maybe due to a trade promotion) 
is likely to be followed by a period of low demand.9 In order to take such 
issues into account, we need statistical tools to investigate correlation, 
which is the subject of Chapter 8. Correlation is useful in many settings 
where we ask questions about random variables rather than random 
events, such as 

• If demand for an item has been larger than usual today, can we say 
something about demand tomorrow? Will it be larger or smaller 
than usual? 

• If the return from a financial investment has been good, does this 
tell us something about the return of the same investment in the 
future, or maybe about the return from other investments? 

The role of alternative items and competitors. We have just considered 
one item, disregarding possible interactions with other ones. In practice, 
items may interact in many ways: 

• Shelf space. Limited shelf space at a retail store must be allocated 
to different items; then, stocking decisions are not independent. 

• Substitute products. A stockout on one item may be almost irrele-
vant, if the customer switches easily to a substitute item that we 
sell. 

• Complementary products. Stocking out on one item may have a 
detrimental effect on other items, too; imagine a customer order 
consisting of several lines, related to different items; the customer 
could cancel the order if some order line is not satisfied. 

• New products. If the assortment is changed by the introduction 
of a new item, sales of older items are likely to be affected by 
cannibalization. 

incidentally, in such a trade promotion might have the only effect of making the 
life of logistic managers a misery, without contributing much to the bottom line. In fact, 
some retail stores adopt a policy of everyday low prices. 
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By the same token, we should not disregard the role of competitors. 
If a competitor is about to launch a new product, we should plan in 
advance a suitable reaction. In such a case, just looking at past sales 
will be as safe and smart as driving a car by just looking into the rear 
mirror. Furthermore, pricing is likely to affect sales along multiple di-
mensions: the price of the item, the price of related items, and the price 
asked by competitors. We should investigate, among other things, the 
relationship between price and demand. One way of doing that involves 
regression models, which are the subject of Chapters 10 and 16. 

The role of sampling uncertainty. When we evaluate summary measures 
such as the mean of a variable, we look at a limited set of past data. 
But how reliable is that information? Intuitively, the more data we 
have, the better. However, looking too far into the past is dangerous, 
as we might take into account information that is hardly relevant for 
new market conditions. Would you use information about stock returns 
before World War II to manage a pension fund? In Chapter 9 we deal 
with inferential statistics, which may help us in assessing the degree of 
confidence we can have in our estimates. 

Observables vs. unobservables. Finally, available data may not be what 
is actually relevant and needed. We have taken for granted that demand 
data were at our disposal. Unfortunately, in many practical settings we 
do not really observe demand, but sales. If there is a stockout on an item 
at our retail store, will the customer inform anyone that her demand 
was unmet? Not necessarily; maybe she will just go and buy at another 
retail store. If we are lucky, she will just settle for a product substitute. 
But even in this case, what we gather is sales data by scanning bar 
codes at the cash desk or point of sale. Clearly, this can result in an 
underestimation of actual demand. In other cases, data are available, 
but they are not gathered because of a wrong business process. Imagine 
a business to business setting, where a potential customer calls about 
immediate product availability. When the desired items are not in stock, 
she tries with another supplier. If the business process is such that only 
agreed-on orders are entered into the information system, disregarding 
lost sales, we are underestimating demand again. Often we have to settle 
for a proxy of what we cannot observe directly, and this might affect 
decisions. 

After this long list of complicating factors,10 you may feel a little overwhelmed, 
but please don't: There is a long array of powerful quantitative methods that 
we may integrate with good old common sense in order to tackle challenging 

10If you hate supply chain management, and you are fond of finance, do not fret. The good 
news is that you will see plenty of examples related to finance in what follows. The bad 
news is that the list of complicating factors is overwhelming in that setting as well. 
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problems. Anyway, if you want to take a short route, you could always try 
to do just a little better than your competitor. Say that he is able to meet 
demand completely in 80% of the weeks. The probability of not having a 
stockout is one of the many ways in which one can measure the service level. 
By choosing a stocking level 5, you are setting the probability of satisfying 
all customers. For instance, with the data of Table 1.2, if you choose 5 = 1 , 
demand will be met only when it is 1, which happens with probability 0.15. 
If 5 = 2, you meet demand when it is 1 or 2; summing the respective relative 
frequencies, we see that this happens with probability 0.15 + 0.40 = 0.55. The 
pattern is clear: The service level for increasing stocking levels is obtained 
by summing probabilities. This leads us to the concept of cumulative relative 
frequencies, which are displayed in the last column of Table 1.2. If you want to 
do a little better than the competitor, setting a 85% service level, you should 
stock four items, implying a 90% service level. 

This last observation leads us to concepts such as cumulative distributions 
and quantiles. They are fundamental in many areas, such as inferential statis-
tics and risk management, and will be among the most important topics in 
Chapters 6 and 7. 

1.2.2 Squeezing information out of known facts 

As we have remarked in the previous section, we often have to cope with the 
impossibility of gathering in advance all the information we need to make a 
decision, partly because of uncertainty about future events, and partly because 
some variable cannot be observed directly. However, this is no good reason 
not to do our best to exploit partial information. In customer relationship 
management, we are not able to read a customer's mind; nevertheless, we 
may observe her behavioral patterns and try to infer if she will be loyal and 
hopefully profitable, or not. The analytical tools of probability and statistics 
are commonly used for this kind of analysis. 

A typical and quite familiar domain in which we have to settle for an 
observable proxy of an unobservable variable is medicine. Hence, to get a 
feeling for the involved issues, let us consider a medical problem. Quite often 
we undergo an exam to determine whether we are suffering from a certain 
illness. Thankfully, it is a rare occurrence that our bodies must be ripped 
open in order to check the state of the matter. Clinical tests are an indirect 
way to draw conclusions about something that cannot, or should not, be 
inspected too directly. Now, suppose that we have the following information: 

• A kind of illness affects 0.2% of a population. 

• A test can reveal the illness, if a person is ill, with a probability of 
99.9%; i.e., if you are ill, there is a small probability (0.1%) that the 
exam will fail to detect your true state. 

• The probability of a false positive is 1%; in other words, if one is perfectly 
healthy, the test may wrongly report the illness with probability 1%. 
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The issues of how this information is obtained and how reliable it is pertain 
to the domain of inferential statistics; for now, we will take someone's word 
for it. We see that there are two kinds of potential errors: 

• We may fail to detect illness in an ill subject (missed positive). 

• We may see a problem where there is none (false positive). 

We would like to know whether a person is ill, but the only thing we can 
observe is the result of the test. If the test is positive, we would like to draw 
the conclusion that the patient is ill in order to start an adequate treatment. 
However, we cannot be that sure. Hence, the question is: If the test is positive 
for a person, what is the probability that he is actually ill? 

When I ask students this question, I make it somewhat easier and just ask 
them to tell in which of the following intervals the required probability lies: 
(0,25)%, (25,50)%, (50,75)%, or (75,100)%? 

Please! Pause for a while before reading further, and try giving your 
answer. 

If you have selected an interval with high probability, you are in good company. 
From my experience, the most voted interval is (50,75)%. I guess the reason is 
that the professor maliciously insists on pointing out that the test is reliable, 
in the sense that if you are ill, the test will tell you that with high probability. 
Some students take me seriously, and vote (75,100)%. Most students probably 
temper that with a bit of skepticism and choose (50,75)%, based on some good 
old intuition. Very few students choose the correct answer, i.e., (0,25)%. 

Let us try to get the answer by a somewhat crude line of reasoning. 

1. Say that our population consists of 10,000 persons. How many should 
we expect to be ill? Taking 0.2% of 10,000 yields 20 persons; 99.9% of 
them will be reported ill, which is 19.98 (almost 20). 

2. How many false positives do we expect to get? There are (on the aver-
age) 9980 healthy persons out of the total of 10,000; 1% of them will be 
incorrectly reported ill, i.e., 99.80 (which is almost 100, i.e., 1% of the 
whole population). 

3. Then, on the average we will get 

19.98 + 99.8= 119.78 

positives, but only 19.98 of them are in fact ill. So, the correct answer 
to our question is ft — 
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This is certainly much less than 50%. The problem is that the fraction of ill 
people is (luckily) low, in fact much lower than the number of false positives. 
Indeed, we could get close to the right answer simply by noting that the 
fraction of false positives is about 1% and the fraction of correct positives is 
about 0.2%; if we take the ratio 

0.2 1 
0.1667« 16.68% 0 .2+1 6 

we see that it was bad intuition leading us into the trap, as a closer look into 
the data is enough to show that false positives have a large impact here. 

Now, on the basis of this result, you should sit a while and broaden your 
view by asking a few questions: 

1. If this is a cheap test, should we use a more expensive but more reliable 
one? 

2. Should we use this test for mass screening? 

3. What happens in the case of a false positive? 

4. What are the social and psychological costs of a false positive? 

Of course, there are no general answers, as they depend on the impact of this 
illness, its mortality rate, etc. Moreover, spending resources for this illness 
may subtract funds from programs aimed at preventing and curing other 
types of illnesses. The last question, in particular, shows that in a decision 
problem there are issues that are quite hard to quantify.11 So, quantitative 
methods will definitely not provide us with all of the answers. Still, they 
may be quite useful in providing us with information that is fundamental for 
a correct analysis, information that we are going to miss if we rely on bad 
intuition. 

Generalizing a bit, we note that a priori, if you pick a person at random the 
probability that he is ill is 0.2%. If you know that the test has been positive, 
that probability is updated to a larger value. The new probability of the event 
of interest (he is ill) is conditional on the occurrence of another event (the 
test is positive). We will learn about conditional probabilities in Chapter 5, 
where we develop a tool to tackle such problems more systematically, namely, 
Bayes' theorem. Bayes' theorem is the foundation of Bayesian statistics, which 
is increasingly relevant in practical settings in which either most past data 
are not relevant or you have none, and you have to rely on your subjective 
assessment (see Chapter 14). 

I recall the story of that guy who was diagnosed in a terminal state a while ago. He 
started spending all of his money to live what precious time was left to him in the most 
entertaining way. The good news was that the doctors were wrong; you imagine the bad 
news. 



28 QUANTITATIVE METHODS: SHOULD WE BOTHER? 

1.2.3 Variations on coin flipping 

In this section, we consider the mother of all random experiments: coin flip-
ping. This is a good way to get acquainted with probabilities, which are 
not necessarily relative frequencies, as well as with investments under uncer-
tainty. We illustrate plain coin flipping first, and then some more interesting 
variations on the theme. 

Plain coin flipping Assuming that we flip a fair coin, what is the probability 
of its landing head? Probably, you will not flip the coin one million times to 
conclude that this probability is 0.5. The reasoning you are following is, in 
fact, based on some form of symmetry that is exploited whenever you think 
about gambling by simple mechanisms such as throwing dice, picking cards at 
random, or spinning a roulette. Hopefully, you start to see that there may be 
different concepts of probability, a topic that we will discuss a bit in Section 
5.1. The very nature of probabilities has been the subject of heated debate, 
but let us leave such philosophical issues aside and assume that you play a 
simple lottery. A fair coin is flipped: You win $10 when it lands head, and you 
lose $5 when it lands tail. If the game is repeated a large number of times, 
how much money should you win with each flip, on the average? Looking back 
at how we computed average demand in Section 1.2.1, you might suggest the 
idea of multiplying each possible payoff outcome by its probability: 

E[P) = 0.5 x 10 + 0.5 x (-5) = 2.5 

We are using a new notation here, as E[·] denotes the expected value of a 
random variable. Indeed, we are not taking averages based on observed data, 
looking backward; rather, we are stating something about the future, looking 
forward. 

It would be nice to play that game a large number of times without having 
to pay for the privilege of flipping the coin. Still, a basic law of economics 
says that there is no free lunch; hence, someone will ask you for some money 
to play the game. How much money would you be willing to pay exactly? 
Suppose that someone says that, in order to play a fair game, the price is 
$2.5; note that, if you pay that amount, the expected overall profit is 

-2 .5 + 0.5 x 10 + 0.5 x (-5) = 0 

which does sound fair. Would you accept? Maybe yes, as the worst that 
can happen is losing $7.5, which will not change your life. But let's scale the 
game up a million times: You may win $10,000,000, you may lose $5,000,000. 
Would you still be willing to pay $2,500,000 for playing the game? I guess 
that the answer is no; probably, you would not play the game even for free. 

What you have seen is an example of how risk aversion affects our behavior. 
This is a fundamental ingredient of any decision under uncertainty, includ-
ing investments in financial assets or new products. Decision making under 
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uncertainty and risk aversion are the subject of Chapter 13. For now, let us 
consider a simple investment decision that looks quite similar to coin flipping. 

Fancy coin flipping Suppose that you are the lucky manager of a movie com-
pany, which has just signed a contract with a new and promising director.12 

The contract provides that you may produce zero, one, or two movies with 
this director, during the next 2 years. To clarify, we could produce a movie 
now, investing some money immediately and hopefully collecting some payoff 
in, say, one year. At the end of the first year, we could produce a new movie,13 

collecting revenues at the end of the second year. One decision we have to 
make is whether we should produce those movies or not. In pondering the 
decision, note that any advance money you have paid to the good director is 
gone; in other words, it is a sunk cost. If, on second thought, you feel that 
producing a movie with him will turn out a disaster, you should not suffer 
from the sunk cost syndrome, i.e., the tendency to go on at any cost since you 
have already spent money on your endeavor.14 On the contrary, you should 
only consider the money you are about to spend now to produce the movie, 
and the prospects for future revenue. 

To spice things up, let us say that there is another dimension, as we may 
select one out of two production and marketing plans, a conservative and 
an aggressive one. We may invest more money in well-known actors and/or 
special effects, as well as in marketing the movie around the world. 

1. Production/marketing plan A costs 2500 whatever monetary unit you 
like. This is the money you have to spend for the privilege of flipping 
the coin. We have some uncertainty about the success of our pet group. 
If the movie is successful, revenue after one year will be 4400 the same 
whatever; if it's a flop, you make nothing. To consider a case as close as 
possible to coin flipping, and to simplify calculations, let us assume that 
the probability of a success is 50%. Of course, coin flipping is a rather 
crude model of uncertainty for such a situation, and you should really 
ponder how to come up with a set of sensible scenarios along with their 
probabilities. By the way, the astute reader will suspect that here we 
should work with yet another, more subjective concept of probability. 
The symmetry of coin flipping or dice throwing does not apply and if 
this is an unknown director, looking at the past relative frequencies case 
might just make no sense. This happens whenever you deal with a brand 
new product.15 

12 This section is based on an example described in HBS business case [8]. 
13Well, maybe it will not really be a new movie; sequels are all the rage, aren't they? 
14While we are talking about movies, imagine that you have paid a ticket for a movie that 
you find disgusting and/or insufferably boring after 20 minutes. Should you stay seated 
there for two more painful hours, just because you paid for the ticket? 
15 As a case in point, when the first IBM computer, a piece of hardware as large as a big 
room, was working (and heating whoever was around it), an IBM boss said that it was 
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2. Production/marketing plan B is more aggressive and expensive, as it 
costs 4000, but it increases revenue by 50% in the case of a hit, without 
changing probabilities (hence, we have two possible outcomes: 6600 or 
0, with 50% probability). Arguably, a different marketing plan could 
also change success/flop probabilities, but for the sake of simplicity we 
will neglect this. 

Both plans look like a coin flipping experiment, but in this case we should 
consider time or, to be more precise, the time value of money. Let us digress 
a bit in order to clarify this issue. 

A little digression: time value of money Would you prefer to receive $100 right 
now or $100 in one year? Well, easy answer, and you surely concur that $100 
in one year is not the same as $100 today. But what if you have to choose 
between $100 right now and $106 in one year? In order to make the two 
amounts comparable, the standard approach is to take money in the future 
and discount it back to now. To do so, we apply a discount rate, which is 
related to an interest rate. 

Say that you may invest money at an annual risk-free interest rate of 5%; 
if you invest $100 now at that rate, in one year you will own 

$100 x (1 + 0.05) = $105 

The general rule is that to evaluate money in one year, you multiply money 
now by (1 + r ) , where r is the prevailing interest rate. If you leave that money 
invested for 2 years, and interest on interest is earned, the money in 2 years 
will be 

$100 x (1 + 0.05) x (1 + 0.05) = $100 x (1 + 0.05)2 = $110.25 

Note the effect of compounding; without that, in 2 years you would get only 
$110, i.e., the initial capital plus twice the interest payment. Now, if you see 
things the other way around, how much are $106 in one year worth now? A 
little thought should suggest the following rule: Discount money in the future 
using the interest rate, and compare it with money now: 

= $100.95 > $100 
1.05 

which suggests the opportunity of waiting one year to grab almost one extra 
dollar. 

This is what cash flow discounting is all about. We will see a bit more about 
financial mathematics later.16 In practice, the real issue is estimating the 

a very nice piece of equipment and that probably they were going to sell 10 in the entire 
world. Hardly a good prophecy, and the same difficulty in forecasting sales applied when 
the first cell phones were being produced. 
16See Examples 2.7 and 2.33. 
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6600 

Fig. 1.7 Graphical representation of alternative plans for producing and marketing a 
movie. 

uncertain cash flows and choosing a suitable discount rate. This may be 
difficult, as the discount rate should take investment risk into account. For 
now, let us assume that we discount cash flows with an annual discount rate 
of 10%. 

Back to fancy coin flipping One sensible starting point in deciding whether 
we should trust the good director with our money is to find out how much we 
expect to make using each alternative marketing plan to produce one movie. 
Let us consider plan A. We pay 2500 for sure now, and there is a 50-50 chance 
of making 4400 or 0 in one year. Taking discounting into account, the money 
we expect to make is 

- 2 5 0 0 +
0 · 5 χ 4 7 ^ ° · 5 Χ Ο = -2500 + f ^ = -2500+2000= -500 (1.4) 

This —500 is the (expected) net present value (NPV) of our investment. A 
basic rule of investment analysis says that we should invest in projects with 
positive NPV. Unfortunately, the idea of adopting marketing plan A to pro-
duce a movie now does not seem quite promising. What about using the 
bolder plan B? Well, repeating the analysis yields the following NPV: 

0.5 x 6600 + 0.5 x 0 
-4000 + — = -1000 

an even bleaker perspective. A useful way of visualizing lotteries is illustrated 
in Fig. 1.7, which depicts a scenario tree. The leftmost node corresponds to 
"now," i.e., the current state of the world, where we have to decide whether we 
should spend 2500 or 4400 to start one of the marketing plans. The two nodes 
on the right correspond to possible states of the world in the future. In our 
case, we have just two possible scenarios, success or flop, which are associated 
to given payoffs and probabilities. Clearly, this a two-state scenario tree is a 
very crude representation of uncertainty; in practice, scenario trees may be 
definitely richer. 

It seems there is no hope, but wait: We just considered one movie! What 
if we produce two over the next 2 years? If one game of coin flipping is a bad 
lottery, can we make it any better by just repeating it? To illustrate the point 
with plain coin flipping, what is the probability of getting two heads in a row, 
or any other possible outcome? The possible head-tail sequences when you 
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Fig. 1.8 Repeating the fancy coin flipping experiment twice. 

flip a coin twice are 

HH, HT, TH, HH 

The usual symmetry argument suggests that none of these four outcomes is 
more likely than the others; hence, the probability of each sequence should 
just be j = 0.25 (note once again that probabilities add up to 1). A deeper 
reasoning should reveal that, unless the coin has some memory, the result of 
the second flip has nothing to do with the result of the first one; the two events 
are independent. We will learn in Chapter 5 that the joint probability of two 
independent events is just the product of their probabilities. For instance, we 
obtain the following equation, which confirms the previous result: 

P{HH} = P{H} x P{H} = \ x \ = \ 

Now, what should we conclude if we consider the movie production problem 
as no more than a fancy variation on coin flipping? The situation is depicted 
in Fig. 1.8, where we produce two movies using plan A (incidentally, we ig-
nore inflation and assume that future production and marketing costs will be 
the same as today). We have four equally likely scenarios: success-success, 
success-flop, flop-success, flop-flop. Each scenario has probability 0.25. We 
should discount cash flows occurring in 1 and 2 years; we should also consider 
the net cash flow in one year, resulting from collecting revenues (if any) and 
investing in the new movie. For the success-success scenario, the NPV is as 
follows: 

n,nn 4400-2500 4400 „ „ „ „ „ . , 
" 2 5 0 0 + — Ϊ 3 ^ + ( Π ^ 2 8 6 3 · 6 4 

Please carry out the calculation for the other three scenarios, and verify that 
the expected NPV is 

0.25 x 2863.64 + 0.25 x (-772.73) + 0.25 x (-1136.36) 
+0.25 x (-4772.73) = -954.55 
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The result is negative again, but this is hardly a surprise; if flipping a coin once 
has a negative expected profit, repeating that gamble twice will not produce 
a positive result, because we are replicating the same experiment. In fact, a 
much smarter way to obtain the result is by noting that we are just carrying 
out the experiment with plan A twice in a row, and we may use the result of 
Eq. (1.4). We have just to discount the expected NPV for the second movie 
back from the end of year 1 to now: 

-50 + ^ — γ = -954.55 

By the same token, if we try mixing plans A and B in some sequence, we will 
hardly get any better, i/our problem is just a fancy variation of coin flipping. 

But is the movie production case really like coin flipping? In Section 1.2.2 
we learned about conditional probabilities: If the test is positive, this does 
change your probability of being ill. If the first movie is a success (or a flop), 
can we say that producing the next one will just be another coin flipping 
experiment? Probably not, as the result of the first trial tells us something 
about market reaction to our product. In fact, we need an assessment of 
conditional probabilities, i.e., the probability that the second movie is a success 
(or a flop), conditional on the fact that the first one has been a success (or 
a flop). Reasonably, if the first movie is a success, the probability that the 
second one is a success as well is greater than 0.5. By the same token, if we 
have a flop in the first trial, we raise our expectation for another flop with 
the second movie. Coins are supposed to have no memory, but the tendency 
to stack movie sequels one after another suggests that moviegoers are not 
memoryless coins. Estimating those conditional probabilities may be quite 
hard, but let us consider a very extreme and overly simplified case, just to 
illustrate the point. Assume that if the first attempt is a success, the second 
one will certainly be as well (i.e., the conditional probability of a second hit 
after the first one is 1); on the other hand, assume that after a flop, we will 
have another flop for sure. In such a case, it is easy to see that if the first 
movie is a success, we should certainly produce the second one; on the other 
hand, if the first movie is a flop, we will just cut our losses and forget about it. 
This is what managerial flexibility is all about; we do not plan everything in 
advance, but we adapt our decisions when we gather additional information 
and revise our beliefs. 

One sensible idea is to be conservative at the first trial and using plan A 
for the first movie; if we are lucky, and discover that the director can deliver a 
successful movie, we will be more aggressive and take plan B next year. This 
strategy is depicted in Fig. 1.9. In the figure, we do not clearly distinguish 
nodes at which we make a decision and nodes at which we observe results, 
but we will see a clearer representation of a dynamic decision-making process 
under uncertainty in Chapter 13, where we deal with decision trees. If we 
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Fig. 1.9 Fancy coin flipping with memory. 

calculate the expected NPV, we obtain 

„,.™ ° · 5 x ( 4 4 0 0 - 4 0 0 ° ) + 0.5 x 0 0.5 x 1 x 6600 tnn „„ 
-2500 + ^ n ^ + ( L 1 0 ) 2 = 409.09 

Please beware of a common mistake. The last cash flow in the expression, 
6600, occurs with probability 0.5, not 0.25. In order to evaluate the probability 
of each node in the scenario tree we must take the product of the conditional 
probabilities along the path leading from the root of the scenario tree (the 
"now" node) to that node. In our case, 0.5 x 1 = 0.5. This positive result 
shows that maybe our investment in the director was not so bad. Clearly, we 
should assess how much this conclusion depends on the probabilities that we 
have assumed. This process of checking the influence of uncertain data on the 
decision suggested by a model is called sensitivity analysis. 

li you want to generalize a bit, a situation like this is common in risky 
research and development (R&D) projects. You could try a risky venture that, 
if successful, will pave the way to huge revenues by expanding the business. 
When analyzing investments, one should account for managerial flexibility 
and the possibility of learning over time by gathering new information. This 
approach leads to so-called real options;17 in the real options literature, our 
example is known as a growth option. 

Coin flipping in the short or long run Before leaving coin flipping aside, it may 
be instructive to consider in more detail the idea of repeating bets. Suppose 
that you can play the plain coin-flipping game, where you may either win 10 
million or lose 5 million of whatever monetary unit you like. The coin is fair 
and memoryless, and you can play the game for free, so that the expected 
payoff is 2.5 million. 

1. Would you play the game once? 

2. Would you play the same game 1000 times in a row? 

1 7They are called "real," as opposed to financial options based on financial assets such as 
stock shares. We will consider options in a few examples in the following chapters. 
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The answer to the first question might be no, as the chance of being broke is 
far from negligible, even though the expected payoff is rich. But if you may 
repeat the game several times, you have the possibility of recovering your 
losses. In the long run, the bet is quite profitable indeed, but this is no solace 
if you can get out of the business after a losing streak of bad outcomes, without 
the time to recover.18 Again, risk aversion does play an important role and 
considering long-run, or expected, profits may not be always appropriate. In 
other words, the plain expected value of the payoff fails to take into account 
risk in the short term. In the movie production case, we have taken for granted 
that a proper discount rate can take risk aversion into account, but the issue 
is far from trivial and is the subject of quite some controversy in corporate 
finance. We investigate the role of risk in decision making under uncertainty 
in Chapter 13. 

1.3 ENDOGENOUS VS. EXOGENOUS UNCERTAINTY: ARE WE 
ALONE? 

A colleague of mine draws the line between engineers (like myself) and economists 
as follows: 

• An engineer believes that fellow human beings are a little dumb, but 
otherwise they are generally good chaps. All you have to do is to find a 
clever solution for them, and they will live happily ever after. 

• An economist believes that fellow human beings are not dumb at all. 
The problem is that you cannot turn your back on them, unless you 
have a taste for an instant stab. 

In fact, the need for analyzing the interactions between noncooperative deci-
sion makers was the driving force for the development of game theory. We 
will consider related issues in Section 14.3, where we investigate the role of 
misaligned incentives when multiple stakeholders are involved in a decision-
making process. The interaction of multiple actors may also change the nature 
of the uncertainty involved in decision making. Simple probability models as-
sume that uncertainty is known and fixed; if we have enough information, 
we can make a good decision. However, it might be the case that the very 
uncertainty is influenced by decisions. 

Example 1.1 To illustrate, let us go once again back to the inventory man-
agement problem of Section 1.2.1. There, we used historical data to charac-
terize demand uncertainty and planned on using that information to come up 
with a decision. One tough question is: Does our decision affect the demand 

18As the economist John Maynard Keynes aptly put it, in the long run we are all dead. 
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distribution? To get the point, imagine that you stock very few items. In 
the long run, you will end up losing customers, not just orders. What's even 
worse, maybe this will also affect the demand for other items. D 

In practice, there are many cases in which demand is affected by stocking 
decisions. At retail stores, the shelf space allocated to a product may have 
a remarkable effect on demand. More generally, uncertainty need not be 
purely exogenous, i.e., given by outside factors that are not going to change 
(at least in the short term); uncertainty may be partially endogenous, i.e., 
influenced by our actions. Representing the dependence between our decisions 
and uncertainty may be very difficult, but at least one should be aware of the 
issue. 

More generally, we should consider that management decisions are made 
in a social context, where other people could 

• React to our decisions 

• Use the same information we have 

• Observe our behavior to gather information 

Example 1.2 To see another example in a supply chain management con-
text, suppose that we are selling a perishable item. We start selling it in the 
morning, and we know that at the end of the day we will scrap what's left. 
One could consider a dynamic pricing strategy, whereby price is marked down 
at the end of the day; after all, it seems better to recover some money even 
if this implies selling below cost. That's fine, but we are not considering the 
possibility of strategic behavior on the part of customers. Knowing that price 
will be reduced, they could wait and buy at dusk, just before closing time.19 

The point is that there is no separation between the set of customers who buy 
during the first part of the day and customers who buy later. We may apply 
price discrimination, i.e., asking different prices for the same product on dif-
ferent markets, provided they are well separated, possibly in space. The above 
revenue management policy is a sort of failed price discrimination strategy in 
time, rather than in space. 

There could also be other reasons not to mark down some products. Some 
fresh and quickly perishable produce is not really sold for profit at retail 
stores. The real intent is to promote a positive image of "freshness" that has 
a positive impact on sales of other, more profitable items. The message would 
be lost by selling almost perished items in the evening. D 

Social issues are even more fundamental in finance. A whole discipline, behav-
ioral finance, was born to investigate the interplay between psychology and 

1 9This is what happened at the fish counter at a big retail store in front of my home. Very 
few people bought fish all day long, but queues materialized after 6 p.m., not to mention a 
terrible smell. As you may imagine, this brilliant revenue management policy disappeared 
rather quickly. Much to the chagrin of my nostrils, the smell didn't follow. 
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finance. When you buy a good, you know its selling price and you may plan 
accordingly. However, financial markets are based on a competitive auction 
mechanism, so that prices depend on investors' behavior, on their beliefs (or 
lack of information), and on their beliefs about other investors' beliefs. The 
resulting pattern may be quite complex, and indeed it leads to bubbles and 
crashes. Everything is made even more complicated by deliberate trading 
strategies. 

Example 1.3 (Short selling) A short sale is a trading strategy whereby 
you sell an asset, say, a stock share, that you do not own. To do so, you have 
to borrow that asset from someone- else. It is a strategy that makes sense if 
you expect the asset price to drop. To see this, assume that the current price 
is So — $50 at time t = 0. If you sell the asset short, you borrow the asset and 
sell it for $50. Clearly, you will have to give the asset back to its legitimate 
owner at some later time t = T, which means that you will have to buy the 
asset at a price ST in the future. If you are right and the asset price falls, 
e.g., to ST = $40, your reward will be $10 per share. 

At times of financial turmoil, wealthy speculators could do a lot of short 
selling, which may itself depress prices, resulting in a self-fulfilling prophecy. 
Selling an asset short in large volumes can lead to lower prices, even if the 
economic and business fundamentals of the firm are good. Uninformed traders 
may just follow the lead, just because they see a drop in price, even if they 
do not know why this is happening. A perverse feedback mechanism can be 
the result, and indeed short selling is sometimes prohibited, when markets 
are under severe pressure. The role of short sellers (the "shorts" ) is actually 
debated, but the point here is that the interaction between actors can result 
in weird patterns. 

A similar speculative practice is predatory trading. Suppose that you own a 
large amount of an asset and you know that Mr. X has to sell a large amount 
of the same asset, because he is running short of liquidity. You could sell the 
asset before Mr. X, which will result in a significant price drop, as the large 
trading volume will affect prices. Mr. X will have to sell, anyway, which will 
depress prices further. Then, you may buy the asset back at a lower price, 
getting back to your previous portfolio, plus some extra cash. D 

Empirical research is carried out to verify if certain speculative practices such 
as predatory trading are actually carried out at a significant level. These 
very empirical research lines do use a lot of statistical methods, and have 
a practical impact as market regulation should be devised in such a way to 
avoid excessive distortions. Empirical finance is beyond the scope of this book, 
but in the next section we analyze in more detail a somewhat stylized, yet 
very significant, example to see the interplay between organized markets and 
uncertainty. 
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1.3.1 The effect of organized markets: pricing a forward contract 

An asset (e.g., a stock share) is sold now at a spot price So = $50, where 
t = 0 is current time. The spot price is the prevailing price at which the 
asset is exchanged at any moment. The spot price in one year is, of course, 
uncertain, but say that the expected price in one year is E[Si] = $60. A type 
of contract that is commonly traded on many assets is a forward contract.20 

This contract is signed between two parties who agree on exchanging the asset 
at some future time (say, one year) for a price that is agreed on now. This 
fixed price, that we denote by Fo, is the forward price at time t = 0. In one 
year, one of the two parties will sell the item to the other one at price FQ, no 
matter what spot price S\ will prevail in one year. The party agreeing to buy 
is said to hold the long position; the party agreeing to sell is said to hold the 
short position. Depending on the relationship between the agreed-on forward 
price Fo and the future spot price S\, one of the two parties will turn out to 
be happy, at the expense of the counterpart. If it turns out that S\ > FQ, the 
long position will benefit since she can buy at a price lower than the current 
spot price. The short position will benefit if S\ < FQ, since she can sell at a 
higher price. A priori, there are different reasons for trading such contracts. 
One reason is hedging risks away: By fixing the price for the future, long 
and short parties eliminate risk ex ante. Ex post, one of them will regret the 
hedging decision, but risk management strategies should be evaluated before 
uncertainty is resolved. Another reason could be speculation of traders having 
firm beliefs about future spot prices and willing to bet on their forecasts. 

Now the problem is: What should Fo be? Actually, it is the balance 
between demand and offer that determines prices; still, there are many reasons 
why one should be interested in finding a sensible estimate of a fair price. One 
possible guess is that a fair price should be E[Si] = $60. Note that money 
and the underlying asset are exchanged in the future, so we do not need to 
discount cash flows, as the forward price Fo will be paid in one year. We have 
seen before that using expected values to value assets or lotteries ignores risk 
aversion. Taking this into account, one could argue that the price should be a 
bit less than $60. But how much less? There are many actors in the markets; 
whose risk aversion matters most? It seems that there is no hope to find a 
sensible forward price! By the way, each actor might have a different view 
of the future, as well as different information, but to keep it simple, let us 
assume that everyone agrees on the above expectation about S\. 

To get some clue, let us assume that the forward price is set as the expected 
future (spot) price, Fo = E [Si] = $60. Also assume that we may lend or 
borrow money at an annual risk-free rate of 10%. In this setting, you could 
adopt the following trading strategy: Borrow $50 now, buy the asset, and 

2 0In practice, futures contracts are more commonly traded. They differ from forward con-
tracts with respect to some institutional features that enhance their liquidity, such as stan-
dardization of contracts and measures to avoid defaults by one of the two parties. 
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enter a short position in the forward (i.e., you agree to sell the asset at the 
forward price in the future, no matter what the spot price will be). This trade 
is costless at time t = 0, since cash flows cancel each other and (in principle) 
no money is needed to enter a forward contract. In one year, you will pay 
back $55 to the guy who loaned you that money but, whatever the spot price, 
you will be able to sell the asset for $60, earning $5 for sure. If this were 
the case, we would have found the perfect money-making machine. Please 
note that you make money without taking chances and without any need for 
initial cash, as the initial net cash flow is zero. If you enter a long position at 
F0 = $60 and the spot price turns out to be Si = $100, you will make $40 by 
using the forward contract to buy the asset at $60 and selling it immediately 
on the spot market. This is much better than the $5 you could make by the 
riskless strategy, but in doing so, you are taking chances, as the spot price 
could be well below the forward price and you would lose money. A riskless 
trading strategy that does not require any money is an example of an arbitrage 
opportunity. 

Could we scale the investment up and make an arbitrary amount of money 
out of nothing? 

Now, remember that you are not alone. If such an arbitrage opportunity were 
available, many other investors would follow your pattern and buy the under-
lying asset; this would increase the spot price (not to mention the fact that 
many people would borrow money, which would affect the interest rate). What 
could happen is not quite clear, as it depends on complex market dynamics, 
but we can conclude that those three numbers (spot price $50, forward price 
$60, risk-free interest rate 10%) are not consistent; they cannot be equilibrium 
prices and rates. 

So, we know that $60 is too high a forward price. It is easy to see that 
any price higher than $55 leads to a similar arbitrage opportunity. On the 
other hand, assume that Fç, is smaller than $55, say, $52. In this case, you 
could reverse the trade by selling the asset short (see Example 1.3 on short 
selling). You borrow the asset, sell it at the current spot price SO = 50, invest 
the proceeds at the risk-free rate, and enter a long position in the forward 
contract. This long position comes in handy, as you will have to give the 
asset back to the lender in one year. You will do so at the given forward 
price, $52, after collecting the money you lent plus interest, which is now $55; 
then, you made $3 for free. A similar strategy can be applied for any forward 
price less than $55. 

The conclusion is that the only arbitrage free forward price is $55. General-
izing a bit, what we found is that, in order to rule out arbitrage opportunities, 
the forward price should be 

F0 = S0(1 + R{) 

which is a somewhat stunning conclusion: uncertainty does not play any role, 
as it is the risk-free interest rate R{ that determines the forward price. This 
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conclusion should be taken with care, as it is at odds, e.g., with what we 
read on newspapers about speculation with futures on oil prices. In fact, the 
reasoning assumes somewhat idealized financial markets, and it can be more 
or less justified, depending on the actual asset we are dealing with. While a 
financial asset can be practically stored at no cost, oil cannot; by the same 
token, selling oil short is certainly not that easy. Pricing forward and futures 
contracts is affected by many issues such as transaction costs, differences 
between lending and borrowing rates, etc. Still, there is an important lesson 
here: 

Uncertainty is important in decision making, but collective behavior may 
have some surprising effects on it. 

1.4 QUANTITATIVE MODELS AND METHODS 

Hopefully, the examples in the previous sections have shown the relevance, as 
well as the limitations, of quantitative analysis for real-life business decisions. 
In the following chapters we cover a wide variety of tools, which could be 
somewhat confusing for the reader. Hence, it is a good idea to set a conceptual 
framework to classify and interpret the different approaches, which should not 
be regarded as a disordered array of technicalities. Applying a quantitative 
analysis typically requires two steps: 

• Building a quantitative model of a system, or part of it 

• Solving it by some suitable method 

To see the difference, consider the linear programming model to find the 
optimal mix in Section 1.1.2. After you have written the model down, a 
numerical solution procedure should be applied to come up with the answer 
we need. Lightning fast software packages to solve linear programming are 
widely available; hence, emphasis should be placed on model building, rather 
than model solving. In fact, data collection, a correct assessment of objectives 
and constraints, and the ability to interpret the solution are definitely more 
critical to success than plain number crunching. 

Indeed, the title of the book is arguably somewhat misleading, even though 
quantitative methods is the standard name of courses covering these subjects. 
Nevertheless, it is often essential to have at least a rough idea of the inner 
working of solution methods, because 

1. The way the model is formulated may have an impact on available meth-
ods, as well as their efficiency. 

2. The solution method may be valid only if some assumptions about the 
data hold; ignoring these assumptions may result in gross mistakes if a 
method is applied to the wrong problem. 
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Another important healthy principle that we should keep in mind is21 

All models are wrong, but some are useful. 

Indeed, any model is a simplified representation of reality, and it need not be 
quantitative. Qualitative models are very useful in business process reengi-
neering (BPR), and are often based on some graphical formalism to clarify 
relationships between actors, chain of events by activity diagrams, etc. Quan-
titative models, on the contrary, are based on numerical information. 

1.4.1 Descriptive vs. prescriptive models 

A quantitative model can be 

• Descriptive, if its purpose is to shed some light on the relationships 
between two (or more) variables of interest (e.g., do sales depend sig-
nificantly on advertisement expenditure?) or to predict system perfor-
mance as a function of some design variable (e.g., the average waiting 
time in the queue, as a function of the number of tellers in a bank). 

• Prescriptive, when the aim is (more ambitiously) to find a solution, 
subject to economical or technological constraints, so that costs are 
minimized or profits are maximized (see, e.g., the optimal mix problem). 

Typical examples of descriptive models that we cover in the book are 

• Simulation models for performance evaluation (Section 9.7) 

• Linear regression models (Chapters 10 and 16) 

• Time series models for forecasting (Chapter 11) 

All of these models are used to generate information that helps in coming up 
with a decision, but they are not aimed at generating the decision directly. 
Examples of prescriptive models whose output is the decision itself are 

• The economic order quantity model (Section 2.1) 

• Linear programming models (Chapter 12) 

It should be clear that prescriptive models are more ambitious and, in prin-
ciple, they could even be used to automate the decision process. This applies 
to strictly technical problems, especially when the time to make a decision is 
quite limited. In most business settings, however, prescriptive models should 
be regarded as decision supports, and we must be aware of their limitations: 

The quote is generally attributed to the statistician George E.P. Box, 1979. 
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• The output is affected by data uncertainty (which is not only of a statis-
tical nature; demand is uncertain because we cannot forecast the future 
exactly, whereas some cost are hard to quantify-how much is the in-
ventory holding cost for an item?). Sensitivity analysis should be an 
integral part of a quantitative analysis. 

• Some tradeoffs between conflicting objectives are difficult to assess quan-
titatively, possibly requiring the interaction between multiple stakehold-
ers. 

• More often than not, we have to approximate parts of a problem to make 
it tractable, and expert judgment is needed to evaluate the impact on 
these simplifications on the viability of the model and of the solution 
that we obtain from solving it. This process is called model validation. 

Because of these limitations, it is sometimes argued that quantitative analysis 
should be confined to academia, and that common sense and a lot of practical 
experience are what is really needed. It is certainly true that human knowledge 
is an extremely valuable asset; what is not true is that it is incompatible with 
quantitative analysis. Furthermore, there is another more and more important 
factor: time. The rate of change in business conditions is faster and faster. 
For instance, when you change a product line, you have to redesign the whole 
supply chain to support its production. There is simply no time to do that 
manually, and some automatic support is needed. Intuition and experience 
are essential, but they are not enough. 

1.5 QUANTITATIVE ANALYSIS AND PROBLEM SOLVING 

Even if the problem is too complex to rely on the decision proposed by the 
solution of a model, we should not underestimate the value of model building 
per se. The model building process itself is a valuable activity as it requires 
the following ingredients: 

• Gathering data. Quite often, complex organizations do not pursue a 
disciplined approach to data management. Important data are missed, 
some are duplicated with possible inconsistencies, some are not shared 
between different offices, and errors are not discovered because no one 
really uses that information. The need to collect data to build a model 
may force an improvement of the related processes. Furthermore, model 
building can help in transforming a huge amount of useless data, into 
useful and shared information. 

• Structuring the problem. This requires sharing information and under-
standing the multiple dimensions of a problem, as well as the points 
of view of other stakeholders. This is important in large organizations, 
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where conflicting views are the rule rather than the exception, and enti-
ties within a firm pursue hidden agendas without agreeing on a shared 
understanding. It is always important to keep in mind that any quanti-
tative analysis is doomed to failure if some relevant actor is not involved 
and motivated. 

If model building and model solving result in a solution to the business prob-
lem, the solution itself must be implemented, monitored, and adapted when re-
quired by new circumstances. Fostering the culture and the discipline needed 
to monitor a solution and to assess the improvement in key performance in-
dices is again valuable per se. 

We close this section by remarking that quantitative analysis can play an 
important role in the following circumstances: 

• When an objective support for decisions is needed. Rationalizing the 
analysis may ease potential conflicts between stakeholders. 

• When the decision process leading to a recommendation must be ex-
plicitly documented. Because of uncertainty, even the best decision 
may result in a bad outcome. If you can back your decision with serious 
analysis, chances are that you will be able to save your neck. 

• When the relationship between variables is too complex to be analyzed 
intuitively; in such a case, intuition can lead to wrong decisions because 
we are not able to fully grasp the impact of decisions. 

• When the number of decision variables is too large to be managed even 
by the best human experts. 

• When there are many difficult constraints and even finding a feasible (let 
alone optimal) solution is very hard. One example is train timetabling, 
which is a daunting task because of the number of shared resources 
(trains, crews, rails) and the constraints on their use, such as rules 
constraining how personnel shifts are scheduled. 

• When tradeoffs between conflicting criteria must be assessed objectively 
(e.g., customer service vs. inventory holding cost). 

Problems 

1.1 Consider again the growth option problem of Section 1.2.2. We want to 
check the impact of less extreme assumptions about the conditional probabil-
ities for the second movie, but we are unsure which values we should use. So, 
we assume that the conditional probability of a second success, after a first 
success, is 0.5 + a, for some unknown value of a; this is also the probability 
of a second flop, after a first flop. The analysis in Section 1.2.2 shows that 
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if a — 0.5, we should produce the first movie. What is the limit value of a 
below which we should change our mind? 

1.2 Consider the optimal mix model of Section 1.1.2. How could we extend 
the model to cope with 

• Third-party suppliers offering items at given cost? 

• The possibility of overtime work at some resource centers? 

For further reading 

• There are many books covering quantitative methods for business ap-
plications. Most of them deal only with one side of the coin, either 
probability/statistics or decision models. A book illustrating many dif-
ferent kinds of applications is Ref. [6], where many kinds of problems and 
methods are presented, even though skipping many details and applica-
bility conditions. Another book aimed at a relatively broad treatment of 
quantitative models and methods is Ref. [2], which covers less material 
than the previous reference, but at a deeper level, and is also rich in 
interesting cases. 

• The practical impact of quantitative analysis on business is emphasized 
inRefs. [1, 7]. 

• Last but not least, depending on your personal taste, you might be 
interested in books covering the application of quantitative analysis to 
specific application domains: 

Logistics. A wide range of applications related to supply chain man-
agement and logistics are covered in Ref. [4], ranging from strategic 
network design to operational routing of vehicles. 

Operations management. Both descriptive and prescriptive models 
for production planning and control are covered in Ref. [10]; in Ref. 
[3] emphasis is given to prescriptive models. 

Pricing and revenue management. Dynamic pricing strategies and 
revenue management are an essential tool for certain kinds of busi-
ness application; a relatively informal treatment is given in Ref. 
[13], whereas Ref. [15] is more challenging and illustrates the ap-
plication of sophisticated quantitative models. 

Marketing. Interesting applications of statistics to marketing are il-
lustrated in Ref. [12]. 

Finance. This is a domain where the role of quantitative analysis has 
boomed in the last two decades, with a considerable trail of con-
troversy; introductory books that can help you appreciate the role 
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of quantitative models in financial markets are, e.g., Refs. [11] and 
[14]; a good reference for corporate finance is Ref. [9]; you may also 
appreciate the connection between the two fields in Ref. [8], which 
discusses option valuation for investment analysis. 
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2 
Calculus 

Calculus is a classical branch of mathematics, dealing with the study of func-
tions. A function is essentially a rule for association of one or more input 
variables with an output value. For instance, we might be interested in relat-
ing a decision, say, how much to produce, to the business outcome, say, profit. 
In Chapter 1 we have seen that this is needed, for instance, to figure out the 
best mix of products. Building a relationship linking managerial levers and 
the resulting outcome is essential in tackling any decision problem. In other 
cases, our aim is somewhat more instrumental. In statistical model building, 
we want to find a mathematical representation that yields the best fit between 
the empirically observed data and the predictions of the model. To accom-
plish this task, first we need to choose a functional form depending on some 
unknown parameters, and then we must choose another function expressing 
the lack of fit, which in turn is related to prediction errors. Empirical model 
building calls for the minimization of such lack of fit. In real life, we deal 
with functions of many variables, but in this chapter we just deal with func-
tions of one variable, i.e., rules mapping one input value x to an output value 
y = f(x). We may introduce all of the required concepts in this simplified 
setting. Later, precisely at the end of the next chapter, we will generalize to 
functions of multiple variables. 

Given a function, the first task that comes to our mind is plotting it, in 
order to get an intuitive feeling for the relationship between x and y, and 
to analyze the sensitivity of the output to variations in the input. Typical 
questions are as follows: 

• How will a slight variation in interest rates affect an investment decision? 
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• How will a change in unit cost of some raw material affect total profit 
from manufacturing a product? 

To deal with these important issues, we introduce a fundamental concept: 
the derivative of a function. The same concept is also essential in optimiz-
ing a function, i.e., in finding decisions maximizing profit or minimizing cost. 
Studying the related issues, such as convexity and concavity of functions, 
paves the way for later chapters dealing with optimization models. We will 
also hint at some other important topics such as sequences, series, and inte-
grals, even though our treatment will be quite brief, and limited to what is 
really essential to understand a few topics in later chapters. 

The treatment below is reasonably self-contained, as we just take for granted 
a basic familiarity with sets and real/integer numbers. Many readers are prob-
ably familiar with the topics covered in this chapter. If so, the best way to pro-
ceed could be just skimming through the chapter and return here, if needed, 
to clarify a concept used in more application-oriented chapters. In general, 
our treatment will leave much to be desired in terms of mathematical rigor.1 

A more solid foundation would certainly be necessary to prove some useful 
results, and to characterize and deal with some pathological cases. However, 
we just strive to get an intuitive understanding of a few fundamental concepts 
of calculus, which is more than adequate from our perspective; the interested 
reader is referred to references for a deeper treatment. 

We start in Section 2.1 with a motivating example from inventory control 
theory, the economic order quantity (EOQ) model. Then in Section 2.2 we 
provide readers with a little background on numbers, intervals, and permuta-
tions. Functions, the core business of calculus, are introduced in Section 2.3, 
followed by Sections 2.4 on continuous functions, 2.5 on building functions 
by composition, and 2.6 on inverting functions. As we mentioned, one of the 
main tools of calculus is the derivative of a function, which is introduced in 
Section 2.7; practical rules for finding the derivative of a function are dealt 
with in Section 2.8. The first application of derivatives is in graphing func-
tions, as shown in Section 2.9; then, in Section 2.10, we illustrate their role in 
sensitivity analysis and in approximating complicated functions by Taylor's 
expansions. Section 2.11 lays down the foundations of optimization meth-
ods, including the essential concepts of convexity and concavity. We close the 
chapter by outlining very briefly two other useful tools: series in Section 2.12, 
and definite integrals in Section 2.13. Later, in Section 3.9, we will briefly deal 
with derivatives and integrals of functions depending on multiple variables. 

1For instance, we will never use the epsilon-delta approach to properly define limits and 
continuous functions. We believe that , for our purposes, an intuitive understanding of these 
concepts is sufficient. 
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2.1 A MOTIVATING EXAMPLE: ECONOMIC ORDER QUANTITY 

Before getting into formal details of calculus, it is essential to arm ourselves 
with some motivation for doing so. In management science, we often want 
to relate decisions to cost or profit. This is necessary in order to find an 
"optimal" decision yielding the best performance in some well-specified sense. 
We should quote "optimal," because our decision is just optimal with respect 
to our cost or profit model. It is often said that all models are wrong but 
some are useful. Indeed, a model can be a quite rough representation of a 
possibly complicated and uncertain reality. Still, it can be useful to sharpen 
our understanding and to find a good decision. We should never forget that 
a quantitative model is just a decision aid and not a magical oracle. A case 
in point is the economic order quantity (EOQ) model. This is a somewhat 
old-style, archetypal model for inventory management, relying on a lot of 
debatable assumptions; yet, it can have some value in practice and is a good 
way to show mathematical modeling and calculus in action. 

Imagine that you are in charge of managing the inventory of an item at a 
retail shop. Inventory is depleted at a rate depending on demand, and every 
now and then you have to replenish inventory by issuing a purchase order to 
a supplier, or maybe a production order to your own manufacturing facility. 
To keep it simple, let us assume that demand is perfectly constant in time 
and let d denote the demand rate. The demand rate is the demand per unit 
time, such as 10 items per day or 75 items per week. The specific time unit 
is not important, provided we are consistent in specifying all of the relevant 
data. 

Which kind of decisions are you supposed to make? Actually, there are two 
decisions involved here: 

1. When to order 

2. How much to order 

The first decision, in an ideal world, is actually trivial. By "ideal" world we 
mean a world in which there is no uncertainty involved: 

• Demand is perfectly predictable (even constant, under our assumption); 
we also assume that demand is "fluid," in the sense that we approximate 
the discrete flow of items out of inventory, one piece at a time, as a 
continuous flow. 

• The time it takes to get a shipment from the supplier is fixed and known; 
this time is known as lead time or time to delivery. 

In this setting, you should issue a replenishment order when inventory reaches 
a level corresponding to demand during lead time. For instance, if time to 
delivery is 2 days and the demand rate is 10 items per day, it is easy to see that 
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Fig. 2.1 Time evolution of inventory levels in the EOQ model. 

you should issue an order when your inventory level decreases to 20 items.2 

Doing so, you will receive the new stuff exactly when you run out of stock! 
Clearly, such magic does not happen in real life, but for our little example 
we may ignore issues related to variability in time to delivery and timing of 
orders. 

As to the second decision, since demand is constant, it is reasonable to 
assume that whenever you replenish, you always order the same amount, i.e., 
your preferred order size. Let Q be the order size we choose and, without 
loss of generality, assume that we start with Q units on hand. The resulting 
inventory pattern will look like Fig. 2.1, where / denotes the inventory level 
and t denotes time. We see that the inventory pattern is periodic, as we issue 
an order every Q/d time units. For instance, if the demand rate were 100 
items per week, an order size Q = 300 would result in a replenishment order 
every 3 weeks. In practice, the inventory plot would be a stepwise function, 
as we sell one item at a time, and not fractions of items; yet, if demand 
volume is large enough, a continuous pattern like the one in the figure is a 
fair approximation. The case of sporadic demand for a niche product should 
be addressed by a different modeling approach. 

So, under our quite strong assumptions, we have just one decision to make: 
Finding the right amount Q to order, i.e., the economic order quantity (EOQ). 
Indeed, this is a matter of compromise between conflicting needs: 

2In real life, ordering decisions are never just based on on-hand (physically available) in-
ventory, since we should take into account the possibility of replenishment orders that have 
already been issued to suppliers, but have not been received yet. Furthermore, when deal-
ing with uncertainty, you should take into account the possibility of backlogged customer 
orders that you were not able to meet immediately, because you ran out of stock. For a 
more in-depth analysis, please refer, e.g., to Chapter 5 of Ref. [4]. 
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• Imagine that, whenever you issue an order, a fixed charge3 is incurred. 
For instance, if your supplier ships a container, quite reasonably the 
shipping charge will include a fixed component that does not depend on 
what and how much is transported. Hence, from this perspective you 
would like to order a rather large amount, whenever you replenish, in 
order to spread the fixed ordering charge on as many items as possible. 
Put another way, the less orders are issued per year, the better. 

• On the other hand, you would like to order just a few items quite often. 
Doing so is important when items, such as fresh produce, are perishable 
and their limited shelf life precludes stocking large amounts. Perishabil-
ity should not be confused with a similar issue, obsolescence, which is 
typical of fashion products or items characterized by a fast pace of tech-
nological innovation, such as consumer electronics.4 Even if you do not 
consider such issues, there is a good financial reason to keep inventories 
low. When you receive a shipment from your supplier, you pay her, and 
this means that you have tied up some liquid cash to your inventory. 
When you sell, you will get your money back, plus a profit margin, but 
having too much liquidity immobilized there may be a bad idea. Apart 
from this opportunity cost of capital, large on-hand inventories also im-
ply high insurance costs. Even worse, you may end up with a huge 
inventory of a slow-moving item, locking liquidity and precluding the 
purchase of items that are in demand, unless you borrow money from a 
bank, incurring possibly high interest rates. 

Note that, in our setting, we should not consider profit, since we are assuming 
that we will satisfy all of the customers anyway; hence, our problem is just 
satisfying demand at minimum cost, and this in turn requires spotting the 
right compromise between the two conflicting requirements above. How can 
we do that? 

There are three tasks that we should accomplish in sequence: 

1. We should make the relationship between the decision Q and the total 
cost explicit. To this aim, we may write down a function Ctot(<5) map-
ping order size Q into total cost; to be more precise, we will consider 
the average total cost per unit time. To fix ideas, we assume that our 
time unit is exactly one year. 

2. We should sketch a graph of the total cost function to see what impact 
our decisions have on average total cost per year. 

3There may be some ambiguity between fixed charge and fixed cost. We use the latter term 
to refer to a cost that is paid, whether we execute an activity or not; the only way to avoid 
the fixed cost is shutting our business down. By fixed charge we mean a cost that we pay 
whenever we execute an activity, like ordering a batch of items. If we do not order, the 
fixed charge is not paid. 
4In a market with fast obsolescence, the problem is best tackled by using variants of the 
newsvendor model; see Example 6.9 and Section 7.4.4. 
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3. Finally, we should find the best decision, i.e., the optimal order size Q*, 
such that the cost function attains its minimum. 

2.1.1 Task 1: representing the total cost function 

In order to express average total cost per unit time as a function of the order 
size Q, we should consider all of the factors contributing to the overall cost. 
The first one that comes to mind is purchase cost. If the unit item cost is c, 
measured in money per item, we have to pay cQ whenever we replenish; this 
variable cost per order must be translated in terms of cost per unit time. If we 
issue an order every Q/d years (our time unit), then we will issue d/Q orders 
per year, on the average. For instance, if demand rate is 1200 items per year 
and the order size is Q — 100, we will issue 12 orders per year. Hence, the 
contribution of purchasing to total cost is just the product of cost per order 
times average number of orders: 

CpU = cQ- — = cd 

On second thought, this is obvious: In order to satisfy total demand during 
one year, we have to order d items, anyway, whether in small or large batches. 
We notice immediately that this term does not depend on Q, as we are disre-
garding possible discounts based on ordered quantity, which would make the 
unit cost a function c(Q) of the order size. 

Now let us consider the contribution to total cost from the fixed-charge 
component. Whenever we order, we have to pay A (euros, dollars, or what-
ever), and we have already found that the average number of orders we issue 
per year is d/Q, on the average. Then, the contribution from the fixed order-
ing charge is 

Finally, we need the contribution due to inventory holding. This is a bit 
trickier, and we should clarify which kind of cost we are dealing with. If we 
keep one item in inventory for one year, we incur a cost. Let us denote this 
unit inventory holding cost by h. It is important to realize that the dimensions 
of this unit inventory holding cost are money per item, per unit time; in a 
sense, this is a "twice" unit cost, with respect to volume and with respect 
to time. There are a few ways to figure out the contribution from holding 
cost and all of them require a careful look at Fig. 2.1. There, we see that the 
inventory level ranges between 0 and Q and changes according to a smooth 
and constant rate. The pattern is repeated every Q/d time units. Consider an 
order for Q items. A good question is: How much time does an item of that 
shipment spend sitting in our warehouse? Actually, the first item that gets 
issued from inventory waits no time at all, in our abstract model; it is placed 
into the warehouse when we receive the shipment, but it is immediately sold. 



A MOTIVATING EXAMPLE: ECONOMIC ORDER QUANTITY 53 

Ctot(Q) = Cin + COI + Cpu = h^ + — +cd 

The less lucky item is the last one, as it will wait Q/d time units. On average, 
the waiting time for an item will just be the average between the two limit 
values 0 and Q/d, i.e., Q/(2d). Since there are d items going through the 
inventory each year, the contribution to total cost from inventory holding is 

Q Q 
Cin = h-d-- = h -

As an alternative way to obtain the same result, we may consider the average 
inventory level. Since the inventory level ranges between Q to 0 and changes 
uniformly in time, its average is Q/2. Multiplying average inventory level by 
h yields the result above. This alternative view has the advantage of being 
generalized to any inventory pattern, not necessarily a constant and uniform 
one. Now we are ready to put all öf it together. The average total cost per 
year, as a function of Q, is 

Q_ Ad 
'"2 + Q 

One thing is immediately clear: The purchase cost component is constant and 
does not play any role in determining the optimal order size. If you have any 
difficulty in seeing this, please have another look at Fig. 1.2. 

As we see, a function /(·) is essentially a rule mapping an independent vari-
able, Q in our case, into a value y = f(Q) of a dependent variable. Notations 
like /(·) or / are used to emphasize the difference between the function itself 
(a rule to map variables to values) and the output value f(Q) taken for an 
input value Q (a specific numerical value). 

2.1.2 Task 2: plotting the total cost function 

Having figured out a relationship between the order size and the average total 
cost per year, it would be useful to plot the function in order to see the 
effect of Q and to figure out a good decision. There are plenty of powerful 
software packages that, given a range of the independent variable Q, compute 
the corresponding values f(Q) and display the result graphically. This is 
certainly quite useful, but we should also be able to figure out some basic 
properties of the function by just looking at its expression. There are a few 
reasons justifying the need for this ability: 

• It is helpful when evaluating the function numerically is difficult or prone 
to numerical errors. 

• It is often the case that a function cannot be evaluated for some values 
of the independent variable, but a piece of software will not help you in 
understanding what is going wrong. 

• In more complicated settings, we may not just rely on brute computa-
tional force; to see this, imagine plotting a function depending on more 
than two independent variables. 
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Fig. 2.2 Inventory holding and fixed ordering charge components in the EOQ model. 

• Last but not least, this exercise helps in honing skills and improving 
understanding. 

In general, plotting a function can be difficult, but it is fairly easy in the case 
of the EOQ cost model. Disregarding the constant term, the essential form 
of the total cost function is 

Ctot(Q) = aQ +-

where a = h/2 and b = Ad. From our high school background, we should 
immediately see that this function is just the sum of a straight line aQ, going 
through the origin, and a hyperbola b/Q (see Fig. 2.2). To get a rough picture 
of the function, let us consider the two extreme cases: 

• When Q is very small, the linear component aQ is small, too, but the 
nonlinear component b/Q gets larger and larger; in fact, for a very 
small order size, the inventory holding cost component goes to zero, 
but the fixed-charge component increases without limits, because we 
are spreading the fixed ordering charge over a tiny number of items. We 
cannot evaluate Ctot(Q) for Q = 0, since we cannot divide by zero, but 
we can write 

lim Ctot(Q) = +00 

This notation has a precise mathematical meaning, but the informal 
interpretation is that the limit of the total cost goes to (plus) infinity, 
when Q tends to zero. Notations like 

lim or lim 
Qio 

are used to indicate that Q goes to zero while staying on the positive 
side. (A negative order size makes no sense!) We say that Q goes to 
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zero "from the right" or "from above." So, in the range of small order 
sizes, the nonlinear component prevails and the function looks like a 
hyperbola. 

• When Q is very large, the linear component aQ is large, too, as large 
holding costs are incurred. On the other side of the coin, the nonlinear 
component b/Q goes to zero, since the fixed charge component is spread 
on a huge amount of items. In this range of large order sizes it is the 
linear component that prevails, and the function looks like a straight 
line. In this case too, the limit of the cost function goes to infinity: 

lim Ctot(Q) = +00 
Q-»+oo 

The result of these observations is a sketch like that in Fig. 2.2. Indeed, we see 
that there are very bad decisions, corresponding to very large or very small 
order sizes, and some good ones, for which cost is much lower. Now we have 
to find the optimal compromise. 

2.1.3 Task 3: finding the best decision 

In plotting the function, we have ignored the purchase cost component cd, 
which is constant and would just push the graph up a bit. This is not relevant 
to us, since what we are interested in is finding an order size Q* minimizing 
total cost. Indeed, since the function goes to infinity for very small and 
very large order sizes, we would expect that somewhere in between there 
is an optimal order size, the EOQ. One possible way of finding the EOQ 
is by trial and error, i.e., by calculating the cost for several input values 
and spotting the best choice. Unfortunately, this brute-force approach is 
time-consuming, not quite informative, and not feasible in more complicated 
cases. In this chapter we will learn a more straightforward way to spot a 
minimum-cost or maximum-profit solution, based on the concept of function 
derivative. For now, we can observe that the minimum cost solution is a 
point where the tangent line to the function graph is horizontal. This is 
illustrated in Fig. 2.3(a): Three tangent lines are shown and, indeed, the 
minimum-cost solution is where the tangent line is horizontal. It seems that, 
if the tangent line corresponding to an order size is not horizontal, we may 
find an improvement by moving to the left or to the right. Actually, this 
reasoning is not 100% correct, and this intuition needs some refinement. Still, 
using concepts explained later along these lines, it will be easy to see that the 
optimal order size, according to the EOQ model, is 

«•-i/¥ <»> 
We see that the EOQ size is increasing with respect to fixed charge A and 
decreasing with respect to inventory holding cost h, which is quite reasonable. 
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\ 

(a) (b) 

Fig. 2.3 (a) Tangent lines to the total cost function, and (b) the optimal cost in the 
EOQ model for varying demand rate d. 

If we plug the optimal order size into the total cost function, we get the average 
cost per year for the optimal solution as a function of the demand rate d: 

Ct*ot(ef) = V2Ahd + cd (2.2) 

This function is plotted in 2.3(b), and it is interesting to note its shape. As 
expected, it is an increasing function of the demand rate. This is no surprise, 
after all: The larger the demand that must be satisfied, the larger the incurred 
cost. What is not that obvious is that the rate at which the function increases 
is decreasing. To see this, imagine drawing tangent lines at different points 
on that graph. The slopes of the tangent lines are decreasing with respect 
to demand rate d. This is a typical behavior of cost functions exhibiting 
economies of scale. We will learn later that a function like that is a concave 
function. 

2.2 A LITTLE BACKGROUND 

As we have already pointed out, the reader is assumed to be equipped with a 
basic mathematical background about sets as well as integer and real numbers. 
In this section we briefly recall a few basic concepts for convenience. 

2.2.1 Real vs. integer numbers 

If we order cars from a car manufacturer, we cannot order 10.56986 cars; we 
may order either 10 or 11 cars, but any value in between makes no sense. 
It should be intuitively clear what we mean by an integer number, integer 
numbers are used to measure variables that have a intrinsically discrete nature. 
A real number is a number with some, possibly infinite, decimal part. Real 

v^J.d) 

-*-ß 
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-3 -2 -1 0 +1 +2 +3 

Fig. 2.4 The real line. 

numbers are not that obvious to characterize formally, but intuitively a real 
variable is used to measure something that has an intrinsically continuous (or 
"fluid") nature. In the following, we denote the set of real numbers by R 
and the set of integer numbers by Z. If we are just interested in nonnegative 
numbers, we use notations R + and Z + . 

Real numbers can be represented on a real line, as illustrated in Fig. 2.4, 
ranging from —oo (minus infinity) to +oo (plus infinity). Given any pair of 
real numbers on the real line, you can always find a real number between 
them. For instance, given 

xi = 2.3982, x2 = 2.3983 

we can actually find infinitely many real numbers between them; one example 
is x = 2.3982133. The set of real numbers is "dense," whereas the set of 
integer numbers is not: There is no integer number between 10 and 11. 

2.2.2 Intervals on the real line 

Inequalities like a < x < b, where a and b are arbitrary real numbers such 
that a < b, define intervals on the real line. The inequality above defines an 
interval that includes its extreme points. In such a case, we use the notation 
[a, b] to denote the interval, and we speak of a closed interval. On the contrary, 
inequalities a < x < b define the open interval (a,b). For instance, the 
point x = 10 belongs to the closed interval [0,10] but does not belong to 
open interval (0,10). We may also consider open-closed intervals like [a, b), 
corresponding to inequalities a < x < b, or (a, Ò], corresponding to inequalities 
a < x < b. 

If both a and ò are finite, we have a bounded interval. We may also consider 
unbounded intervals by extending the real line to include ±oo. Examples of 
unbounded intervals are 

• (—oo,a], corresponding to x < a 

• [a, +oo), corresponding to x > a 

• (—oo, +oo), which is the whole real line 

Note that there are infinite integer numbers in Z, as well as infinite real 
numbers in R. However, we cannot say that the two sets have the same 
"order of infinity." To see this informally, note that there are infinite real 
numbers even in a bounded interval like [0,1]. To get an infinite set of integer 
numbers, we have to consider an unbounded interval. 
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Whenever we have an infinite collection of items that can be counted, i.e., 
can be placed in correspondence with the set of integer numbers, we speak of 
a countably infinite set. For instance, a sequence of arbitrary real numbers Xk, 
for k = 1,2,3,.. . , is an infinite sequence, but it includes less points than the 
bounded interval [0,1]. More generally, we speak of denumerable or countable 
sets, including also finite collections of elements. 

2.2.3 The sum notation 

Consider an expression like 

X1+X2 + X3 + X\ 

We will meet similar expressions quite often in the book, and a nice shorthand 
notation for this expression is 

4 

i= l 

which should be read as the sum of "x subscript i," for i ranging from 1 to 4. 
Sometimes, the sum limits can be symbolic, as in 

n 

^2 xi = χ1 + χ2 + %3 H H Xn-l + Xn 
i= l 

We may even consider an infinite sum like 

+00 

'^Xi = Xl + X2 + X3 -\ 
i= l 

In this case, we should wonder whether the expression makes sense, since 
summing an infinite number of terms may result in a sum going to infinity. 
A thorough study of the involved issues requires the theory of mathematical 
series; in Section 2.12 we deal with a few examples that are most relevant in 
applications. In some cases, we might wish to skip values corresponding to 
some subscript: 

5 
y^Xi = Xl+X3 + X4 + X5 

i = l 
ίφΐ 

Finally, when variables have two subscripts, we may consider double sums like 

3 4 4 4 4 

EL1« = Σ^' + Σ^' + Σ13'' 
i=l j—1 j=l j = l j = l 

= (Xn + X\2 + Xl3 + Z14) + (Z21 + Z22 + X23 + ^24) 
+ (Z31 + X32 + Z33 + Z34) 
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In this example we also see that the order of the two sums is irrelevant and 
they may be swapped: 

3 4 4 3 

/ , / , Xi3 = 2_< 2-j Xij 

i=l j = \ j = \ i=\ 

We will always take for granted that this is the case, even though some care 
should be taken with infinite sums. When sum limits are irrelevant, we may 
use streamlined notations like 

/ j xij o r / j xij 

i,j - i+i 

The latter notation comes in handy when we want to exclude terms of the 
form z u , £22, £33, etc. 

2.2.4 Permutations and combinations 

Many practical problems involve permutations and combinations of objects. 
A first question is: Given a collection of n objects, in how many ways can we 
permute them? For instance, let us consider the set {a, b, c}. Since the set 
is quite small, we can enumerate all of the possible permutations systemati-
cally. First we consider permutations beginning with a; we can form two such 
permutations, (a,b,c) and (a,c,b). Then, considering permutations starting 
with b, we have (6, a, c) and (b, c, a), and by the same token we have (c, a, b) 
and (c,b,a), beginning with c. Hence, there are six possible permutations of 
three objects, but what can we say in general for n objects? Again, let us be 
systematic in our enumeration of permutations: 

• When we choose the first item in the sequence, we have n possibilities. 

• When we choose the second item, we have n — 1 possibilities, since one 
object has already been used to fill the first slot. 

• When we choose the third item, we have n — 2 possibilities, since two 
objects have already been used to fill the first and second slots. 

• When we have only two items to go, we can choose among two. 

• When we have one item left, there is just one possible choice. 

Hence, the total number of permutations of n objects is 

n x (n - 1) x (n - 2) x (n — 3) x · · · x 2 x 1 

The kind of product above is so common that it has been given a name. 
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DEFINITION 2.1 (Factorial) Given a positive integer number n, the fac-
torial of n, denoted by n\ is defined as 

n! = n x (n - 1) x (n - 2) x (n - 3) x · · · x 2 x 1 

The factorial can also be defined recursively as 

n\ = n x (n — 1)! 

and, by convention, we set 0! = 1. 

A noteworthy feature of the factorial function is that it grows very quickly 
with n: 

3! = 6, 5! = 120, 10! = 3,628,800 

This process is known as combinatorial explosion and has practical implica-
tions. 

Example 2.1 Imagine that you are a traveling salesperson. You live in a 
city, and your task is to visit customers living in other cities and then come 
back home. Let n be the number of cities you have to visit, not including 
yours; all of them must be visited exactly once. Arguably, you would like to 
follow the shortest route in your tour. Geographic information systems can 
provide you with distances dij between any pair of cities (i, j), where i φ j 
and the indices range over the set {0,1 ,2 , . . . ,n} (say that 0 is your city). 
How can we find the optimal tour? 

One obvious idea is that, since there must be a finite number of tours, 
we could just enumerate all of them and pick up the shortest one. Using 
a fast computer, this should be no big deal. But how many tours must be 
evaluated? We have n + 1 cities to visit. There are (n + 1)! permutations 
of them, but actually only n! are really different. One way of seeing this is 
observing that the first city is your home and is fixed. An alternative view is 
that we do have (n +1)! different tours, since there are n +1 possible starting 
points, but the total length is not really influenced by the starting city as the 
tour is a closed cycle; hence, the number of different tours in term of total 
length is (n + l)!/(n +1) = n\. The problem is further simplified if we assume 
symmetric distances, i.e., dij = dji. In fact, there is little difference in terms 
of mileage between traveling from Boston to New York or from New York to 
Boston. This may not apply on a smaller scale: Within a city, one-way streets 
make distances asymmetric. If we assume symmetry, we have two equivalent 
ways of traveling along each tour; you may visualize them as a clockwise and 
a counterclockwise tour. Hence, the total number of different tours is n!/2. 

Now, say that you have to visit 25 customers. Using any pocket calculator, 
we obtain 

25! « 1.55112 x 1025 

Some difficult number to read! It means that there are about 15.5112 millions 
of billions of billions of possible permutations of 25 cities. Luckily, we must 
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only consider half of those, and we also have a very fast computer. Say that 
we are able to generate and evaluate one billion permutations, i.e., 109, per 
second. Since there are 3600 seconds per hour, 24 hours per day, and 365 days 
per year, we will get the optimal tour after 

1.5511 x lO 2 5 245,928,621.95 years 
2 x 109 x 3600 x 24 x 365 

Patience is indeed a virtue, but you need a solution, not your (many times 
grand)-nephews; luckily there are much smarter ways to find the optimal 
solution, using some good mathematics. D 

Now let us consider a slightly different combinatorial problem. We have n 
items, and we want to select a combination of r of them. To see a practical 
setting in which a combination of items must be selected, imagine a batch of 
n manufactured parts, from which a random sample of r items is drawn for a 
quality check. How many combinations of r items out of n can we form? One 
way to look at the task is the following: 

• We take any permutation of n items, and we know that there are n! 
possible permutations. 

• Then we select the first r items and we include them into our com-
bination, leaving the remaining n — r items outside. However, we are 
not really interested in the order of the r items; all of their r! permu-
tations correspond to the same combination, and the same applies for 
the (n — r)\ permutations of the objects that we do not include in the 
combination. 

Hence, there are 
n! 

r\{n — r)\ 
combinations of r items out of n. As this quantity is quite common, too, it 
has earned a specific name. 

DEFINITION 2.2 (Binomial coefficient) Given positive integer numbers 
n and r, r < n, the binomial coefficient is defined as 

n! 
r\(n — r)\ 

Example 2.2 Consider n = 4 objects. How many combinations of two items 
can we form? Using binomial coefficients, we find 

4 \ 4! 4 x 3 x 2 , 
= 6 2) 2!(4 - 2)! 2 x 2 

Indeed, in soccer championships groups of four teams are formed and six 
matches between all of them played. Note that in this case the order of 
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the two teams in defining a match is inconsequential, as there are no return 
matches. 0 

To see where the name "binomial" comes from, we recall the binomial 
expansion formula: 

fc=0 ^ ' 

Example 2.3 We all remember the following formulae from high school 
math: 

(a + b)2 = a2 + 2ab + b2 

(a + 6)3 = a3 + 3a26 + 3a62 + 63 

Let us work them out using the binomial expansion formula. For the first case 
we have 

("+*)2 = £(">-** ir.n-kuk 
Kn — k 

fc=0 

0 Λ ' 0 + (ι)0'6, + (ο)Α2 
2 ! 2 2 ! . 2 ! L2 

a + T-.—T-.ab + -—-bÀ 
2! x 0! 1! x 1! 0! x 2! 

= a2 + 2ab + b2 

where we see the usefulness of setting 0! = 1 in Definition 2.1. The second 
case is also easy to check, by observing that 

3! = 6 = 3 

2) 2! x 1! 2 
D 

In practice, when computing a binomial coefficient, care must be taken as 
large numbers can result in overflow errors on a computer.5 A good way to 
simplify the calculation is to note that 

n! n x (n — 1) x (n - 2) x · · · x (n - r + 1) 
r\(n — r)\ r x (r — 1) x (r — 2) x · · · x 2 x 1 

5An overflow error occurs when you try to compute a number so large, that it cannot 
be represented on the limited size registers of the central processing unit (CPU) of your 
machine. 
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2.3 FUNCTIONS 

Functions are rules that map input values to output values in a well deter-
mined way. They come in many guises, depending on what is mapped on 
what. Generally, a function is specified as 

where T> is the domain of the function, i.e., the set of possible input values 
on which the function is defined, and T is the image or range of the function, 
i.e., the set of values that we obtain by applying the function to each x in the 
domain T>. 

In this book, we are essentially interested in numerical functions like 

f{x)=x + 2 

This is an example of a single-variable function mapping real numbers into 
real numbers; formally, this is denoted by / : R —» R. Sometimes, we have 
to restrict the domain to integer values. Consider, for instance, a function 
mapping the number of electric motors we buy to the purchasing cost. Obvi-
ously, we can only buy a nonnegative and integer number of motors; hence, we 
should specify a function g : Z+ —» R + where, as we said, Z + and R + denote 
the set of nonnegative integer and nonnegative real numbers, respectively.6 

If the number of items we buy is large, it may be convenient to express a 
function g : R+ —► R+, which is a sensible approximation and may be easier 
to work with from a computational perspective, as we shall see. 

In other cases, the domain T> is restricted because of conditions that ensure 
the proper definition of the function. 

Example 2.4 Consider the function f(x) = \ / l — x2. The square root func-
tion is defined on nonnegative real numbers;7 hence, the domain of / is re-
stricted by the condition: 

1 - ζ 2 > 0 => - 1 < χ < + 1 

The domain restriction is reflected by denoting the function as / : [—1,1] —> 
R+. In the case of g(x) = 1/x, we have g : R\{0} —> R\{0}, where we use 
A\B to denote set difference, i.e., the set consisting of elements of A that are 
not elements of B. In fact, function g is not defined for x = 0, and there is no 
solution to the equation 1/x = 0, as the function tends to zero for x —► ±oo, 
but it is never exactly zero. Hence, both domain and range of g are the set of 
real numbers minus the singleton {0}. The domain of g could also be denoted 
by {x G R | x φ 0}. D 

6Well, prices are usually quoted with at most two decimals, but we need not be that picky. 
7Unless one wishes to consider complex numbers, which can be introduced by defining an 
imaginary unit i = %/—T. We do not consider complex numbers in this book. 
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Fig. 2.5 Surface plot for the function of Example 2.5. 

We also use functions with multiple input values, such as function f(x, y). 
Here, the domain is the set of pairs of real numbers, (x,y), denoted as the 
Cartesian product K x i = R2. We defer a study of multivariable functions 
to Section 3.9 at the end of next chapter. Even the very basic task of plotting 
a multivariable function has no obvious solution, as shown in the example 
below. 

Example 2.5 (Plotting functions of multiple variables) Drawing the 
graph of a single-variable function is, at least conceptually, a straightforward 
task. The case of multiple variables is not that easy and there are different 
ways of representing them. Since we are just able to draw in three dimensions, 
we can only draw a surface corresponding to a function of two variables. For 
instance, the surface plot corresponding to function 

f(x,y) = 5x2 + xy2 

is illustrated in Fig. 2.5. The surface plot is obtained by drawing points in 
three dimensions, where the vertical coordinate z is associated with function 
values, z = f(x,y). Another useful plotting tool is the contour plot; Fig. 2.6 
shows the contour plot for the function above. This is a two-dimensional plot 
displaying a set of level curves. A level curve consists of points on the plane 
{x,y), such that the function value is constant on the curve; there is a level 
curve for each value of the function. More formally, to draw a set of level 
curves we fix a set of function values z\, 22,23, · · ·, and plot curves defined by 
equations 

f(x,y)=Zi, i = 1 ,2,3, . . . 
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Fig. 2.6 Contour plot for t he function of Example 2.5. 

Sometimes, level curves may provide us with a clearer view of how a function 
behaves. D 

From the example, we can immediately appreciate the limitations in our 
ability to "see" a function of multiple variables. This is why we need to 
develop tools that are useful in characterizing functions of many variables, 
even though we are not able to visualize them. Those tools are also the 
foundations of numerical methods to solve complicated equations and to find 
optimal sets of decisions when many of them are involved (see Chapter 12). 
Luckily, we may build the intuition and the essential concepts that we need 
by dealing with the single-variable case. In the remainder of this section we 
illustrate the most common function classes, limiting our attention to those 
that are more relevant in a business setting.8 

2.3.1 Linear functions 

A linear affine function has the following general form: 

f(x) = mx + q (2.4) 

Figure 2.7 shows a few linear functions. Strictly speaking, only the first 
function is linear. A function / is linear if the following condition holds: 

f(aixi + a2X2) — otif{xi) + «2/(^2) 

8 A most notable omission, in our introductory and business-oriented treatment, is the set 
of trigonometric functions like sin a; and cosa;. 
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Fig. 2.7 Graphs of linear (affine) functions. 

for arbitrary numbers α̂  and Xj, i — 1,2. However, this holds only when the 
coefficient q in (2.4) is zero. To see this, note that, for a generic linear affine 
function, 

f{axxi + a2X2) = τη(α.χχι + a2x-i) + q 

whereas 
Qi/(xi) + a2f{x2) — ai(mxi + q) + ο.2(ταχ2 + q) 

Equating the two expressions leads to q = 0. Nevertheless, we will often use 
the term "linear" in a loose sense, referring to linear affine functions. Since 
coefficient q is the value of / when x = 0, it represents the value of coordinate 
y at which the graph crosses the vertical axis. In fact, coefficient q is called 
the intercept, whereas coefficient m represents the slope of the linear function. 
The concept of slope is linked to the increment ratio of a function. 

DEFINITION 2.3 (Increment ratio) Given a function f and two points 
xa and Xb, such that xa < Xb, the increment ratio of f over those two points 
is defined as 

f(xb) - f(xa) 
Xb Xa 

The increment ratio is the average rate at which the function increases (or 
decreases, if the ratio is negative) over the interval [xa,Xf,]. 

For a linear function, the increment ratio is 

(mxb + q) - (mxa + q) mxb - mxa = = m 
Xb ·Εα ^b Xa 

This is always the same for any pair of point; indeed a linear function is char-
acterized by the fact that its slope is constant and tells us by how much the 
function changes for a unit change in the independent variable (the reader is 

-2 0 2 
fix) = - x + 5 
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Fig. 2.8 Graphs of polynomial functions. 

invited to check the slopes of linear functions in Fig. 2.7). We may specify a 
particular line by giving its slope m and its intercept q, i.e., the vertical coor-
dinate of the point (0, q) at which it crosses the vertical axis. Alternatively, 
we can specify a line by giving its slope and one point (XQ, yo) through which 
the function passes. This line is represented by the equation 

y-yo = m(x - x0) 
or 

y = Vo + m(x - x0) (2.5) 

2.3.2 Polynomial functions 

The next step is to consider powers of the independent variable x. A term of 
the form axm is called a monomial of degree m. Summing monomials, we get 
a polynomial function: 

f(x) =a0 + aix + a2x2 H h anxn 

Here n is the degree of the polynomial. A few polynomial functions are shown 
in Fig. 2.8. A quick glance at the three plots suggests a few observations: 

• The first polynomial function is always increasing and does not have a 
point minimizing or maximizing its value (the maximum goes to +oo 
and the minimum goes to -co) . 
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• The second one has a point that is both a local and a global minimum; 
that point is where the function stops decreasing and starts increasing. 

• The third one has two local minima, one of which is also the global one, 
as well as a local maximum. 

We define concepts like local or global minimum later, but the intuition should 
be clear from the figure. Informally, a local minimum is a point such that we 
see an increase in the function while moving both to its right and to its left, 
but it need not be the true globally minimum of the function, as the function 
could take a lower value somewhere else. 

While a linear function is either increasing or decreasing over the whole 
real line, a polynomial function may oscillate. In general, the larger the 
degree of a polynomial, the larger the possibility for up/downswings. As 
a consequence, a polynomial may have several roots, i.e., solutions of the 
equation f(x) = 0. In Fig. 2.8, the graph of the last polynomial crosses the 
horizontal axis a few times, while a linear function does so exactly once (unless 
it is a constant function). The number of roots is impossible to determine for 
a generic function, but a polynomial of degree n may have up to n (real) roots. 

2.3.3 Rational functions 

If P(x) and Q(x) are polynomial functions, the function 

P(x) 
/ ( * ) = Q{x) 

is a rational function. In other words, a rational function is just a ratio of two 
polynomials. Unlike linear and polynomial functions, the domain of a rational 
function need not be the whole real line. We are in trouble when the denom-
inator polynomial is zero, i.e., when Q(x) = 0. Loosely speaking, a rational 
function "goes to infinity" near the roots of the denominator polynomial. 

Example 2.6 Consider the rational function 

2x2 - 3x + 10 
/ ( * ) Ax2 - 7x + 10 

The numerator polynomial has no real root; in fact, the function graph shown 
in Fig. 2.9 does not cross the horizontal axis anywhere. The denominator 
polynomial has roots —2, 1, and 5, and the function behavior is critical near 
these roots, where the function goes to ±oo. D 

Example 2.7 (Internal rate of return) Let us consider a more interesting 
example from finance, involving polynomial and rational functions. In ana-
lyzing an investment, we often deal with a sequence of periodic cash flows Ct, 
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Fig. 2.9 Graph of a rational function. 

t = 0 , 1 , . . . , T. A positive cash flow at time t means that the investor receives 
some money, whereas a negative cash flow is, from her viewpoint, a payment. 
We deal with integer-valued time instants t, which are actually integer mul-
tiples of a basic time period, which could be a month or a year. To fix ideas, 
say that the basic time period is one year. Then, Co is an immediate cash 
flow, C\ is a cash flow occurring in one year, etc. Quite often, Co is the initial 
capital outlay to invest in a project, whereas Cj, t = 1, . . . ,T, are the net 
cash inflows from the investment (they are not necessarily positive, though). 
A typical question is whether the project is worth financing. Arguably, if the 
straightforward sum of cash flows is negative, we are about to loose money. 
However, we already know from Section 1.2.3 that the time value of money 
should also be taken into account: Cash flows should be discounted using 
a discount rate r. The sum of discounted cash flows is the net present value 
(NPV) of the investment and is given by the following function of the discount 
rate: 

C\ C2 Cr NPV(r) = Co + 
1 + r + (l + r ) : + ··· + ( 1 + r ) 

This function is actually a rational function of r, as by a straightforward 
manipulation we could recast it as the ratio of two polynomials: 

NPV(r) C 0 ( l + r ^ + C 1 ( l + r ) i - 1 + C2(l + r ^ - 2 + --- + C T 

(l + r)T 
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In practice, this manipulation is of little use, as we shall see immediately. 
According to financial theory, provided that we are able to estimate cash 

flows and to select a suitable discount rate accounting for risk, we should 
select investments with a positive NPV. As a numerical example, consider a 
project that requires $100 to be started, and will pay $20, $40, and $60 at 
the end of the first, second, and third years, respectively. Note that the sum 
of the three cash inflows is $120, which is larger than the initial cash outflow, 
but is the project really a good deal? That depends on the discount rate r. 
If we choose r = 10%, then NPV is 

-100 + ^- + - ^ r + ^ = -100 + 18.1818 + 33.0579 + 45.0789 = -3.6814 
1.1 l . P l . P 

which suggests giving up the project. The decision depends critically on the 
chosen discount rate. The theory of corporate finance gives us some clue 
about this choice, but it is always wise to carry out a sensitivity analysis to 
investigate the impact on NPV of changes in the discount rate as well as in 
the predicted cash flows. 

It is natural to wonder for which critical value of the discount rate the 
NPV of a cash flow sequence turns out to be zero, since this value draws the 
line between acceptance or rejection of an investment proposal. The critical 
discount rate is called internal rate of return (IRR) and is found by solving 
the following equation: 

NPV(r) = 0 

The IRR is sometimes used as an alternative tool to analyze investments. 
If we rely on IRR, then we should select an investment such that the IRR is 
larger than some required rate of return. This benchmark rate of return could 
be associated with an alternative project, or it could be a rate of return high 
enough that we are willing to take the risk of investing in the project. But 
how can we find the IRR? Although the NPV is a rational function of r, it is 
much better to transform it into a more manageable form. By the change of 
variable 

_ 1 
y~ 1 + r 

we may transform the equation, which involves a rational function, into a 
polynomial form: 

Co + Ciy + C2y2 + ■■■ + CTyT = 0 

Luckily, very efficient numerical procedures to find roots a polynomial are 
included in many commercially available software packages. All we have to 
do is solve for y and transform the solution back to discount rates using 
r = (1 — y)/y. The IRR of the above cash flow stream is 8.21%. This also 
means that the NPV is negative for r > 8.21%, but positive for r < 8.21%. 
The larger the required rate of return, the larger the chance that the project 
is rejected. 
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However, we should see a potential trouble: A polynomial equation might 
have several positive real roots. In such a case, which is the correct IRR? 
Indeed, this is why the NPV criterion is typically considered a better one. 
One fortunate case is when only the first cash flow is negative, i.e., C0 < 0 
and Ct > 0 for t > 0; for such a cash flow sequence, it can be shown that 
there is a unique real and positive IRR. In complex projects, with multiple 
capital outlays in time, there is no guarantee that only the first cash flow is 
negative. Nevertheless, there are quite relevant kinds of investment in which 
the condition applies. One such example are bonds. A bond is a financial 
instrument that is used by governments and corporations to finance their 
activities. When an investor buys a bond, she is basically lending money 
to the bond issuer. The face value F of the bond is the amount of money 
that is loaned to the bond issuer and will be repaid to the investor at a 
future time instant known as bond maturity, plus some interest. Typically, 
the bond issuer also promises periodic payments during the life of the bond; 
these payments are called coupons.9 For instance, if the face value is F = 
$1000 and the coupon rate is 6% per year, the coupons would be $60 each 
year, and the last cash flow would be $1060. Often, coupon payments are 
semiannual (every 6 months). In principle, bonds can be purchased from the 
issuer on primary markets, but they are typically traded on secondary markets 
at prices depending on many factors including prevailing interest rates. In 
bond investing, Co is the price of the bond, the cash flows for t = 1 , . . . , T — 1 
correspond to coupon payments, Ct = C, and the last cash flow includes the 
face value of the bond, CT = C + F. In bond valuation and management, the 
IRR is referred to as yield to maturity. D 

2.3.4 Exponential functions 

Polynomial functions involve powers like xk, where the exponent k is an integer 
number. We recall some fundamental rules that are quite handy when dealing 
with powers and should be familiar from high school mathematics: 

r s X X 

x'r 

xr 

Xs 

(xrr 
x° 

= 

= 

= 

= 
= 

xr+s 

1 
X7 

xr~s 

xrs 

1 

In a monomial function f(x) = axk, the basis x is the independent variable 
and the exponent k is a fixed parameter. In exponential functions we reverse 

9In the past, a physical paper coupon was detached from the bond and was used to claim 
each periodic payment. 
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their roles and deal with expressions such as 

f(x) = a* 

One problem is that while it is quite clear what this expression means when 
x is an integer number, the same cannot be said when a; is a real number. 
Actually, we may easily find a meaning when a; is a rational number, i.e., a 
ratio m/n of integer numbers. We recall that 

1 ^ = „ . 1 / 2 _ L = T-l/2 

It is easy to see that defining the square root this way agrees with the general 
rules above. We may also define a cubic root 

a = \fx = x1/3 

i.e., a number such that x = a . In general 

χτη/η _ ™/^m 

which is again consistent with the rule for powers. However, if the exponent 
a; is a generic real number, it is not clear how ax can be computed, and it is 
not clear why it should be useful at all. The best way to answer the second 
question is by a practical example. 

Example 2.8 (Continuous compounding in finance) If we invest an 
amount B at an annual interest rate r, we will end up with a capital B(l +r) 
after 1 year. If interest is paid after the first year and we reinvest capital 
plus accrued interest, thus earning interest on interest, we will own B{\ + r)2 

after 2 years. Now imagine that interests are paid semiannually, i.e., every 6 
months (let us ignore complications due to the fact that months do not consist 
of the same number of days). In this case, the annual rate r is used just for 
quotation purposes, but in practice we earn a rate r /2 every 6 months. Hence, 
after 1 year, we own B{\ + r/2)2. For instance, if we invest $100 at r = 10% 
with annual compounding, after 1 year our wealth will be 

100 x (1 + 0.10) = $110 

whereas semiannual compounding yields a slightly greater wealth: 

0.10N 2 

100 x 11 + — I =$110.25 

As you may imagine, the smaller the time interval at which interest is com-
pounded, the faster our capital grows. You may see this by evaluating 

1 0 0 x 1 + 0.10N fc 
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Table 2.1 Discovering Euler's number e. 

k 1 2 3 4 5 
g(k) 2.0000 2.2500 2.3704 2.4414 2.4883 

k 10 50 100 1000 5000 
g(k) 2.5937 2.6916 2.7048 2.7169 2.7180 

What happens if k —* +oo, i.e., if compounding occurs so often that we have a 
continuously compounded interest? To provide a clue, Table 2.1 shows values 
of function 

for increasing values of k. It seems that this sequence does converge to a 
number. This number is so important that it has been named Euler's number 
and is denoted as 

e= lim ( l + - r | «2.718281828459046 
fc-v+OO \ k } 

Whatever base we use, we know that a power like e" has a clear meaning for 
an integer exponent n. Rather surprisingly, it turns out that 

ιγ*· syd syQ 

e* = l + X+
X- +

 X- +
 X- + ... (2.6) 

where a; is a generic real number. A proof of this equality requires some ad-
vanced concepts that we introduce later, so we have to defer this to Example 
2.31. The equality (2.6) provides us with one clear and well-defined procedure 
for computing exponentials with base e. This need not be the best one, but 
we need not worry about that, since the exponential function is implemented 
in many software tools, including spreadsheets. We show a plot of the expo-
nential function ex and the negative exponential function e~x = l/ex in Fig. 
2.10. The exponential ex grows quite rapidly even for moderately large values 
of x; this is where the term exponential growth comes from. 

Let us go back to our financial example and consider the growth of one 
dollar invested over one year at a nominal annual rate r compounded k times 
per year, when k goes to infinity. We rewrite the expression a bit, introducing 
a new variable y = k/r, which goes to +oo when k does so: 

Hence, continuous compounding results in an exponential growth of capital. 
An initial capital BQ, earning a continuously compounded interest rate r, 
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Fig. 2.10 Graphs of exponential and negative exponential functions. 

grows in time according to the following exponential function: 

B(t) = B0ert 

The negative exponential function comes into play when going the other way 
around, i.e., when discounting cash flows. If the discount factor r is com-
pounded semiannually, a cash flow C occurring in one year should be dis-
counted as 

C 
( l + r / 2 ) 2 

If there are k periods per year, we use 
C 

(l + r/k)k 

With continuous compounding, the present value of a cash flow C occurring 
at time t is 

Ce~rt 

Note that with this concept we may easily discount cash flows occurring at 
arbitrary time instants. Indeed, continuous compounding does a great job at 
simplifying calculations in financial mathematics. D 

Now we have made a little step forward, since we know how to compute 
an exponential function with base e; still, we do not know how to compute 
something like ax for an arbitrary value a. To do this, we need to introduce 
the logarithm as an inverse of the exponential function (see Section 2.6). 
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Fig. 2.11 A discontinuous function. 

2.4 CONTINUOUS FUNCTIONS 

Before we proceed in our treatment of functions, we should pause a little 
and discuss a fundamental feature of functions: continuity, or lack thereof. 
Compare the graphs of polynomial functions in Fig. 2.8 against the graph 
of the rational function in Fig. 2.9. There is a striking qualitative difference 
between the two figures; in the first case, if we imagine drawing the plot with 
a pencil, we never "detach" the pencil from paper. In the second case, the 
function "jumps" from —oo to +oo and vice versa. Quite informally, it might 
be argued that if we can draw a graph without such interruptions, then the 
function is continuous.10 Lack of continuity may be the result of problems in 
the domain of the function, like the rational function above, which goes to 
infinity when we approach points where it is not defined, but this need not be 
the only case. 

Example 2.9 Consider the following function: 

m x+1 x<1 
x+2 x>l 

A qualitative plot of the function is depicted in Fig. 2.11. Please note the 
standard convention used in the figure: The filled bullet corresponds to the 
true value taken by the function for x = 1; the empty circle below corresponds 
to a value that is approached only when x gets close to 1 from the left, before 
the function jumps. If we get closer and closer to this critical point from the 

1 0This is not quite correct, as we are disregarding the possibility of pathological oscillations, 
but such weird cases do not play any role in the book. 
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right, the value of the function tends to 3, which is indeed the value / ( l ) 
(please note the exact way in which the function is defined). We can express 
this by writing 

lim /(*) = 3 = / ( l ) 
x—»1 + 

where x —► 1 + denotes the fact that we approach x = 1 from the right, 
i.e., considering values like 1 + e, where e > 0 gets smaller and smaller. An 
alternative notation is limx|i . On the other hand, if we approach x = 1 from 
the left, we have a different limit: 

lim f(x) = 2 φ / ( l ) 
x—>1~ 

An alternative notation for this limit is l imx|i . We say that the function is 
continuous from the right, but discontinuous from the left.11 D 

The kind of discontinuity featured in the example is only one among the 
possible occurrences. In other situations, the trouble might stem from wild 
oscillations in the function, but we will not dwell too much in such pathological 
examples.12 

DEFINITION 2.4 (Continuous function) A function f is said to be con-
tinuous at point XQ if 

lim f(x) = f(x0) 
X—>XQ 

If this condition applies to all points within an interval or domain, we say 
that the function is continuous on that interval or domain. 

We will not define the mathematical concept of limit too formally, as intuition 
suffices for our purposes.13 Still, you should note that convergence to a limit 
must be the same from both sides, left and right. 

2.5 COMPOSITE FUNCTIONS 

So far, we have considered linear, polynomial, rational, and exponential func-
tions. Prom our high school math, we might recall something about trigono-
metric functions; since we will not use them in the following, we leave them 

n Y o u might even stumble on exoteric jargon like a càdlàg function!. This just a French 
acronym for "continue à droite, limitée à gauche," since the function is continuous from the 
right, and is limited (or bounded; i.e., it does not go to infinity) from the left. 
12 One such case is the function sin(l/a;). 
1 3From a historical perspective, it is interesting to note that a proper definition of limit 
and continuity was given by Augustin Cauchy and Karl Weierstrass, by the epsilon-delta 
approach. They did so in the 1800s, about a couple of centuries after Isaac Newton and 
Gottfried Leibniz, who are considered the founding fathers of calculus. 
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aside. A natural way to build quite complicated, but hopefully useful, func-
tions is function composition. Given functions g and h, we may build the 
composite function: 

f(x) = g(h(x)) 

The idea is that, given x, we compute z = h(x), and then g(z). Strictly 
speaking, the notation we have used is a bit sloppy as it refers to values taken 
by the function. The proper notation for denoting the composition of g and 
h, when we want to refer to the function itself, should be 

f = g°h 

This notation makes it clear that h maps an input argument into a result, 
which is in turn mapped by g into another result; the composite mapping is 
function / . 

Some care is needed in checking the domain on which a composite function 
makes sense. As we have already noted, the function 

\/l-x2 

is defined only for — 1 < x < 1. 

Example 2.10 (Gaussian function) By composing the functions 

x2 

Kx) = y , g{z) = e z 

we obtain function 
fix) = g(h(x)) = e-*2'2 (2.8) 

Figure 2.12 illustrates the two building blocks and the resulting function. This 
function has a classical bell shape and plays a prominent role in probability 
and statistics, which make quite some use of normal, or Gaussian, probability 
distributions. D 

There are two simple function compositions that are quite common and have 
a natural interpretation. Given a function f(x), let us consider functions 

g(x)=f(x-a), h(x)=f(-

for ß > 0. Function g is actually just function / shifted to the right by an 
amount a, if a > 0; if a < 0, then the function is shifted to the left. Dividing 
the independent variable x by ß > 0 has the effect of changing of scale, i.e., 
stretching or shrinking the function graph horizontally, depending on whether 
ß > 1 or ß < 1. 
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Fig. 2.12 Composition of two functions. 

μ = 0; σ = 4 μ = 5; σ = 4 μ = 5; σ = 1 

Fig. 2.13 Scaling and shifting the bell-shaped function of Eq. (2.9). 

Example 2.11 (Shifting and scaling) Consider again the bell-shaped func-
tion (2.8) and apply the following transformation 

f(x) =exp{-: (2.9) 

where exp(-) is just an alternative notation for the exponential function. The 
parameter μ governs the amount (and direction) of shifting, whereas σ changes 
the scale, making the graph more or less dispersed. This is illustrated in Fig. 
2.13. The first plot illustrates the function for μ = 0 and σ = 4. For that value 
of μ, the graph is symmetric with respect to the origin. If we set μ = 5 the 
graph is shifted by five units to the right. If we further set σ = 1, the effect is 
compressing the horizontal scale by a factor 4, thus reducing dispersion. D 
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2.6 INVERSE FUNCTIONS 

A function maps an input value x into an output value y — f(x). There are 
cases in which we want to go the other way around; i.e., given y, we would like 
to find a value x such that y = f{x). Actually, this is what we do whenever we 
want to solve an equation. For instance, given a function that evaluates the 
NPV of an investment depending on the discount rate r, finding its IRR calls 
for the solution of the equation NPV(r) = 0. Solving an equation like that 
requires inversion of the mapping associated with the function for one specific 
value of NPV, zero in this case. Now imagine that we want to do something 
more. We would like to find a trick that allows us to solve an entire range 
of equations f(x) = y for many values of y. This idea leads to the definition 
of the inverse function of / , mapping y to the corresponding x. As you may 
imagine, this cannot be done for every function / , as equations may have 
multiple solutions or none at all, whereas an inverse function should map one 
input value into one output value. 

DEFINITION 2.5 (Inverse function) Given a function f(x) : Εγ -► R, 
where E\ is the domain of f, the inverse function of f is a function g(x) : 
E2 —> R such that 

1. g(f(x)) = x, for all x in the domain E\ of f 

2. f(g(z)) = z, for all z in the domain E% of g 

Typically, the notation / _ 1 is used to denote the inverse of function x. This 
should not be confused with the composite function g(x) = 1/ f(x). Some care 
in notation may avoid the confusion: f_1(x) refers to the inverse function, 
whereas [/(a;)]-1 = 1/f{x) refers to the composite function. 

Example 2.12 Consider function f(x) — (x — l)/(a; + l) . To find its inverse, 
we set up and solve the following equation: 

y = —- -> yx + y = x - l -> 1 + y = x(l - y) -> x= γ — 

Hence, the inverse function of / is 

9(y) 
1 + 2/ 
1-2/ 

We see that the inverse function is not defined for y = 1. Indeed 

^—-^ = 1 -> z - l = a; + l -► - 1 = 1 x + 1 

which is absurd. The image of function / does not include the value 1, and 
the inverse function is not defined there. D 
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fix) = x2 f{x) = sfi 

Fig. 2.14 Square root as an inverse function on a restricted domain. 

Example 2.13 Consider function f(x) = x2. It may be tempting to say 
that its inverse is the square-root function g(x) = Λ/Χ, but a quick look at 
plots in Fig. 2.14 points out a difficulty. An equation like x2 = 4 has two 
roots, x = ±2; which one should we use when inverting the function? As 
shown in the figure, inverting the function essentially means swapping the 
two coordinate axes, but in doing so we do not always define a true function, 
which should map each value of the independent variable into one value. In 
this case, the domain of f(x) = x2 must be restricted in order to define its 
inverse function. The customary choice is restricting the domain to positive 
numbers, so we just consider the positive root. In other words, we cancel the 
dashed lower part of the rotated parabola in the second plot of Fig. 2.14. 

0 

The last example shows that not every function can be inverted over its 
whole domain. In order to be invertible, / should not assign the same value 
to two different arguments: 

Χ\φχ<ι => Ϊ{χι)ΦΪ{Χ2) 

A function whose graph goes up and down does not have this property. An-
other unpleasing feature that may prevent inversion is lack of continuity. If a 
function jumps, then we may fail to invert it. A condition ensuring invertibil-
ity of a function is that it is continuous and strictly increasing: 

X\<X2 => f{x\) < f(x2) 

If this condition is met on an interval, then the function is invertible on 
that interval. It is also easy to see this also applies to a continuous strictly 
decreasing function. 
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Fig. 2.15 The natural logarithm. 

2.6.1 The logarithm 

The logarithm arises as the inverse of an exponential function. To further mo-
tivate this, let us consider again continuous compounding of interest rates. As 
we have pointed out, continuous compounding leads to an exponential func-
tion that streamlines financial calculations considerably. However, in practice, 
interest rates are not quoted like this. Typically, interest rates are quoted on 
an annual basis. Yet, given an annually compounded interest rate r, we could 
find the equivalent continuously compounded rate rc and perform calculations 
based on this rate. Doing so requires solving the equation 

erc = 1 + r 

and this in turn requires inverting the exponential function. If we look back 
at Fig. 2.10 we see that the exponential function f(x) — ex is a very nice 
continuous and monotonically increasing function, and therefore it can be 
inverted over the whole real line. This leads to the definition of the natural 
logarithm function: 

y = ex ■<=> x = \ny 

This definition implies that 

e l n x = x, lnex — x 

Plotting the logarithmic function Ina; just requires plotting the exponential 
and swapping the axes, which results in the graph of Fig. 2.15. Natural 
logarithm is defined only for strictly positive x; it is positive for a; > 1, 
negative for a; < 1, and l n l — 0. Many years ago tables were provided to 
carry out calculations with logarithms. Now, logarithms are easily calculated 
using many software tools, including spreadsheets. 
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Example 2.14 (A financial example) Say that the annually compounded 
interest rate is r — 5%. Which continuously compounded rate corresponds to 
this rate? We have 

er- = 1 + r = 1.05, -► rc = In 1.05 « 4.88% 

Please note that rc is smaller than r, because of the effect of continuous 
compounding on capital growth. D 

PROPERTY 2.6 Here we summarize a few useful properties of natural log-
arithm, which are a direct consequence of the properties of exponential func-
tion: 

• hi(xy) = Ina; + In y 

• ln(l/a;) = — Ina; 

• ln(x/y) — Ina; — In y 

• \nxy = ylnx 

• In 1 = 0 

Example 2.15 Using logarithms and the properties above, we may finally 
answer a question we left open: How can we evaluate ax, when x is an arbitrary 
real number? This can be accomplished using properties of the exponential: 

„x An ax „xlno 

This can actually be calculated, e.g., using expansion (2.6). D 

Natural logarithms enjoy a privileged status as they are the inverse of the 
exponential function using base e. If we consider an exponential function with 
an arbitrary base a, its inverse is base a logarithm: 

y = loga x o ay = x. 

A common case is a = 10, leading to decimal logarithms. The properties 
that we listed above apply to any logarithm in any base. Incidentally, the 
notation loga can be used with any base a. Clearly, In = loge, and normally 
log = log10; however, notation is not always standard, as log is often used to 
denote natural logarithms. 

2.7 DERIVATIVES 

We have seen that a linear (affine) function f(x) = mx + q has a well-defined 
slope. Whatever value of the independent variable we consider, the slope of 
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Fig. 2.16 A nonlinear function does not have constant increment ratios. 

the function is always the same. If we are at point x and we move to point 
x + h, by any displacement h, the increment ratio14 is: 

f(x + h) - f(x) _ [m(x + h) + q] - [mx + q] 
(x + h) — x h = m 

which is constant and does not depend either on x or h. The increment ratio, 
i.e., the rate of change in the function, is constant everywhere for a linear 
function and corresponds to the slope of the line. This does not apply to a 
nonlinear function like the exponential or the logarithm. The issue is illus-
trated in Fig. 2.16. Still, there are many reasons why we should be interested 
in investigating the "slope" of a nonlinear function: 

• It may help in checking if the function is increasing or decreasing at 
some specific point x. 

• It may help in evaluating the rate at which the function increases or 
decreases. 

• It may help in finding a point at which the function is maximized or 
minimized. 

This leads to the definition of a concept that is arguably the most important 
one in calculus: the derivative of a function. 

2.7.1 Definition of the derivative 

Consider a point xo and the increment ratio of function / at that point: 

/(xo + h) - f(x0) 
h 

See Definition 2.3. 
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x0+ht x0 x0+h} x0+h2 

Fig. 2.17 The derivative is the limit of an increment ratio. 

For a nonlinear function, keeping XQ fixed, this ratio is a function of h. Now 
consider smaller and smaller steps h, as illustrated in Fig. 2.17. If we let 
h —» 0, we get the "tangent" line to the graph of / at point XQ. The slope of 
this line is called the derivative of / at point XQ: 

—-(xo) = hm dx h-^o 
f(x0 + h)- / (XQ) 

h 

The notation reminds us that the derivative is the limit of the increment 
ratio Af/Ax, when the step Ax becomes infinitesimal. We should also note 
that we may evaluate the derivative of a given function at several points. 
Indeed, taking the derivative of function f(x), we define another function. 
The notation 

f'(x) 

is also often used to indicate the derivative of f(x). Given the derivative, we 
may easily find the equation of the tangent line at any point on the graph of 
f(x). We recall that the equation of a line going through point (XQ, yo), with 
slope TO, is given by 

y = yo+ m(x xo) 

Hence, given the graph of f{x), we can express the tangent line at point 
(xo, f(%o)) as follows: 

y = f{xo) + f'(xa) ■ (x - xo) (2.10) 

Example 2.16 In some easy cases, it is possible to find the derivative of 
a function by direct application of the definition. For instance, consider the 
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Fig. 2.18 The x2 function and its tangent lines at points xo = —4, —2, 0,1,3. 

quadratic function f(x) = x2. Applying the definition, we have 

fix) l i m f{x + h)- f{x) = U m ix + hf - x2 

h^O h h^O h 
,. x2 + 2hx + h2 - x2 ,. 2hx + h2 

= lim - = hm -Λ,̂ ο h Λ,-»Ο h 
,. 2ήχ „ = hm —— = 2χ 
h->0 h 

The key point here is that the expression 2hx + h2 can be simplified for small 
values of ft: A term like h2 is negligible with respect to h, as it goes to zero at 
a faster rate. It is very useful to interpret the result by visualizing the plot of 
function x2 and checking its derivative, as well as its tangent lines, as shown 
in Fig. 2.18. Analytically, the equation of the tangent lines, with slopes 2xo 
are given by straightforward application of Eq. (2.10): 

y = XQ + 2a:0(a: - x0) = 2x0x - x2, 

• For xo < 0, the derivative is negative. Indeed, the function is decreasing 
on the negative part of the real line, and the slope of the tangent line is 
negative. This slope goes to —oo when XQ —> —oo and the rate at which 
the function decreases diminishes when x approaches zero. 

• The derivative is zero for xo 
horizontal. 

0; in fact, the tangent line there is 

• For positive values of XQ, the function is increasing; the rate of increase 
is itself increasing and it goes to infinity when XQ —► +oo. η 

The example shows that the derivative is quite useful in figuring out the 
behavior of a function. More generally, it can be shown that, for a positive 
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integer n 
(x™)' = nxn-x (2.11) 

This is a consequence of the binomial expansion formula (2.3). Consider the 
binomial (x + h)n for a small value of h 

(x + h)n = J2( " l)xnhn-k&xn+nxn-1h 

where the approximation is justified by the fact that higher powers of h are 
negligible when h —> 0. Then, applying the definition of derivative, we get 

Or»)' = lim ( ' + * ) " - « " 
h-+0 h 

xn + nxn~1h - xn 

= nx" lim - ^ ^ ·- " - —n-i 
h->0 h 

Later, we will see that Eq. (2.11) generalizes to an exponential function ax, 
where a; is a real number. Applying the result for n = 0, we see that the 
derivative of the constant function f(x) = 1 is zero. Alternatively, using the 
definition, it is easy to see that the derivative of any constant function is zero, 
since the increment of a constant function is identically zero. 

More often than not, we do not apply the definition to find a derivative di-
rectly. Rather, we use a set of rules that are illustrated in Section 2.8, together 
with results about the derivative of basic functions, such as the exponential. 
But before doing that, it is important to realize that the derivative need not 
always exist. 

2.7.2 Continuity and differentiability 

If the derivative of function / at point xo exists, then we say that the function 
is differentiable at point XQ; if this holds for all points on an interval or domain, 
the function is differentiable on that interval or domain. If the derivative / ' (x) 
exists at all points x on an interval and the derivative is a continuous function, 
we say that the function is continously differentiable on that interval. 

In Section 2.4 we have encountered discontinuous functions. If a function 
/ is discontinuous at xo, then 

lim f(x) φ /(x0) 
X—>£o 

We have also noted that a limit should not depend on the way x approaches 
xo; the limit, if it exists, must be the same for x —► x j (from the right) and 

(from the left). Since the derivative is defined as a limit, we may have 
similar concerns. To see a couple of standard cases in which the derivative 
does not exist, have a look at Fig. 2.19. Graph (a) shows a typical "kinky" 
function. This function is actually a piecewise linear function, and for most 
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(a) (b) 

Fig. 2.19 The derivative may fail to exist. 

points the derivative is just the slope of the corresponding linear piece. But 
where the two lines join, we have a point of nondifferentiability: the left and 
the right limit are different, and all we have are a left derivative and a right 
derivative. 

Example 2.17 The absolute value is a function defined as 

X = 

The derivative of this function is 

1*1)'= 

At point x = 0 we do not have a derivative since 

lim 
\0 + h\ 

h 
lim — 

h-vO+ h 
+1 

whereas 
lim |0 + /ι| - 101 

h 
lim -7— = —1 

Λ-.0+ h 
The two limits above are different and do not define a derivative, but only a 
right derivative and a left derivative, respectively. We may also observe that 
there is no well-defined tangent line at the kinky point. G 

Figure 2.19(b) shows a typical discontinuous function. It is also clear that we 
do not have a well-defined derivative where a function jumps. 

Putting the two graphs together, we notice an interesting fact. If the 
function jumps, i.e., is discontinuous, we fail to find the derivative. However, 
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even if the function is continuous, we may fail to find the derivative. Indeed, 
the kinky function in Fig. 2.19(a) is a continuous function. This suggests that 
continuity is a necessary condition for differentiability, but not a sufficient one. 
In other words, if the function is differentiable, then it must be continuous, 
but not vice versa. To see this, consider this equivalent definition of derivative 

h m M ^ ^ l 
x-»xo X — XQ 

If this limit exists, it must be the case that, for x —> xo, the numerator gets 
closer and closer to zero: 

lim f{x) = / (x 0 ) = / ( hm x] (2.12) 
X —>Xo \X~*X° / 

Note that, for a continuous function, the limit of the function is the same as 
the function of the limit. 

It is tempting to think that, after all, such weird functions are the result of 
mathematical phantasy, nowhere to be found in the real world. The following 
example shows that this is not the case. 

Example 2.18 (All-unit and incremental discounts) Quite often, when 
purchasing a product, we are offered price discounts, provided we buy a num-
ber of items exceeding a given breakpoint. For instance, the unit price could 
be €10 per piece, but if we buy at least 100, the unit price drops to €9. 
Actually, there are two different cases: 

1. In all-unit discounts, the discounted price applies to all of the units we 
buy. 

2. In incremental discounts, the discounted price applies only to items 
beyond the breakpoint. 

Let us write down the total cost function C(x) depending on the purchased 
amount x, assuming for simplicity that a; is a real number, which is sensible 
for items bought in units of weight or volume and is a fair approximation for 
discrete items bought in large quantities. The cost for all-unit discount is 

„ , s ί ΐ θ ζ x< 100 
V ; [9x x > 100 

whereas cost for incremental discount is 

jlOx x< 100 
~ j 1000 + 9 ( x - 1 0 0 ) x > 1 0 0 

Qualitative sketches of the two functions are illustrated in Fig. 2.20. Graph 
(a) shows a weird feature of all-unit discount: Close to the price breakpoint, 
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Fig. 2.20 Nondifferentiable functions arising from discount opportunities in purchas-
ing decisions. 

we pay less if we buy more. Disregarding this issue, we see how discontinu-
ous or nondifferentiable functions may actually arise in practice. As another 
example, think of the different tax brackets as a function of income. The 
plot of the tax amount we have to pay would be similar to the incremental 
discount case, but when dealing with taxes, the slopes of the linear pieces are 
increasing rather than decreasing. D 

2.8 RULES FOR CALCULATING DERIVATIVES 

The direct application of the definition to find the derivative of a function 
is typically a rather difficult and cumbersome procedure, possibly requiring 
some intuition. 

Example 2.19 (Derivative of logarithm and exponential function) 
One of the most useful results concerning derivatives is that the derivative of 
the exponential is just the exponential itself: 

(ex)' = ex 

As a first step to prove this deceptively simple result, it is better to find the 
derivative of the logarithm: 

(lnx)' lim 
ln(a; + h) — In x 

h 
Both numerator and denominator of the increment ratio go to zero, so some 
manipulation is needed in order to figure out what really happens. To begin 
with, we may use properties of the logarithms to transform the increment 
ratio a bit: 

ln(a; + h) — \nx 
h s " 

h l n [ l + ^ x 

l/h 

= ln 1 
1/x 
Y/h 

l/h 
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If h —* 0, then 1/h —> oo.15 Furthermore, the logarithm is a continuous 
function. Then, Eq. (2.12) applies and the limit of a logarithm is the logarithm 
of the limit. So 

ln(:r + h) — \nx 
hm — -r — In 
h^o h 

where z = 1/x. But from the basic results about Euler's number16 we know 
that 

lim Λ + 1/£V = eV 

lim 1 + ^ -
h-+o \ l/hj 

= ln lim 
z—>oo 

(l + ^ 
V ί 

which in turn implies that 

(lnx)' = l n ( e ^ ) = ^ 

This result is convincing if we look at the plot of the logarithm function in 
Fig. 2.15. The function is always increasing, but the rate of increase is very 
large for a small value of x; actually, it goes to infinity for x —> 0+. The 
function flattens when x increases, as the rate of increase diminishes and goes 
to zero when x —» +oo. 

Now we would also like to find the derivative of the exponential function. 
To this aim, we need a result about the derivative of inverse functions, which 
is outlined below. D 

The procedure that we have just illustrated, although a bit informal and 
shaky, should convince you that we really need some handy way to find deriva-
tives. In practice, we do the following: 

1. We take advantage of basic results about the derivative of a few fun-
damental functions. For instance, we already know the derivative of 
building blocks such as the monomial xn and the exponential ex. 

2. Then, we apply rules that allow to decompose the task of differentiating 
a complicated function into more manageable subtasks. 

In this section we describe rules to find the derivative in the following cases: 

• Functions obtained by summing, multiplying, or dividing other functions 

• Functions obtained by composition 

• Functions obtained by inversion 

15To be precise, 1/h may tend to —oo or +oo, depending on the sign of h going to zero. 
However, it turns out that this does not affect our little exercise. Still, this is a weak point 
in the argument and if you would like to see a thorough and more rigorous treatment, please 
refer, e.g., to Chapter 8 of Ref. [6]. 
16See Eq. (2.7). 
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2.8.1 Derivative of functions obtained by sum, multiplication, and 
division 

Given two functions / and g, there are a few easy ways to build other functions 
by ordinary arithmetic operations such as sum, multiplication, and division. 

• We define the sum of functions as follows: 

(f + g)(X) = f(X) + g(X) 

By the same token, we define the difference of two functions. To be 
precise, this makes sense on the intersection of the two domains, but we 
will not be bothered by such details. 

• Given a number a and a function / , we can apply multiplication by a 
constant: 

(af){x) = af{x) 

• Given two functions / and g, we define the product of functions: 

(fg)(x) = f(x)g(x) 

• Finally, we may use division of functions: 

iV*)S
/(l) 

gj g(x) 
Again, this makes sense on a common domain, where both functions / 
and g are defined, provided that g(x) φ 0. 

If we are able to find the derivative of / and g, the following theorem shows 
how to find the derivative of functions defined by the mechanisms above. 

T H E O R E M 2.7 Let f and g be functions and a be a real number. If f and 
g are defined and differentiable at XQ, then 

(f±g)'(xo) = f'(xo)±g'(xo) 
(af)'(x0) = af'(x0) 

(fg)'(xo) = f'(xo)g(xo)+f(xoW(xo) 
f\'(x\ - f'(xo)g(xo)-f(xo)g'{xo) 

,gj v "' 520o) 
The last result also requires g(xo) φ 0. 

The following examples illustrate the application of the theorem. 

Example 2.20 A polynomial function is basically a sum of monomials, ob-
tained by multiplying a number and an integer power of x. Then, to find the 
derivative of a polynomial we can use the first two results as follows. Consider 

f{x) = 3x3 - 2x2 + 5x - 10 
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The derivative of the first term is 

(3a;3)' = 3 (a;3)' = 3 x 3a:3-1 = 9a;2 

The same approach yields the derivatives of the second and third terms. The 
last term is just a constant, and its derivative is zero. Putting everything 
together, we have 

f'(x) = 9a ; 2 -4a ;+ 5 D 

Example 2.21 Let us illustrate the product of functions. Consider the prod-
uct of a polynomial and an exponential: 

f(x) = (2a;2 + 1) ex 

We may easily take the derivative of each factor of the product: 

(2a;2 + l ) ' = 4x, (ex)' = ex 

Applying the result for the product of functions, we obtain 

/'(a;) = 4xex + (2a;2 + l)ex = (2a:2 + 4a; + l ) ex 

0 

Example 2.22 Finally, let us illustrate the case of a rational function, ob-
tained by dividing two polynomials: 

We should break down the overall task into smaller pieces. First we compute 
the derivatives of numerator and denominator: 

(x)' = 1, (a;2 + 1)' = 2a: 

Then we put everything together: 

1 x (a:2 + 1) - x x (2a;) 1 - x2 

f'(x) (1 + a:2)2 (1 + a;2)2 

2.8.2 Derivative of composite functions 

Given two functions g and h, we may build a new function by composition, 
namely, g oh. It would be nice to have a way of finding the derivative of the 
composite function by decomposing the task and exploiting knowledge about 
the derivatives of g and h. 
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THEOREM 2.8 (Chain rule) Given functions g and h, we obtain the deriva-
tive of their composition as 

^ï{x)=g'{h{x))-h\x) 

provided that all of the involved derivatives exist. 

A good way to remember this rule is by rephrasing it in terms of increment 
ratios: 

d(g o h) dg dh 
dx dh dx 

The idea is that we should take the derivative of function g(z) and evaluate 
it for z = h(x); then, this is multiplied by the derivative of h(x). 
Example 2.23 As a first example, consider the exponential function f(x) = 
e4x. This is best viewed as the composition of functions g(z) = ez and h(x) = 
Ax. We know that 

dg - dh 
— = e , — = 4 
dz ' dx 

Hence, we apply the chain rule, where we set z = 4x in the first derivative: 

ΤΓ = 4e4* dx 
More generally, (eax)' = aeax. This also applies to negative values of a. The 
case a = — 1 can also be tackled by different route, considering the composition 
of g(z) = \/z and h(x) = ex: 

dg _ 1 dh _ x 

dz z2' dx 
which yields 

* = - J - e - = - e -dx (ex)2 

We invite the reader to check that 

f(x)=e-x' => f'{x) = -2xe-x2 

Example 2.24 Consider function f(x) — (x2 + l) . To find its derivative, 
we could use binomial expansion to transform it into a polynomial, but it is 
much easier to apply the chain rule: 

f'(x) = 3 (x2 + l ) 2 x 2x = 6x (x2 + l ) 2 

More generally, when we have a power of a function, like [/(a;)]n, we obtain 

dx uy n dx g 
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2.8.3 Derivative of inverse functions 

The rules of previous section do not help us in finding derivatives of func-
tions like the square root or, given the derivative of logarithm, in finding the 
derivative of the exponential. We need a rule to deal with the derivative of 
an inverse function. 

THEOREM 2.9 (Derivative of an inverse function) Let x = g(y) be 
the inverse function of y = f{x). Then, subject to some technical conditions, 
the derivative of g is 

9'{y) = /W 
We will not insist on the conditions ensuring that the theorem holds. Of 
course, / must be invertible, which means that it must be monotonie on some 
interval; we also expect that some continuity is required in order to ensure 
differentiability, and the derivative / ' should not be zero. Leaving all of this 
aside, the best way to remember the result is by regarding it as 

dx 1 

dy dy/dx 

In practice, we should 

1. Find the derivative of / , f'(x) 

2. Evaluate it for x = g(y) 

3. Take the reciprocal of this value 

Example 2.25 In Example 2.19 we saw that the derivative of f(x) = Ina; is 
f'(x) = 1/x. On the basis of this finding, we may use Theorem 2.9 to find the 
derivative of its inverse, the exponential function g(y) = ey. Incidentally, the 
logarithm is continuous and increasing on its domain, so there is no problem 
in inverting it. The rule is applied as follows: 

f{x) = x "" W)=x ~* JW)=eV 

Thus, we see that the derivative of the exponential function, with base e, is 
the exponential itself. D 

Example 2.26 Now we are also able to find the derivative of the square 
root g{y) = ^fy as the inverse of f(x) = x2. Following the inverse function 
drill, we have 

f(x)-2x - - J - - J - -> - J — = J -
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The behavior of the rate of increase for the square root function is similar to 
the natural logarithm. 

One further thing that is worth noting is that we could have found the 
same result by formally applying the rule (xn)' = na;" -1 , for n = | : 

(Vï)'= (.">)'= ! ^ > - ' = i*-"" = ^ 

This formula can generalized as follows. Using the derivative of the inverse 
function, we might prove that the rule above can be applied to any power 
xm/n for integer numbers m and n; this means that the result applies to 
rational exponents; then, by limit arguments, it can be shown that it applies 
to any power xa, when a is a real number: (xa)' — ax"-1. U 

Clearly, all of the rules that we have encountered can be applied together 
to deal with complicated functions, as Example 2.27 illustrates. 

Example 2.27 Consider 

/ (a ; )=ln(a ; 3 + l) 

Using the derivative of natural logarithm and the derivative of composite 
functions, we get 

™ - AT 
Needless to say, this makes sense for the domain of f(x), i.e., a;3 + 1 > 0, or 
x > — 1. By the same token, if 

f(x) = Vx3 + 3a; - 18 

then 

2Λ/Χ3 + 3a; - 18 

2.9 USING DERIVATIVES FOR GRAPHING FUNCTIONS 

The derivative is the slope of the tangent line to the graph of a function. 
Hence, the sign of the derivative at a point tells us whether the function is 
increasing or decreasing there and how rapidly. We can use this to figure out 
essential features of a function and to sketch its graph. 

Example 2.28 Let us try to figure out the behavior of the rational function 

ti \ x ~ 1 

f{x) = xTT 
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To begin with, a rational function is in trouble when the denominator is zero. 
Hence, the domain of this function does not include the point x = — 1. Since 
the numerator is negative for x = — 1, we can see that 

x — 1 x — 1 
lim = — co, lim = +oo 

a;-»-l- X + 1 x->-l+ X + 1 

The function is not continuous at x = — 1. It is also easy to see that the 
function is zero when x = 1; there, the function crosses the horizontal axis. 
Another feature which is worth noting is the behavior for very large values of a;, 
where x dominates the constants —1 and +1 at numerator and denominator, 
respectively: 

lim — = lim — = 1 
x—*±oo x -\- 1 x—*±oo x 

To see the rate of increase/decrease of the function, we need its derivative. 
Applying the rule for the ratio of functions, we obtain 

,, . = 1 x (a + 1) - (s - 1) x 1 = 2 
; [X) ~ {x + l ) 2 " (x + l ) 2 

We see that the derivative is always positive, and it goes to +oo when x tends 
to —1, both from the left and from the right. 

Putting everything together, we see that this function: 

• Tends to 1 (from above) for x —» —oo 

• Increases on the interval (—oo, —1) and goes to +oo when x approaches 
—1 from the left 

• Goes to —oo when x approaches —1 from the right 

• Increases on the interval (1, oo) 

• Has value 0 for x = 1 

• Tends to 1 (from below) for x —> +oo 

On the basis of these features, we could sketch a plot like Fig. 2.21. D 

As a more useful example, we are now able to figure out the behavior of 
the total cost function in the EOQ model of Section 2.1. 

Example 2.29 The average total cost per unit time in the EOQ model is 
given by function 

Ctot{Q) = h^ + ^-+cd 

The last term does not depend on the order quantity Q, and its effect is to 
shift the graph up a bit. The linear component hQ/2 goes to zero for small 
order sizes and goes to +oo for large order sizes. The nonlinear component 
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Fig. 2.21 Graph of the function of Example 2.28. 

Ad/Q goes to zero for large order sizes and goes to +00 for small order sizes. 
Hence, we obtain 

lim Ctot(Q) = +00, lim Ctot(Q) = +00 
Q->+oo 

The domain of interest is the interval of strictly positive order quantities, 
(0,+00). Unlike the rational function of the previous example, there is no 
point at which the function goes into trouble (is discontinuous) within this 
domain. Hence, it must be the case that the function is decreasing first, and 
then starts to increase.17 Indeed, the derivative is 

C'totiQ) = j - Q2 

Note that the constant term cd disappears in the derivative. Solving for Q, 
we see that the derivative is zero for 

Q* = 
2Ad 

h 

For Q < Q*, the derivative is negative and the function is decreasing. At 
point Q = Q*, the slope of the tangent line is horizontal. For Q > Q*, the 

17WeU, this is not quite precise. We can claim that the function must be decreasing for x 
close to —00 and increasing for x close to +00. In the middle, however, it could oscillate, 
resulting in possibly many local minima and maxima. We will see later that the function 
has the right curvature, as its second-order derivative is positive and the function is convex. 
(See Example 2.36.) 
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derivative is positive and the function is increasing. This results in the plot 
of Fig. 2.2. D 

Since the total cost function is decreasing on interval (0, Q*) and increasing on 
interval (Q*, +oo), it must be the case that Q* is the optimal order size. This 
point is associated with a horizontal tangent line and we have good reasons to 
guess that such stationarity points are essential when optimizing a function. 

DEFINITION 2.10 (Statianarity point) Given a function f(x), a point 
x* such that f'(x*) = 0 is called a stationarity point for the function. We 
also say that f is stationary at x*. 

The EOQ example suggests that a function can be optimized by finding a 
stationarity point. In fact, life is not that easy, as many things can go wrong. 

1. To begin with, the function that we want to optimize may fail to be 
differentiable; for instance, the nondifferentiable function illustrated in 
Fig. 2.19(a) is minimized just where the derivative is not defined. 

2. Moreover, even if we assume continuity and differentiability, a stationar-
ity point may be a minimum, a maximum, or neither. We are in trouble 
when functions oscillate; to see such examples, please take a look back 
at Fig. 2.8. 

3. Last but not least, a stationarity point might just be a local rather than 
a global optimum. 

In order to better characterize points at which a function is maximized or min-
imized, we need some information that is not really provided by the derivative; 
we need information about the curvature of the function. This information is 
provided by second-order derivatives. 

2.10 HIGHER-ORDER DERIVATIVES AND TAYLOR EXPANSIONS 

The derivative tells us something about the rate at which a function / in-
creases or decreases at some point x. This rate is the slope of the tangent line 
to the graph of / at x. So, the derivative tells us something about the "lin-
ear" behavior of a function. However, this does not tell us anything about its 
curvature. To visualize the issue, compare the behavior patterns of functions 
f(x) = x2 and g(x) = —x2 for x — 0. Since x2 > 0, it is obvious that x = 0 
is a minimizer of / and a maximizer of g. This is a stationarity point, as it is 
easily checked by finding the derivatives of the two functions: 

f(x) = 2x, g'(x) = -2x 

The slope of / is negative for x < 0 and positive for x > 0. This implies that 
the function is decreasing for x < 0 and increasing for x > 0, but this in turn 
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implies that x = 0 is a minimum. The pattern for g is just the opposite one. 
In the case of / , the slope itself is increasing, whereas it is decreasing (turning 
from positive to negative) for g. We can see this by taking the derivatives of 
/ ' and g': 

f"(x) = 2, g"(x) = - 2 

Here we have used f"(x) to denote the derivative of the derivative. This is 
referred to as the second-order derivative, whereas the derivative that we have 
seen so far is actually called first-order derivative. 

DEFINITION 2.11 (Higher-order derivatives) Given a continuously dif-
ferentiate function f, its second-order derivative at point x is the derivative 
of the first-order derivative. This is denoted as f"{x) or 

dx*( > 
df_ 

dx \dx 
(x) 

Taking the derivative of the second-order derivative, we get the third-order 
derivative: 

f»{x) or g (x ) 
More generally, we define the k-th. order derivative of f as 

/«(*) or ££(*) 
In the definition, we use the term continuously differentiable. We recall 

that this simply means that the function is differentiable and its derivative 
is a continuous function; otherwise, we could not take the derivative of the 
derivative. 

Example 2.30 Given the polynomial function f(x) = 3x3 — 2x2 + 5x - 10, 
we have 

/'(*) 
/"(*) 
/'"(*) 

/(fc)(x) 

= 9a;2 - 4a; + 5 
= 18a; - 4 
= 18 
= 0, Jfc = 4, 4 ,5 ,6 , . . . 

We see that a polynomial of degree n has zero derivative from order n +1 on. 
D 

It. is worth noting that for a linear function f(x) = a + bx, we have 
f"(x) = 0; in fact, a linear function has no curvature. For nonlinear functions, 
knowing the kind of curvature helps us in plotting them more accurately, and 
this information can be exploited to find their maxima and minima. In fact, 
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first- and second-order derivatives can be used to characterize the local be-
havior of a function near some point XQ . It is natural to wonder if we could 
exploit knowledge about higher-order derivatives, provided they exist, to shed 
some more light on the function. Indeed, it can be shown that by using the 
derivatives of a function near some point xo, we can find an arbitrarily good 
approximation of the function by a polynomial, subject to some assumptions, 
including continuity. We will not state the theorem exactly, as it would re-
quire a few technicalities; nevertheless, the result is quite useful, as polynomial 
functions are relatively easy to deal with. 

DEFINITION 2.12 (Taylor's expansion) Taylor's expansion of order n 
for function f around point XQ is given by the following approximation: 

/(aro + Λ) « /Oro) + f'(x0)h + \f"{x0)h2 + ■■■ + ^f{n)(x0)hn (2.13) 

A few comments are in order: 

• The formula relies on the existence of all the derivatives involved. 

• The formula above tells us how we can approximate function / by a 
polynomial, for a small displacement h around XQ. 

• The quality of the approximation improves if we increase the order of 
the involved derivatives. 

• On the contrary, the quality of the approximation worsens if we increase 
the displacement h. 

Actually, the formula of Taylor's expansion relies on a theorem that states 
that the function can be expressed by the formula above plus a remainder 
term. This remainder depends on derivative of order n + 1 evaluated at some 
point in the neighborhood of XQ. In practice, this remainder is negligible if 
we do not get "too far" from XQ. 

It is quite useful to consider in more detail Taylor's expansion if we stop 
with the first- or second-order derivative. If we stop with first-order derivative, 
we get the first-order Taylor expansion, which can be equivalently rewritten 
by setting h = x — XQ: 

f(x)*f(x0)+f'(x0)(x-x0) (2.14) 

We immediately see that the first-order approximation is equivalent to a finite-
difference approximation of the first-order derivative: 

fl, v _ f(x) - f(xo) 
(x - xo) 

Formally, this finite-difference approximation can also be expressed as 

# ^ Δ / 
dx Ax 
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Table 2.2 Accuracy of first- and second-order approximations of the exponential func-
tion. 

x ex fx{x) f2(x) 

0.1 1.1051710 1.1000000 1.1050000 
0.2 1.2214028 1.2000000 1.2200000 
0.5 1.6487212 1.5000000 1.6250000 

to remind us that we are substituting infinitésimal increments with finite ones. 
Furthermore, we see that (2.14) approximates the function by its tangent 
line;18 hence, it is a linear or first-order approximation. If we want to keep 
curvature information in the approximation, we can include a quadratic term 
from Taylor's expansion: 

f(x) « f{x0) + f'(xo)(x - xo) + \f"{xo){x - xo)2 (2.15) 

This is a quadratic approximation around XQ ; the second-order Taylor expan-
sion is just a parabola. 

Example 2.31 To illustrate Taylor's expansions, we can prove Eq. (2.6), 
which gives a concrete way to evaluate an exponential function with base e. 
The exponential function ex is a peculiar one, as f(n\x) — ex for any n. Its 
Taylor's expansion around XQ is then 

(x - x0) + | ex° ■ (x - x0)2 + . . . + 1 e*° ■ (z - x0)n 

Now, if we set XQ = 0 and let n —> +oo, we get 

9 "ì + ° ° Jo 
X Χύ _ y—y X 
2 Î + 3Î + '" = ^ ¥ o 

To check the accuracy of this expansion, let us compare the true value of 
ex against the first- and second-order approximations / i(x) = 1 + x, and 
ΪΪ{Χ) = 1+X + X2/2. The numerical results are displayed in Table 2.2; in Fig. 
2.22 we may also visually compare the exponential function with its first- and 
second-order approximations around XQ = 0. D 

As expected, low-order Taylor's approximations deteriorate rather quickly 
when we depart from the point at which they are developed. Indeed, practical 
numerical approximations often rely on more sophisticated approaches. Nev-
ertheless, Taylor's expansions are both conceptually and practically relevant. 
One fundamental application is sensitivity analysis. 

SeeEq. (2.10). 
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Fig. 2.22 The exponential function (dashed line) against its first- and second-order 
Taylor expansions. 

2.10.1 Sensitivity analysis 

Reading on, you will notice that a large part of the book deals with uncer-
tainty. Uncertainty comes in many forms: 

• We might be unsure about the value of input data we use in making 
decisions. 

• We might be unsure about the future values of some relevant exogenous 
variable. 

One way to deal with uncertainty is to rely on the tools of probability theory 
and statistics. The main limitation of these tools is that they may require 
a lot of past data to characterize uncertainty, assuming that past data do 
tell us something useful about the future. Alternatively, we may analyze how 
changes in the input data affect our decision, in order to check its robustness. 
This may be more appropriate for the first situation above, which is more 
linked to ignorance than to genuine randomness. This fundamental process is 
called sensitivity analysis and we illustrate the concept with a few examples. 

Example 2.32 (Sensitivity analysis of EOQ model) In the EOQ model 
we rely on a few pieces of information that in practice must be estimated: the 
fixed ordering charge A, the holding cost h, and the demand rate d. If we knew 
these quantities exactly, we would be sure that the optimal order quantity and 
the ensuing average cost per unit time are 

<τ-<Ιψ· Ctot{Q*) = V2Ädh 

respectively (if the assumptions behind the model are satisfied). In the total 
cost function we have neglected the total purchasing cost which does not really 
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depend on the order size and just contributes a constant term. But if we make 
some mistake in estimating the input data, we will end up with some other 
order quantity Q, which will be suboptimal: Ctot(Q) > Ctot(<3*)· What is 
the effect of our mistake in economic terms? We can measure this by taking 
the ratio of the two costs: 

Ctot(Q) = \Qh+{Ad/Q) = 1 ΠΓ 1 [2Äd _ 1 (Q Q*\ 
Ctot(Q*) V2ldh 2 ^ V 2Ad+ 2QV h 2\Q*+QJ 

where the last step relies on the expression of Q*. To see the value of this 
relationship, let us assume that we make a rather gross mistake and apply an 
order quantity that is twice the right one, i.e., Q = 2Q*. Plugging this into 
the ratio above yields 

Ctot(Q) i / o . Λ 1 9 ~ 

c^rn 2 + 2j = 1 · 2 5 

In practice, if we make a 100% mistake in setting the order quantity, the total 
cost will increase by just 25%. This illustrates a robustness property of the 
EOQ formula. Of course, this tells us something useful only as far as the 
assumptions behind the model hold, at least approximately. D 

The example above is, in a sense, an example of sensitivity analysis "in 
the large." We have not actually examined the effect of a change in a single 
factor, such as h, A, or d; rather, we have put everything together, analyzing 
the overall effect of making a mistake in setting the order quantity. However, 
one could ask what the effect of a small change in, say, the ordering cost A, 
is on both cost and the resulting EOQ. When we analyze the effect of a small 
change in a single factor, Taylor's expansions come into play. We illustrate 
with an example from finance. 

Example 2.33 (Bond duration) We got acquainted with bonds in Exam-
ple 2.7. The price of a bond is essentially the present value of the cash flows 
up to bond maturity, using yield to maturity as the discount rate. Most long-
term bonds offer the periodic payment of a coupon, in addition to repayment 
of the face value, but there are bonds that do not. A zero-coupon bond is a 
bond that promises only repayment of the face value F at maturity. 

If we hold a zero-coupon bond maturing in 5 years, are we safe? When 
asked this question, students typically start mentioning a few risks that may 
be associated with such a bond: 

• One obvious risk is default. A default occurs when bond issuers do 
not repay their debt. Default risk is rather high for bonds issued by 
distressed corporations or governments of unstable countries. 

• Another possible risk is inflation. Indeed, with a long-term bond, even 
if we are repaid, the real value of the money we get back might have 
been significantly eroded. 
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What most students fail to mention is the fact that the general level of interest 
rates may change. This happens as central banks adjust interest rates in order 
to control inflation or to help economy against recession. Another important 
point is: Why are we holding that bond in our portfolio? If we want to keep 
the bond until maturity, and there is neither default nor inflation risk, we are 
perfectly safe. But if we want to sell it before, because we need immediate 
cash, an unfavorable change in the interest rate might affect bond value. 

Actually, all of the risk factors that we mentioned are somehow captured by 
the required bond yield y.19 This is typically larger than the current level of 
risk-free rates, as it reflects different kinds of risk premia. Reasonably, when 
holding a risky security, an investor expects to be compensated for the risk 
she is bearing, and this implies a rate of return higher than that of a risk-free 
asset. The price of a zero-coupon bond with face value F, maturing in T 
years, is given by 

P(y) = ( ~ y f (2-16) 

If, for whatever reason, the required yield y goes up, the bond price will go 
down. As an illustration, consider the price of a zero-coupon bond, with face 
value $1000, maturing in 10 years, when yield to maturity is y = 5%: 

''<»> = UTS* = ( Π ϊ £ ΐ = $ 6 1 3 · 9 1 

If the required yield increases by 100 basis points,20 i.e., the new yield is 
y = 0.05 + 0.01 = 0.06, the new price turns out to be P(0.05 + 0.01) = 558.39. 
The resulting loss is 

558.39-613.91 _ 
613.91 " /0 

It would be very nice to have a sensitivity measure telling us the effect of a 
small variation ôy of the required yield, possibly applying to coupon-bearing 
bonds as well. 

Before doing so for a general bond, let us check the quality of a Taylor ex-
pansion of the yield-price relationship for the zero-coupon bond. This requires 
taking first- and second-order derivatives with respect to yield in (2.16): 

TF T(T+1)F fs ,2 

(1 + Î/F+1 ' V+ (l + y)T+2 P(y + 6y) « P(y) - /Ί , ST+, ■ 6y + ' , ]> ■ (Sy)2 

The first-order approximation gives $555.45 as an estimate of the new price, 
whereas the second-order approximation gives $558.51. We see that the ap-
proximations are rather good. Indeed, the change in the required yield cannot 

1 9We recall from Example 2.7 that the bond yield is the internal rate of return of the 
investment, i.e., the discount rate such that its NPV is zero. 
2 0 A basis point is one-hundredth of 1%, i.e., 0.0001. 
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be a huge number, since we are talking about interest rates. Now, let us ex-
plore the concept further for a general coupon-bearing bond. The price-yield 
relationship is 

T - l C 
^> = Σ Ο Τ ^ + C + F 

^ M - ( 2 · 1 7 ) 

where C is the coupon paid every period; note again that the last cash flow 
at bond maturity t = T includes both payment of last coupon and refund of 
face value F. For the sake of simplicity, we assume that one coupon is paid 
per year, so time subscripts t = l,...,T correspond to years. The sensitivity 
of price with respect to yield is associated with the first-order derivative of 
Eq. (2.17): 

T - l 

P'(y) = - Σ 71 tc 

i T~x 

T{C + F) 
(i + y) T + l 

Σ'η 
C 

i + y [fri (i + y) 

j> t 

+ T C + F 
(i + y)T 

1 y t=\ 

where dt is the discounted cash flow for time period t: 

dt= < 

C 
(!+»)*' 

ί = 1 , 2 , . . . , Γ - 1 

£ ± i ; , t=T T' l ( i + y) 
Not surprisingly, the derivative is negative, as an increase in yield implies a 
drop in bond price. We can rewrite the relationship in a more informative 
way by noting that the bond price is just the sum of the discounted cash flows 
dt: 

P'(y) = 1+2/ t = i 

P(y) 
P{y) 

Y^tdt 
P(y) i: tx 
1+2/ 

t = l 

The ratio of the two sums can be regarded as a weighted average of the time 
instants t at which cash flows occur, where weights are just the discounted 
cash flows dt. The ratio 

D t = i 
T 

Σ* 
É = l 

(2.18) 
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is called Macaulay duration. In order to get rid of the annoying 1 +y factor,21 

we introduce modified duration 

DM = τ^— (2.19) 
1+2/ 

which allows us to write the following relationships: 

δΡ 
δΡπ-PxDMXÖy =» — « -DM 6y (2.20) 

This is just a rewriting of Eq. (2.18) based on the finite-difference approxi-
mation22 P'(y) « δΡ/ôy. The second relationship states that the percentage 
change in bond price can be approximated by the product of modified dura-
tion times the change in yield. The minus sign accounts for the fact that bond 
prices and yields are inversely related. Equation (2.20) shows that duration 
is a risk measure for bonds. The larger the duration, the larger the sensitivity 
of bond prices to unexpected changes in the required yield. 

Other things being equal, the longer the bond maturity, the larger the 
bond duration. Hence, to stay safe, one should invest in short-term bonds. 
By the way, not surprisingly, bond duration for a zero-coupon bond is just 
bond maturity. However, other factors may affect bond duration. Since this 
is a weighted average of the times at which cash flows occur, we may also see 
that a large coupon C reduces duration. This happens because the weights dt 
for periods t = 1,2,.. . , T — 1 are relatively larger when C is significant with 
respect to face value F. 

Bond duration is a useful concept for bond portfolio management, but it 
is rich in shortcomings. For instance, it assumes that there is only one catch-
all risk factor y, whereas in practice one should account, e.g., for relative 
variations in the short- versus the long-term interest rates. Moreover, it is 
associated with a first-order approximation that is likely to give a poor ap-
proximation unless the change 6y in required yield is small. To ease the last 
difficulty, one can resort to a second-order Taylor expansion 

P(y + Sy) « P(y) - DM ■ P(y) ■ Sy + \ ■ C ■ (6y)2 

The term C, which is just the second order derivative P"(y) is called bond 
convexity. 0 

2 1 We leave as an exercise for the reader to show that if cash flows are discounted by a 
continuously compounded yield yc, using negative exponentials as discount factors, this an-
noying factor disappears. Indeed, given the properties of the exponential function, financial 
mathematics is much nicer when compounding in continuous rather than discrete time. 
2 2 When denoting a finite-difference approximation of a derivative, we may use either Sf or 
Δ / . Since in finance Δ may refer to a sensitivity measure for options, here we prefer the 
former notation. 
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2.11 CONVEXITY AND OPTIMIZATION 

What we have learned so far about function derivatives suggests that in order 
to optimize a function, assuming that it is differentiable, a good starting 
point is to set its first-order derivative to zero. However, we know that this 
first-order, stationarity condition may not be enough, as it does not even 
discriminate between a maximum and a minimum. In practice, the matter is 
further complicated by two features of optimization models: 

• They involve a possibly large number of decision variables, whereas we 
are dealing here with functions of a single variable. 

• They involve constraints, as we have seen in the optimal mix example of 
Section 1.1.2. Generally speaking, our decisions are constrained to stay 
within a set S called feasible region or feasible set. 

We will learn a lot more about these issues in Chapter 12. However, it would 
be nice to find a feature that makes an optimization problem relatively easy. 
This feature is termed convexity. We start by defining convexity for sets; 
then, we generalize the concept to functions;23 finally, we illustrate what role 
convexity plays in economic modeling and in optimization. Before doing so, 
though, it may be useful to clarify what we mean by local and global optimality 
formally. 

2.11.1 Local and global optimality 

Earlier in the chapter we plotted the polynomial function 

f(x) = x4 + x3 - 29a;2 - 9x + 180 

whose graph is reported again for convenience in Fig. 2.23. The stationarity 
points can be found by setting its derivative to zero: 

f'{x) = Ax3 + 3x2 - 58a: - 9 = 0 

Using numerical methods, we find the following roots of f'(x): 

X! = -4.1294, x2 = -0.1542, x3 = 3.5336 

which are indeed the points at which / is stationary. Observing the graph, we 
see that x\ is the global minimum, X2 is a local maximum, and 3:3 is a local 

2 3 Although this chapter deals with functions of a single variable, we will state convexity of 
functions in more general terms, which apply to functions of more variables as well. Here, 
it is more of a formality than anything else; we will appreciate its importance in Chapter 
12; see also the last sections of Chapter 3, where we outline a few concepts of calculus for 
functions of multiple variables. 
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Fig. 2.23 Graph of f{x) = xA + x3 - 29x2 - 9x + 180. 

minimum. In order to formalize these intuitive concepts, we need to define 
the neighborhood of a point on the real line. 

DEFINITION 2.13 (Neighborhood of a point) Given point x0 € M, we 
define its (open) neighborhood of radius e as the interval (xo — e,xo + e), which 
is also denoted by Ne(xo). 

In practice, for a small radius e the neighborhood NC(XQ) consists of the 
points close to XQ, i.e., points within a distance from XQ bounded by e. The 
concept can be generalized to multiple dimensions easily. 

DEFINITION 2.14 (Global optimality) Given a function f defined over 
a domain V, we say that x^i n G T> is a global minimizer of function f if 
f(xmin) — f(x)> for anV other x G V. We speak of a strict global minimizer 
if f(x) φ /(^min) for x φ £min. By the very same token we define a global 
maximizer x^ax by requiring / ( i J , H ) > f(x), for any other x e T>. The 
definition of strict global maximizer is obvious. 

In this definition we should not confuse, e.g., the minimizer x^i n with the 
minimum /* = /(a^in)· ^n a minimum-cost problem, the minimizer is a 
decision, whereas the minimum is the cost of that decision. The domain V 
could be restricted by the conditions under which the function is defined or by 
constraints on the decisions. Finally, a global minimizer need not be unique, 
as the minimum value /* could be attained by more than one point, unless it 
is a strict minimum. 

DEFINITION 2.15 (Local optimality) Given a function f defined over 
a domain T>, we say that x^i n € T> is a local minimizer of function f if 
there exists a neighborhood Ne(x*) such that f(x^in) < f(x), for any other 
x € Vf]Ne(x*). The definition for a local maximizer is obtained similarly. 
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In local optimality we consider the intersection of the domain T> and the 
neighborhood Ne(x*). In plain words, a local minimum is a point such that 
we cannot find anything better in its neighborhood, even though there might 
be a better solution if we look far enough. When dealing with a function of a 
single variable, a local minimizer is a point such that if we look both to the left 
and to the right, we see an increase in the function. Clearly, this local view 
does not imply that, outside this neighborhood, there is no point associated 
with a smaller function value. It is rather intuitive to generalize the concept 
to a function of two variables (we move on a plane), or a function of three 
variables (we move within a three-dimensional space), and so on. 

2.11.2 Convex sets 

Convexity can be introduced as a fairly intuitive concept that applies to ri-
dimensionai subsets of M". Spaces with multiple dimensions will be the sub-
ject of next chapter, but we can visualize things on a plane, which is just 
the set R2 of points with two coordinates. We use boldface characters when 
referring to a point x G R2 Ξ R X R, with coordinates (2:1,2:2). Subscripts 
refer to coordinates; for instance, point y has coordinates (ΐ/ι,ΐ/2). Generally 
speaking, in the next chapter we consider tuples x = (2:1,2:2, · · -,Xn) in R™, 
but two-dimensional visualization is what we need to grasp the concepts. In-
tuitively, a set S is convex if all of the points on the line segment joining two 
points x and y in it belong to S itself, for any choice of x and y. Figure 2.24 
illustrates the idea: 

1. Set Si is a polyhedron, and is convex. 

2. Set £2 is a standard example of a nonconvex set. 

3. The last set S3 is a bit different, but nonconvex nevertheless. It is a dis-
crete set obtained by considering only points with integer coordinates.24 

Here is a formal definition of convexity that applies to subsets of R™. 

DEFINITION 2.16 (Convex sets) A set S C R™ is convex if, given any 
pair of points x and y in S, for any real number X in the interval J0; lj we 
have 

λχ + (1 - X)y € S 

For an arbitrary value λ, λχ + (1 — \)y is just a way to describe the line 
passing through that pair of points (we know from elementary geometry in 
the plane that there is exactly one such line; this also applies to lines in spaces 
with multiple dimensions). If we restrict λ to the interval [0,1], we are just 
considering the line segment between them. Indeed, if we set λ = 0, we get 
y; if we set λ = 1, we get x. 

2 4 In fact, as we will learn in Chapter 12, lack of convexity is what makes optimization with 
discrete decision variables difficult. 
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Fig. 2.24 Convex and nonconvex sets. 
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Fig. 2.25 Convex and nonconvex functions. 

2.11.3 Convex functions 

Convexity can be easily generalized to functions by applying the idea of con-
vexity for sets to the epigraph of the function. For functions of a single vari-
able, which can be plotted on a plane, the epigraph of the function is just the 
set of points lying above the function graph. The idea generalizes to an arbi-
trary number of dimensions. Figure 2.25 illustrates the concept for functions 
of one variable. Function (a) is obviously convex, whereas function (b) is not. 
We see immediately that function (a) is easy to minimize, since there is one 
point where the first-order derivative is zero, and it is a global minimum Func-
tion (b) is not that easy, as it features local maxima and minima. Function 
(c) may look a bit weird, as it is not differentiable; nevertheless, it is a convex 
function. We also see that the epigraph of function (c) is a polyhedron; this is 
why a function like that is called a polyhedral convex function. In Chapter 12 
we will see some tricks that allow us to minimize a polyhedral convex function 
quite easily, despite lack of differentiability. 

There is an alternative way to regard convexity, which is better suited to 
emphasize the essential features of a convex function. If a function is convex 
and we take two arbitrary points on its graph, the line segment joining them 
will always stay above the function graph. This allows us to define convex 
functions as follows. 
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Fig. 2.26 A schematic illustration of the definition of a convex function. 

DEFINITION 2.17 (Convex and concave functions) A function f, de-
fined on a domain S, is convex on S if, given any pair of points y and z in 
S, the following condition holds for any real number X in the interval [0,1] : 

/ [ λ γ + ( 1 ~ λ ) ζ ] < λ / ( γ ) + ( 1 - λ ) · / ( Ζ ) 

A function f is concave if (—/) is convex. 

This definition is illustrated in Fig. 2.26. In this case the set S is a portion of 
the real line, within which we consider an interval [y, z] ; if we take any point 
x = Xy + (1 — X)z within that interval, the true function value at x is less 
than the linearly interpolated value Xf(y) + (1 — X)f(z). A concave function 
is just a convex function flipped upside down. If the inequality is strict for 
y φ z and λ in the open interval (0,1), we have a strictly convex function. 
Figure 2.27 illustrates the difference between a convex and a strictly convex 
function. 

Intuition suggests that for a convex function we do not have trouble with 
local minima, whereas for a concave function we do not have trouble with 
local maxima. If convexity is not strict, we may have multiple but equivalent 
optima. It is also important to realize that the definition above does not rely 
on differentiability of function / and applies to functions defined on any ri-
dimensionai space. If we restrict our attention to differentiable functions of 
one variable, then the following properties hold for a function of one variable.25 

PROPERTY 2.18 If f is a convex differentiable function of one variable, 
on a domain S C R , then the following condition holds, for any XQ and x in 

2 5These properties do generalize to functions of multiple variables, as we will see in Section 
12.1.3. 
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Fig. 2.27 (a) Convex vs. (b) strictly convex functions. 

S: 
f{x)>f{x0)+f'(xo)(x-Xo) 

The inequality is reversed for a concave function. 

PROPERTY 2.19 If f is a convex difjerentiable function of one variable, 
on a domain 5 Ç R , then the following condition holds, for any x in S: 

f"(x) > 0 
The inequality is reversed for a concave function. 

Property 2.18 essentially says that if we draw the tangent line y = /(aro) + 
f'(xo)(x — XQ) at any point with coordinates [xQ,f(xo)] on the graph of a 
convex (differentiable) function, then the linear approximation (first-order 
Taylor expansion) will consistently underestimate the true value of the func-
tion (see Fig. 2.28). Property 2.19 states that the slope of tangent lines to / , 
drawn at different points x, is always increasing with respect to x, since the 
second-order derivative is always positive. Again, this property assumes suit-
able differentiability conditions, and is illustrated in Fig. 2.29. The following 
example shows the connection between convex functions and sets. 

Example 2.34 We show that the region S described by the inequality g (x) < 
0 is a convex set if g is a convex function. If x G S, then g(x) < 0; by 
the same token, if y € 5, then g(y) < 0. What we want to prove is that 
λχ + ( 1 - λ ) γ e S, for all λ G [0,1], i.e., that # ( A x + ( l - A ) y ) < 0. But, since 
g is convex, we have 

ff(Ax + (1 - A)y) < A5(x) + (1 - X)g(y) < 0 

where the last inequality depends on the fact that we are summing non-
positive terms, which are obtained by multiplying a nonpositive quantity, g(), 

Ax) 
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y=ÄXo)+f(xo)(x-xo) 

Fig. 2.28 Tangent lines always underestimate a convex function. 

Fig. 2.29 Slopes of tangent lines are increasing for a convex function. 

by nonnegative coefScients λ and (1 — λ). This proves that λχ + (1 — A)y is in 
S. From a practical point of view, this property plays an important role when 
inequalities are used to define the feasible set of an optimization problem. U 

2.11.4 The role of convexity 

Convexity and concavity play a major role in optimization. Consider a one-
dimensional optimization problem, min^gR f(x); this problem is unconstrained, 
since x can be any point on the real line. Furthermore, assume that / is con-
vex on the whole real line K and that x* is a stationarity point. Property 2.18 
applies to a;*: 

f(x)>f(x*) + f(x*)(x-x*) = f(x*) 
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for any i f l , but this implies that x* is a global minimizer. We have proved 
the following theorem. 

THEOREM 2.20 If function f is convex and differentiable on R, then sta-
tionarity is a necessary and sufficient condition for global optimality in an 
unconstrained minimization problem. If f is concave, the result applies to an 
unconstrained maximization problem. 

Example 2.35 The theorem above applies to an unconstrained optimization 
problem. If there are constraints, stationarity need not be associated with 
optimality. To see this, consider the minimization problem 

minx2 

x>2 

The function f(x) = x2 is convex, but it is easy to see that the minimizer is 
x* = 2, which is not a stationarity point. We need some more theory to cope 
with constrained problems. However, it may be the case that a constraint 
is nonbinding where the function is stationary and we find the minimizer 
by setting first-order derivative to zero. This happens, for instance, for the 
problem 

min x2 

x>-2 

Here the feasible region is [—2, +oo) but the constraint is nonbinding at sta-
tionarity point x* = 0, which is indeed the global minimizer. We speak in 
this case of an interior solution, as the minimizer lies in the interior of the 
feasible region. 0 

We may also note that, since the second-order derivative of a convex func-
tion is always positive by property 2.19, then we do not run the risk of mistak-
ing a maximum for a minimum. This, per se, does not imply global optimality, 
however. Still, property 2.19 is important because it provides us with an easy 
criterion to check convexity. 

Example 2.36 Consider function 

f(x) — ax H— 
x 

Its second-order derivative is f"(x) = 2b/x3, which is positive on the domain 
x > 0, if b > 0. Indeed, this is the case for the total cost function of the EOQ 
model, where b = Ad is the product of demand rate and fixed ordering charge, 
and we are interested in strictly positive order quantities. Hence, stationarity 
is in fact a necessary and sufficient condition for a globally optimal solution 
of the EOQ problem, which turns out to be an interior solution. D 

Apart from optimization, convexity and concavity are useful for character-
izing functions that model essential features of a problem from an economic 
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(a) (b) 

Fig. 2.30 Schematics of economies and diseconomies of scale. 

perspective. Consider a cost function c(x), quantifying the cost of some activ-
ity that we carry out at level x; this could be the cost of purchasing an item, 
but also the cost of producing an amount x of it. Two such functions are 
illustrated in Fig. 2.30. Both functions are increasing, as expected, but they 
are qualitatively different. In case (a) we see that the first-order derivative of 
the cost function is decreasing, whereas it is increasing in case (b). In eco-
nomics, the first-order derivative of a cost function, evaluated at some point, 
is called the marginal cost. The marginal cost tells us the rate at which a cost 
is increasing when we raise the level x of the activity we are engaged in. For 
concave cost function (a), the marginal cost is decreasing; this implies that 
there is an economy of scale. On the contrary, convex function (b) models 
a diseconomy of scale, which may occur if the production process is less and 
less efficient when production volume is increased. 

In later chapters we will see other uses of convexity and concavity, which 
are just worth mentioning here: 

• In Chapter 12 we illustrate constrained optimization problems such as 

min fix) 

As it turns out, a problem like this is relatively easy to solve if the 
feasible set S and the objective function / are both convex. If we are 
dealing with a maximization problem, it is easy if the function / is 
concave and the set S is convex. 

• In Chapter 13 we deal with decision under uncertainty. In that setting, 
risk aversion of the decision maker plays a prominent role. We will see 
that one way of capturing risk aversion is by modeling preferences of 
the decision maker by a concave utility function. 

2.11.5 An application to economics: optimal pricing 

One of the most fruitful application fields of quantitative methods is revenue 
management. Revenue management is actually a group of techniques that 
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can be applied in quite diverse settings, such as pricing of aircraft seats or 
perishable products. In this section we consider an idealized case in which a 
manufacturer has to find an optimal price for the items she produces and sells. 
We have to clarify the context in which she operates, however, as one cannot 
really set prices at will if there is stiff competition. To keep it as simple as 
possible, let us assume that there is no competition at all; the manufacturer is 
a monopolist. The fact that there is no competition does not imply that one 
can set arbitrarily high prices, since doing so will just kill demand. Indeed, the 
monopolist, barred other "political" constraints, must find the best tradeoff 
between the conflicting needs of selling as much as possible and setting as 
high a price as possible. This is a classical problem in microeconomics. 

The first step to cope with our task is to find a suitable formalization. We 
want to maximize profit, which is revenue minus cost. The total cost depends 
on the manufactured amount q. Hence, it is a function TC(g). As an example, 
we might consider a cost function 

TC(ç) = F + cq2 

where F is a fixed cost and the variable cost component involves a squared 
term; in such a model, cost increases rather rapidly for large values of q, 
reflecting possible inefficiencies in large-scale production. 

We also need to find a relationship between price and demand. Usually, 
one would expect that an increase in price implies a drop in demand. One 
possible model of that is a demand function such as 

D(jp) = a — ßp 

expressing demand as a function of price p, with ß > 0. This linear demand 
function is just a simplistic model used for illustration; it is clearly valid 
on only a limited range, as for suitably large prices it would imply a negative 
demand. In practice, one would use statistical tools described in later chapters 
to analyze data and identify such a relationship on an empirical basis. One 
problem we have is that cost is naturally expressed as a function of q, whereas 
demand is expressed as a function of price. Since cost depends on the produced 
amount, it is convenient to express everything as a function of q, which calls 
for inversion of the demand function: 

q = a- ßp => p= —j-

Hence, we define the inverse demand function, expressing price as a function 
of quantity 

P(<?) = a - bq 

where a = a/ß and b = ί/β- Now we are finally able to express our problem. 
Profit 11(g) is the difference between revenue R(g) and cost TC(g). Since 
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revenue in turn is just price times demand, the profit maximization problem 
is as follows: 

max 11(c) = R(q) - TC(q) = P(q)q - TC(q) 

We will disregard the nonnegativity constraint on the decision variable q; we 
assume an interior solution, which we may check after solving the problem. 
Revenue as a function of quantity is 

R(q) = (a — bq)q = aq — bq2 

We could just apply the stationarity condition Tl'(q) = 0 to the profit function, 
but it is more instructive to take an alternative but equivalent route that yields 
a better understanding of the economics involved. The first-order optimality 
condition can be written as 

R'(çf) - TC'(ç) = MR(q) - MC(q) = 0 

where MR(q) and MC(ç) are called the marginal revenue and marginal cost, 
respectively. Marginal revenue, which is just the derivative of revenue with 
respect to quantity, tells us the rate at which revenue increases if we increase 
quantity; by the same token, marginal cost is the rate at which total cost 
increases when increasing production. The optimality condition tells us that 
marginal revenue should equal marginal cost, and it is quite instructive to 
interpret this condition: 

• If marginal revenue is larger than marginal cost, then we should increase 
production, since revenue increases faster than cost. 

• If marginal revenue is smaller than marginal cost, then we should de-
crease production, since cost decreases faster than revenue. 

• The optimal production corresponds to an amount q* such that there is 
no reason to either increase or decrease production. 

Using our simplistic model, we have 

MR(q) = a - 2bq, MC(q) = 2cq 

and the first-order optimality condition reads as follows: 

a-2bq = 2cq =► q* = ^—^ 

Note that, indeed, we get an interior solution q* > 0; hence, the nonnegativity 
constraint is not binding and we verify ex post that it can be disregarded. 
Then, the optimal price is 

. a(b + 2c) 
V = a — bq = -— r-F 2(0 + c) 
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Since all of the involved parameters are nonnegative, optimal price is nonneg-
ative as well. It is also easy to check that 

n"(g) = -2(6 + c ) < 0 

so we really found a minimizer. 
The fixed cost F did not play any role in the analysis and this is consistent 

with what we pointed out in Section 1.1.1. A constant term, which is not 
affected by q, does not influence our quest for q*. However, this does not 
imply that the fixed cost is irrelevant if we need to decide whether our business 
should be shut down for good! Indeed, we should also check whether overall 
profit 

a»(b + 2c) ca^ = _ ^ 
{q ' 4(6 + c)2 4(0 + c)2 4(6 + c) 

is positive. We see that we should produce only if 

F < 
4(6+ c) 

2.12 SEQUENCES AND SERIES 

Series are another important topic in classical calculus. They have limited 
use in the remainder of the book, so we will offer a very limited treatment, 
covering what is strictly necessary. To motivate the study of series, let us 
consider once again the price of a fixed-coupon bond, with coupon C and face 
value F, maturing at time T. If we discount cash flows with rate r, we know 
that its price is 

Σ C F 
+ t = i ( l + r)* (l + r)T 

If we have to compute the price of a long-term bond, the formula above results 
in a quite tedious calculation. Can we find a more compact expression for the 
bond price? Furthermore, suppose that maturity goes to infinity. This may 
sound weird and unrealistic, but years ago bonds were issued in the UK with 
infinite maturity; a bond like this was called a console. How can we calculate 
the price of a console, since this requires us to discount and add an infinite 
number of cash flows? 

Before proceeding further, let us define a series. Consider an infinite se-
quence of numbers: 

0,1,0,2,0,3,0,4,... 

For a finite n, the partial sum of the first n terms in the sequence is 

n 
sn = a-i + a2 + a3 H h an = ^ α, (2·21) 

t= l 
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Apparently, summing an infinite number of terms in the sequence makes no 
sense. It is a reasonable bet that the result will be either +00 or —00. However, 
if an goes to zero fast enough, when n —> +00, the partial sum sn can converge 
to a finite limit. In such a case, the value of the infinite series is defined as 
the limit of the sum. 

D E F I N I T I O N 2.21 Given an infinite sequence an, n = 1, 2, 3 , . . . , the cor-
responding series is defined as the limit of the partial sums (2.21): 

0 0 

Σαί = lim sn n—>+oo 
i= l 

provided that the limit exists. 

A very useful case is the so-called geometric series. 

E x a m p l e 2.37 (Geometr ic series) Let a be a real number and consider 
the series 

Σ«* 
i=0 

This kind of series is called geometric. If we choose a = 2, there is no doubt 
that the series goes to infinity, as each element of the sequence a1 is increasing 
and we sum an infinite number of larger and larger terms. If we choose a = 0.5, 
the elements of the sequence tend to zero; if they do so fast enough, maybe, 
the series will converge to a finite limit. If a is negative, there is the additional 
complication of oscillations of terms a1, which are positive for even powers 
and negative for odd powers. 

To keep it simple, let us just consider 0 < a < 1 and rewrite the series as 
follows: 

00 00 00 

i=0 i= l i=0 

Solving for S yields 
S = —Î— (2.22) 

1 — a 
which makes sense if a < 1; if a > 1 the formula above yields a negative 
number, which is not reasonable as the series is a sum of positive terms. 
Sometimes, the starting element of the series we are interested in is a, rather 
than a0 = 1. Then, it is easy to adapt formula (2.22): 

i= l i=0 
JV-1 = _ (2.23) 

Alternatively, we may regard the series starting from i — 1 as aS to obtain 
the same result. D 
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Example 2.38 (Pricing a console bond) A console bond is a bond with 
infinite maturity. Hence, its price is obtained by discounting an infinite se-
quence of cash flows: 

p = Y c 

t = i + ry 
All we have to do is using the result for the geometric series by plugging 
a = 1/(1 + r) intoEq. (2.23): 

P = C- 1/(1 + 0 
l - l / ( l + r) 

c_ 
r 

In order to check whether this result makes financial sense, consider the value 
of a console bond paying $1 per year, when r = 10%. The formula yields 
P = 1/0.1 = $10. Indeed, if we invest $10 at an interest rate r = 10%, each 
year we will get the dollar we need to pay the coupon, while maintaining the 
capital. D 

The basic result from the geometric series can be applied to find a compact 
expression for a finite sum. A finite sum can be expressed as the difference of 
two infinite series: 

α ( 1 - α " ) 

„«+i Σ°* 
i=l 

a 
i—n+l i= l i=0 

a" 
1 - a 1 - a 

(2.24) 

Example 2.39 (Pricing a fixed-coupon bond) To find the price of a 
bond paying a coupon C per year, we plug a — 1/(1 + r) into Eq. (2.24): 

zL, (1+7·)* 
1 + r 

1 -
(1 + r) 

1 -

C_ 
r (1 + r)3 (2.25) 

In order to get the bond price, we should also include the discounted value of 
the face value refunded at maturity: 

C_ 
r 

1 
1 

(l + r ) T + (1 + r)3 

If we let T —> +oo, we recover the pricing formula for the console. D 
In this book, we will just use variations of the geometric series. Hence, we 

will not proceed further with series theory. We just mention a useful result 
stating that, under suitable conditions, a series can be differentiated term by 
term. We clarify what we mean by a useful example. 
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Example 2.40 (Derivative of the geometric series) We know that the 
geometric series converges to S(a) = 1/(1 —a). Let us take its derivative with 
respect to a: 

Now, let us consider a slightly different series 

Σ*' 
i = l 

With a little intuition, we see that this series is related to the derivative of 
the geometric series. In fact, using term-by-term differentiation, we get 

oo oo 

V^ ial = a y2 io? 1 

t = l i = l 

2.13 DEFINITE INTEGRALS 

The last section of this chapter deals with definite integrals. The concept of 
integral plays a fundamental role in calculus and applied mathematics and, 
as we shall see, it is in a sense the opposite operation with respect to taking 
derivatives. In the book, we use definite integrals essentially to deal with 
continuous random variables in probability theory.26 In that context, it is 
sufficient to understand definite integrals as a way to compute an area, which 
has the meaning of a probability. Hence, we introduce the definite integral 
as the area below the graph of a function. We also try to get some business 
motivation for introducing integrals in models where time is continuous. What 
we will not do is lay down rigorous foundations for the concept, which would 
be outside the scope of the book, or developing sophisticated technical skills 
and tricks to find integrals in intricate cases. 

2.13.1 Motivation: definite integrals as an area 

Consider a function / on interval [a, b]. If the function assumes nonnegative 
values on that interval, it will define a region below its graph; this is illustrated 
as the shaded region in Fig. 2.31. Now imagine that we are interested in the 
area of that region. If the function were constant or linear, we would get the 
result by recalling a few concepts from elementary geometry. In the case of a 
constant function, we would just compute the area of a rectangle, and the area 
of a trapeze is needed for a linear function; but if the function is arbitrary, 

See Chapter 7. 
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a b 

Fig. 2.31 The area below a function graph. 

a b 

Fig. 2.32 Approximating area by piecewise constant functions. 

things are not that simple. Nevertheless, we could try to find a suitable 
approximation of the area. Since we know pretty well how to cope with a 
constant function, we could try to approximate / by a piecewise constant 
function. The idea is illustrated in Fig. 2.32. More precisely, we can partition 
the interval [a, b] into n "slices" of width 

b — a 
A = 

n 

Each slice is a subinterval with extreme points of the form 

Xi — a + iA, i = 0,1, 2 , . . . ,n 

Note that XQ = a and xn = b. The first subinterval is [^θΐ^ι] = [α,α + Δ], 
and in general we have subintervals like [a;i_i, Xi], for i = 1 , . . . , n. Then, we 
should decide how to assign the height of each rectangle in Fig. 2.32. The 
choice in the figure is to consider f(xi), i.e., the value of the function on the 
right endpoint of each subinterval [XÌ-I,XÌ], but different choices could make 
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sense as well. With our approximation, the area is 

n 
5 ( Δ ) = ^ / ( χ , ) Δ 

t = l 

where the notation highlights the dependence of sum S on the selected subin-
terval width Δ. Reasonably, the smaller this width, the better our approx-
imation, and (maybe) taking a very fine partition with a very small Δ, we 
would really find the area we need. This results in the following (informal) 
definition of the definite integral of function / on interval [a, b] : 

( f{x) dx = lim S(A) 

The notation J looks a bit like a slanted S; indeed, this reminds us that the 
integral is basically the limit of a sum. By the same token, the notation dx 
refers to an infinitesimal increment in the x variable; the notation Δχ or δχ 
is used when referring to small but finite increments. 

Our treatment leaves a lot to be desired, to say the least, as we should 
clarify under which conditions the sum will converge to a limit. Furthermore, 
one could wonder whether our choice of rectangles is the best one or if it 
really makes any sense. Indeed, a rigorous treatment of integral should follow 
a slightly different route. Nevertheless, this is the simplest way to grasp the 
essential concept of an integral. Incidentally, if the function takes negative 
values on some subintervals, we can just consider the associated area as a 
negative one, which can be summed algebraically to positive areas. 

2.13.2 Calculating definite integrals 

Using the definition above to compute an integral is cumbersome, to say the 
least. It may work in some simple cases, but we certainly need something 
more handy. Luckily, the following theorem, which really deserves the name 
fundamental,27 provides us with a practical way to compute definite integrals. 

THEOREM 2.22 (Fundamental theorem of calculus) Let F{x) be a 
function such that F'(x) — f(x), and assume that f is continuous on the 
interval [a, b]. Then 

[ f(x) dx = F(b) - F(a) 
Ja 

Function F is called the antiderivative of / . Actually, if F is the antiderivative 
of / , this also holds for any function F(x) + C obtained by adding an arbitrary 

2 7To be precise, the claim of the theorem below is a consequence of the fundamental theorem 
of calculus, but we will allow a little shortcut. 
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constant C. However, since in the theorem we take the difference F(b) — F(a), 
the constant is irrelevant. The following shorthand notation is used: 

F(x) = F(b) - F {a) 
a 

Example 2.41 To illustrate the theorem, recall that (x2)' = 2x. Then, if 
we consider f(x) = x, its antiderivative is F{x) = x2/2 (plus an irrelevant 
constant): 

/ xdx = — 
Jo 2 

1
 = 1 

o 2 
which is indeed the area of the triangle associated with the function f(x) = x 
on interval [0,1]. D 

Armed with the fundamental theorem, we are certainly able to compute 
integrals of relatively simple functions formed using powers and exponentials. 
Sometimes, quite ingenious tricks are needed to find the antiderivatives of 
intricate functions, but we will not need that for what follows. The next 
property of definite integrals is quite helpful in dealing with sums of functions. 

PROPERTY 2.23 / / a and ß are arbitrary real numbers and all of the 
integrals below exist, then 

rb pb rb 
/ [af(x) + ßg(x)] dx = a f(x) dx + ß g(x) dx 

Ja Ja Ja 

As you may imagine, this property is linked to the similar properties of 
derivatives.28 

Example 2.42 Consider function f(x) = x2 + 1 - 3e~2x, to be integrated 
on interval [0, 4]. It is easy to see that the antiderivative of x2 + 1 is x 3 /3 + x. 
The exponential is a bit trickier, but we may recall that 

(eax)' = aeax 

So, the antiderivative of — 3e~2x is 3e~2x/2, and the integral is 

[ (x2 + 1 - 3e~2x) dx= (Ç + X + ^e"2a 
4 

f + φ - 8 - ^ = 23.8338 

2 8 In the next chapter, we get acquainted with the concept of linear combination. The 
property shows that the integral, just like the derivative, is a linear operator in the sense that 
the integral (derivative) of a linear combination of functions is just the linear combination 
of the integrals (derivatives) of each function. 
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2.13.3 Improper integrals 

So far, we have considered the integral of a continuous function on a bounded 
interval. The idea can be generalized to unbounded intervals and to functions 
featuring certain types of discontinuity. In fact, the integral might not exist, 
because the function has pathological behavior; in other cases, it could go 
to infinity, which may well be the case if we consider an infinite area. Still, 
in some fortunate cases we do find an integral that should be regarded as 
the limit of an integral of a continuous function on a bounded interval. We 
illustrate the concept with a couple of examples, without providing adequate 
theoretical background. 

Example 2.43 Consider the exponential function f(x) = Xe~Xx, where λ > 
0, and the improper integral 

Λ + ΟΟ 

/ Xe~Xx dx 
Jo 

on the unbounded interval [0, +oo). This should be regarded as the following 
limit: 

Xe~Xx dx 
Ό 

Since the antiderivative of / is F(x) = —e~Xx, all boils down to the following 
calculation: 

„-λη 

lim / 
z -+ 0 ° io 

-e 
+ 00 

= - 0 + 1 = 1 
o 

In this case, the integral exists because the negative exponential function 
goes to zero fast enough, when x —+ +oo, so that the area on the unbounded 
interval is still finite. Clearly, the improper integral on the interval (—oo, 0] 
cannot exist, since the positive function goes to infinity there. D 

Example 2.44 Consider the definite integral 

— dx 
Jo x 

Unlike the previous case, the integration interval is finite here, but the function 
is not continuous for x = 0 and it goes to +oo. We could still wonder whether 
the area is finite or, more precisely, whether the limit 

fl 
Je X 

lim / — dx 
e - 0 + . 

exists. The antiderivative we need is F(x) — \nx. Unfortunately, if we try 
using it, we fail, since 

Ina; = l n l - l n 0 = 0 - ( - o o ) = +oo 
o 
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The area is unbounded, as 1/x goes to infinity too quickly. The trick, however, 
works for g(x) = \j\fx. In this case, the antiderivative is G(x) = 2y/x and 
the integral is 

1 
2y/x = 2 

o 
The rate of increase of function g, when x —> 0+, is slow enough to result in 
a finite area. D 

2.13.4 A business view of definite integral 

In this section we try to further motivate the use of definite integral, at least 
conceptually, for business management problems. To do so, we use the EOQ 
model of Section 2.1 once again. There, we have claimed that the contribution 
of inventory holding cost to average total cost per unit time is 

Cin = h^ 

In the reasoning, a key role is played by the fact that demand rate is constant, 
and given by D items per unit time.29 But what can we do if demand rate is 
an arbitrary function D(t) of time? The holding cost, in such a case, depends 
on the ordering policy we follow, as well as on the initial inventory level.30 

Whatever we do, it will result in a time-varying on-hand inventory level that 
we may represent by a function I(t). Then, the holding cost of our ordering 
policy, over time interval [0, Γ] is just 

Jo 

T 
hl(t) dt 

To see this, think of an inventory level I(t) that varies in time; since time is 
continuous, we should take the instantaneous inventory level I(t) along the 
time interval, multiply it by the unit inventory holding cost h, and "sum" the 
results. In this case, the sum is actually an integral, which informally is the 
sum of infinite tiny, infinitesimal terms. 

To see that this works for the EOQ model, consider the first triangle in Fig. 
2.1. This corresponds to the first ordering cycle. We start with 1(0) = Q, and 
after an interval corresponding to the time between two consecutive orders, 
T = Q/D, we have I(T) = 0. On that interval, inventory as a function of 
time is given by 

I(t) =Q-Dt 

29Here we denote demand rate by D, rather than d, in order to avoid confusion with the 
dt notation in the integrals below. 
3 0 The initial inventory level is irrelevant in the EOQ model, since the ordering policy is 
periodic, but this need not be true in general. 
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The inventory cost on this cycle is 

L 
Q/D / Dt2 

h{Q - Dt) dt = h [Qt- -— 
o V 2 

Q/D /Q2 DQ2\ hQ2 

D 2D2 7 2D 

This expression is just h times the area of a triangle with base Q/D and height 
Q. Since there are D/Q such cycles per unit time, on average, the average 
holding cost is: 

hQ2 D__hQ_ 
~2D X Q ~ T " 

as we claimed before. 
Thus, integrals can be used when we have to model complicated business 

problems where variables of interest change in continuous time. In general, 
building and/or solving such a model is difficult, and one resorts to time 
discretization. The idea is to partition time interval [0, Γ] into n subintervals 
of width Δί, as we did in Fig. 2.32. Then, we have n time buckets of the form 
\{i — 1) Δί, i At], for i = 1 , . . . , n. If we denote the inventory level at the end 
of ith time bucket by li — I(i At), we can approximate the total holding cost 
as 

/.T « 
h / I(t)dtKh'J2li (2.26) 

where h' = h At is the unit holding cost for a time period of length Δί. 
This expression can be definitely more manageable when building possibly 
large-scale decision models.31 

A possible objection is that we should take the average inventory level 
rather than the inventory level at the end of a time bucket. Doing so results 
in the following expression: 

2 = 1 

This may look quite different from (2.26), indeed. However, in practice the 
two expressions are equivalent. To see this, let us expand the sum: 

Σ -fj-l + Ij _ IQ + 11 h + I2 In-2 + In-\ In-1 + In 

9 ~ 9 9 9 9 = 1 2 2 2 

= | + / ι + / 2 + ··· + /„-ι + | 

Comparing this against (2.26), we see a difference in the first and last terms. 
However, the first term is a constant, as the initial inventory level is given and 

31 This is the subject of Chapter 12. In particular, we will use time discretization in the 
dynamic production planning model of Section 12.2.2. 
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it is not a decision variable. The last term, if it is not fixed to a positive value, 
will be set to zero by the optimization algorithm; in fact, the holding cost is 
minimized, and since the model does not see any demand beyond the last 
time bucket, there is no reason to have any item left in inventory. To avoid 
running out of stock at the end of the planning horizon, we should assign a 
value to the terminal inventory level; but then, the last term is a constant just 
like the first one. So, we see that considering the inventory level at the end 
of each time bucket is equivalent to considering the average inventory level. 
Coincidentally, this is consistent with the finite sums we have considered in 
Section 2.13.1.32 The choice between a continuous-time and a discrete-time 
model is largely a matter of convenience, depending on the business problem 
at hand. 

Problems 

2.1 Find the domain of functions 
1 1 

f(x) = ,, —7> 9(x) y/l - x2 - 1 ' Vx2 + 1 - x 

2.2 Find the equation of a line 

• With slope -3 and intercept 10 

• With slope 5 and passing through point (-2,4) 

• Passing through points (1,3) and (3,-5) 

2.3 Find the first-order derivative of the following functions: 

2.4 Consider functions /(x) = x3 — x and g(x) — x3 + x. Use derivatives to 
sketch the function graphs, and look for maxima and minima. 

2.5 Consider the following functions defined on piecewise domains: 

j-x, x<0 i z 2 + l, x < 0 
fl{x) = W, *>0' h{x) = Ì3X, * > 0 ' h{x)~-

3 2 In other cases, one should define an integral by considering the value of the function at the 
beginning of each time bucket. A notable case occurs in financial engineering models, where 
the so-called Ito stochastic integral is extensively used. In fact, there are many kinds of 
integrals, but this is way beyond the scope of this book. See, e.g., Ref. [2] for an elementary 
introduction to such models. 
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For each function, indicate whether it is continuous and differentiable at the 
point of transition between each portion of the domain. 

2.6 Consider function 

and find linear (first-order) and quadratic (second-order) approximations around 
points xo — 0 and xo = 10. Check the quality of approximations around these 
points. 

2.7 In Example 2.33 we assume discrete-time compounding of interest. This 
results in the need for introducing modified duration, in Eq. (2.19), to get rid 
of an annoying factor 1 + y, where y is yield to maturity. Compute bond 
duration when assuming continuous-time compounding, at yield yc, and show 
that this correction is not necessary in this case. 

2.8 Consider the following functions and tell if they are convex, concave, or 
neither: 

fi{x) = e'a+\ /2(x) = ln(x + l ) , /3(x) = x3 - x2 + 2 

2.9 Prove that the intersection of two convex sets Si and S2 is a convex set. 

2.10 Consider a stream of constant cash flows Ft = C, for t = 1 , . . . , T. 
From Example 2.39, we know how to find its present value at time t = 0. 
Now imagine that these cash flows are the amount you invest to build your 
pension wealth; the current amount of wealth is invested at an interest rate 
r, which we assume fixed and constant over time. How can you compute your 
future pension wealth at time T? 

2.11 Assume that you work from age 25 to age 65. At the end of each 
year, you contribute C to your pension fund, which is invested at a yearly 
rate r = 5%. At age 65 you retire and plan to consume $20,000 each year, 
until you die. Assuming that you die at age 85, and that interest rates remain 
constant, how much should you save each year? How does the result change 
if, due to your reckless lifestyle, you assume that departure will occur at age 
75? (Hint: Use Problem 2.10.) 

2.12 Consider the following extension of the EOQ model, often labeled eco-
nomic manufacturing quantity (EMQ). Most of the assumptions of the EOQ 
and EMQ models are the same, but in the latter, rather than assuming in-
stantaneous replenishment of inventory, inventory is replenished at production 
rate p, which gives the number of parts produced per unit time. Find the or-
der quantity minimizing the sum of inventory and ordering cost, averaged over 
time. (Hint: Draw the inventory level during an ordering cycle.) 
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For further reading 

• In this chapter, we have been often rather informal. There are many 
rigorous treatments of calculus, but a suitable starting point is Ref. [6], 
which is a good and quite readable compromise. If you prefer a classical 
treatment, Ref. [7] is recommended. 

• Another nice book that, among many other things, illustrates calculus 
with an emphasis on economic applications is Ref. [9]. 

• We have motivated part of the chapter by the need to solve optimization 
models, which are the subject of Chapter 12. There, too, we will pursue 
a rather informal approach. Readers interested in a full-fledged and 
extensive introduction to the mathematics of optimization are referred 
to Refs. [1] or [10]. 

• Furthermore, we have only considered the optimization of differentiable 
functions. Readers interested in an elementary introduction to the op-
timization of nondifferentiable functions might consult Appendix 1 of 
Ref. [3]. 

• We have used the EOQ model as a motivation. Readers wishing a more 
in-depth treatment of EOQ model and its generalizations may have a 
look at Ref. [4]. 

• Calculus also plays a role in microeconomic theory. Nice, application-
oriented examples are proposed in Refs. [5] and [8]. 

• We have also hinted at revenue management, which indeed is a rich 
application field for quantitative business models; an extensive reference 
is the text by Talluri and Van Ryzin [11]. 
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3^ 
Linear Algebra 

This chapter contains some very basic and some relatively advanced material, 
which is needed only in a few later chapters. Hence, it can be read in quite 
different ways, depending on readers' interest: 

• Readers interested in elementary probability and statistics (Chapters 
4-11) may just have a look at Sections 3.1 and 3.2, which motivate and 
illustrate basic approaches to solve systems of linear equations; this is 
an important topic that any reader should be familiar with. 

• The remaining sections of this chapter are more advanced, but they are 
mostly needed by those interested in the multivariate statistics tech-
niques described in Chapters 15-17. One possibility is reading this whole 
chapter now; alternatively, one might prefer just having a cursory look 
at the material, and returning here when tackling those chapters. 

• Finally, readers who are interested in optimization modeling can do 
the same when grappling with Chapter 12. Some concepts related to 
quadratic forms (Section 3.8) and multivariable calculus (Section 3.9) 
are useful to obtain a better grasp of some technical aspects of opti-
mization. Apparently, these are not necessary if you are just interested 
in building an optimization model, but not in the algorithms needed to 
solve it; nevertheless, an appreciation of what a convex (i.e., easy-to-
solve) optimization model is better gained if you are armed with the 
background we build here. 

In Section 3.1 we propose a simple motivating example related to pricing a 
financial derivative. A simple binomial valuation model is discussed, which 
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leads to the formulation of a system of linear equations. Solving such a system 
is the topic of Section 3.2, where we disregard a few complicating issues and 
cut some corners in order to illustrate standard solution approaches. In Sec-
tions 3.3 and 3.4 we move on to more technical material: vector and matrix 
algebra. Matrices might be new to some readers, but they are a ubiquitous 
concept in applied mathematics. On the contrary, you are likely to have some 
familiarity with vectors from geometry and physics. We will abstract a lit-
tle in order to pave the way for Section 3.5, dealing with linear spaces and 
linear algebra, which can be considered as a generalization of the algebra of 
vectors. Another possibly familiar concept from elementary mathematics is 
the determinant, which is typically taught as a tool to solve systems of linear 
equations. Actually, the concept has many more facets, and a few of them 
are dealt with in Section 3.6. The last concepts from matrix theory that we 
cover are eigenvalues and eigenvectors, to which Section 3.7 is devoted. They 
are fundamental, e.g., in data reduction methods for multivariate statistical 
analysis, like principal component analysis and factor analysis.1 The two last 
sections are, in a sense, halfway between linear algebra and calculus. In Sec-
tion 3.8 we consider quadratic forms, which play a significant role in both 
statistics and optimization. They are, essentially, the simplest examples of a 
nonlinear function of multiple variables, and we will consider some of their 
properties, illustrating the link between eigenvalues of a matrix and convexity 
of a function. Finally, in Section 3.9 we hint at some multivariable generaliza-
tions of what we have seen in the previous chapter on calculus for functions 
of a single variable. 

3.1 A MOTIVATING EXAMPLE: BINOMIAL OPTION PRICING 

Options are financial derivatives that have gained importance, as well as a bad 
reputation, over the years. In Section 1.3.1 we considered forward contracts, 
another type of derivative. With a forward contract, two parties agree on ex-
changing an asset or a commodity, called the underlying asset, at a prescribed 
time in the future, for a fixed price determined now. In a call option, one 
party (the option holder, i.e., the party buying the option) has the right but 
not the obligation to buy the asset from the other party (the option writer, 
i.e., the party selling the option) at a price established now. This is called 
the strike price, which we denote by K. Let us denote the current price of 
the underlying asset by So (known when the option is written) and the future 
price at a time t = T by ST- Note that ST, as seen at time t = 0, is a random 
variable; the time t = T corresponds to the option maturity, which is when 

1See Chapter 17. 
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• Payoff 

/ Sr 
I f ► 

K 

Fig. 3.1 Payoff of a call option. 

the option can be exercised.2 Clearly, the option will be exercised only if 
ST > K, since there would be no point in using the option to buy at a price 
that is larger than the prevailing market price at time T . Then the payoff of 
the option, for the holder, is 

max{Sr — if, 0} 

To interpret this, consider the possibility of exercising the option to buy at K 
an asset that can be immediately sold at ST- Market structure is not really 
that simple, but some options are settled in cash, so the payoff really has 
a monetary nature; this occurs for options written on a nontraded market 
index or on interest rates. This payoff is a piecewise linear function and is 
illustrated in Fig. 3.1. When the future asset price ST will be realized, at 
time t = T, the payoff will be clearly determined. What is not that clear 
is the fair price for the contract at time t = 0: The payoff for the option 
holder cannot be negative, but the option writer can suffer a huge loss; hence, 
the latter requires an option premium, paid at time t = 0, to enter into 
this risky contract. Here we consider the most elementary model for option 
pricing. Whatever model we may think of, it should account for uncertainty 
in the price of the underlying asset, and the simplest model of uncertainty 
is a binomial model.3 As shown in Fig. 3.2, a binomial model for the price 
of the underlying asset assumes that its price in the future can take one of 
two values. It is quite common in financial modeling to represent uncertainty 
using multiplicative shocks, i.e., random variables by which the current stock 
price is multiplied to obtain the new price. In a binomial model, this means 
that the current price So, after a time period of length Γ, is multiplied by a 
shock that may take values d or u, with probabilities pu and pa, respectively. 
It is natural to think that d is the shock if the price goes down, whereas u is 
the shock when the price goes up; so, we assume d < u. The asset price may 

2We assume that the option can only be exercised at maturity. Such an option is called 
European-style. On the contrary, American-style options can be exercised at any time 
before their expiration date. 
3 The binomial model is basically related to coin flipping; see Section 1.2.3. 
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Fig. 3.2 One-step binomial model for option pricing. 

be either Sou or Sod, and the option will provide its holder a payoff fu and fd 
corresponding to the two outcomes. These values are also illustrated in Fig. 
3.2. For instance, in the case of a call option with strike price K, we have 

fd = max{S0d - K, 0}, /„ = max{50w - K, 0} 

The pricing problem consists of finding a fair price /o for the option, i.e., its 
value at time t = 0. Intuitively, one would guess that the two probabilities 
pu and Pd play a major role in determining f0. Furthermore, individual risk 
aversion could also play a role. Different people may assign a different value 
to a lottery, possibly making the task of finding a single fair price a hopeless 
endeavor, unless we have an idea of the aggregate risk aversion of the market 
as a whole. 

However, a simple principle can be exploited in order to simplify our task. 
The option is a single, somewhat complicated, asset; now suppose that we are 
able to set up a portfolio of simpler assets, in such a way that the portfolio 
yields the same payoff as the option, in any possible future state. The value 
of this replicating portfolio at t = 0 is known, and it cannot differ from the 
option value /o- Otherwise, there would be two essentially identical assets 
traded at different prices. Such a violation of the law of one price would open 
up arbitrage opportunities.4 

The replicating portfolio should certainly include the underlying asset, but 
we need an additional one. Financial markets provide us with such an asset, 
in the form of a risk-free investment. We may consider a bank account yield-
ing a risk-free interest rate r; we assume here that this rate is continuously 
compounded,5 so that if we invest $1 now, we will own $ert at a generic time 
instant t. Equivalently, we may think of a riskless zero-coupon bond, with 
initial price BQ = 1 and future price B\ = erT, when the option matures at 
time t = T. 

4An arbitrage opportunity is essentially a riskless money-making machine exploiting price 
inconsistencies. We have considered arbitrage opportunities when discussing a forward 
contract in Section 1.3.1. 
5See Section 2.3.4 for an introduction to continuous compounding. 



A MOTIVATING EXAMPLE: BINOMIAL OPTION PRICING 137 

What we have to find is the number of stock shares and riskless bonds that 
we should include in the portfolio, in order to replicate the option payoff. Let 
us denote the number of stock shares by Δ and the number of bonds by Φ. 
The initial value of this portfolio is 

Π0 = Δ 5 0 + Φ (3.1) 

and its future value, depending on the realized state, will be either 

Π„ = AS0u + * e r T or IId = AS0d + ΦβΓΤ 

Note that future value of the riskless bond does not depend on the realized 
state. If this portfolio has to replicate the option payoff, we should enforce 
the following two conditions: 

AS0u + VerT=fu 
AS0d + VerT=fd

 [6-Z) 

This is a system of two linear equations in two unknown variables Δ and Φ. 
The equations are linear as variables occur linearly. There is no power like x3, 
or cross-product like x\ ■ X2, or any weird function involved. All we have to 
do is solve this system of linear equations for Δ and Φ, and plug the resulting 
values into Eq. (3.1) to find the option price /o- A simple numerical example 
can illustrate the idea. 

Example 3.1 Let us assume that option maturity is T = 1 year, the risk-
free interest rate is 10%, the current price of the stock share is $10, and the 
strike price is $11. Finally, say that the two possible returns of the stock share 
in one year are either 20% or —10%, which imply u = 1.2 and d — 0.9. The 
corresponding payoffs are 

/„ = max{10 x 1.2 - 11,0} = 1, max{10 x 0.9 - 11,0} = 0 

The system of linear equations is 

12Δ + Φε 0 1 = 1 
9Δ + Φε 0 1 = 0 

If we subtract the second equation from the first one, we get 

(12 - 9)Δ = 1 =>■ Δ = | « 0.3333 

Plugging this value back into the first equation yields 

1 _ I l 
Φ = n i

3 « -2.7145 
g U . l 

and putting everything together, we obtain 

/o = Δ 5 0 + Φ = ψ - 2.7145 « $0.6188 
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Note that a negative value of Φ means that we borrow some money, at the 
risk-free rate. 

To get a financial understanding of what is going on, you should take the 
point of view of the option writer, i.e., the guy selling the option. Say that 
he takes a "naked" position, i.e., he collects the option price and waits until 
maturity. If the stock price goes up, he will have to buy one share at $12 just 
to hand it over to the option holder for $11, losing $1. If he does not like 
taking this chance, he could consider the opposite position: Buy one stock 
share, just in case the option gets exercised by its holder. This "covered" 
position does not really solve the problem, as the writer loses $1 if the price 
goes down, the option is not exercised, and he has to sell for $9 the share that 
was purchased for $10. 

The replicating strategy suggests that, to hedge the risk away, the writer 
should actually buy Δ = | shares. To this aim, he should use the option 
premium, plus some borrowed money ($2.7145, as given by Φ). If the stock 
price goes down to $9, the option writer will just sell that share for $3, i.e., 
what he needs to repay the debt, which at the risk-free rate has risen to $3. 
Hence, the option writer breaks even in the "down" scenario. The reader is 
encouraged to work out the details for the other case, which requires purchas-
ing two additional thirds of a stock share at the price of $12, in order to sell a 
whole share to the option holder, and to verify that the option writer breaks 
even again (in this case, the proceeds from the sale of the share at the strike 
price are used to repay the outstanding debt). D 

This numerical example could leave the reader a bit puzzled: Why should 
anyone write an option just to break even? No one would, of course, and 
the fair option price is increased somewhat to compensate the option writer. 
Furthermore, we have not considered issues such as transaction costs incurred 
when trading stock shares. Most importantly, the binomial model of uncer-
tainty is oversimplified, yet it does offer a surprising insight: The probabilities 
pu and pd of the up/down shocks do not play any role, and this implies that 
the expected price of the stock share at maturity is irrelevant. This is not sur-
prising after all, as we have matched the option payoff in any possible state, 
irrespective of its probability. Moreover, the careful reader will recall that we 
reached a similar conclusion when dealing with forward contracts in Section 
1.3.1. There, by no-arbitrage arguments that are actually equivalent to what 
we used here, it was found that the fair forward price for delivery in one year 
is Fo — 5o(l + r), where So is the price of the underlying asset at time t — 0 
and r is the risk-free rate with annual compounding. In the case of continuous 
compounding and generic maturity T, we get Fo = SoerT. 

Let us try to see if there is some link between forward and option pricing. 
To begin with, let us solve the system of linear equations (3.2) in closed form. 
Using any technique described in the following section,6 we get the following 

6 The result is easily obtained by applying Cramer's rule of Section 3.2.3. 
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composition of the replicating portfolio: 

A Ju id 

S0(u-d) 
φ = -Τ--Γ Ufd - dfu 

u — d 

Hence, by the law of one price, the option value now is 

/o = Δ5ο + Φ 
fu - fd -TT ufd - dfu 

u — d u — d 
-TT ί^!η + ^1Λ (3,, 

y u — d u — d J 
As we already noticed, this relationship does not depend on the objective 
probabilities pu and pd- However, let us consider the quantities 

erT - d u- erT 

u — d u — d 

which happen to multiply the option payoffs in Eq. (3.3). We may notice two 
interesting features of π„ and π^: 

1. They add up to one, i.e., πΜ + π^ = 1. 

2. They are nonnegative, i.e., π„,π^ > 0, provided that d < erT < u. 

The last condition does make economic sense. Suppose, for instance, that 
erT < d < u. This means that, whatever the realized scenario, the risky stock 
share will perform better than the risk-free bond. But this cannot hold in 
equilibrium, as it would pave the way for an arbitrage: Borrow money at the 
risk-free rate, buy the stock share, and you will certainly be able to repay 
the debt at maturity, cashing in the difference between the matured debt and 
the stock price. On the contrary, if the risk-free rate is always larger than 
the stock price in the future, one could make easy money by selling the stock 
share short.7 

We already know that probabilities may be related to relative frequencies 
and that the latter do add up to one and are nonnegative. Then we could 
interpret π„ and wj, as probabilities and Eq. (3.3) can be interpreted in turn 
as the discounted expected value of the option payoff 

/o = e" r T ( f u /„ + iTdfd) 

provided that we do not use the "objective" probabilities pu and pd, but πη 
and π^. These are called risk-neutral probabilities, a weird name that we can 

7See Example 1.3 for an illustration of short selling. 
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easily justify. Indeed, if we use the probabilities π„ and π^, the expected value 
of the underlying asset at maturity is 

EQ [ST] = nuS0u + -ndS0d = S0erT 

where the notation EQ emphasizes that change in probability measure.8 This 
suggests that, under these unusual probabilities, the return of the risky asset 
is just the risk-free return. Furthermore, this is just the forward price of the 
underlying asset. In other words, the forward price is in fact the expected 
value of the underlying asset, but under modified probabilities. But how is it 
possible that the expected return of a risky asset is just the risk-free rate? This 
might happen only in a world where investors do not care about risk, i.e., in a 
risk-neutral world, which justifies the name associated with the probabilities 
we use in option pricing. Indeed, what we have just illustrated is the tip of a 
powerful iceberg, the risk-neutral pricing approach, which plays a pivotal role 
in financial engineering. 

Of course, the binomial model we have just played with is too simple to be 
of practical use, but it is the building block of powerful pricing methods. We 
refer the interested reader to references at the end of this chapter, but now it 
is time to summarize what we have learned from a general perspective: 

• Building and solving systems of linear equations may be of significant 
practical relevance in many domains, including but not limited to fi-
nancial engineering. We have already stumbled on systems of linear 
equations when solving the optimal production mix problem in Section 
1.1.2. 

• We have also seen an interplay between algebra and probability the-
ory; quantitative, fact-based business management requires the ability 
of seeing these and other connections. 

• We have considered a simple binomial model of uncertainty. We had 
two states, and we used two assets to replicate the option. What if we 
want a better model with three or more states? How many equations 
do we need to find a solution? More generally, under which conditions 
are we able to find a unique solution to a system of linear equations? 

We will not dig deeper into option pricing, which is beyond the scope of the 
book, but these questions do motivate further study, which is carried out in 
the rest of this chapter. But first, we should learn the basic methods for 
solving systems of linear equations. 

8 The concept of expected value E[X] of a random variable will be fully treated later. For 
now, you may safely assume that it is equivalent to the intuitive concept of mean, using 
probabilities of future events rather than relative frequencies resulting from the observation 
of past data. 
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3.2 SOLVING SYSTEMS OF LINEAR EQUATIONS 

The theory, as well as the computational practice, of solving systems of linear 
equations is relevant in a huge list of real-life settings. In this section we just 
outline the basic solution methods, without paying due attention to bother-
ing issues such as the existence and uniqueness of a solution, or numerical 
precision. 

A linear equation is something like 

a\X\ + a2xi Λ l· anxn = b 

i.e., it relates a linear function of variables xi,...,xn to a right-hand side 6. 
A system of linear equations involves m such equations: 

auxi+ai2X2-\ l· ainxn = bx 

a-2\X\ + 022^2 H l· a2nXn = h 

am\Xi + am2X2 H h amnxn = bm 

where a^· is the coefficient multiplying variable Xj, j = 1 , . . . , n, in equation 
i, i — l , . . . , m , whose right-hand side is bi. 

A preliminary question is: How many equations should we have to pinpoint 
exactly one solution? An intuitive reasoning about degrees of freedom suggests 
that we should have as many equations as unknown variables. More precisely, 
it seems reasonable that 

• If we have more variables than equations (n> m), then we may not find 
one solution, but many; in other words, we have an underconstrained 
problem, and the residual degrees of freedom can be exploited to find a 
"best" solution, possibly optimizing some cost or profit function, much 
along the lines of Section 1.1.2; we will see how to take advantage of 
such cases in Chapter 12 on optimization modeling. 

• If we have more equations than variables (n < m), then we may fail to 
find any solution, as the problem is overconstrained; still, we might try 
to find an assignment of variables such that we get as close as possible 
to solving the problem; this leads to linear regression models and the 
least-squares method (see Chapter 10). 

• Finally, if n = m, we may hope to find a unique solution. 

Actually, this straightforward intuition will work in most cases, but not al-
ways. This is easy to visualize in a two-dimensional space, as illustrated in 
Fig. 3.3. In such a setting, a linear equation like a\X\ + a2xi = b corresponds 
to a line (see Section 2.3). In case (a), we have one equation for two unknown 
variables; there are infinite solutions, lying on the line pinpointed by the equa-
tion. If we have two equations, as in case (b), the solution is the unique point 
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(a) 

(d) (e) 

Fig. 3.3 Schematic representation of issues in existence and uniqueness of the solution 
of systems of linear equations. 

where the two lines intersect. However, if we have three lines as in case (c), 
we may fail to find a solution, because three lines have no common intersec-
tion, in general. These cases correspond to our intuition above. Nevertheless, 
things can go wrong. In case (d), we have two lines, but they are parallel and 
there is no solution. To see an example, consider the system 

2xi -I- 3x2 = 10 
2a; i + 3^2 = 5 

If we subtract the second equation from the first one, we get 0 = 5, which is, of 
course, not quite true. By a similar token, in case (e) we have two equations, 
but the solution is not unique. Such a case may arise when two apparently 
different equations boil down to the same one, as in the following system: 

2x! + 3x2 = 10 
Axi + 6z2 = 20 

It is easy to see that the two equations are not really independent, since the 
second one is just the first one multiplied by 2. 

Indeed, to address issues related to existence and uniqueness of solutions 
of systems of linear equations, we need the tools of linear algebra, which we 
cover in the advanced sections of this chapter. The reader interested in a 
basic treatment might just skip these sections. Here, we illustrate the basic 
approaches to solve systems of linear equations, assuming that the solution is 
unique, and that we have as many equations as variables. 
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3.2.1 Substitution of variables 

A basic (highschool) approach to solving a system of linear equations is substi-
tution of variables. The idea is best illustrated by a simple example. Consider 
the following system: 

xi -2x2 = 8 
3a;i + x2 = 3 v ' 

Rearranging the first equation, we may express the first variable as a function 
of the second one: 

X\ = 2x2 + 8 

and plug this expression into the second equation: 

3 x (2x2 + 8) + x2 = 3 -> 7x2 = - 2 1 -> x2 = - 3 

Then we may plug this value back into the expression of xi, which yields 
xi = 2 . 

Despite its conceptual simplicity, this approach is somewhat cumbersome, 
as well as difficult to implement efficiently in computer software. A related 
idea, which is more systematic, is elimination of variables. In the case above, 
this is accomplished as follows: 

1. Multiply the first equation by —3, to obtain —3xi 4- 6x2 = —24 

2. Add the new equation to the second one, which yields 7x2 — —21 and 
implies x2 — — 3 

3. Substitute back into the first equation, which yields xi = 2 

We see that elimination of variables, from a conceptual perspective, is not 
that different from substitution. One can see the difference when dealing 
with large systems of equations, where carrying out calculations without due 
care can result in significant numerical errors. Gaussian elimination is a way 
to make elimination of variables systematic. 

3.2.2 Gaussian elimination 

Gaussian elimination, with some improvements, is the basis of most numerical 
routines to solve systems of linear equations. Its rationale is that the following 
system is easy to solve: 

O11X1 +0S12X2 H \-alnxn = bi 

a22x2 H h a2nxn = b2 

^"nn^n "n 



144 LINEAR ALGEBRA 

Such a system is said to be in upper triangular form, as nonzero coefficients 
form a triangle in the upper part of the layout. A system in upper triangular 
form is easy to solve by a process called backsubstitution. From the last 
equation, we immediately obtain 

_ bn 
X-n — 

d-nn 

Then, we plug this value into the second-to-last (penultimate) equation: 

, , On —1 &ηηΧη 
^n — l,nXn — l i an — i^nXn — 0n—\ > Xn — \ — 

^ η - Ι , η 

In general, we proceed backward as follows: 

1 ( \ 
xk = 6fc - Υ^ akjXj , k = n-l,n-2, . . . , 1 (3.5) a^ \ j=v+1 ; 

Now, how can we transform a generic system into this nice triangular form? 
To get a system in triangular form, we form combinations of equations in order 
to eliminate some coefficients from some equations, according to a systematic 
pattern. Starting from the system in its original form 

(Εχ) anxi + ai2X2-i h aXnxn = b\ 
(En) a2ixi + a22x2 H l· a2nxn = b2 

(En) α,ηχχι + an2X2 H H annxn — bn 

where (Ek) denotes the fcth equation, k = 1 , . . . ,n, we would like to get an 
equivalent system featuring a column of zeros under the coefficient a n . By 
"equivalent" system we mean a new system that has the same solution as 
the first one. If we multiply equations by some number, we do not change 
their solution; by the same token, if we add equations, we do not change the 
solution of the overall system. 

For each equation (Ek) (k = 2 , . . . , n), we must apply the transformation 

squivs 

αιχχχ 

(Ek)^(Ek)-^(E1) 
an 

dent system: 

+ αι2Χ2 + · · 
a{^x2 + ■■■ 

a{^x2 + ---

' 1 θΊη%η 

■ + a2n Xn '-

, + 0 ( l ) T -

h 
b{1) 

°2 

b^ 
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Now we may repeat the procedure to obtain a column of zeros under the 
coefficient a 2 2 , and so on, until the desired form is obtained, allowing for 
backsubstitution. The idea is best illustrated by a simple example. 

Example 3.2 Consider the following system: 

x\ + 2x2 + £3 — 0 
2xi + 2x2 + 3x3 = 3 

—x\ — 3^2 = 2 

It is convenient to represent the operations of Gaussian elimination in a tabu-
lar form, which includes both the coefficients in each equation and the related 
right-hand side: 

0 " 
3 
2 

=> 
" 1 

0 
0 

2 1 
- 2 1 
- 1 1 

0 ' 
3 
2 

=> 
" 1 

0 
0 

2 1 
- 2 1 

0 \ 

0 " 
3 
1 
2 . 

It is easy to apply backsubstitution to this system in triangular form, and we 
find X3 = 1, X2 = —1, and x\ = 1. D 

Gaussian elimination is a fairly straightforward approach, but it involves a 
few subtle issues: 

1. To begin with, is there anything that could go wrong? The careful 
reader, we guess, has already spotted a weak point in Eq. (3.5): What 
if Ott — 0? This issue is easily solved, provided that the system admits 
a solution. We may just swap two equations or two variables. If you 
prefer, we might just swap two rows or two columns in the tabular form 
above. 

2. What about numerical precision if we have a large-scale system? Is 
it possible that small errors due to limited precision in the calculation 
creep into the solution process and ultimately lead to a very inaccurate 
solution? This is a really thorny issue, which is way outside the scope 
of the book. Let us just say that state-of-the-art commercial software 
is widely available to tackle such issues in the best way, which means 
avoiding or minimizing the difficulty if possible, or warning the user 
otherwise. 

3.2.3 Cramer's rule 

As a last approach, we consider Cramer's rule, which is a handy way to 
solve systems of two or three equations. The theory behind it requires more 
advanced concepts, such as matrices and their determinants, which are intro-
duced below. We anticipate here a few concepts so that readers not interested 
in advanced multivariate statistics can skip the rest of this chapter without 
any loss of continuity. 
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In the previous section, we have seen that Gaussian elimination is best 
carried out on a tabular representation of the system of equations. Consider 
a system of two equations in two variables: 

anXi + 0,12X2 = bi 

a2\X\ + 0222:2 = Ò2 

We can group the coefficients and the right-hand sides into the two tables 
below: 

a n 
Ö21 

a i 2 

022 
b = h 

62 

These "tables" are two examples of a matrix, A is a two-row, two-column 
matrix, whereas b has just one column. Usually, we refer to b as a column 
vector (see next section). 

The determinant is a function mapping a square matrix, i.e., a matrix with 
the same number of rows and columns, to a number. The determinant of 
matrix A is denoted by det(A) or | A | . The concept is not quite trivial, but 
computing the determinant for a 2 x 2 matrix is easy. For the matrix above, 
we have 

a n a i 2 

Ü21 θ 2 2 
det(A) = — 0,\\a22 — 0,210-12 

In practice, we multiply numbers on the main diagonal of the matrix and we 
subtract the product of numbers on the other diagonal. Let us denote by Bi 
the matrix obtained by substituting column i of matrix A with the vector b 
of the right-hand sides. Cramer's rule says that the solution of a system of 
linear equations (if it exists) is obtained by computing 

Xi — 
det(Bj) 
det(A) ' 1, ,71 (3.6) 

Example 3.3 To illustrate, let us consider system (3.4) again. We need the 
following determinants: 

det(A) = 

det(Bi) = 

det(B2) = 

1 
3 
8 
3 
1 
3 

- 2 
1 

- 2 
1 

8 
3 

= 1 x 1 - 3 x (-2) = 7 

= 8 x l - 3 x (-2) = 14 

: 1 x 3 - 3 x 8 = - 2 1 

Applying Cramer's rule yields 

14 
H = y = 2 , 

which is, of course, what we obtained by substitution of variables. 

- 2 1 
Z2 = — = - 3 
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The case of a 3 x 3 matrix is dealt with in a similar way, by computing the 
determinant as follows: 

a n 
a 2 i 
031 

a i 2 
Û22 

032 

a i 3 
0 2 3 

Û33 
a n 

022 

«32 
023 

a33 
- a i 2 

«21 
Û31 

Û23 
Û33 

+ a i 3 Û21 
Û31 

022 

Û32 

In general, the calculation of an n x n determinant is recursively boiled down 
to the calculation of smaller determinants. 

Example 3.4 To illustrate the calculation of the determinant in a three-
dimensional case, let us apply the formula to the matrix of coefficients in 
Example 3.2 above: 

1 
2 
1 

2 
2 

- 3 

1 
3 
0 

2 3 
- 3 0 - 2 x 

2 3 
- 1 0 + 1 x 1 x 

I x ( 2 x 0 + 3 x 3 ) - 2 x ( 2 x 0 
1 x ( -2 x 3 + 1 x 2) 
- 1 

2 
- 3 

1 x 3 ) 

The reader is encouraged to compute all of the determinants, such as 

det(Bi) = = - 1 

that we require to apply Cramer's rule and check that we obtain the same 
solution as in Example 3.2.9 D 

We will generalize this rule and say much more about the determinant in 
Section 3.6. We will also see that, although computing the determinant is 
feasible for any square matrix, this quickly becomes a cumbersome approach. 
Indeed, determinants are a fundamental tool from a conceptual perspective, 
but they are not that handy computationally. Still, it will be clear from 
Section 3.6 how important they are in linear algebra. 

For now, we should just wonder if anything may go wrong with the idea. 
Indeed, Cramer's rule may crumble down if det(A) = 0. We will see that 
in such a case the matrix A suffers from some fundamental issues, prevent-
ing us from being able to solve the system. In general, as we have already 
pointed out, we should not take for granted that there is a unique solution to 
a system of linear equations. There could be none, or there could be many 
(actually, infinite). To investigate these issues, we need to introduce power-
ful and far-reaching mathematical concepts related to vectors, matrices, and 
linear algebra. 

9 The careful reader should wonder if we can take advantage of the element 033 = 0 in the 
matrix by developing the determinant along the last row, rather than along the first one; 
indeed, this can be done by the rules illustrated in Section 3.6. 
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(a) (b) 

Fig. 3.4 Vectors in two- and three-dimensional spaces. 

3.3 VECTOR ALGEBRA 

Vectors are an intuitive concept that we get acquainted with in highschool 
mathematics. In ordinary two- and three-dimensional geometry, we deal with 
points on the plane or in the space. Such points are associated with coor-
dinates in a Cartesian reference system. Coordinates may be depicted as 
vectors, as shown in Fig. 3.4; in physics, vectors are associated with a direc-
tion (e.g., of motion) or an intensity (e.g., of a force). In this book, we are 
interested in vectors as tuples of numbers. The vectors of Fig. 3.4 can be 
represented numerically as a pair and a triple of numbers, respectively: 

V : 

More generally, we define a vector in an n-dimensional space as a tuple of 
numbers: 

r vi 
V2 

As a notational aid, we will use boldface lowercase letters (e.g., a, b, x) to 
refer to vectors; components (or elements) of a vector will be referred to by 
lowercase letters with a subscript, such as y\ or Vi. In this book, components 
are assumed to be real numbers; hence, an n-dimensional vector v belongs to 
the set Rn of tuples of n real numbers. If n = 1, i.e., the vector boils down to 
a single number, we speak of a scalar element. 

Note that usually we think of vectors as columns. Nothing forbids the use 
of a row vector, such as 

[2, - 3 , 0, 9] 
In order to stick to a clear convention, we will always assume that vectors 
are column vectors; whenever we insist on using a row vector, we will use 
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the transposition operator, denoted by superscript T, which essentially swaps 
rows and columns: 

v T -[vi, v2, . . · , vn] 

Sometimes, transposition is also denoted by v'. 
In business applications, vectors can be used to represent several things, 

such as 

• Groups of decision variables in a decision problem, such as produced 
amounts Xi for items i = 1 , . . . , n, in a production mix problem 

• Successive observations of a single random variable X, as in a random 
sample (Xi,X2,...,Xm) 

• Attributes of an object, measured according to several criteria, in mul-
tivariate statistics 

3.3.1 Operations on vectors 

We are quite used to elementary operations on numbers, such as addition, 
multiplication, and division. Not all of them can be sensibly extended to the 
vector case. Still, we will find some of them quite useful, namely: 

• Vector addition 

• Multiplication by a scalar 

• Inner product 

Vector addition Addition is defined for pairs of vectors having the same di-
mension. If v, u g W1, we define: 

til + Vi 
U2 + V2 

V + U Ξ 

For instance 

Since vector addition boils down to elementwise addition, it enjoys commuta-
tivity and associativity: 

10 ' 
- 4 
6 

+ 
" - 3 ' 

- 1 
10 

= 
7 

- 5 
16 

V + U = U (v + u) + w = v + (u + w) 

and we may add an arbitrary number of vectors by just summing up their 
elements. 



150 LINEAR ALGEBRA 

We will denote by 0 (note the boldface character) a vector whose elements 
are all 0; sometimes, we might make notation a bit clearer by making the 
number of elements explicit, as in 0n . Of course, u + (—u) = 0. 

Multiplication by a scalar Given a scalar a e 
define the product of a vector and a scalar: 

a v = 

and a vector v € we 

For instance 

10 
- 4 

6 
a = 3 av 

30 
-12 
18 

Again, familiar properties of multiplication carry over to multiplication by a 
scalar. 

Now, what about defining a product between vectors, provided that they 
are of the same dimension? It is tempting to think of componentwise vector 
multiplication. Unfortunately, this idea does not lead to an operation with 
properties similar to ordinary products between scalars. For instance, if we 
multiply two nonzero numbers, we get a nonzero number. This is not the case 
for vectors. To see why, consider vectors 

v = 

If we multiply them componentwise, we get the two-dimensional zero vector 
O2. This, by the way, does not allow to define division in a sensible way. 
Nevertheless, we may define a useful concept of product between vectors, the 
inner product.10 

Inner product The inner product is defined by multiplying vectors componen-
twise and summing the resulting terms: 

u · v Σ UM 

Since the inner product is denoted by a dot, it is also known as the dot product; 
in other books, you might also find a notation like (u, v). The inner product 

In physics, there is another definition of vector product, which is not useful in our setting. 
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yields a scalar.11 Clearly, an inner product is defined only for vectors of the 
same dimension. For instance 

= 3 x 2 + (-1) x 6 + 4 x (-1) = - 4 

One could wonder why such a product should be useful at all. In fact, the 
inner-product concept is one of the more pervasive concepts in mathematics 
and it has far-reaching consequences, quite beyond the scope of this book. 
Nevertheless, a few geometric examples suggest why the inner product is so 
useful. 

Example 3.5 (Euclidean length, norm, and distance) The inner-product 
concept is related to the concept of vector length. We know from elementary 
geometry that the length of a vector is the square root of the sum of squared 
elements. Consider the two-dimensional vector v = [2, — 1]T, depicted in Fig. 
3.4. Its length (in the Euclidean sense) is just y/22 + (—l)2 = \/h. We may 
generalize the idea to n dimensions by defining the Euclidean norm of a vector: 

n 

Σν* = v'ü̂ u" 

The Euclidean norm || · || is a function mapping vectors to nonnegative real 
numbers, built on the inner product. Alternative definitions of norm can be 
proposed, provided that they preserve the intuitive properties associated with 
vector length. By the same token, we may consider the distance between two 
points. Referring again to a two-dimensional case, if we are given two points 
in plane 

Vl 

v2 

their Euclidean distance is 

d(u, v) = γ («i - vif + (u2 - υ2)2 

This can be related to the norm and the inner product: 

d(u,v) =|| u - v | |= A/(U - V) · (u - V) 

In such a case, we are measuring distance by assigning the same importance to 
each dimension (component of the difference vector). Later, we will generalize 

11 Indeed, the inner product is sometimes referred to as the "scalar product." We will avoid 
this term, as it may be confused with multiplication by a scalar. 

3 
- 1 

4 

2 
6 

- 1 

\ 

u = «2 
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Fig. 3.5 Orthogonal vectors illustrating the Pythagorean theorem. 

distance by allowing for a vector of weights w, such as in 

dw(u, v) = 
N§ WAUi vzy 

A vector e such that || e ||= 1 is called a unit vector. Given a vector v, we 
may obtain a unit vector parallel to v by considering vector v / || v ||. U 

Example 3.6 (Orthogonal vectors) Consider the following vectors: 

e i e2 = 

They are unit-length vectors parallel to the two coordinate axes, and they are 
orthogonal. We immediately see that 

e ! - e 2 = 1 x 0 + 0 x 1 = 0 

The same thing happens, for instance, with Vi = [1,1]T and v2 = [—1, l ] r . 
These vectors are orthogonal as well (please draw them and check). 

Orthogonality is not an intuitive concept in an n-dimensional space, but in 
fact we may define orthogonality in terms of the inner product: We say that 
two vectors are orthogonal if their inner product is zero. U 

Example 3.7 (Orthogonal projection) From elementary geometry, we 
know that if two vectors u and v are orthogonal, then we must have 

||u + v | | 2 = | |u | | 2 + | |v | | 2 

This is simply the Pythagorean theorem in disguise, as illustrated in Fig. 
3.5. Now consider two vectors u and v that are not orthogonal, as illustrated 
in Fig. 3.6. We may decompose u in the sum of two vectors, say, u i and 
ii2, such that ui is parallel to v and u2 is orthogonal to v. The vector Ui 
is the orthogonal projection of u on v. Basically, we are decomposing the 
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£. 
Fig. 3.6 Orthogonal projection of vector u on vector v. 

"information" in u into the sum of two components. One contains the same 
information as v, whereas the other one is completely "independent." 

Since ui is parallel to v, for some scalar a we have: 

Ui = QV, U2 = U — UV 

The first equality derives from the fact that two parallel vectors must be 
related by a proportionality constant; the second one states that u is the sum 
of two component vectors. What is the right value of a that makes them 
orthogonal? Let us apply the Pythagorean theorem: 

| |u | |2 = | | av | | 2 + | | u - a v | | 2 

= a2 || v ||2 +(u — av) · (u — av) 
= a2 | |v | |2 + U - U - 2 U - (av) + (av) · (av) 
= a 2 | | v | | 2 + | | u | | 2 - 2 a ( u . v ) + a 2 | | v | | 2 

This, in turn, implies 
u · v 

If v is a unit vector, we see that the inner product gives the length of the 
projection of u on v. We also see that if u and v are orthogonal, then this 
projection is null; in some sense, the "information" in u is independent from 
what is provided by v. D 

3.3.2 Inner products and norms 

The inner product is an intuitive geometric concept that is easily introduced 
for vectors, and it can be used to define a vector norm. A vector norm is 
a function mapping a vector x into a nonnegative number || x || that can be 
interpreted as vector length. We have see that we may use the dot product 
to define the usual Euclidean norm: 

\\x\\= V£H= Jx\ + x% + ■ +x* 
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It turns out that both concepts can be made a bit more abstract and general, 
and this has a role in generalizing some intuitive concepts such as orthogo-
nality and Pythagorean theorem to quite different fields.12 

Generally speaking, the inner product on a space is a function mapping 
two elements x and y of that space into a real number (x, y). There is quite 
some freedom in defining inner products, provided our operation meets the 
following conditions: 

• (x, x) is a real number such that (x, x) > 0 and (x, x) = 0 only when 
x = 0. 

• (x,y) = <y,x>· 

• (x, ay) = a(x, y) for any scalar a. 

• (x,y + z) = (x,y) + (x,z)· 
It is easy to check that our definition of the inner product for vectors in R™ 
meets these properties. If we define alternative inner products, provided they 
meet the requirements described above, we end up with different concepts of 
orthogonality and useful generalizations of Pythagorean theorem. A straight-
forward generalization of the dot product is obtained by considering a vector 
w of positive weights and defining: 

n 

(x, y)w = Σ wixiVi 
t = l 

This makes sense when we have a problem with multiple dimensions, but some 
of them are more important than others. 

By a similar token, we may generalize the concept of norm, by requiring 
the few properties that make sense when defining a vector length: 

• || x || > 0, with || x || = 0 if and only if x = 0; this states that length 
cannot be negative and it is zero only for a null vector. 

• || a x || = | a | || x || for any scalar a; this states that if we multiply all 
of the components of a vector by a number, we change vector length 
accordingly, whether the scalar is negative or positive. 

• || x + y || < || x || + | |y | | ; this property is known as triangle inequality 
and can be interpreted intuitively by looking at Fig. 3.7 and interpreting 
vectors as displacement in the plane, and their length as distances. We 
can move from point Po to point P i by the displacement corresponding 
to vector x, and from point P i to P2 by displacement y; if we move 
directly from Po to P2, the length of the resulting displacement, || x + y ||, 
cannot be larger than the sum of the two distances | |x| | and | |y| | . 

Later, we will learn that two random variables are "orthogonal" if they are uncorrelated. 
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Fig. 3.7 Orthogonal projection of vector u on vector v. 

Using the standard dot product, we find the standard Euclidean norm, which 
can be denoted by || · j | ^ - However, we might just add the absolute value of 
each coordinate to define a length or a distance: 

l|x||i = El* i l (3·7) 
i = l 

The notation is due to the fact that the two norms above are a particular case 
of the general norm 

/ n \ VP 

Ι | χ | | Ρ =(Σΐ^Π 

Letting p —> +00, we find the following norm: 

| |χ | |οο= max \XÌ\ (3.8) 
i = l , . . . , n 

All of these norms make sense for different applications, and it is also possible 
to introduce weights to assign different degrees of importance to multiple 
problem dimensions.13 

Norms need not be defined on the basis of an inner product, but the nice 
thing of the inner product is that if we use an inner product to define a norm, 
we can be sure that we come up with a legitimate norm. 

3.3.3 Linear combinations 

The two basic operations on vectors, addition and multiplication by a scalar, 
can be combined at wish, resulting in a vector; this is called a linear combi-
nation of vectors. The linear combination of vectors Vj with coefficients ctj, 

1 3 For instance, Euclidean norm is used in standard linear regression by least squares; see 
Section 10.1.1 for alternative approaches. 
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(a) (b) 

(e) (d) 

Fig. 3.8 Illustrating linear combinations of vectors. 

j = 1 , . . . ,m is 

3 = 1 

^ V J 

If we denote each component i, i = 1 , . . . , n, of vector j by Vij, the component 
i of the linear combination above is simply 

m 

j = l 

It is useful to gain some geometric intuition to shed some light on this concept. 
Consider vectors Ui = [1,1]T and U2 = [—1,1]T, depicted in Fig. 3.8(a), and 
imagine taking linear combinations of them with coefficients a>\ and a2: 

v = a i u i +a2u2 

Which set of vectors do we generate when the two coefficients are varied? 
Here are a few examples: 

Q l = 2 , Oi-2 = - 3 

a\ = 2, a2 = 3 
a i = 2, a 2 = - 1 
a i = 0.5, Q2 = 0.5 

= $ ■ 

=> 
=> 
=> 

v = [ 5 , - l ] r 

v = [ - l , 5 ] r 

v = [ 3 , l p 
v = [ 0 , l ] T 

The reader is strongly urged to draw these vectors to get a feeling for the 
geometry of linear combinations. On the basis of this intuition, we may try 
to generalize a bit as follows: 
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• It is easy to see that if we let a\ and a^ take any possible value in R, 
we generate any vector in the plane. Hence, we span all of the two-
dimensional space R2 by expressing any vector as a linear combination 
of ui and 112. 

• If we enforce the additional restriction a\, a.2 > 0, we take positive linear 
combinations. Geometrically, we generate only vectors in the shaded 
region of Fig. 3.8(b), which is a cone. 

• If we require a\ + a.2 = 1, we generate vectors on the horizontal dotted 
line in Fig. 3.8(c). Such a combination is called affine combination. 
Note that in such a case we may express the linear combination using 
one coefficient a as a u i + (1 — α)ιΐ2· We get vector ui when setting 
a = 1 and vector 112 when setting a = 0. 

• If we enforce both of the additional conditions, i.e., if we require that 
weights be nonnegative and add up to one, we generate only the line 
segment between ui and 112. Such a linear combination is said a convex 
combination and is illustrated in Fig. 3.8(d).14 

3.4 MATRIX ALGEBRA 

We began this chapter by considering the solution of systems of linear equa-
tions. Many issues related to systems of linear equations can be addressed by 
introducing a new concept, the matrix. Matrix theory plays a fundamental 
role in quite a few mathematical and statistical methods that are relevant for 
management. 

We have introduced vectors as one-dimensional arrangement of numbers. 
A matrix is, in a sense, a generalization of vectors to two dimensions. Here 
are two examples of matrices: 

1 3 - 1 
0 4 - 2 
3 5 0 

B = 1 3 - 1 6 
0 4 - 2 5 

In the following, we will denote matrices by boldface, uppercase letters. A 
matrix is characterized by the number of rows and the number of columns. 
Matrix A consists of three rows and three columns, whereas matrix B consists 
of two rows and four columns. Generally speaking, a matrix with m rows and n 
columns belongs to a space of matrices denoted by Rm 'n . In the two examples 

1 4The reader might appreciate the definition of convex combination a little better by re-
ferring back to Section 2.11 on convexity. We will also see that coefficients with those 
properties might be interpreted as probabilities, as they are nonnegative and add up to 
one; hence, a convex combination bears some resemblance to the probabilistic concept of 
expected value. 
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above, A G R3'3 and B e R2'4. When m = n, as in the case of matrix A, we 
speak of a square matrix. 

It is easy to see that vectors are just a special case of a matrix. A column 
vector belongs to space R™'1 and a row vector is an element of R1'™. 

3.4.1 Operations on matrices 

Operations on matrices are defined much along the lines used for vectors. In 
the following, we will denote a generic element of a matrix by a lowercase 
letter with two subscripts; the first one refers to the row, and the second one 
refers to the column. So, element Ojj is the element in row i, column j . 

Addition Just like vectors, matrices can be added elementwise, provided they 
are of the same size. If A e R m · " and B G Rm'™, then 

A + B 

For example 

1 
- 2 

7 

= 

- 1 
4 

- 3 -

an 

a>m\ 
On 

O-rnl 

0 " 
6 

-2 

aij 

+ bu 

+ bml 

+ 
" 6 

0 
4 

O-ln 

^τηη 

+ 
' o n ■·· 

: hj 
bml · ■ ■ I 

O-ln + bin 

' ' ' ^rnn ~r U-mn 

- 3 1 " 
10 3 
5 I 

= 
7 - 4 

- 2 14 
11 2 

!>ln 

mn 

1 
9 

- 1 

Multiplication by a scalar Given a scalar a £ 1 , we define its product with a 
matrix A e Rm'™ as follows: 

For example 

otau 

aami 
acii 

aa\r 

αα,π 

2 - 1 0 
-3 5 1 
7 - 4 2 

6 - 3 0 
- 9 15 3 
21 -12 6 

Matrix multiplication We have already seen that elementwise multiplication 
with vectors does not lead us to an operation with good and interesting prop-
erties, whereas the inner product is a rich concept. Matrix multiplication is 
even trickier, and it is not defined elementwise, either. The matrix product 
AB is defined only when the number of columns of A and the number of rows 
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of B are the same, i.e., A S M.m'k and B € Rk'n. The result is a matrix, say, 
C, with m rows and n columns, whose element Cij is the inner product of the 
ith row of A and the jth column of B: 

= Σα< hOhj 
h=l 

For instance 

1 3 " 
- 2 7 

9 0 

4 
1 L 

2 ' 
- 1 = 

( 1 x 4 + 3 x l ) 
( - 2 x 4 + 7 x 1 ) 
( 9 x 4 + 0 x 1 ) 
7 - 1 " 

- 1 - 1 1 
36 18 

( 1 x 2 - 3 x 1 ) 
( - 2 x 2 - 7 x 1 ) 
( 9 x 2 - 0 x 1 ) 

(3.9) 

If two matrices are of compatible dimension, in the sense that they can be 
multiplied using the rules above, they are said to be conformable. The defini-
tion of matrix multiplication does look somewhat odd at first. Still, we may 
start getting a better felling for it, if we notice how we use it to press a system 
of linear equations in a very compact form. Consider the system 

ai ixi + 012X2 H ainxn = òi 
0 2 l X l + α 2 2^2 H a,2nXn = &2 

α„ιχι + an2X2 
ρη,η 

Χγι — Ö n 

and group coefficients α^ into matrix A e Rn , n , and right-hand sides òj into 
column vector b G Rn = W1'1. Using the definition of matrix multiplication, 
we may rewrite the system as follows: 

Ax = b 

By repeated application of matrix product, we also define the power of a 
matrix. Squaring a matrix A does not mean squaring each element, but 
rather multiplying the matrix by itself: 

A2 Ξ Ξ Α Α 

It is easy to see that this definition makes sense only if the number of rows is 
the same as the number of columns, i.e., if matrix A is a square matrix. By 
the same token, we may define a generic power: 

A m = AA · · · A 

We may even define the square root of a matrix as a matrix A1/2 such that: 

A = A1/2A1/2 
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The existence and uniqueness of the square root matrix are not to be taken for 
granted. We will discuss this further when dealing with multivariate statistics. 

A last important observation concerns commutativity. In the scalar case, 
we know that inverting the order of factors does not change the result of a 
multiplication: ab = ba. This does not apply to matrices in general. To begin 
with, when multiplying two rectangular matrices, the number of rows and 
column may match in such a way that AB is defined, but BA is not. But 
even in the case of two square matrices, commutativity is not ensured, as the 
following counterexample shows: 

"2 1 ' 
1 1 

' 1 - 1 " 
0 2 _ 

1 - 1 ' 
0 2 
" 2 1 " 

1 1 

" 2 0 " 
1 1 

" 1 0 " 
2 2 

Matrix transposition We have already met transposition as a way of trans-
forming a column vector into a row vector (and vice versa). More generally, 
matrix transposition entails interchanging rows and columns: Let B — AT be 
the transposed of A; then bij = aji. For instance 

6 0 
-1 5 
3 8 

A T = -1 3 
5 8 

So, if A e Rm'n, then A T e Rn'm. 
If A is a square matrix, it may happen that A = A T ; in such a case we say 

that A is a symmetric matrix. The following is an example of a symmetric 
matrix: 

" 2 0 - 3 
0 3 5 

- 3 5 - 1 
Symmetry should not be regarded as a peculiar accident of rather odd ma-
trices; in applications, we often encounter matrices that are symmetric by 
nature.15 Finally, it may be worth noting that transposition offers another 
way to denote the inner product of two vectors: 

x y x T y 

By the same token 
: X · X = X X 

The following is an important property concerning transposition and product 
of matrices. 

15 One such common example that we will meet later is the matrix collecting all of the 
covariances between a vector of random variables. 
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PROPERTY 3.1 (Transposition of a matrix product) If A andB are 
conformable matrices, then 

(AB) T = B T A T 

We encourage the reader to check the result for the matrices of Eq. (3.9). 

Example 3.8 An immediate consequence of the last property is that, for 
any matrix A, the matrices A T A and A A T are symmetric: 

( A T A ) T = A T ( A T ) T = A T A and ( A A T ) T = ( A T ) T A T = A A T 

Note that, in general, the matrices A T A and A A T have different dimensions. 
D 

3.4.2 The identity matrix and matrix inversion 

Matrix inversion is an operation that has no counterpart in the vector case, 
and it deserves its own section. In the scalar case, when we consider standard 
multiplication, we observe that there is a "neutral" element for that operation, 
the number 1. This is a neutral element in the sense that for any x € R, we 
have x ■ 1 = 1 ■ x = x. 

Can we define a neutral element in the case of matrix multiplication? The 
answer is yes, provided that we confine ourselves to square matrices. If so, it 
is easy to see that the following identity matrix I G M.n'n will do the trick: 

1 0 
0 1 

0 0 

The identity matrix consists of a diagonal of "ones," and it is easy to see that, 
for any matrix A e Rn 'n , we have AI = IA = A. By the same token, for any 
vector v e 1 " , we have Iv = v (but in this case we cannot commute the two 
factors in the multiplication). 

In the scalar case, given a number x φ 0, we define its inverse χ~λ, such 
that x ■ x~l — x _ 1 · x = 1. Can we do the same with (square) matrices? 
Indeed, we can sometimes find the inverse of a square matrix A, denoted by 
A - 1 , which is a matrix such that 

A 1 A = I, A A 1 = I 

However, the existence of the inverse matrix is not guaranteed. We will learn 
in the following text that matrix inversion is strongly related to the possibility 
of solving a system of linear equations. Indeed, if a matrix A is invertible, 
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solving a system of linear equations like Ax = b is easy, 
premultiply the system by the inverse of A: 

To see this, just 

Ax = b => A 1 A x = A - 1 b => x = A - 1 b 

Note the analogy with the solution of the linear equation ax = b. We know 
that x = b/a, but we are in trouble if a = 0. By a similar token, a matrix 
might not be invertible, which implies that we fail to find a solution to the 
system of equations. To really understand the issues involved, we need a few 
theoretical concepts from linear algebra, which we introduce in Section 3.5. 

For now, it is useful to reinterpret the solution of a system of linear equa-
tions under a different perspective. Imagine "slicing" a matrix A € ffi™'™, i.e., 
think of it as made of its column vectors a, : 

ai a2 where a^ = 

aij 
a2j 

j = l , . . . , n 

Then, we may see that solving a system of linear equations amounts to ex-
pressing the right-hand side b as a linear combination of the columns of A. 
To illustrate 

Xl + 2x2 + X3 = 0 
2xi + 2x2 + 3x3 = 
—xi — 3x2 = 2 

1 
2 

- 1 
Xl + 

2 
2 

- 3 
X2 + 

" 1 " 
3 
0 

Z3 = 

" 0 " 
3 
2 

More generally 
aixi +a2X2 • a n x n 

There is no guarantee that we can always express b as a linear combination 
of columns a.j, j — 1 , . . . ,n, with coefficients Xj. More so, if we consider a 
rectangular matrix. For instance, if we have a system of linear equations asso-
ciated with a matrix in M.m,n, with m > n, then we have many equations and 
just a few unknown variables. It stands to reason that in such a circumstance 
we may fail to solve the system, which means that we may well fail to express 
a vector with many components, using just a few vectors as building blocks. 
This kind of interpretation will prove quite helpful later. 

3.4.3 Matrices as mappings on vector spaces 

Consider a matrix A G Mm'™. When we multiply a vector u S R" by this 
matrix, we get a vector v G Rm. This suggests that a matrix is more than just 
an arrangement of numbers, but it can be regarded as an operator mapping 
W1 to Rm: 

v = / (u) = Au 
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Given the rules of matrix algebra, it is easy to see that this mapping is linear, 
in the sense that: 

/ ( a i i i ! + a 2 u 2 ) = A ( Q I U I + Q2U2) = a i A u i + a 2 Au 2 

= a i / ( u i ) + a 2 / ( u 2 ) (3.10) 

This means that the mapping of a linear combination is just a linear combi-
nation of the mappings. Many transformations of real-world entities are (at 
least approximately) linear. 

If we restrict our attention to a square matrix A € Rn , n , we see that this 
matrix corresponds to some mapping from M" to itself; in other words, it is a 
way to transform a vector. What is the effect of an operator transforming a 
vector with n components into another vector in the same space? There are 
two possible effects: 

1. The length (norm) of the vector is changed. 

2. The vector is rotated. 

In general, a transformation will have both effects, but there may be more 
specific cases. 

If, for some vector v, the matrix A has only the first effect, thus means 
that, for some scalar λ e 1 , we have 

Av = λν 

A trivial case in which this happens is when A = AI, i.e., the matrix is a 
diagonal of numbers equal to λ: 

λΐ: 

λ 0 
0 λ 

0 0 

0 
0 

λ 

Actually, this is not that interesting, but we will see in Section 3.7 that the 
condition above may apply for specific scalars (called eigenvalues) and specific 
vectors (called eigenvectors). 

If a matrix has the only effect of rotating a vector, then it does not change 
the norm of the vector: 

| |Av | |= | |v | | 

This happens if the matrix A has an important property. 

DEFINITION 3.2 (Orthogonal matrix) A square matrix P € Kn , n is 
called an orthogonal matrix if P T P = I. Note that this property also 
implies that P _ 1 = P T . 
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To understand the definition, consider each column vector Pj of matrix P . 
The element in row i, column j of P T P is just the inner product of pi and 
Pj. Hence, the definition above is equivalent to the following requirement: 

T 11 if i = j 
Pi ■ Pj = Pi Pi = \ . 

10 otherwise 
In other words, the columns of P is a set of orthogonal vectors. To be more 
precise, we should say orthonormal, as the inner product of a column with 
itself is 1, but we will not be that rigorous. Now it is not difficult to see that 
an orthogonal matrix is a rotation matrix. To see why, let us check the norm 
of the transformed vector y = Pv: 

|| y | |2= y
T

y = ( P v f Pv = v T P T P v = vTIv = v T v =|| v || 

where we have used Property 3.1 for transposition of the product of matrices. 
Rotation matrices are important in multivariate statistical techniques such as 
principal component analysis and factor analysis (see Chapter 17). 

3.4.4 Laws of matrix algebra 

In this section, we summarize a few useful properties of the matrix operations 
we have introduced. Some have been pointed out along the way; some are 
trivial to check, and some would require a technical proof that we prefer to 
avoid. 

A few properties of matrix addition and multiplication that are formally 
identical to properties of addition and multiplication of scalars: 

• (A + B) + C = A + (B + C) 

• A + B = B + A 

• (AB)C = A(BC) 

• A(B + C) = AB + AC 

Matrix multiplication is a bit peculiar since, in general, AB φ ΒΑ, as we 
have already pointed out. Other properties involve matrix transposition: 

. ( A T ) T = A 

• ( rA) T = rAT 

. (A ± B ) T = A T ± B T 

. (AB) T = B T A T 

They are all fairly trivial except for the last one, which we have already 
pointed out. A few more properties involve inversion. If A and B are square 
and invertible, as well as of the same dimension, then: 
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• ( A - ^ - ^ A 

. ( Α η - ^ Α - ΐ ) 7 , 

• AB is invertible and ( A B ) - 1 = B _ 1 A " 

3.5 LINEAR SPACES 

In the previous sections, we introduced vectors and matrices and defined an 
algebra to work on them. Now we try to gain a deeper understanding by 
taking a more abstract view, introducing linear spaces. To prepare for that, 
let us emphasize a few relevant concepts: 

• Linear combinations. We have defined linear combination of vectors, 
but in fact we are not constrained to take linear combinations of finite-
dimensional objects like tuples of numbers. For instance, we might 
work with infinite-dimensional spaces of functions. To see a concrete 
example, consider monomial functions like mfc(x) = xk. If we take a 
linear combination of monomials up to degree n, we get a polynomial: 

n 
p(x) = do + a\x + a,2X2 + l· anxn = YJ α2χί 

3=0 

We might represent the polynomial of degree n by the vector of its 
coefficients: 

p = [a0,ai,a2,...,an}T € pn+l 

Note that we are basically expressing the polynomial using "coordi-
nates" in a reference system represented by monomials. However, we 
could express the very same polynomial using different building blocks. 
For instance, how can we express the polynomial p(x) = 2 — 3x + 5x2 as 
a linear combination of e\ (x) = 1, β2(χ) = l—x, ande3(x) = l+x + x27 
We can ask a similar question with vectors. Given the vector v = [1,2]T, 
how can we express it as a linear combination of vectors Ui = [1,0]T 

and U2 = [1,1]T? More generally, we have seen that solving a system of 
linear equations entails expressing the right-hand side as a linear com-
bination of the columns of the matrix coefficients. But when are our 
building blocks enough to represent anything we want? This leads us 
to consider concepts such as linear independence and the basis of a lin-
ear space. We will do so for simple, finite-dimensional spaces, but the 
concepts that we introduce are much more general and far-reaching. In-
deed, if we consider polynomials of degree only up to n, we are dealing 
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with a finite-dimensional space, but this is not the case when dealing 
with general functions.16 

• Linear mappings. We have seen that when we multiply a vector u € M.n 

by a square matrix A € Rn 'n , we get another vector v G Rn, and that 
matrix multiplication can be considered as a mapping / from the space 
of n-dimensional vectors to itself: v = / (u ) = Au. Moreover, this map-
ping is linear in the sense of Eq. (3.10). Viewing matrix multiplication 
in this sense helps in viewing the solution of a system of linear equations 
as a problem of function inversion. If the image of the linear mapping 
represented by A is the whole space K", then there must be (at least) 
one vector x such that b = Ax. Put another way, the set of columns of 
matrix A should be rich enough to express b as a linear combination of 
them. 

• Linear spaces. Consider the space Rn of n-dimensional vectors. On 
that space, we have defined elementary operations such as addition and 
multiplication by a scalar, which allow us to take linear combinations. If 
we take an arbitrary combination of vectors in that space, we get another 
vector in R™. By the same token, we see that a linear combination of 
polynomials of degree not larger than n yields another such polynomial. 
A linear space is a set equipped with the operations above, which is 
closed under linear combinations.17 

Linear algebra is the study of linear mappings between linear spaces. Before 
embarking into a study of linear mappings and linear spaces, we consider a 
motivating example that generalizes the option pricing model of Section 3.1. 

3.5.1 Spanning sets and market completeness 

Consider a stylized economy with three possible future states of the world, as 
illustrated in Fig. 3.9. Say that three securities are available and traded on 
financial markets, with the following state-contingent payoffs: 

7Γι = 
1 
3 
0 

, 7T2 = 

3 
1 
0 

, 7Γ3 = 

1.2 
1.2 
1.2 

These vectors indicate, e.g., that asset 1 has a payoff 1 if state 1 occurs, a 
payoff 2 if state 2 occurs, and a payoff 0 in the unfortunate case of state 3. 
We may notice that the third security is risk-free, whereas state three is bad 

1 6To see this, consider the Taylor expansion of Section 2.10; to approximate a continuous 
function to an arbitrary accuracy, we should let the degree of the polynomial go to infinity. 
1 7 A rigorous definition involves a much longer listing of properties (see, e.g., Ref. [4]), but 
we will just settle for the basic idea. 
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GH3D 
\ 3 J "bad" 

Fig. 3.9 A three-state economy: insuring the "bad" state. 

for the holder of the first and the second security. Let us also assume that 
the three securities have the following prices now: p\ = p% = pz = 1. What 
should be the price of an insurance against the occurrence of the bad state, 
i.e., a security paying off 1 if state 3 occurs, and nothing otherwise? 

Following the ideas that we have already applied in binomial option pricing, 
we can try to replicate the payoff of the insurance by a portfolio consisting 
of an amount a* of each security, for i = 1,2, 3. Finding the right portfolio 
requires finding weights such that the payoff vector of the insurance is a linear 
combination of payoffs π , : 

" 1 ' 
3 
0 

+ «2 
" 3 " 

1 
0 

+ a3 

' 1.2 " 
1.2 
1.2 

= 
" 0 " 

0 
1 

This is just a system of three equations in three unknown variables and yields: 

a\ = -\, a2 = -\, a3 = | 

Note that we should sell the two risky securities short. But then, invoking 
the law of one price, in order to avoid arbitrage opportunities, we may find 
the fair price of the insurance: 

Pf = a.\ ■ 1 + c*2 ■ 1 + «3 · 1 = | « 0.33333 

In this case, we are able to price a contingent claim because there is a unique 
solution to a system of linear equations. In fact, given those three priced 
assets, we can price by replication any contingent claim, defined on the three 
future states of the world. In financial economics, it is said that the market 
is complete. 

However, if we enlarge the model of uncertainty to four states, we should 
not expect to price any contingent claim as we did, using just three "basic" 
securities. Furthermore, assume that we have three traded securities with the 
following payoffs: 

" 1 " 
1 
0 

, β2 = 
' 0 " 

0 
1 

, 03 = 

" 1 " 
1 
1 
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We immediately see that ß3 = βλ + β2- The third security is just a linear 
combination of the other two and is, in a sense that we will make precise 
shortly, dependent on them. If we take linear combinations of these three 
securities, we will not really generate the whole space M3: 

" 1 " 
1 
0 

+ Ct2 
' 0 " 

0 
1 

+ a3 

" 1 " 
1 
1 

— 
Oi\ + CC3 

OL\ + a3 
e*2 + ct3 

We see that, on the basis of these three assets, we cannot generate a security 
with two different payoffs in states 1 and 2. 

Generalizing a bit, when we take a linear combination of vectors and we 
set weights in any way that we can, we will span a set of vectors; however, 
the spanned set need not be the whole space K". 

3.5.2 Linear independence, dimension, and basis of a linear space 

The possibility of expressing a vector as a linear combination of other vectors, 
or lack thereof, plays a role in many settings. In order to do so, we must 
ensure that the set of vectors that we want to use as a building blocks is "rich 
enough." If we are given a set of vectors v i , v 2 , . . . , v m £ W1, and we take 
linear combinations of them, we generate a linear subspace of vectors. We 
speak of a subspace, because it is in general a subset of R"; it is linear in the 
sense that any linear combination of vectors included in the subspace belongs 
to the subspace as well. We say that the set of vectors is a spanning set for the 
subspace. However, we would like to have a spanning set that is "minimal," 
in the sense that all of the vectors are really needed and there is no redundant 
vector. It should be clear that if one of the vectors in the spanning set is a 
linear combination of the others, we can get rid of it without changing the 
spanning set. 

Example 3.9 Consider the unit vectors in R2: 

" 1 ' 
0 e2 = 

" 0 " 
1 

It is easy to see that we may span the whole space M.2 by taking linear com-
binations of ei and e2. If we also consider vector e3 = [1,1]T, we get another 
spanning set, but we do not change the spanned set, as the new vector is 
redundant: 

e3 = ei + e2 

This can be rewritten as follows: 

ei + e2 - e3 = 0 

The previous example motivates the following definition. 
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DEFINITION 3.3 (Linear dependence) Vectors v i , v 2 , . . . , vk e R™ are 
linearly dependent if and only if there exist scalars αι , α 2 , . . . , ctk, not all zero, 
such that 

a iv i + a 2 v 2 H 1- afcVfc = 0 

Indeed, vectors ei, e2, and ββ in the example above are linearly dependent. 
However, vectors ei and e2 are clearly not redundant, as there is no way to 
express one of them as a linear combination of the other one. 

DEFINITION 3.4 (Linear independence) Vectors v i ,v 2 , . . . ,v f e € W1 

are linearly independent if and only if 

Qivi + a 2v 2 H h afcVfc = 0 

implies a\ — a 2 = · · · = otk = 0. 

Consider now the space R". How many vectors should we include in a span-
ning set for R"? Intuition suggests that 

• The spanning set should have at least n vectors. 

• If we include more than n vectors in the spanning set, some of them will 
be redundant. 

This motivates the following definition. 

DEFINITION 3.5 (Basis of a linear space) Let v i , v 2 , . . . , vfc be a col-
lection of vectors in a linear space V. These vectors form a basis for V if 

1. vi,v2 , . . . ,Vfc span V. 

2. v i , V2, . . . , Vfc are linearly independent. 

Example 3.10 Referring again to Example 3.9, the set {ei, e2, β3} is a span-
ning set for R2, but it is not a basis. To get a basis, we should get rid of one 
of those vectors. Note that the basis is not unique, as any of these sets does 
span K2: {ei ,e 2}, {βχ,ββ}, {e2 ,es}. These sets have all dimension 2. 

We cannot span R2 with a smaller set, consisting of just one vector. How-
ever, let us consider vectors on the line y = x. This line consists of the set of 
vectors w of the form 

x w = 
X 

This set W is a linear subspace of R2 in the sense that 

w G W =>· a w eW, Va G I 

Vector β3 is one possible basis for subspace W. D 
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The last example suggests that there are many possible bases for a linear 
space, but they have something in common: They consist of the same number 
of vectors. In fact, this number is the dimension of the linear space. We also 
see that a space like R™ may include a smaller linear subspace, with a basis 
smaller than n. 

As a further example, we may consider the plane xy as a subspace of R3. 
This plane consists of vectors of the form 

y 
0 

and the most natural basis for it consists of vectors 

e i e2 

Such unit vectors yield natural bases for many subspaces, but they need not 
be the only (or the best) choice. 

We close this section by observing that if we have a basis, and a vector is 
represented using that basis, the representation is unique. 

3.5.3 Matrix rank 

In this section we explore the link between a basis of a linear space and the 
possibility of finding a unique solution of a system of linear equations Ax = b , 
where A e Rm'™, x g R™, and b € Rm. Here, n is the number of variables 
and m is the number of equations; in most cases, we have m = n, but we may 
try to generalize a bit. 

Recall that our system of equations can be rephrased as 

a i^ i + a2X2 + α.γ)Χγ) 

where a,·, j = 1 , . . . , n, are the columns of A. We can find a solution only if 
b is in the linear subspace spanned by the columns of A. Please note that, 
in order to find a solution, we are not necessarily requiring that the columns 
of A be linearly independent. This cannot happen if, for instance, we have 
m = 3 equations and n = 5 variables, because in a space of dimension 3 we 
cannot find five linearly independent vectors; indeed, the solution need not 
be unique in such a case. On the other hand, if we have m = 5 equations and 
n = 3 variables, we will not find a solution in general, unless we are lucky 
and vector b lies in the subspace (of dimension < 3) spanned by those three 
columns. 

If there is a solution, when is it unique? By now, the reader should not 
be surprised to learn that this happens when the columns of the matrix are 
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linearly independent, as this imply that there is at most one way to express 
b using them. 

If we consider a square system, i.e., m = n, we are sure to find a unique 
solution of the system if the columns of the matrix are linearly independent. 
In such a case, the n columns form a basis for Mn and we are able to solve 
the system for any right-hand side b . 

Given this discussion, it is no surprise that the number of linearly indepen-
dent columns of a matrix is an important feature. 

DEFINITION 3.6 (Column-row rank of a matrix) Given a matrix A € 
Km'n, its column and row ranks are the number of linearly independent columns 
and the number of linearly independent rows of A, respectively. 

A somewhat surprising fact is that the row and the column rank of a matrix 
are the same. Hence, we may simply speak of the rank of a matrix A G W1'", 
which is denote by rank(A). It is also obvious that rank(A) < min{m, n}. 
When we have rank(^4) = min{m, n}, we say that the matrix A is full-rank. 
In the case of a square matrix A e M.71'71, the matrix has full rank if there are 
n linearly independent columns (and rows as well). 

Example 3.11 The matrix 

" 1 1 5 " 
2 0 6 
1 2 7 

is not full rank, as it is easy to check that the third column is a linear com-
bination of the first two columns: a3 = 3ai + 2a2. Since there are only two 
linearly independent columns, its rank is 2. The ranks is exactly the same if 
we look at rows. In fact, the third row can be obtained by adding twice the 
first row and minus half the second row. 

The matrix 
" 1 1 4 

1 0 3 

has rank 2, since it is easy to see that the rows are linearly independent. We 
say that this matrix has full row rank, as its rank is the maximum that it 
could achieve. D 

We have said that a square system of linear equations Ax = b essentially 
calls for the expression of the right-hand side vector b as a linear combination 
of the columns of A. If these n columns are linearly independent, then they 
are a basis for R™ and the system can be solved for any vector b . We have 
also noted that the solution can be expressed in terms of the inverse matrix, 
x = A _ 1 b , if it exists. Indeed, the following theorem links invertibility and 
rank of a square matrix. 



172 LINEAR ALGEBRA 

THEOREM 3.7 A square matrix A e Rn'n is invertible (nonsingular) if 
and only if rank(A) = n. If the matrix is not full-rank, it is not invertible 
and is called singular. 

The rank of a matrix is a powerful concept, but so far we have not really found 
a systematic way of evaluating it. Actually, Gaussian elimination would do 
the trick, but what we really need is a handy way to check whether a square 
matrix has full rank. The determinant provides us with the answers we need. 

3.6 DETERMINANT 

The determinant of a square matrix is a function mapping square matrices 
into real numbers, and it is an important theoretical tool in linear algebra. 
Actually, it was investigated before the introduction of the matrix concept. In 
Section 3.2.3 we have seen that determinants can be used to solve systems of 
linear equations by Cramer's rule. Another use of the determinant is to check 
whether a matrix is invertible. However, the use of determinants quickly 
becomes cumbersome as their calculation involves a number of operations 
that increases very rapidly with the dimension of the matrix. Hence, the 
determinant is mainly a conceptual tool. 

We may define the determinant inductively as follows, starting from a two-
dimensional square matrix: 

det(A) = a n 
«21 

ai2 
Û22 

— ß l l « 2 2 — «21«12 

We already know that for a three-dimensional matrix, we may define the de-
terminant by selecting a row and multiplying its elements by the determinant 
of the submatrix obtained by eliminating the row and the column containing 
that element: 

au 
a2\ 
«31 

a i 2 

a22 

Q32 

a i 3 

« 2 3 

Û33 
= a n 

+ ai3 

Û22 

Û32 

a 2 i 

« 3 1 

Û23 

Û33 

«22 

«32 

«12 
Û21 

Û31 

Û23 

Q33 

(3.11) 

The idea can be generalized to an arbitrary square matrix A G Rn as follows: 

1. Denote by A^ the matrix obtained by deleting row i and column j of 
A. 

2. The determinant of this matrix, denoted by Mij = det(Ajj), is called 
the (i, j)th minor of matrix A. 

3. We also define the (i, j ) th cofactor of matrix A as CV, = (—l)z+:iM^. 
We immediately see that a cofactor is just a minor with a sign. The 
sign is positive if i + j is even; it is negative if i + j is odd. 
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Armed with these definitions, we have two ways to compute a determinant: 

• Expansion by row. Pick any row k, k = 1 , . . . , n, and compute 
n 

det(A) = Y^akjCkj 
3=1 

• Expansion by column. Pick any column k, k = 1 , . . . , n, and compute 
n 

det(A) = y^ajkCik 
i= l 

The process can be executed recursively, and it results ultimately in the calcu-
lation of many 2 x 2 determinants. Indeed, for a large matrix, the calculation 
is quite tedious. The reader is invited to check that Eq. (3.11) is just an 
expansion along row 1. 

3.6.1 Determinant and matrix inversion 

From a formal perspective, we may use matrix inversion to solve a system of 
linear equations: 

Ax = b =Φ x — A - 1 b 

From a practical viewpoint, this is hardly advisable, as Gaussian elimination 
entails much less work. To see why, observe that one can find each column a^ 
of the inverse matrix by solving the following system of linear equations: 

Aa* = ej 

Here, vector e, is a vector whose elements are all zero, with a 1 in position 
j : ej — [0, 0, . . .0 ,1 ,0 , . . . ,0 ] T . In other words, we should apply Gaussian 
elimination n times to find the inverse matrix. 

There is another way to compute the inverse of a matrix, based on the 
cofactors we have defined above. 

THEOREM 3.8 Let A be a matrix whose element (i,j) is the (j,i)th co-
factor Cji of an invertible matrix A: àij = Cji. Then 

A " 1 = deT(AyÂ 

The matrix A is called the adjoint of A. In fact, Cramer's rule (3.6) is 
a consequence of this theorem. Still, computing the inverse of a matrix is 
a painful process, and we may see why inverse matrices are not computed 
explictly quite often. Nevertheless, the inverse matrix is conceptually relevant, 
and we should wonder if we may characterize invertible matrices in some useful 
manner. 
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THEOREM 3.9 A square matrix is invertible (nonsingular) if and only if 
det(A) φ 0. 

This should not come as a surprise, considering that when computing an in-
verse matrix by the adjoint matrix or when solving a system of linear equations 
by Cramer's rule, we divide by det(A). 

Example 3.12 Using Theorem 3.8, we may prove the validity of a handy 
rule to invert a 2 x 2 matrix: 

d -b ' 
—c a 

In plain terms, to invert a bidimensional matrix, we must 

1. Swap the two elements on the diagonal. 

2. Change the sign of the other two elements. 

3. Divide by the determinant. n 

3.6.2 Properties of the determinant 

The determinant enjoys a lot of useful properties that we list here without 
any proof. 

• For any square matrix A, det(AT) = det(A). 

• If two rows (or columns) of A are equal, then det(A) = 0. 

• If matrix A has an all-zero row (or column), then det(A) = 0. 

• If we multiply the entries of a row (or column) in matrix A by a scalar 
a to obtain matrix B, then det(B) = adet(A) . 

• The determinant of a lower triangular, upper triangular, or diagonal 
matrix is the product of entries on the diagonal. 

• The determinant of the product of two conformable matrices A and B 
is the product of the determinants: det(AB) = det(A) det(B). 

• If A is invertible, then det(A_ 1) = l /de t (A) . 

3.7 EIGENVALUES AND EIGENVECTORS 

In Section 3.4.3 we observed that a square matrix A e Rn'n is a way to 
represent a linear mapping from the space of n-dimensional vectors to itself. 

a b 
c d 

1 
ad — be 
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Such a transformation, in general, entails both a rotation and a change of 
vector length. If the matrix is orthogonal, then the mapping is just a rotation. 
It may happen, for a specific vector v and a scalar λ, that 

Av = λν 

Then, if λ > 0 we have just a change in the length of v; if λ < 0 we also have 
a reflection of the vector. In such a case we say 

1. That λ is an eigenvalue of the matrix A 

2. That v is an eigenvector of the matrix A 

It is easy to see that if v is an eigenvector, then any vector obtained by 
multiplication by a scalar a € R, i.e., any vector of form av, is an eigenvector, 
too. If we divide a generic eigenvector by its norm, we get a unit eigenvector. 

u 

Example 3.13 Consider 

A = 

Then we have 

" - 1 3 
2 0 

Av = 

7 

2 ' 
2 

v = 

= 2v 

" 1 " 
1 (3.12) 

Hence, λ = 2 is an eigenvalue of A, and v is a corresponding eigenvector. 
Actually, any vector of the form \a, a]T is an eigenvector of A corresponding 
to the eigenvalue λ = 2. The eigenvector 

V 

llvll 
1 

Vi2 +12 

" 1 ' 
1 = 

" 1 " 
\/2 
1 

L %/2 J 

is a unit eigenvector of A. D 
Matrix eigenvalues are an extremely useful tool with applications in math-

ematics, statistics, and physics that go well beyond the scope of this book. 
As far as we are concerned, the following points will be illustrated in this and 
later chapters: 

• Eigenvalues may be used to investigate convexity and concavity of a 
function. 

• They are relevant in optimization applications. 

• They are useful in multivariate statistical methods, like principal com-
ponent analysis, which have a lot of applications, e.g., in marketing and 
quantitative finance. 
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Now we should wonder whether there is a way to compute eigenvalues sys-
tematically. In practice, there are powerful numerical methods to do so, but 
we will stick to the most natural idea, which illustrates a lot of points about 
eigenvalues. Note that if λ is an eigenvalue and v an eigenvector, we have 

Av = λν (A - AI)v = 0 (3.13) 

This means that we may express the zero vector by taking a linear combination 
of the columns of matrix A — AI. A trivial solution of this system is v = 0. 
But a nontrivial solution can be found if and only if the columns of that 
matrix are not linearly independent. This, in turn, is equivalent to saying 
that the determinant is zero. Hence, to find the eigenvalues of a matrix, we 
should solve the following equation: 

det(A - λΐ) = 0 (3.14) 

This equation is called characteristic equation of the matrix, as eigenvalues 
capture the essential nature of a matrix. 

E x a m p l e 3.14 Let us apply Eq. (3.14) to the matrix A in Eq. (3.12): 

det(A - λΐ) = - 1 - λ 
2 -λ = λ2 + λ - 6 = 0 

This second-order equation has solutions λι = 2 and λ2 = —3. These numbers 
are the eigenvalues of matrix A. To find the eigenvectors corresponding to an 
eigenvalue, just plug an eigenvalue (say, 2) into the equation (A — AI)v = 0: 

(A - 2I)v = -3 3 
2 - 2 V2 

These two equations are redundant (the matrix is singular), and by taking 
either one, we can show that any vector v such that fi = v-i is a solution of 
the system, i.e., an eigenvector associated with the eigenvalue λ = 2. D 

Can we say something about the number of eigenvalues of a matrix? This 
is not an easy question, but we can say that a n x n matrix can have up to 
n distinct eigenvalues. To see why, observe that the characteristic equation 
involves a polynomial of degree n, which may have up to n distinct roots. In 
general, we can state what follows: 

• Eigenvalues may be complex conjugates, rather than real numbers; for 
instance, consider the following matrix: 

The characteristic polynomial is 

det(B - AI) = λ2 
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Hence, the two eigenvalues are λ = ±i , where i is the unit imaginary 
number defined by i2 = —1. We do not find real eigenvalues, but this 
is not surprising as matrix B is a matrix rotating a vector by π/2, i.e., 
90° on the plane. (Please check this graphically!) 

• Eigenvalues may be multiple roots of the characteristic polynomial, as 
in the case λ2 + 2λ + 1 = (λ + l ) 2 = 0. When there are multiple 
eigenvalues, finding eigenvalues may be tricky, but we can do without 
these technicalities. 

The following properties of the eigenvalues of a matrix A are worth mentioning 
here: 

• The determinant of the matrix is the product of the eigenvalues: det(A) — 
n£= 1A f c . 

• The trace of the matrix, which is just the sum of its entries on the 
diagonal, is the sum of the eigenvalues: tr(A) = ^^^_1 an = X}£=1 Afc. 

The first property has an interesting consequence: The matrix A is singular 
(hence, not invertible) when one of its eigenvalues is zero. 

3.7.1 Eigenvalues and eigenvectors of a symmetric matrix 

In applications, it is often the case that the matrix A is symmetric.18 A 
symmetric matrix has an important property. 

THEOREM 3.10 Let A e l " be a symmetric matrix. Then 

1. The matrix has only real eigenvalues. 

2. The eigenvectors are mutually orthogonal. 

The second point in the theorem implies that if we form a matrix P using 
normalized (unit) eigenvectors 

P = [ Vi V2 · · · V n ] 

1 8In probability and statistics, we use covariance matrices, which are symmetric; see Section 
8.3. In optimization, symmetric matrices are used to define a quadratic form; see Section 
3.9 on multidimensional calculus. 
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this matrix is orthogonal, i.e., P T P = I and P 1 = P T . This allows us to 
build a very useful factorization of a symmetric matrix A: 

= A [ V! 
Av2 

λ2ν2 

A P P T 

[ Avi 
[ Aivi 

" λι 
0 

v2 · · · vr 

0 
λ2 

0 0 

Av„ ] P 1 

λ„ν„ ] P T 

0 
0 

If we denote by D the diagonal matrix consisting of the n eigenvalues, we see 
that we may factor matrix A as follows: 

A = P D P T (3.15) 

Going the other way around, we may "diagonalize" matrix A as follows: 

P T A P = D (3.16) 

E x a m p l e 3.15 Consider the following matrix: 

A = 
2 1 0 
1 2 0 
0 0 3 

Its characteristic polynomial can be obtained by developing the determinant 
along the last row: 

det(A - AI) 
2 - λ 

1 
0 

1 
2 - λ 

0 

0 
0 

3 - λ 
( 3 - λ ) [ ( 2 - λ ) 2 - ΐ ] 

We immediately see that its roots are 

Ai = 3 , λ2 — 3, λ, = 1 

They are three real eigenvalues, as expected, but one is a multiple eigenvalue. 
To find the eigenvectors, let us plug λ — 3 into Eq. (3.13): 

1 
1 
0 

1 0 
- 1 0 

0 0 

Vl 

Vl 

^3 
= 

0 
0 
0 

From the last row of the matrix, we see that v$ can be chosen freely. Fur-
thermore, we see that the first and the second equation are not linearly in-
dependent. In fact, the rank of matrix A is 1, and we may find two linearly 
independent eigenvectors of the form 

V I = [Q,Q,0 ] T , v2 = [0,0,/3]T 
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Let us choose 

V l 
1 1 - |T 

,0 

in order to have two orthogonal and unit eigenvectors. We leave as an exercise 
for the reader to verify that, if we plug the eigenvalue λ — 1, we obtain 
eigenvectors of the form 

V3 = [a, -a, 0]T 

A = P D P J 
Now, we may check that 

where 

P = 

1 
V2 

1 
V2 
0 

1 
V2 
1 

V2 
0 

D 

1 0 0 

0 3 0 

0 0 3 
D 

Luckily, there are efficient and robust numerical methods for finding eigenval-
ues and eigenvectors, as well as for diagonalizing a matrix. These methods 
are implemented by widely available software tools. What is more relevant 
to us is the remarkable number of ways in which we may take advantage of 
the results above. As an example, the computation of powers of a symmetric 
matrix, Afc, is considerably simplified: 

( P D P r ) = P D D Ak = ( P D P T ) ( P D P T ) 

where 

D P J = P D R P k-oT 

Dfc = 

\\ 0 
0 Xk

2 

0 0 

0 
0 

By the same token, we may compute the square root of a matrix, i.e., a matrix 
A1'2 such that A = A1/2 A1/2 

A1 2 = PD 1 / 2 P T 

where 

D î 

Matrix inversion is easy, too: 

Ai" 
0 

0 
βΓ2 

ΐτ,Τ A 1 = P D 1 P 

where D _ 1 = diag(À^"1, λ^"1,..., λ"1, ). Here we have used a shorthand no-
tation to denote a diagonal matrix by just giving its diagonal elements. 
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3.8 QUADRATIC FORMS 

In the last two sections of this chapter, we explore the connections between 
linear algebra and calculus. This is necessary in order to generalize calculus 
concepts to functions of several variables; since any interesting management 
problem involves multiple dimensions, this is a worthy task. The simplest 
nonlinear function of multiple variables is arguably a quadratic form: 

W ^ l Î X2i · · · ■> Xn) — / Cl-ijXiXj 
i<j 

(3.17) 

Denoting the double sum as X^<.· is typically preferred to Υ™-ι Σ ? = ι ι a s ^ η β 

latter is a bit ambiguous. To see the issue, consider a term such as Ax\X2\ 
we could rewrite this as 2>X\X2 + X2X\ or 2χχχ2 + 2x2X\. The notat ion above 
results in a unique way of expressing a quadrat ic form. Concrete examples of 
quadratic forms are 

f{xi,X2) b2i g(x\,X2) = x\ — 2x\X2 - %2 (3.18) 

Quadratic forms are important for several reasons: 

1. They play a role in the approximation of multivariable functions using 
Taylor expansions; in Section 3.9 we will see how we can generalize the 
Taylor expansion of Section 2.10. 

2. Quadrat ic forms are also important in nonlinear optimization (see Sec-
tion 12.5). 

3. In probability and statistics, the variance of a linear combination of 
random variables is linked to a quadratic form (Section 8.3); this is fun-
damental , among many other things, in financial portfolio management. 

Quadratic forms are strongly linked to linear algebra as they can be most 
conveniently associated with a symmetric matrix. In fact, we may also express 
any quadratic form as 

g ( x ) = x T A x (3.19) 

where matr ix A is symmetric. For instance, we can express the quadratic 
forms in Eq. (3.18) as follows: 

f(xi,X2) = [xi X2} 

g(xi,x2) = [xi X2Ì 

Xl 
x-i 

= xl 

- 1 
- 1 

Xi 
X2 

= Χλ — 2X\X2 

Note tha t cross-product terms correspond to off-diagonal entries in the matrix; 
in fact, the a,j coefficients in expression (3.17), for i φ j , occur divided by 
2 in the matrix. These two quadratic forms are plotted in Figs. 3.10 and 
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Fig. 3.10 A convex quadratic form. 

Fig. 3.11 An undefined quadratic form. 
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3.11, respectively. From what we know about convexity (Section 2.11), we 
immediately see that / is convex, whereas g is neither convex nor concave, as 
it features a "saddle point." Convexity and concavity of a quadratic form 
are linked to properties of the corresponding matrix. 

DEFINITION 3.11 (Definiteness of quadratic forms) We say that a 
quadratic form x T Ax 

• Is positive definite i / x T A x > 0 for all x φ 0 

• Is positive semidefinite if xTAx > 0 for all x 

• Is negative definite if x r Ax < 0 for all x ^ 0 

• 7s negative semidefinite i / x T A x < 0 for all x 

Otherwise, we say that the quadratic form is indefinite. 

The definiteness of a quadratic form is strictly related to convexity by the 
following properties: 

• A positive definite quadratic form is a strictly convex function. 

• A positive semidefinite quadratic form is a convex function. 

• A negative definite quadratic form is a strictly concave function. 

• A negative semidefinite quadratic form is a concave function. 

Incidentally, we may observe that for a positive definite quadratic form, the 
origin x* = 0 is a global minimizer, as it is the only point at which the 
function is zero, whereas it is strictly positive for any x / 0 . By the same 
token, x* = 0 is a global maximizer for a negative definite quadratic form. 
For semidefinite forms, there may be alternative optima, i.e., several vectors 
x for which the function is zero. 

Now the main problem is to find a way to check the definiteness of a 
quadratic form. A good starting point is to observe that this task is easy to 
accomplish for a diagonal matrix: 

D 

λι 0 · · · 0 
0 λ2 · · · 0 

0 0 · · · λη 

In such a case, the quadratic form does not include cross-products: 

xTDx = Σ A, xì 
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It is easy to see that defmiteness of this quadratic form depends on the signs 
of the diagonal terms Aj. If they are all strictly positive (negative), the form 
is positive (negative) definite. If they are nonnegative (nonpositive), the form 
is positive (negative) semidefinite. But for a diagonal matrix, the entries 
on the diagonal are just its eigenvalues. Since the matrix associated with a 
quadratic form is symmetric, we also know that all of its eigenvalues are real 
numbers. Can we generalize and guess that defmiteness depends on the sign 
of the eigenvalues of the corresponding symmetric matrix? Indeed, this is 
easily verified by factorizing the quadratic form using Eq. (3.15) 

x T A x = x T P D P T x = y T D y 

where y = P T x . This is just another quadratic form, which has been diago-
nalized by a proper change of variables. We may immediately conclude that 
a quadratic form 

• Is positive definite if and only if the eigenvalues of the corresponding 
matrix A are all strictly positive (> 0) 

• Is positive semidefinite if and only if the eigenvalues of the corresponding 
matrix A are all nonnegative (> 0) 

• Is negative definite if and only if the eigenvalues of the corresponding 
matrix A are all strictly negative (< 0) 

• Is negative semidefinite, if and only if the eigenvalues of the correspond-
ing matrix A are all nonpositive (< 0) 

3.9 CALCULUS IN MULTIPLE DIMENSIONS 

In this section we extend some concepts that we introduced in the previous 
chapter, concerning calculus for functions of one variable. What we really 
need for what follows is to get an intuitive idea of how some basic concepts 
are generalized when we consider a function of multiple variables, i.e., a func-
tion f(xi,X2, ■ ■ .,xn) = / (x) mapping a vector in R" to a real number. In 
particular, we would like to see 

1. How we can extend the concept of derivative 

2. How we can extend the Taylor's expansion 

3. What is an integral in multiple dimensions 

The first two issues are relevant from an optimization perspective, and they 
are strictly linked to linear algebra. Multiple integrals play a more limited role 
in the book, as they will be used only to deal with probability distributions 
of multiple random variables. 
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3.9.1 Partial derivatives: gradient and Hessian matrix 

In Section 2.7 we defined the derivative of a function of a single variable as 
the limit of an increment ratio: 

df , x ,. / P o + h) - f{x0) 
-r-{xo) = lim r 
ax h^o h 

If we have a function of several variables, we may readily extend the concept 
above by considering a point x° — \x\,..., x^]T and perturbing one variable 
at a time. We obtain the concept of a partial derivative with respect to a 
single variable α :̂ 

f(x ■ < ) df_ ( x o } = l i m f[xl...x°i+h,...,...xl) 
dxi ?i->o h 

As in the single-variable case, we should not take for granted that the limit 
above exists, but we will not consider too many technicalities. In practice, the 
limit above is readily computed by applying the usual rules for derivatives, 
considering one variable at a time and keeping the other variables fixed. For 
a function of n variables, we have n (first-order) partial derivatives at a point 
x°. They can be grouped into a column vector in R™, which is called the 
gradient of / at point x° : 

an{ ' 

OXi V/(x0) 

x\ + x\. We may 

|^(x°) dxn 

Example 3.16 Consider the quadratic form f(x 1,2:2) 
compute the following partial derivatives: 

-x— = 2ζι, Έ— = 2X-2 
oxi 0x2 

When computing the partial derivative with respect to x\, we consider X2 as 
a constant, and this explains why X2 does not contribute to the first partial 
derivative. The two partial derivatives can be grouped into the gradient 

V/(x) = [2zi, 2x2f 

To see a more contrived example, consider the following function: 

f(xi,X2,X3) =X\x\ + £3(1 -X\Xl) 
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Fig. 3.12 The gradient gives the direction of maximum ascent at each point. 

We invite the reader to verify that its gradient is 

V/(x) = 
%2 - χ2Χ3 

2x\X2 - X\X3 
1 — X\X2 

D 

How can we interpret the gradient? We know from single variable calculus 
that a stationary point is a natural candidate to be a minimum or a maximum 
of a function; at that point, the tangent line is horizontal. In the multivariable 
case, we can say something similar by referring to the gradient. A stationary 
point (or point of stationarity) is a point x* such that the gradient is the zero 
vector: V/(x*) — 0. For instance, the origin is a stationary point of the 
quadratic form in the example above. Geometric interpretation is difficult 
for several variables, but in the case of two variables, the function is graphed 
in three dimensions and a stationary point is characterized by a horizontal 
tangent plane. In general, it can be shown that the gradient is a vector 
pointing toward the direction of maximum ascent of the function. 

Example 3.17 Consider again the quadratic form x\ + x2, and its gradient. 
The function is just the squared distance of each point from the origin and 
its level curves are concentric circles, as shown in Fig. 3.12. The figure also 
shows the gradient vector for a few points on a level curves. We see that the 
gradient V/(a;i,a;2) at each point is a vector moving away from the origin 
toward infinity, and along that direction the function has the steepest ascent. 
If we change the sign of the gradient, we get a vector pointing toward the 
origin, and spotting the path of steepest descent. 

It is easy to understand that this feature of the gradient is relevant to 
function maximization and minimization. D 
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The gradient vector collects the first-order partial derivatives of a function 
with respect to all of the independent variables. We may also consider second-
order derivatives by repeated application of partial differentiation. If we take 
a derivative of function / twice with respect to the same variable Xi, we have 
the second-order partial derivative, which is denoted as 

dx2 

We may also take the derivative with respect to two different variables, which 
yields a mixed derivative; if we take partial derivative first with respect to Xi, 
and then with respect to Xj, we obtain 

d2f 
dxj dxi ' 

An immediate question is if the order with which derivatives are taken is 
relevant or not. The answer is that, when suitable continuity conditions are 
met, the order in which we take derivatives is inconsequential:19 

d2f = d2f 
dxi dxj dxj dxi ' 

If we group second-order partial derivatives into a matrix, we obtain the 
Hessian matrix: 

H(x0) = 

dx2 

d2f 
dX2X 

2 ( χ ο) 

■(xo) 

d2f 
(xo) dx\X2 

d2f 

a2/ 
dXiXn 

d2f 
dx2Xn 

(xo) 

(xo) 

d2f d2f d2f 
Λ (χ°) Λ (x°) ■■■ ^ τ ( χ ° ) 
oxnx\ σχηχ\ σχ^ 

Since the order of variables in mixed terms is not relevant, the Hessian matrix 
is symmetric. 

Example 3.18 Let us find the Hessian matrix for the quadratic forms: 

f(xi,X2) = x\ + 3^2, g(xi,X2) = χ\ - ^χ\Χ2 - χ\ 

This result is known as Young's theorem. 
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First, we calculate all of the relevant partial derivatives for / : 

df 0 df 
OX\ OX2 

dx\ ' dx\ 
d2f 

dx\ dx2 

The Hessian matrix of / is diagonal: 

H 
2 0 
0 6 

The reader is invited to verify that, in the case of g, we obtain 

H = 2 - 2 
-2 - 2 

D 

From the example, we immediately notice that this Hessian matrix is just 
twice the matrix associated with the quadratic form. Indeed, if we write a 
quadratic form as 

q(x) = | x T A x (3.20) 

we see that matrix A is its Hessian. Another useful result concerning quadratic 
forms written in the form of Eq. (3.20) is 

VQ(X) = Ax 

The result is easy to check directly. 

(3.21) 

3.9.2 Taylor's expansion for multivariable functions 

Using the gradient and Hessian matrix, we may generalize Taylor's expansion 
to functions of multiple variables. The second-order expansion around point 
xo is as follows: 

/ (x) « / (x 0 ) + [V/(x0)]T (x - xo) + | ( x - xo)TH(xo)(x - x0) 

We see that this approximation boils down to Eq. (2.13) when considering a 
function of a single variable. If we stop the expansion to first-order terms, we 
get a linear approximation, which is just a plane when working with functions 
of two variables. Such a tangent plane is illustrated in Fig. 3.13. The inclusion 
of the second-order terms implies that the approximation involves a quadratic 
form. The approximation can be convex, concave, or neither, depending on 
the definiteness of the quadratic form corresponding to the Hessian matrix. 
Hence, the eigenvalues of the Hessian matrix are useful in analyzing convex-
ity/concavity issues and in checking optimality conditions. 
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Fig. 3.13 First-order Taylor expansion yields a tangent plane. 

E x a m p l e 3.19 Let us compute Taylor's expansion of function 

,, v / 1/2 1/2 
f(Xl,X2) = ^X\X2 = Xi X2 

in a neighborhood of point (1,1). The partial derivatives are 

1 1/2 - 1 / 2 
2:C1 X2 

l ^ / a - 3 / 2 

9f _ i - 1 / 2 1/2 
dx\ 

dx\ 

o2f 

2 J ' l u'2 > 

1 - 3 / 2 1/2 

ËL 
8X2 

o2i 
4 dxi 

_ I - 1 / 2 - 1 / 2 
dXldx2 ~ iXl x* 

Evaluating gradient and Hessian at (1,1) yields 

v/( i , i ) = H ( l , l ) = 4 
1 
4 

4 
1 
4 

Note that, unlike a quadratic form, Taylor's expansion of / depend on the 
point at which it is taken. Considering small displacements δι and δ2 around 



CALCULUS IN MULTIPLE DIMENSIONS 189 

Fig. 3.14 Surface plot of function ^/x\Xi. 

x\ — 1 and X2, we get 

/ (1+Ä1.1 + Ä2) 

= ί+
δ1+

δ±.δ1 
2 2 4 

The eigenvalues of the Hessian matrix are λι = —0.5 and \% = 0. One of 
the eigenvalues is zero, and indeed it is easy to see that the Hessian matrix is 
singular. Moreover, the eigenvalues are both nonpositive, suggesting that the 
function / is locally concave, but not strictly. A surface plot of the function 
is illustrated in Fig. 3.14, for positive values of x\ and xi\ from the figure, we 
see the concavity of the function in this region. A closer look at the surface 
explains why the function is not strictly concave there. For x\ = X2, we have 
f(x\,X2) = \[x\ — l^i I· Hence, the function is linear along that direction. 

D 

3.9.3 Integrals in multiple dimensions 

Definite integrals have been introduced in Section 2.13 as a way to compute 
the area below the curve corresponding to the graph of a function of one vari-
able. If we consider a function (x, y) of two variables, there is no reason why 

" i l ' 

i | 
1 4-

+ [ il 

i l i 2 

h ] 
1 
4 
1 
4 

1 
4 
1 
4 

i l 
i2 
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Fig. 3.15 Double integral as a volume below a surface graph of a function. 

we should not consider its surface plot and the volume below the surface, cor-
responding to a region V on the (x, y) plane. This double integral is denoted 
as follows: 

/ / f(x,y)dxdy 
(x,y)€V 

and the idea is illustrated in Fig. 3.15. Here, the domain on which the function 
is integrated is a rectangle, but more general shapes are allowed. Neverthe-
less, rectangular tiles are easy to deal with, and indeed they are the basis 
for a rigorous definition of the double integral. In the following chapters, we 
will encounter double integrals only when characterizing the joint distribu-
tion of two random variables, in Section 8.1, and we just need an intuitive 
understanding. 

To compute a double integral, a convenient way is to regard double integrals 
as iterated integrals, over a rectangular domain [a, b] x [c, d] : 

fl 
Ja Je 

d 
f(x,y)dydx 

Please note the order of differentials dy and dx: Here we want to point out 
the ordering of variables with which the integration is carried out. If we want 
to be precise, we could write 

pb pd 

/ / f{x, y) dy 
Ja Je 

dx 

The idea behind iterated integration is straightforward: We should first inte-
grate with respect to y, treating l a s a constant, obtaining a function of x 
that is then integrated with respect to x. 
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Example 3.20 Consider function f(x, y) = x2y and the rectangular domain 
[1, 2] x [—3,4] obtained by taking the Cartesian product of intervals [1, 2] on 
the ar-axis and [—3,4] on the y-axis. We want to find the following integral: 

/ / x2y dy dx 

In the inner integral, x can be regarded as a constant and, in this case, it can 
be just taken outside: 

4 
/" 2 2 Γ 2 V 
j x ydy = x / ydy = x — -3 J-3 

Then, we proceed with the outer integral: 

<-2 7x2 _, 7 x3 

■ dx = 
2 3 

7_x^ 
2 

fz 7x2 

k "2" 
49 
6 D 

The conditions under which a double integral can be tackled as an iterated 
integral are stated by Fubini's theorem, and the idea can be generalized to 
multiple dimensions. 

Problems 

3.1 Solve the system of linear equations: 

xi + 2x2 - X3 — - 3 
ari + 4x3 = 9 
2ar2 + ar3 = 0 

using both Gaussian elimination and Cramer's rule. 

3.2 Express the derivative of polynomials as a linear mapping using a ma-
trix. 

3.3 Prove that the representation of a vector using a basis is unique. 

3.4 Let A e Rm'n , and let D be a diagonal matrix in W""n. Prove that the 
product AD is obtained by multiplying each element in a row of A by the 
corresponding element in the diagonal of D. Check with 

A = D = 
2 0 0 
0 - 3 0 
0 0 7 

3.5 Unlike usual algebra, in matrix algebra we may have AX 
though A ^ B a n d X / 0 . Check with 

BX, even 

1 0 2 
0 1 1 
2 0 2 

B = 
1 3 
0 4 
2 3 

0 
- 1 

0 
x = 

6 5 7 
2 2 4 
3 3 6 
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3.6 Consider the matrix H = I —hhT, where h is a column vector in M.n and 
I is the properly sized identity matrix. Prove that H is orthogonal, provided 
that h T h = 1. This matrix is known as the Householder matrix. 

3.7 Consider the matrix C = I„ — - J n , where I„ € M.n'n is the identity 
matrix and Jn G Rn , n is a matrix consisting of 1. This matrix is called a 
centering matrix, since x T C = {xi — x}, where x = [χχ,χ^, · ■ ■, xn] is a vector 
of observations. Prove this fact. Also prove that 

J > i - xf = xTCx 
t = l 

3.8 Check that the determinant of diagonal and triangular matrices is the 
product of elements on the diagonal. 

3.9 Find the inverse of each of the following matrices 

A i 
6 0 
0 2 
0 0 

0 
0 

- 5 
, A2 = 

0 0 5 
0 2 0 
3 0 0 

, A 3 = 
1 1 0 
0 1 1 
1 0 1 

3.10 For a square matrix A, suppose that there is a vector x φ 0 such that 
Ax = 0. Prove that A is singular. 

3.11 Prove that h h T — h T h I is singular. 

3.12 Prove that two orthogonal vectors are linearly independent. 

3.13 Show that if λ is an eigenvalue of A, then 1/(1 + λ) is an eigenvalue 
of (I + A ) - 1 . 

3.14 Show that, if the eigenvalues of A are positive, those of A + A - 1 are 
not less than 2. 

3.15 Prove that, for a symmetric matrix A, we have 

Σ Σ 4 = Σ* 
fc = l 

where λ&, k = 1 , . . . , n, are the eigenvalues of A. 

For further reading 

• A short and readable introduction to linear algebra can be found, e.g., 
in the text by Lang [4]. 

• A more advanced treatment, paying some more attention to matrix anal-
ysis, is offered by Meyer [6] 
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• Since the actual reason why we are interested in matrix algebra is its role 
in multivariate statistics, the reader might be interested in references 
which are specifically aimed at this kind of application, such as Refs. [2] 
or [7] ; a few exercises have been taken from the latter reference. 

• A good reference for multivariable calculus is Ref. [5]. Since this excel-
lent reference takes a quite general perspective, including some concepts 
that are more relevant in physics, the reader might wish to consult a 
more economically oriented reference: Ref. [8] covers single- and multi-
variable calculus, as well as linear algebra and matrix analysis. 

• We have opened this chapter mentioning option pricing. The standard 
reference for financial derivatives is the book by Hull [3]; a text that is 
more focused on computational methods in finance is Ref. [1]. 
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4_ 
Descriptive Statistics: 

On the Way to 
Elementary Probability 

Some fundamental concepts of descriptive statistics, like frequencies, relative 
frequencies, and histograms, have been introduced informally in Chapter 1. 
Here we want to illustrate and expand those concepts in a slightly more sys-
tematic way. Our treatment will be rather brief since, within the framework 
of this book, descriptive statistics is essentially a tool for building some intu-
ition paving the way for later chapters on probability theory and inferential 
statistics. 

We introduce basic statistical concepts in Section 4.1, drawing the line be-
tween descriptive and inferential statistics, and illustrating the difference be-
tween sample and population, as well as between qualitative and quantitative 
variables. Descriptive statistics provides us with several tools for organizing 
and displaying data, some of which are outlined in Section 4.2. While dis-
playing data graphically is useful to get some feeling for their distribution, we 
typically need a few numbers summarizing their essential features; quite nat-
ural summary measures such as mean and variance are dealt with in Section 
4.3. Then, in Section 4.4 we consider measures of relative standing such as 
percentiles, which are a less obvious but quite important tool used to analyze 
data. We should mention that basic descriptive statistics does not require 
overly sophisticated concepts, and it is rather easy to understand. However, 
sometimes concepts are a bit ambiguous, and a few subtleties can be better 
appreciated when armed with a little more formal background. Percentiles are 
a good case in point, as there is no standard definition and software packages 
may compute them in different ways; yet, they are a good way to get some 
intuitive feeling for probabilistic concepts, like quantiles, that are relevant in 
many applications in logistics and finance. Finally, in Section 4.5 we move 
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from data in a single dimension to data in multiple dimensions. We limit 
the discussion to two dimensions, but the discussion here is a good way to 
understand the need for the data reduction methods discussed in Chapter 17. 

4.1 WHAT IS STATISTICS? 

A rather general answer to this question is that statistics is a group of meth-
ods to collect, analyze, present, and interpret data (and possibly to make 
decisions). We often consider statistics as a branch of mathematics, but this 
is the result of a more recent tendency. From a historical perspective, the 
term "statistics" stems from the word "state." Originally, the driving force 
behind the discipline was the need to collect data about population and econ-
omy, something that was felt necessary in the city states of Venice and Flo-
rence during Renaissance. Many governments did the same in the following 
centuries. Then, statistics got a more quantitative twist, mainly under the 
impulse of French mathematicians. As a consequence, statistics got more in-
tertwined with the theory of probability, a tendency that was not free from 
controversy. 

Over time, many statistical tools have been introduced and they are often 
looked at as a bunch of cookbook recipes, which may result in quite some 
confusion. In order to bring some order, a good starting point is drawing the 
line between two related subbranches: 

• Descriptive Statistics consists of methods for organizing, displaying, and 
describing data by using tables, graphs, and summary measures. 

• Inferential Statistics consists of methods that use sampling to help make 
decisions or predictions about a population. 

To better understand the role of sampling, we should introduce the following 
concepts. 

DEFINITION 4.1 (Population vs. sample) A population consists of 
all elements (individuals, items, etc.) whose characteristics are being studied. 
A sample is a portion of the population, which is selected for study. 

To get the point, it suffices to reflect a bit on the cost and the time required 
to carry out a census of the whole population of a state, e.g., to figure out 
average household income. A much more common occurrence is a sample 
survey. For the study to be effective, the sample must be representative of 
the whole population. If you sample people in front of a big investment bank, 
you are likely to get a misleading picture, as the sample is probably biased 
toward a very specific type of individual. 

Example 4.1 One of the best-known examples of bad sample selection is the 
1936 presidential election poll by the Literary Digest. According to this poll, 
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the Republican governor of Kansas, Alf Landon, would beat former president 
Franklin Delano Roosevelt by 57-43%. The sample size was not tiny at all, as 
the Digest mailed over 10 million questionnaires and over 2.3 million people 
responded. The real outcome was quite different, as Roosevelt won with 
62%. One of the reasons commonly put forward to explain such a blunder is 
that many respondents were selected from lists of automobile and telephone 
owners. Arguably, a selection process like that would be correct nowadays, 
but in the past the sample was biased towards relatively wealthy people, which 
in turn resulted in a bias towards republican voters. U 

A sample drawn in such a way that each element in the target population 
has a chance, of being selected is called a random sample. If the chance of 
being selected is the same for each element, we speak of a simple random 
sample.1 

Household income is an example of a variable. A variable is a characteristic 
of each member of the population, and below we discuss different types of 
variable we might be interested in. Income is a quantitative variable, and we 
may want some information about average income of the population. The 
average income of the population is an example of a parameter. Typically, we 
do not know the parameters characterizing a whole population, and we have 
to resort to some form of estimate. If we use sampling, we have to settle for 
the average income of the sample, which is a statistic. The statistic can be 
used to estimate the unknown parameter. 

If sampling is random, whenever we repeat the experiment, we get different 
results, i.e., different values of the resulting statistic. If the results show wide 
swings, any conclusion that we get from the study cannot be trusted. Intu-
ition suggests that the larger the sample, the more reliable the conclusions. 
Furthermore, if the individuals in the population are not too different from 
one another, the sample can be small. In the limit, if all of the individuals 
were identical, any one of them would make a perfect sample. But if there 
is much variability within the population, a large sample must be taken. In 
practice, we need some theoretical background to properly address issues re-
lated to the size of the sample and the reliability of the conclusions we get 
from sampling, especially if such conclusions are the basis of decision mak-
ing. In Chapter 9, on inferential statistics, we will consider such issues in 
detail. On the contrary, basic descriptive statistics does not strictly rely on 
quite sophisticated concepts. However, probability theory is best understood 
by using descriptive statistics as a motivation. Descriptive statistics is quite 
useful when conducting an exploratory study, i.e., if we want to analyze data 
to see if an interesting pattern emerges, suggesting some hypothesis or line 

1In practice, to obtain acceptable results with a small sample, we resort to stratification, 
i.e., we build a sample that reflects the essential features of overall population. In this book 
we will only deal with simple random samples. 
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Table 4.1 I l lustrating types of variable. 

ID number Weight (kg) Height (m) Married n. children 

68.3 
81.7 
94.5 
55.5 
61.8 

1.77 
1.85 
1.88 
1.60 
1.68 

Yes 
Yes 
No 
Yes 
No 

0 
2 
0 
4 
1 

of action. However, when a confirmatory analysis is carried out, to check a 
hypothesis, inferential statistics comes into play. 

4.1.1 Types of variable 

If we are sampling a population to figure out average household income, we 
are considering income as the variable of interest. 

DEFINITION 4.2 (Variables and observations) A variable is a char-
acteristic under study, which assumes different values for different elements 
of a population or a sample. The value of a variable for an element is called 
an observation or measurement. 

This definition is illustrated in Table 4.1, where hypothetical data are shown. 
An anonymous person is characterized by weight, height, marital status, and 
number of children. Variables are arranged on columns, and each observation 
corresponds to a row. We immediately see differences between those variables. 
A variable can be 

• Quantitative, if it can be measured numerically 

• Qualitative or categorical, otherwise 

Clearly, weight and number of children are quantitative variables, whereas 
marital status is not. Other examples of categorical variables are gender, hair 
color, or make of a computer. 

If we look more carefully at quantitative variables in the table, we see 
another difference. You cannot have 2.1567 children; this variable is restricted 
to a set of discrete values, in this case integer numbers. On the contrary, 
weight and height can take, in principle, any value. In practice, we truncate 
those numbers to a suitable number of significant digits, but they can be 
considered as real numbers. Hence, quantitative variables should be further 
classified as 

• Discrete, if the values it can take are countable (number of cars, number 
of accidents occurred, etc.) 
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• Continuous, if the variable can assume any value within an interval 
(length, weight, time, etc.) 

In this book we will generally associate discrete variables with integer num-
bers, and continuous variables with real numbers, as this is by far the most 
common occurrence. However, this is not actually a rule. For instance, we 
could consider a discrete variable that can take two real values such as ln(18) 
or 2π. We should also avoid the strict identification of "a variable that can 
take an infinite number of values" with a continuous variable. It is true that 
a continuous variable restricted to a bounded interval, e.g., [2,10], can as-
sume an infinite number of values, but a discrete variable can take an infinite 
number of integer values as well.2 For instance, if we consider the number of 
accidents that occurred on a highway in one month, there is no natural upper 
bound on them, and this should be regarded as a variable taking integer values 
i = 1, 2, 3 , . . . , even though very large values are (hopefully) quite unlikely. 

The classification looks pretty natural, but the following examples show 
that sometimes a little care is needed. 

Example 4.2 (Dummy and nominal variables) Marital status is clearly 
a qualitative variable. However, in linear regression models (Chapters 10 and 
16) it is quite common to associate them with binary values 1 and 0, which 
typically correspond to yes/no or true/false. In statistics, such a variable 
is often called "dummy." The interpretation of these numerical values is 
actually arbitrary and depends on modeler's choice. It is often the case that 
numerical values are attached to categorical variables for convenience, but 
we should consider these as nominal variables. A common example are the 
Standard Industrial Classification (SIC) codes.3 You might be excited to 
discover that SIC code 1090 corresponds to "Miscellaneous Metal Ores" and 
1220 to "Bituminous Coal & Lignite Mining." No disrespect intended to 
industries in this sector and, most importantly, no one should think that the 
second SIC code is really larger than the first one, thereby implying some 
ranking among them. D 

The example above points out a fundamental feature of truly numerical 
variables: They are ordered, whereas categorical variables cannot be really 
ordered, even though they may be associated with numerical (nominal but 
not ordinal) values. We cannot double a qualitative or a nominal variable, 
can we? But even doubling a quantitative variable is trickier than we may 
think. 

Example 4.3 Imagine that, between 6 and 11 a.m., temperature on a day 
rises from 10°C to 20°C. Can we say that temperature has doubled? It is 

in te rva l s and real vs. integer numbers are introduced in Section 2.2. We will avoid con-
sidering pathological cases such as the sequence x^ = 1 — 1/fc, k = 1 ,2 ,3 , . . . , where a 
countably infinite number of values is contained in a bounded interval. 
3See h t t p : / /www.sec.gov/info/edgar/s iccodes.htm 
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tempting to say yes, but imagine that you measure temperature by Fahrenheit, 
rather than Celsius degrees. In this case, the two temperatures are 50°F and 
68°F, respectively,4 and their ratio is certainly not 2. D 

What is wrong with the last example is that the origin of the temperature 
scale is actually arbitrary. On the contrary, the origin of a scale measuring the 
number of children in a family is not arbitrary. We conclude this section with 
an example showing again that the same variable may be used in different 
ways, associated with different types of variable. 

Example 4.4 (What is time?) Time is a variable that plays a fundamental 
role in many models. Which type of variable should we use to represent time? 

Time as a continuous variable. From a "philosophical" point of view, 
time is continuous. If you consider two time instants, you can always 
find a time instant between them. Indeed, time in physics is usually 
represented by a real number. Many useful models in finance are also 
based on a continuous representation of time, as this may result in handy 
formulas.5 

Time as a discrete variable. Say that we are in charge of managing the 
inventory of some item, that is ordered at the end of each week. Granted, 
time is continuous, but from our perspective what really matters is de-
mand during each week. We could model demand by a variable like 
dt, where subscript t refers to weeks 1,2,3, In this model, time is 
discretized because of the structure of the decision making process. We 
are not interested in demand second by second. In the EOQ model (see 
Section 2.1) we treated time as a continuous variable, because demand 
rate was constant. In real life, demand is unlikely to be constant, and 
time must be discretized in order to build a manageable model. Indeed, 
quite often time is discretized to come up with a suitable computational 
procedure to support decisions.6 

Time as a categorical variable. Consider daily sales at a retail store. Typ-
ically, demand on Mondays is lower than the average, maybe because 
the store is closed in the morning. Demand on Fridays is greater, and 
it explodes on Saturdays, probably because most people are free from 
their work on weekends. We observe similar seasonal patterns in ratings 
of TV programs and in consumption of electrical energy.7 We could try 
to analyze the statistical properties of dmon, dfrj, etc. In this case, we see 

4The formula used to convert Celsius degrees to Fahrenheit is F = (9/5) x C + 32. 
5Actually, too handy a formula may be dangerous if not properly understood and misused. 
A notable example is the celebrated Black-Scholes-Merton formula for pricing options. 
6 That applies to physics, too; computational procedures to simulate physical systems are 
always based on some form of discretization, including discretization of time. 
7Time series, including seasonal ones, are dealt with in Chapter 11. 
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Table 4.2 

2 4 
3 4 
2 3 
5 1 
5 2 
3 2 
4 4 

Raw data 

4 
5 
4 
2 
2 
1 
4 

may be hard to interpret. 

2 
4 
6 
3 
2 
1 
4 

1 5 
3 4 
1 2 
4 3 
3 2 
4 6 
3 

that "Monday" and "Friday" subscripts do not correspond to ordered 
time instants, as there are different weeks, each one with a Monday and 
a Friday. A time subscript in this case is actually related to categorical 
variables. 

Time can be modeled in different ways, and the choice among them may 
depend on the purpose of the model or on computational conveniency. u 

4.2 ORGANIZING AND REPRESENTING RAW DATA 

We have introduced the basic concepts of frequencies and histograms in Sec-
tion 1.2.1. Here we treat the same concepts in a slightly more systematic way, 
illustrating a few potential difficulties that may occur even with these very 
simple ideas. 

Imagine a car insurance agent who has collected the weekly number of 
accidents occurred during the last 41 weeks, as shown in Table 4.2. This raw 
representation of data is somewhat confusing even for such a small dataset. 
Hence, we need a more systematic way to organize and present data. A 
starting point would be sorting the data in order to see the frequency with 
which each of the values above occurs. For instance, we see that in 5 weeks we 
have observed one accident, whereas two accidents have been observed in 12 
cases. Doing so for all of the observed values, from 1 to 6, we get the second 
column of Table 4.3, which shows frequencies for the raw data above. 

An even clearer picture may be obtained by considering relative frequencies, 
which are obtained by taking the ratio of observed frequencies and the total 
number of observations: 

frequency of that category 
Relative frequency of a category = 

number of observations 

For instance, two accidents have been observed in 10 cases out of 41; hence, 
the relative frequency of the value 2 is ±f = 0.2439 = 24.39%. Relative 
frequencies are also displayed in Table 4.3. Sometimes, they are reported in 
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Table 4.3 Organizing raw data using frequencies and relative frequencies. 

Accidents per 

1 
2 
3 
4 
5 
6 

week Frequency 

5 
10 
8 
12 
4 
2 

Relative frequency 

0.1219 
0.2439 
0.1951 
0.2927 
0.0976 
0.0488 

Percentage (%) 

12.19 
24.39 
19.51 
29.27 
9.76 
4.88 

Fig. 4.1 A bar chart of frequencies for the data in Table 4.3. 

percentage terms. W h a t is really essential to notice is tha t relative frequencies 
should add up to 1, or 100%; when numbers are rounded, a small discrepancy 
can occur. 

Frequencies and relative frequencies may be represented graphically in a 
few ways. The most common graphical display is a bar chart, like the one 
illustrated in Fig. 4 .1. The same bar chart, with a different vertical axis 
would represent relative frequencies.8 A bar chart can also be used to illustrate 
frequencies of categorical da ta . In such a case, the ordering of bars would have 
no meaning, whereas for quanti tat ive variables we have a natural ordering of 
bars. A bar chart for quanti tat ive variables is usually called a histogram. For 
qualitative variables, we may also use an alternative representation like a pie 
chart. Figure 4.2 shows a pie chart for answers to a hypothetical question 

See also Fig. 1.4. 
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Fig. 4.2 A pie chart for categorical data. 

Table 4.4 Frequency and relative frequencies for grouped data. 

Average travel time Frequency Percentage 
to work (minutes) (%) 

< 18 7 14 
18-21 7 14 
21-24 23 46 
24-27 9 18 
27-30 3 6 
> 30 1 2 

(answers can be "yes," "no," and "don't know"). Clearly, a pie chart does 
not show any ordering between categories. 

A histogram is naturally suited to display discrete variables, but what 
about continuous variables, or discrete ones when there are many observed 
values? In such a case, it is customary to group data into intervals corre-
sponding to classes. As a concrete example, consider the time it takes to get 
to workplace using a car. Time is continuous in this case, but there is little 
point in discriminating too much using fractions of seconds. We may consider 
"bins" characterized by a width of three minutes, as illustrated in Table 4.4. 
To formalize the concept, each "bin" corresponds to an interval. The common 
convention is to use closed-open intervals.9 This means, for instance, that the 
class 18-21 in Table 4.4 includes all observations > 18 and < 21 or, in other 
words, it corresponds to interval [18,21). To generalize, we use bins of the 

See Section 2.2.2 for the definition of open and closed intervals. 
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Fig. 4.3 Bar charts illustrating the effect of changing bin width in histograms. 

following form: 

Bj{x0,h) = [xo + ij - l)h, x0 +jh), j = 1,2,3, . . . 

where XQ is the origin of this set of bins and should not be confused with an 
observation, and h is the bin width. Actually, h need not be the same for 
all of the bins, but this may be a natural choice. The first bin, Bi(xo,h), 
corresponds to interval [XQ, Xo + h); the second bin, ^ ( ^ o , h), corresponds to 
interval [xo + h, XQ + 2/i), and so on. For widely dispersed data it might be 
convenient to introduce two side bins, i.e., an unbounded interval (—οο,χι) 
collecting the observations below a lower bound χι, and an unbounded interval 
[xu, +oo) for the observations above an upper bound xu. 

Histograms are a seemingly trivial concept, that can be used to figure out 
basic properties of a dataset in terms of symmetry vs. skewness (see Fig. 1.5), 
as well as in terms of dispersion (see Fig. 1.6). In practice, they may not be 
as easy to use as one could imagine. A first choice we have to make concerns 
the bin width h and, correspondingly, the number of bins. The same dataset 
may look differently if we change the number of bins, as illustrated in Fig. 
4.3. Using too few bins does not discriminate data enough and any underlying 
structure is lost in the blur [see histogram (a) in Fig. 4.3]; using too many 
may result in a confusing jaggedness, that should be smoothed in order to 
see the underlying pattern [see histogram (b) in Fig. 4.3]. A common rule of 
thumb is that one should not use less than 5 bins, and no more than 20. A 
probably less obvious issue is related to the choice of origin xç>, as illustrated 
by the next example. 

Example 4.5 Consider the dataset in Table 4.5, reporting observed values 
along with their frequency. Now let us choose h = 0.2, just to group data a 
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Table 4.5 Data for Example 4.5. 

Values 55.1 55.2 55.3 55.4 55.5 55.6 55.7 55.8 55.9 56.0 
Frequency 2 4 3 7 5 2 3 8 9 1 

Fig. 4.4 Effect of shifting the origin of histograms for the data in Table 4.5. 

little bit. Figure 4.4 shows three histograms obtained by setting XQ = 54.9, 
xo = 55.0, and XQ = 55.1, respectively. At first sight, the change in histogram 
shape due to an innocent shift in the origin of bins is quite surprising. If we 
look more carefully into the data, the source of the trouble is evident. Let 
us check which interval corresponds to the first bin in the three cases. When 
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xo = 54.9, the first bin is [54.9,55.1) and is empty. When XQ = 55.0, the 
first bin is changed to [55.0,55.2); now two observations fall into this bin. 
Finally, when XQ = 55.1, the first bin is changed to [55.1, 55.3), and 2 + 4 = 6 
observations fall into this bin. The point is that, by shifting bins, we change 
abruptly the number of observations falling into each bin, and a wild variation 
in the overall shape of the histogram is the result.10 D 

The example above, although somewhat pathological, shows that histograms 
are an innocent-looking graphical tool, but they may actually be dangerous if 
used without care, especially with small datasets. Still, they are useful to get 
an intuitive picture of the distribution of data. In the overall economy of the 
book, we should just see that the histogram of relative frequencies is a first 
intuitive clue leading to the idea of a probability distribution. 

We close this section by defining two concepts that will be useful in the 
following. 

DEFINITION 4.3 (Order statistics) Let Xu X2,..., Xn be a sample of 
observed values. If we sort these data in increasing order, we obtain order 
statistics, which are denoted by Χ^,Χρ),-■ ·,Χ(η)· The smallest observed 
value if X(i) and the largest observed value is X(n). 

DEFINITION 4.4 (Outliers) An outlier is an observation that looks quite 
apart from the other ones. This may be a very unlikely value, or an observation 
that actually comes from a different population. 

Example 4.6 Consider observations 

Xx = 18, X2 = 5, X3 = 189, X4 = 21, X5 = 13 

Ordering these values yields the following order statistics: 

-X"(i) = 5, X(2) = 13, -X"(3) — 18, X(4) = 21, X(5) = 189 
The last value is quite apart from the remaining ones and is a candidate 
outlier. D 

Spotting an outlier is a difficult task, and the very concept looks quite 
arbitrary. There are statistical procedures to classify an outlier in a sensible 
and objective manner, but in practice we need to dig a bit deeper into data 
to figure out why a value looks so different. It may be the result of a data 
entry error or a wrong observation, in which case the observation should be 
eliminated. It could be just an unlikely observation, in which case eliminat-
ing the observation may result in a dangerous underestimation of the actual 
uncertainty. In other cases, we may be mixing observations from what are 
actually different populations. If we take observations of a variable in small 
towns and then we throw New York into the pool, an outlier is likely to result. 

10 To avoid these abrupt changes we can smooth data using so-called kernel density func-
tions; this is beyond the scope of this book, and we refer the reader, e.g., to Chapter 1 of 
Ref. [2]. 
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4.3 SUMMARY MEASURES 

A look at a frequency histogram tells us many things about the distribution 
of values of a variable of interest within a population or a sample. However, 
it would be quite useful to have a set of numbers capturing some essential 
features quantitatively; this is certainly necessary if we have to compare two 
histograms, since visual perception can be misleading. More precisely, we 
need a few summary measures characterizing, e.g., the following properties: 

• Location, i.e., the central tendency of the data 

• Dispersion 

• Skewness, i.e., lack of symmetry 

4.3.1 Location measures: mean, median, and mode 

We are all familiar with the idea of taking averages. Indeed, the most natural 
location measure is the mean. 

DEFINITION 4.5 (Mean for a sample and a population) The mean 
for a population of size n is defined as 

The mean for a sample of size n is 

i n 

x = -YJxi n ^—' 
2 = 1 

The two definitions above may seem somewhat puzzling, since they look iden-
tical. However, there is an essential difference between the two concepts. The 
mean of the population is a well-defined number, which we often denote by μ. 
If collecting information about the whole population is not feasible, we take a 
sample resulting in a mean X. But if we take two different samples, possibly 
random ones, we will get different values for the mean. In later chapters, we 
will discover that the population mean is related to the concept of expected 
value in probability theory, whereas the sample mean is used in inferential 
statistics as a way to estimate the (unknown) expected value. The careful 
reader might also have noticed that we have used a lowercase letter Xi when 
defining the mean of a population and an uppercase letter Xi for the mean of 
a sample. Again, this is to reinforce the conceptual difference between them; 
in later chapters we will use lowercase letters to denote numbers and upper-
case letters to denote random variables. Observations in a random sample 
are, indeed, random variables. 
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Example 4.7 We want to estimate the mean number of cars entering a park-
ing lot every 10 minutes. The following 10 observations have been gathered, 
over 10 nonoverlapping time periods of 10 minutes: 10, 22, 31, 9, 24, 27, 29, 
9, 23, 12. The sample mean is 

- 10 + 22 + 31 + 9 + 24 + 27 + 29 + 9 + 23 + 12 
X = — 19.6 cars 

10 

Note that the mean of integer numbers can be a fractional number. Also note 
that a single small observation can affect the sample mean considerably. If, 
for some odd reason, the first observation is 1000; then 

- 1000 + 22 + 31 + 9 + 24 + 27 + 29 + 9 + 23 + 12 
X = = 118.6 cars 

10 D 

The previous example illustrates the definition of mean, but when we have 
many data it might be convenient to use frequencies or relative frequencies. 
If we are given n observations, grouped into C classes with frequencies / , , the 
sample mean is 

1 C 

X = -Y^fkyk (4.1) 
n fe=i 

Here, yk is a value representative of the class. Note that yk need not be an 
observed value. In fact, when dealing with continuous variables, yk might be 
the midpoint of each bin; clearly, in such a case grouping data results in a loss 
of information and should be avoided. When variables are integer, one single 
value can be associated with a class, and no difficulty arises. 

Example 4.8 Consider the data in Table 4.6, which contains days of unjus-
tified absence per year of a group of employees. Then: C — 6, n = Σί=ι fi = 

410 + 430 + 290 + 180 + 110 + 20 = 1440, and 

- 0 x 4 1 0 + 1 x 4 3 0 + 2 x 2 9 0 + 3 x 1 8 0 + 4 x 1 1 0 + 5 x 2 0 
X = — = 1.451 days^ 

If relative frequencies pk = fk/n are given, the mean is calculated as 

* = Σ PkVk 
fc=l 

where again yk is the value associated with class k. It is easy to see that this 
is equivalent to Eq. (4.1). In this case, we are computing a weighted average 
of values, where weights are nonnegative and add up to one. 

The median, sometimes denoted by m, is another measure of central ten-
dency. Informally, it is the value of the middle term in a dataset that has 
been ranked in increasing order. 
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Table 4.6 Data for Example 4.8. 

Days of absence 

0 
1 
2 
3 
4 
5 

Frequency 

410 
430 
290 
180 
110 
20 

Example 4.9 Consider the dataset: 10, 5, 19, 8, 3. Ranking the dataset 
(3,5,8,10,19), we see that the median is 8. D 

More generally, with a dataset of size n the median should be the order statis-
tic 

X((n+l)/2) 

An obvious question is: What happens if we have an even number of elements? 
In such a case, we take the average of the two middle terms, i.e., the elements 
in positions n/2 and n/2 + 1. 

Example 4.10 Considered the ordered observations 

74.1, 76.4, 79.4,79.9,80.2,82.1,86.8,89.3,98,103.5,109.7,121.2 (4.2) 

We have n = 12 observations; since (n + l ) /2 = 6.5, we take the average of 
the sixth and seventh observations: 

82Λ + *6-8 = 84.45 
D 

The median is less sensitive than the mean to extreme data (possibly outliers). 
To see this, consider the dataset (4.2) and imagine substituting the smallest 
observation, X^ = 74.1, with a very small number. The mean is likely to be 
affected significantly, as the sample size is very small, but the median does not 
change. The same happens if we change X(i2), i-e-> the largest observation 
in the sample. This may be useful when the sample is small and chances are 
that an outlier enters the dataset. Generally speaking, there are statistics that 
may be more robust than other ones, and they should be considered when we 
have a small dataset that is sensitive to outliers. 

The median can also be used to measure skewness. Observing the his-
tograms in Fig. 4.5, we may notice that: 

• For a perfectly symmetric distribution, mean and median are the same. 
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(a) (b) 

Fig. 4.5 Bar charts illustrating right- and left-skewed distributions. 

• For a right-skewed distribution [see histogram (a) in Fig. 4.5], the mean 
is larger than the median (and we speak of positively skewed distri-
butions); this happens because we have rather unlikely, but very high 
values that bias the mean to the right with respect to the median. 

• By the same token, for a left-skewed distribution [see histogram (b) 
in Fig. 4.5], the mean is smaller than the median (and we speak of 
negatively skewed distributions). 

In descriptive statistics there is no standard definition of skewness, but one 
possible definition, suggested by K. Pearson, is 

3(X - m) 
σ 

where m is the median and σ is the standard deviation, a measure of dispersion 
defined in the next section. This definition indeed shows how the difference 
between mean and median can be used to quantify skewness.11 

Finally, another summary measure is the mode, which corresponds to the 
most frequent value. In the histograms of Fig. 4.5 the mode corresponds to 
the highest bar in the plot. In some cases, mean, mode, and median are 
the same. This happens in histogram (a) of Fig. 4.6. It might be tempting 
to generalize and say that the three measures are the same for a symmetric 
distribution, but a quick glance at Fig. 4.6(b) shows that this need not be the 
case. 

11 There are alternative definitions of skewness in descriptive statistics. Later, we will see 
that there is a standard definition of skewness in probability theory; see Section 7.5. 



SUMMARY MEASURES 213 

(a) (b) 

Fig. 4.6 Single and bimodal distributions. 

Fig. 4.7 A bimodal distribution. 

Example 4.11 The histogram in Fig. 4.6(b) is somewhat pathological, as 
it has two modes. A more common occurrence is illustrated in Fig. 4.7, 
where there is one true mode (the "globally maximum" frequency) but also 
a secondary mode (a "locally maximum" frequency). A situation like this 
might be the result of sampling variability, in which case the secondary mode 
is just noise. In other cases, it might be the effect of a complex phenomenon 
and just "smoothing" the secondary mode is a mistake. We may list a few 
practical examples in which a secondary mode might result: 

• The delivery lead time from a supplier, i.e., the time elapsing between 
issuing an order and receiving the shipment. Lead time may feature 
a little variability because of transportation times, but a rather long 



214 DESCRIPTIVE STATISTICS: ON THE WAY TO ELEMENTARY PROBABILITY 

lead time may occur when the supplier runs out of stock. Ignoring this 
additional uncertainty may result in poor customer service. 

• Consider the repair time of a manufacturing equipment. We may typi-
cally observe ordinary faults that take only a little time to be repaired, 
but occasionally we may have a major fault that takes much more time 
to be fixed. 

• Quite often, in order to compare student grades across universities in 
different countries, histograms are prepared for each university and they 
are somehow matched in order to define fair conversion rules. Usually, 
this is done by implicitly assuming that there is a "standard" grade, 
to which some variability is superimposed. Truth is that the student 
population is far from uniform; we may have a secondary mode for 
the subset more skilled students, which actually constitute a different 
population than ordinary students.12 η 

4.3.2 Dispersion measures 

Location measures do not tell us anything about dispersion of data. We may 
have two distributions sharing the same mean, median, and mode, yet they are 
quite different. Figure 4.8, repeated from Chapter 1 (Fig. 1.6), illustrates the 
importance of dispersion in discerning the difference between distributions 
sharing location measures. One possible way to characterize dispersion is 
by measuring the range X(n) ~ ^ ( i ) ; l-e-i the difference between the largest 
and the smallest observations. However, the range has a couple of related 
shortcomings: 

1. It uses only two observations of a possibly large dataset, with a corre-
sponding potential loss of valuable information. 

2. It is rather sensitive to extreme observations. 

An alternative and arguably better idea is based on measuring deviations 
from the mean. We could consider the average deviation from the mean, i.e., 
something like 

;£<*-*) 
i= l 

However, it is easy to see that the above definition is useless, as the average 
deviation is identically zero by its very definition: 

12 Indeed, one of the most abject uses of statistics is using it to enforce some pattern on 
students' grades. As someone put it a while ago, there are lies, damned lies, and statistics. 
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Fig. 4.8 Bar charts illustrating the role of dispersion: mean, median, and mode are 
the same, but the two distributions are quite different. 

The problem is that we have positive and negative deviations canceling each 
other. To get rid of the sign of deviations, we might consider taking absolute 
values, which yields the mean absolute deviation (MAD): 

i= l 

As an alternative, we may average the squared deviations, which leads to the 
most common measure of dispersion. 

DEFINITION 4.6 (Variance) In the case of a population of size n, vari-
ance is defined as 

1 " 

i = l 

In the case of a sample of size n, variance is defined as 

* = ;τΐέ<*-*>' 
z = l 

These definitions mirror the definition of mean for populations and samples. 
However, a rather puzzling feature of the definition of sample variance S2 is 
the division by n — 1, instead of n. A convincing justification will be given 
in Section 9.1.2 within the framework of inferential statistics. For now, let us 
observe that the n deviations (Xi — X) are not independent, since identity 
of Eq. (4.3) shows that when we know the sample mean and the first n — 1 
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deviations, we can easily figure out the last deviation.13 In fact, there are 
only n — 1 independent pieces of information or, in other words, n—1 degrees 
of freedom. Another informal argument is that since we do not know the true 
population mean μ, we have to settle for its estimate X, and in estimating 
one parameter we lose one degree of freedom (1 df). This is actually useful as 
a mnemonic to help us deal with more complicated cases, where estimating 
multiple parameters results in the loss of more degrees of freedom. 

Variance is more commonly used than MAD. With respect to MAD, vari-
ance enhances large deviations, since these are squared. Another reason, that 
will become apparent in the following, is that variance involves squaring devi-
ations, and the function g{z) = z2 is a nice differentiable one. MAD involves 
an absolute value h(z) =\z\, which is not that nice. However, taking a square 
does have a drawback: It changes the unit of measurement. For instance, 
variance of weekly demand should be measured in squares of items, and it is 
difficult to assign a meaning to that. This is why a strictly related measure 
of dispersion has been introduced. 

DEFINITION 4.7 (Standard deviation) Standard deviation is defined as 
the square root of variance. The usual notation, mirroring Definition 4-6, is 
σ for a population and S for a sample. 

The calculation of variance and standard deviation is simplified by the follow-
ing shortcuts: 

Example 4.12 Consider the sample: 

62, 93, 126, 75, 34 

We have 
5 5 

Σχί = 390, Σ,Χ? = 35,150 
t = l 

1 3The careful reader will find this line of reasoning somewhat unconvincing, as the same 
observation could be applied to population variance. The true reason is that sample variance 
is used as an estimator of the true unknown variance, and the estimator is biased, i.e., is 
subject to a systematic error, if we divide by n rather than n — 1, as we prove in Section 
9.1.2. 
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Table 4.7 Computing variance with raw and centered data. 

Xi 

10,000,000,005 
10,000,000,010 
10,000,000,015 
10,000,000,020 
10,000,000,025 
10,000,000,030 
10,000,000,035 
10,000,000,040 
10,000,000,045 
10,000,000,050 

Xi-X 
-22.5 
-17.5 
-12.5 
-7.5 
-2.5 
2.5 
7.5 
12.5 
17.5 
22.5 

Hence, sample variance is 

„ 3 5 , 1 5 0 - 2 ^ 
S2 = — &- = 1182.50 

5 — 1 

and sample standard deviation is 

S = νΊΐ82.50 = 34.387 
D 

It is quite instructive to prove the above formulas. We consider here shortcut 
of Eq. (4.5), leaving the second one as an exercise: 

1 n 1 n 

σ2 = - V (XÌ - μ)2 = - V (x2 - 2xiß + μ2) 
1=1 2 = 1 

= \ ( Σ χ ? - 2 ^ Σ χ < + η^2) = \ \Υ,χί-^ημ2 + ημ2\ 
\i-l i= l / \ i = l / 

ht 
These rearrangements do streamline calculations by hand or by a pocket calcu-
lator, but they can be computationally unfortunate when dealing with some-
what pathological cases. 

Example 4.13 Consider the dataset in Table 4.7. The first column shows 
the raw data; the second column shows the corresponding centered data, which 
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are obtained by subtracting the mean from the raw data. Of course, variance 
is the same in both cases, as shifting data by any amount does not affect 
dispersion. If we use the definition of variance, we get the correct result in 
both cases, S2 = 229.17. However, if we apply the streamlined formula of 
Eq. (4.6), on a finite precision computer we get 0 for the raw data. This is 
a consequence of numerical errors, and we may see it clearly by considering 
just two observations with the same structure as the data in Table 4.7: 

X\ — a + ei, X2 = a + e2 

where e\ and e2 are much smaller than a. For instance, in the table we have 
a = 10,000,000,000, ei = 5, and e2 = 10. Then 

Σ*? = XÌ+XÌ = (a + e1)2 + (a + e2)2 

= 2a2 + 2 a ( e i + e 2 ) + [e2 + e|] 
i = l 

and 

2X X 1 + X 2 - (2a + ei + e2f 

= 2a2 + 2a (e i+e 2 ) + i + i + ^2 
We see that the two expressions are different, but since ei and e2 are relatively 
small and get squared, the terms in the brackets are much smaller than the 
other ones. With a finite-precision computer arithmetic, they will be canceled 
in the calculations, so that the difference between the two expressions turns 
out to be zero. This is a numerical error due to truncation. In general, when 
taking the difference of similar quantities, a loss of precision may result. If we 
subtract the mean a + (ei + e2)/2, we compute variance with centered data: 

xi = ei - £2 
xa e2 - e i 

which yields the correct result 

—+ — 
2 2 eie2 

with no risk of numerical cancelation. Although the effects need not be this 
striking in real-life datasets, it is generally advisable to work on centered data. 

D 
We close this section by pointing out a fundamental property of variance 

and standard deviation, due to the fact that they involve the sum of squares. 

P R O P E R T Y 4.8 Variance and standard deviation can never be negative; 
they are zero in the "degenerate" case when there is no variability at all in 
the data. 
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4.4 CUMULATIVE FREQUENCIES AND PERCENTILES 

The median m i s a value such that 50% of the observed values are smaller 
than or equal to it. In this section we generalize the idea to an arbitrary 
percentage. We could ask which value is such that 80% of the observations 
are smaller than or equal to it. Or, seeing things the other way around, we 
could ask what is the relative standing of an observed value. In Section 1.2.1 
we anticipated quite practical motivations for asking such questions, which 
are of interest in measuring the service level in a supply chain or the financial 
risk of a portfolio of assets. The key concept is the set of cumulative (relative) 
frequencies. 

DEFINITION 4.9 (Cumulative relative frequencies) Consider a sam-
ple of n observations Xi, i = Ι,.,.,η, and group them in m classes, corre-
sponding to each distinct observed value yu, k = 1 , . . . , m. Classes are sorted 
in increasing order with respect to values: yu < 2/fc+i · If fk is the frequency 
of class k, the cumulative frequency of the corresponding value is the sum of 
all the frequencies up to and including that value: 

k 

By the same token, given relative frequencies pk = fk/n, we define cumulative 
relative frequencies: 

k 

For the sake of simplicity, when no ambiguity arises, we often speak of cumu-
lative frequencies, even though we refer to the relative ones. 

Example 4.14 Consider the data in Table 4.8, which displays frequencies, 
relative frequencies, and cumulative frequencies for a dataset of 47 observa-
tions taking values in the set {1,2,3,4,5}. If we cumulate frequencies, we 
obtain cumulative frequencies: 

Fl = h = H 
F2 = fi+f2 = 26 
i , 3 - / i + / 2 + / 3 = 3 6 
FA = Λ + fi + h + h = 43 
F5 = h+f2 + h + fA + h = 47 
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Table 4.8 Illustrating cumulative frequencies. 

Value Frequency Relative frequency Cumulative frequency 
Yk fk Pk (%) Pk (%) 

23.40 
55.32 
76.60 
91.49 
100.00 

1 
2 
3 
4 
5 

11 
15 
10 
7 
4 

23.40 
31.91 
21.28 
14.89 
8.51 

Fig. 4.9 Bar charts of relative frequencies and cumulative relative frequencies for the 
data in Table 4.8. 

Cumulative relative frequencies are computed by adding relative frequencies: 

P1=Pl= 23.40% 
P2=Pl+P2 = 55.32% 

P3=Pi+P2+P3 = 76.60% 
Pi = Pi + Pi + Ps + PA = 91.49% 
Ph = Pi + P2 + Pi + Pi + P5 = 100.00% 

Since relative frequencies add up to 1, the last cumulative frequency must 
be 1 (or 100%). Since relative frequencies cannot be negative, cumulative 
frequencies form an increasing sequence; this is also illustrated in Fig. 4.9. 
Incidentally, the percentages in the first two rows of Table 4.8 may look wrong. 
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If we add up the first two relative frequencies, 23.40% and 31.91%, we obtain 
55.31%, whereas the second cumulative relative frequency in the last column of 
the table is 55.32%. This is just the effect of rounding; indeed, such apparent 
inconsistencies are common when displaying cumulative frequencies. D 

Cumulative frequencies are related with a measure of relative standing of 
a value yk, the percentile rank. A little example illustrates why one might be 
interested in percentile ranks. 

Example 4.15 In French universities, grades are assigned on a numerical 
scale whose upper bound is 20 and the minimum for sufficiency is 10. A 
student has just passed a tough exam and is preparing to ask her parents 
for a well-deserved bonus, like a brand-new motorcycle, or a more powerful 
flamethrower, or maybe a trip to visit museums abroad. Unfortunately, her 
parents do not share her enthusiasm, as her grade is just 16, whereas the 
maximum is 20. Since this is just a bit above the midpoint of the range of 
sufficient grades (15), they argue that this is just a bit above average. She 
should do much better to earn a bonus! How can she defend her position? 

As the saying goes, everything is relative. If she got the highest grade 
in the class, her claim is reasonable. Or maybe only 2 colleagues out of 70 
earned a larger grade. What she needs to show is that she is near the top of 
the distribution of grades, and that a large percentage of students earned a 
worse grade. D 

The percentile rank of an observation Xi could be defined as the fraction of 
observations which are less than or equal to Χ^. 

Number of observations less than or equal to Xi b + e 
Total number of observations n 

where b is the number of observations below and e the number of observations 
equal to Xi, respectively. This definition is just based on the cumulative 
relative frequency corresponding to value Xi. However, there might be a 
little ambiguity. Imagine that all of the students in the example above have 
received the same grade, 16 out of 20. Using this definition, the percentile 
rank would be 100%. This is the same rank that our friend would get if she 
were the only student with a 16 out of 20, with everyone lagging far behind. 
A definition which does not discriminate between these two quite different 
cases is debatable indeed. We could argue that if everyone has received 16 
out of 20, then the percentile rank for everyone should be 50%. Hence, we 
could consider the alternative definition of the percentile rank of Xi as 

fr + 0.5e 
n 

which accounts for observations equal to Xi in a slightly different way. Some 
well-known spreadsheets use still another definition, which eliminates the 
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number of observations equal to X»: 

b 
b + a 

where b is the number of observations strictly below Xi, as before, and a 
is the number of observations strictly above Xi. We see that, sometimes, 
descriptive statistics is based on concepts that are a bit shaky; however, for a 
large dataset, the above ambiguity is often irrelevant in practice. 

Now let us go the other way around. Given a value, we may be inter-
ested in its percentile rank, which is related to a cumulative frequency. Given 
a relative frequency, which is a percentage, we may ask what is the corre-
sponding value. Essentially, we are inverting the mapping between values and 
cumulative frequencies. Values corresponding to a percentage are called per-
centiles. For instance, the median is just the 50% percentile, and we want to 
generalize the concept. Unfortunately, there is no standard definition of a per-
centile and software packages might yield slightly different values, especially 
for small datasets. In the following, we illustrate three possible approaches. 
None is definitely better than the other ones, and the choice may depend on 
the application. 

Approach 1. Let us start with an intuitive definition. Say that we want 
to find the kth percentile. What we should do, in principle, is sort the n 
observations to get the order statistics X(j), j = 1 , . . . , n. Then, we should 
find the value corresponding to position kn/100. Since this ratio is not an 
integer in general, we might round it to the nearest integer. To illustrate, 
consider again the dataset (4.2), which we repeat here for convenience: 

74.1, 76.4, 79.4, 79.9,80.2,82.1,86.8,89.3,98,103.5,109.7,121.2 

What is the 42nd percentile? Since we have only 12 observations, one possible 
approach relies on the following calculation: 

so that we should take the 5th element (80.2). Sometimes, it is suggested 
to add | to the ratio above before rounding. Doing so, we are sure that at 
least 42% of the data are less than or equal to the corresponding percentile. 
Note that in the sample above we have distinct observed values. The example 
below illustrates the case of repeated values. 

Example 4.16 Let us consider again the inventory management problem we 
considered in Section 1.2.1. For convenience, let us repeat here the cumulative 
frequencies of each value of observed demand: 

Value 1 2 3 4 5 
Cumulative frequency 0.15 0.55 0.80 0.90 1.00 
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Imagine that we want to order a number of items so that we satisfy the whole 
demand in at least 85% of the cases. If we trust the observed data, we should 
find a 85% percentile. Since we have 20 observations, we could look at the 
value X(j), where j = 85 x 20/100 = 17. Looking at the disaggregated data, 
we see that X(n) = 4, and there is no need for rounding. However, with large 
datasets it might be easier to work with cumulative frequencies. However, 
there is no value corresponding to a 85% cumulative frequency; what we may 
do, however, is take a value such that its cumulative frequency is at least 85%, 
which leads us to order four items. This example has two features: 

• We want to be "on the safe side." We have a minimal service level, the 
probability of satisfying all customers, that we want to ensure. Hence, it 
makes sense to round up values. If the minimal service level were 79%, 
then j — 79 x 20/100 = 15.8; looking at the order statistics, we see that 
-̂ "(15) = 3 a n d ^(16) — 4, but we should order four items to be on the 
safe side. 

• Percentiles in many cases, including this one, should correspond to de-
cisions; since we can only order an integer number of items, we need a 
percentile that is an integer number. _ 

Approach 2. Rounding positions may be a sensible procedure, but it is not 
consistent with the definition of median that we have considered before. For 
an even number of observations, we defined the median as the average of two 
consecutive values. If we want to be consistent with this approach, we may 
define the A;th percentile as a value such that: 

1. At least fcn/100 observations are less than or equal to it. 

2. At least (100 — fc)n/100 observations are greater than or equal to it. 

For instance, if n = 22 and we are looking for the 80% percentile, we want 
a value such that at least 80 x 22/100 = 17.6 observations are less than or 
equal to it, which means that we should take X(is); on the other hand, at 
least (100 — 80) x 22/100 = 4.4 values should be larger than or equal to it. 
Also this requirement leads us to consider the 18th observation, in ascending 
order. Hence, we see that in this case we just compute a position and then we 
round up. However, when fcn/100 is an integer, two observations satisfy the 
above requirement, Indeed, this happens if we look for the 75% percentile and 
n = 32. Both X@4) a n d Xçis) meet the two requirements stated above. So, 
we may take their average, which is exactly what happens when calculating 
the median of an even number of observations. 

Approach 3. Considering the two methods above, which is the better one? 
Actually, it depends on our aims. Approach 2 does not make sense if the 
percentile we are looking must be a decision restricted to an integer value, 



224 DESCRIPTIVE STATISTICS: ON THE WAY TO ELEMENTARY PROBABILITY 

as in Example 4.16. Furthermore, with approach 1 we are sure that the 
percentile will be an observed value, whereas with approach 2 we get a value 
that has not been observed. This is critical with integer variables, but if we 
are dealing with a continuous variable, it makes perfect sense. Indeed, there 
is still a third approach that can be used with continuous variables and is 
based on interpolating values, rather than rounding positions. The idea can 
be summarized as follows: 

1. The sorted data values are taken to be the 100(0.5/n), 100(1.5/n),..., 
100([n — 0.5]/n) percentiles. 

2. Linear interpolation is used to compute percentiles for percent values 
between 100(0.5/n) and 100([n-0.5]/n). 

3. The minimum or maximum values in the dataset are assigned to per-
centiles for percent values outside that range. 

Let us illustrate linear interpolation with a toy example. 

Example 4.17 We are given the dataset 

3.4, 7.2, 8.3, 9.6, 12.5 

According to the procedure above, 3.4 is taken as the 10% percentile, 7.2 
is taken as the 30% percentile, and so on until 12.5, which is taken as the 
90% percentile. If we ask for the 5% percentile, the procedure yields 3.4, the 
smallest observation. If we ask for the 95% percentile, the procedure yields 
12.5, the largest observation. 

Things are more interesting for the 42% percentile. This should be some-
where between 7.2, which corresponds to 30%, and 8.3, which corresponds to 
50%. To see exactly where, in Fig. 4.10 we plot the cumulative frequency as a 
function of observed values, and we draw a line joining the two observations. 
How much should we move along the line from value 7.2 toward value 8.3? 
The length of the line segment is 

8 . 3 - 7 . 2 = 1.1 

and we should move by a fraction of that interval, given by 

Hence, the percentile we are looking for is 

7.2 + 0 .6x1.1 = 7.86 

The above choice of low and high percentiles might look debatable, but it 
reflects the lack of knowledge about what may happen below X^ and above 
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Fig. 4.10 Finding percentiles by interpolation. 

X(n). Note that if we have a large dataset, X(\) will be taken as a lower 
percentile than in the example, reflecting the fact that with more observa-
tions we are more confident about the lowest value that observations may 
take; however, we seldom can claim that a value below X^ cannot be ob-
served. Similar considerations apply to X(n). In fact, there is little we can do 
about extreme values unless we superimpose a theoretical structure based on 
probability theory. 

In practice, whatever approach we use, provided that it makes sense for 
the type of variable we are dealing with and the purpose of the analysis, it 
will not influence significantly the result for a large dataset. In the following 
chapters, when dealing with probability theory and random variables, we will 
introduce a strictly related concept, the quantile, which does have a standard 
definition. 

4.4.1 Quartiles and boxplots 

Among the many percentiles, a particular role is played by the quartiles, de-
noted by Qi, Q2, and Q3, corresponding to 25%, 50%, and 75%, respectively. 
Clearly, Qi is simply the median. A look at these values and the mean tells 
a lot about the underlying distribution. Indeed, the interquartile range 

IQR = Q3-Qi 

has been proposed as a measure of dispersion, and an alternative measure of 
skewness, called Bowley skewness, is 

(Qs - Q2) - (Q2 - Qi) (Q3-2Q2 + Q1) 
(Q3 - Qi) (Qs - Qi) 

The three quartiles are the basis of a common graphical representation of 
data, the boxplot (also known as a "whisker diagram"). A boxplot is shown in 
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Fig. 4.11 A boxplot with outliers. 

Fig. 4.11. In the picture you may notice a box. The line in the middle of the 
box corresponds to the median, whereas the two edges of the box correspond 
to the lower and upper quartiles. Dashed lines are drawn connecting the box 
to two fences. The two fences should be two bounds on the "normal" values 
of the observed variable. Any point beyond those fences is a potential outlier. 

You will not be surprised to learn that there are alternative definitions of 
fences, and several variations on boxplots. One possible choice is to tentatively 
place the lower and upper fences at points 

Qi - 1.5 x IQR, Q3 + 1-5 x IQR 

respectively. Points beyond such fences are regarded as outliers and are rep-
resented by a cross. If there is no outlier above the upper fence, this is placed 
corresponding to the largest observation; the lower fence is dealt with simi-
larly. In Fig. 4.11 a dataset consisting of positive values is represented; since 
no observation is flagged as an outlier on the left part of the plot, the lower 
fence corresponds to the smallest observation, which is close to zero. 

4.5 MULTIDIMENSIONAL DATA 

So far, we have considered the organization and representation of data in one 
dimension, but in applications we often observe multidimensional data. Of 
course, we may list summary measures for each single variable, but this would 
miss an important point: the relationship between different variables. 

We will devote all of Chapter 8 to issues concerning independence, cor-
relation, etc. Here we want to get acquainted with those concepts in the 
simplest way. To begin with, let us consider bidimensional categorical data. 
To represent data of this kind, we may use a contingency table. 

Example 4.18 Consider a sample of 500 married couples, where both hus-
band and wife are employed. We collect information about yearly salary. For 
each person in the sample, we collect categorical information about the gen-
der. The quantitative information about salary is transformed into categorical 
information by asking: Is salary less or more than $30,000? We could express 
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Table 4.9 Contingency table for qualitative data 

Husband 
Wife < $30,000 > $30,000 

< $30,000 212 198 
> $30,000 36 54 

this as "high" and "low" income. We should not just disaggregate couples into 
two separate samples of 500 males and 500 females, as we could miss some 
information about the interactions between the two categorical variables. The 
contingency table in Table 4.9 is able to capture information about interac-
tions. Armed with the contingency table, we may ask a few questions: 

• What is the probability that a randomly selected female is high-income? 
We have 500 wives in the sample, and 36 + 54 = 90 are high-income. 
Then, the desired probability14 is 

• What is the probability that a randomly selected person, of whatever 
gender, is low-income? Note that we have 500+500 persons, since there 
are 500 pairs in the sample. We have 212 pairs in which both members 
are low-income, and 198 + 36 pairs in which one of them is low-income. 
Hence, we should take the following ratio: 

212 x 2 + 198 + 36 
îoôô = 65"8% 

• If we pick a couple at random, what is the probability that the wife is 
low-income, assuming that the husband is low-income? Apparently, this 
is a tough question, but we may find the answer using a little intuition. 
There are 212 + 36 = 248 pairs in which the husband is low-income. We 
should restrict the sample to this subset and take the ratio 

212 
^ = 8 5 . 4 8 % 

since the wife is low-income in 212 out of these 248 pairs. 

14 Formally, we have not introduced probabilistic concepts yet, but we already know that 
relative frequencies may be interpreted as intuitive probabilities. 
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Fig. 4.12 Two scatterplots illustrating data dependence. 

• If we pick a couple at random, what is the probability that the wife is 
low-income, assuming that the husband is high-income? Using the same 
idea as the previous question, we get 

198 
198 + 54 

= 78.57% 

In Section 5.3 we will see how the last two questions relate to the fundamental 
concept of conditional probability. D 

If we need to represent pairs of quantitative variables, we might aggre-
gate them in classes and prepare corresponding contingency tables. A pos-
sibly more useful representation is the scatterplot, which is better suited to 
investigate the relationships between pairs of variables. In a bidimensional 
scatterplot, points are drawn corresponding to observations, which are pairs 
of values; coordinates are given by the values taken by the two variables in 
each observation. In Fig. 4.12 two radically different cases are illustrated. 
In scatterplot (a), we can hardly claim that the two variables have a defi-
nite relationship, since no pattern is evident; points look completely random. 
Scatterplot (b) is quite another matter, as it seems that there is indeed some 
association between the two variables; we could even imagine drawing a line 
passing through the data. This is what we do in Chapter 10, where we take 
advantage of this kind of association by building linear regression models. 

Contingency tables and scatterplots work well in two dimensions, but what 
if we have 10 or even more dimensions? How can we visualize data in order to 
discern potentially interesting associations and patterns? These are challeng-
ing issues dealt with within multivariate statistics. One possibility is trying 
to generalize the analysis for two dimensions. For instance, we may arrange 
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several scatterplots according to a matrix, one plot for each possible pair of 
variables. As you may imagine, these graphical approaches can be useful in 
low-dimensional cases but they are not fully satisfactory. More refined alter-
natives are based, e.g., on the following approaches: 

• We can reduce data dimensionality by considering combination of vari-
ables or underlying factors. 

• We can try to spot and classify patterns by cluster analysis. 

Data reduction methods, including principal component analysis, factor anal-
ysis, and cluster analysis, are dealt with in Chapter 17. 

Problems 

4.1 You are carrying out a research about how many pizzas are consumed 
by teenagers, in the age range from 13 to 17. A sample of 20 boys/girls in 
that age range is taken, and the number of pizzas eaten per month is given in 
the following table: 

4 12 7 11 9 7 8 13 16 11 
4 7 5 7 11 7 7 41 9 14 

• Compute mean, median, and standard deviation. 

• Is there any odd observation in the dataset? If so, get rid of it and 
repeat the calculation of mean and median. Which one is more affected 
by an extreme value? 

4.2 The following table shows a set of observed values and their frequencies: 

Value 1 2 3 4 5 6 7 8 
Frequency 5 4 7 10 13 8 3 1 

• Compute mean, variance, and standard deviation. 

• Find the cumulated relative frequencies. 

4.3 You observe the following data, reporting the number of daily emer-
gency calls received by a firm providing immediate repair services for critical 
equipment: 

Day 1 2 3 4 5 6 7 8 
N calls 5 4 6 2 3 8 2 4 
Day 9 10 11 12 13 14 15 16 
N calls 4 2 3 5 6 4 4 6 
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• Compute mean, mode, and quartiles. 

• Find the cumulated relative frequencies. 

4.4 Management wants to investigate the time it takes to complete a manual 
assembly task. A sample of 12 workers is timed, yielding the following data 
(in seconds): 

21.3 15.2 13.6 16.1 15.0 19.2 21.0 14.3 15.6 20.1 21.1 22.2 

• Find mean and median; do you think that the data are skewed? 

• Find the standard deviation. 

• What is the percentile rank of the person who took 20.1 seconds to 
complete the task? 

• Find the quartiles, using the second approach that we have described 
for the calculation of percentiles. 

• Suppose that management want to define an acceptable threshold, based 
on the 90% percentile; all workers taking more than this time are invited 
to a training session to improve their performance. Find this percentile 
using the interpolation method. 

4.5 Professors at a rather unknown but large college have developed a habit 
of heavy drinking to forget about their students. The following data show the 
number of hangovers since the beginning of semester, disaggregated for male 
and female professors: 

N hangovers 
Gender 0 1 > 2 

Male 61 23 40 
Female 66 25 36 

• Given that the professor is a female, what is the probability that she 
had a hangover twice or more during the semester? 

• What is the probability that a professor is a male, given that he had a 
hangover once or less during the semester? 

For further reading 

• All introductory books on statistics offer a treatment of the essentials of 
descriptive statistics; a couple of examples are Refs. [3] and [4], which 
have also inspired some of the examples in this chapter. 
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• We did not cover at all the issues involved in designing and adminis-
tering questionnaires for population surveys; they are dealt with at an 
introductory level in the text by Curwin and Slater [1]. 

• The graphical representation of multivariate data is dealt with, e.g., in 
the book by Hardie and Simar [2]. 

• Example 4.13 is based on H. Pottel, Statistical flaws in Excel. This 
unpublished paper may be downloaded from a few Webpages, including 
h t t p : / /www.mis.Coventry.ac.uk/~nhunt/pottel .pdf. 
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5 
Probability Theories 

Any book on quantitative methods includes a chapter on probability theory, 
and this one is no exception. However, the careful reader should wonder why 
this chapter's title mentions probability theories. In Section 5.1 we show that 
probability, like uncertainty, is a rather elusive concept. Descriptive statistics 
suggests the concept of probabilities as relative frequencies, but we may also 
interpret probability as plausibility related to a state of belief. The origin 
of the mathematical approach to probability can be traced back to Jacob 
Bernoulli, Thomas Bayes, and Pierre-Simon Laplace. Bernoulli's Ars Con-
jectandi (The Art of Conjecture) was published 8 years after his death in 
1713, and Laplace published his Théorie analytique des probabilités in 1812. 
More recently, the axiomatic approach due to Andrei Nikolaevich Kolmogorov 
(1933) was proposed and has become a sort of standard approach to probabil-
ity. We will follow the last approach in this and subsequent chapters, because 
it suits our purpose very well, but it is always healthy to keep in mind that 
"standard" does not mean "always the best." We come back to such issues in 
Chapter 14, while in this chapter we first introduce the axiomatic approach 
to probability theory in Section 5.2, laying down the fundamental concepts of 
events and probability measures, along with a set of basic rules of the game 
in order to work with probabilities in a sensible and consistent manner. In 
Section 5.3 we introduce conditional probabilities; we do so in a mathemat-
ically unsophisticated way, but we insist that conditioning is a powerful and 
essential concept that is used to model information availability to decision 
makers. Conditional probabilities also lead to a powerful result called Bayes ' 
theorem, which we will come to appreciate in Section 5.4. 
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In this chapter we keep mathematical sophistication to a minimum, since 
our purpose is just to introduce the essential concepts that are used later to 
study random variables and inferential statistics. Some advanced topics in 
probability do require a more in-depth treatment based on a more sophis-
ticated mathematical machinery. We provide references for the interested 
reader, and we will just give a little flavor of this later, in Section 7.10, in the 
context of random variables. 

5.1 DIFFERENT CONCEPTS OF PROBABILITY 

In Chapter 4 we have met relative frequencies, a fundamental concept in 
descriptive statistics. Intuitively, relative frequencies can be interpreted as 
"probabilities" in some sense, as they should tell us something about the like-
lihood of events. While this is legitimate and quite sensible in many settings, 
we should wonder whether this frequentisi interpretation is the only meaning 
that we may possibly attach to the more or less intuitive notion of probability. 
In fact, when doing so we implicitly take for granted that 

1. We have a suitable number of observations to estimate relative frequen-
cies in a reliable way. 

2. Past outcomes help us in making decisions for the future. 

As you may imagine, none of the above should be taken for granted. There 
might be very rare, yet potentially relevant events whose likelihood is hard 
to evaluate precisely for the very reason that they are indeed rare. How 
many times did we observe a financial crisis due to subprime mortgages? 
Furthermore, market conditions do change in time, and past knowledge need 
not be 100% helpful in predicting the future. Whenever people are involved, 
rather than mechanical devices, repeatability of an experiment is not ensured. 

Indeed, sometimes probability is more akin to the idea of "belief" ; asking 
what is the probability that a war will erupt in some place under certain 
sociopolitical conditions is very different from asking what is the probability 
of some outcome in a game of chance based on dice throwing. Certainly, 
we should not like the idea of running many experiments to identify relative 
frequencies in the first case. Hence, we should pause a little and wonder 
whether there are different concepts of probabilities. 

Consider a prototypical random experiment, dice throwing, and the follow-
ing questions: 

Q l . If we throw a die, what is the probability that the outcome is 5? 

Q2. If we throw a die, what is the probability that the outcome is 5 or 2? 

Q3. If we throw a die, what is the probability that the outcome is an even 
number? 
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Q4. If we throw two dice, what is the probability that the sum of the out-
comes is 7? 

The answers are rather easy to find, but we should reflect on the underlying 
principles that are used to come up with each answer. 

A l . Assuming that the die is fair and no one is cheating, most of us would 
say that the answer is | , i.e., 1 in 6. Are we using relative frequencies in 
finding this answer? Not really, unless we want to throw that die a huge 
number of times to check the result empirically. The relative frequency 
that we would obtain will likely get close to g, but not exactly. Since 
the number of possible outcomes is 6 (ruling out the remote possibility 
that the die lands on an edge or a vertex), the intuitive justification 
for our answer is symmetry. We do not see a strong rationale for saying 
that the likelihoods of the possible results are different.1 This symmetry 
is the foundation of the classical concept of probability. Actually, the 
die is not perfectly symmetric, as someone punched little holes on its 
faces, which are not perfectly equal. However, we do not know how to 
measure the impact of this lack of symmetry, if any. Of course, we could 
throw the die a huge number of times to see if there is a bias in favor of 
some outcome, but then the same procedure should be repeated for any 
kind of die, as it could depend on size, weight, and material. This does 
not sound too practical, but, since we are interested in management 
and decision making, there is a more important point. Say that there 
is indeed a small experimental discrepancy in the relative frequency of 
each outcome. Should we rely on that information in order to make a 
decision? Would it really make a difference? 

A2. Since the two outcomes have the same probability, and they cannot 
occur at the same time, the intuitive answer is 

1/6 + 1/6 = 2/6 = 1/3 

Hence, we are just summing probabilities of elementary outcomes, which 
seems rather plausible in this case. Maybe, in more involved experi-
ments, where we have to deal with complex events, we cannot just add 
probabilities like that. Nevertheless, the idea of adding probabilities 
looks sensible when outcomes are mutually exclusive, and it can be con-
sidered a basic rule of the game. 

A3 . Using more or less the same reasoning as before, the answer should be \. 
We may think of that as the sum of the probabilities of getting either 2, 
or 4, or 6. Alternatively, we may consider two mutually exclusive events, 
"even" and "odd," with the same probability. Whatever the choice, we 

Bernoulli referred to this concept as the principle of insufficient reason. 
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see that events need not be restricted to elementary outcomes. We might 
deal with events consisting of several elementary outcomes for at least 
a couple of reasons. First, maybe all we can observe is just "even" or 
"odd," because we are not able to see the exact result. In many practical 
problems, we are not allowed to observe everything and we must settle 
for some partial information. Moreover, we might be interested only in 
those two outcomes, because we are betting on them, and more detailed 
information is irrelevant for our purposes. Whatever the reason, we 
realize that events may consist of multiple outcomes, and we must find 
a sensible and consistent way to work with them. 

A4. To begin with, it is reasonable to assume that the two dice do not 
influence each other. Then, there are 6 x 6 = 36 possible outcomes of 
the form (£>ι,£>2), where both D\ and Di can take any integer value 
between 1 and 6. Hence, we should just count the number of outcomes 
are such that D\ + £>2 = 7. There are six such outcomes: 

(1,6) (2,5) (3,4) (4,3) (5,2) (6,1) 

out of the 36 possible cases. Hence, the required probability is Jg = 6. 
What we see in action here is a classical approach with historical roots 
in gambling; we have many equally outcomes, and we just take the ratio 
of the number of "favorable" ones over their total number. In arriving 
at the total number of outcomes, and in assessing their likelihood, we 
assumed that the two dice are independent. As dice have no memory, we 
could even throw the same die twice. We have seen something similar 
in coin flipping (see Section 1.2.3); there, the probability of getting a 
particular result, say "head-head," when flipping a coin twice, is just 
the product of elementary probabilities: 

1 1 _ 1 
2 X 2 ~ 4 

It seems that when considering independent events this is a plausible 
rule of the game. Yet, that discussion pointed out that sometimes events 
are not independent at all, and we may take advantage of this. So, we 
must make this concept a bit more precise. 

The discussion of these four questions points out a few basic requirements on 
how we should work with probabilities. Moreover, we see that there are at 
least two different ways to regard probabilities: Descriptive statistics suggests 
the idea of probability as relative frequencies, whereas the classical approach 
relies on symmetry and counting arguments. Yet, these two concepts do not 
cover all of the possibilities. To see why, consider the following: 

• Elementary counting does not work when there are an infinite number 
of outcomes, as in the case of real numbers on an interval. 
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• We can work with relative frequencies if past data are available and 
relevant, but this is not the case when forecasting sales for a brand new 
product, possibly representing a real technological breakthrough. If past 
data are not helpful at all, we might be forced to work with probabilities 
as beliefs, i.e., subjective assessments of likelihood. 

Subjective probability does not sound like a rigorous and scientific concept. 
Yet, this is what we have to work with in many situations, and subjective does 
not imply free from any rule, as shown by the following experiment (described, 
e.g., in the text by Kahneman et al. [5]). 

Example 5.1 Consider the following description of a person: 

Linda is 31 years old, single, outspoken, and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues of 
discrimination and social justice, and she participated in antinuclear 
demonstrations. 

On the basis the information above, rank the following statements in decreas-
ing order of likelihood, i.e., from the most probable to the least probable. 

(a) Linda is a teacher in an elementary school. 

(b) Linda works in a bookstore and takes yoga classes. 

(c) Linda is active in a feminist movement. 

(d) Linda is a psychiatric social worker. 

(e) Linda is a member of the League of Women Voters. 

(f ) Linda is a bank teller. 

(g) Linda is an insurance salesperson. 

(h) Linda is a bank teller who is active in a feminist movement. 

Please, do rank the statements before reading further! 

Given the limited evidence we have, there are some statements that may be 
ranked in any order, depending on your subjective opinion. For instance, it is 
difficult to say if (f) is more likely than (g) or vice versa. Many people, when 
handed this question, rank (c) higher than (f) and (g) because the description 
suggests a rather precise kind of person. Again, this is consistent with the 
concept of subjective assessment of probability. 

Yet, this does not mean that any ordering makes sense. A rather surprising 
experimental fact, reported in Ref. [5], is that many respondents consider 
(h) more likely than (f). It is easy to see that this makes no sense. If we 
consider the issue in terms of relative frequencies, the set of persons meeting 
the condition in (h) is clearly a subset of the set of persons meeting the 
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condition in (f). Or, if we take a logical viewpoint, (h) implies (f), but not 
vice versa. Indeed, is no way (f) can be less plausible than (h). 

Typically, those who rank (f ) and (h) in the wrong way do not make the 
same mistake with (c) and (h). Arguably, the psychological trap is that Linda 
does not seem like the prototypical bank teller, but adding the second feature 
(she is an active feminist) to statement (h) tricks many into believing that 
this is more plausible than (f). D 

The example above shows that even if we deal with subjective probability, 
there must be some logical and consistent structure in the way we think. 
Indeed, in Section 1.2.2 we have seen that intuition may lead us to wrong 
conclusions. Let us consider a similar example here. 

Example 5.2 A quick and easy test is able to predict the gender of a baby 
very early during childbearing. Unfortunately, the test is not 100% reliable: 

• If the unborn child is a male, the result of the test is "male" with a 
probability of 90%. 

• If the unborn child is a female, the result of the test is "female" with a 
probability of 70%. 

Frances tries the test, and the result is "female." Mary tries the test, and 
the result is "male." Between Frances and Mary, which one should be more 
confident (or less uncertain) about the gender of her child? D 

In this case, too, many are tricked by wrong intuition and believe that the 
correct answer is Mary. If you see some similarity with the example of Section 
1.2.2, please try the same line of reasoning to prove that the correct answer 
is Frances. (Hint: Say that we consider 200 unborn babies, and that exactly 
half of them are males; how many tests will predict "male"?) 

In Section 5.4 we illustrate a systematic way to solve such puzzles. For 
now, we might have more than enough evidence that some discipline should 
be involved in dealing with probabilities. To this aim, we will consider the 
so-called axiomatic approach to the theory of probabilities. Even if it is not 
free from some criticism, this is the most common approach and is a starting 
point to educate our way of reasoning with probabilities. 

5.2 THE AXIOMATIC APPROACH 

The axiomatic approach aims at building a consistent theory of probability 
and is based on the following logical steps: 

1. Defining the object of investigation, i.e., events 

2. Defining an algebra of events, i.e., ways to combine events to describe 
nontrivial occurrences that we might be interested in 
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Fig. 5.1 E is a. subset of F. 

3. Defining the rules of the game that we need in order to assign a proba-
bility measure to each event in a coherent way 

5.2.1 Sample space and events 

To get going, we should first formalize a few concepts about running a random 
experiment and observing outcomes. The set of possible outcomes is called 
the sample space, denoted by Ω. For instance, in dice throwing the set of 
possible outcomes is 

Ω = {1,2,3,4,5,6} 

This is a finite set, but we might consider alternative random experiments 
where the set of possible outcome is an infinite set, such as the whole set 
of integer numbers. Combining random experiments, e.g., by throwing more 
dice, or the same one repeatedly, we may define rather complex sample spaces. 
An important feature of outcomes is that they are mutually exclusive, i.e., they 
cannot occur together. 

As we pointed out before, we need not be only interested in simple events 
consisting of singletons, i.e., elementary outcomes. We have already met com-
pound events such as 

EVEN = {2,4,6}, ODD = {1,3,5} 

Typically events correspond to statements such as "the outcome is larger than 
two" or "the outcome is between 3 and 5." Whatever the case, we see that 
the elements of these sets are also elements of the sample space Ω. We know 
from set theory that a set E is a subset of set F, denoted by E Ç F when all 
of the elements of E belong to F (see Fig. 5.1). 

DEFINITION 5.1 An event E is a subset of the sample space, i.e., ECU. 
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Fig. 5.2 An event and its complement. 

5.2.2 The algebra of events 

Given the definition of events, let us consider how we may build possibly 
complex events that have a practical relevance. Indeed, we often deal with 
the following concepts: 

• The probability that an event does not occur 

• The probability that at least one of two events occurs 

• The probability that two events occur jointly 

Since events are sets, it is natural to translate the concepts above in terms of 
set theory, relying on the usual difference, union, and intersection of sets. 

The difference between sets A and B, denoted by A\B, is a set consisting 
of the elements of A that do not belong to B. Given an event E Ç Ω, its 
complement Ec = Ω\Ε occurs if and only if E does not. For instance, in 
dice throwing we have EVEN0 = ODD. Graphically, the complement of an 
event can be depicted as in Fig. 5.2. The probability of the complement Ec is 
just the probability that event E does not occur, but these two probabilities 
should be related in a plausible way. 

The union of two sets A and B, denoted by A U B, is a set, consisting of 
the elements that belong to at least one of them (either A, or B, or both). Set 
union is depicted in Fig. 5.3. We immediately see that the probability of the 
union of two events is the probability that at least one of them (possibly both) 
occurs. Please note that we are not requiring that exactly one of them occurs. 
That would be an exclusive OR operation, which is perfectly legitimate per 
se, but set union is based on an inclusive OR operation. 

Finally, the intersection of two sets A and B, denoted by A Π B, is a set, 
consisting of the elements that belong to both A and B, as illustrated in Fig. 
5.4. We immediately see that the probability of the intersection of two events 
is the probability that both of them occur jointly.2 

2 It may be worth clarifying what "jointly" really means. It does not necessarily mean "at 
the same time," since one can conceive a random experiment requiring multiple steps over 
time, and the two events could refer to things that happen in sequence. Nevertheless, they 
would be part of the same outcome of the overall experiment. 
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Fig. 5.3 The union of two sets. 

Fig. 5.4 The intersection of two sets. 

Fig. 5.5 Two disjoint sets. 

The empty set, denoted by 0, is a set with no element. Two sets are called 
disjoint if their intersection is the empty set, i.e., A Π B = 0 (see Fig. 5.5). 

Given a sample space Ω, by the repeated application of these elementary 
set operations, we can build a huge collection of subsets of Ω. Let T the 
family of all sets we can build this way, working on events within a given 
sample space. We would like to assign probabilities to events, using sensible 
rules of the game, in such a way that the probabilities of complicated events 
are consistently related to the probabilities of the events that we used to build 
them. This is where the axioms of probability theory come into play. They 
are described in the next section in a simple and intuitive manner. We should 
mention that this intuition is all we need for the rest of the book, but a proper 
construction of probability theory is not that trivial when we deal with infinite 
sample spaces and possibly infinite collections of events. Generally speaking, 
going to infinite is always a tricky endeavor in the realm of mathematics. Still, 
the intuition we build, based on finite sample spaces, is perfectly adequate to 
our purposes. 
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5.2.3 Probability measures 

The final step is associating each event E € T with a probability measure 
P(E), in some sensible way. As a starting point, it stands to reason that, for 
an event E Ç Ω, its probability measure should be a number satisfying the 
following condition: 

0 < P(-B) < 1 

This is certainly true if we think of probabilities in terms of relative frequen-
cies, but it also applies to whatever likelihood concept we wish to consider, 
including subjective belief.3 Furthermore, since the sample space Ω is, in a 
sense, the largest event including all of the other ones, we should also assume 

Ρ{Ω} = 1 

Loosely speaking, this condition says that something has to happen. Finally, 
let us consider the union of disjoint events. Again, intuition suggests that, in 
this case 

P(E1UE2) = P(E1) + P(E2) 

Hence probabilities are additive for disjoint events. A simple example is ques-
tion Q2 above, where the probability that a die yields 2 or 5 is just the sum of 
the two respective probabilities. The idea can be generalized to an arbitrary 
number of disjoint events but, when events have an intersection, additivity 
need not hold. 

Example 5.3 Consider a deck of 52 poker cards. If we draw a card at 
random, the probability that it is a king is ^ = γ^. Similarly, there is a 
probability ^ that it is spades. But what is the probability that it is the king 
or spades? If we just add probabilities, we get 

JL _L 13 _ 17 
52 T 52 52 

but there is something wrong: We are counting twice the king of spades, 
which is the intersection of the set of kings and the set of spades. We get the 
correct result, g|, if we subtract the intersection, so that common elements 
are correctly counted once. D 

The example suggests that sensible rules should apply to manage compli-
cated events, possibly amounting to a huge list. Actually, it turns out that 
the rules we need can be obtained as a consequence of the first three rules, 
which we take as the following axioms to define a probability measure. 

3In this case, we could assign the value 1 to a statement that we are absolutely sure about, 
and the value 0 to something we do not believe at all, with every shade of gray in between. 
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DEFINITION 5.2 A probability measure P(·) is a mapping from events E 
within a sample space Ω to real numbers such that4 

1. 0 < P(E) < 1, for allEeF 

2. Ρ(Ω) = 1 

3. For each sequence E\, E2, E3,..., of mutually exclusive (disjoint) events, 
i.e., such that Ei Π Ej = 0 for i Φ j , we have 

( 00 \ 00 LI** =Σ ρ (^) 
i= l / i = l 

The last axiom may look a bit awkward, but it is just the generalization of 
additivity for probabilities of disjoint events to a possibly infinite (countable) 
number of events. From these axioms about events and probabilities, we can 
derive some properties that are intuitive, as well as some that are not. 

Example 5.4 Given the probability P{E) of event E, what is the probability 
of its complement Ec7 Since these two events are obviously disjoint, and 
E U Ec = Ω, using the axioms, we obtain 

P(E) + P{EC) = Ρ(Ω) = 1 

Hence, the probability that an event does not happen P(EC) = 1 — P(i?). 
Using this theorem, we may also see that P(0) = 0 . D 

Example 5.5 Example 5.3 above suggests that, if two events Εχ and Ei are 
not disjoint, the following should hold: 

P(£7i U E2) = P(£ i ) + P(E2) - Ρ(£ ι Π E2) 

To prove this, we may note that the union of sets E\ and E2 can be expressed 
in terms of disjoint sets: 

ΕλυΕ2 = E1U(E2\E1) 

In plain English, this amounts to saying that the union of E\ and E2 can be 
rewritten as the union of two sets: E\ and the part of E2 that is disjoint from 
E\ (it may help to check this by a simple drawing). Hence, we may use the 
third axiom: 

P(E1UE2)=P(E1)+P(E2\E1) (5.1) 

Furthermore, we may express E2, too, as the union of disjoint sets: 

E2 = (E2\E!) U (E1 n E2) 

4Here we are a bit sloppy about the definition of the family T of events; more on this in 
Section 7.10. 
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In plain English, this amounts to saying that E2 consists of the union of two 
subsets: the part of E2 that is disjoint from E\ and the intersection of E\ and 
E2. Then 

P(E2\E1) = P(E2)-P(E1nE2) 

which can be plugged into Eq. (5.1) to obtain the result immediately. D 

5.3 CONDITIONAL PROBABILITY AND INDEPENDENCE 

Consider throwing a die twice. If we know that the result of the first draw 
is 4, does this change our probability assessment for the second draw? If 
the die is fair, and there is no cheating on the part of the person throwing 
it, the answer should be no. The two rolls are independent. In other cases, 
however, knowing that an event has occurred does tell us something about 
another event. We have seen such a case when dealing with the growth option 
example in Section 1.2.3. To formalize this, we should draw the line between 
two concepts: 

1. The a priori or unconditional probability of an event, which should apply 
when we do not have any information about occurred events 

2. The conditional probability, which results from a reassessment after col-
lecting some (partial) knowledge represented by the occurrence of re-
lated events 

DEFINITION 5.3 (Conditional probability) The probability of event E, 
conditional on G, is denoted by P(E\G) and is defined as5 

P{EÌG)--P{GT-
Example 5.6 In dice throwing we know that, a priori, P({1}) = P({2}) = 
| . But if we know that the event EVEN took place, we should update the 
unconditional probabilities, getting conditional probabilities. For instance, 
P({1} I EVEN) = 0, as 1 is an odd number and is ruled out if we know that 
the event EVEN happened. We may also see intuitively that P({2} | EVEN) 
should be | , as 2 is just one possible outcome out of three, if we know that 
the event EVEN occurred. 

5 A word of caution: The careful reader will immediately see that this definition is in trouble 
when P(G) = 0. It is tempting to say that this is not really an issue since, if G cannot 
occur, there is no point in conditioning with respect to that event. Unfortunately, we will 
see in Chapter 7, when dealing with continuous random variables, tha t events with zero 
probability can and do happen. Indeed, conditional probabilities are a more challenging 
subject than one would imagine at first sight, and this is why rigorous probability theory 
requires a nontrivial mathematical machinery. 



CONDITIONAL PROBABILITY AND INDEPENDENCE 245 

We can obtain these results in a more systematic manner using the defini-
tion. For instance 

P({2}|EVEN) = 
P({2} f lEVEN)_ P({2}) _ \ _ 1 

1 ~~ 3 P(EVEN) P(EVEN) 
0 

The definition of conditional probability may look a bit weird at first, but it 
can be justified on the ground of the following intuition. 

1. A priori, whatever happens must lie in the sample space Ω, and Ρ(Ω) = 
1. If we know that G occurred, this is the new sample space, whose 
probability a priori was P(G). In the example above, G = {2,4,6} is the 
new sample space, if we know that event EVEN occurred. Dividing by 
the probability of G, which is typically less than 1, amounts to increasing 
all of the probabilities by a sensible renormalization factor. Indeed, such 
a renormalization implies that P(G | G) = 1, as it should be the case. 
This explains the term P(G) at the denominator. 

2. If G is the new sample space, event E may occur only if the intersection 
EC) G occurs. This explains the term P(E Π G) at the numerator. 

There are cases in which the unconditional and the conditional probabilities 
are quite different. In other cases, information on an event G tells us nothing 
about another event E. In other words, the two events are independent. 

DEFINITION 5.4 (Independence of two events) Two events E and G 
are said to be independent if 

P(E n G) = P(E) ■ P(G) 

In other words, for independent events the joint probability can be expressed 
as the product of the individual probabilities. 

This definition might seem a bit unrelated with conditional probability. How-
ever, it is easy to see that if E and G are independent events, then 

P(E\G) = p ( G ) - p ( G ) _ P(E) 

and, by the very same token, P(G | E) = P(G). Hence, for independent events, 
unconditional and conditional probabilities are exactly the same and the oc-
currence of one event does not provide any useful information about the other 
one. Now it is a good idea is to check your understanding of independence 
with a couple of questions: 

Q l . Are two disjoint events independent? 

Q2. If G C F, are the two events independent? 
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Please: Answer before reading further! 

When I ask students the first question, I typically emphasize the fact that the 
two events are disjoint and that they "have nothing to do with each other." 
This is usually enough to trick them into answering "Yes, disjoint events must 
be independent!" A bit of reflection should tell you that this is plain wrong. 
If E and G are disjoint and we know that G occurred, then we may rule out 
E. Hence, they cannot be independent. More formally (assuming that the 
two events have strictly positive probabilities): 

£nc = 0 =* P(£|G) = ffigp = o^P(£;). 

The second question is a bit easier. If G is included in F, then the occurrence 
of G implies the occurrence of F. Formally (ruling out events with zero 
probability again), we can state 

G S F , P ( F 1 G )Ä = S 2 ^ W 

The moral of the story is that, even though the definition of independence 
concerns the possibility of factoring a joint probability into the product of 
independent probabilities, you have to think in terms of information to fully 
appreciate the issues involved. There is a good reason, though, to phrase 
the definition of independent events in terms of a product: It generalizes 
immediately to more than two events. 

DEFINITION 5.5 (Independence of multiple events) Consider a fam-
ily of events {Ei:E2, ■ ■ ■, En). The events E\,Ei, ...,En are said to be in-
dependent if, given any arbitrary subset Eji, Ej2,..., Ejm of the family, with 
m <n, we have 

P{Eh n Eh n · · · Π Ejm) = P(Eh) ■ P(Eh) ■ ■ ■ P(Ejm) (5.2) 

This definition might look overly involved. Is it not enough to require that the 
factorization condition applies to the whole family of n events and so be it? 
What the definition aims at capturing is that to have n independent events, 
knowledge about any subset of events should not tell us anything about the 
remaining ones. However, the following conjectures do seem plausible: 

• 

• 

If all of the events in a family are pairwise independent, can we say that 
they are independent in the sense of Definition 5.5? 

If Eq. (5.2) holds for the whole family, can we say that this implies a 
similar condition for the subsets of the family? 

Intuition may be misleading, at times, and in fact the answer is no in both 
cases, as the following counterexamples show. 
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E x a m p l e 5.7 Consider a random experiment consisting of the draw of an 
integer number between 1 and 4, where the four outcomes are equally likely. 
We see that the events A = {1,2}, B = {1,3}, C = {1,4} have the same 
probability, | . It is also easy to see that these events are pairwise independent: 

Ρ{ΑΓ\Β) = \ = P(A) · P(5) 
P(AnC) = \ = P(A) ■ P(C) 
P(B Π C) = \ = P(B) · P(C) 

However, 

P(A n B Π C) = P({1}) = \φ Ρ{Α) · P(B) ■ P(C) 

To really get the point, it is useful to reason in terms of information and con-
ditional probabilities. For instance, P(A | B) = P(A) = | , because knowing 
that B occurred does not provide us with any additional information about 
occurrence of event A. However, P(A \BnC) = 1 φ P(A) ■ P(B Π C), because 
if we know that event B(~)C occurred, then necessarily the number 1 has been 
drawn, so A occurred for sure. D 

The example above shows that if we have three events, and all pairs are 
independent, the three of them are not necessarily independent. The next 
example goes the other way around, showing that even if the joint probabil-
ity of three events factors into the product of their individual probabilities, 
they are not necessarily pairwise independent, so they cannot be considered 
independent.6 

E x a m p l e 5.8 Consider a three-dimensional space and events corresponding 
to a ball being placed at a point characterized by three coordinates (X, Y, Z). 
The possible points are (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,1,1), with prob-
abilities | , g, | , | , and | , respectively. We see immediately that: 

P({X = l}) = P({Y = l}) = P({Z = l}) = i 

and 

p ({x = 1} n {Y = 1} n {z = i}) = | = P({x = Ι})·Ρ({Υ = Ι})·Ρ({Ζ = i}) 

So, the probability of the joint event does factor into the product of individual 
probabilities. However, the events are not pairwise independent: 

p ({x = 1} n {Y = i}) = | φ P({x = i}) · P({Y = i}) 
p ({x = 1} n {z = i}) = | φ P({x = i}) - p({z = i}) 
P ({Y = 1} Π {Z = 1}) = | φ P({Y = 1}) - P({Z = 1}) 

6 Counterexamples of the first kind are rather common in textbooks, whereas counterexam-
ples of the second kind are not. Example 5.8 is due to Crow [2]. 
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A note on notation. In the last example we stuck to a notation inspired by 
set theory. As you can see, this can become a bit of a burden when events 
linked to numerical values of variables are involved. Since these are the kinds 
of events that we are mostly interested in, we can use a streamlined notation 
like P(X = l,Y = l,Z = 1) . In other words, joint events can also be denoted 
by getting rid of the intersection operator: 

Ρ(£ ι η E2 Π · · · Π En) = P(EUE2, ...,En) 

5.4 TOTAL PROBABILITY AND BAYES' THEOREMS 

Conditional probabilities are a very important and powerful concept. In this 
section we see how we may tackle problems like the one in Example 5.2, which 
we use as a guideline. To frame the problem clearly, let us define the following 
events: 

• isM: the child is a male. 

• isF: the child is a female. 

• TM: the test predicts a male. 

• TF: the test predicts a female. 

Now the first question is: What do we know and what would we like to 
know? The problem statement provides us with the following conditional 
probabilities: 

P(TM|isM) = 0.9, P(TF|isF) = 0 . 7 

from which we may also infer 

P(TF | isM) = 1 - 0.9 = 0.1, P(TM | isF) = 1 - 0.7 = 0.3 

Using conditional probabilities, we also see that what we need is, in a sense, 
inverting the conditional information in the probabilities above, as we need 
to compare the two conditional probabilities: 

P(isM|TM) and P(isF|TF) 

To see how we can accomplish our task, let us abstract a little and consider 
two events E and F. Intersection is a commutative operation: 

(E f] F) = (F n E) =► P(E n F) = P(F Π E) 

Using the definition of conditional probability, we may write 

P{EC\F)=P{E\F)P{F) 
P(FnE)=P{F\E)P{E) 
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but since the two left-hand sides are the same, we may also conclude that 

P{E | F)P(F) = P (F | E)P(E) 

We have proved the following theorem. 

THEOREM 5.6 (Bayes' t heorem) Given two events E and F, we have 

P i F i n P(E\F)P(F) P{FiE)-—pJE) 
provided that P{E) φ 0. 

Immediate application to our problem yields 

PiisM ITM) = P(TM|isM)P(isM) = P(TF|isF)P(isF) 
1 ' ' P(TM) ' U ' ; P(TF) 

Let us assume for simplicity that P(isM) = P(isF) = 0.5. In the relationship 
above, we need the probabilities of events TM and TF. Let us focus on the 
first one: In how many ways can the result of the test predict a male? Well, 
there are two cases: 

1. The child is indeed a male, and the test predicts the correct result; this 
happens with probability P(TM | isM)P(isM). 

2. The child is in fact a female, but the test is wrong; this happens with 
probability P(TM | isF)P(isF). 

Since the two events are mutually exclusive, we may add the two probabilities 
to obtain 

P(TM) = P(TM | isM)P(isM) + P(TM | isF)P(isF) 

A similar result holds for event TF. Let us pause a moment and generalize 
the result. 

THEOREM 5.7 (Total probabi l i ty theorem) Given a sample space Ω 
and a family of mutually exclusive and collectively exhaustive events H\,H2, 
. . . ,Hn , the probability of event E can be expressed as 

n n 
P(E) = J2P(EnHi) = Y^P(E\ Hi)P(Hi) 

i= l i= l 

The events Ηι,Ηι,..., Ηη form a partition of the sample space, as illustrated 
in Fig. 5.6. Mutually exclusive means that all of them are disjoint: 

Hi n Hj = 0, for i φ j 
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H, ΗΊ H, 

€11 
Fig. 5.6 An illustration of the total probability theorem. 

Collectively exhaustive means that their union yields the whole sample space: 
n 

Given such a partition, we see that we may cut the event E into a collection 
of n mutually exclusive "slices" that, when patched together, yield back event 
E. The total probability theorem is a very convenient way to decompose 
the calculation of probabilities when we may slice the relevant event into 
disjoint pieces, as suggested in Fig. 5.6, and conditional probabilities are easy 
to compute. This is a very useful theorem in computing probabilities. 

If we put Bayes' and total probability theorems together, we see that if 
Hi, H2, H3,..., Hn is a partition of the sample space, then for an event E we 
have the following equation: 

P(Hi\E) = P(E\Hi)P(Hj) 
Y/-nE\H])V{Hj) 

Let us apply what we came up with to the gender prediction problem. The 
probability that Mary's child is indeed a male is 

P(isM ITM) 
P(TM|isM)P(isM) 

P(TM I isM)P(isM) + P(TM | isF)P(isF) 
0.9 x 0.5 

0.75 0.9 x 0.5 +0 .3 x 0.5 

By the same token, the probability that Frances' child is indeed a female is 

P(TF|isF)P(isF) 
P(isF|TF) = 

P(TF I isF)P(isF) + P(TF | isM)P(isM) 
0.7x0.5 

0 .7x0.5 + 0.1 x0 .5 = 0.875 

So, we see that Frances is the one who should be more confident about the 
gender of her child. We urge the reader to apply Bayes' theorem to the illness 
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problem of Section 1.2.2 and find the result that we obtained there by an 
informal reasoning. 

Bayes' theorem is fundamental in working with information and it is the 
starting point of a whole branch of statistics,7 which we touch on in Chapter 
14. To conclude the section, we consider a rather well-known puzzle. 

Example 5.9 Consider a dumb but quite popular TV program, in which the 
participant sits in front of three boxes A, B, and C. One of the boxes contains 
a prize and the guy, who has no clue where the prize is, has to choose one. Say 
that he chooses A. The presenter knows where the prize is; he opens box C, 
showing that it does not contain the prize; then, he offers the participant the 
possibility of giving up the previous choice and switching to box B. Should 
the participant accept the offer? 

When handed this question, the class typically divides into two camps: 

1. One school of thought maintains that there is no point in switching from 
box A to box B. A priori, the probability of finding the prize was | ; 
now, with two box remaining, the two probabilities are just | . Others 
go as far as to suggest that the presenter is cheating and trying to lure 
the participant into switching, in order to save the prize. 

2. Another school of thought maintains that indeed the probabilities were 
symmetric a priori, but now the probability "mass" associated with box 
C should shift to box B\ then, the probability that the prize is in box 
B is now | and the participant would double the odds of winning by 
accepting the offer.8 

Students hinting at the possibility that the presenter is cheating do have a 
point. We must state clearly the assumptions behind his behavior. In real 
games like this one, there are in fact many boxes with different prizes, and 
one would think that there is an incentive to try stealing the big one from the 
lucky participant. However, perhaps, a bigger incentive is to create suspense 
to keep the audience and make the game take more time, so that they can slip 
a few more juicy spots into the program. Therefore, let us assume that the 
presenter has no malicious intent and that his aim is just to stretch the game a 
little bit. Of course, whatever we conclude is as valid as this assumption, but 
this is a good feature of a formal analysis: Any assumption is stated clearly 
and we may assess its impact on our conclusions. 

7Adherents to Bayesian statistics would object that this is the only branch of statistics, 
bridging the gap that the orthodox view leaves between probability theory and inferential 
statistics. 

The clash between the two camps was always huge fun for me. This has been recently 
spoiled by a move, "21," in which my "colleague" Kevin Spacey asks the question to a smart 
student who argues in a rather obscure way that the participant should indeed switch. So 
more and more students give the correct answer, but they typically do not know why! 
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The first step in tackling the problem is finding a sensible formalization. 
We are dealing with the following events: 

• A, the prize is in box A. 

• B, the prize is in box B. 

• C, the prize is in box C. 

• opC, the presenter opens box C after participant's choice. 

What we need to do is evaluating the conditional probability P(A | opC); note 
that 

P(B|opC) = l -P (A |opC) 
so calculating one of the two probabilities is quite enough. 

The next step is to clearly state what we know, or we assume to know: 

• A priori, the participant has no reason to believe that one box is more 
likely to contain the prize than the other ones: 

P(A) = P(B) = P(C) = ± 

• The presenter is not cheating and knows where the prize is. Then, we 
can evaluate the following conditional probabilities: 

— P(opC | A) = ^, because in such a case he could either open box B 
or C and nothing would change. So, let us assume that he chooses 
one of the two possibilities purely at random. 

— P(opC I B) = 1, because this is the only available option to him. He 
cannot open box A, because it is the selected one; he cannot open 
box B, because it would spoil the game. 

— P(opC I C) = 0, because he would necessarily open box B in this 
case, to avoid spoiling the game. 

Now we are ready to apply Bayes' theorem: 

P(opC|A)-P(A) 
P(A|opC) 

P(opC) 

What we miss in this expression is just P(opC), which can be found by the 
total probability theorem: 

P(opC) = P(opC I A) · P(A) + P(opC | B) · P(B) + P(opC | C) · P(C) 

If we put everything together, we obtain 

P(opC|A)-P(A) 
P(A|opC) 

P(opC I A) · P(A) + P(opC | B) · P(B) + P(opC | C) · P(C) 
i v i Ì 1 2 3 _ 2 _ i 

i x | + l x | + 0 x l ì + 1 3 
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Hence, the participant should switch to box B, since the odds of winning the 
prize would be | , rather than just | . 0 

We should note that the conclusion of the example depends on all of the 
assumptions we made. This is a strength of a formal analysis, not a limitation: 
by stating a problem clearly, we point out which assumptions are critical as 
well as if and how our conclusion depends on them. If we are uncertain about 
the assumptions, it is no good reason not to consider their role explicitly. 

Problems 

5.1 Consider two events E and G, such that E Ç G. Then prove that 
P(£) < P(G). 

5.2 Assume that P(^4) = P(-B) for two events A and B. Then prove that, 
given another event E 

V{A\E) _ Ρ (Ε |Λ) 
P{B\E) ~ P(E\B) 

Find an interpretation of the result as a probability inversion formula. 

5.3 In Example 5.9 we assumed that the presenter opens box C knowing 
where the prize is. Now, let us assume that he has no information on where 
the prize is. Does this change our conclusions? 

For further reading 

• Readable treatments on probability theory are offered by Ross [7, 8]; 
the second text [8] covers both probability and statistics and is easier 
going, whereas the first one is more heavily geared toward probability, 
even though it does not use too much of a sophisticated mathematical 
machinery. 

• If you want to see a rigorous approach to probability theory, based on 
measure theory, one possible reference is the text by Resnick [6]. 

• In Ref. [1] a measure theoretic approach is followed as well, but at a 
less challenging level and with an unusual pedagogical twist; concepts 
are just reviewed and outlined, and then illustrated by plenty of solved 
problems that can really sharpen your understanding. 

• Another relatively advanced text is Ref. [3], which does not emphasize 
formal approaches to probability theory, yet it is geared to advanced 
statistics based on the Bayesian paradigm, even though it relies on stan-
dard terminology and approach. 
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• A radical alternative is suggested in Ref. [4], which is a challenging 
reading based on an uncompromising Bayesian view of probability as 
plausibility. 
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6__ 
Discrete Random 

Variables 

In this chapter we start our investigation of random variables. Descriptive 
statistics deals with variables that can take values within a discrete or a 
continuous set. Correspondingly, we cover discrete random variables in this 
chapter, leaving continuous ones to Chapter 7. As we shall see, the mathe-
matics involved in the study of continuous random variables requires concepts 
from calculus and is a bit more challenging than what is needed to cope with 
discrete ones. Hence, we prefer to proceed gradually, introducing intuitive 
concepts in the simpler case and emphasizing an intuitive link with descrip-
tive statistics. 

In Section 6.1 we introduce random variables formally, as associations of 
random events with numerical values. Then, in Section 6.2 we show how the 
distribution of a discrete random variable can be characterized by a proba-
bility mass function or a cumulative distribution function, which are related 
to concepts from descriptive statistics, i.e., histograms of relative frequencies 
and cumulative relative frequencies. Sections 6.3 and 6.4 proceed along the 
same conceptual path, introducing expected values of discrete random vari-
ables first, and then variance and standard deviations. Finally, in Section 
6.5 we describe the main discrete probability distributions that are common 
in applications, along with some motivating examples relevant to business 
management. 

As we pointed out, this is just a first step providing the reader with the basic 
knowledge about probability distributions, which is needed to tackle continu-
ous random variables in the next chapter, where we also cover other concepts 
such as quantiles, skewness, and kurtosis; these apply to both discrete and 
continuous random variables, but we prefer treating them once within a more 
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complete setting, after building some intuition based on the simpler, discrete 
case. Last but not least, in this chapter and the next one we just consider the 
univariate case; in Chapter 8 we introduce concepts about independence and 
correlation among multiple random variables, thus stepping into the domain 
of multivariate distributions. 

6.1 RANDOM VARIABLES 

In probability theory we work with events. The questions we may ask about 
events are quite limited, as they can either occur or not, and we may just 
investigate the probability of an event. In business management, more often 
than not we are interested in questions with a more quantitative twist, since 
events are linked to numerical values. 

Example 6.1 Consider an airline adopting an overbooking strategy. The 
rationale behind overbooking is that aircraft capacity cannot be stored: If an 
aircraft with 50 seats flies with 10 empty ones, this does not mean that its 
capacity will be 60 on the next flight. Hence, many airlines accept bookings 
in excess of the actual capacity, in order to compensate for no-shows, i.e., 
passengers with a reservation, who do not show up at check-in. In real life, 
different tariffs are offered, defining the possibility of canceling the reservation 
and moving freely to another flight. In a simplified setting, the overbooking 
problem consists of determining the total number of bookings that we should 
accept. This decision does have an impact on the probability of an overbook-
ing event, which occurs if any passenger cannot be accommodated at check-
in. However, we are likely to be interested also in the cost of an overbooking 
strategy, as an overbooked passenger must be protected in some way, either 
by rerouting her to another flight or by offering overnight accommodation. 
Hence, we should associate numerical values with events. D 

Formally, a random variable is a mapping from events to numerical values. 

DEFINITION 6.1 (Random variable) A random variable is a function 
mapping outcomes within a sample space Ω to real numbers. This is sometimes 
denoted as follows: 

Χ : Ω - > Μ 

We can also use the notation Χ(ω), withu) € Ω, to emphasize the dependence 
on random outcomes. 

In this definition, we should note that random variables are typically denoted 
by uppercase letters like X, whereas lowercase letters such as x are reserved 
to denote realizations of random variables, i.e., numerical values x = Χ(ω) 
corresponding to a specific event. Sometimes, an alternative notation is used, 
where è refers to a random variable and e refers to a realizations; this is 



RANDOM VARIABLES 257 

handy with Greek letters, as you may imagine, and it is common in economics. 
The definition above is actually a bit informal and definitely incomplete. We 
should keep in mind that probability measures are associated with events, 
i.e., sets of elementary outcomes. Hence, the definition of a random variable 
depends on the family T of events B Ç O . Hence, we should define a random 
variable referring to a probability space, consisting of the sample space Ω, the 
family of event J7, and the probability measure P(E), for events E € T. This 
may look a bit too abstract, but it is what we need to express information 
properly. For all of the practical purposes of this book, we need not be 
bothered about such technicalities, which are just outlined in Section 7.10 for 
the interested reader. All we need to know is that random experiments may 
result in numerical values that are practically relevant to us. 

Example 6.2 Consider a lottery based on coin flipping, in which you win 
an amount €20 if the coin lands head, and you lose €10 otherwise. Then, we 
have a random variable X, such that 

J 20 if the outcome is head, 
1—10 if the outcome is tail, 

which readily translates to the probability distribution: 

Î 20 with probability 0.5, 
— 10 with probability 0.5. 

Given our little lottery above, typical questions we may ask are 

• If we keep repeating the lottery, what is the average win on the long 
term? 

• What about its variability? 

• More generally, how can we measure the risk of a lottery? 

Considering the first two questions, we are naturally reminded of concepts like 
mean and variance, that we encountered in descriptive statistics. Indeed, we 
show later how these concepts can be adapted to random variables. However, 
there is a fundamental twofold gap when we move from descriptive statistics 
to probability theory and random variables. 

1. Descriptive statistics is basically backward-looking: We calculate sum-
mary measures based on past observations, which could be referred to a 
whole population or to a possibly small sample. On the contrary, prob-
ability theory is concerned with what may happen in the future. Hence, 
probability theory is intrinsically forward-looking. 
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2. Furthermore, we implicitly assume that we know everything we need 
about a random variable, i.e., we assume that we are endowed with 
complete knowledge about the uncertainty of the phenomenon that we 
are representing.1 In a sense, probability theory assumes knowledge 
about whole populations, not samples. 

Clearly, there is a link, as one could use a sample to learn something about 
probabilities of future events, but we have already seen in Section 5.1 that 
this frequentisi view is only one possibility. This is quite relevant when we 
consider the third question in the bullet list above. When dealing with risk 
management, one should ask if the past history contains all of the possible 
events. To get the point, imagine collecting statistics about credit crunches 
due to mortgage-backed securities before 2007. 

In this chapter we assume that we know the whole set of values that a 
random variable may take, as well as their probabilities. This is the support 
of a discrete probability distribution. 

DEFINITION 6.2 (Support of a discrete distribution) The support of 
a discrete probability distribution is the set of values Xi e M, i = 1 ,2,3, . . . 
that the random variable X may take. We always assume that values in the 
support have been sorted, i.e., Xi < Xi+i-

As we see from this definition, the values Xj may be real numbers in general; 
quite often, however, they are restricted to nonnegative integer numbers, i.e., 
Xi € Z + . Yet, it is important to understand that this is not the feature 
that makes this distribution discrete. In the lottery above, in principle, the 
payoffs could be real numbers like 3π and —2π. The point is that in a discrete 
distribution the support is either a finite or a countably infinite set of values.2 

In the former case, the support is a set of numbers Xi € K, i = 1,2,.. . , n. 
Having said that, in the following the support of discrete distributions will 
mostly consist of integer numbers, which may include zero or not, depending 
on the application, but it is useful to keep the general framework in mind. 

6.2 CHARACTERIZING DISCRETE DISTRIBUTIONS 

When we deal with sampled data, it is customary to plot a histogram of rela-
tive frequencies in order to figure out how the data are distributed. When we 
consider a discrete random variable, we may use more or less the same con-
cepts in order to provide a full characterization of uncertainty. For instance, 

1In later chapters, we point out that we should speak of risk when the outcome of a random 
experiments is uncertain but the rules of the game are perfectly known, reserving the word 
uncertainty for the case where we do not really have all of the required information. 
2The reader is referred back to Section 2.2 for an introduction to these concepts. 
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if we consider dice throwing, a full description of the related random variable 
is given by 

P(X = i) = l, i = l ,2 ,3 6 
This is an example of a probability mass function, which we formally define 
below and fully characterizes the probability distribution of a discrete random 
variable. However strange it may be, it turns out that a more flexible char-
acterization is obtained by referring to cumulative relative frequencies, which 
leads to the definition of a cumulative distribution function. The essential 
advantage is that the latter function is more general and translates directly to 
the case of continuous random variables. In the next two sections we explore 
these concepts in detail. 

6.2.1 Cumulative distribution function 

The basic stuff of probability theory consists of events and their probability 
measures. Given a random variable X, consider the event {X < x}; inciden-
tally, note how we use x to denote a number. The probability of this event is 
a function of x. 

DEFINITION 6.3 (Cumulative distribution function) Let X bea ran-
dom variable. The function 

Fx(x) = P(X<x) 

for x e K , is called cumulative distribution function (CDF). 

The notation Fx(x) clarifies that the CDF is a function of x, associated 
with the random variable X, as suggested by the attached subscript. In 
passing, we may also note that the definition above is quite general, and it 
does not require that X is a discrete random variable; the CDF can be defined 
like this for continuous random variables as well. To build intuition, let us 
see how the CDF compares to cumulative relative frequencies in descriptive 
statistics. 

Example 6.3 Let us consider a discrete random variable naturally related 
to dice throwing and build its CDF. To begin with, it is not possible to get a 
number strictly smaller than one. Hence 

P{X <x)=0, for x < 1. 

Then, there is a jump in the function when we consider x = 1: 

p(* < i) = è 
If we increase x, the CDF will stay there as long as 1 < x < 2, since the 
discrete random variable cannot take any value in the open interval (1,2). 
Then, there is another jump for x = 2: 

P(X < 2) = | 
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Fig. 6.1 CDF for dice throwing. 

since the event {X < 2} includes the events {X = 1} and {X = 2}. Similar 
jumps occur for x = 3,4,5. Finally, we have 

P{X < 6) = 1 

For x > 6, the function will just stay there, since the support is bounded by 
x = 6. The resulting CDF is depicted in Fig. 6.1. Note that the figure is 
drawn according to the standard convention of discontinuous functions.3 If 
we are a bit picky, we should say that the function is continuous from the 
right, but discontinuous from the left. In other words, P(X < 1) = | , but if 
we approach x = 1 from the left, i.e, the value of the function we see is 0: 

\imFx{x) = 0, l imF x (z ) = ± 
x\X x[l 0 

The plot in Fig. 6.1 suggests a few properties of the CDF for a discrete random 
variable: 

1. The CDF is a nondecreasing function: 

x\ < xi => Fx{xi) < Fx(x2) 

To see this, observe that event E\ = {X < xi} is a subset of event 
E2 = {X < X2}, which implies P ^ i ) < P(E2). 

2. If we consider the support Xi, i = 1,2,3,.. . , where Xi < Xi+i, we have 

Fx(x) = 0 if x < xi 
lim Fx(xi) = 1 

i—>+oo 

3See Section 2.4. 
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Table 6.1 A discrete probability distribution. 

x 0 1 2 3 
px(x) 0.15 0.20 0.35 0.30 

Indeed, the value of the CDF is a probability, so it must stay within the 
interval [0,1]. 

3. The CDF for a discrete random variable is a piecewise constant function, 
with jumps corresponding to values included in the support. 

6.2.2 Probability mass function 

The CDF looks like a somewhat weird way of describing the distribution of 
a random variable. A more natural idea is just assigning a probability to 
each possible outcome in the support. Unfortunately, in the next chapter 
we will see that this idea cannot be applied to a continuous random variable. 
Nevertheless, in the case of a discrete random variable we may indeed associate 
a probability with the event {X = x{\. 

DEFINITION 6.4 (Probability Mass Function) The probability mass 
function (PMF) of a discrete random variable is defined as the function 

px(x) = P(X = x) 

The function is zero for values not included in the support. For values Xi in 
the support, the shorthand notation pi = P(X = Xi) is often used. 

Example 6.4 Consider the PMF in Table 6.1, and note that probabilities 
add up to 1. The PMF px(x) is graphically illustrated in Fig. 6.2(a). The 
upward arrows are a common way to depict probability masses concentrated 
at discrete points within the distribution support. The height of each arrow 
corresponds to the probability of that value and provides us with a visual rep-
resentation of likelihood. On the contrary, with continuous random variables 
the mass is distributed on continuous intervals. Figure 6.2(b) shows how we 
may get the CDF by summing up probabilities from the PMF: 

Fx(x) = { 

0 for x < 0 
Po =0.15 f o r 0 < x < l 
p 0 +f> i=0 .35 f o r l < a ; < 2 
Po+Pi+P2 = 0.70 for 2 < x < 3 
Po + Pi + Pi + Pa = 1 for 3 < x 
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Fig. 6.2 From PMF to CDF and vice versa. 

Each probability we add over points in the support contributes a jump to the 
CDF. We can also go the other way around, i.e., we may obtain probabilities 
by taking differences in the CDF: 

Po = Fx(0) 
Pi = Fx(2) - Fx(l) 
p2 = Fx(3) - Fx{2) 
p3 = Fx(4) - Fx(3) Q 

The example suggests general rules for moving from PMF and CDF and 
vice versa. We find the PMF by taking differences of consecutive values of 
the CDF over points Xi in the support: 

px(xi) = P(X = Xi) = P(X < Xi) - P(X < Xi) = Fx(xi) - F ^ a u - i ) (6.1) 

It is important to notice that if X is a discrete random variable and Xi is in 
its support, then 

P(X < Xi) φ P(X < Xi) 
Given the PMF, we just add up its values to find the CDF: 

Fx(a) =P(X<a)=J2 Pxfa) (6·2) 
Xi<a 

Indeed, the CDF and PMF provide us with the same information, which fully 
characterizes a discrete random variable. 
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6.3 EXPECTED VALUE 

Both PMF and CDF provide us with all of the relevant information about a 
discrete random variable, maybe too much. In descriptive statistics, we use 
summary measures, such as mean, median, mode, variance, and standard de-
viation, to get a feeling for some essential features of a distribution, like its 
location and dispersion. In probability theory, there are corresponding con-
cepts that we start exploring in this and the next section, where we consider 
concepts corresponding to mean and variance, leaving further developments 
to Sections 7.4 and 7.5. The single most relevant feature of a distribution is 
related to its "mean," a natural measure of location. 

DEFINITION 6.5 (Expected value) The expected value of a discrete ran-
dom variable with PMF px(x) is given by 

oo oo 

E[X] = Ύ^ΧίΡχ{χί) = ^XiPi (6.3) 
i = l i = l 

where we have used the shorthand notation Pi = px(xi). 

This definition allows for an infinite support; in the case of a finite support, 
the sum will just run up to i = N. Quite often, the notation μ or μχ is used 
to refer to the expected value of a random variable. 

Example 6.5 Consider again the random variable whose PMF is shown in 
Table 6.1. Its expected value is 

E[X] = Σ XiPi = 0 x 0.15 + 1 x 0.20 + 2 x 0.35 + 3 x 0.30 = 1.8 
i 

Note that the expected value of a random variable taking integer values is not 
necessarily an integer number. D 

6.3.1 Expected value vs. mean 

Looking at Definition 6.3, the similarity with how the sample mean is calcu-
lated in descriptive statistics, based on relative frequencies, is obvious. How-
ever, there are a few differences that we must always keep in mind. This 
is why it is definitely advisable to avoid the term "mean" altogether, when 
referring to random variables. Using the term "expected value" may be tire-
some at first, but it will enhance clarity of thinking, which will pay off later, 
when dealing with inferential statistics. Hence, it is useful to gain a thorough 
understanding of the differences between expected value in probability theory 
and mean in descriptive statistics. 

• The first striking difference is that the expected value involves an infinite 
series, when the probability distribution has infinite support. This can-
not happen in descriptive statistics, since what we observe is a bounded 
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range of data. If the sum converges, it must be the case that very 
large values have a small probability. Allowing for the occurrence of an 
unlikely, but quite significant event is important in risk management. 

• A related difference is that the probabilities need not come from empir-
ical data. We will see in Section 6.5 that distributions may be obtained 
by conceptual random experiments driven by some underlying mech-
anism, which allows for an infinite set of outcome. We refer to such 
distributions as "theoretical" to set them apart from empirical distribu-
tions based on sampled data. A statistical mean can only be empirical. 

• The expected value is a number. Given a probability distribution, the 
expected value is what it is. In descriptive statistics, the mean need 
not be a number. It will be a number only if the mean pertains to a 
population. If the mean comes from a random sample, then it will be 
random variable. Any time we sample, we get a different value. 

Despite these remarkable differences, there is indeed a link between expected 
value and mean, which will become quite clear when dealing with inferential 
statistics; we may use a sample mean to estimate an expected value. We see 
that, in a sense, probability theory assumes complete knowledge about the 
underlying uncertainty, which can be equivalently encoded in the form of a 
PMF or CDF. Thus, in a sense, in probability theory we always work with 
the whole population. 

In the following, we will learn to interpret the expected value in different 
ways, depending on our purpose: 

• The expected value is a basic feature of a probability distribution, i.e., 
a location measure. 

• The expected value can be regarded as a long-run average. This second 
interpretation is less obvious because, among other things, it assumes 
that the characteristics of a random process will be constant in the 
future. To really clarify what we mean, we should formally state the law 
of large numbers, specifying under which conditions this interpretation 
is sensible. Since the involved issues are not trivial, this is left to the 
advanced Section 9.8. 

• The expected value can be interpreted as a forecast. This interpretation 
stresses the forward-looking nature of an expectation, as compared with 
the backward-looking nature of descriptive statistics. In Chapter 11, 
we clarify what makes a "good" forecast and what we need in order 
to transform forecasts into management decisions. From a practical 



EXPECTED VALUE 265 

perspective, we should always take into account the danger of building 
a forecast based on past history.4 

6.3.2 Properties of expectation 

We may think of the expected value as an operator mapping a random variable 
X into its expected value μ = E[X}. The expectation operator enjoys two very 
useful properties. 

PROPERTY 6.6 (Linearity of expectation 1) Given a random variable 
X with expected value E[X], we have 

E[aX + β) = aE[X] + β 

for any numbers a and β. 

This property is fairly easy to prove: 

O O OO CXI 

E[aX + β} = J2Pi(aXi + β) = a^piXi + ß^Pi = aE[X] + ß 
i=l i = l i=l 

Informally, the property provides us with a quick rule for manipulating ex-
pectation as an operator, stating that numbers can be "taken outside" the 
expectation. The next property is a bit less trivial, as it involves the sum of 
multiple random variables. 

PROPERTY 6.7 (Linearity of expectation 2) Given m random variables 
Xi, i = 1 , . . . , m, we have 

E Σ * Σ Ε ^ 
i = l 

A proof of this property is a bit involved, as it requires some tedious algebra, 
and it is omitted. What makes this property conceptually not trivial is that 
when dealing with multiple random variables, some care might be needed as 
they may have different distributions, and their mutual relationships may be 
quite complicated. Rather surprisingly, Property 6.7 states that the expected 
value of a sum of random variables is always the sum of their expected values.5 

Taken together, the two properties state that expectation is a linear oper-
ator, in the sense that the expected value of a linear combination of random 

4If you not get this point too clearly, imagine driving home just looking at the rearview 
mirror. A disclaimer: I wrote imagine, not try\ 
5We are assuming that pathological situations do not arise and that all of the involved 
expectations exist. This may not be the case if the series (6.3) diverges by going to infinity. 
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variables, is just the linear combination of their expected values:6 

E /jOijXi = YjaiE[Xi] (6.4) 

for arbitrary coefficients ctj, i = 1 , . . . , m. 

6.3.3 Expected value of a function of a random variable 

Typically, a random variable is just a risk factor that will affect some man-
agerially more relevant outcome linked to cost or profit. This link may be 
represented by a function; hence, we are interested in functions of random 
variables. Given a random variable X and a function, like g(x) = x2, or 
g(x) = max{x,0}, we define a new random variable g(X)- Not surprisingly, 
the expected value of a function of a random variable is 

oo 

E[g(X)} = ^2Pig(xi) (6.5) 

It is fundamental to really understand the expression in (6.5). We should 
consider each value Xi in the support, compute the corresponding value g(xi) 
of the function, multiply the result by probability pi, and add everything up. 
This is the expected value of the function, which is not the function of the 
expected value. We should not calculate E[X] and then evaluate function g{x) 
for x = E[X] since, in general 

E[g(X)]^g(E[X}) 

In other words, we cannot commute the two operators, i.e., the expectation 
E[·] and the function g(-), as the following counterexample shows. 

Example 6.6 Let X be a discrete random variable with support { — 1, +1}. 
Both values have probability 0.5, so 

E[X] = [0.5 x (-1) + 0.5 x (+1)] = 0 

Now consider function g(x) = x2. The expected value of g(X) is 

E[g(X)} = E[X2} = 0.5 x ( -1) 2 + 0.5 x (+1)2 = 0.5 + 0.5 = 1 

This is definitely not the same as the function of the expected value: 

g(E[X}) = 02 = 0 

See Section 3.3.3 for a definition of linear combination. 
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There is a case in which we may commute expectation and function, as sug-
gested by Property 6.6: If we have linear affine function h(x) = ax + ß, then 
it is true that 

E[h(X)} = E[aX + ß} = aE[X] +ß = h(E[X}) 

but this is a very peculiar situation. The following example illustrates the 
point again in a more practically relevant setting. 

Example 6.7 As we have seen in Section 3.1, a European-style call option is 
a financial contract giving you the right, but not the obligation, to purchase 
a given asset (e.g., a stock share) at a fixed price (called the strike price), 
at a given date (the maturity of the option). Note that the investor holding 
the option is free to choose if she wants to exercise the option at maturity 
or not.7 The other party of the contract, the option writer, is forced to sell 
the underlying asset if the option holder exercises the option. In contrast, the 
forward contracts we dealt with in Section 1.3.1 are more symmetric, since 
both sides of the contract are forced to carry out their obligations, i.e., to 
respectively buy and sell the underlying asset at the agreed forward price. 

Say that we hold an option with strike price €40, written on a stock share 
whose price now is SO = €35, maturing in 5 months. The stock price in five 
months, S5, is a random variable. If it turns out that S5 > €40, then the 
holder can exercise the option and buy at 40€ the asset, which can then be 
sold for S5, with a payoff S5 — €40. More generally, if ST is the underlying 
asset price at maturity and K is the strike price, the payoff for the option 
holder is 

g(ST) = max{ST - K, 0} 

Note that the option payoff cannot be negative, since the holder will not 
exercise the option if the asset price is below the strike price.8 

Real-life probability distributions of stock share prices are rather compli-
cated, but let us assume that the distribution of S$ is fairly well approximated 
by a set of eight equally likely scenarios: 

20, 25, 30, 35, 40, 45, 50, 55 

What is the expected value of the option payoff at maturity? Since each value 
in this discrete support has probability | , symmetry suggests that E[Ss] = 
37.5. We see that g(37.5) — max{37.5 — 40,0} = 0, but this is not what we 
want. We should first calculate the option payoff in each scenario: 

7In American-style options, the holder may exercise her right at any time before the expi-
ration of the contract. 
8This is not to say that the profit cannot be negative, as the holder must pay a price to get 
her hands on the option. Furthermore, the actual workings of financial markets are a bit 
more complicated, since prices move up and down in real time and there are transaction 
costs associated with buying and selling an asset. Hence, this expression of the option 
payoff just refers to the "value" of the contract for its holder. 
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0, 0, 0, 0, 0, 5, 10, 15 

Then, the expected value of the option payoff is 

„ r ,_ ,, 5 + 10 + 15 „ „ 
% ( S 5 ) ] = s = 3.75 

D 

For an arbitrary function <?(·), we cannot say anything about the relationship 
between E[g(X)] and g(E[X]). A notable exception is a convex function.9 

THEOREM 6.8 (Jensen's inequality) If g{x) is a convex function, then 

g{E[X)) < E[g(X)}. 

It is quite instructive to see a proof for the simple case of a support con-
sisting of two values, x\ and x2, with probabilities p and 1 — p, respectively, 
since this sheds some light on the connection between discrete expectations 
and convex combinations. The expected value of X is 

E[X] = pXl + (1 - p)x2 

which is a linear combination of values x\ and x2, with nonnegative weights 
that add up to 1. Hence, we are just taking a convex combination, and this 
also applies to a support consisting of more than two points. Using convexity 
of the function, we see that 

E[g(X)} = pg(xi) + (1 -p)g{x2) <g\pxi + (l- p)x2] = ff(E[X]) 

6.4 VARIANCE AND STANDARD DEVIATION 

The expected value of a random variable tells us something about the location 
of its distribution, but we need a characterization of dispersion and risk as 
well. In descriptive statistics, we consider squared deviations with respect to 
the mean. Here we do basically the same thing, with respect to the expected 
value. 

DEFINITION 6.9 (Variance and standard deviation) The variance of 
a random variable X is defined as 

Var(X) = E[(X - E[X})2} = E{(X - μχ)2} 

where we have used the shorthand notation μχ = E[X]. Variance is often 
denoted by σ2. Standard deviation σ is the square root of variance. 

Convexity was introduced in Section 2.11. 
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Once again, we note that variance and standard deviation for a random 
sample are random variables, whereas they are well-defined numbers for a 
random variable. This is much clearer if we write variance explicitly for a 
discrete random variable: 

σ2 = Σρί(χί - μχ)2 

i = l 

and compare it against variance for a sample consisting of n observations: 

^ϊέ(*-*>' 
i=l 

The remarks we made in Section 6.3.1 regarding the expected value apply here 
as well: The support can be infinite, whereas a dataset cannot, and it takes 
a lot of knowledge, the whole PMF, to calculate variance. Furthermore, we 
should raise a couple of issues about variance, which can be better appreciated 
by thinking about the following question: 

We are interested in random fluctuations of weekly demand for the spare 
parts of a certain item. Variance of this demand is 10,000 items per 
week, squared. Is this a large or small variance? 

To begin with, variance is an average squared deviation with respect to ex-
pected value, but it is hard to think of "items squared." This is why standard 
deviation is useful, as it is expressed with the same measurement units as the 
expected value. In the case above, standard deviation is 100 items per week. 
However, it is hard to tell if it is actually large. If expected value is 10,000 
items per week, uncertainty is almost negligible. If expected value is 250 items 
per week, that standard deviation is fairly large. This is why sometimes we 
use the coefficient of variation, defined as 

_v/VârpÔ a Cx = imr= w\ ( 6 · 6 ) 
We need to take the absolute value of the expected value, as this could be 
negative. As a reference point, a variable with a fair amount of variability 
may have a coefficient of variation of about 1. 

6.4.1 Properties of variance 

The first thing we should observe is that variance cannot be negative, as it 
is the expected value of a squared deviation. It is zero for a random variable 
that is not random at all, i.e., a constant. In doing calculations, the following 
identity is quite useful: 

Var(X) = E[X2] - E2[X] (6.7) 
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This is the analog of Eqs. (4.5) and (4.6) in descriptive statistics, and proving 
it is a good exercise: 

Var(X) E[(X - μχ)2] 
= Ε[Χ2-2Χμχ+μ2

χ] 
= E[X2} - 2μχΕ[Χ] + μ2

χ 

= Ε[Χ2]-2μχμχ+μχ 

= Ε[Χ2]-Ε2[Χ] 

When dealing with expected value, we considered Properties 6.6 and 6.7, that 
essentially state that the expected value of a sum of random variables is the 
sum of their expected values. Does this carry over to variance? The answer 
is "not really." The first surprise is that, given numbers a and β, we have 

Var(aX + β) = a2 Var(X) (6.8) 

We see that a number a multiplying a random variable can be "taken outside" 
variance, but it gets squared. This is not surprising at all, since variance 
is a squared deviation. We also see that β does not play any role at all. 
Again, this makes sense, since shifting a probability distribution does change 
its expected value, a measure of location, but not its dispersion. It is easy to 
prove this property formally using the definition of variance and the properties 
of expectation: 

Va,r{aX + ß) = Ε\(αΧ+β-Ε[αΧ + β}γ] = Ε\(αΧ-αμχ] 

= a2E (Χ-μχΥ a2 Var(X) 

Equation (6.8) suggests that there is something intrinsically "nonlinear" in 
variance, since the scale factor a gets squared. By the same token, we could 
wonder whether the variance of a sum of random variables is just the sum of 
variances: 

Var Σ* 
L i= i 

E V a r ^ (6.9) 
i = l 

Actually, this property does not hold in general. 

Example 6.8 To see why Eq. (6.9) cannot hold in general, an intuitive 
example is helpful. Consider a simple financial portfolio allocation problem. 
We should allocate $100,000 either to IBM or Microsoft stock shares. Say 
that 60% of our wealth is invested in IBM, and the rest in Microsoft: 

WIBM = $60,000, WMS = $40,000 

The return on our investment depends on the returns of the two stock shares, 
which are two random variables. Denoting the two random variables by Ì?IBM 
and -RMS; respectively, profit/loss is a random variable: 

P/L = WIBMRIBM + WMSR\ 
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with expected value 

MP/L = ^MBMMIBM T H'MSA'MS 

Imagine, for the sake of the argument, that μίΒΜ = 5% and μΜΒ — 10%. Since 
Microsoft has a higher expected return than IBM, why don't we invest all of 
our wealth in Microsoft shares? The easy answer is that, arguably, greater 
expected return comes with greater risk. How can we measure risk? The 
answer is definitely tricky, but a first attempt could be considering standard 
deviation of return, which is linked to variance. Now what is the variance of 
P/L? We will find the complete answer later, in Section 8.3.2, but we may 
immediately understand that we cannot assess risk of our portfolio without 
considering the relationships between the two returns. 

• If IBM price increases when Microsoft price falls, and vice versa, there 
is an offsetting mechanism that should reduce risk, and this should be 
reflected somehow in variance of profit/loss. 

• If the two prices have nothing to do with each other, i.e., if i?[BM and 
RMS are independent random variables, whatever this means exactly, 
we will not see a big reduction in risk, but maybe some diversification 
benefit will result. 

• On the contrary, if the two returns go hand in hand, then we do not 
have a well-diversified portfolio.10 This should be reflected by a relative 
increase in overall variance with respect to the two previous cases. 

Indeed, an old piece of advice suggests that we should not place all of our 
eggs into one basket. D 

The example shows that we are missing something, i.e., the mutual depen-
dence of random variables, which we deal with in Chapter 8. Still, there is 
something that we may state here, without any proof. Equation (6.9) holds 
if all of the involved variables are independent. 

PROPERTY 6.10 (Variance of a sum of independent variables) Let 
Xi, i — 1 , . . . , m, be independent random variables with variance σ\, and let 
ai, i = 0 , . . . , m be arbitrary real numbers. Let us also define random vari-
ables: 

m m 

i=l i = l 

1 0The Enron case is a good example of bad diversification from the perspective of their 
employees. On one hand, when disaster struck, they lost their jobs. As if this were not 
bad enough, the private pension fund of Enron was heavily invested in Enron stock shares. 
Hence, employees held a portfolio consisting of two assets, the job and the wealth invested 
in the pension fund, which can both be considered as claims to a stream of future cash 
flows. Unfortunately, the two assets were risky and the two risks were tightly related. 
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with variance σ\ and σ | , respectively. Then 

m 

Σ σ 2 (6·10) σ\ 
=1 

σγ = 
τη 

4 = Σ Ω ^ 2 (6·12) 
Be sure to notice that we may add up variances, but not standard deviations. 

6.5 A FEW USEFUL DISCRETE DISTRIBUTIONS 

There is a wide family of discrete probability distributions, which we cannot 
cover exhaustively. Nevertheless, we may get acquainted with the essential 
ones, which will be illustrated by a few examples. First, we should draw the 
line between empirical and theoretical distributions. Since these terms may 
be a tad misleading, it is important to clarify their meaning. 

• An empirical distribution, in the discrete case, consists of a set of values 
along with their probabilities. Hence, to describe it, we need the full 
PMF. This is why the term nonparametric distribution is also used. 

• A theoretical or parametric distribution stems from a specific random 
experiment that may be conceptual, rather than empirical. This will be 
clearer in a moment, but the important point is that such a distribution 
can be fully characterized by a limited set of parameters, typically one 
or two. The shape of the distribution depends on the specific mechanism 
of the underlying random phenomenon. 

The terminology for theoretical distributions is as such, because these distri-
bution often allow for an infinite support, something that cannot stem from 
empirical experiments; an empirical distribution has a finite support by its 
very nature. Still, the parameters of a theoretical distribution can be fit 
against empirical data. Hence, we see that the boundary between the two 
classes is not that sharp, and is more related to their parametric vs. nonpara-
metric nature. In describing the distributions below we will also use a few 
realistic examples to hone our skills. 

6.5.1 Empirical distributions 

Empirical distributions feature the closest link with descriptive statistics, since 
their PMF is typically estimated by collecting empirical relative frequencies. 
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For instance, if we consider a sample of 10 observations of a random variable 
X, and X = 1 occurs in three cases, X — 2 in five cases, and X = 3 occurs 
twice, we may estimate 

pi = 0.3, p2 = 0.5, pa = 0.2 

Empirical distributions feature the largest degree of flexibility and may also be 
used with qualitative data. Furthermore, they may reflect quite complicated 
random phenomena, leading to possibly multimodal distributions, whereas 
we shall see that theoretical distributions typically have a single mode. Yet, 
this flexibility may backfire when it results in model overfitting, i.e., when the 
probability model reflects peculiarities in the sampled data that do not carry 
over to the overall population. 

Another point that cannot be overemphasized is that empirical distribu-
tions have a finite support by definition, as they rule out values below the 
smallest observation and above the largest one. This may result in a wrong 
perception of risk. Sometimes, an empirical distribution is adjusted by adding 
"tails" derived from a theoretical model in order to avoid this problem, but 
this patch requires some ad hoc reasoning. 

6.5.2 Discrete uniform distribution 

The uniform distribution is arguably the simplest model of uncertainty, as it 
assigns the same probability to each outcome: 

p(xi) = p 

This makes sense only if there is a finite number n of possible values that the 
random variable can assume. If they are consecutive integer numbers, we have 
an integer uniform distribution, which is characterized by the lower bound a 
and the upper bound b of its support. The condition: 

n 

2 = 1 

immediately implies p = 1/n. We may think of a uniform distribution as 
a die with possibly many faces. A uniform distribution characterizes a case 
where we do not have any reason to believe that any outcome is more likely 
than the other ones; hence, we might associate a uniform distribution to a 
situation where we have very little information. There is little to say about 
this distribution, so it is time to tackle a nontrivial example. 

Example 6.9 (Newsvendor problem) In Section 1.2.1 we briefly discussed 
the problem of purchasing items with a limited time window for sales un-
der demand uncertainty. Now we are able to better understand it and even 
try a little numerical example. This kind of problem is typically labeled as 
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newsvendor problem, as it resembles the challenge faced by late-nineteenth-
century newsboys, who had to purchase newspapers before knowing demand, 
with considerable danger of scrapping a lot of sold newspaper.11 More gener-
ally, the newsvendor problem is a prototype for all decisions involving fashion 
items, and its relevance is more and more significant as the rate at which 
products become obsolete is increasing. 

To summarize the newsvendor problem: 

• We purchase an item with unit cost c; this can also be the unit produc-
tion cost in the "make" case. The item can be ordered only once, before 
the beginning of the time window. 

• The product is sold at sales price s. The profit margin is s — c; if our 
order turns out to be small, i.e., if part of demand is not met, we lose 
profit opportunities. 

• Unsold items are marked down and sold for su < c. If su = 0, then 
unsold items are just scrapped. 

• Demand D is a random variable, whose probability distribution is known. 

• The decision to be made is: How many items should we buy (or make)? 

To gain a better feeling for the problem, let us consider the following numerical 
data: 

• Unit cost is c = 20. 

• Sales price is s = 25. 

• Whatever is left, must just be scrapped; hence su = 0. 

• Demand is uniformly distributed between 5 and 15; since the support 
consists of 11 values, we immediately see that the probability of each 
value is p = JJ ; given the symmetry of the distribution, it is also easy 
to see that E[D] = 10. 

Let us denote our decision variable, the order size, by q. At first sight, when-
ever we face a problem like this we should just come up with a good forecast of 
demand and buy that amount, q = E[£>] = 10. Actually, this need not be the 
best strategy. Intuitively, such a naive solution disregards a lot of information, 
such as demand uncertainty and the involved economics, i.e., cost and price 
data. Before dwelling on mathematics, let us ask the following questions: 

• If we go to a baker's shop to buy some bread at 6 p.m., are we likely to 
find what we want, i.e., real bread and not plastic? Experience suggests 

After the 1899 Newsboys strike, publishers agreed to buy back unsold copies. 
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that it is difficult to find real bread in the evening. Since this is a regular 
pattern, should we conclude that bakers are dumb demand forecasters? 

• On the other hand, if we want to buy winter clothing, we always have 
the option to wait for markdown sales, since prices are marked down 
each and every winter, and the same applies to summer seasons. Should 
we conclude that owners of clothing shops are as dumb as bakers, but 
of the opposite breed? 

• Or maybe none of them are dumb, and there is something we are miss-
ing? 

It seems that we need more careful analysis, and the first question is: What 
makes a good solution to our problem? The easy answer is that we would like 
to maximize profit, but a moment of reflection shows that this is not a good 
answer and actually makes no sense at all. In fact, profit is random; more 
precisely it is a function of a random variable. It is our privilege to decide the 
order quantity q, but profit is a function of the random variable D as well. 
Formally, profit can be expressed as 

\sD — cq if q > D 

In fact, if q < D, we sell everything and the profit is the ordered quantity 
times profit margin; otherwise, profit is the difference between revenue from 
selling D items, minus the cost of purchasing q items (this applies to our case, 
since there is no salvage value associated with unsold items). We observe that 
our choice of q does not determine profit; rather, by choosing q we choose a 
probability distribution for profit. But how can we rank probability distribu-
tions? To do so, distributions should be associated with a single number. We 
fully address this issue in Chapter 13, where we deal with decision making 
under uncertainty, but the most natural choice is ranking based on expected 
value of profit. So, our problem can be formalized as 

max 11(g) =ED[îr(9)£>)] 
<j>0 

Note that expected profit Π(ςτ) is a function of the decision variable q only, 
since random demand D is eliminated by expectation; the notation above 
clarifies that expectation is taken with respect to demand D. In our numerical 
example, expected profit is 

n<,) - 1 
q 15 

^2(sd-cq)+ Σ 0 - Φ 
d = 5 d=q+l 

In the sum, we use d to mark the difference between the random variable 
D and its realization d (a number). The first sum corresponds to demand 
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Table 6.2 Expected profit for a newsvendor problem. 

Q 

Π(9) 

q 
Π(ς) 

5 
25.00 

11 
7.27 

6 
27.73 

12 
-3.64 

7 
28.18 

13 
-16.82 

8 
26.36 

14 
-32.27 

9 
22.27 

15 
-50.00 

10 
15.91 

— 

scenarios where D < q, and the second one corresponds to demand scenarios 
where D > q; the case in which D = q can be attributed to either sum, 
without changing the result. Each of the eleven possible outcomes is divided 
by the uniform probability ~. Now we may calculate 11(g) for each possible 
value of q. 

• There is no point in buying fewer than five items since, according to our 
model of uncertainty, we are going to sell at least five. 

• If q = 5, there is no risk at all, since we will sell everything, anyway, 
with a profit Π(5) = 5 x 5 = 25. 

• If q = 6, things are a little more involved. If it turns out that D = 5, 
we have a reduction in profit with respect to the previous case, since we 
lose 20 on one unsold item and profit is just 5. In any other scenario, we 
earn a profit of 30. To compare this profit distribution with the riskless 
profit of 25 when choosing q = 5, we compute the expected value: 

Π(6) = ^ 1 " * 3 0 « 27.73 

showing that q = 6 is a better decision than q = 5, assuming that we 
have picked the correct criterion. 

Proceeding this way, we get the results given in Table 6.2. We see immediately 
that the optimal solution is not q = 10, but q — 7. Is this really surprising? 
Looking at the data, we see that profit margin is 25 — 20 = 5, which is the cost 
of a stockout occurring if we buy less than necessary. However, the cost of an 
unsold item is 20. Hence, it is not surprising that we came up with a rather 
conservative solution. With a large profit margin and/or a higher markdown 
sales price, the optimal order quantity would increase. Incidentally, this is 
why bakers are so conservative and fashion shops are so optimistic. Actually, 
rather than solving a problem by brute force, it would be nice to gain some 
insight, possibly by an analytical solution; since this is easily done assuming 
a continuous probability distribution, we defer this to Section 7.4.4. 

This example shows a fundamental principle: 
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A point forecast, i.e., a single number, is typically not enough to come up 
with a good decision under uncertainty. 

Before parting with this little example, it is very (and I stress very) important 
to understand a fundamental limitation of our modeling framework. We are 
assuming that our decisions do not influence uncertainty. Granted, there 
are cases in which this is a sensible assumption, or maybe a necessary one in 
order to make the problem tractable. Yet, a few histories of financial disasters 
suggest the opportunity of reflecting a bit on the appropriateness of such an 
assumption. We deal a bit with this thorny issue in Chapter 14; for now, let 
us observe the following: 

• 

# 

We are assuming that our choice of q does not influence demand. How-
ever, if we are too conservative and the problem is repeated over time, 
a lot of stockouts may erode our customer base. 

If the game is not repeated, then one might question the sensibility 
of using the expected value, which can be interpreted as a long-run 
average. Maybe, we should consider a risk measure as well, like standard 
deviation of profit. Still, if the approach is applied to a large number of 
items, we might argue that maximizing expected profit should lead to a 
good solution on average.12 

• Marketing studies show that the number of items on the shelves may 
influence demand. Would you buy the last, lonely box of a perishable 
food item on the shelves? 

• We are also assuming that sales price is given, but we might use it as a 
tool to influence demand and maximize profit.13 

• Last but not least, we are also assuming that we can sell all of the 
leftover items at the markdown price su. This should not be taken for 
granted, since the markdown price could depend on how many items we 
are left with. 

This might suggest opportunities for more complicated modeling, and indeed 
there are models for dynamic markdown pricing. However, when pulling such 
mathematical stunts, we should always keep in mind that a more complicated 
model requires more input data. If these data are not reliable, it is usually 
wiser to settle for a simpler and more robust model inspired by a parsimony 
principle. D 

1 2As we shall see, this is essentially an application of the law of large numbers; yet, this 
is valid under a few assumptions, including independence, which in our setting means 
independence of demands for different items. 
1 3 The reader might refer back to Section 2.11.5. 
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6.5.3 Bernoulli distribution 

The Bernoulli distribution is based on the idea of carrying out a random 
experiment, which may result in a success or a failure. Let p be the probability 
of success; then, 1 — p is the probability of failure. If we assign the value 1 to 
variable X in case of success, and 0 otherwise, we get the following PMF: 

ί * ( 0 ) Ξ Ρ ( Χ = 0) = 1 - ρ 

px(l) = P(X = l)=p 

It is easy to calculate the expected value: 

Ε[Χ] = 1·ρ + 0·(1-ρ)=ρ 

and variance: 

Var(X) =E[X2} -E2[X] = [l2 -p + 02 ■ (1 -p)} - p2 = p ( l -p) 

It is always useful to reflect a bit and get an intuitive feeling for the parameters 
of a probability distribution. If the support of the distribution is the set {0,1}, 
the expected value is the same as the parameter p. Hence, the expected value 
of X is large when the probability of success is large, and this makes obvious 
sense. The same applies if you generalize the support to any other value. As a 
practical example, consider the launch of a new product and the corresponding 
profit if it is a success or a failure. Having only two values would arguably 
make a poor model of uncertainty, but it may be a simple starting point.14 

Checking variance is a bit more interesting and leads us to a few useful 
observations: 

• Variance cannot be negative, since p £ [0,1], A formula like p(p — 
1) would make no sense, since it would allow for a negative variance. 
Indeed, if we plot the formula for variance as a function of p, we get 
a concave parabola such that variance is positive for p in the allowable 
range, 0 < p < 1, and negative outside. 

• Variance is zero, the minimum possible value, when p = 0 and p = 1. 
This makes sense again; if success or failure are guaranteed, there is no 
uncertainty. 

• The maximum variance is obtained when p = 0.5, which corresponds to 
the maximum level of uncertainty about the outcomes. 

Now let us use this intuition in a toy example that is related to the Bernoulli 
random variable. 

You may wish to refer back to the examples in Section 1.2.3. 
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Success 

Failure 

Success 

Not promising^v^^ 
τ ^ Failure 

Fig. 6.3 Partial decision tree in Example 6.10. 

Example 6.10 A firm has developed a new product and it must decide 
whether starting full scale production is worthwhile.15 If the product is suc-
cessful, profit will be €120,000; otherwise, it will just be €20,000. Probability 
of success is 0.6, or 60%, so there is quite some uncertainty. As an alterna-
tive, the firm could just sell the production license for €60,000 to another 
firm. However, there is still a third possibility; the firm could try to get some 
additional information by carrying out a market research survey, at a cost of 
€4,000. If the result of the survey is promising, the firm believes that the 
probability of success will be 0.9; otherwise, it will just be 0.3. Note that 
these are conditional probabilities, given the outcome of the survey. 

• At what level of probability would the survey suggest a promising future 
for the product? 

• What is the best course of action for the firm? 

• What is the maximum cost of the survey that the firm should be willing 
to pay? 

The first question seems a bit tricky. The point is that by carrying out a 
small-scale survey, interviewing potential customers to see if they like the 
new product, we will not increase the unconditional probability of success. 
The firm is not improving the product; it is only gathering information. The 
situation can be visualized by the tree in Fig. 6.3. The events we consider are 
Ροκ, the product is successful; Sgood, the survey result is promising; Sbad, the 
survey result is disappointing. If we do not carry out the survey, unconditional 
probability of success is 60%. If we carry out the survey, the unconditional 
probability of success, as seen from the root of the tree, is 

Ρ(Ρθκ ) = Ρ(ΡθΚ | Sgood) X P(Sgood) + Ρ(ΡθΚ | Sbad) X P(Sbad) 

= 0 . 9 x p + 0 . 3 x ( l - p ) 

Promising 

This example is adapted from the text by Cur win and Slater [4]. 



280 DISCRETE RANDOM VARIABLES 

Setting this equal to 0.6 (60%) and solving for the unknown probability yields 
p = 0.5. This is the only probability ensuring consistency in our representa-
tion of uncertainty. Now, if we compare the expected profit from immediate 
product launch, we obtain 

Ε[π] = 0.6 x 120,000 + 0.4 x 20,000 = 80,000 (6.13) 

against the profit from selling a production license, we see that we should 
give the product a try.16 If we carry out the survey, and the result is positive, 
expected profit is 

E [π I Sgood] = 0.9 x 120,000 + 0.1 x 20,000 = 110,000 

from which the cost of the survey should be deducted. If the survey is not 
promising, then 

E [π I Sbad] = 0.3 x 120,000 + 0.7 x 20,000 = 50,000 

and we are better off selling the license. Hence, if we carry out the survey and 
make optimal use of the information that it provides, we obtain 

Ε[π] = 0.5 x 110,000 + 0.5 x 60,000 - 4000 = 81,000 (6.14) 

We see that the best course of action is: 

• Carrying out the survey. 

• If the result is promising, start production. 

• If the result is not promising, sell the license. 

Of course this is just a toy example, but it is important to really understand 
what does the trick. The survey does not improve our chances of success. 
Rather, it allows us to defer the decision while collecting additional informa-
tion. We may see this by recalling what we have just observed about the 
Bernoulli random variable: Variance is decreased when the probability of suc-
cess is driven away from 0.5, one way or the other. In this example, the 
unconditional standard deviation of profit if we do not carry out the survey 
will be 

σ(π) = A/0.6 x (120,000)2 + 0.4 x (20,000)2 - (80,000)2 = €48,989.79. 

The conditional standard deviations depending on the survey outcome are 

σ(π | Sgood) = \Λ)·9 x (120,000)2 + 0.1 x (20,000)2 - (ΙΙΟ,ΟΟΟ)2 = €30,000 

σ(ττ I Sbad) = Λ/0-3 x (120,000)2 + 0.6 x (20,000)2 - (50,000)2 = €45,825.76 

1 6This is true if we care only about expected values. We will see in Chapter 13 that this 
applies to risk-neutral decision makers; risk-averse decision makers should also worry about 
other features. 
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We see that the effect of the survey is to reduce uncertainty, and the firm 
should be willing to pay at most €5000 for this reduction. To see this, observe 
that the expected profit in Eq. (6.14), without deducting the cost of the survey, 
is €85,000, which should be compared against €80,000, the expected profit of 
immediate product launch from Eq. (6.13). U 

6.5.4 Geometric distribution 

The geometric distribution is a generalization of the Bernoulli random vari-
able. The underlying conceptual mechanism is the same, but the idea now 
is repeating identical and independent Bernoulli trials until we get the first 
success. The number of experiments needed to stop the sequence is a random 
variable X, with unbounded support 1,2,3, Finding its PMF is easy and 
is best illustrated by an example. 

Example 6.11 The star of a horror movie is being chased by a killer mon-
ster, but she manages somehow to get home. The only problem is that she 
has n keys, and it goes without saying that she does not remember which one 
will open the door.17 She starts picking one key at random and trying it, until 
she finds the right one. What is the probability that the door will open after 
k trials? 

The answer depends on how cool our hero is after the long chase and 
whether she is lucid enough to set the nonworking keys apart. If she is not 
that lucid, then we are within the framework of the geometric distribution. 
The probability of success is p = \/n and, since wrong keys are put back in the 
same bunch with the other ones, all of the trials are identical and independent. 
If the door opens after k trials, this means that she failed k — 1 times. Since 
events are independent, we just take the product of individual probabilities. 
Denoting the number of trials by X, we obtain 

P(X = k) = (1 -p) x ( 1 - p ) x ■■■ x ( l - p ) x p 
v v ' 

k — 1 times 

\ n J n 

Note that, in principle, there is no upper bound on the number of trials. 
If our hero keeps cool and discards the wrong keys, we should carry out 

a more careful analysis since now there is some memory in the process. The 
first failure has probability 

re-1 
n 

17You may have noticed that , in horror movies, keys never work; doors will not open and 
car engines will not start . 
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The second failure has probability 

n-2 
n- 1 

since now there is one key less. The pattern is the same for the next trials, 
and the last failure at the (k — l)th trial has probability 

n - ( f c - l ) n-k + 1 

n-(k-l) + l ~ n - k + 2 

Finally, the probability that trial k is a success is 

n — k 1 
n — k + 1 n — k + 1 

Putting everything together, the desired probability is 

n-1 n-2 n - 3 n-k + 1) 1 1 x x x · · · x ; — x ; = -
n n—1 n—2 n — k + 2 n—k+1 n 

In this case, the distribution of the number of trials boils down to a uniform 
distribution, which may look a bit disappointing after all of this work. In fact, 
a much smarter idea is just realizing that if wrong keys are not reinserted in 
the bunch, the underlying random mechanism is equivalent to just throwing 
the n keys into n bins at random. The probability that the right key is in any 
of those bins is just 1/n. Note that, without reinserting the keys, the support 
of the distribution is bounded by a worst case outcome of n trials. 0 

The example shows that the PMF of a geometric variable with parameter p 
is18 

Pi=P(X = i) = (l-p)i-1p i = 1 ,2 ,3, . . . 

Very large values are quite unlikely, but not impossible. Figure 6.4 shows the 
PMF of a geometric variable for p = 0.2. We see that large values are asso-
ciated with a very small probability. Empirically, you will only observe finite 
realizations but allowing for extreme, however unlikely, values is important for 
risk management. By the way, the careful reader should wonder whether it is 
true that probabilities add up to one for the geometric distribution. Indeed, 
recalling properties of the geometric series,19 we see that 

oo oo 

i=l i=0 V F> 

18 Sometimes, the geometric distribution is defined by counting only failures. If so, 0 would 
be included in the support and the PMF would be slightly changed accordingly. 
19See Section 2.12. 
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Fig. 6.4 PMF of a geometric distribution with parameter p = 0.2. 

We could tackle another series to calculate the expected value of a geomet-
ric random variable. Straightforward application of the definition requires 
calculating the following: 

Ε[Χ] = £ ί ( 1 - ρ ) Μ Ρ (6.15) 
i= l 

This is a somewhat tedious calculation and is left as an exercise. In Chapter 
8 we will discover a clever trick based on conditional expectation, allowing us 
to find the result quite easily. Using the same trick, it will prove very easy to 
show that the variance for a geometric random variable is 

Var(X) = l - l£ 

6.5.5 Binomial distribution 

The binomial distribution arises as yet another variation on Bernoulli trials. 
We run n independent and identical experiments and let X be a random vari-
able counting the number of successes. The support of the resulting random 
variable is {1, 2 , . . . , n}, and its probability distribution depends on two pa-
rameters: the probability of success p and the number of experiments n. Since 
events are independent, it should be an easy affair to multiply probabilities of 
k successes and n — k failures, to get the PMF. However, there is an additional 
twist which is best illustrated by a simple example. 

Example 6.12 A random experiment consists of three Bernoulli trials with 
success probability p. What is the probability of getting exactly one success? 
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Since experiments are independent, the probability of a pattern in which we 
have one success and two failures is (1 —p)2p, but this is not the answer to the 
question. In the geometric distribution we know that the success must occur 
in the last trial, but here any one of the three can be the success. Indeed, 
there are three outcomes for which X = 1: 

(S,F,F), (F,S,F), (F,F,S) 

where F and S denote failure and success, respectively. Hence, we see that 
(1 — p)2p is just the probability of one pattern in which there is one success, 
but since there are three, the correct probability is P(X = 1) = 3(1 — p)2p. 

0 

In the example above, there is an easy solution, since there are three se-
quences of three experiments such that there is exactly one success. But 
how many sequences of, say, 50 experiments may result in 18 successes? The 
answer is provided by binomial coefficients, which were introduced back in 
Section 2.2.4, when dealing with combinatorial analysis and permutations. 
Given n trials, the number of sequences containing k successes is given by the 
following binomial coefficient: 

in\ ___ n\ 
\k) = {n-k)\k\ 

In the example above 

/ 3 \ _ 3! 3 x 2 x 1 
\l) = ( 3 - l ) ! l ! ~~ (2 x 1) x 1 ~ 3 

Then, the PMF of a binomial random variable with parameters p and n is 

P(X = fc)=^V(l-p)n-fc, k = l,...,n (6.16) 

Using properties of the binomial coefficients, it is easy to see that these proba-
bilities add up to 1. An interesting feature of the binomial distribution is that 
it depends on two parameters. Figure 6.5 shows two PMFs for n = 30; plot 
(a) refers to the case p = 0.2 and plot (b) to the case p = 0.4. The support 
is the same for both distributions, but we see how a change in p shifts the 
PMF. The binomial distribution can be used as a model of uncertainty even 
when there is no underlying experiment based on Bernoulli trials. Indeed, the 
two parameters can be fine-tuned to fit empirical data. One such example is 
modeling demand for items that are sold in small amounts; when sales volume 
is high, a continuous random variable may be a simpler model. 

A binomial random variable X can be regarded as the sum of n independent 
and identically distributed Bernoulli variables Υί with parameter p. This 
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Fig. 6.5 The PMF of a two binomial distributions with parameter n = 30 and (a) 
p = 0.2, (b) p = 0.4. 

is most useful to find expected value and variance by direct application of 
Property 6.7 and Eq. (6.9): 

E[X] = E 

ΥΆΤ(Χ) = Var 
n 

= £EM = np 
i = l 

^ V a r M = n p ( l - p ) 

The following example illustrates the role and the limitations of binomial 
random variables for an interesting practical application, namely, overbooking 
strategies for airlines.20 

See also Example 6.1. 
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Example 6.13 An airline observes that 5% of booked passengers do not 
show up at check-in. Hence, they adopt an overbooking strategy, accepting 
a number of reservations that exceeds the number of available seats. When 
some passenger with a reservation cannot be accommodated, there is a cost, 
since the overbooked passenger must be rerouted, and maybe offered overnight 
accommodation. 

• If an aircraft has 50 seats, and the airline accepts 52 reservations, what 
is the probability that all of the passengers checking in can be accom-
modated on the aircraft? 

• If each overbooked passenger costs $300, what is the expected cost of 
the policy? 

As a first check, we estimate the expected number of passengers checking in 
if there are 52 reservations: 

52 x (1 - 0.05) = 49.4 < 50 

This means that the policy is sensible since the average number of actual 
passengers is less than the aircraft capacity. However, this does not mean 
that there will never be trouble. By the same token, it would be a gross 
mistake to say that the expected overbooking cost is zero. Remember that 
the expected value of a function is not the function of the expected value. 

To analyze the problem we must model the underlying uncertainty. We may 
associate each booked passenger with a Bernoulli trial: She will show up (a 
success) with probability p = 0.95, and she will not show up with probability 
1 — p = 0.05. Here, we are using the information we have about a population 
of passengers as the probability that each single passenger does not check in. 
In doing so, the implicit assumption is that passengers cancel independently 
of one another; we immediately see that this is a simplification, since we are 
not taking behavior of families or groups into account. Still, doing so allows 
us to apply the binomial distribution to get a first feeling for the involved 
numbers. 

Let us denote the number of passengers checking in by X, a binomial 
random variable with parameters p = 0.95 and n — 52. There will be no 
overbooking problem if the number of passengers checking in does not exceed 
aircraft capacity, and this happens with probability 

P(OK) = P(X = 0) + P(X = 1) + P(X = 2) + · · · + P(X = 50) 

Calculating the desired probability like this requires plenty of calculations. 
Since probabilities add up to one, it is definitely better to compute the prob-
ability above as 

P(OK) = 1 - P(X = 51) - P(X = 52) 
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Using the PMF of a binomial random variable, we find 

P(X = 52) = 0.9552 = 0.0694 

P(X = 51) = ( j x 0.9551 x 0.05 = 0.1901 

P(OK) = 1-0 .0694-0 .1901 = 74.05% 

By the same token, the expected cost of the overbooking strategy is 

$600 x 0.0694 + $300 x 0.1901 = $98.67 

While the cost may seem relatively small, the probability of an overbooking is 
fairly large: In one case out of four the airline has to manage a situation, and 
this may be detrimental for its image. Actually, this really depends on how 
busy that flight is. Indeed, to be precise, we did not compute the unconditional 
probability P(OK), but the conditional probability P(OK | res = 52), i.e., the 
probability that there is no overbooking situation if there are 52 reservations. 

A more sensible analysis should consider the number of reservations we 
receive, as well as the structure of reservation cancellations, which may involve 
pairs or larger groups of passengers, and not only single ones. In real life, 
airlines also price different fares with different rights to change a reservation. 
Proper capacity management in airlines is one of the most fruitful domains 
for quantitative analysis.21 D 

6.5.6 Poisson distribution 

The Poisson random variable arises naturally when we have to count the num-
ber of events occurring over a specific time interval. In later chapters, we see 
that this kind of distribution is intimately related to exponential random vari-
ables, which are dealt with in Section 7.6.3, and with the Poisson stochastic 
process, introduced in Section 7.9. For now, the best way to understand the 
Poisson distribution is by thinking about the random process of customer ar-
rivals to a service facility. The main feature of such a process is the average 
arrival rate, i.e., the expected number of customers requesting service per 
unit time. Let us denote this rate by λ. If the arrival rate does not change in 
time and t is the length of a time interval, the expected number of customers 
arriving during that interval is λί. 

Let X be the number of customers arriving during an interval of unit 
length. Its support is {0,1, 2 ,3 , . . .} , and its expected value is the arrival rate 
λ. The exact distribution of X depends on many things, including the random 
time elapsing between two consecutive arrivals. If interarrivai times satisfy 
certain sensible properties, then the number of customers arriving during any 

See, e.g., Chapter 4 of Ref. [11] for an introduction to more complex models. 
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Fig. 6.6 The PMF of a Poisson random variable with parameter λ = 5. 

time interval of unit length has Poisson distribution. The PMF of a Poisson 
random variable with parameter λ is 

Pi = P(X = i) = e-Xj, i = 0,l,2,... 

Figure 6.6 shows the PMF of a Poisson random variable with parameter λ = 5. 
Recalling Taylor's expansion of the exponential function22, it is easy to see 
that Poisson probabilities add up to 1: 

Σ * = β-λΣ7Γ = β~λβλ = 1 

i=0 i=0 

Calculating the expected value is also fairly straightforward: 

EW = Σ Ο - ^ - ^ Σ , Γ Γ Ϊ , Ϊ - ^ Σ Ϊ Γ ^ 
i=0 i=l v ' fc=0 

It can also be shown that Var(X) = λ. 

Example 6.14 A customer service center receives, on average, λ = 3 calls 
per hour. Using the PMF of a Poisson distribution, we may calculate the 
probability of receiving an arbitrary number of calls within one hour. Since 

See Example 2.31. 
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e"3 = 0.0498, we have: 

Po 

Pi 

P2 

P3 

Pi 

The probability of receiving two or more calls is 

Σ P(x = fc) = 1 - P(X = 0) - P(X = 1) = 1 - (0.0498 + 0.1494) 
fc=2 

At present, we cannot fully illustrate the conditions under which the num-
ber of events occurring with given rate can be modeled by a Poisson variable. 
They are linked to the memoryless property of the exponential random vari-
able, which we defer to Section 8.5.2. Nevertheless, at an intuitive level, we 
may say that a Poisson distribution arises when 

• The arrival process is stationary, i.e., the arrival rate does not change 
over time 

• The arrival process is purely random, i.e., there is no regular pattern 
like the one arising from deterministic and regular arrivals 

• The arrival numbers in two disjoint time intervals are two independent 
random variables 

There is another way to shed some light on the Poisson distribution, which 
emphasizes its link with the binomial random variable. Consider a binomial 
random variable with parameters p —> 0 and n —> +oo. In other words, we 
have a huge number of Bernoulli trials, but the probability of success for each 
one is tiny. Then, it can be shown that the distribution of such a Bernoulli 
random variable tends to the distribution of a Poisson random variable with 
parameter λ = pn. 

Problems 

6.1 Consider a generalization of the Bernoulli random variable, i.e., a vari-
able taking values X\ with probability p and X2 with probability I—p. Which 
values of p maximize and minimize variance? 

o0 
= 0.0498 x - = 0.0498 

31 

= 0.0498 x — = 0.1494 

32 

= 0.0498 x — = 0.2240 
2! 

= 0.0498 x — = 0.2240 

34 

= 0.0498 x — =0.1680 
4! 

= 0.8008 

D 
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6.2 Using Eq. (6.15), prove that the expected value of a geometric random 
variable X with parameter p is E[X] = 1/p. (Hint: Use the result in Example 
2.40.) 

6.3 Using the binomial expansion formula (2.3), prove that the PMF of the 
binomial distribution [see Eq. (6.16)] adds up to one. 

6.4 You are about to launch a new product on the market. If it is a success 
you will make $16 million; otherwise, you lose $5 million. The probability of 
success is 65%. You could increase chances of success by delaying product 
launch in order to improve product design; this would take 6 months and 
would cost an additional $1 million. In order to account for the delay and 
the time value of money, we should discount cash flows at a rate of 3% (the 
rate refers to the 6-month period and is applied to profit/loss). What is the 
minimal improvement in success probability that makes the delay worthwhile? 

6.5 According to an accurate survey, 40% of people checked at the exit of 
a well-known pub have made excessive use of alcoholic drinks. If we take a 
random sample of 25 persons, what is the probability that at least 4 of them 
are flagged? 

6.6 Batteries produced by a company are known to be defective with a 
probability of 0.02. The company sells batteries in packages of eight and 
offers a money-back guarantee that at most one of them is defective. What is 
the probability that a package is returned? If a customer buys three packages, 
what is the probability that exactly one of them will be returned? 

For further reading 

• An elementary and quite readable introduction to random variables is 
offered in Ross [9]; at a similar level, Ross' earlier text [8] is a more 
detailed reference, rich in examples. 

• The reader interested in a thorough treatment, while keeping mathe-
matical complexity to a reasonable level, might consult Ref. [10]; see 
also the twin books by Grimmett and Stirzaker [5, 6]. 

• We did not bother too much to clarify which conditions should be re-
quired for a mapping from sample space Ω to numerical values to be a 
proper random variable. This is an issue of mostly theoretical interest, 
but in Ref. [3] you may find a readable treatment based on examples and 
problems. The more mathematically inclined readers will find Resnick's 
text [7] a challenging reading. 

• On the application side, we have mentioned overbooking strategies and 
the newsvendor problem. An extensive reference on revenue manage-
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ment, including overbooking strategies, is Ref. [11]. The basic newsven-
dor problem and a few generalizations are covered, e.g., in Ref. [2]. 

• Other application-oriented sources are Refs. [1] and [4]. 
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7 
Continuous Random 

Variables 

In the previous chapter we have gained the essential intuition about random 
variables in the discrete setting. There, we introduced ways to characterize 
the distribution of a random variable by its PMF and CDF, as well as its 
expected value and variance. Now we move on to the more challenging case 
of a continuous random variable. There are several reasons for doing so: 

• Some random variables are inherently continuous in nature. Consider 
the time elapsing between two successive occurrences of an event, like the 
request for service or a customer arrival to a facility. Time is a contin-
uous quantity and, since this timespan cannot be negative, the support 
of a random variable modeling this kind of uncertainty is [0, +00). 

• Sometimes, continuous variables are used to model variables that are 
actually integers. As a practical example, consider demand for an item; 
a low-volume demand can be naturally modeled by a discrete random 
variable. However, when volumes are very high, it might be convenient 
to approximate demand by a continuous variable. To see the point, 
imagine a demand value like d = 2.7; in discrete manufacturing, you 
cannot sell 2.7 items, and rounding this value up and down makes a big 
difference; but what about d = 10,002.7? Quite often this turns out to 
be quite a convenient simplification, in both statistical modeling and in 
decision making.1 

1-We will appreciate this point when dealing with linear programming models in Chapter 
12. 
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• Last but not least, in the next chapters on statistical applications, the 
most common probability distribution is, by far, the normal (or Gaus-
sian) distribution, which is a continuous distribution whose support is 
the whole real line M = (—00, +00). As we will see, there are several 
reasons why the normal distribution plays a pivotal role in statistics. 

This chapter extends the concepts that we have introduced for the discrete 
case, and it also presents a few new ones that are better appreciated in this 
broader context. The mathematical machinery for a full appreciation of con-
tinuous random variables is definitely more challenging than that required 
in the discrete case. However, an intuitive approach is adequate to pursue 
applications to business management. Cutting a few corners, the essential 
difficulty in dealing with continuous random variables is that we cannot work 
with the probability P(X = x), as this is always zero for a continuous random 
variable. Unlike the discrete case, the probability mass is not concentrated at 
a discrete set of points, but it is distributed over a continuous set, which con-
tains an infinite number of points even if the distribution support is a bounded 
interval like [a, b]. The role of the PMF is played here by a probability density 
function (PDF for short). Furthermore, the sums we have seen in the discrete 
context should be replaced by integrals. 

Integrals were introduced in Section 2.13; we do not really need any in-
depth knowledge, as integrals can be just interpreted as areas. In Section 7.1 
we pursue an intuitive approach to see the link between such areas and prob-
abilities. Then, we introduce density functions in Section 7.2, where we also 
see that the concept of cumulative distribution function (CDF) needs no ad-
justment when moving from discrete to continuous random variables. We see 
how expected values and variances are applied in this context in Section 7.3. 
Then, we expand our knowledge about the distribution of random variables 
by considering their mode, median, and quantiles in Section 7.4, and higher-
order moments, skewness, and kurtosis in Section 7.5. All of these concepts 
apply to discrete random variables as well, but we have preferred to treat them 
once in the most general setting. As you can imagine, there is a remarkable 
variety of continuous distributions that can be applied in practice; we may 
use theoretical distributions whose parameters may be fit against empirical 
data, or we may just come up with an empirical distribution reflecting the 
data. In Section 7.6 we outline the main theoretical distributions - uniform, 
beta, triangular, exponential, and normal distributions - and we hint at how 
empirical distributions can be expressed. In Section 7.7 we take a first step 
toward statistical inference by considering sums of independent random vari-
ables; this will also lead us to the cornerstone central limit theorem, as well 
as a few more distributions that can be obtained from the normal and also 
play a pivotal role in inferential statistics; we will also have a preview of the 
often misunderstood law of large numbers. We illustrate a few applications 
in Section 7.8, with emphasis on quantiles of the normal distribution; what 
is remarkable, is that the very same concepts can be put to good use in di-
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verse fields such as supply chain management and financial risk management. 
Finally, we consider sequences of random variables in time, i.e., stochastic 
processes, in Section 7.9. Section 7.10 can be skipped by most readers, as it 
has a more theoretical nature: Its aim is to clarify a point that we did not 
really investigate in the previous chapter, when we defined a random variable, 
i.e., the relationship between the random variable and the event structure of 
the underlying probability space. 

7.1 BUILDING INTUITION: FROM DISCRETE TO CONTINUOUS 
RANDOM VARIABLES 

The most natural way to characterize a discrete distribution is by its PMF, 
which can be depicted as a set of bars whose height is the probability of each 
value. What happens when we consider a random variable that may take any 
real value on an interval? A starting point to build intuition is getting back 
to descriptive statistics and relative frequency histograms. Imagine taking 
a sample of values, which are naturally continuous, and plotting the corre-
sponding histogram of relative frequencies. The appearance of the histogram 
depends on how large the bins are. If they are rather coarse intervals, the 
histogram will look extremely jagged, like the one in Fig. 7.1(a). If we shrink 
the bins, we get thinner bars, looking like the histogram (b) in the figure. 
Please note that all of the histograms in Fig. 7.1 refer to the same set of data. 
You may also notice that the relative frequencies in the second case are lower 
than in the first one; this happens because there are more bins, and we assign 
fewer outcomes to each one. In the limit, if the bins get smaller and smaller 
and the sample size is large, we will get something like histogram (c) in the 
figure. This looks much like a continuous function, describing where sampled 
values are more likely to fall, whereas the PMF is just a set of values on a 
discrete set of points. 

To make this idea a bit more precise, let us consider a continuous uniform 
distribution, which is arguably the simplest distribution we can think of. We 
got acquainted with the discrete uniform distribution in Section 6.5.2. If we 
consider a continuous uniform variable on the interval [a, b], we should have 
a "uniform probability" over that interval, as depicted in Fig. 7.2. Given a 
point x in the interval, what is the probability that the random variable X 
takes that value, i.e., P(X — x)? Whatever this value is, it must be the same 
for all of the points in the interval. We know from Section 6.5.2 that in the 
discrete case p = 1/n, where n is the number of values in the support, but 
here we have an infinite number of values within the bounded interval [a,b]. 
Intuitively, if n —► +oo, then p — 1/n —> 0. Moreover, if we assign any strictly 
positive value to p, the sum of probabilities will go to infinity, but we know 
that probabilities should add up to 1. It is tempting to think that the root 
of the trouble is that we are dealing with a support consisting of infinitely 
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Fig. 7.1 Frequency histograms for shrinking bin widths. 
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Fig. 7.2 A uniform distribution on the interval [a, &]. 

many possible values. However, this is not really the case. In Section 6.5.6, 
we considered the Poisson distribution, which does have an infinite support. 
However, since probabilities vanish for large values of the random variable, 
their sum does converge to 1. This is not possible here, as we are considering 
a uniform variable. It seems that there is no way to assign a meaningful 
probability value to a single outcome in the continuous case. 

However, there is a way out of the dilemma. We can assign sensible proba-
bilities to intervals, rather than single values. To be concrete, consider a uni-
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Fig. 7.3 A bell-shaped, nonuniform distribution. 

form random variable on the interval [0,10], which is denoted by X ~ U(0,10). 
Common sense suggests the following results: 

P{X < 3) = 0.3, P(5 < X < 8) = 0.3, 

as in both cases we are considering an interval whose length is 3, i.e., 30% 
of the whole support. Notice that this probability depends on the width of 
the interval we consider, not on its location; indeed, this is what makes a 
distribution uniform, after all. More generally, it seems that if we consider 
an interval of width w included in [0,10], the probability that X falls there 
should be the ratio between w and the width of the whole support: w/10. By 
the way, we recall from elementary geometry that a point has "length" zero; 
hence, we begin to feel that in fact P(X = x) = 0 for any value x. 

So far, so good, but what about a nonuniform distribution, like that in Fig. 
7.3? If we consider several intervals of the same width, we cannot associate 
the same probability with them. Probability should be related to the height 
of the distribution, which is not constant. Hence, the length of subintervals 
will not do the trick. Nevertheless, to keep the shape of the distribution duly 
into account, we may associate probability of an interval with the area under 
the distribution, over that interval. The concept is illustrated in Fig. 7.4. If 
we shift the interval [a, b] in the uniform case, we always get the same area, 
provided that the interval is a subset of the whole support; if we do the same 
in the bell-shaped case, we get quite different results. We start seeing that 
probabilities in the continuous case 

1. Are distributed, whereas they are concentrated at a discrete set of points 
in the discrete case; we cannot work with a probability mass function 
associating single values x with the probability V{X = x) = 0. 
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Fig. 7.4 Linking probability to areas. 

2. May be associated with areas below a function that replaces the PMF, 
but plays a similar role; this function is the probability density function 
(PDF). We will denote the PDF of random variable X as fx(x). 

To wrap up our intuitive reasoning, we should state one fundamental property 
of the PDF. When dealing with discrete variables, we know that probabilities 
add up to 1: 

Y^Px^i) = 1 (7.1) 
i 

For continuous variables, it must be the case that 

P( -oo < X < +oo) = 1 

implying that the overall area below the PDF must be 1. But we also recall 
from Section 2.13 that this area can be expressed by an integral. Therefore, 
condition (7.1) should be replaced by 

/ 

+ 00 
fx(x)dx=l (7.2) 

If we are dealing with a uniform variable with support [a, b], then 

P(a < X < b) = 1 

This is just a condition on the area of a rectangle with one edge of length 
(b — a), and the other one corresponding to the value of the PDF. Therefore: 

if x G [a, b] 
fx{x) = {b-a 

0 otherwise 

If the support is the interval [0,10], then 

P(X < 3) = (3 - 0) x ^ = 0.3 
P(5 < X < 8) = (8 - 5) x ^ = 0.3 

as expected. With more general distributions, we have some more technical 
difficulties in calculating areas, but there are plenty of statistical tables and 
software packages taking care of this task for us. 
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7.2 CUMULATIVE DISTRIBUTION AND PROBABILITY DENSITY 
FUNCTIONS 

A full characterization of discrete random variables can be given in terms of 
PMF or CDF. They are related, as the CDF can be obtained from the PMF 
by summing, and we can go the other way around by taking differences. For 
the reasons we have mentioned, in the continuous case the role of the PMF 
is assumed by a probability density function, whereas the CDF is defined in 
exactly the same way:2 

Fx(x) = P(X < x) 

As we have pointed out, the PDF is a nonnegative function fx(x) that does 
not give the probability of a single value, but can be used to evaluate proba-
bilities of intervals: 

P(a<X <b)= f fx(x)dx 
Ja 

Then, it is easy to see the link between PDF and CDF: 

Fx{x) = P(-oo < X < x) = Fx(x) = [ fx{w)dw (7.3) 
J — oo 

Since the PDF is nonnegative, the CDF is a nondecreasing function: 

/

y rx ry 

fx{w)dw = / fx(w)dw+ / fx(w)dw 
-oo J— oo Jx 

> / fx(w)dw = Fx(x) 
J — oo 

Furthermore 
lim Fx(x) = 0, lim Fx(x) = 1 

X—* — OO X—* + 00 

The last property is just another way to express the normalization condition 
on the PDF: 

f + 00 
fx(x)dx= 1 / 

J — c 
We may observe a few similarities between CDFs of discrete and continuous 
random variables: 

• The CDF is a nondecreasing function ranging from 0 to 1. 

• We obtain CDF by summing probabilities expressed by the PMF of 
discrete random variables, and by integrating the PDF of continuous 

in t roduc to ry treatments of random variables start from mass and density functions, as 
they are more intuitive and related to frequency histograms. However, a sound treatment 
should start from the CDF, which is a more general concept. 
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Fig. 7.5 From PDF to CDF in the case of a uniform distribution. 

random variables; since the integral is, in a sense, a sort of continuous 
sum, this is not surprising. 

The main difference is that, unlike the discrete case, the CDF of a continu-
ous random variable is a continuous function, as illustrated in the following 
example. 

Example 7.1 To illustrate the link between CDF and PDF, consider the 
PDF of a uniform distribution: 

if x € [a, b] 
fx(x) = {b-a 

0 otherwise 

Clearly, the event {X < a} has zero probability; hence, we should expect that 
Fx(x) = 0 x < a. Indeed 

/ 
Odw = 0 

oo 

For a < x < b, we have 

x — a f 1 , w 
Fx = I dw = 

Ja b-a b-a 
b — a 

(7.4) 

Finally, Fx(x) = 1 for x > b. Both PDF and CDF of a uniform distribution 
are illustrated in Fig. 7.5. D 

From the example, we see that since the CDF is the integral of the PDF, 
it is a continuous function, even if the PDF has some kinky point. On the 
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contrary, the CDF in the discrete case jumps because the probability mass is 
concentrated at a discrete set of points, rather than being distributed on a 
continuous support. 

We may also better understand why the probability of any specific value is 
zero for continuous random variables: 

*) = Îfx 
Jx 

P(X = x) = / fx(w)dw = 0 
Jx 

As a consequence, in the continuous case, we obtain 

P(X < x) = P(X < x) 

Another point worth mentioning is that 
/■+00 

P{X > x) = P(X >x)= fx(w) dw = l - Fx{x) 
Jx 

As a final remark, we recall that in the discrete case we may go from CDF to 
PMF by taking differences. With continuous random variables, the equivalent 
operation is taking the derivative of the CDF. Indeed, we may also write 
P(a<X< b) as 

P(a < X < b) = P{X <b)- P(X < a) = Fx(b) - Fx(a) 

which implies 

I 
b 
fx{x)dx = Fx(b)-Fx(a) 

Recalling the fundamental theorem of calculus,3 we conclude that 

7.3 EXPECTED VALUE AND VARIANCE 

Given a continuous random variable X and its PDF fx(x), its expected value 
is defined as follows: 

/
+00 

xfx(x)dx (7.6) 
-oo 

Quite often, we use the short-hand notation μχ = E[X]. Again, this is a 
straightforward extension of the discrete case, where Έ{Χ] = Y^ÌXÌPXÌXÌ)-

3See Theorem 2.22. 
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Example 7.2 As an illustration, let us consider the expected value of a 
uniform random variable on [a,b]. Symmetry suggests that the expected value 
should be the midpoint of the support. Indeed 

f+°° f 1 x2 

Έ\Χ] = / xfx(x)dx= / x dx = -— r 
1 J i-oo Ja b-a 2 ( 6 - a ) 

b2-a2 (b + a)(b-a) a + b 
2{b-a) 2(b-a) 0 

By the same token, we define variance of a continuous random variable as: 

/

+00 
(χ-μχ)2ίχ(χ)άχ. 

-oo 

Common shorthand notations for variance are σ2 and σχ; its square root 
σχ is standard deviation. More generally, we define the expected value of a 
function g(X) of a random variable as 

+ 00 

/

-t-oo 
g(x)fx(x)dx 

-oo 

The considerations we made about expected values of discrete random vari-
ables apply here as well. Since integration is a linear operator,4 just like the 
sum, expectation is linear in the continuous case, too. All of the properties of 
expectation and variance, that we have introduced for the discrete case, carry 
over to the continuous case. In particular, we recall the following very useful 
properties: 

Var(X) = E[X 2 ] - (E[X])2 

Ε{αΧ + β) = αΕ[Χ]+β 
Var(aX + ß) = a2Var(X) 

where a and ß are arbitrary real numbers. 

7.4 MODE, MEDIAN, AND QUANTILES 

In the chapter on descriptive statistics, we have introduced concepts like mode, 
median, and percentiles. We have also remarked that some concepts, in par-
ticular the percentiles, are somewhat shaky in the sense that there are slightly 
different definitions and ways of calculating them using observed data. In this 
section we examine probabilistic counterparts of these concepts, and how they 
are related to discrete and continuous random variables. 

4See Property 2.23. 
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kf&) 

Fig. 7.6 A bimodal PDF. 

7.4.1 Mode 

The mode of a probability distribution is a point at which the PMF or the 
PDF is maximized. The concept is easy to grasp, but we should point out that 
the mode for a continuous random variable is not the value with maximum 
probability, since probabilities of all possible values are just zero. On the 
contrary, the interpretation for discrete variables is closer to the intuitive 
concept that we introduced along with descriptive statistics. 

The mode need not be unique in principle, as multiple maxima are pos-
sible. Most of the theoretical distributions we examine later in this chapter 
have a single mode, but, in practice, we may find multimodal distributions 
in the sense illustrated in Fig. 7.6. We have a well-defined mode, but there 
is a secondary local maximum. If the distribution is built by fitting against 
empirical data, it may be the case that the secondary mode is just sampling 
noise. However, we should never discard the possibility that we really need a 
sort of mixed distribution to model different dynamics of a phenomenon. 

7.4.2 Median and quantiles for continuous random variables 

Roughly speaking, the median is a value splitting a dataset into two equal 
parts. When dealing with continuous random variables, we find that the 
median is a value πΐχ such that 

Fx(mx)=0.5 

Geometrically, the median splits the PDF in two parts with an area equal to 
0.5. In descriptive statistics, the median can be regarded as a specific case of 
percentile that corresponds to a 50% probability. In probability theory, the 
term is usually replaced by quantiles. 

DEFINITION 7.1 (Quantiles of continuous random variable) Given 
the CDF Fx (x) of a continuous random variable and a probability level a e 
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Fig. 7.7 Probability and quantiles for a continuous random variable. 

[0,1], we define the quantile xa of the distribution as the number satisfying 
the equation 

Fx(xa) = a (7.7) 

Geometrically, the quantile Xçx IS EL number leaving an area a to its left, under 
the PDF. Conceptually, computing a quantile requires inversion of the CDF, 
as illustrated in Fig. 7.7. Be sure to understand this figure, as quantiles play 
a prominent role in many applications to follow: 

1. Given a value Xß, we may find the corresponding probability ß = P{X < 
Xß} by evaluating the CDF Fx(xß). 

2. Given a probability a, we may find the corresponding quantile a = 
Fx (a), which is a value, by inverting the CDF. 

A natural question is if the CDF is in fact an invertible function. In most 
cases, when dealing with continuous random variables, the CDF is a strictly 
increasing and continuous function; hence, inverting the function poses no dif-
ficulty. When support is infinite, we cannot really find quantiles corresponding 
to probabilities 0 and 1, and we should set XQ = - c o and xi = +oo. There is 
no guarantee of finding a unique quantile, as the CDF may be a nondecreasing 
function that is constant on certain intervals, rather than a strictly increas-
ing function. This may happen if the support of the distribution consists of 
disjoint intervals. 

Example 7.3 Consider values xa < Xb < xc < Xd and a continuous random 
variable X whose support consists of the disjoint intervals [xa, Xf,] and [xc, Xd}· 
Since X cannot assume values between Xb and xc, the CDF is constant on 
the interval [xf,, xc], and Fx(xb) — Fx(xc) — a, for some probability value a. 
Clearly, the quantile xa seems undefined, since the function is noninvertible 
on that interval. D 

The example may look somewhat pathological, but in fact this is what 
happens with discrete random variables. This is why quantiles need to be 
defined in a more general way. 
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Table 7.1 PMF and CDF for the discrete probability distribution of Example 7.4. 

x 1 2 3 4 5 
px(x) 0.25 0.30 0.25 0.10 0.10 
Fx{x) 0.25 0.55 0.80 0.90 1.00 

FA*) 
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Fig. 7.8 The CDF for a discrete random variable is not invertible. 

7.4.3 Quantiles for discrete random variables 

Computing quantiles for a discrete random variable by applying Definition 
7.1 would require inverting the CDF. However, this is a piecewise constant 
function, featuring jumps at each value of the distribution support, which 
makes its inversion impossible in general. 

Example 7.4 Consider random demand for a spare part, sold in low vol-
umes, over the next time period. There is no inventory at present, and we 
must determine the purchased quantity, in such a way that the probability 
of satisfying the whole demand is above a minimal threshold. Assume that 
randomness in demand can be modeled by the PMF of Table 7.1, and that 
we would like to meet demand with a probability of 0.85. In the parlance 
of supply chain management, we should say that our service level is 85%.5 

The purchased amount should correspond to the quantile with 0.85 proba-
bility level. A look at Table 7.1 shows that there is no value of x such that 
Fx{x) = 0.85. Indeed, the function is not invertible, as illustrated in Fig. 7.8. 
What would one do in practice? The sensible solution, since x = 3 gives only 
a 80% service level, is to select x = 4 to meet the required constraint. D 

5This is just one possible definition of service level, related to the probability of not having 
a stockout; one can also refer to the size of the stockout; see, e.g., Chapter 5 of Ref. [4]. 
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What we have done in the example above makes sense: The quantile is related 
to a decision, and we make it in such a way to stay on the safe side. In fact, 
Definition 7.1 can be generalized as follows. 

DEFINITION 7.2 (Generalized definition of quantiles) Let Fx(x) be 
the CDF of random variable X. Given a probability level a G [0,1], we de-
fine the quantile xa of the distribution as the smallest number xa such that 
Fx{xa) > ct. Formally 

xa = mina;, s.t. Fx(x) > a (7.8) 

We immediately see that if the CDF is invertible, this definition boils down 
to the previous one. Indeed, Eq. (7.8) corresponds to the so-called generalized 
inverse function. The reader is urged to check that applying this definition, we 
do find the decision we chose in Example 7.4. Unlike percentiles, quantiles of 
probability distributions have a precise definition that makes perfect sense, as 
we will see in the applications described later in Section 7.8. Before proceeding 
with theoretical concepts, it is worth pausing a little and check a remarkable 
example. 

7.4.4 An application: the newsvendor problem again 

In Example 6.9 we have considered and solved numerically a hypothetical 
instance of the newsvendor problem. The procedure was based on brute force 
and did not provide us with any valuable insight into the structure of the 
problem itself. Furthermore, if we approximate the distribution of demand by 
a continuous distribution, which makes sense for high sale volumes, we cannot 
try any possible value. An analytical solution would definitely be more elegant 
and useful. An easy way to find it is based on marginal analysis.6 Say that 
we have purchased q — 1 items. Should we buy one more? 

We recall that profit margin of one sold unit is given by m = s — c, i.e., 
selling price minus purchasing cost. If a unit remains unsold at the end of 
the sale time window, we incur a cost cu = c — su, i.e., purchasing cost minus 
markdown price, the cost of unsold items. If we buy unit number q, we might 
incur a cost cu; if we do not buy it, we might miss the profit margin m. We 
should figure out if we expect that this marginal unit is profitable or not. To 
attach probabilities to events, observe that the marginal unit will contribute 
m if demand D is at least q; otherwise, it will reduce profit by cu. Hence, the 
expected marginal profit is 

mP(D >q)- cuP(D < q) 

Note that if demand is a discrete random variable, we should be careful with 
the inequalities, as in that case the probability P(D > q) is different from 

6See Chapter 5 of Ref. [4] for a more rigorous analysis and for some generalizations of the 
basic newsvendor model. 
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P(D > q); if demand has continuous distribution, we may be sloppy with 
the inequalities. If the expected marginal profit is positive, we should buy 
one more item; otherwise, we should not. Hence, we must find an optimal 
quantity q* such that 

mP(D > q*) - cuP(D < q*) > 0, mP(D > q* + 1) - cuP(D < q* + 1) < 0 

The task is considerably simplified by assuming that demand is a continuous 
random variable. Then, expected marginal profit can be regarded as the first-
order derivative of expected profit, and the optimal solution can be found by 
enforcing the first-order necessary condition for optimality: 

0 = m{l-P{D<q*})-cuP{D<q*} 
= m(l - FD(q*)) - cuFD(q*) (7.9) 

where Fu(·) is the CDF of demand. This in turn implies that 

ΤΠ 
FD(q*)=P(D<q*) = - — (7.10) 

ill -f- cu 

To be precise, we should also check the second-order derivative, since station-
arity alone cannot tell a minimum from a maximum. We may recall that the 
derivative of the CDF is just the PDF. Hence, if we differentiate Eq. (7.9), we 
obtain 

-mfD(q*) - cufD(q*) 

which is certainly negative, since the PDF is positive.7 

By using Eq. (7.10), it is not only easy to find the optimal ordering quantity; 
we also gain a fundamental insight into the problem structure: 

1. First we compute the ratio m/(m + Cu), which can be interpreted as the 
probability of satisfying the whole demand, i.e., the service level. 

2. Then we find the quantile corresponding to that service level. 

We should note that, since m and cu are positive, the ratio is bounded by 
the interval [0,1]. Since the CDF is monotonically increasing, we order more 
(and raise the service level) when m is large with respect to c„. We order less 
when profit margin is small, or when the cost of unsold items is too large. 
This is not too surprising and explains the different patterns that we observe 
at different retail shops, depending on what they sell. An obvious question is: 
When is it optimal to order the expected value of demand? If the distribution 

7Clearly, we are ruling out the pathological case in which the PDF is zero. Negative profit 
margin or cost of unsold items would make no sense. By writing expected profit explicitly, 
we could check that it is a concave function; hence, stationarity is a necessary and sufficient 
condition for optimality. 
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is symmetric, the expected value is just the median. We will order the median 
if the optimal service level is 50%, which happens when m = cu. 

Example 7.5 Let us solve Example 6.9 by assuming, this time, a continuous 
uniform distribution on the interval [5,15]. With the data of the problem, we 
have m = 25 — 20 = 5 and cu = 20 — 0 = 20. Hence, the optimal service level 
is 5/(5 + 20) = 20%. Using Eq. (7.4) for the CDF of the continuous uniform 
distribution, we find 

< 7 _ 5 = 0 . 2 -> q* = 5 + 0.2 x 10 = 7 
1 5 - 5 

By sheer luck, we get the same integer solution we found by brute force in 
the discrete case. In general, the value q* is not integer, and we have to check 
whether it is optimal to round it up or down. u 

The classical newsvendor problem has an easy and elegant solution, but we 
should not forget the limitations of the underlying model: 

• We are assuming that any leftover item can be sold at the markdown 
price su, independently of the amount of unsold items; in practice, mark-
down management procedures may be necessary.8 

• We are assuming that the expected value of profit is a sensible objective. 
While this might make sense in the long run, sometimes risk aversion 
should be taken into account (see Section 13.2). 

Despite all of these limitations, the basic newsvendor model is am extremely 
useful model for building intuition and can be generalized in many ways. A 
rather surprising fact is that the reasoning above, based on marginal analysis, 
can be applied in completely different settings. 

Example 7.6 We consider here the simplest model for revenue management 
in the airline industry (we considered overbooking strategies in Example 6.13). 
This model is known as Littlewood's two-class, single-capacity control model.9 

Assume that we may sell tickets at two different prices, p\ and P2, with 
Pi > P2- The two prices correspond to two different classes of customers: 
Class 2 consists of passengers reserving their flight well in advance, maybe be-
cause they are planning their holidays. Class 1 consists of business travelers, 
flying because of business engagements that might pop up at the last minute. 
Business travelers are typically willing to pay much more for a flight, and this 
is why they are charged a higher price. Clearly, we are uncertain about the 
two demands for seats, but we imagine that a probability distribution for the 
two demands is known (we also assume that demands of the two classes are 

8See, e.g, Chapter 10 of Ref. [10]. 
9See Chapter 2 of Ref. [17] for more information and extensions. 
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independent random variables). According to our assumptions, the demand 
Di from passengers of class 2 is realized before demand D\ from class 1. If 
we satisfy all of the requests of class 2 (up to capacity C of the aircraft), we 
may regret our decision if it turns out that 

Di > C - D2 

In such a case, had we reserved more seats to class 1 by rejecting demand 
from class 2 beyond some threshold level, we would have made more money 
by selling some seats at a price pi > P2- Hence, we can define a "protection 
level," which is the capacity reserved for passengers of class 1. Of course, if 
the protection level is set too high, we could regret our decision as well, if we 
turn down too many requests from class 2, only to find later that demand D\ 
is low and seats are left empty. 

Rather surprisingly, the problem can be tackled much along the lines of the 
newsvendor problem by marginal analysis. Let us denote the reservation level 
by 2/1, i.e., the number of seats reserved to class 1. Let us also denote by Fi(·) 
the CDF for demand from class 1. Say that a customer of class 2 requests 
a seat when the remaining capacity is y\. Should we accept or reject the 
offer? To answer the question, we should trade off a sure revenue P2 against 
an uncertain revenue p\. This revenue is uncertain, because we will make pi 
only if demand D\ is at least y\. We should accept the request if 

Vi >piP(I>i >yi) 

and we should reject it otherwise. If we assume a continuous distribution for 
£>i, the optimal protection level y\ is exactly where the two amounts above 
are the same: 

p2 - PiP(I>i > yi) = Pi(l - Fi(Yi)) => V*i = *T * U- — 
V Pi 

To check the solution, observe that y* is large when p2 is small with respect 
to pi; in the limit, if P2/P1 goes to zero, the protection level is the aircraft 
capacity and all of the requests from class 2 will be rejected. 0 

We should stress that both basic newsvendor and Littlewood's models are 
rather crude simplifications of reality. Nevertheless, they do provide us with 
essential intuition and can be extended to cope with more realistic models of 
actual problems. 

7.5 HIGHER-ORDER MOMENTS, SKEWNESS, AND KURTOSIS 

Expected value and variance do not tell us the whole story about a random 
variable. To begin with, they do not say anything about the possible lack of 
symmetry. From descriptive statistics, we know that to characterize symmetry 
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of a distribution, or lack thereof, we need a coefficient measuring its skewness. 
Furthermore, we may have distributions according to which extreme events, 
like huge losses due to a stock market crash, are pretty rare, and distributions 
in which they are not that unlikely. The probability of extreme realizations 
of random variables depends on the probability mass associated with the tails 
of the distribution. Needless to say, when dealing with risk management we 
do need measures taking these features into account. They all rely on the 
definition of a more general concept, moments of a random variable. 

DEFINITION 7.3 (Moments of a random variable) The moment of or-
der k of random variable X is defined as E[Xk]. The central moment of order 
k is defined as E[(X — ßx)k}. 

We immediately see that expected value is just the first-order moment, whereas 
variance is the second-order central moment. To characterize deviations with 
respect to the expected value, we need an even-order moment, to avoid can-
celation between positive and negative deviations. But in order to capture 
lack of symmetry, we need just that, which is captured by a central moment 
of odd order. Furthermore, in order to capture fat tails, we need higher-order 
moments than just the second one. This motivates the following definitions. 

DEFINITION 7.4 (Skewness and kurtosis) Skewness is defined as 

_Ε[(Χ-μχ)*} 
7 = "a (7.11) 

Kurtosis is defined as 
E[(X μχ) (7.12) 

Looking at these definition, one could wonder why we should divide the mo-
ment of order k = 3,4 by a corresponding power of the standard deviation 
σ. The point is that the above properties should not depend on change of 
scale or shifts in the underlying distribution: If we define a random variable 
Y = a + βΧ, its skewness and kurtosis should be the same as X. It is easy 
to see that skewness is not changed by this linear affine transformation: 

E V-E[rA 
E 

= E 

a + βΧ - a - βμχ 
V/Var(a + βΧ) 

ί β(Χ-μχ)^ 
\^ß^Bx{X)J E (Χ-μ? 

The same applies to kurtosis. In Fig. 7.9 we illustrate two asymmetric distri-
butions. The PDF on the left is skewed to the right and has positive skew; 
in such a case, the median is smaller than the expected value. The PDF 
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Fig. 7.9 Schematic representation of positive and negative skewness. 

Fig. 7.10 Schematic representation of kurtosis. 

on the right is skewed to the left and has negative skew. Figure 7.10 shows 
two distributions with different tail behavior. The distribution with kurtosis 
K = 9 has fatter tails and a corresponding lower mode. This makes sense, as 
the overall area below any PDF must always be 1; if tails are fatter, some 
probability mass is removed from the central portion of the distribution. 
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7.6 A FEW USEFUL CONTINUOUS PROBABILITY DISTRIBUTIONS 

In the following sections we describe some continuous probability distribu-
tions. The main criterion of classification is theoretical vs. empirical distribu-
tions. The former class consists of distributions that are characterized by a 
very few parameters; indeed, they can also be labeled as parametric distribu-
tions. Theoretical distributions will never fit empirical data exactly, but they 
provide us with very useful tools, as they can be justified by some assumption 
about the underlying randomness. Furthermore, they have PDFs in analytical 
form, which may help us in finding analytical solutions to a wide set of prob-
lems. On the contrary an empirical distribution will, of course, fit observed 
data very well, but there is a hidden danger in doing so: We might overfit the 
distribution, obtaining a PDF or a CDF that does fit the peculiarities of the 
observed sample, but does not describe the properties of the population very 
well. 

Empirical distribution will be the last example we cover here. First we 
consider the few main theoretical distributions, to provide the reader with 
the essential feeling for them. We start from the simplest case, the uniform 
distribution; then we consider the triangular and the beta distributions, which 
may be used as rough-cut models when little information is available on the 
underlying uncertainty. Then we describe the exponential and the normal 
distributions. They play a central role in probability theory because of their 
properties and because they can be used as building blocks to obtain other 
distributions. We defer the treatment of a few distributions obtained from the 
normal to Section 7.7.2, as they require some background on sums of random 
variables. 

7.6.1 Uniform distribution 

We have already met the uniform distribution in Section 7.1, where we spec-
ified its PDF and CDF. To say that a random variable X is uniformly dis-
tributed on the interval [a,b], the notation X ~ U(a,b) is used. We have 
already shown that the expected value is the midpoint on the support: 

Since the uniform distribution is symmetric, the median and the expected 
value are the same, and skewness is zero. It can be shown that variance is 

A peculiarity of the uniform distribution is that it has no well defined mode, 
since the PDF is constant. All of the remaining theoretical distributions have 
a single mode. 
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a c b 

Fig. 7.11 PDF of a triangular distribution. 

It is reasonable to say that the uniform distribution is a very dry model 
of uncertainty, as it just provides us with bounds on the possible realizations 
of X. It is often stated that the uniform distribution should be used when-
ever we have no idea about the underlying uncertainty. Actually this is a 
bit debatable, and the following argument has been proposed to counter this 
view. Suppose that the only thing we know about variable X is that it can 
take values between 0 and 1. Apparently, a uniform distribution [7(0,1) is 
an obvious choice. But now consider the variable Y = Xa, for some value 
a > 0. We cannot say anything about Y, either, and the variable is bounded 
between 0 and 1. However, we cannot say that both X and Y are uniformly 
distributed. Indeed, representing almost complete ignorance is not as easy as 
it may seem. Nevertheless, a uniform distribution is often used in Bayesian 
statistics as a noninformative prior.10 Another quite relevant application of 
a U(0,1) distribution is random-number generation for Monte Carlo simula-
tion.11 When we have to simulate randomness by a computer program, we 
first generate a Z7(0,1) variable, which is then transformed to whatever we 
need to model uncertainty. 

7.6.2 Triangular and beta distributions 

Triangular distribution is a possible model of uncertainty when limited knowl-
edge is available. Three parameters characterize it: the extreme points of the 
support [a, b] and that the mode c, where a < c < b. The PDF for a triangular 
random variable is depicted in Fig. 7.11. The expected value and variance for 
a triangular distribution are 

„ , , . , a + b + c ΛΤ a2+ b2+ c2-ab-ac-bc ΕΡΠ = g . Var(X) = — 

respectively. 
Imagine a project planning problem, which involves tasks of quite uncertain 

duration. If we are able to assign the support, i.e., lower and upper bound on 
the time to complete a task, and a mode, we might consider using a triangular 

10See Section 14.7. 
" S e e Section 9.7. 
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distribution. A distribution that is widely used in such applications, but fea-
turing a better academic pedigree, is the beta distribution. This distribution 
has support on the interval [0,1] and depends on two parameters, c*i and 0.2-
Its PDF is 

/ xW= J \—- * e [0,1] 
Β(αι,α2) 

To be precise, when a\, a.2 < 1, the support is the open interval (0,1), as PDF 
goes to infinity at its extreme points. In the following, we will just consider 
the case c*i, 0.2 > 1. The definition of the PDF involves a normalization factor 
B(c*i, 0:2), the beta function, defined as 

Β ( α ι , α 2 ) = / χ α ι _ 1 ( 1 - χ ) α 2 _ 1 dx 
Jo 

The beta distribution can be adapted to many practical cases by shifting and 
scaling, which results in an arbitrary support [a, b]. The expected value and 
variance are 

E[ I ] = _ i ! _ , Var(X) = -( ^ 
ai+012 (ai+a2jz{ai+a2 + l) 

respectively. The mode, for «1,02 > 1) is 

OL\ — 1 
m Ql + Û2 - 2 

Figure 7.12 shows three examples of beta distributions, for different settings of 
its parameters. Looking at the PDF, we see that the distribution is symmetric 
when a\ = »2- Indeed, skewness is expressed as follows: 

2(0:2 - a i ) lai + Q2 + 1 
ai + a.2 + 2 V Q1Q2 

7.6.3 Exponential distribution 

The exponential distribution is one the main tools used to model uncertainty, 
and it is related to other distributions, as well as to an important family of 
stochastic processes that we will investigate later. An exponential random 
variable can only take nonnegative values, i.e., its support is [0, +00), and it 
owes its name to the functional form of its density: 

fx(x) 
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a^ = 8, a2 = 3 , γ= -0.543928 

Fig. 7.12 P D F of symmetric and skewed be t a distr ibutions. 

Here λ > 0 is a given parameter, and the notation X ~ exp(A) is often used.12 

Straightforward integration13 yields the CDF 

Fx{x) = Γ 
Jo 

and the expected value is 

\e~xt dt = 1 -λχ (7.13) 

Γ 
E[X] = / 

Jo 

x\e Xxdx = 

12 Note that this notation refers to the parameter characterizing the distribution, rather 
than to the expected value. 
13See Example 2.43; the example also shows that the area below the PDF of the exponential 
distribution is actually 1. 
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(b) CDF, λ = 2 

Fig. 7.13 PDF and CDF of an exponential distribution with λ = 2. 

It is worth noting that the expected value is quite different from the mode, 
which is zero. It can be shown that variance for the exponential distribution 
is l /λ2 , implying that the coefficient of variation is c\ = 1. Figure 7.13 shows 
the PDF and the CDF for an exponential distribution with parameter λ = 2. 

Unlike the uniform distribution, there are typically good physical reasons 
for adopting this distribution to model a random quantity. A common use 
of exponential distribution is to model time elapsing between two random 
events, e.g., the interarrivai time between two consecutive service requests. 
Note that λ is, within this interpretation, a rate at which events occur, e.g., 
average number of service requests per unit time; the mean interarrivai time 
is l /λ . In fact, we often speak of exponential random variables with rate X. 
There are a few important points worth mentioning: 

• The exponential distribution is linked to the Poisson distribution, which 
we covered in Section 6.5.6. Imagine that the successive interarrivai 
times of service requests are independent14 and exponentially distributed 

1 4We did not cover independence between random variables yet; however, recalling the 
concept of independent events, the concept should be rather clear. 
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with rate λ, and count the number of such requests arriving during a 
time interval of length t. Then, the number of requests we count is a 
discrete random variable following a Poisson distribution with param-
eter \t. In Section 7.9 we will see that this phenomenon corresponds 
to a common stochastic process, which is unsurprisingly known as the 
Poisson process. 

• If we sum n independent exponential variables with rate λ, we obtain a 
new probability distribution that is called Erlang. This distribution is 
also widely used in applications to model time between events. 

• Probably the most important feature of an exponential random variable 
is its "lack of memory." We will consider this property in more detail in 
Section 8.5.2, but we can realize its intuitive meaning and its practical 
relevance by considering the waiting time for the arrival of a bus at a 
bus stop. If we know that the time between two consecutive arrivals 
is uniformly distributed between, say, 2 and 10 minutes, and we have 
been waiting for 9 minutes, we may have a pretty clear idea about the 
time we still have to wait. The more we have waited in so far, the less 
we are supposed to wait in the future. On the contrary, if this time 
is exponentially distributed, the fact that we waited for a long time 
does not change the distribution; the distribution when we get to the 
bus stop and the distribution after waiting 20 minutes are the same. 
A full understanding of this requires concepts about independence and 
conditional distributions, which are provided in Chapter 8, but it is 
important to see the practical implication of this property. Imagine 
that we use the exponential distribution to model time between failures 
of an equipment. Lack of memory implies that even if the machine 
has been in use for a long time, this does not mean that it is more 
likely to have a failure in the near future. Note again the big difference 
with a uniform distribution. If we know that time between failures is 
uniformly distributed between, say, 50 and 70 hours, and we also know 
that 69 hours have elapsed since the last failure, we must expect the next 
failure within one hour. If the time between failures is exponentially 
distributed and 69 hours have elapsed, we cannot conclude anything, 
since from a probabilistic point of view the machine is brand new. If 
we think of purely random failures, due to bad luck, the exponential 
distribution may be a plausible model, but definitely it is not if wear is 
the main driving factor of failures. 

7.6.4 Normal distribution and its quantiles 

The normal distribution is by far the most common, and misused, distribution 
in the theory of probability. It is also known as Gaussian distribution, but the 
term "normal" illustrates its central role quite aptly. Its PDF has a seemingly 
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-10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 

Fig. 7.14 PDF of two normal distributions. 

awkward form 

Μχ) = -fr=~ exP \ ~ö ( ~ μ 
\ /2πσ Δ \ σ 

-oo < x < +00 (7.14) 

depending on two parameters, μ and σ2. Actually, we met such a function 
a while ago,15 and we noted its peculiar bell shape. Figure 7.14 shows two 
PDFs for μ = 0, and σ = 1, σ = 3. Actually, it is quite easy to interpret the 
PDF (7.14): 

• The initial factor 1/ν2πσ is just a normalization factor, and its role is 
only to ensure that the area below the PDF is 1. 

• The expected value is just the parameter μ; indeed, this parameter has 
the effect of shifting the PDF left and right. 

• The variance is just the parameter σ2; indeed, this parameter has the 
effect of changing the scale, i.e., spreading or concentrating the bell, as 
we can see in Fig. 7.14. 

We often use the notation X ~ λί(μ,σ2) to indicate that X has normal 
distribution; note that the second parameter corresponds to variance, rather 
than standard deviation. It is very easy to see that for the normal distribution 
expected value (mean), mode, and median are just the same. The PDF is 
clearly symmetric with respect to the expected value, so skewness is zero. On 
the contrary, a somewhat surprising fact is that kurtosis for a normal variable 
is K = 3, and it does not depend on the specific value of the parameters. 

See Example 2.10. 
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Indeed, in some books the definition of kurtosis, which we gave in Definition 
7.4, is replaced by 

σ 

This is a surprising definition for the uninitiated, and we prefer the alternative 
one. The point is that the tail behavior of the normal distribution is a sort of 
"benchmark, and it maybe useìuì to express lmrtosis oì otìier distribution wìtìi 
reference to this base case. The appropriate name for Ke is excess kurtosis. 

The last point shows that all of the possible normal distributions are es-
sentially the same in terms of tail behavior. In fact, there is something more 
to notice. We can transform any normal random variable into any other nor-
mal variable, with different parameters, just by a linear affine transformation. 
Consider a generic normal X ~Λ/"(μ, σ2), and consider the variable 

Z = ^ ^ (7.15) 
σ 

In terms of PDF, we are just shifting the graph and changing its scale, without 
changing its basic form. Using the familiar rules concerning expected values 
and variance, we observe the following: 

E[Z] = E Χ-μ 

σ 
Epi] - μ = 0 

σ 

Var(Z) = V a r < ' * - ^ - V a « 

A normal variable Z ~ Λ/"(0,1), with zero expected value and unit variance is 
called standard normal. The transformation (7.15) is called standardization. 
Actually, it applies to any distribution, as it yields a variable with zero ex-
pected value and unit variance, but it plays an important role for the normal 
distribution. We may also go the other way around: Given a standard normal 
Z, we may invert (7.15) to get an arbitrary normal by destandardization: 

Χ = μ + σΖ (7.16) 

The normal distribution has many nice properties, which we will discover in 
the following text and justify its popularity. One unpleasing feature, though, 
is that its CDF cannot be calculated analytically. As we know from chapter 
2, integrating the density (7.14) requires finding its antiderivative. As it turns 
out, this is impossible and we must resort to numerical methods to evaluate 
the integral and, therefore, the CDF. This poses no practical difficulty as 
plenty of software is available to carry out this task efficiently and with more 
than adequate precision. We should mention that, traditionally, any text 
involving probability and statistics provides the reader with tables to carry 
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out calculations by hand.16 The trouble is that we cannot have a set of 
tables for any possible normal distribution. However, we can easily carry 
out the job once, for the standard normal, and then apply standardization 
and destandardization to work with an arbitrary normal.17 Tables for the 
standard normal provide us with values of the following CDF: 

Φ(ζ) = P(Z <z) = -£= [ e~x2/2 dx 

Sometimes, only the right area is tabulated: 

P(0 < Z < z) = -£= [ e~x2/2dx 

Of course, this does not change anything because of the symmetry of the PDF. 
Given a way to compute Φ(ζ), we can deal with probabilities for an arbitrary 
normal variable X ~ λί(μ, σ2). To find the probability P(X < β), we should 
just apply standardization: 

Example 7.7 Consider X ~ Λ/"(3,16), i.e., a normal variable with expected 
value 3 and standard deviation 3. Let us compute P(2 < X < 7): 

P(2<*<7) = Ρ ( Ϊ Ζ » ^ Ι Ζ » 

= P ( Z < ^ - P ^ < 2 

= Φ(Ι)-Φ(-1 

= 0.8413-0.4013 
= 0.4400 

When using statistical tables, we cannot carry out the above calculation di-
rectly, as typically we are provided with values Φ(.ζ) only for z > 0. However, 
we may easily to take advantage of symmetry to compute Φ(—j): 

1. We need the area of the PDF to the left of z = — \. 

1 6This book is an exception, since tables are a heritage of the past, and software tools are 
easier to use in practice, not to mention much more precise. Some tools, like R, are freely 
available on the Web (see h t tp : / /www.r -p ro jec t .o rg ) . Nevertheless, statistical tables are 
offered on the book Webpage for the readers' convenience. 
17 The idea is also helpful when designing numerical algorithms to compute or invert the 
CDF of the normal; we just need one procedure, for the standard normal, and a simple 
transformation of its output provides us with what we need. 
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Fig. 7.15 Using quantiles of the standard normal distribution. 

2. Because of symmetry with respect to the expected value E[Z] = 0, this 
is just the area to the right of z = \. 

3. But this is just the probability: 

P( Z> - ) = 1 - P ^ ϊ - 4 
1 - Φ 

4. Hence: - a — a : - 0.5987 = 0.4013 
D 

The kind of gimmicks of the example above are not required anymore, if you 
have a decent piece of software, but they are still worth learning to really know 
the ropes of working with normal variables. This is also important because 
one of the most common tasks in statistics is the use of quantiles of normal 
distributions. Numerical inversion of the CDF for the standard normal, or 
reading statistical tables the other way around, yields the quantiles: 

P(Z < zq) = q 

for a probability level q e (0,1). Actually, the usual notation in statistical 
applications is zi_Q, where a is a rather small number, like 0.1 or 0.05; geo-
metrically, the quantile z\_Q leaves an area 1 — a of PDF to its left, and a is 
the area of the right tail. This is illustrated in Fig. 7.15. From the figure, we 
also see that if we want to leave two symmetric tails on the left and on the 
right, such that their total area is a, we should consider quantile 2i_Q/2 and 
observe that 

Ρ ( - ζ ι - α / 2 < Z < 2i_Q/2) = 1 - a 
Now, we know that there is a way to find quantiles zq for the standard normal, 
but how can we find a quantile xq for a generic normal variable? The quick-
and-dirty recipe mirrors destandardization: 

xq — μ + azq 

To see why this works, observe the following: 

P (Z < zq) = q & P (μ + σΖ < μ + azq) = q <£> P(X < μ + azq) = q 
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Example 7.8 Consider a normal variable X with expected value μ = 100 
and standard deviation σ = 20. What is its 95% quantile? We are looking for 
a number 0:0.95 such that 

P(X < a:0.95) = 0.95 

Statistical software provides us with the corresponding quantile for the stan-
dard normal distribution: 20.95 = 1-6449. Hence 

xo 95 = μ + σζ0 95 = 100 + 20 x 1.6449 = 132.8971 
D 

Example 7.9 (A well-known rule for the normal distribution) Given 
a normal variable X ~ λί(μ, σ2), we might wonder how many realizations are 
expected to fall in an interval of the form μ ± ka. We find 

1. Ρ(μ - σ < X < μ + σ) « 68.26% 

2. Ρ(μ - 2σ < X < μ + 2σ) « 95.44% 

3. Ρ(μ - 3σ < X < μ + 3σ) « 99.74% 

We see that almost all of the realizations are expected to fall "within three 
standard deviations of the mean." In other words, the width of the interval 
including almost all of them is six standard deviations; indeed, a managerial 
philosophy has been called six sigma because of this. 

This also shows that the normal distribution has rather thin tails, and this 
is why it serves as a benchmark in terms of kurtosis. If we observe events that 
go much beyond the three-sigma wall we should question the applicability of 
a model based on the normal distribution. A well-known example is the stock 
market crash of October 19, 1987. This date did deserve the name of "Black 
Monday," as the Dow Jones Industrial Average index dropped from 2246 to 
1738, a decline of almost 25% in one day. Fitting a normal distribution against 
index returns shows that this event was about 20 standard deviations below 
average. In fact, it is rather common to observe such extreme events on finan-
cial markets. On the one hand, alternative distributions have been proposed, 
with fatter tails, to better account for such phenomena. On the other hand, 
more radical approaches have been proposed, modeling the dynamic behavior 
of stock market participants, which are not completely rational decisionmak-
ers. The very applicability of probability modeling to this kind of system have 
been questioned.18 D 

1 8We will outline a few related issues in Chapter 14. There are many interesting accounts 
of what happened on the Black Monday and the hard lessons that were learned on that 
infamous day; see, among others, Refs. [2] and [3]. 
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Fig. 7.16 The C D F for an empirical distr ibution. 

7.6.5 Empirical distributions 

Sometimes, no theoretical distribution seems to fit available data, and we 
resort to an empirical distribution. A standard way to build an empirical 
distribution is based on order statistics, i.e., sorted values from a sample. 
Assume that we have a sample of n values and order statistics X(i), i = 
1 , . . . , n, where X^ < X^+iy The value X(i) is the smallest observation and 
X(n) is the largest one. 

Assume that we want to rule out values above and below the observed 
range. Then, we can write 

P(X < X{1)) = FX(X{1)) = 0, P(X > X(n)) = 1 - Fx(X(n)) = 0 

The last condition implies Fx(X^) = 1. Note that this is rather arbitrary; 
sometimes, small tails are appended to the extreme points of the observed 
range in order to avoid overfitting. This is, however, an arbitrary and ad hoc 
procedure. To assign values of the CDF for intermediate order statistics, we 
may simply divide the range from 0 to 1 in equal intervals, which results in 
the following rule: 

Fx(X{k)) = ^ -

For values falling between order statistics, linear interpolation is the simplest 
choice and results in a CDF like the one illustrated in Fig. 7.16. Given the 
CDF, the PDF is obtained. Clearly, choosing linear interpolation results in a 
kinky CDF with nondifferentiable points. In order to get a smoother curve, 
we could also interpolate with higher-order polynomials.19 

Once again, we should remark that fitting an empirical distribution has 
some hidden traps. It is easy to trust available data too much and to obtain a 
distribution that reflects peculiarities in the sample, which do not necessarily 

1 9A common choice is based on cubic splines, which are third-order polynomials associated 
with each interval, selected in such a way that the function is continuous, as well as its first-
and second-order derivative. 
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carry over to the whole population. Furthermore, it is sometimes possible to 
come up with mixtures of theoretical distributions that do fit the data and 
eliminate the need for arbitrary choices, e.g., as far as the support and the 
tail behavior are concerned. 

Example 7.10 One standard reason for rejecting simple theoretical distri-
butions is that empirical frequencies may display multiple modes. Then, it 
is tempting to fit whatever we have observed, but this may result in a poor 
understanding of the underlying phenomena. Consider, for instance, the time 
needed to complete surgical operations. If we take statistics about these times, 
quite likely we will observe multiple modes. But this might be linked to the 
different kinds of operations being executed, which may range from quite 
simple to very complex ones. It is much better to fit discrete probabilities 
against the different classes of operations, and then to model the variability 
of the time within each class around the expected value for each one. D 

7.7 SUMS OF INDEPENDENT RANDOM VARIABLES 

A recurring task in applications is summing random variables. If we have n 
random variables Xi, i — 1 , . . . , n, we may build another random variable 

n 

i = l 

What can we say about the distribution of Yl The answer depends on two 
important features of the terms in the sum: 

• Is the distribution of all of the Xi the same? 

• Are the involved variable independent? 

We will clarify what we mean by "independent random variables" formally 
in Chapter 8, but what we know about independent events and conditional 
probabilities is enough to get the overall idea: Two variables are independent 
if knowing the realization of one of them does not help us in predicting the 
realization of the other one. 

DEFINITION 7.5 (i.i.d. variables) We say that the variables Xi, i = 
1 , . . . , n, are i.i.d. if they are independent and identically distributed. 

Arguably, the case of i.i.d. variables is the easiest we may think of. Unfortu-
nately, even in this case, characterizing the distribution of the sum on random 
variables is no trivial task. It might be tempting to think that the distribution 
of Y should, at least qualitatively, similar to the distribution of the Xi, but a 
simple counterexample shows that this is not the case. 
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Fig. 7.17 Sampling the sum of two i.i.d. uniform variables. 

Example 7.11 Consider two independent random variables, uniformly dis-
tributed between 0 and 10: ί/ι,ί/2 ~ (7(0,10). The support of their sum, 
Y = U\ + U2, is clearly the interval [0,20], but what about the distribution? 
The analytical answer would require a particular form of integral, but we may 
guess the answer by sampling this distribution with the help of statistical 
software. Figure 7.17 shows the histogram obtained by sampling 10,000 ob-
servations of the sum. A look at the plot suggests a triangular distribution. 
In fact, it can be shown that the distribution of Y is triangular, with support 
on interval [0, 20] and mode m = 10. 

By the same token, if we sum two i.i.d. exponential variables, we do not get 
an exponential. There is an important case in which distribution is preserved 
by summing. 

PROPERTY 7.6 The sum of jointly normal random variables is a normal 
random variable. 

It is important to note that this property does not assume independence: 
It applies to normal variables that are not independent and have different 
parameters. The term "jointly" may be puzzling, however. The point is that 
characterizing the joint distribution of random variables is not as simple as it 
may seem. It is not enough to specify the distribution of each single variable, 
as this provides us with no clue about their joint behavior. The term above 
essentially says that we are dealing with a multivariate normal distribution, 
which we define later, in Section 8.4. 

So, the results concerning the general distribution of the sum of random 
variables are somewhat discouraging, but we recall that something more can 
be said if we settle for the basic features of a random variable, i.e., expected 
value and variance. We stated a couple of properties when dealing with dis-
crete random variables, that carry over to the continuous case. 
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PROPERTY 7.7 (Expected value of a sum of random variables) The 
expected value of the sum of random variables is the sum of their expected 
values, assuming that they exist: 

E 
. 1 = 1 

ΣΕ^ 
ι = 1 

PROPERTY 7.8 (Variance of a sum of independent random vari-
ables) The variance of the sum of independent random variables is the sum 
of their variances, assuming that they exist: 

( n \ n 

i= l / i= l 
It is important to notice that the two properties above do not require 

variables to be identically distributed. The property about variance does 
require independence, however. 

Example 7.12 Consider two independent normal variables, X\ ~ Λ/"(10,25) 
and X2 ~ λί(—8,16). Then, the sum Y = X\ + X2 is a normal random 
variable, with expected value 

E[Y] = Ε[Χχ] + E[X2] = 10 - 8 = 2 

and standard deviation 

σγ = y/Vax(Xi) +Var(X2) = λ/25 + 16 = 6.4031 

Note that we cannot add standard deviations; doing so would lead to a wrong 
result (5 + 4 = 9). D 

The example illustrates the fact that, when variables are independent, we 
may sum variances, but not standard deviations: 

σχ1+χ2 - \]σΧι + °~χ2 Φ <?Xi + °~x2 

Another important remark concerns the sum and the difference between in-
dependent random variables. The property implies Var (X + Y) = Var (X) + 
Var(y), but what about their difference? We must apply the property care-
fully: 

V a r ( X - y ) = V a r ( X + ( - F ) ) = V a r ( X ) + V a r ( - y ) 
= Var (X) + ( - l )2Var (Y) = Var {X) + Var (Y) 

We see that the variance of a difference is not the difference of the variance; 
it is also worth noting that this would easily lead to nonsense, as by taking 
differences of variances we could find a negative variance. 
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7.7.1 The square-root rule 

Consider a sequence of i.i.d. random variables observed over time, Xt, t = 
1 , . . . , Γ. Let μ and σ be the expected value and standard deviation of each Xt, 
respectively. Then, if we consider the sum over the T periods, Y = X^É=1 Xt, 
we have 

E[Y] = Y^E[Xt] = μΤ (7.17) 
t = i 

σγ 
\ 

^ V a r [ * t ] = aVf (7.18) 
t = i 

We see that the expected value scales linearly with time, whereas the stan-
dard deviation scales with the square root of time. Sometimes students and 
practitioners are confused by the result concerning standard deviations. It is 
important to draw the line between the sum of T random variables and the 
product of T and one random variable. 

Example 7.13 Consider demand for an item, over a time interval consisting 
of T time buckets, say, weeks. The time interval could be delivery lead time, 
i.e., the time elapsing between the instant at which we issue a replenishment 
order and the time instant at which we receive the corresponding shipment 
from the supplier. In practice, demand during lead time is a relevant variable 
for inventory management decisions. Say that μ and σ are expected value and 
standard deviation of weekly demand, respectively, and assume that demands 
in different weeks are independent. 

Then, the expected value of demand during lead time is Τμ, but its stan-
dard deviation is ν Τ σ and not Τσ. The typical way to get the wrong result 
is by considering demand during lead time as a random variable 

Y = TX 

where X is a random variable corresponding to demand during one week. It 
is true that Var(Y) = T2Var(X), but this is the wrong reasoning; by doing 
so, we assume that demand during a week is realized, and then it is replicated 
for T weeks. But this does not correspond to the real phenomenon. D 

The square-root rule shows that, if T is very small, then the volatility term 
•s/Τσ dominates the expected value term, as the square root of T goes to 
zero more slowly than T itself does, when the latter goes to zero. This has 
some implications for measuring financial risk, as we shall see later, but there 
is another hidden trap here. It is tempting to apply the rule by consider-
ing fractional values of T, but this may lead to nonsense. An example will 
illustrate the point. 

Example 7.14 Let us assume that the yearly demand for an item is nor-
mally distributed with expected value 1000 and standard deviation 250. If 
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the lead time is 2 months, what is the distribution of lead time demand £>LT? 
If we assume that the year consists of 12 identical months of 30 days, and we 
assume that demands in different months are independent, we could consider 
the application of the above rules with T = -^ = ì . In terms of expected 
value and standard deviation, this would imply 

E [DLT] = ^ « 166.67; aDLT = ^ « 102.06 

This might make some sense, but can we say that lead time distribution is 
normally distributed? If we recall the three-sigma rule, we note that 

E [DhT] - 3CTDLT = 166.67 - 3 x 102.06 = -139.51 < 0 

In fact, if we assume normality, the probability of negative demand is far 
from negligible. This example shows that if we assume normality of monthly 
demand, we may deduce normality of demand during a year, but we cannot 
go the other way around. D 

7.7.2 Distributions obtained from the normal 

As we pointed out, if we sum i.i.d. random variables, we may end up with 
a completely different distributions, with the normal as a notable exception. 
However, there are ways to combine independent normal random variables 
that lead to new distributions that have remarkable applications, among other 
things, in inferential statistics. In fact, statistical tables are available for the 
random variables we describe below, providing us with quantiles we need to 
carry out statistical tests, as we will see in later chapters. 

The chi-square distribution Consider a set of independent standard normal 
variables Zi, i = 1 , . . . , n. Consider random variable X defined as 

x = zl + zl + --- + z2
n 

Obviously, X cannot have normal distribution, as it cannot take negative 
values. This distribution is called chi-square, with n degrees of freedom. This 
is often denoted as X ~ χ^. The following results can be proved: 

E[X] = n, Var(X) = 2n 

Figure 7.18 shows the PDF for chi-quare variables with 4 and 8 degrees of 
freedom. The second one corresponds to the PDF with the lower mode, and 
the higher expected value and variance. 

Student's t distribution Consider a standard normal variable Z and a chi-
square variable χ^ with n degrees of freedom. Also assume that they are 
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Fig. 7.18 PDF of two chi-square variables, χΐ and χ§. 

independent. Then, the random variable 

Vxl/n 

has Student's t distribution with n degrees of freedom.20 We can show that 

E[T„] = 0, Var[T„] = n - 2 

incidentally, we see that variance need not be always defined, as it may go 
to infinity. Figure 7.19 shows the PDFs of ΤΊ and T5 variables, along with 
the PDF of standard normals. The PDF with the highest mode, drawn with 
a continuous line, corresponds to the standard normal; T\, represented with 
a dash-dotted line, features the lowest mode and the fattest tails. Indeed, 
the t distribution does look much like a standard normal, but it has fatter 
tails. When the number of degrees of freedom increases, the t distribution 
gets closer and closer to the standard normal. To see this quantitatively, we 
observe that kurtosis for the t distribution is 

3 n - 6 
n ■ 

2 0 Jus t in case you are wondering about a professor called Student, this is actually a 
pseudonym used in 1908 by William Sealy Gösset to publish his results about this dis-
tribution. Gosset's employer, the Guinness brewery, forbade members of its staff to publish 
scientific papers, for fear of trade secret leaks. 
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Fig. 7.19 Comparing the PDFs of two t distributions, T\ and Γ5 against the standard 
normal. 

when n goes to infinity, kurtosis tends to 3, which is the kurtosis for a normal 
variable. Indeed, traditional statistical tables display quantiles for t variables 
up to n = 30, suggesting the use of quantiles for the standard normal for 
larger values of n. This approximation is not needed anymore, but it is useful 
to keep in mind that t distribution does tend to the standard normal for large 
values of n. 

The F distribution Consider two independent random variables with chi-
square distributions χ„ and χ^2, respectively. The random variable 

is said to have F distribution with ni and n-i degrees of freedom, which is 
denoted by 7 ~ F(ni,ri2)- Note that the degrees of freedom cannot be 
interchanged, as the former refers to the denominator of the ratio, the latter 
to its denominator. 

There is a relationship between F and t distributions, which can be grasped 
when considering a F ( l , n) variable. This involves a χ\ variable, with 1 degree 
of freedom, which is just a standard normal squared. Hence, what we have is 

i.e., the square of a t variable with n degrees of freedom. Furthermore, when 
712 is large enough, we get a F n o o variable. By the law of large numbers, 
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Fig. 7.20 PDF of a F(5,10) random variable. 

that we will state precisely later, when n<i goes to infinity, the ratio x\Jn<i 
variable converges to the numerical value 1. Hence a Fnt00 variable is just a 
Xn variable divided by n: 

F — an 
n 

Figure 7.20 shows the PDF of a F random variable with 5 and 10 degrees 
of freedom. After this list of weird distributions obtained from the standard 
normal, the reader might well wonder why one should bother. The answer 
will be given when dealing with inferential statistics and linear regression, but 
we can offer at least some intuition: 

• We know from descriptive statistics that the sample variance involves 
squaring observations; when the population is normally distributed, this 
entails essentially squaring normal random variables, and the distribu-
tion of sample variance is linked to chi-square variables. 

• Furthermore, when we standardize a normal random variable, we take 
a normal variable (minus the expected value), and we divide it by its 
standard deviation; this leads to the t distribution. 

• Finally, a common task in inferential statistics is comparison of two 
variances. A typical way to do this is to take their ratio and check 
whether it is small or large. When variances come from sampling normal 
distributions, we are led to consider the ratio of two chi-square variables. 

Comparing the PDFs of the three distributions, we see that the t distri-
bution is symmetric, whereas the other two have nonnegative support. This 
should be kept in mind when working with quantiles from these distributions. 
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The lognormal distribution Unlike the previous distributions, the lognormal 
does not stem from statistical needs, but it is worth mentioning anyway be-
cause of its role in financial applications, among others. A random variable Y 
is lognormally distributed if log Y is normally distributed; put another way, 
if Y is normal, then eY is lognormal. Since the exponential is a nonnega-
tive function, a lognormal random variable cannot take negative values. In 
fact, it has often been used (and misused) as a model of random stock prices 
since, unlike the normal, it cannot yield negative prices.21 Another notewor-
thy feature of lognormal random variables is that a product of lognormals is 
a lognormal variable; this is a consequence of the similar property of sums of 
normal variables and the properties of logarithms. 

The following formulas illustrate the relationships between the parameters 
of a normal and a lognormal distribution. If X ~ Λί(μ, σ2) and Y = ex, then 

E[Y] = εμ+σ2/2 

ΥΆτ{Υ)=β2μ+σ{βσ2 - 1 ) 

In particular, we see that 

E [ex] = e"+ff2/2 > e" = eEM 

Since the exponential is a convex function, this is a consequence of Jensen's 
inequality.22 Figure 7.21 shows the PDF of a lognormal variable with param-
eters μ — 0 and σ = 1. 

7.7.3 Central limit theorem 

As we noted, it is difficult to tell which distribution we obtain when summing 
a few i.i.d. variables. Surprisingly, we can tell something pretty general when 
we sum a large number of such variables. We can get a clue by looking at 
Fig. 7.22. We see the histogram obtained by sampling the sum of independent 
exponential random variables with rate λ = 0.5 or, in other words, expected 
value 2; the sample size is 10,000. In plot (a) we see the histogram for just one 
exponential variable; we observe the exponential shape that we expect. Plot 
(b) shows the histogram when n = 10 independent exponentials are summed; 
finally, plot (c) shows what happens for n = 100. The last histogram looks 
suspiciously like a normal density. Indeed, the celebrated central limit theorem 
confirms the intuition. 

THEOREM 7.9 (Central limit theorem) Let Xlt X2, ..., Xn, be a se-
quence of i.i.d. random variables with expected μ and standard deviation σ. 

2 1 We recall tha t stock shares are limited liability assets; hence, they cannot take negative 
values. In other words, the worst-case return is —100%. 
22See Theorem 6.8. 
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Fig. 7.21 P D F of a lognormal variable with parameters μ = 0 and σ = 1. 

Then, for n large, the following holds: 

ρ / Χ 1 + Ι 2 + ; . Ι „ - η μ < \ 
V νησ ) 

where Z is standard normal. 

This theorem essentially states that the sum of n i.i.d. variables tends to a 
normal distribution with expected value ημ and standard deviation τ/ησ; by 
standardization we get Z.23 The central limit theorem contributes to explain 
why the normal distribution plays a pivotal role: When we sum many random 
contributions, we tend to end up with a normal distribution. For instance, 
demand for items sold in high volumes can often be modeled by a normal 
distribution, resulting from the sum of many individual demands, whereas 
this model is inappropriate for low-volume items. 

7.7.4 The law of large numbers: a preview 

The sample mean plays a key role in descriptive statistics and, as we shall 
see, in inferential statistics as well. In this section we take a first step to 
characterize its properties and, in so doing, we begin to appreciate an often 
cited principle: the law of large numbers. 

2 3 From a theoretical perspective, we should say that we have convergence in distribution. 
We outline the fundamental concepts of stochastic convergence in Section 9.8; many readers, 
however, may ignore the related subtleties. 
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Fig. 7.22 Histograms obtained by sampling the sum of n independent exponentials 
with rate λ = 0.5, for n = 1,10,100. 

Consider a sample consisting of i.i.d. variables Xi, i = 1 , . . . ,n, with ex-
pected value μ and variance σ2. The sample mean 

i n 

x = -Y/xi 

is a random variable and it is natural to wonder what is its distribution. From 
what we have seen, we know that a general answer does not exist. However, 
if the sample comes from a normal population, the sample mean is normally 
distributed, because the sum of normals is normal as well. Furthermore, we 
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can rely on the central limit theorem to conclude that sample mean will tend 
to be normal when the sample is large enough. 

Another intuitive property of the sample mean is that it should get closer 
and closer to the true expected value μ, when n progressively increases. In-
deed, on the basis of the properties of sums of random variables, we obtain 

E[X] = E 
-, n i n 1 n 

n ■ 1 1=1 n ^—' n 
i=l i=l 

Furthermore, relying on the independence assumption, we also see that 

n V„(X) = V„ ( iè* , ) = ^Σν»(Χ,) = ^ έ ^ 
\ i= l / i= l i=\ 

This is a remarkable result: The larger the sample size, the lower the variance 
of the sample mean. In the limit, this variance goes to zero; but a random 
variable with zero variance is just a number. Then, we may suspect that we 
should write something like this: 

- f > i = / i (7.19) lim 
n—>+oo n 

<=1 

This gets close to a precise statement of the law of large numbers. Actually, 
stating this law precisely requires to specify all of the hidden assumptions as 
well. Furthermore, the limit above has no clear meaning: What is the limit of a 
sequence of random variables? How can a random variable tend to a number? 
A sound statement of the law of large numbers requires some concepts of 
stochastic convergence. We will outline these concepts in the advanced Section 
9.8; however, most readers may skip the involved technicalities. 

7.8 MISCELLANEOUS APPLICATIONS 

In this section we outline a few applications from logistics and finance. The 
three examples will definitely look repetitive, and possibly boring, but this 
is exactly the point: Quantitative concepts may be applied to quite different 
situations, and this is why they are so valuable. In particular, we explore here 
three cases in which quantiles from the normal distributions are applied. 

7.8.1 The newsvendor problem with normal demand 

We know from Section 7.4.4 that the optimal solution of a newsvendor problem 
with continuous demand is the solution of the equation 

iw) = - 5 -
m + cu 
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i.e., the quantile of demand distribution, corresponding to probability m/(m+ 
cu). If we assume normal demand, with expected value μ and standard devia-
tion σ, then the optimal order quantity (assuming that we want to maximize 
expected profit) is 

q* = μ + 2m/(m+Cu)tf 

Assume that items are purchased from a supplier for $10 per item and then are 
sold at $15, and that the salvage value of unsold items is $3. The expected 
value of demand over the sales window is 10,000 items, and its standard 
deviation is 2000 items. Then we find 

m + cu ( 1 5 - 1 0 ) + ( 1 0 - 3 ) 

Note that service level is lower than 50%, so the corresponding quantile from 
the standard normal distribution is negative, and we should buy less than 
expected demand. Indeed, statistical software yields 

-20.4167 = -0.2104 =» q* = 10,000 - 0.2104 x 2000 « 9579 

Note that, since the profit margin is low with respect to the cost of unsold 
items, we should be conservative; the larger the risk, measured by standard 
deviation, the less we buy. 

7.8.2 Setting the reorder point in inventory control 

Say that we are in charge of managing the inventory of a component, whose 
supply lead time is 2 weeks. Weekly demand is modeled by a normal random 
variable with expected value 100 and standard deviation 20 (let us pretend 
that this makes sense). If we apply a reorder point policy based on the EOQ 
model, we should order a fixed quantity whenever the inventory level falls 
below a reorder point R.24 How can we set R in order to achieve a 95% 
service level? 

The service level in this case is the probability of not having a stockout 
during the delivery lead time. Note that we may run out of stock during the 
time window between the instant at which we issue the order to our supplier 
and the time instant at which items are received and inventory is replenished. 
Hence, we should consider the probability that demand during lead time does 
not exceed the reorder point R, which should be set in such a way that 

P(DL T <R) = 0.95 

If we assume that weekly demand is normal, then we should just compute a 
quantile from the normal distribution again. If demands in two consecutive 

2 4This is a rather imprecise statement, as ordering decisions should consider backorders 
and on-order inventory See, e.g., Ref. [4] for a complete treatment. 
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weeks are independent, then the distribution of the demand during lead time 
is normal with parameters 

MLT = 100 + 100 = 200 

ahT = \ /202 + 202 = y/2 x 20 = 28.2843 

Since -zo.95 = 1.6449, we should set 

R = μυτ + zo.95 ■ συτ = 200 + 1.6449 x 28.2843 « 247 

Note that, if there were no risk, we would just set R = 200. The additional 
47 items we keep on stock are a safety stock. To reduce safety stock, and save 
money related to holding inventory, we should reduce demand uncertainty 
and/or lead time. This is precisely one of the cornerstones of the so-called 
Toyota approach, which was originally applied within the automotive industry 
to car manufacturing; its extension to other industries resulted in the well-
known just-in-time philosophy. 

7.8.3 An application to finance: value at risk (VaR) 

Most financial investments entail some degree of risk. Imagine a bank holding 
a portfolio of assets; the bank should set aside enough capital to make up 
for possible losses on the portfolio. To determine how much capital the bank 
should hold, precise guidelines have been proposed, e.g., by the Basel commit-
tee. Risk measures play a central role in such regulations, and a commonly 
proposed risk measure is value at risk [VaR; please note the capitalization of 
letters to avoid ambiguity with variance (Var)]. It must be mentioned that 
bank regulation has been the subject of quite some controversy, in the wake 
of financial disasters following the subprime mortgage crisis of 2007-2008. In 
particular, VaR has been criticized as an inadequate risk measure, offering a 
false sense of security. It has even been suggested that VaR should not be 
taught at all in business schools.25 However, like it or not, VaR is used; hence, 
students and practitioners should be fully aware of what it is and what it is 
not. We will investigate VaR and its limitations further in Section 13.2.3. The 
first step, however, is understanding VaR in a simple setting. 

Informally, VaR allows to say something like 

We are X percent sure that we will not lose 
more than V dollars over the next N days. 

We immediately see that VaR is actually a quantile of the distribution of 
losses. To clarify the idea, consider a portfolio consisting of a single stock: 
We own $10 million in Microsoft shares, and we want to estimate one-day 

25See N.N. Taleb and P. Triana, Bystanders to this financial crime were many, Financial 
Times Dec. 8, 2008. 
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VaR, with 99% confidence level. The simplest textbook calculation goes like 
this: Assume that the daily return of the stock is normally distributed. We 
know from the square-root rule of Section 7.7.1 that, in such a short times-
pan, volatility (standard deviation) dominates drift (expected return). Then, 
assume that daily return is a normal variable with expected value 0% and 
standard deviation σβ, = 2%. Daily profits and losses can be expressed as the 
daily variation 6W in our wealth: 

SW = N ■ S ■ OR 

where N is the number of stocks, S their initial price, and 6R the random 
return. We have a loss when OR < 0. If we plot the PDF of profit, losses 
correspond to the left tail; if we plot the PDF for loss, they are on the right 
tail; in the case of the normal distribution, given its symmetry, this makes no 
real difference. To find VaR, we need to solve the equation 

P (L < VaRo.99) = 0.99 

where L — —ÔW is loss. Given what we have seen repeatedly about quantiles 
of the normal distribution, we see that we should compute 

Varo.99 = N -S -ad- Z0.99 = $10,000,000 x 0.02 x 2.33 = $466,000 

Now what about the 10-day VaR? The following reasoning is often proposed: 
Since volatility scales with the square root of time, it follows that 

VaRg9%(10 days) = s/ÏÔ x VaRg9%(l day) = $1,473,621 

Obviously, this reasoning assumes independence in daily returns, which should 
certainly not be taken for granted. Furthermore, when we consider time 
horizons, the drift should not be neglected. More generally, we know that the 
normal distribution has thin tails and should not be considered a safe model 
of uncertainty in finance. So, the above calculation should be regarded just 
as a starting point. Nevertheless, it proves our point: Quantitative concepts 
can be used (and misused) in a variety of unrelated settings. 

7.9 STOCHASTIC PROCESSES 

So far, we have considered a single random variable. However, more often 
than not, we have to deal with multiple random variables. There are two 
cases in which we have to do so: 

• We might observe different random variables, say, Xi, i — Ι , . , . , η , 
at the same time. In such a case, we speak of cross-sectional data. As 
practical examples, think of the return of several financial assets over an 
investing horizon; alternatively, consider the demand for several items, 
which could be complementary or substitute goods. 
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• We might observe a single random variable, over multiple time periods, 
say, Xt,t = l,...,T. In such a case, we speak of longitudinal data. For 
instance, we may observe the weekly return of a financial asset over a 
timespan of a few months, or daily demand for an item. 

In practice, we may also have the two views in combination, i.e., multiple vari-
ables observed over a timespan of several periods. In such a case, we speak of 
panel data. Given the scope of this book, we will not consider panel data. If 
we observe cross-sectional data, and the corresponding random variables are 
independent, then we may just study one variable at a time, and that's it. 
However, this is just a very special and simple case. We need more sophisti-
cated tools to deal with dependence, which is the topic of the next chapter. 
In this section, we want to consider random variables over time. 

DEFINITION 7.10 (Stochastic process) A time-indexed collection of 
random variables is called a stochastic process. If time is discretized, we 
have a discrete-time process: 

Xu t = 0 ,1 ,2 ,3 ,4 , . . . (7.20) 

/ / time is continuous, we have a continuous-time (also known as continuous-
parameter ) process: 

X(t), te[0,+oo) (7.21) 

In general, one could consider a collection of random variables depending 
on space, rather than time. Then, we could speak of discrete- or continuous-
parameter processes. In the applications we consider in the book, the pa-
rameter will always be time. In some loose sense, the stochastic process is a 
generalization of deterministic functions of time, in that for any value of t it 
yields a random variable (which is a function itself) rather than a number. If 
we observe a sequential realization of the random variables over time, we get 
a sample path of the process. In this introductory book, we will essentially 
deal with discrete-time processes, but it is a good idea to consider at least a 
simple example of a relevant continuous-time process. 

Example 7.15 (Poisson process) The Poisson process is an example of 
a counting process, i.e., a stochastic process N(t) counting the number of 
events that occurred in the time interval [0, i]. Such a process starts from 
zero and has unit increments over time. We may use such a process to model 
order or customer arrivals. The Poisson process is obtained when we make 
specific assumptions about the interarrivai times of customers. Let X^, k = 
1,2,3,4,..., be the interarrivai time between customer k — 1 and customer 
k; by convention, X\ is the arrival time of the first customer after the start 
time t = 0. We obtain a Poisson process if we assume that variables Xk 
are mutually independent and all exponentially distributed with parameter 
λ, which is in this case the arrival rate, i.e., the average number of customers 
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Fig. 7.23 Sample path of the Poisson process. 

arriving per unit time. A sample path is illustrated in Fig. 7.23; we see that 
the process "jumps" whenever a customer arrives, so that sample paths are 
piecewise constant. 

We have already mentioned the link between Poisson and exponential dis-
tributions and the Poisson process. If we consider a time interval [ii,Î2], 
with ij < i2l then the number of customers who arrived in this interval, 
i.e., ΛΓ(ί2) - N{t\), has Poisson distribution with parameter Xfa — h). Fur-
thermore, if we consider another time interval [Î3,Î4], where Î3 < Î4, which 
is disjoint from the previous one, i.e., (i2 < Î3), then the random variables 
Nfa) — N(ti) and N(t4) — Nfa) are independent. We say that the Poisson 
process has stationary and independent increments. 

The Poisson process is a useful model for representing the random arrival 
of customers who have no mutual relationships at all. This is a consequence 
of the lack of memory of the exponential distribution. 

The model can be generalized to better fit reality. For instance, if we 
observe the arrival process of customers at a big retail store, we easily observe 
variations in the arrival rate. If we introduce a time-varying rate λ(ί), we get 
the so-called inhomogeneous Poisson process. Furthermore, if we consider not 
only customer (or order) arrivals, but the demanded quantities as well, we 
see the opportunity of associating another random variable, the quantity per 
order, with each customer. The cumulative quantity demanded D(t) in the 
time interval [0, t] is another stochastic process, which is known as a compound 
Poisson process. The sample paths of this process would be qualitatively 
similar to those in Fig. 7.23, but the size of the jumps would be random. This 
is a possible model for demand, when sale volumes are not large enough to 
warrant use of a normal distribution. D 

Naive thinking would draw us to the conclusion that, in order to charac-
terize a stochastic process, we should give the distribution of Xt for all the 
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Fig. 7.24 Sample paths of the stochastic process Xt = t ■ è, è ~ iV(0,1). 

relevant time instants t. This is what we call the marginal distribution. The 
following example shows that marginal distributions do not tell the whole 
story. 

Example 7.16 (A Gaussian process) A common class of stochastic pro-
cesses consists of sequences of random variables whose marginal distribution 
is normal, which is why they are termed Gaussian processes. To be precise, 
we should say that a Gaussian process requires that the random variables 
Xtl, Xt2, ■ ■ ■, Xtm have a jointly normal distribution for any possible choice of 
time instants fi,Ì2, · · -,im, but for the sake of simplicity we will put in the 
same bag any process for which the marginal distribution of Xt is normal. 
However, it is important to realize that in doing so we are considering pro-
cesses that may be very different in nature. Consider the stochastic process 

Xt = t-i, i = 0 , l , 2 , 3 , . . . 

where è is standard normal variable. In our loose sense, we may say that this 
is a Gaussian process, since Xt is normal with expected value 0 and variance 
t2. However, it is a somewhat degenerate process, since uncertainty is linked 
to the realization of a single random variable. If we know the value of Xt for a 
single time instant, then we can figure out the whole sample path. Figure 7.24 
illustrates this point by showing a few sample paths of this process. A quite 
different process is obtained if all variables Xt are normal with parameters μ 
and σ2 and mutually independent. Figure 7.25 shows a sample path of the 
process Xt = t ■ et, where êt ~ iV(0,1). However, the marginal distributions of 
the individual random variables Xt are exactly the same for both processes. 

D 
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Fig. 7.25 Sample path of process Xt = t ■ it, where it ~ N(0,1). 

The example shows that we really need some way to characterize the interde-
pendence of jointly distributed random variables, which is the topic of next 
chapter. Discrete-time stochastic processes will be discussed further in Chap-
ter 11 on time series models. 

7.10 PROBABILITY SPACES, MEASURABILITY, AND 
INFORMATION 

Successful investing in stock shares is typically deemed a risky and complex 
endeavor. However, the following piece of advice seems to offer a viable solu-
tion:26 

Buy a stock. If its price goes up, sell it. If it goes down, don't buy it. 

In this section we dig a little deeper into concepts related to measurability 
of random variables and their relationship to the flow of information and its 
impact on decisions. Despite their more theoretical character,27 the concepts 
we consider here are often met when reading books on quantitative finance, 
where it is common to read about nitrations and adapted processes. We will 
not try a full and rigorous treatment, which would require a quite sophisticated 

2 6 In his history of the Great Crash of 1929, John K. Galbraith attributes this fundamental 
advice to an American comedian; see J.K. Galbraith, The Great Crash 1929, originally 
published in 1954, reprinted by Mariner Books, 2009. 
2 7This supplement may be safely skipped. The only section in which we use related concepts 
is Section 13.4, where we illustrate multistage stochastic linear programming models. 
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machinery; still, we will be able to understand what is wrong with the above 
suggestion from a probabilistic perspective, and the concepts that we illustrate 
should look less intimidating after getting an intuitive feel for them. 

We pointed out that a random variable is actually a mapping 

X : Ω - » Μ 

from a set Ω of outcomes of a random experiment to the set of real numbers R. 
Indeed, random variables are often denoted by X(u>) to emphasize this point. 
However, not all conceivable mappings are legitimate random variables. To 
see this, we need to clarify the concept of probability space. 

DEFINITION 7.11 (Probability space) A probability space is a triple, 
usually denoted by [Ο,,Τ,Ρ), where Ω is the sample space, consisting of out-
comes of a random experiment; T is a family of subsets of Ω, the events, with 
suitable closure properties; and P is a probability measure mapping events into 
the interval [0,1]. 

To fully get the message behind this definition, we should observe that for 
a given sample space we may define different probability measures, which is 
not surprising, but we may also define different families of events. If we roll 
a die, the obvious sample space is Ω = {1,2,3,4,5,6}, and we may consider 
a family of events obtained by arbitrary combinations of set operations like 
union, complement, and intersection. This would make a rather large family 
of all subsets of size 1, 2, etc., also including Ω itself and its complement, the 
empty set 0: 

Τχ = {Ω, 0, {1}, {2} , . . . , {6}, {1,2}, {1 ,3} , . . . {5,6}, {1,2,3},...} (7.22) 

However, we may constrain events a bit in order to reflect information or lack 
thereof. For instance, we might consider the following family of events: 

^ 2 = {Ω,0,{1,3,5},{2,4,6}} (7.23) 

It is easy to check that if we try taking complements and unions of elements 
in J-2, we still get an element of J-2- Since intersection is just a combination of 
these two operations, we see that T2 is closed under elementary set operations. 
This family of events, with respect to T\, is definitely less rich, and this 
reflects lack of information. It is the set of events we would deal with if the 
only information available about the roll of the die were "even" or "odd." 

When assigning a probability measure to subsets of Ω, we need to make 
sure that we are able to do the same for any event that we may obtain by 
elementary set operations. In other words, we should not get a subset that is 
not an event. This requirement may be expressed by requiring that !F be a 
field. 

DEFINITION 7.12 (Field) A family T of subsets of il is called a field if 
the following conditions hold: 
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2. E£f^>(n\E)£F 

3. E,G&T=>{E\JG)eT 

A field is also called an algebra of sets. The conditions in the definition 
state that T is closed under elementary set operations. Note that the first 
and second conditions imply that the empty set 0 belongs to the field J-'. 

Example 7.17 Given Ω = {1,2,3,4}, consider the family of subsets 

£ = {Ω,0,{1},{2,3,4},{1,2},{3,4},} 

This is not a field since, for instance 

{1}U{3,4} ,££ 

Actually, to cope with continuous random variables and more generally with 
probability distributions with infinite support, a stronger concept is needed: 
a σ-field, also called a σ-algebra. To define this stronger concept, the third 
condition is extended to a countable union of events: 

oo 

E1,E2,E3,...eF=>\jEief 
1 = 1 

Indeed, whenever the concept infinity comes into play, pathological cases can 
occur. The very concept of σ-field is necessary to avoid weird cases in which 
it is impossible to assign a probability measure to an event. We will not 
be concerned with these anomalies, since we limit our treatment to a finite 
sample space. 

Even describing a finite field by enumerating all of its subsets may be a 
daunting task. However, we may describe it implicitly by considering a finite 
partition V of Ω, i.e., a finite family of subsets Ei, i = 1 , . . . , n, such that 

n 
Ei Π Ej = 0, for i^j, \jEi = to 

i= l 

Given a partition V, we may consider the σ-field a(V) generated by combining 
subsets in the partition in any possible way. In the case of (7.22), the partition 
consists of all singleton sets, whereas in the case of (7.23) we have the two 
subsets of even and odd outcomes. 

Let us now turn to random variables. Given a probability space, we may 
define random variables as mappings of outcomes into real numbers, but we 
should clarify how we associate a measure probability with a random variable. 
Actually, we associate a probability measure with underlying events. Indeed, 
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the probability that we assign to random variables should be associated with 
the underlying events in the field J-'. Consider a discrete random variable 
X and numeric value a. How can we define the probability P(X = a)? We 
should consider the subset of outcomes ω € Ω such that X(u>) = a, which 
essentially amounts to inverting the function X(u>):2S 

χ-1{α) = {ω£ίί:Χ(ω) = a} 

Then, the probability we seek is just the probability measure of the subset 
X~1(a). However, this is only possible if any such subset is an event in the 
σ-field T. 

Example 7.18 Consider the sample space Ω = {1,2,3,4} and a partition 

7> = {{1},{2,3,4}} 

Let T — σ(ν) be the field generated by this partition and define the mapping 
Χ(ω): 

Χ{ω) = 1+ω 

This mapping is not a random variable with respect to the field T. In fact, 
we cannot assign the probability P(X = 3), since 

{ω e Ω : Χ{ω) = 3} = {2} $ T 

To be a random variable, a mapping Y(to) should be constant for the three 
outcomes in {2,3,4}. For instance 

Y({1}) = - 1 , Y({2}) = 1, F({3}) = 1, Y({4}) = 1 

is a legitimate random variable. D 

What is wrong with Example 7.18 is not the mapping Χ(ω) per se; it is its 
association with the field T. If we had a richer field, generated by the partition 
of Ω into its singletons, there would be no issue. Technically speaking, we say 
that X is not ^"-measurable. 

DEFINITION 7.13 (Measurable random variable) We say that a ran-
dom variable Χ(ω) is ^-measurable if 

{ω e Ω : Χ(ω) = χ} G T 

for all values of x. 

2 8 The careful reader will immediately guess that what we are saying works only for a 
discrete random variable, since for continuous random variables the probability of observing 
a specific value is zero. Indeed, in a rigorous treatment we should consider events { B E Î I : 
Χ(ω) < a}, but to keep things as intuitive as possible, we will refrain from doing so. 
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Fig. 7.26 An event tree. 

In other words, the inverse function for any value x must be an event in the 
field T, so that we may associate a probability measure with it. This can be 
done or not depending on the random variable and the richness of the field of 
events T. If we go back to dice throwing, it is clear that if our field is given by 
(7.23), we can assign only one value to all even outcomes, and another value 
to all odd outcomes. The field is, in a sense, smaller than !F\, since all the 
events in Ti are events in T\, but the converse is not true; this represents a 
limitation in the available information. 

The link between event fields, measurability, and information can be further 
clarified if we consider a dynamic problem. Let us consider a stochastic process 
in the form of the event tree depicted in Fig. 7.26. To be concrete, let us 
interpret this as a stochastic process describing the price of a stock share. At 
time t = 0, the stock price is Xo = 10. Then, the price may go up or down, 
resulting in a stochastic process Xt, t = 0,1,2,3. In this case the sample space 
consists of outcomes ω», i = 1,2,. . . , 8 , and each outcome corresponds to a 
scenario, i.e., a possible path of stock prices. For instance, outcome ω% is 
associated with scenario (10,12,11,13). If we are at any terminal node in the 
scenario tree, we know which scenario has occurred, since we can observe the 
whole history of stock prices. However, if we are, e.g., on node 714, we do 
not know whether we are observing scenario ω% or 0*4, since they cannot be 
distinguished. Nevertheless, we do have some information, since by observing 
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the past history of stock prices we can rule out any other scenario. In the 
root node no we have the least information, since any scenario is possible. 

All of this is reflected in the event fields with which random variables Xt, 
t = 0,1,2,3, are associated. We can capture information by suitable partitions 
of the sample space 

Ω = {ωι,ω2,ω3,ω4,ω5,ω6,ω7,ω8} 

At time t = 0 we cannot say anything, and our field of events is 

^ο = {0,Ω} = {0,{1)2,3,4,5,6,7)8}} 

At time t = 1 we can at least rule out half of the scenarios. This is reflected 
by the more refined partition 

Pi = {{1,2,3,4},{5,6,7,8}} 

which generates the field 

Τγ = {0, {1,2,3,4}, {5,6,7,8}, Ω} 

At time t = 2, there is a further branching, refining the partition 

P2 = {{1,2}, {3,4}, {5,6}, {7,8}} 

which generates an even richer field: 

T2 = {0, {1,2}, {3,4}, {5,6}, {7,8}, {1,2,3,4}, {1,2,5,6}, . . . ,{5,6,7,8} 
{1,2,3,4,5,6}, . . . ,{3,4,5,6,7,8},Ω} 

Finally, at time t — 3, we have the finest partition, consisting of singletons 

P3 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} 

which generates the richest field ^ 3 , consisting of all possible subsets Ω. We 
note that, as time goes by, we get larger and larger fields. 

DEFINITION 7.14 (Filtration) An increasing sequence of σ-fields 

defined on a common sample space Ω is called a filtration. 

A filtration defines precisely how information is collected by observing a 
stochastic process. This concept can be defined for continuous-time processes 
with a continuous state space, and it requires a sophisticated mathematical 
machinery. However, the essential message is quite simple: 
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The sequence of decisions we make by observing the stochastic process 
at times t = 0,1,2,... must reflect the available information and cannot 
be anticipative. 

The piece of advice with which we have opened this section is clearly not 
implementable: It would require knowledge of the future. From a technical 
perspective, consider decision variables Zt

b and Z\ representing the number 
of stock shares that we buy and sell, respectively, at time t. At time t = 0 we 
have a unique decision, since we can just buy or sell here and now. Seen from 
time t = 0, the variables for the next time instants are random variables, as 
they depend on the decision that we will make on the basis of the observed 
path of the stochastic process and our expectations for the future, which are 
represented by the scenario tree. The random variables at time t must be 
^-measurable. If we are at node ri\ in the event tree of Fig. 7.26, we cannot 
say "buy if scenario is 0*3" and "do not buy if scenario is u>4." The decision, 
whatever it is, must be the same for the two scenarios. Otherwise, the random 
variable corresponding to the decision at that node would not be constant on 
the event \ω^,ω\\, and it would not be measurable; we would be in trouble 
just as in Example 7.18. Technically speaking, we say that decisions must be 
adapted to the filtration Tt ■ The piece of financial advice we have considered, 
unfortunately, is not adapted to the filtration and would require clairvoyance 
to be practically implementable. 

Problems 

7.1 A random variable X has normal distribution with μ = 250 and σ = 40. 
Find the probability that X is larger than 200. 

7.2 Consider a normal variable with μ = 250 and σ — 20, and find the 
probability that X falls in the interval between 230 and 260. 

7.3 We should set the reorder point R for an item, whose demand during 
lead time is uncertain. We have a very rough model of uncertainty - the lead 
time demand is uniformly distributed between 5000 and 20000 pieces. Set the 
reorder point in such a way that the service level is 95%. 

7.4 You are working in your office, and you would like to take a very short 
nap, say, 10 minutes. However, every now and then, your colleagues come 
to your office to ask you for some information; the interarrivai time of your 
colleagues is exponentially distributed with expected value 15 minutes. What 
is the probability that you will not be caught asleep and reported to you boss? 

7.5 A friend of yours is an analyst and is considering a probability model 
to capture uncertainty in monthly demand of an item featuring high-volume 
sales. He argues that the central limit applies and, after a thorough check of 
data, proposes a normal distribution with expected value 12,000 and standard 
deviation 7000 items. Is this a reasonable model? 
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7.6 Let X be a normal random variable with expected value μ = 6 and 
standard deviation σ = 1. Consider random variable W = 3X2. Find the 
expected value E[W] and the probability P(W > 120). 

7.7 You have just issued a replenishment order to your supplier, which is 
not quite reliable. You have ordered 400 items, but what you will receive is 
a normal random variable with that expected value, and standard deviation 
40 (let us assume that using a continuous random variable is a sensible ap-
proximation of the discrete random variable modeling the integer number of 
received items). After receiving the shipment, you will have to serve a number 
of customer requests. The amount that your customers ask for is a random 
variable with expected value 3 and standard deviation 0.3. How many cus-
tomer requests should you receive in order to have a probability of stockout 
larger than 10%? 

7.8 Let X ~ χ^ be a chi-square variable with n degrees of freedom. Prove 
that E[X] = n. 

7.9 You work for a manufacturing firm producing items with a limited time 
window for sale. Items are sold by a distributor facing uncertain demand over 
the time window, which we model by a normal distribution with expected 
value 10,000 and standard deviation 2500. The distributor decides how many 
items to order using a newsvendor model. From the distributors perspective, 
each item costs $10 and is sold at the recommended price of $14. Unsold 
items are bought back by the manufacturer. Assume that the manufacturer 
would like to see at least 15,000 items on the shelves (in order to promote her 
brand name); at what price should she be willing to buy unsold items back? 

7.10 You are in charge of deciding the purchased amount of an item with 
limited time window for sales and uncertain demand. The unit purchase cost 
is $10 per item, the selling price is $16, and unsold items at the end of the 
sales window have a salvage value of $7 per item. Demand is also influenced 
by the level of competition. If there is none, demand is uniformly distributed 
between 1200 and 2200 items. However, if a strong competitor enters the 
game, demand is uniformly distributed between 100 and 1100 items. 

• If the probability that the competitor enters the market is assumed to 
be 50%, how many items should you order to maximize expected profit? 
(Let us assume that selling prices are the same in both scenarios.) 

• What if this probability is 20%? Does purchased quantity increase or 
decrease? 

7.11 In some applications we are interested in the distribution of the max-
imum among a set of realization of random variables. Let us consider a set 
of n i.i.d. variables Ui, i = 1 , . . . ,n, with uniform distribution on the unit 
interval [0,1]. Let X be their maximum: X = max{Ui, U2, ■ ■ ·, Un}. Prove 
that the CDF of X is Fx{x) = xn. 
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For further reading 

Most useful references for this chapter are essentially the same as in the pre-
vious chapter, some of which are repeated here just for readers' convenience. 

• For an elementary introduction to continuous random variables, see Ref. 
[14] or [13]. The first reference also illustrates the link between proba-
bility theory and statistics, whereas the second one is more concerned 
with probability theory, including stochastic processes. 

• At a more advanced level is Ref. [16]. Stochastic processes are dealt with 
at a reasonably sophisticated level in Ref. [7], which is accompanied by 
Ref. [6]. 

• Issues in measurability of random variables are dealt with in Refs. [5], 
[12], and [15], which definitely make more challenging reading. 

• On the application side, the link between probability theory and mathe-
matical finance is well illustrated in Ref. [11]. A useful reading on value 
at risk is provided in Ref. [9]. 

• The role of stochastic models in manufacturing is well documented in 
Ref. [8] ; applications to supply chain management are also described at 
an elementary level in Ref. [4]; see Ref. [1] or [18] for a more advanced 
treatment. 
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8_ 
Dependence, Correlation, 

and Conditional 
Expectation 

So far, when dealing with a sequence of random variables, we always assumed 
that they were independent. In this chapter, at last, we investigate the issue 
of dependence. To get the basic intuition, consider the hypothetical demand 
data in Table 8.1. 

Table 8.1 Demand data for two items: Are they independent? 

Dx 110 120 90 80 100 80 105 95 120 100 
D2 54 53 49 44 51 40 53 47 60 49 

Can we say that the two random variables D\ and D2 are independent? Look-
ing at the raw data may be a bit confusing, but things get definitely clearer 
if we consider the sample means, D\ = 100 and D2 — 50. We observe that 
whenever D\ is above average, D2 tends to be, too; vice versa, whenever D\ 
is below average, D2 tends to be, too. Hence, we have a sort of concordance 
between the two random variables, which should not be there if the two vari-
ables were independent. Capturing this concordance leads us to the definition 
covariance and correlation, which is the main purpose of this chapter. 

Before doing so, we introduce the formal concepts of joint and marginal 
distributions in Section 8.1. The mathematics here is a bit more complicated 
than elsewhere, and the section can be skipped by those who just wish an intu-
itive understanding. In Section 8.2, we summarize properties of independent 
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random variables. Then, in Section 8.3, we characterize the interdependence 
between two random variables in terms of covariance and correlation. We 
illustrate the role of these concepts in risk management, and we also point 
out their limitations. In the book, we will not cover multivariate distributions 
too much, as this is a topic that goes beyond an introductory text, but in Sec-
tion 8.4 we treat one fundamental case: the multivariate normal distribution. 
Finally, in Section 8.5, we take advantage of the possible links between ran-
dom variables to compute expectations by conditioning. Indeed, conditional 
expectation is an essential concept in many applications. 

8.1 JOINT AND MARGINAL DISTRIBUTIONS 

In order to fully appreciate the issues involved in characterizing the depen-
dence of random variables, as well as to appreciate the role of independence, 
we should have some understanding of how to characterize the joint distri-
bution of random variables.1 For the sake of simplicity, we will deal only 
with the case of two random variables with a joint distribution, leaving the 
general case as a relatively straightforward extension. The pathway to define 
all the relevant concepts for two jointly distributed random variables X and 
Y is similar to the case of a random single variable. The unifying concept 
is the cumulative distribution function (CDF), as it applies to both discrete 
and continuous variables. If we have two random variables, we consider joint 
events such as {X < χ}Π {Y < y}, and associate a probability measure with 
them. 

DEFINITION 8.1 (Joint cumulative distribution function) The joint 
CDF for random variables X and Y is defined as 

Fx,Y(x,y) =P ({X < x} <1{Y < y}) 

In the following, we will often use the streamlined notation P(X < x,Y < y) 
to denote a joint event. 

The joint CDF is a function of two variables, x and y, and it fully characterizes 
the joint distribution of the random variables X and Y. 

We may also define the joint probability mass function (PMF) for discrete 
variables, and the joint probability density function (PDF) for continuous 
variables. For instance, let us refer to a pair of discrete variables, where X 
may take values Xi, i = 1,2,3,..., and Y may take values yj, j — 1,2,3,.... 
The joint PMF is 

PX,Y(XÌ, yj) = P{x = Xi,Y = yj) 

This section can be skipped by less mathematically inclined readers. 
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We see immediately that, given the PMF, we may recover the CDF 

i j 
Fx,Y(xi,yj) = ^2^2px,Y(xi,yk) 

1 = 1 fc=l 

Going the other way around, we may find the PMF given the CDF 

PX,Y(XÌ,VJ) = FX,Y(XÌ,VJ) - Fx!Y(xi-1,yj) 
-•Fx,y(a;i,2/j-i) + i1x,y(a;i-i ,%-i) (8-1) 

We also recall that a PMF makes sense in the discrete case as these proba-
bilities are well defined, whereas for the continuous case they are zero. When 
dealing with continuous random variables, we have introduced a PDF, which 
allows us to express probabilities associated with sets, rather than single val-
ues; to do so, we need to integrate the PDF over the set of interest. The idea 
can be generalized to jointly distributed random variables, but in this case 
we integrate over a two-dimensional domain.2 Hence, we have a joint PDF 
fx,Y{x,y) such that 

P((X,Y) € C) = JJ fx,Y(x,y)dxdy (8.2) 
(œ,3/)eC 

In general, we cannot be sure that such a function exists. To be precise, we 
should say that the two random variables are jointly continuous if the joint 
PDF exists. Given the joint PDF, we may find the joint CDF by integration: 

/

a pb 
/ fx,Y(x,y)dydx 

-OC J — OC 

(8.3) 

Example 8.1 It is instructive to see the connection between Eqs. (8.1) and 
(8.2), in the context of jointly distributed, continuous random variables. Con-
sider the rectangular area 

C = [xi-i,Xi] x [vj-uVj] 

which is depicted as the darkest rectangle in Fig. 8.1. The probability 

P((X,Y)eC) 

is the area below the joint PDF, over the rectangle. How can we find this 
area in terms of the joint CDF? Looking at Eq. (8.3), we see that the CDF 
gives the areas below the PDF, over infinite regions to the southwest with 
respect to each point. These are displayed as quadrants in the figure. It is 

■^Integrals in two dimensions are outlined in Section 3.9.3. 
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Fig. 8.1 Interpreting Eq. (8.1). 

easy to see that we can find the probability of C by taking the right sums 
and differences of the area over the quadrants. Let us denote the quadrant to 
the southwest with respect to point (x,y) as Q(x,y). Then, in terms of set 
operations (difference, union, and intersection), we may write 

C = {Q{xi,yj)\ [Q{XÌ-I, Vj) U Q(xi,yj-.i)}} U [Qixi-i^j) r\Q(xi,yj-.i)} 

where, of course, Q(xi-\,yj)f]Q(xi,yj-i) = Q(xi^\,yj-i), which is depicted 
as the quadrant with the intermediate shading in the figure. Translating set 
operations to sums and differences, we get (8.1). D 

In the example we see how to obtain a probability in terms of the CDF, 
for jointly continuous random variables. To find the PDF in terms of the 
CDF, we should consider the limit case of a rectangle with edges going to 
zero. Doing so yields 

d2F 
fx'Y{a'b)=dx^y^b) 

In the single-variable case, we can find the PDF by taking the derivative of the 
CDF; since double integrals are involved in the bidimensional case, it should 
not come as a surprise that a second-order, mixed derivative is involved here. 

Having defined joint characterizations of random variables, a first question 
is: Can we relate the joint CDF, PMF, and PDF to analogous functions 
describing the single variables? In general, whatever refers to a single variable, 
within the context of a multivariate distribution, is called marginal. So, to 
be more specific, given the joint CDF Fxty(x,y), how can we find marginal 
CDFs Fx(x) and Fy(y) pertaining to each individual variable? In principle, 
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the task for the CDF is fairly easy. We obtain the marginal CDFs for the two 
random variables as follows: 

Fx(x) = P(X <x) = P(X < x, Y < +00) = Fxx(x, +00) 

By the same token, Fy(y) = FxtY(+oo, y). 
In the discrete case, to obtain the marginal PMFs from the joint PMF, we 

just use the total probability theorem3 and the fact that events {Y = yj} are 
disjoint: 

Px(Xi) = P(X = xz) = P i\J{X = Xi,Y = y3} 

= Σρ(χ = xuY = Vj) = Σρχ,γ&ί,υί) 
3 3 

If we want to obtain marginal PDFs from the joint PDF, we may work in 
much the same way as in the discrete case: 

/■ /- + 00 

P(XeA) = P(XeA,Ye(-<x>,+oc))= / / fXtY(x,y)dydx 
JA J—00 

If we introduce the marginal density: 

/

+00 
fxy{x,y)dy 

-00 

we have 
~ ' " ' lx P(XGA)= [ fx(x)da 

JA 1 A 

The marginal PDF for Y is obtained in the same way, integrating with respect 
to x. 

We see that, given a joint distribution, we may find the marginals. It is 
tempting to think that, given the two marginals, we may recover the joint dis-
tribution. This is not true, as the marginal distributions do not say anything 
about the link among random variables. In Example 7.16 we have seen that, in 
the context of a discrete-time stochastic process Xt, quite different processes 
may share the same marginal distribution for all time periods t. The following 
example, taking advantage of the concepts we have just learned, shows that 
quite different joint distributions may yield the same pair of marginals. 

Example 8.2 Consider the following PDFs (in a moment we will check that 
they are legitimate densities): 

fx,Y(x,y) = 1, o<x,y<i 
9X,Y{X, y) = l + {2x- l)(2y - 1), 0 < x, y < 1 

3See Theorem 5.7. 
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They look quite different, but it is not too difficult to see that they yield the 
same marginals. The first case is easy: 

fx(x)= / fx,y(x,y)dy= / ldy=l 
Jo Jo 

By symmetry, we immediately see that fy(y) = 1 as well. Hence, the two 
marginals are two uniform distributions on the unit interval [0,1]. Now let us 
tackle the second case. As we learned in Section 3.9.3, when integrating with 
respect to y, we should just treat x as a constant: 

gx{x) = f [1 + (2x - l)(2y - l)]dy 
Jo 

= [ ldy + ( 2 x - l ) / (2y-l)dy 
Jo Jo 

= l+(2x-l)[y2-y]\1
0 = l 

As before, it is easy to see by symmetry that fy{y) = 1 as well. Again, the 
two marginals are two uniform distributions, but the link between the two 
random variables is quite different. 

Before closing the example, it is easy to see that /x,y(x, y) is a legitimate 
density as it is never negative and 

Jo Jo 
ldxdy 

Actually, this is just the area of a unit square. Checking the legitimacy of 
9χ,γ(χ>ν) is a bit more difficult. The easy part is checking that the integral 
over the unit square is 1. Given the marginals above, we may write 

/ / 9x,Y(x,y)dydx= / gx(x)dx = I ldx=l 
Jo Jo Jo Jo 

But we should also check that the function is never negative. One way of doing 
so would be to find its minimum over the unit square. The optimization of 
a function of multiple variables is fully addressed in Chapter 12, but what 
we know from Section 3.9.1 suggests that a starting point is the stationarity 
conditions 

g = 2 ( 2 y - l ) = 0, g = 2 ( 2 * - l ) = 0 

These conditions imply x = y = 0.5 but, unfortunately, this is neither a 
minimum nor a maximum. We invite the reader to check that the Hessian 
has two eigenvalues of opposite sign. However, with a little intuition, we may 
see that this density involves the product of two linear terms, 2x — 1 and 
2y — 1, and these range on the interval [—1,1], given the bounds on x and y. 
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Hence, their product will never be smaller than —1, and the overall PDF will 
never be negative (its minimum is 0, for x = 1, y = — 1 and x — —1, y = 1). 

D 
The example points out that there is a gap between two marginals and a 

joint distribution. The missing link is exactly what characterizes the depen-
dence between the two random variables. This missing link is the subject of a 
whole branch of probability theory, which is called copula theory; a copula is 
a function capturing the essential nature of the dependence between random 
variables, separating it from the marginal distributions. Copula theory is be-
yond the scope of this book; in this chapter and in the following, we will just 
rely on a simple and partial characterization of dependence between random 
variables, based on covariance and correlation. 

8.2 INDEPENDENT RANDOM VARIABLES 

In the previous section we formally introduced the concept of the joint cumu-
lative distribution function (CDF). In the case of two random variables, X 
and Y, this is a function Fx,y(x,y) of two arguments, giving the probability 
of the joint event {X < x, Y < y}: 

Fx,Y(x,y) = P(X<x,Y<y) 

The joint CDF tells the whole story about how the two random variables 
are linked. Then, on the basis of the joint CDF, we may also define a joint 
probability mass function (PMF) pxty(x, y) for discrete random variables, and 
a joint probability density function (PDF) fx,Y(x,y) for continuous random 
variables. These concepts translate directly to the more general case of n 
jointly distributed random variables. 

If we have the joint PMF or PDF, we may compute the usual things, such 
as expected values, variances, and expected values of function of the random 
variables. The most general statement, when two random variables X and 
Y are involved, concerns the expected value of a function g(X, Y) of the two 
random variables. It can be computed as 

>J y jg(x i , VJ)PX,Y(XÌ, yj), in the discrete case 

E[g(X,Y)]=i 
p+OC /»+CO 

/

-t-OO /-t-OO 
/ g(x, y)fx,Y (x, y) dy dx in the continuous case 

-oo J — oo 

To find the expected value E[X], all we have to do is plugging g(x,y) = x 
in the formula above; if we are interested in variance Var(y), then we plug 
g(x,y) = (y — βγ)2, where μγ — E[Y}. We will not really have to compute 
such things in the remainder of the book, but the reader may appreciate the 
potential difficulty of computing multiple sums or integrals. 
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Apart from this computational difficulty, the very task of characterizing the 
full joint distribution of random variables may be difficult. It is even more 
difficult to infer this information based on empirical data. This is why one 
often settles for a limited characterization of dependence in terms of correla-
tion. Before doing so, it is quite useful to understand how independence may 
simplify the analysis significantly. We will state, without any proof, a few 
fundamental properties that hold under the assumption of independence. All 
of these results are a consequence of a well-known fact: If events are indepen-
dent, the probability of a joint event is just the product of the probabilities 
of all of the individual events. In the case of the joint CDF, this implies: 

FX,Y{X, y) = P{X < x) ■ P(Y <y) = Fx(x) ■ FY(y) 

In other words, the joint CDF can be factored into the product of the two 
marginal CDFs, Fx(x) and Fy(y). The same factorization applies to the joint 
PMFs and PDFs: 

Px,v{x,y) =px{x)py(y), fx,v{x,y) = fx(x)fr{y) 
It is by using this factorization that we can prove, e.g., the properties concern-
ing the variance of a linear combination of independent random variables, that 
we have already used a few times and is recalled here for readers' convenience: 

( n \ n 

i=l } i=\ 
for random variables Xi and coefficients Aj, i — 1 , . . . ,n. Later, in Section 
8.3.2, we discuss the general case where independence is not assumed. In 
passing, we may also state the following theorem. 

THEOREM 8.2 Consider a function of random variables X and Y and 
assume that it can be factorized as the product of two terms g(X)h(Y). If the 
two random variables are independent, then E[g(X)h(Y)] = E[g(X)] -E[/i(y)]. 

In particular, it is important to notice that the expected value of a sum is 
always the sum of the expected value, but this commutation cannot be applied 
to products in general: 

E[XY] φ E[X]E[Y] (8.4) 

However, equality holds if X and Y are independent. 

8.3 COVARIANCE AND CORRELATION 

If two random variables are not independent, it is natural to investigate their 
degree of dependence, which means finding a way to measure it and to take 
advantage of it. The second task leads to statistical modeling, which we will 
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investigate later in the simplest case of linear regression. The first task is not 
as easy as it may seem; the joint density would tell us the whole story, but 
it is difficult to manage. More importantly, it is difficult to estimate from 
empirical data. We would like to come up with a limited set of summary 
measures that are easy to estimate, but fully capturing dependence with a 
single number is a tricky issue, as we will learn shortly. 

A clue on what we could do to measure dependence can be obtained by 
checking Table 8.1 again. We observed that in most joint realizations of the 
two random variables, both values tend to be either larger or smaller than the 
respective averages. This leads to the definition of covariance. 

DEFINITION 8.3 (Covariance) The covariance between random variables 
X and Y is defined as 

Cov(X, Y) = E[(X - E[X])(Y - E[Y])] 

Quite often, the covariance between two random variables is denoted by σχγ. 

Covariance is the expected value of the product of two deviations from the 
mean, and its sign depends on the signs of the two factors. We have positive 
covariance when the events {X > E[X]} and {Y > E[Y]} tend to occur 
together, as well as the events {X < E[X}} and {Y < E[Y]}, because the 
signs of the two factors in the product tend to be the same. If the signs tend 
to be different, we have a negative covariance. 

Example 8.3 If two products are complements, it is natural to expect posi-
tive covariance between their demands; negative covariance can be expected if 
they are substitutes. Similarly, if we observe over time the demand for an item 
whose long- or midterm consumption is steady, a day of high demand should 
typically be followed by a day with low demand. As a concrete example, 
consider the weekly demand for diapers after a week of intense promotional 
sales. D 

From a computational perspective, it is very handy to express covariance 
as follows: 

Cov(X,r) = E\(X - μχ) ■ (Y - μγ) 

E XY - μχΥ - Χμγ + μχμγ 

= Ε[ΧΥ}-μχμγ (8.5) 

We easily see that if two variables are independent, then their covariance is 
zero, since independence implies E[XF] = E\X] ■ E\Y], courtesy of Theorem 
8.2. However, the converse is not true in general, as we may see from the 
following counterexample. 
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-1 1 

Fig. 8.2 A counterexample about covariance. 

Example 8.4 (Two dependent random variables may have zero co-
variance) Let us consider a uniform random variable on the interval [—1,1]; 
its expected value is zero and on its support the density function is constant 
and given by fx (x) = | . Now, define random variable Y as 

Y = ^l-X2. 

Clearly, there is a very strong interdependence between X and Y because, 
given the realization of X, Y is perfectly predictable. However, their covari-
ance is zero! We have seen that 

Cov(X,y) = E[XY] - E[X]E[Y] 

but E[X] = 0 and 

E[XY] = ! x^l-x2 · § da: = 0 

because of the symmetry of the integrand function, which is an odd function, 
in the sense that f{—x) = —/(#). One intuitive way to explain the weird 
finding of this example is the following. First note that points with coordinates 
(X, Y) lie on the upper half of the unit circumference X2 + Y2 = 1. But if 
Y" < E [F], we may have either X > E[X] or X < E[X\. This is illustrated in 
Fig. 8.2. A similar consideration applies when Y > E[V]. D 

The example shows that covariance is not really a perfect measure of depen-
dence, as it may be zero in cases in which there is a very strong dependence. In 
fact, covariance is rather a measure of concordance between a pair of random 
variables. In other words, covariance measures a linear association between 
random variables. A strong nonlinear link, as the one in Fig. 8.2 may not be 
detected at all, or only partially. This point will be much clearer when we 
deal with simple linear regression in Chapter 10. 
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8.3.1 A few properties of covariance 

The essential properties of covariance are the following: 

Property 1. Cov(X, X) = Var(X). This property shows that covariance is 
a generalization of variance and explains its name. Using shorthand 
notation, σχχ — σχ. 

Property 2. Cov(X, Y) = Cov(Y, X). This property points out an impor-
tant issue: Covariance is a measure of association, but it has nothing to 
do with cause-effect relationships. This is an important point to keep in 
mind when building statistical models based on empirical data. Causal-
ity is not necessarily proved by statistical techniques which just exploit 
associations. 

Property 3. Cov(aX,Y) = aCov(X,Y), where a is any number. This 
property states that numbers can be "taken outside" covariance. It is 
instructive to note that, applying this property, we obtain 

Var(a:X) = Cov{aX,aX) = aCov(X,aX) 
= a2Cov(X,X) = a2Var(X) 

as expected. 

Property 4. Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z). This is a sort of 
"distributive" property that comes handy when dealing with sums of 
random variables. While the first three properties are trivial to prove, 
it is instructive to prove this last one using (8.5) and linearity of expec-
tation: 

Cov(X, Y + Z) = E[X(Y + Z)\ - E[X]E[Y + Z\ 
= E[XY] + E[XZ] - E[X\E[Y] - E[X]E[Z] 
= Cov(X, Y) + Cov(X, Z) 

8.3.2 Sums of random variables 

In Section 7.7 we dealt with sums of random variables, under the restrictive 
assumption of independence. Finally, armed with covariance, we may tackle 
the general case. 

THEOREM 8.4 (Variance of the sum/difference of two random vari-
ables) Given two random variables X and Y, the variance of their sum and 
difference is 

Var(X + y ) = Var(X) + Var(F) + 2 Cov(X, Y) 
V a r ( X - Y ) = Var(X) + Var(Y) - 2 Cov(X, Y) 
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respectively. 

This theorem is somewhat reassuring; if we take the difference of two random 
variables, rather than the sum, the minus does count after all, but it plays a 
role depending on covariance. It is instructive to consider a pair of alternative 
proofs of the first relationship (the second one is easily obtained from the first 
by using property 3 of covariance). One possibility is using the definition of 
variance directly: 

Var(X + r ) = E [{X + Y - μγ - μγ)2] 
= Ε[(Χ- μχ)2 + (Υ- μγ)2 + 2(Χ - μχ)(Υ - μγ)] 
= Var(X) + Var(y) + 2 Cov(X, Y) 

Another possibility is to take advantage of property 4 of covariance: 

Var(X + Y) = Cov(X + Y, X + Y) 
= Cov(X, X) + Cov(X, Y) + Cov(Y, X) + Cov(Y, Y) 
= Var(X) + Var(F) + 2 Cov(X, Y) 

Using the second proof technique, it is fairly easy to come up with the following 
statement. 

THEOREM 8.5 (Variance of the sum of random variables) Given a 
collection of random variables Xi, i = 1 , . . . , n, we obtain 

( n \ n n 

Σ Xi )= Σ V a r W +2 Σ Σ Cov(xi> xi) 
i= l / i=\ i=\ j<i 

We see that, in the case of mutually independent variables, covariances will 
be zero, and the variance of the sum does boil down to the sum of variances. 
A very interesting application of the theorem arises in the area of financial 
portfolio management. 
Example 8.5 (A classical model of risk in financial portfolio man-
agement) Consider the task of an investor who must allocate her wealth to 
two risky financial assets. The returns of the two assets are modeled by ran-
dom variables R\ and i?2, respectively. Assume that the investor knows the 
two expected returns, μ\ and μ^\ the two variances of the return, σ\ and σ\; 
and the covariance, σΐ2· What the investor has to decide is the fraction of 
wealth that she should allocate to each asset; let us denote the weights of the 
two assets in the portfolio by W\ and w-i, respectively. The two weights must 
add up to 1 

w\ + w2 = 1 
and they cannot be negative if short-selling is ruled out (see Example 1.3). 
Hence, the return of the portfolio is a weighted sum of random variables: 

Rp = W1R1+ W2R2 
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There are numerous issues involved in portfolio decisions, but a preliminary 
requirement is to figure out the expected return of the portfolio and some 
measure of risk, in order to trade them off. It is easy to see that the expected 
return is 

μρ = E [wiRi + W2R2} = υ)\μι + ιυ2μ2 

One possible measure of risk is standard deviation of portfolio return. We will 
see a few shortcomings of this risk measure later, but it is certainly a useful 
input for the decision of our investor. To find standard deviation, one has to 
find variance first. This is a bit trickier than the expected value: 

σ1 = Var {w\R\ + W2R2) W1a1 + 2u>iUl2(Jl2 + W2&2 

Taking a careful look at variance, as a function of portfolio weights w\ and 
102, should ring a bell: This is a quadratic form, a concept that we introduced 
in Section 3.8. We also know that quadratic forms can be expressed in a very 
compact way by using vectors and matrices. So, let us group portfolio weights 
into the following vector: 

W\ 
W2 

Let us also group variances and covariances into the following matrix: 

C l l <Ti2 

C21 CT22 

where an = af, i = 1, 2. Matrix Σ is called the covariance matrix. Given 
property 2 of covariance, CTij = σ^\ so Σ is a symmetric matrix. Now it is 
easy to check that variance of portfolio return can be expressed as 

at — wTEw 
D 

The finding of the example above can be easily generalized to a collection 
of n random variables grouped into the following vector: 

Xi 
X2 

Xn 

Let us also introduce the vector of expected values and the covariance matrix 

μ = 

' Ml 
ß2 

. M« . 

Σ = 

σ η 
C21 

C31 

σ„ι 

σΐ2 
" 2 2 

0 3 2 

σ«2 

σ ΐ 3 ■ 
^23 · 
C33 · 

<7η3 · 

■ σ\η 
■ σ2„ 

£Γ3η 

&ηη 
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where an = af, i = 1 , . . . , n. If we form a linear combination 

n 

i= l 

then we have 
n 

E[Z] = ^aißi = ατμ (8.6) 
i= l 

n 
Var(Z) = Υ^ caajVzj = α τ Σ α (8.7) 

i | j = l 

Since we know that variance is nonnegative, we may immediately deduce the 
following property of the covariance matrix. 

PROPERTY 8.6 The covariance matrix Σ is a symmetric, positive semidef-
inite matrix. 

This property has several implications. We may be interested in minimizing 
risk as measured by variance, with respect to a vector of decision variables x, 
subject to constraints. The objective function is the quadratic form χ τ Σ χ , 
which, by the property above, is a convex function.4 Furthermore, we know 
that a symmetric matrix has orthogonal eigenvectors.5 This can be exploited 
in data reduction methods such as principal component analysis, which is the 
subject of Chapter 17. 

8.3.3 The correlation coefficient 

The covariance is a generalization of variance. Hence, it is not surprising that 
it shares a relevant shortcoming: Its value depends on the unit of measurement 
of the underlying quantities. We recall that it is impossible to say whether a 
variance of 10,000 is large or small; a similar consideration applies to standard 
deviation, which at least is measured in the same units as expected values, so 
that we may consider the coefficient of variation Cx = σχ/μχ. We may try a 
normalization as well, in order to define an adimensional version of covariance. 

DEFINITION 8.7 (Correlation coefficient) The correlation coefficient 
between random variables X and Y is defined as 

Cov(X,Y) σχγ 
θγγ — = 

y/Vax{X)y/Vax(Y) σχσγ 

4See Section 3.8. 
5See Theorem 3.10. 
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The coefficient of correlation is adimensional, and it can be easily interpreted 
on the basis of the following theorem. 

T H E O R E M 8.8 The correlation coefficient ρχγ takes values in the range 
[—1,1]. / / ρχγ — ± 1 , then X and Y are related by Y — a + bX, where the 
sign of b is the sign of the correlation coefficient. 

PROOF Consider the following linear combination of X and Y: 

„ X Y 
Z = — + — 

σχ σγ 
We know that variance cannot be negative; hence 

Y&I(2L + 1\ = Varf^+Varf—i+2Covf—,— 
\σχ σγ) \σχ) \σγ) \σχ σγ 

= 1 + 1 + ϊρχ,γ > 0 

where σχ and σγ are the standard deviations of X and Y, respectively. This 
inequality immediately yields ρχ,γ > — 1. By the same token, consider a 
slightly different linear combination: 

Varf ) = l + l - 2 p X y > 0 => ρχγ <\ 
\σχ σγ) 

We also know that if Var(Z) = 0, then Z must be a constant. In the first 
case, variance will be zero if p = —1. Then, we may write 

„ X Y 
Z = — + — =a 

o~x σγ 
for some constant a. Rearranging the equality, we have 

Y = -X— + ασγ 
σχ 

This can be rewritten as Y = a + bX, and since standard deviations are non 
negative, we see that the slope is negative. Considering the second linear 
combination yields a similar relationship for the case p = 1, in which the 
slope 6 is positive. I 

Given the theorem, it is fairly easy to interpret a specific value of correla-
tion: 

• A value close to 1 shows a strong degree of positive correlation. 

• A value close to —1 shows a strong degree of negative correlation. 

• If correlation is zero, we speak of uncorrelated variables. 
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Fig. 8.3 Samples of jointly normal variables for different values of the correlation 
coefficient p. 

A visual illustration of correlation is given in Fig. 8.3. Each scatterplot shows 
a sample of 100 joint observations from a joint normal with μι = μ^ = 10, 
ci = (?2 = 5, and different values of correlation. The effect of correlation 
is quite evident if we think to "draw a line" going through each cloud; the 
slope of the line corresponds to the sign of the correlation. In the limit case 
of p = ± 1 , the observations would exactly lie on a line. We stress again that 
uncorrelated variables need not be independent. A notable case, in which lack 
of correlation implies independence, is the multivariable normal distribution, 
which we cover next. 

8.4 JOINTLY NORMAL VARIABLES 

A detailed coverage of multivariate distributions is beyond the scope of the 
book, but we should at least consider a generalization of normal distribution. 
A univariate normal distribution is characterized by its expected value μ and 
by its variance σ2. In the multivariate case, we have a vector of expected 
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values μ and a covariance matrix Σ . We consider a random vector taking 
values in M.n: 

" Xi " 
X2 

X = 

X-n 
We say that X has jointly normal or multivariate normal distribution if its 
joint density is given by 

,xH=iÄ?Weip{4<x-'i'rr,<x-''»} (8.8) 

where exp(·) is the exponential function and | Σ | is the determinant of the 
covariance matrix. This expression may look a bit intimidating, but it is easy 
to see that, for n = 1, it boils down to the familiar density of a uni variate 
normal. The notation X ~ λί(μ, Σ) is used to refer to a multivariate normal 
variable. 

To get a better feeling for the multivariate normal density, it may be in-
structive to write it down more explicitely for a bivariate case. We have 

μ 
Mi 
M2 

Σ = 
ρσ\σ2 

ρσισ2 

Let us write the determinant explicitly: 

ρσχσ2 

ρσ\σ2 υ2 

The inverse of the covariance matrix is6 

1 

2 2 2 2 2 2 2 St 2\ 

σχσ2 - p σγσ2 = σ1σ2(1 - p ) 

Σ " 1 -ρσχσ2 
σ\σ\{\ - p2) L ~ρσισ2 

and a few calculations yield 

, , 1 / z\ -2pZlz2+z^\ 
^ ' ^ ^ T W ^ I 2(1-p>) ) 

where 
z\ = 

xi - μι 
z2 

X2 - μ2 

σι σ2 
Clearly, z\ and z2 represent standardizations of variables X\ and £2· 

What is the shape of this density function? If the two variables were 
uncorrelated, i.e., if p = 0, the level curves of the density function would 

6See the rule described in Example 3.12. 



370 DEPENDENCE, CORRELATION, AND CONDITIONAL EXPECTATION 

Fig. 8.4 Surface plot of a joint normal PDF. 

just be concentric circles in terms of the standardized variables. In terms 
of the original variables, we would have a set of concentric ellipses, with a 
horizontal axis and a vertical axis. The effect of correlation is to rotate the 
ellipses. Figure 8.4 shows a surface plot of the density function of a bivariate 
normal with μι = μ2 = 5, σ\ = σ-ι = 6, and p = 0.6. We see the familiar 
bell shape, but it is the contour plot of Fig. 8.5 that illustrates the effect of 
positive correlation. 

Let us check what happens in the density above if we set p = 0, destandard-
izing Zi to get a clearer picture: 

* , x ! ί ζϊ + zl Ì 

1 / (an 
\/2πσι 2σ? / v/2^72 H \ 2σ| J 

We see that the joint density can be factored into the product of two marginal 
densities, which are themselves normal. Indeed, the following theorem holds 
in general. 

T H E O R E M 8.9 If X is a vector of jointly normal random variables and if 
they are pairwise uncorrelated, then they are independent. 

The theorem states that for jointly normal variables, lack of correlation implies 
independence. We noted that independence implies lack of correlation, but 
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Fig. 8.5 Contour plot of a joint normal PDF. 

the converse is not true in general (see Example 8.4). The multivariate normal 
is a significant exception. 

8.5 CONDITIONAL EXPECTATION 

We are already familiar with the concept of conditional probability when 
events are involved. When dealing with random variables X and Y, we might 
wonder whether knowing something about Y, possibly even its realized value, 
can help us in predicting the value of X. To introduce the concepts in the 
simplest way, it is a good idea to work with a pair of discrete random variables 
with discrete support. So, let us consider a variable X that can take values 
Xi, i = 1 , . . . , k, and a variable Y that can take values yj, j = 1 , . . . , I. Given 
the joint PMF, we know all of the relevant probabilities 

Pxv(x,y) = P(X = Xi,Y = yj) 

and we may also consider conditional probabilities, such as 

P(X = Xi,Y = yj) P{X = Xi\Y = yj) P(Y = yj) 

assuming, of course, that P(Y = yj) φ 0. Generalizing a bit, let us define the 
conditional PMF: 

PX\Y(X,y) = P(X = x\Y = y) = — , . 
PYW 
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It is essential to note that, if the two random variables are independent, then 

/ N px,y{x,y) ρχ{χ)ργ(υ) , x px\Y(x,y) = TT— = r-\— =px{x) 
PY(y) M y ) 

i.e., knowledge of Y is no use in predicting X. If the two variables are not 
independent, one natural question concerns the expected value of X if we 
know that Y = yj. Such a conditional expectation is obtained as follows: 

k k 

E[X\Y = yj] = ΣχίΡ(Χ = XÌ\Y = yj) = ΣχφχνίχΑν,) 
i= l i= l 

Example 8.6 Let X and Y be two binary random variables whose joint 
distribution is characterized by the PMF: 

pjr ,y(0,0)=0.1, pXiY{0,1) = 0.3, ρχ,γ(1,0) = 0Λ, ρχ,γ(1,1) = 0.2 

Let us find the distribution of X conditional on Y = 0 or Y = 1. The first 
step is computing the marginal PMF of Y: 

PY(0) = ρχ,γ(0, 0)+PX,Y(1, 0) = 0.1 + 0.4 = 0.5 
py(l) = PX,Y{0, 1) + PX,Y(1, 1) = 0.3 + 0.2 = 0.5 

Then we find ρχ\γ(χ, 0) first: 

Ρχ,γ (0,0) _ 1 

By the same token: 

P{X = 0 | Y = 0) 

P(X = 1 I Y = 0) = 

P(X = 0 | Y = 1) = 

P(X = 1 I Y = 1) 

ργ(0) 5 
ΡΧ,ΥΟ-,0) _ 4 

M O ) 5 

PAr.y (0,1) _ 3 
M l ) 5 

PJf,y(l,l) 2 
py(l) 5 

Now we may compute the conditional expected values: 

E[X | Y = 0] = 0 x P(X = 0 I Y = 0) + 1 x P(X = 1 I Y = 0) 
= 0 x ì + l x | = 0 . 8 

E[x | y = i] = oxP(x = o iy = i) +1 xv(x = 11y = i) 
= 0 x | + l x | = 0 . 4 

Incidentally, the unconditional expected value of X is 

E[X] = 0 x 0.1 + 0 x 0.3 + 1 x 0.4 + 1 x 0.2 = 0.6 
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We see that knowledge of Y does change our expectation about X. The two 
random variables are not independent. D 

The case of two jointly continuous random variables is conceptually similar, 
and it goes through the definition of the following PDF: 

, , s fx,r{x,y) 
fx^y) = -JYW-

for y such that fy(y) φ 0. It is no surprise that we cannot divide by a 
probability P(Y = y), as this is identically zero, but the concept is quite 
similar to the discrete case. 

Conditioning is a useful concept that can be exploited, among other things: 

1. To simplify the calculations of expectations 

2. To characterize properties of some probability distributions 

3. To characterize properties of certain stochastic processes 

We illustrate these points in the following sections. 

8.5.1 Computing expectations by conditioning 

In this section we take advantage of a fundamental theorem concerning iter-
ated expectation. Before formalizing the idea, let us illustrate it by a simple 
example. 

Example 8.7 You are lost in an underground mine and stand in front of 
two tunnels. One of the two tunnels will lead you to the surface after a 5-hour 
walk; the other one will just lead back where you are now, a 2-hour walk. 
What is the expected value of the time it will take to resurface? 

This depends on how smart you are. You do not know which is the right 
tunnel, so you have a 50% percent chance of selecting the wrong one; yet, 
the least you can do is to not repeat the mistake, by marking the tunnel you 
select first. In this case, the calculation is fairly simple: 

E[X] = 5 x P(OK) + (2 + 5) x P(NOK) = 6 

Here X is the random time to get to the surface, OK denotes the event that 
you take the right tunnel, and NOK corresponds to the wrong one. 

A more interesting case occurs if you are memoryless, i.e., you do not 
remember the choice you made if you get back to square 1, Apparently, this 
is a very complicated CclSG j EIS there is the possibility of infinite cycling. Using 
conditioning, the calculation is quite easy. The key point is that if you take 
the right tunnel, after 5 hours you are done. If you take the wrong one, after 
2 hours you are get back to the starting point, and the time to surface is 
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random; however, its expectation is exactly the same as in the first trial, due 
to lack of memory. Formally 

E[X] = E[X | OK]P(OK) + E[X | NOK]P(NOK) 
= 5 x 0 . 5 + (2 + E[X])x0.5 

Solving for E[X], we find 
5 x 0 . 5 + 2 x 0 . 5 

E[X] = 05 = 7 

Not surprisingly, it should take more time to resurface if you are memoryless. 
D 

The example suggests that, when computing expectations, we may use an 
analog to the theorem of total probabilities. 

THEOREM 8.10 (Law of iterated expectations) The expected value 
E[X] can be expressed in terms of the conditional expectation E[X \ Y] as 

E\X] = E [E[X | Y}} 

We should note that the outermost expectation is with respect to Y, as E[X | 
Y] is a function of the random variable Y. 

PROOF We prove the result only in the case of two discrete random variables 
X and Y with finite support; X may take values Xj, i = 1,.. .,k, and Y may 
take values yj, j = 1 , . . . , /. Using the total probability theorem and the fact 
that the events {Y — yj} are disjoint, we may write 

i i 

P(X = Xi) = ] T P ( X = Xi,Y = Vj) = J2P(X = Xi\Y = yj)P(Y = yj) 

Then we may rewrite E[X] as follows: 

k k ( l 

E[X] = J2xiP(X = xi) = YixA^2P(X = xi\Y = yj)P(Y = yj) 

k I 

= Σ Σ ^ ρ ( χ = *· iY = %)p(y = vi) 
i=\ j=\ 

l k 

= ΣΣχ?{χ = xi\y = vùny = vj) 
j=l i=l 

I I 

= J2P(Y = Vi) Σ ^ Ρ ( * = ̂  I Y = Vi) 
j=l i=k 

I 

= £ p ( y = % - )E[A- | r = %·] 

= E[E[X | Y]] 
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In the proof, we have used the possibility of swapping sums, which is an 
obvious consequence of commutative property of addition for finite sums; with 
infinite sums, some more caution should be used. I 

Example 8.8 In Section 6.5.4 we considered the geometric distribution with 
parameter p and we have claimed that its expected value is 

Effl = 1 

A very straightforward way to obtain this result exploits conditioning on the 
outcome of the first trial (the reader should recall the physical motivation of 
this distribution). If the first trial is a success, which occurs with probability 
p, we have X = 1 because we have just attained our success and we stop 
the sequence of trials immediately. Otherwise, we have already failed once, 
and we must try again. However, since experiments are independent, we are 
just back to square 1, and the expected number of trials to go is the same as 
before. Formally 

E[X] =E[X | OK] ■ P(OK) + E[X | ΝΟΚ]·Ρ(ΝΟΚ) = 1 ·ρ + (1 + E[X])(1 - p ) 

from which we immediately get E[X] = 1/p, which confirms our previous 
result. The real bonus, though, comes when computing variance. As a pre-
liminary step, we have 

E[X2] = E[X2 | OK] · P(OK) + E[X2 | NOK] · P(NOK) 
= 1 2 · ρ + Ε [ ( 1 + Χ ) 2 ] ( 1 - ρ ) 
= p + ( l + 2 E [ X ] + E [ X 2 ] ) ( l - p ) 

= p + f l + ?Vl -p )+E[X 2 ] ( l -p ) 

which yields 

m2} = V 
V 

Then we immediately obtain 

Var(X) = E [X2] - E2[X] = ^ - \ = ^ J pz ρΔ p* 

8.5.2 The memoryless property of the exponential distribution 

We have introduced the exponential distribution in Section 7.6.3, where we 
also pointed out its link with the Poisson distribution and the Poisson process. 
The standard use of exponential variables to model random time between 
events relies on its memoryless property, which we are now able to appreciate. 
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Consider an exponential random variable X with parameter λ, and say that 
X models the random life of some equipment (or a lightbulb) whose average 
life is l /λ. What is the probability that the random life of this device will 
exceed a threshold i? Given the CDF of the exponential distribution,7 we see 
that 

P(X > i) = e~xt 

This makes sense, as this probability goes to zero when t increases, with a 
speed that is high when expected life is short. Now suppose that, after lighting 
the bulb, we notice that it is alive and kicking at time t; we could wonder what 
its expected residual life is, given this information. In general, after a long 
timespan of work, the death of a piece of equipment gets closer and closer.8 

To formalize the problem, we should consider the conditional probability that 
the overall life of the lightbulb is larger than t + s: 

F(x>t + S\x>t) = P ( ( * > ' + ' } n { * > ' } ) 

= P(X > s) 

We see a rather surprising result: The elapsed time t does not influence the 
residual life s and, after a timespan of length t, the lightbulb is statistically 
identical to a brand-new one; hence, it is "memoryless." 

The memoryless character of the exponential distribution can be a good 
reason to use or not to use it to model random phenomena. For instance, it is 
suitable for modeling certain "purely random" phenomena, but not situations 
such as failures due to wear. When its use is warranted, simple and man-
ageable results are often obtained. One well-known property is the PASTA 
property, which stands for Poisson arrivals see time averages. In plain words, 
and cutting a few corners, if observers join a system according to a Poisson 
process, what they observe is the system as if it were in steady state. A full 
appreciation of this important property requires technical machinery that is 
beyond the scope of the book, but a simple example will shed some light on 
its relevance. 

Example 8.9 (The confectioner's shop puzzle) A mature lady loves 
confectionery. Every now and then, she feels the urgent need for a few pastries. 

7See Eq. (7.13). 
8Even more so in case of early burnout, which is typical of former engineering students like 
the author. 

P(X > t) 
P{X >t + s) 

P(X > i) 
e-\{t+s) 

e~xt 

e-Xs 
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. Bus line A 

Shop 
4_l |_j Bus line B 

IB IB Time 

Fig. 8.6 Bus arrival schedule for Example 8.9. 

Lucky her, just in front of her home there is a stop, where bus lines A and B 
stop. Both will get her to a confectioner's shop, which will call shop A and 
shop B. The lady is quite unpredictable: Her pastry frenzy can burst out at 
any time in the day. So, let us say that the time at which she arrives at the 
bus stop is uniformly distributed over the working hours of a day. What is 
the probability that she will satisfy her need at shop A, rather than shop B? 
The easy answer is that it depends on the arrival frequencies of the two bus 
lines. If one frequency is much higher than the other one, this should have 
an effect. Let us assume that the arrivals of the two buses are quite regular, 
and that the frequencies are the same. To fix ideas, let us say that the time 
between bus arrivals is exactly 10 minutes for each bus line. 

Please: Think a bit before reading further and give your answer! 

Since the two frequencies are the same, it is very tempting to say that the 
distribution should be 50-50, i.e., she could end up to either shop with the 
same probability. Now, I say that the actual probabilities are quite different. 
She reaches shop A with probability 90%, and shop B with probability 10%. 
How could you explain the mystery? 

Please: Think a bit before reading further and give your answer! 

While it is very tempting to assume a 50-50 distribution, we are neglecting 
the very peculiar nature of deterministic arrivals. On each line, a bus arrives 
exactly every 10 minutes, but we should consider how the arrivals are phased 
in time. Consider the time schedule illustrated in Fig. 8.6. The shift between 
the arrival times of the two bus lines is such that it is much more likely to get 
to shop A. To see this, imagine that the lady arrives just after the first bus of 
line A stopped; them she will catch the line B bus and reach shop B. If she 
arrives just after the first bus of line B stopped, she will reach shop A. The 
picture suggests that this second event is much more likely due to the odd 
shift between bus arrivals. However, if the bus arrival processes were Poisson 
processes with same rate, i.e., if the time between arrivals were two inde-
pendent exponential variables with the same expected value, the probabilities 
would be 50-50. In fact, when the lady arrives, the time elapsed from the last 
arrival on each line would provide her with no information about which bus 
will arrive first. 0 
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The example is a bit pathological but quite instructive: The interaction 
between random and deterministic phenomena may be less trivial than one 
might expect. 

8.5.3 Markov processes 

In Section 7.9 we introduced stochastic processes as sequences of random vari-
ables; assuming a discrete-time stochastic process, we have a sequence of the 
form Xt, t = 1, 2, 3 , . . . . We have also pointed out that we cannot characterize 
a stochastic process in terms of the marginal distributions of each variable 
Xt. In principle, we should assign the joint distribution of all the involved 
variables: a daunting task, indeed. For this reason, whenever it is practically 
acceptable, we work with processes in which mutual dependence among ran-
dom variables is at least limited to a simple structure, if not absent at all. The 
Poisson process, thanks to the memory less property of the exponential dis-
tribution, is a simple case. Another class of relatively simple, yet practically 
relevant processes features a "limited" amount of memory, which is reflected 
by a manageable dependence structure. 

D E F I N I T I O N 8 . i l (Discrete-time Markov processes) Consider a dis-
crete-time stochastic process Xt, t — 1, 2, 3 , . . . . / / the condition 

E[Xt+i | Xt, Xt-i, Xt-2, Xt-3, · · ■] — E[Xt+i | Xt] 

holds for any value of the time index t, the process is called a Markov pro-
cess. 

We see that a Markov process features a limited amount of memory, as the 
only relevant past observation in the conditional expectation above is the last 
observation. A simple example of Markov process occurs when the set of 
possible values of Xt is a finite set. We speak in such a case of a discrete-time 
Markov chain. 

Example 8.10 Financial markets are characterized by volatility, which is 
linked to the standard deviation of returns. One interesting feature of volatil-
ity is that we observe periods of relative calm, in which volatility is reasonable, 
followed by periods of nervousness, where volatility is quite large. Imagine 
that we want to build a model in which markets can be in one of two states, low 
and high; the time bucket we consider is a single trading day. High volatility 
tends to persist; hence, we cannot just assign a probability that, on one day, 
markets will be in one of the two states. We should build a regime-switching 
model, accounting for the fact that each state tend to persist: After a day of 
high volatility, we are more likely to observe another day of high volatility; the 
same holds for a day with low volatility. A naive regime-switching model is 
illustrated in Fig. 8.7. The idea is that if the last day was in the low state, the 
next day will feature the same level of volatility with probability 0.8. However, 
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Fig. 8.7 A simple regime switching model. 

there is a probability 0.2 that we will observe a day with high volatility. If we 
get to the high state one day, the next day will feature high volatility again 
with probability 0.7, whereas we have a 0.3 probability of moving back to the 
low volatility state. Formally, we have the following conditional probabilities 
that represent transition probabilities: 

P (low | low) = 0.8, P (high | low) = 0.2 
P (high | high) = 0.7, P (low | high) = 0.3 

Since we deal with discrete states with a qualitative nature, we deal with 
conditional probabilities rather than conditional expectations of numerical 
variables, but this is a two-state, discrete-time Markov chain. 

Now, a good question is: If we get to the high state, what is the expected 
number of days that we will spend in that state? The answer can be found by 
referring back to the geometric distribution. Doing so, it is easy to see that 
the expected "sojourn" time in the high volatility state is 

E[T„] = ^ = 1.43 

Arguably, the values above are not quite realistic. Furthermore, according 
to this model, the number of days we spent in each state has no influence 
in the future evolution. The only relevant piece of information is the last 
visited state. In fact, the geometric random variable plays, in the context of 
discrete distributions, the same role that the exponential plays in the con-
text of the continuous ones; both are memoryless distributions. Indeed, in 
continuous-time Markov chains, the sojourn time in each state is exponen-
tially distributed. The applicability of a memoryless distribution to model 
a real-life case must be carefully and critically evaluated. Nevertheless, they 
are so easy to deal with that it is often better to build a complex model with 
multiple states, approximating a more realistic distribution, than coming up 
with a more realistic, but intractable model. D 

Problems 

8.1 You have to decide how much ice cream to buy in order to meet demand 
at two retail stores. Demand is modeled as follows: 

£>i = 100X + eu D2= 120X + e2 
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where X, e\, and ei are independent normal variables with expected value and 
variance given by (28,16), (200,100), (300,150), respectively. Random variable 
X can be regarded as a common risk factor linked to temperature (the two 
retail stores are close enough that their sales levels are influenced by the same 
temperature value), whereas the other variables are specific factors, possibly 
related to competition in the zone of each store, as well as to pure random 
variability. Ice cream is stored at a central warehouse, which is close to the 
two retail stores, so that whatever is needed can be immediately transported 
by a van. 

• Find how much ice cream you should order, in such a way that service 
level at the warehouse level will be 95%. 

• Would this quantity increase or decrease in case of positive correlation 
between ej and e-{l 

8.2 You are in charge of component inventory control. Your firm produces 
end items P\ and P2, which share a common component C. You need two 
components C for each piece of type P\ and three components for each piece 
of type P2· Over the next time period, demand is uncertain and modeled 
by a normal distribution. Demand for item Pi has expected value 1000 and 
standard deviation 250; the corresponding values for P2 are 700 and 180. 
Assuming that the two demands are independent, determine the desired in-
ventory level for component C in such a way that its service level is 92%. 

8.3 You have invested $10,000 in IFM stock shares and $20,000 in Peculiar 
Motors stock shares. Compute the one-day value at risk, at 95% level, assum-
ing normally distributed daily returns. Daily volatility is 2% for IFM and 4% 
for Peculiar Motors, and their correlation is 0.68. 

8.4 Consider two random variables X and Y, not necessarily independent. 
Prove that Cov(X -Y,X + Y)=0. 

For further reading 

• Modeling multivariate distributions requires a relatively sophisticated 
mathematical machinery. For introductory treatments, you may refer 
to Ref. [4], [6], or [10]. 

• Conditional expectation is also a concept that may be treated at an intu-
itive level, or using measure-theoretic probability; we have just outlined 
probability spaces in Section 7.10. For a full account of this approach 
to conditional expectation, see Ref. [2] or, at an advanced level, Ref. [9]. 

• We have just hinted at portfolio management as a domain in which the 
concept of this chapter may be applied. For a readable treatment, see 
Ref. [1] or [5]. 
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• Covariance and correlation, as we pointed out, are not able to fully 
account for dependence. A more general approach is copula theory. For 
a general introduction, see Ref. [8]; financial applications are described 
in Ref. [3] ; in Chapter 2 of Ref. [7] you may also find a quite readable 
and nice introduction to the issues of modeling dependence. 

• Markov processes and Markov chains are a widely used tool in stochastic 
modeling; for an illustration through a diversified set of examples, see 
the text by Tijms [11]. 
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9 
Inferential Statistics 

In the last few chapters we have modeled uncertainty using the tools of prob-
ability theory. Problems in probability theory may require a fair level of 
mathematical sophistication, and often students are led to believe that the 
involved calculations are the real difficulty. However, this is not the correct 
view; the real issue is that whatever we do in probability theory assumes a 
lot of knowledge. When dealing with a random variable, we need a function 
describing its whole probability distribution, like CDF, PMF, or PDF; in the 
multivariate case, the full joint distribution might be required, which can be a 
tricky object to specify. More often than not, this knowledge is not available 
and it must be somehow inferred from available data, if we are lucky enough 
to have them. 

It is quite instructive to compare the definition of expected value in prob-
ability theory, assuming a continuous distribution, and sample mean in de-
scriptive statistics: 

/

+00 1 n 

xfx{x)dx, X=-J2Xi 
-°° n i=\ 

The first expression looks definitely more intimidating than the second one, 
which is an innocent-looking average. Yet, the real trouble is getting to know 
the PDF fx(x); calculating the integral is just a technicality. In this chapter 
we relate these two concepts, as the sample mean can be used to estimate 
the expected value, when we do not know the underlying probability density. 
Indeed, the sample mean does not look troublesome, yet it is: If we select 
the sample randomly, the sample mean is a random variable, possibly with 
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a large variance. We need to clarify the difference between a parameter, like 
the expected value μ = Έ[Χ], which is a number that we want to estimate, 
an estimator, like the sample variance X, which is a random variable, and an 
estimate, which is a specific realization of that random variable for a sample. 
This raises many issues: 

• How reliable is the estimate we get? 

• How can we state something about estimation errors? 

• How can we determine a suitable sample size? 

• How can we check the truth of a hypothesis about the unknown expected 
value? 

To find an answer to these and many other questions, we need the tools of 
inferential statistics. 

This chapter has been structured in two parts, corresponding to different 
kinds of reader: 

• The first few sections provide the reader with the essentials of point 
and interval estimation of a parameter and hypothesis testing; these 
procedures have been automated in many software packages, but any 
business student and practitioner should have a reasonable background 
in order to apply these techniques with a minimum of critical sense. 

• Then, we dig a bit deeper into issues such as stochastic convergence, the 
law of large numbers, and parameter estimation; readers who are just 
interested in the essentials of statistical inference can safely skip these 
sections, which are a bit more challenging and aimed at bridging the 
gap with advanced books on inferential statistics. 

It is also worth pointing out that, given the aims of this chapter, we have taken 
an orthodox approach to statistics, as this is definitely simpler and corresponds 
to what is generally taught in business classes around the world. However, in 
Chapter 14 we stress that this is just one possible approach, and we provide 
readers with a glimpse of Bayesian statistics. 

In Section 9.1 we clarify the meaning of terms like "random sample" and 
"statistic," laying down the foundations for the remainder of the chapter. 
Then, in Sections 9.2 and 9.3, we cover two classical topics, confidence in-
tervals and hypothesis testing, within the framework of the basic problem 
of inferential statistics: estimating the expected value of a probability dis-
tribution. These three sections provide readers with the essential knowledge 
that anyone involved in business management should have, if anything, to 
understand essential issues and difficulties in analyzing data. 

Then, we broaden our perspective a bit, while keeping the required math-
ematics to a rather basic level. In Section 9.4 we consider estimating other 
parameters of interest, like variance, probabilities, correlation, skewness, and 
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kurtosis; we also consider the comparison of two populations in terms of their 
means. In all of these techniques, we assume that the probability distribution 
of the underlying population is known qualitatively, and we want to estimate 
some quantitative parameters. We will mostly refer to the simple case of a 
normal population. However, assuming that we are dealing with the parame-
ters of a given distribution is itself a hypothesis that should be tested. Can we 
be sure that the underlying distribution is normal? Nonparametric statistics 
can be used, among other things, to check the fit of an assumed probability 
distribution against empirical data. We outline some basic tools, like the chi-
square test, in Section 9.5. We conclude the first part of this chapter with 
the basics of analysis of variance (ANOVA), in Section 9.6, and Monte Carlo 
simulation, in Section 9.7. It should be mentioned that both of these topics 
would require a whole book for a thorough coverage, but we can provide read-
ers with an essential understanding of why they are useful and what kind of 
knowledge is required for their sensible use. 

The last three sections, as we mentioned, are more challenging and can be 
skipped at first reading. Their aim is to bridge the gap between the elementary 
"cookbook" treatment that any introduction to business statistics offers, and 
the more advanced and mathematically demanding references. In Section 9.8 
we outline the essential concepts of stochastic convergence; they are needed 
for an understanding of the law of the large numbers and also provide us 
with a justification of many estimation concepts that find wide application in 
statistical modeling and econometrics. We consider a more general framework 
for parameter estimation in Section 9.9, where we discuss desirable properties 
of estimators, as well as general strategies to obtain them, like the method 
of moments and maximum likelihood. By a similar token, we outline a more 
general approach to hypothesis testing in Section 9.10, dealing with a few 
issues that are skipped in the very elementary treatment of Section 9.3. 

9.1 RANDOM SAMPLES AND SAMPLE STATISTICS 

Inferential statistics relies on random samples. There are many ways to take 
a sample: 

• Given a large population, we may administer a questionnaire to a rel-
atively small sample of randomly selected individuals; alternatively, we 
may structure the sample in such a way that it is representative of the 
overall population. 

• Given a stream of manufactured items, we may take a random sample 
of them to check for defects; alternatively, we may carefully plan exper-
iments in order to assess the impact of factors related to product design 
or manufacturing technology. 



386 INFERENTIAL STATISTICS 

• Sometimes, rather than working with a real system, we have to rely on a 
computer-based model reflecting randomness in the real world, and carry 
out Monte Carlo simulation experiments to assess system performance. 

• Finally, sometimes we have a set of data and we must do the best with 
it, as it would be too costly or impossible to collect others. Destructive 
tests, like experiments with car crashes, are rather costly, but at least 
they can be carefully planned in order to squeeze out as much infor-
mation as possible. When dealing with a time series of stock prices, 
we cannot set experimental conditions at will to check the impact of 
controlled factors. We have to rely on the observed history, pretending 
that it came from random sampling, and that's it. 

The last point should be stressed: Quite often we assume that observed data 
have been generated by a process that we represent as a statistical model. If 
we want to use tools from probability and statistics, this is a necessary step. 
However, we should always keep in mind that whatever conclusion we come up 
with, it is only as good as the underlying model, which can be a rather drastic 
simplification of reality. Hence, it is important to formalize what we mean 
by random sample, in order to have a clear picture of the assumptions that 
statistical tools rely on; the validity of these assumptions should be carefully 
checked on a casewise basis. 

DEFINITION 9.1 (Random sample) A random sample is a sequence 
X\,Xz,... ,Xn of independent and identically distributed (i.i.d.) random 
variables. Each element Xi in the sample is referred to as an observation, 
and n is the sample size. 

It is very important to stress the role of independence in this definition. All of 
the concepts introduced in the chapter depend critically on this assumption. 
It may well be the case that there is correlation within a real-life sample, and 
a blindfolded application of naive statistical procedures may lead to erroneous 
conclusions and a possible business disaster. Furthermore, we also assume that 
the data are somewhat homogeneous, since they are identically distributed. 
Clearly, if the data have been observed under completely different settings, 
the conclusions we draw from their analysis may be severely flawed. 

Example 9.1 Consider performing a quality check on manufactured items. 
This typically consists of the measurement of a few quantities for each item, 
that should conform to some specifications. There could be a small variability 
in such measures that results from pure randomness and does not significantly 
affect quality perceived by customers. Let us denote by Xk the measured value 
for item k. If we consider this as the realization of a random variable, can we 
say that these variables are independent? Well, it may be the case that, due to 
tool wear, the machine starts producing a sequence of items that do not meet 
the specifications; then, the values we observe are not really independent. 
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The conditional probability that item k + 1 is defective, given that item k 
is defective, can be larger than the unconditional probability of producing a 
defective item. D 

Example 9.2 Sometimes, the assumptions that variables are identically dis-
tributed may be wrong. Imagine taking measures of whatever you like within 
a population consisting of men and women. If gender has a significant impact 
on the measured variable, it may be a gross mistake to attribute variability 
to randomness. D 

Example 9.3 Consider daily demand dt, t = 1,.. .,T, for an item. Consid-
ering this as a sequence of i.i.d. variables may be a gross mistake as well. It 
may be the case that demands on two consecutive days are negatively corre-
lated; if customers buy many items on day t, they might not buy any more 
until their inventory has depleted. Furthermore, at retail stores it may well 
be the case that sales on Saturdays are much larger than sales on Tuesdays. 
Such seasonal patterns are commonly observed, in which case data should be 
deseasonalized before they are analyzing.1 D 

If we take for granted that we are dealing with i.i.d. variables, we may 
under- or overestimate true variability. Assuming that we have a legitimate 
random sample, we use available data to estimate some quantity of interest, 
possibly a summary measure. By far, the most common such measure is the 
sample mean, but there are other measures that we may be interested in, like 
variance and correlation. Formally, given a random sample, we compute one 
or more sample statistics (not to be confused with Statistics itself). 

DEFINITION 9.2 (Statistic) A statistic is a random variable whose value 
is determined by a random sample. 

In other words, a statistic is a function of a random sample and, as such, it is 
a random variable. This is quite important to realize; we use the most familiar 
statistic, sample mean, to illustrate basic concepts and possible pitfalls. 

9.1.1 Sample mean 

The sample mean is a well-known concept from descriptive statistics: 

x=l-j:xi O.I) 

If data come from a legitimate random sample, sample mean is a statistic. A 
natural use of sample mean is to estimate the expected value of the underlying 

See Chapter 11 on time series. 
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Table 9.1 Sample means from normal dis tr ibut ions. a 

Sample 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

μ= 1 0 , σ = 2 0 
n= 10 

14.7812 
5.2892 
14.6516 
13.4969 
10.9173 
15.3640 
14.6960 
-0.6176 
17.7920 
25.5372 

μ= 10,σ = 20 
n = 1,000,000 

10.0208 
10.0004 
9.9837 
10.0188 
10.0149 
9.9980 
10.0019 
9.9670 
10.0194 
10.0092 

μ= 10,σ = 0.2 
η = 10 

10.1338 
10.1093 
10.0633 
9.9147 
10.0321 
9.9755 
10.0624 
10.0643 
9.9893 
9.9911 

a Column headers report expected value μ and standard deviation σ for the 
underlying distribution, as well as the sample size n; 10 random samples 
are drawn for each setting of these parameters. 

random variable, that is unknown in practice. It is important to understand 
what we are doing: We are using a random variable as an estimator of some 
unknown parameter, which is a number. The realization of that random vari-
able, the estimate, is, of course, a number, but we will typically get different 
numbers whenever we repeat the sampling procedure. They may even be 
quite different numbers. 

Example 9.4 In Table 9.1 we show the realized value of the sample mean 
in ten samples from a normal distribution.2 The first column shows a lot of 
variability in the sample mean. This is hardly a surprise, considering that 
the standard deviation, σ = 20, is twice as much as the expected value, 
μ = 10, and the sample size is rather small, n = 10. If sample size is increased 
considerably (n = 1,000,000), we get the second column, which is affected 
by much less variability. This also happens if we take a small sample from 
a distribution with small standard deviation, σ = 0.2, as shown in the third 
column. D 

The example shows that if we use a random variable to estimate a parame-
ter, variability of the estimator is an obvious issue. We consider the desirable 
properties of an estimator in greater depth in Section 9.9, but two obvious 
features are as follows: 

2 The samples have been generated using a pseudorandom number generator on a computer. 
Such generators are the basis of Monte Carlo simulation, which is outlined in Section 9.7. 
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1. The estimator should be unbiased, i.e., its expected value should be the 
value of the unknown parameter that we wish to estimate. 

2. The variability of the estimator should be as small as possible, for a 
given sample size. 

Clearly, we should be interested in the distribution of any sample statistic we 
use. In more detail, given the probability distribution of the i.i.d. random 
variables Xi, i = 1 , . . . , n, in the sample, the least we can do is to determine 
the expected value and variance of sample statistics which are relevant for our 
analysis; if possible, we should also find their exact distribution. 

Example 9.5 (Expected value and variance of the sample mean) 
Consider a sample consisting of i.i.d. variables Xi with expected value μ and 
variance σ2. In Section 7.7 we used properties of sums of independent random 
variables to prove that 

EM 

Var(X) 

= E ^Σ^ = ̂ Σ*« - ίΈ^» (9·2) 
i=l J i=l i=l 

\ i = l / i=\ 
1 n 

ΛΣ-2 = -
τ1 
η 

(9.3) 

We repeat the derivation of these formulas to emphasize the role of the i.i.d. 
assumption. Independence plays no role in deriving Eq. (9.2), but we do 
assume that variables are identically distributed. This equation shows that 
sample mean is indeed an unbiased estimator of the unknown parameter μ. 
Equation (9.3) shows that the larger the sample size, the lower the variance of 
the sample mean, as both Table 9.1 and intuition suggest. However, intuition 
is not enough because it does not clarify the essential role of independence in 
this. In the limit, if all of the Xi were perfectly correlated, they would be the 
same number, and increasing the sample size would be of little use. 

This example is also useful for understanding the basic framework of or-
thodox statistics. The expected value μ is an unknown number, and we will 
use random samples to draw inferences about it. On the contrary, in the 
Bayesian framework,3 probability distributions are associated with the pa-
rameters; these distributions may be used to model a priori knowledge or 
subjective opinions that we might have. Subjective opinions play no role in 
the orthodox framework. D 

The example shows that it is fairly easy to come up with essential properties 
of the sample mean, but what about its distribution? Unfortunately, there is 

3See Chapter 14. 
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little we can say in general, as we know that summing identically distributed 
variables does not yield an easy distribution in general. From Section 7.7 we 
know that if we sum uniform or exponential variables, we do not get uniform or 
exponential variables, respectively, even if we assume independence. However, 
we recall two essential results: 

• If we sample from a normal distribution, i.e., if variables Xi are normal, 
then the sample mean will be exactly normal, since the sum of jointly 
normal variables is itself normal. 

• If we sample from a generic distribution and the sample size is large 
enough, the central limit theorem4 tells us that the sample mean will 
tend to a normal random variable. In particular, the distribution of the 
standardized statistic _ 

Z = X~μ 

σ/y/n 
tends to a standard normal. 

The central limit theorem is fairly general and plays a key role in inferential 
statistics, but in some cases it is better to exploit the structure of the problem 
at hand. 

Example 9.6 (Sampling from a Bernoulli population) Consider a qual-
itative variable referring to a property that may or may not hold for an indi-
vidual of a population. If we sample from that population, we are typically 
interested in the fraction p of the population, for which the property holds. 
Let Xi be a random variable set to 1 if the observed individual i enjoys the 
property, 0 otherwise. We immediately see that we are sampling a Bernoulli 
population; i.e., the random variables Xi are Bernoulli distributed, with a 
parameter p = P(X = 1) that we wish to estimate. 

Since we are summing n independent Bernoulli variables Xi with expected 
value p, what we get is related to a binomial random variable Y. From Section 
6.5.5, we know that 

E [ i ] = E V l j = np (9.4) E 
n 

Var 
n 

Σ* 
. » = 1 

Var[Y] = Var ^Χ{ = np(l-p) (9.5) 
. » = 1 

Equation (9.4) tells us that we may estimate the fraction p by just counting 
the fraction of the sample that enjoys the following property: 

1 n 

n 
i = l 

See Section 7.7.3. 
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Equation (9.5) tells us how the estimate of the expected value also yields an 
estimate of variance, p(l — p) 0 

The case of a Bernoulli population is somewhat peculiar, since there is only 
one parameter that yields both expected value and variance. In general, if 
variance is a distinct parameter σ2, we are in trouble when trying to exploit 
Eq. (9.3), since it relies on another unknown parameter σ that we have to 
estimate. 

9.1.2 Sample variance 

The typical estimator of variance is sample variance: 

*2 = ^ Σ ( ^ - * ) 2 (9·6) 
i= l 

This formula can be understood as a sample counterpart of the definition of 
variance: It is basically an average squared deviation with respect to sample 
mean. When doing calculations by hand, the following rearrangement can be 
useful: 

S2 = ^Σ(^-*)2 
i= l 

= ^(ί>*2-2*ί>+^2) 
- ^(f>?-»*j M 

The sample standard deviation is just S, the square root of sample variance. 
We recall from Example 4.13 that rewriting variance like this may result in 
bad numerical behavior with some peculiar datasets; nevertheless, it is quite 
convenient in proving useful relationships. 

An obviously weird feature of sample variance is that we take an average of 
n terms, yet we divide by n— 1. On the basis of the limited tools of descriptive 
statistics there is no convincing way of understanding why, when dealing with 
a population, we are told to divide by n, whereas we should divide by n — 1 
when dealing with a sample. The right way to appreciate the need for this 
correction is to check for unbiasedness of sample variance. 

T H E O R E M 9.3 Sample variance is an unbiased estimator of true variance, 
i.e.,E[S2} =σ2. 
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PROOF In the proof, we exploit rewriting (9.7) of sample variance: 

1 
E[5 2 

T Σ Ε [ Λ ? nE 
V i = l 

n -
= σ 

σ" + μ - ( h ju-

in the second line above, we applied the usual property, Var(Y) = Ε[Υ2] 
E2[Y], to each Xi in the sum and to the sample mean X. I 

To fully understand the result, observe that 

E Σ* 
. t = l 

2 2 
ημ , (σ2 + At2) — ημ 2 2 

— ησ 

but 

E Σ^-η^ 
. » = 1 

= η (σ2 + μ2) - η ί — + μ2 j = 2 2 
ησ — σ 

In the second case, we should not divide by n when measuring deviations 
against X rather than μ, and this results in a bias that is corrected by the 
n — 1 factor. Prom an intuitive perspective, we could say that the need to 
estimate the unknown expected value implies that we "lose one degree of 
freedom" in the n available data in the sample. 

Finding the expected value of sample variance is fairly easy, but characteriz-
ing its full distribution is not. One simple case is when the sample is normal. 
Intuitively, we see from Eq. (9.7) that sample variance involves squares of 
normal variables. Given what we know about the chi-square and Student's t 
distribution,5 the following theorem, which summarizes basic results on the 
distribution of the estimators that we have considered, should not come as a 
surprise.6 

THEOREM 9.4 (Distributional properties of sample statistics) Let 
X\,..., Xn be a random sample from a normal distribution with expected value 
μ and variance σ2. Then 

1. The sample mean X has normal distribution with expected value μ and 
variance σ2/η. 

5This chapter relies heavily on some probability distributions that are derived from the 
normal, like the chi-square, t, and F distributions. They were described in Section 7.7.2, 
to which the reader may refer before proceeding further. 
6See, e.g., Ref. [15] for a proof. 
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2. The random variable (n — l)S2/a2 has chi-square distribution with n—\ 
degrees of freedom. 

3. Sample mean and sample variance are independent random variables. 

4- The random variable 

has t distribution with n 

Statement 1 is quite natural, since we know that the sum of jointly normal 
variables is itself a normal variable. Statement 2 can be understood by noting 
that in the sample mean we square and sum independent normal variables 
and recalling that by squaring and summing independent standard normals 
we get a chi-square; the distribution has n — 1 degrees of freedom, which is also 
reasonable, given what we observed about sample variance. Statement 3, on 
the contrary, is somewhat surprising, since sample mean and sample variance 
are statistics depending on the same random variables, but it is essential in 
establishing the last distributional result, which will play a fundamental role 
in the following. We should note that if the true variance were known, we 
could work with the statistic 

σ/y/n 

which is a standard normal. If the random sample is not normal, the results 
above do not hold. Indeed, many results that are routinely used in inferential 
statistics are valid only for normal samples. Luckily, variations on the theme 
of the central limit theorem provide us with asymptotic results, i.e., properties 
that apply to large samples. These results justify the application of statistical 
procedures, which are obtained for normal samples, to large nonnormal sam-
ples. In what follows, we will rely on these procedures,7 but it is important 
to keep in mind that they just yield approximated results, and that due care 
must be exercised when dealing with small samples. 

9.2 CONFIDENCE INTERVALS 

The sample mean is a point estimator for the expected value, in the sense 
that it results in an estimate that is a single number. Since this estimator it 
is subject to some variance, it would be nice to have some measure of how 

7 A thorough investigation of these issues is beyond the scope of an introductory textbook; 
see the references at the end of the chapter. The important message is that you should 
stray from the cookbook recipe approach that is widely taken when dealing with inferential 
statistics. 

S/yfR 
1 degrees of freedom. 
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"ζ1-α/2 Ο ζ1-α/2 

Fig. 9.1 Illustrating the link between quantiles of the standard normal and confidence 
intervals. 

much we can trust that single number. In other words, we would like to get 
an emf interval estimate, which typically comes in the form of a confidence 
interval. Roughly speaking, a confidence interval is a range in which the true, 
unknown parameter should lie with some probability. As we shall see, this 
statement must be taken with due care if we wish a rigorous interpretation, but 
it is a good declaration of intent. This probability is known as the confidence 
level, and it should be relatively large, say, 95% or 99%. In this section, we 
derive a confidence interval for the expected value of a normal distribution 
or, in more colloquial terms, for the mean of a normal population. Later, we 
apply the idea to the parameter of a Bernoulli population and to the variance 
of a normal population. 

From Section 9.1.1 we know that the statistic 

ojsjn 

has standard normal distribution, if the sample comes from a normal popu-
lation with parameters μ and σ2. Note that, if we were so lucky as to get a 
"perfect" sample, we would have X = μ and Z = 0. In real life, the sam-
ple mean X will be smaller or larger than the true expected value μ, and 
Z will be negative or positive, accordingly. Figure 9.1 illustrates the ques-
tion, in terms of the PDF of a standard normal and its quantiles. There, 
zi-a/2 is the quantile with probability level 1 — a/2, i.e., a number such that 
P(Z < zi_Q/2) = 1 — a/2 . Correspondingly, a/2 is the area of the right tail, 
to the right of quantile .zi_Q/2· Given the symmetry of the normal distribu-
tion, we observe that P(Z < — z\-a/2) = a/2; i.e., we also have a left tail 
with probability (area) Q / 2 . Then, by construction, the probability that the 
Z statistic falls between those two quantiles is as follows: 

p {-Zi-«'2 -TJ$- Zl~a/2) = l~a 

This is just the area under the PDF, between the quantiles. If you prefer, it 
is the total area, which amounts to 1, minus the areas associated with the left 
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and right tails, each one amounting to a /2 . Now, let us rearrange the first 
inequality: 

^ X — ß σ v 
— Ζ\-αΙ2 < —ΓΊ= =^ ß - Zl-a/2—/= < -X 

σ/yjn y/n 
Doing the same with the second inequality and putting both of them together, 
we conclude that 

p(x- zi-a/2^ <μ<Χ + zi-c/2-jA = 1 - a (9.8) 

We should note carefully that μ is an unknown number that is bracketed by 
two random variables with probability I — a. Then, we conclude that the 
interval 

X - Z\-a/2—j=, ^ + 2i_Q/2-7=) (9.9) 

is a confidence interval for the expected value μ of a normal distribution, with 
confidence level 1 — a. Formula (9.9) is very easy to apply, but there is a 
little fly in the ointment: It assumes that the standard deviation σ is known. 
Arguably, if the expected value is unknown, it seems quite unreasonable that 
standard deviation is known. In fact, however weird it may sound, there are 
situations in which this happens. 

Example 9.7 Imagine that we are measuring a physical quantity with an 
instrument affected by some measurement uncertainty. Then, what we read 
from the instrument is a random variable X; if there is no measurement bias, 
E[X] = μ, where μ is the true value of the quantity we are measuring. We 
may regard the measurement as X = μ + e, where e is some noise corrupting 
what we read on the instrument. Unbiasedness amounts to stating E[e] = 0. 
If the instrument has been well calibrated using appropriate procedures, we 
may have a pretty good idea of the standard deviation of each observation, 
which is actually the standard deviation σ€ of noise. Hence, we (almost) know 
the standard deviation of random variable X, but not its expected value. D 

Strictly speaking, even in the example above we do not really the know stan-
dard deviation, but we may have a reliable estimate. Even more important: 
The knowledge about the standard deviation has been obtained preliminarily, 
by a procedure that is independent from the random sample we use to esti-
mate the expected value. Nevertheless, in business settings, we typically do 
not know the standard deviation at all. Hence, we have to settle for sample 
standard deviation S. Note that, unlike the case in the example above, X 
and S come from the same sample, and we cannot just plug S and replace σ 
into (9.9). Luckily, we already know that the statistic 

T_x-ß 
5/v^ 
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has t distribution with n — 1 degrees of freedom. Hence, if we denote by 
ti-a/2,n-i the (1 — a/2)-quantile of the t distribution, using the same proce-
dure described above yields the confidence interval 

/ _ S — S \ 
[X — tl-a/2,n-l—J=i X + ίΐ-α/2,η-1 —7= I (9.10) 

From a qualitative point of view, this confidence interval has the same form 
as (9.9). The only difference is the use of quantiles i i-Q/2,n-i from the t 
distribution instead of 2i_Q/2· From Fig. 7.19 we recall that a t distribu-
tion features fatter tails than the standard normal; the fewer the degrees of 
freedom, the fatter the tails. Hence, 

t\-a/2,n-l > z\-<xl2 

and the bottom line result is a wider confidence interval. This makes sense, 
since when estimating variance σ2 we add some uncertainty to the overall 
process; more so, when the sample size n is small. 

Example 9.8 Let us consider the random sample: 

{43,79,26,137,45,55,93,52,46,17} 

under the assumption that it comes from a normal distribution, and let us 
compute a 95% confidence interval for the expected value. We first compute 
the statistics 

n = 10, X = 59.3, S « 35.2422 

From statistical tables, or a suitable piece of software, we obtain 

tl-a/2,n-l = 0̂.975,9 ~ 2.2622 

By straightforward application of Eq. (9.10), we obtain the confidence interval 
(34.0893, 84.5107). D 

Formula (9.10) is so easy to apply, and it has been implemented in so many 
software packages, that it is tempting to apply it without much thought. It is 
also natural to wonder why one should bother to understand where it comes 
from. The next sections address these issues. 

9.2.1 A counterexample 

Consider the queueing system in Fig. 9.2. Customers arrive according to 
a random process. If there is a free server, service is started immediately; 
otherwise, the customer joins the queue and waits. Service time is random 
as well, and whenever a server completes a service, the first customer in the 
queue (if any) starts her service. To keep it simple, let us assume that the 
system is open 24/7, so that there is no issue with closing times. Now, what 
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Random Qu e u e 

customer arrival 1 l I 
► 

Fig. 9.2 A queueing system with multiple servers. 

is the first and foremost feature to measure quality of service experienced 
by customers? If you have some experience in long queues, I guess tha t 
waiting t ime is what comes to your mind. In fact, a common management 
problem is determination of the number of servers in such a way to strike a 
compromise between cost and service quality. Hence, we would like to assess 
the average waiting time, given the number of servers. Of course, an average 
does not fully capture our problem, as we would also like to make sure tha t a 
prescribed maximum waiting t ime is rarely, if ever, exceeded, but let us stick 
to the simplest performance measure we may think of. 

A first step in the analysis is modeling uncertainty. A common assumption 
is that customers arrive according to a Poisson process, i.e., t ha t t ime between 
two consecutive arrivals is exponentially distributed with a rate λ. If service 
times were exponentially distributed, it would be good news, as there are 
easy formulas giving the average waiting t ime for a queueing system involving 
exponential distributions only. Unfortunately, we know tha t the exponential 
distribution is memoryless,8 and this makes it a poor candidate for modeling 
service times. Furthermore, customer arrivals may have a time-varying rate; 
indeed, at retail stores we observe hours at which there is a burst of arrivals, 
whereas other hours are pretty quiet. Luckily, we may rely on computer 
simulation programs to analyze complex queueing systems, which can make 
a faithful model of reality. We will get a clue about how such models work in 
Section 9.7. For now, let us just say tha t we have a way to collect a sequence 
of observed waiting times. Let Wk be the waiting t ime of the fcth customer, 
and say tha t we simulate the system long enough, collecting waiting times for 
customers k = 1 , . . . , n. To make "long enough" more precise, we could apply 
formula (9.10) to calculate a confidence interval. If the interval is too wide, we 
can simulate more customers to get a satisfactory estimate of average waiting 
time. 

Servers 

K> 
o k> 

See Section 8.5.2. 



398 INFERENTIAL STATISTICS 

Now I have two questions for you. The first one is pretty easy; the second 
one is a bit more challenging. Question 1 is: Can we apply the procedure 
above to come up with the confidence interval we need? 

Please! Sit down, think a while, and give your answer before reading 
further. This is the easy question, after all 

When I ask this question in class, almost all students agree. Then the tougher 
question 2 comes: How many mistakes have you made, if your answer was yes? 

1. To begin with, if we start our simulation with an empty system, what is 
the waiting time of the first customer? Of course, it is zero; the first few 
customers will find an empty system, and their waiting times do not tell 
us much. In fact, this transient phase may affect the statistics we collect. 
We should discard the first observations to warm the system up and 
avoid this issue. We should start collecting waiting times only when the 
system is in steady state. From a more general perspective, confidence 
intervals assume a sample of identically distributed random variables, 
but the initial waiting times have a different probability distribution. 

2. A more general issue is that the waiting times are unlikely to be nor-
mally distributed, and the resulting confidence interval will only be an 
approximation; as we have said, however, this is a fairly good one for a 
large sample. 

3. Actually, the really serious mistake is that waiting times of successive 
customers are not independent. If customer k undergoes a long waiting 
time, this means that this unlucky customer arrived when the system 
is congested and there is a long queue. Hence, we might expect the 
waiting time for customer k + 1 to be large as well. Formally, waiting 
times of successive customers are positively correlated. 

The important message is that you should never take independence for granted. 
In this specific case, it can be shown by a deeper analysis that the blindfold 
application of standard statistical procedures results in an underestimation of 
the variability of waiting times. Hence, the width of the confidence interval is 
underestimated as well, and the net result is that we are overconfident in our 
conclusions. 

In practice, the way out requires batching observations. If the system is 
stable and the queue does not explode to infinity, we should expect that if 
there is a moment of congestion, it will be resolved after a while and the 
queue length will revert back to a normal level. Hence, we should also expect 
that the waiting times of two faraway customers, say, Wk and Wk+woo, are 
practically independent. In other words, intuition suggests that the random 
variables Wk and Wk+S should have some positive correlation, but this tends 
to fade out for increasing values of s. Then, we group observations into m 
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batches, each one consisting of n customers, amounting to a total sample of 
nm customers. Now consider the m batch means 

Wj = J^Wk, j = l,...,m 
fc=(j-l)n+l 

where batch j = 1 consists of customers 1, 2 , . . . , n, batch j = 2 consists of 
customers n + 1 , n + 2 , . . . , 2n, etc. Each sample mean W is, at least approx-
imately, independent from the other ones, and we may apply the standard 
procedure on them. The further good news is that, courtesy of the central 
limit theorem, they should be more or less normal,9 providing further justifi-
cation for the approach. 

9.2.2 An important remark about confidence levels 

A further point concerns the correct interpretation of the confidence level. 
Consider the 95% confidence interval we calculated in Example 9.8. We cannot 
say that the confidence interval (34.0893, 84.5107) contains the unknown 
expected value with probability 95%. What we can say is that if we repeat 
the sampling procedure many times, and we compute a confidence interval 
for each sample, about 95% of the confidence intervals will contain the true 
unknown expected value. But there is nothing we can say about a specific 
confidence interval. To clarify the point, let us consider the simpler case 
of a normal random variable X with expected value 0. We can say that 
P(X < 0) = 0.5. But if we observe a realization x = —0.55, we certainly 
cannot say that P(—0.55 < 0) = 0.5. More generally, if μ is the expected value 
of a random variable X and a; is a realization of that variable, the expression 
P(x < μ) is meaningless, since it involves two numbers. The condition x < μ 
is either true or false, and since we do not know μ, there is nothing we can say 
about it. By the same token, the statement about the confidence level 1 — a 
of a confidence interval applies a priori, i.e., to a pair of random variables 
that provide us with the lower and upper bounds of the interval. But it 
would be wrong to claim that a confidence interval provides us with some 
probabilistic information about the expected value. Actually, this applies 
within the framework of orthodox statistics, whereby the expected value μ 
is a number. Within a Bayesian framework, we do associate a probability 
distribution with an unknown parameter; this distribution can be the result 
of merging a priori beliefs with empirical evidence from sampled observations. 

To reinforce a clear view of what a confidence interval is, we may consider 
the general definition of interval estimators and estimates.10 

9To be precise, this statement should be taken with care, as the central limit theorem 
requires independence as well. Nevertheless, if there are enough servers to ensure stability 
of queues and batches are fairly large, what we observe in practice is not far from normality. 
10See the text by Casella and Berger [3]. 
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DEFINITION 9.5 (Interval estimate and estimator) An interval es-
timate of a real valued parameter Θ is a pair of functions £(x) and U(x), 
where x € R™ and n is the size of the sample, such that L(x) < U(x), for 
any x in the range of interest. If the sample X = x is observed, the inference 
L(x) < Θ < U(x) is made. The random interval [L(X), t/(X)] is called an 
interval estimator. 

This definition includes standard confidence intervals as a specific case, and 
it clearly points out that the interval estimator is a pair of random variables. 
The interval estimate consists of the realization of the two random variables. 
Any probabilistic statement must refer to estimators, and not to estimates. 

9.2.3 Setting the sample size 

From a qualitative perspective, the form of the confidence interval (9.10) 
suggests the following observations: 

• When the sample is very large, we may use the quantiles £ι_α/2 from 
the standard normal distribution, since the t distribution tends to a 
standard normal, when the degrees of freedom go to infinity. 

• The larger the confidence level 1 — a, the larger the confidence interval; 
in other words, a wider interval is required to be "almost sure" that it 
includes the true value (in the sense that we have just clarified!). 

• The confidence interval is large when the underlying variability σ of the 
observations is large. 

• The confidence interval shrinks when we increase the size of the sample. 
Actually, it might be the case that the interval gets larger by adding 
a few observations, if these additional data result in a larger sample 
standard deviation S, but this is a pathological behavior that we may 
observe if we add a few observations to a small sample. 

The last statement is quite relevant, and is related to an important issue. So 
far, we have considered a given sample and we have built a confidence interval. 
However, sometimes we have to go the other way around: Given a required 
precision, how large a sample should we take? One way of formalizing the 
issue is the following. Say that we require the following condition on the 
maximum absolute error: 

| Χ - μ | < £ (9.11) 
Clearly, we can obtain only a probabilistic guarantee: Condition (9.11) should 
hold with confidence level 1 — a. This requirement can be rewritten as a pair 
of inequalities, since X — μ could be positive or negative: 

Χ-μ < e 
X - μ > -e 
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The two inequalities may be rearranged as 

X -β<μ<Χ + e 

from which we see that e is just the half-length of the confidence interval. 
Hence, we should find a sample size n as follows: 

* i - a / 2 , n - i - ^ = e => n « i ^ J (9.12) 

The careful reader will certainly be dissatisfied with the last equation: How 
can we find the sample size n before sampling, if this requires knowledge of 
sample standard deviation S, which is obviously known only after sampling? 
Furthermore, n depends on n itself, since (9.12) defines n as a function the 
quantile ί ι - α /2 ,η- ι that we should use. The standard way out of this dilemma 
is as follows: 

• Assume that n should be large enough to warrant use of quantiles zi_a/2 
of the standard normal, which suppresses the circular dependence on n. 

• Take an exploratory sample to find a rough estimate S, which can be 
used to find the total sample size n. Clearly, there is no guarantee that, 
after completion of the overall sampling, the initial estimate S will turn 
out to be close to the new estimate based on the whole sample. So, 
we should take the exploratory sample, add the tentative number of 
observations, and then check again, possibly repeating the procedure. 

Example 9.9 A sample of size n = 25, taken from a normal population, 
yields 

X = 121.8290, 5 = 48.4709 
The resulting 95% confidence interval is (101.8212,141.8368) which is too 
large for your purposes, and you would like to take a sample large enough to 
guarantee, with confidence level 95%, that the absolute error is smaller than 
1. The required sample size would be 

Z0975SV / 1 .96x48 .4709 \ 2 _ > - ' > ~ 9026 Ί D 
The example illustrates the potentially high price of precision when vari-

ability is large. To get a better feeling for this issue, let us say that when 
sample size is n, the half-width of the confidence interval is H; how large 
should a sample size n' be, in order to ensure H' = H/10, while keeping 
the same confidence level? Note that this requirement corresponds to an im-
provement of one order of magnitude in precision. Using the formula for the 
half-width we see that 

H _ S l S 
To - Z'-a'2^ X ÎÔ " Zl-a/27Wr, 
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which implies n' — 100η. Hence, to improve precision by one order of magni-
tude, the sample size must increase by two orders of magnitude. The reason is 
that the effect of increasing sample size is "killed" by the square-root function 
y/n, which is concave. 

We emphasize again that in this section we have just derived a confidence 
interval for the expected value of a normal distribution. Asymptotic results 
and the central limit theorem allow us to apply Eq. (9.10) as an approximation 
for large samples, but it is sometimes necessary or advisable to take a different 
route when estimating other parameters, such as variance, or when dealing 
with different distributions. In Section 9.4 we illustrate some generalizations, 
while keeping the treatment at an elementary level. In Section 9.9 we consider 
parameter estimation within a more systematic and general framework. 

9.3 HYPOTHESIS TESTING 

The need for testing a hypothesis about an unknown parameter arises from 
many problems related to inferential statistics. There are general and pow-
erful ways to build appropriate procedures for testing hypotheses, which we 
outline in Section 9.10. Since they do require some level of mathematical so-
phistication, we offer here an elementary treatment that is strongly linked to 
how we have built confidence intervals for the expected value of a normal dis-
tribution. To get a grasp of the underlying issues, we begin with hypotheses 
about the expected value of a normal distribution. We will generalize a bit 
in Section 9.4, where we consider testing the difference in the means of two 
populations, variance, proportions, and correlation. In Section 9.6 we show 
how Analysis of Variance allows to deal with more than two populations. A 
solid understanding of these topics is more than adequate for most business 
practitioners. In order to get a feeling for the involved issues, let us introduce 
a little numerical example. 

Example 9.10 Consider the data listed in Table 9.2 and the following claims: 

1. The sample comes from a normal distribution, i.e., from a normal pop-
ulation. 

2. The expected value of this distribution, or the population mean, if you 
prefer, is μο = 5. 

How can we check the truth of these claims? At present, we have absolutely 
no tool with which to verify that a sample comes from a normal distribution. 
We will consider the issue later, in Section 9.5, but we should note that this 
does not involve just a few parameters, but the whole distribution. Since a 
nonparametric test looks a bit hard, let us take normality for granted, at least 
for now. Since we already know a bit about estimating an expected value, 
we can try checking the second claim. Probably, the first step should be the 
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Table 9.2 Sample data for hypothesis testing. 

5.00 1.82 15.95 -13.74 9.28 13.96 12.31 10.78 5.40 11.77 

calculation of the standard sample statistics: 

n = 10, X = 7.253, S = 8.5757 

We see that the sample mean X is quite different from μο = 5. This could 
lead us to reject the claim. However, we also see that variability is quite large 
and that the sample size is rather small. The discrepancy between X and μο 
could be explained in either of two ways: 

1. The claim is false, i.e., μο φ 5. 

2. The claim is true, but the sample mean differs from the expected value 
because of randomness in sampling. 

In this case we are somewhat embarrassed. If the sample statistics were, 
say, X — 20 and S — 0.5, we would feel rather confident that the claim is 
false. If, on the contrary, we had X — 5.1, we would probably say that the 
small discrepancy is not statistically significant. But what does statistically 
significant exactly mean, anyway? D 

Such questions like this one are quite relevant in practice, and to check 
similar claims properly, we need to rely on sensible statistical procedures. In 
hypothesis testing we state some hypothesis concerning an unknown parame-
ter, in this case the expected value. This hypothesis should be checked against 
an alternative. For instance, in our first example, we should test Ho : μ = 5, 
against the alternative Ha : μ φ 5. More generally, we may test the hypothesis 

H0: μ = μ0, 

for a given μο, against the alternative hypothesis 

Ή&:μψμϋ. 

The first hypothesis Ho is called the null hypothesis. The somewhat odd name 
is justified by the fact that in many practical settings, if the null hypothesis 
is true, then we should just sit and do nothing. It is when the hypothesis 
is rejected that we should act before is too late, or we have discovered an 
interesting fact or some unexpected pattern in data. Clearly, this is just 
an interpretation that need not always be true. Note that the null and the 
alternative hypotheses are complementary and jointly cover all of the possible 
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values of μο- In the following, we will also consider other kinds of hypotheses, 
such as 

i/o '■ μ > A*o against ΗΆ : μ < μο 

or 
Ho : μ < βο against ΗΆ : μ > μο 

Note again that the two hypotheses are mutually exclusive and cover all of the 
possible values of μ. The following example illustrates why the above forms 
may arise in practical contexts. 

Example 9.11 Consider the manufacturing process for producing shafts 
that must fit into a hole. Ideally, the diameter of all of the shafts should 
exactly be as specified by product design; in practice, a slight discrepancy is 
unavoidable. However, we do not want a diameter larger than specified, as 
the shaft will not fit the hole; on the other hand, we do not want a diame-
ter smaller than specified, either, as this may result in dangerous vibrations. 
Taking a random sample of items, we should check that the average diameter 
is sufficiently close to the nominal value. If the sample mean is too large or 
too small, then we should probably act quickly in order to bring back the 
manufacturing process under control. 0 

Example 9.12 Unlike the previous example, there are cases in which the 
situation is not symmetric. Consider, for instance, the concentration of a 
water pollutant; if the measured concentration is below the maximum level 
allowed, no one will complain. We should act only if we find that the con-
centration exceeds a certain danger threshold; if there is less pollutant than 
acceptable, no one would add any just to stick to that threshold (hopefully). 
By the same token, there are cases in which we should act when the average is 
below some level. No consumer association would complain, if they find more 
candies than expected in a box. (The viewpoint of the producer is different!) 

D 

Whatever hypothesis we test, it might be true or false. If we accept a true 
hypothesis or we reject a false one, then we did well. Unfortunately, there are 
two types of errors that we could make: 

• We commit a type I error if we reject a true hypothesis. 

• We commit a type II error if we accept a false hypothesis. 

The probability of an error is something that we have to accept, as in real 
life we will (almost) never know the truth; the best we can do is keeping 
the probability of errors as small as possible. Which kind of error is the most 
relevant one depends on the practical situation at hand, and the cost of making 
one of the two mistakes. Indeed, in practice, this also influences the way in 
which the null hypothesis is stated. Such considerations notwithstanding, we 
will see shortly that it is definitely easier to control the probability of a type 
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I error. Keeping this probability low means that we want some quite strong 
evidence against the null hypothesis to reject it. An unfortunate consequence 
is that if we reject the null hypothesis only when we are pretty sure, the 
probability of a type II error tends to increase.11 The best way to get the 
point is keeping in mind the following sound principle:12 

You are innocent until proven guilty. 

Clearly, if we take such an attitude, we realize that sometimes we might lack 
enough evidence to reject the null hypothesis, even if it is very suspicious. 
This means that the probability of a type II error will increase. Indeed, 
it is sometimes better to say that we "fail to reject" the null hypothesis, 
as we are not really accepting it.13 Incidentally, this raises an immediate 
issue: How can we prove something using hypothesis testing? Of course, we 
cannot really prove anything using sampled data, but we can collect strong 
statistical evidence supporting a claim. However, this claim should not be 
taken as the null hypothesis. We should take the negation of our claim as the 
null hypothesis Ho; then, if we are able to reject Ho, this will provide good 
support for our idea.14 

To make all of the above ideas operational, we have to be more specific. 
As we said, we consider first a test concerning the expected value of a normal 
distribution, where we want to keep the probability of a type I error reasonably 
low. Such an error occurs if the null hypothesis is true and we reject it by 
mistake. Let us start with the null hypothesis Ho : μ — μο, tested against the 
alternative ΗΆ: μ φ μο- If the null hypothesis is true, and the population is 
normal, then the test statistic 

X - μ0 

has t distribution with n — 1 degrees of freedom. We already used this result 
when deriving a confidence interval, but please note a fundamental difference: 

I I The probability of not making a type II error is called the power of the test; in other 
words, the power of the test is the probability that it will reject a false null hypothesis. A 
full treatment of this topic is beyond the scope of the book, and we will just state a few 
considerations in Section 9.3. However, it stands to reason that an increase in the power of 
the test implies an increase on the probability of a type I error as well. 
1 2This principle should not be taken for granted and is a relatively recent conquest. In dark 
ages and dark places, you have the burden of proving that you are not guilty. 
1 3This is a rather controversial issue. In fact, what is usually taught in statistics textbooks 
is a sort of hybrid between what have been conflicting views in the development of inferential 
statistics. See, e.g., Ref. [9] for an illustration. 
14 This is somewhat similar in spirit to mathematical proofs by reductio ad absurdum: We 
negate what we want to prove, and then we derive a contradiction, which is a proof of our 
thesis. In our case, the contradiction is with respect to empirical data, in a probabilistic 
sense. 
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Fig. 9.3 A rejection region for hypothesis testing. 

In this case we know the value μο, which is provided by the null hypothesis. 
Now let us follow an intuitive route: 

• Reasonably, we should reject Ho if the sample mean X is "far" from 
μο (both larger or smaller), which implies that the statistic TS will be 
"far" from 0, i.e., too large (positive) or too small (negative). 

• Then we could find a positive critical value t* such that we reject the 
null hypothesis if TS < — t* or TS > £*, and we fail to reject H0 if 
| TS | < t*. Given the symmetry of the t distribution, there is no point 
in defining two different thresholds for negative or positive values. 

• The critical value t* defines two regions: 

— A rejection region C, such that if the statistic is in that region, 
TS G C, then we reject the null hypothesis. 

— An "acceptance" region, such that we fail to reject the null hypoth-
esis if TS £ C. 

In our case, the rejection region is the union of intervals (—oo, —i*) and 
(t*, +oo), i.e., a subset of the real line. It is useful to notice that the 
rejection region, for the TS statistic above, consists of two symmetric 
tails of a probability distribution. More generally, the rejection region 
can be defined in terms of a subset of W1, where n is the sample size; 
then, we reject HQ if (Χι, Χ2, ■.., Xn) € C. 

• Actually, because of sampling errors, it might well be the case that the 
test statistic falls in the rejection region by pure chance; this, however, 
should be relatively unlikely. We want a suitably small probability of 
type I error a, say, a = 0.05. This value is often called the significance 
level. Then it is easy to see that by setting t* = ίι-α/2,η-ι> w e obtain 
a rejection region associated with a probability of type I error given by 
a. The idea is illustrated in Fig. 9.3. If the null hypothesis is true, the 
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test statistic will fall in the acceptance region with probability 1 — a: 

Mo " * l - a / 2 , n - l < 
y/n{X - ßo) 

< t l -l-a/2,n-l \ - a 

where we use the notation Ρμ ο to emphasize that we compute this prob-
ability under the probability measure assumed in HQ. The rejection 
region consists of two tails. Each tail is associated with a probability 
a/2; even if the null hypothesis is true, because of sampling variability 
we have a probability a/2 that the standardized sample mean falls on 
the right tail (X is much larger than μ0), and a probability a/2 that it 
falls on the left tail (X is much smaller than μο). If, in such a circum-
stance, we reject Ho, the probability of a type I error is a, putting the 
two tails together. 

Wrapping everything up, the procedure prescribes the following conditions, 
for a given significance level a: 

"Accept" Ho if 

Reject HQ if 

Vn{X - μο) 
S 

y/n{X - μ0) 

< ί ΐ - α / 2 , η - 1 

> tl-a/2,n-l 

A test like this is called a two-sided or two-tail test, as the rejection region 
consists of two tails. Let us illustrate with an example. 

Example 9.13 Consider again the data in Table 9.2 and the null hypothesis 
Ho', μ = 5, against the alternative ΗΆ: μφζ>. As we observed, the statistics 

10, X = 7.253, S = 8.5757 

seem to contradict the claim, but we should test this carefully. Assume that 
we choose a significance level a = 0.1. The test statistic is 

TS 10 x (7.253-5) 
8.5757 = 0.8308 

Indeed, TS φ 0, but we do not know yet if this is really significant. To 
find the critical value drawing the line between acceptance and rejection, we 
may consult statistical tables to find ί ι - α /2 ,η- ι = *o.95,9 = 1-8331. Since the 
sample size is n = 10, we have 9 degrees of freedom. Once again, note that 
if the rejection region consists of two tails, we should split its total area a on 
the two tails; this is quite similar to what we do when calculating confidence 
intervals. Since | TS |= 0.8308 < 1.8331, we cannot reject the hypothesis 
with that significance level; see Fig. 9.4. What would happen with a smaller 
probability of type I error? Well, we would fail to reject the null hypothesis 
again, since decreasing the significance level means that we are even more 



408 INFERENTIAL STATISTICS 

-1.8331 0 1.8331 
1 1 1 1 > 

Rejection TS=0 8308 Rejection 
region region 

Fig. 9.4 Checking rejection, given a test statistic. 

conservative. For instance, if we set a = 0.05, we should compare the test 
statistic against the quantile io.975,9 = 2.2622. Then, the rejection region 
consists of two smaller tails, and we would fail to reject again, since TS is still 
in the acceptance region. In order to reject the null hypothesis, we should 
increase the probability of a type I error. If we set a = 0.5, the quantile 
marking the rejection region is io.75,9 = 0.7027. In this case, |TS |= 0.8308 > 
0.7027, i.e., the test statistic is in the rejection region. However, we have a 
very large probability of type I error; if a = 50%, we are basically flipping a 
coin. 

One could wonder which value of a draws the line between acceptance and 
rejection. Using suitable software for evaluating the CDF of t distribution, 
we find that 

P(TS < 0.8308) = 0.7862 
Hence 

P(TS > 0.8308) = 1 - 0.7862 = 0.2138 
If we choose a > 2 x 0.2138 = 42.76%, then we reject the null hypothesis. 
Note that we should double the probability above because this is a two-tail 
test. This leads to the p-value concept, which is discussed later. 

To summarize, we failed to reject Ho. Can we say that we accept it? Well, 
this is a bit of a philosophical question, but probably one would not say that 
a sample mean X = 7.253 really supports HQ : μ = 5. All we can say is 
that the evidence is not hard enough to reject it. By the way, I can tell you 
that in this hypothetical case the null hypothesis was indeed true; the sample 
was obtained by running a generator of pseudorandom variâtes, sampling a 
normal distribution with expected value 5 and standard deviation 10; in real 
life, you will never know. u 

The careful reader will probably find some close connection between what 
we have learned about confidence intervals and hypothesis testing. Indeed, it 
turns out that the testing procedure above could also be carried out in terms 
of confidence intervals. What we could do is: 

• Compute a confidence interval with confidence level 1 — a 

• Reject the null hypothesis if μο does not fall inside the confidence interval 

We prefer to avoid this way of reasoning in order to enforce the basic concepts 
about hypothesis testing. Furthermore, as we show in the next section, this 
way of thinking is not that helpful if the form of the null hypothesis is different, 
leading to a one-tail test. 
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9.3.1 One-tail tests 

When the null hypothesis is of the form Ho : μ = μο, we consider a two-
tail rejection region. In many problems, the null hypotheses has the form 
HQ ■ μ > μο or Ho : μ < μο are more appropriate. As one could expect, 
this leads to a rejection region consisting of one tail. Before illustrating the 
technicalities involved, it is useful to consider a practical example. 

Example 9.14 A firm manufactures a product whose average useful life is 
1250 hours. This average comes from an extended experience in the past, and 
it can be considered as a very reliable estimate of the expected value of life. 
The firm is currently engaged in a product improvement program, based on 
a different manufacturing process. A sample of 30 items produced by this 
new process is tested, resulting in a sample mean of 1315 hours and a sample 
standard deviation of 70 hours. Can we say that the new process is really 
better than the old one? 

This is a typical case lending itself to hypothesis testing, but here we are 
not interested in a two-tail test. What we would like to check is whether the 
difference between 1315 and 1250 hours is statistically significant and cannot 
be attributed to a lucky sample. In other words, we would like to reject the 
hypothesis that the expected life is still 1250, but we certainly would not be 
happy if the sample mean were less than that, as this would not support the 
claim that the firm did a good job. The correct way to state the problem, 
from the point of view of the firm itself, requires the null hypothesis 

ί ? 0 : μ < 1 2 5 0 (9.13) 

against the alternative: 
ΗΆ:μ>1250 (9.14) 

The firm would like to prove that the product has really been improved, but 
we should not state a null hypothesis like HQ : μ > 1250. This is quite 
tempting, and in fact many students fall into this trap and make different 
sorts of mistakes: 

• Some go as far as to state hypotheses involving the sample mean 1315, 
which makes no sense since this is a sample statistic, not an expected 
value. 

• Moreover, we should not run a two-tail test, as we would also reject the 
null hypothesis when the sample mean is 1000 hours, which does not 
really suggest that the product has been improved. 

• Finally, a null hypothesis like HQ : μ > 1250 is true regardless of whether 
they improved the product (average life is larger than 1250) or not (av-
erage life is still 1250); hence, a test of such a hypothesis does not 
discriminate between the alternatives that we are interested in compar-
ing. 
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(a) (b) 

Fig. 9.5 Rejection regions for one-tail hypothesis testing. 

We should keep in mind that, with standard test procedures, we can either 
reject or fail to reject. We do not really prove that a claim is true; we may just 
argue that there is strong evidence against a claim. So, if we want to support 
a statement, we should try to reject its negation. This is why, in this problem, 
the claim that the firm would like to prove plays the role of the alternative 
hypothesis (9.14). D 

What kind of rejection region should be associated with the test in the 
example? The reasoning is almost the same as in two-tail testing, but it is 
easy to see that we should reject the null hypothesis if the test statistic TS is 
large, as this supports the one-sided alternative. If the test statistic is large, 
this means that the average life we observe is much larger than μο, and it is 
hard to explain this discrepancy by sampling variability alone. Indeed, the 
rejection region is the right tail, as shown in Fig. 9.5(a). Formally, the test 
should be run as follows: 

"Accept" H0 if ^ X ~ μο) < *!_„,„_! 

Reject i / 0 if > i i -Q ,„_i 

Note that here we should use a quantile with probability level (1 — a) instead 
of (1 — a/2). In this case, the rejection region consists of one tail, and the 
probability of a type I error is not split in two. In Example 9.14, the test 
statistic is 

>/30x (1315-1250) 
70 v ; 

The sample size is 30, so we are not really allowed to use quantiles from the 
standard normal distribution, but we are close; by remembering the ±3σ rule, 
we see that the null hypothesis will be rejected for any sensible significance 
level when the test statistic is larger than 3, when using quantiles of the 
standard normal. If we insist in using the t distribution, say, with a = 0.5%, 
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which is pretty small, the correct quantile is io.995,29 = 2.756 < TS. So we 
see that we reject even if we require a very small probability of type I error. 

To complete the picture, let us consider the case of 

H0 : μ > μ0 

against the alternative 
Ha : μ < μ0 

Here, the rejection region is the left tail [see Fig. 9.5. (b)]: 

y/n(X - μο) 
"accept" H0 if ^— > ία,„_ι 

reject H0 if ~ < iQ,„-i 

The quantile iQ,n-i, with a sensibly small significance level (a < 50%), is actu-
ally negative. Given the symmetry of the t distribution, ί α ,«- ι = —ti-a,n-i, 
and the rejection region is also characterized by the condition 

y/n(X - μ0) 
Q <- II — α,η — 1 

Before we proceed further, we should insist again that, strictly speaking, what 
we have said so far applies only to the expected value of a normal distribu-
tion. If the sample is normal, then we can say that the TS statistic has t 
distribution. In other cases, we have to carefully examine the distribution of 
the test statistic that we are considering, in order to properly set up the test; 
yet, the kind of reasoning is the same. It is also important to see the role of 
the two hypotheses in setting up the test: 

• The alternative hypothesis determines the rejection region, which in the 
case we consider here might be the right tail, the left tail, or both. If 
the test statistic falls in one of these "extreme" regions, there is strong 
evidence against the null hypothesis. 

• The null hypothesis specifies the probability distribution of the test 
statistic. In this simple setting, the null hypothesis just specifies the 
expected value μο. This is not so obvious for one-tail tests: If the null 
hypothesis is Ho : μ < μο, why should we just consider μο and not 
any smaller value, that would be compatible with the null hypothesis 
anyway? To see a heuristic justification, we should keep in mind the 
conservative nature of hypothesis testing. If TS falls in the rejection 
region assuming that μ = μο, i.e., if 

_ \/n{X - ßo) . . 
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then it will also fall in the rejection region for any assumed value less 
than μο- By assuming μ = μο, we take the worst case from the point of 
view of the alternative hypothesis; this approach is consistent with the 
idea of keeping the probability of a type I error small. In Section 9.10 
we offer a more rigorous look at hypothesis testing. 

As a final observation, we have illustrated testing procedures for the mean of 
a normal population, when standard deviation σ is not known and must be 
estimated by its sample counterpart S. This is the standard case in business 
applications, but if σ were known, it would be easy to adapt the approach. 
We should just consider a test statistic Z = ^/n(X — μο)/σ, which is stan-
dard normal, and apply the procedures described above using quantiles of the 
standard normal distribution. 

9.3.2 Testing with p-values 

In the manufacturing example of the previous section we found such a large 
value for the test statistic that we are quite confident that the null hypothesis 
should be rejected, whatever significance level we choose. In other cases, 
finding a suitable value of a can be tricky. Recall that the larger the value 
of a, the easier it is to reject the null hypothesis. This happens because the 
rejection region, whether one- or two-tail, increases with a. We could find a 
case in which we "accept" the null hypothesis if a = 0.05, but we reject it 
if a = 0.06. This is clearly a critical situation, because the right confidence 
level is nowhere engraved on a rock. A useful concept from this perspective 
is the p-value. 

It is easier to understand the concept referring to a one-tail test with HQ : 
μ < βο, v s · ΗΆ: μ > μο. The rejection region, as shown in Fig. 9.5(b), is the 
right tail. If the value of the test statistic is TS = t, the p-value is defined as 

p = P(Tn_! > t), (9.16) 

where T„_i is a t variable with n — 1 degrees of freedom. It is important to 
realize that we compute the p-value after having observed the sample: The 
random variable TS has been realized, and its numeric value is t. It is easy to 
see that we would reject the null hypothesis for any significance level a > p, 
and we would fail to reject it for any value a < p. Hence, calculating a p-value 
is a way to draw the line between rejection and failure to reject. 

Example 9.15 Let us consider again the manufacturing case above, where 
Ho : μ < 1250, ΗΆ : μ > 1250, S = 70, and n = 30. But now let us assume 
that the sample mean turns out to be X = 1260. In this case, the value of 
the test statistic TS is 

_ y/30 x (1260 - 1250) _ 
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Table 9.3 Hypothesis testing about the mean of a normal population, when variance 
is unknown (TS = test statistic; a = significance level). 

i/o He. TS Test with level a p-value if TS = t 

Reject if |TS|> ίι_α / 2 ,„-ι 2Ρ(Τ„_ι >\t\) 

Reject if TS > U-a,n-i P(T„_i > i) 

Reject if TS < - ί ι_α,η-ι Ρ(Τ„_ι < t) 

By using software or statistical tables of the CDF for a t distribution with 29 
degrees of freedom, we obtain P(Tn_i < 0.7825) = 0.7799. Hence 

p = P(T„_i > 0.7825) = 1 - 0.7799 = 0.2201 

This means that, in order to reject, we should admit a large probability, 
22.01%, of committing a type I error. This seems a bit too large and, indeed, 
the difference between 1260 and 1250 does not seem that significant, for this 
sample size and this variability. 

If the sample mean were X ~ 1290, repeating the above calculation would 
yield p = 0.002. Hence, we would reject the null hypothesis for any signif-
icance level a > 0.2%. This is strong evidence that the difference between 
1290 and 1250 is statistically significant and cannot be attributed to sampling 
variability alone. By the way, we should sit down and reflect about the differ-
ence between what is statistically significant and what is significant from the 
business perspective. If the values we are comparing refer to the useful life of 
some product, we should not take it for granted that the standard customer 
will notice the difference. The decision to switch to the new manufacturing 
process or not depends on the cost of the improved process with respect to 
the old one, and the awareness level of customers. D 

To complete the overall picture, with two-sided tests we reject in two cases: 
when TS < — ii-Q/2,n-i a n d when TS > ίι_α/2,η-ι · Hence, the p-value is the 
probability that the absolute value of a random variable T„_i is larger than 
the absolute value of the test statistic. Exploiting symmetry of t distribution, 
we can write this probability as 

p = 2 P ( T n _ i > | t | ) (9.17) 

μ = μο μ φ μο 

μ < μο μ> μο 

μ > μο μ < μο 

y/n(X - μ0) 
S 

yJn{X - μ0) 
S 

\/η{Χ - μο) 

when TS = t. The remaining one-tail test is easy to figure out, and Table 9.3 
summarizes what we have found so far about hypothesis testing. 
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A remark on p-values In closing this section, it is important to point out a 
common misunderstanding related to p-values, which is due to an incorrect 
way of reading (9.16) and (9.17). Since p-values are evaluated using prob-
abilities, it is tempting to consider them as probabilities. However, this is 
wrong: p-values are random variables, not probabilities. True, we do calcu-
late p-values using probabilities, but they depend on the numerical realization 
t of the test statistic TS, which is a random variable. If we take two random 
samples, we will find different p-values. So, we cannot consider them as prob-
abilities of type I errors, which are given by the significance level a, which is 
specified before taking the sample. What p-values provide us with is a feeling 
for statistical significance. When a p-value is very small, this suggests that 
there is really strong evidence against the null hypothesis. In fact, many statis-
tical software tools print something like P > 111 = 0.000 or Corresponding 
p-value < 0.005. These are an indication of strong reasons for rejecting the 
null hypothesis, as the test statistic falls on the fair tails of the distribution. A 
large p-value suggests that we should take a large value of a to reject the null 
hypothesis, implying a large probability of committing a type I error. Since 
this is not safe, in such a case it is wise to admit that we cannot reject Ho. 

9.4 BEYOND THE MEAN OF ONE POPULATION 

In this section we generalize what we have seen so far concerning the expected 
value of a normal population. We consider the following problems: 

• Estimating and testing the difference in the mean of two populations, 
which is used to assess if there are significant differences between them 

• Hypothesis testing for variances of normal populations 

• Testing Bernoulli populations, i.e., estimating and testing proportions 

• Estimating covariances and related issues 

• Estimating and testing a coefficient of correlation 

• Estimating skewness and kurtosis 

As you can see, this is a rather long list of topics. Because of space limita-
tions, we will take a somewhat "cookbook" approach, cutting some corners 
to keep the treatment to a reasonable size. Nevertheless, we think that the 
previous discussions have provided the reader with a sensitivity for the pitfalls 
of inferential statistics techniques. Our aim is to illustrate the tools provided 
by statistical software packages and their rationale. We refer readers to the 
references for a more thorough and solid treatment. 
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9.4.1 Testing hypotheses about the difference in the mean of two 
populations 

Sometimes, we have to run a test concerning two (or more) populations. For 
instance, we could wonder if two markets for a given product are really differ-
ent in terms of expected demand. Alternatively, after the re-engineering of a 
business processes, we could wonder whether the new performance measures 
are significantly different from the old ones. In both cases, the rationalization 
of the problem calls for assessing the difference between two expected values, 
Mi ~ A*2, where μ\ and μ2 are the expected values of two random variables. 
As we have seen, finding a confidence interval and hypothesis testing are both 
related to the distributional properties of a relevant statistic. Given our aim, 
it is quite natural to take samples from the two populations, with respective 
sizes ri\ and n2, and exploit the statistic 

XY-X2 (9.18) 

i.e., the difference between the two sample means. Exactly what we should 
do depends on a number of questions: 

• Is the number of observations, from both populations, large or small? 

• Are the two variances known? If they are not, can we assume that they 
are equal? 

• Are the samples from the two populations independent? 

• Are the two populations normal? 

In the following, we consider a subset of the possible cases, assuming normal 
populations, in order to illustrate the issues involved. 

The case of large and independent samples If the two samples are both large 
and mutually independent, the statistic (9.18) is, at least approximately, nor-
mally distributed. If the populations are normal, it is in fact normally dis-
tributed. Furthermore, independence allows to estimate the standard devia-
tion of the difference by 

**.-*.-v!+S <919) 
where Sf and S2 are the two sample variances. The standardized statistic 

^ _ (Χ1-Χ2)-(μ1-μ2) 
~ S- -

is (approximately) standard normal. Applying the same reasoning that we 
have used with a single normal population, the following confidence interval 
can be built: 

(Xl - X2) ± Zi-a/2Sx % 
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On the basis of these estimates, it is also easy to test if the two populations 
are significantly different; in this case, the test boils down to checking whether 
the origin lies within the confidence interval. 

Example 9.16 We want to compare the average yearly wage for two groups 
of professionals. Two independent samples are taken, with size ni = 55 and 
ri2 = 65, respectively; the observed sample means are X\ = €71,000 and 
Xi = €67,000, and sample standard deviations are S\ = €3,000 and 52 = 
€5,000. Can we say that the observed difference is statistically significant? 

The first step is calculating the sample standard deviation according to Eq. 
(9.19): 

/30002 50002 , J n i l 
SY y = \ 1 = 740.44 

Xi-x2 V 55 65 
Then, we specify the null hypothesis, 

iio : Mi - M2 = 0 

and the alternative 
Ha : μι - μ2 φ 0 

Accordingly, the test statistic is 

740.44 

Since Z > 3, the null hypothesis is rejected with any sensible value of the 
significance level. For instance, if we select a = 5%, the relevant quantile 
is ^0.975 = 1.96, which is smaller than the test statistic. If we want a 95% 
confidence interval for the difference in the two population means, we obtain 

4000 ± 1.96 x 740.44 =>· (€2548.76, €5451.24) 

We see that 0 is not included in the confidence interval, suggesting again that 
the difference is statistically significant. 0 

The case of small and independent samples With small samples (say, n i , ri2 < 
30), the procedure is not so simple, unless we know the two population vari-
ances σ\ and σ\. Since this is hardly the case, we cannot rely on the normality 
of the test statistic. A relatively easy case occurs when we may assume that 
the variances of the two populations are the same, since this allows pooling 
observations to estimate the common standard deviation as 

= / ( m - i ^ + K - i ) ^ 2 
P V ni + n2 - 2 

Note that the pooled estimator is based on a weighted combination of the 
two sample variances, where weights are related to the respective degrees of 
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freedom n\ — 1 and n2 — 1. Then, we use the standard deviation of the statistic 
Xi - X2, i-e. 

SXI-X2-SPXI- + -

to build the confidence interval 

(X\ - X2) ± ίηι+η2-2,1-α/2 - ^χ1_χ. 2 

We may test hypotheses by a similar token. Here, we rely o n a i distribution, 
which requires that the two populations be normal, and the total degrees of 
freedom are n\ + n2 — 2, since we estimate two means. 

If the two variances are different, we could try again to resort to the t 
distribution, at least as a reasonable approximation, but it is not clear how 
many degrees of freedom we should use. A (nontrivial) distributional result 
justifies the following estimate: 

sï + si ' 
ni n2 

5 ? \ 2 1 / 5 | x 2 

+ ni — 1 \rai / n2 - 1 \ n 2 

Since in general / is not an integer, we may round it down (which makes 
sense, because with fewer degrees of freedom a confidence interval is larger 
and more conservative) and build the confidence interval 

The case of paired observations: paired t testing All of the procedures de-
scribed above rely on the independence between the two samples. Now as-
sume, on the contrary, that the samples are strictly related. Such a case occurs 
when the observations are actually paired. For instance, assume that we sam-
ple random financial scenarios, indexed by k, and we evaluate the performance 
of two portfolio management policies on each scenario, resulting in observa-
tions X\. and X\. . In this case, we cannot say that the two observations are 
independent; arguably, both policies could result in a bad performance when 
applied in a recessive scenario. However, if we are just interested in checking 
if one of the two policies has a significant advantage over the other one, we 
can work directly with the observed differences 

Dk = xP-X?) 
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Table 9.4 Testing the effectiveness of a preventive maintenance policy. 

Plant 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Before 

18.5 
24.5 
30.5 
16 
23.5 
25 
18 
20 
15 
32 

After 

21 
22 
23 
14.5 
25.5 
21.5 
23.5 
17.5 
15.5 
28.5 

Dk 

-2.5 
2.5 
7.5 
1.5 

-2.0 
3.5 

-5.5 
2.5 

-0.5 
3.5 

and the statistics 

i ™ 

D = i y > f c fe=l 

■'-φ^*-* 
We see that, by pairing observations, we are back to the case of single popu-
lation, and a confidence interval for the difference is 

D ± ίη-1,1-α/2 
SD 

in 

We may also test the difference, running a test which is aptly called the "paired 
t test. 

Example 9.17 A large corporation runs 10 production plants around the 
world, which suffer from excessive downtimes, i.e., wasted time because of 
machine breakdowns. A new preventive maintenance policy is applied, and 
the corporation would like to check whether it has been effective. To this aim, 
the data illustrated in Table 9.4 are collected. For each plant, we know the 
monthly number of hours actually lost, before and after the introduction of 
the new preventive maintenance policy. The last column shows the reduction 
of lost hours, where a negative sign implies that actually more production 
capacity was lost after the new policy was implemented. Of course, this may 
occasionally happen and does not imply that the policy is ineffective. If we 
denote by μι the expected lost hours before and by μι the expected lost hours 
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after changing the maintenance process, we should test the null hypothesis 

H0 ■ μι < M2 

versus the alternative 
Ha : μι > μ2 

The test statistics are 
1 ()K 

D = 1.05, SD= 3.7301, TS = j j ^ = 0.2815 

It is easy to see that we cannot reject the null hypothesis for any safe sig-
nificance level. For instance, if we choose a = 0.1, the relevant quantile is 
io.9,9 = 1.3830. The rejection region is the right tail, but TS < 1.3830. The 
p- value is 

P(T9 > 0.2815) = 0.3923 
which is definitely too large to conclude that the new maintenance procedure 
has been effective. D 

9.4.2 Estimating and testing variance 

It is easy to prove that sample variance S2 is an unbiased estimator of variance 
σ2, but if we want a confidence interval for variance, we need distributional 
results on 5 2 , which depend on the underlying population. For a normal 
population we may take advantage of Theorem 9.4. In particular, we recall 
that the sample variance is related to the chi-square distribution as follows: 

(n - 1)S2 2 
σ 2 ~ X n - 1 

where χ\_χ denotes a chi-square distribution with n — 1 degrees of freedom. 
The conceptual path we should follow is the same that have seen for the 
expected value, with a slight difference: Unlike the t distribution, the chi-
square distribution is not symmetric and has only positive support (see Fig. 
7.18). To build a confidence interval with confidence level (1 — a) , we need 
the two quantiles, χ^ ,2 n _ 1 and χ\_α/2 n-v defined by the conditions15 

a 
2 fa < Xa/2,n-l) = f. Ρ(Κ2< X 2 ^ , ^ ) = 1 -

where K2 ~ x\-\- Both quantiles are positive, and X„/2,n-i - xl-a/2,n-v 
Then we have 

P (xl/2,n-l < {n ~l)S < XÌ-a/2,n-l) = 1 " « 

1 5We always use a notation whereby quantiles are associated with the probability that 
they leave on the left. There are books where X 2 / 2 n _ i ' s * n e larger quantile, since the 
probability a / 2 is associated with the area right tail, but we prefer a more uniform notation. 



420 INFERENTIAL STATISTICS 

which after rearranging leads to the confidence interval 

( (n - 1)52 ( n - l ) S 2 A 

\ ^ 1 - α / 2 , τ ί - 1 Χα/2,η-1 ) 
(9.20) 

We may also test a hypothesis about variance, just as we did for the expected 
value: 

Η0:σ2=σΙ, vs. ΗΆ: σ2 φ σ2. 

The distributional result above implies that, under the null hypothesis, we 
have 

σ 0 

From Section 7.7.2 we also recall that the expected value of a χ2
ι_χ variable is 

n — 1. Then, if the test statistic has a value that is sensibly smaller or sensibly 
larger than n — 1, we should question the null hypothesis. The test procedure 
is the following: 

"accept" Ho if χ= < ίϋΖ_ί1^_ < x\ _γ 
σο 

reject Ho otherwise 

Example 9.18 The following sample: 
20.7533 46.6777 -35.1769 27.2435 16.3753 

-16.1538 1.3282 16.8525 81.5679 65.3887 

was generated by a pseudorandom variate generator; the underlying distribu-
tion was normal, with μ = 10 and σ = 20. Now let us forget what we know 
and build a confidence interval for standard deviation, with confidence level 
95%. The sample standard deviation is 

S = 35.3977 

To apply Eq. (9.20) we need the following quantiles from the chi-square dis-
tribution with 9 degrees of freedom: 

Xl/2,n-i = 2-7004, x t ^ / 2 , ^ ! = 19.0228 

These quantiles, unlike those from the normal distribution, are not symmetric 
and yield the confidence interval 

9 X
1 Q

3 5
nÌ9

f i
7 7 2 , 9 X A 5 f 7 7 2 ) = (592.81, 4176.05) 19.0228 ' 2.7004 ) 

Taking square roots, we notice that the confidence interval for the standard 
deviation 

(24.35, 64.62) 
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does not include the true value σ = 20, which may happen with probability 
5%. If we want to test the null hypothesis 

H0 : σ = 20 

against the alternative hypothesis Ha : σ φ 20, with significance level a — 
0.05, we calculate the test statistic according to Eq. (9.21): 

9 x 35.3977° = 

202 

This value looks pretty large. In fact, 28.19 > X?_Q/2 n_i = 19.0228, and 
the null hypothesis is (incorrectly) rejected. Since this was a two-tail test, 
we could have equivalently observed that σο = 20 was not included in the 
confidence interval above. Again, we must be aware that type I errors are a 
real possibility. D 

If we have to compare the variances of two populations, we should run a test 
such as 

H0: σ\ = σ\ vs. ΗΆ: σ\ φ σ\ 

If both populations are normal and we take two independent samples of size 
n\ and n2, respectively, from Theorem 9.4 we know that 

( l - n i ) S ? 2 (1 - ri2)S2
2 2 

2 A n i —l! _2 A n 2 - l 
"l "2 

where S± and S% are the sample variances for the two samples. Hence, we have 
two independent chi-square variables. In Section 7.7.2 we have seen that the 
ratio of two independent chi-square variables is related to the F distribution; 
more precisely, (5f j'σ\)/'(5|/'σ|) has F distribution with n\ — l and n2 — l 
degrees of freedom. Then, under the null hypothesis, we have 

S2 

^ ~ F ( n x - l , n 2 - l ) 

Using the familiar logic, we should run the following test: 

5 2 

" accep t " H0 if i 7 l
Q / 2 , n i - l , n 2 - l < "02 — - ^ l - a / 2 , n i - l , n 2 - l 

reject HQ otherwise 

E x a m p l e 9.19 A reliable production process should yield items with low 
variability of key measures related to their quality. Imagine that we compare 
two technologies to check if they are significantly different in terms of such 
variability. A sample of ni = 10 items obtained by process 1 yields S2 = 0.15, 
whereas process 2 yields S2 = 0.29, for sample size n2 = 12. Can we say that 
there is a significant difference in variance? 
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Let us choose a = 10%. The test statistic is 

^ = ^ = 0-5172 
0.29 

By using suitable statistical software, we find the following quantiles of the F 
distribution with 9 and 11 degrees of freedom: 

■Fo.05,9,11 = 0.3223, ib.95,9,11 = 2.8962 

Since F = 0.5172 6 [0.3223,2.8962], we cannot reject the null hypothesis. 
Superficially, it seems that there is quite a difference in the two variances, as 
one is almost twice as much as the other one, but the sample sizes are too 
small to draw a reliable conclusion. If we had n\ = 100 and 722 = 120, then 
we would use 

FO. 05,99,119 = 0.7258 
and we could reject the null hypothesis. D 

Once again, we see that if we have distributional results on relevant statistics, 
we can follow the usual drill to come up with confidence intervals, hypothesis 
tests, p-values, etc. 

9.4.3 Estimating and testing proportions 

So far, we have mostly relied on normality of observations or, at least approx-
imately, on normality of the sample mean for large samples. However, there 
are cases in which we should be a bit more specific and devise approaches 
which are in tune with the kind of observations we are taking. Such a case oc-
curs when dealing with a property that may or may not hold for each observed 
element of a population. In Example 9.6 we considered sampling a population 
and estimating the fraction of its members that enjoy a generic property. Con-
ceptually, we are sampling a Bernoulli population with unknown parameter 
p. Letting Xi = 1 if observation i is "yes," 0 otherwise, a natural estimator 
of p is 

1 

Since np has binomial distribution, we should use quantiles from the binomial 
distribution to build confidence intervals and to test hypotheses about p. This 
is not difficult, as these quantiles have been tabulated. However, if the sample 
is large enough, we may rely on the central limit theorem to conclude that 

Σ 7 ^ " η ρ = *-* ~ Af(o, i) 
y/np{l-p) \/p(l-p)/n 

at least approximately. An alternative view is that, essentially, we are ap-
proximating a binomial distribution by a normal, but we are relating both its 
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expected value and variance to parameters p and n; since n is known, we are 
relating two features to one unknown parameter, without losing sight of the 
structure of the binomial distribution. Then, for a large sample, we have 

Ü i ^ P-P ^ 
r -Zi-a/2 < , . = S Zi-a/2 

/ p ( l - p ) 

\ 
w l - a 

where Zi_a/2 is the usual quantile of the standard normal. Note that the 
familiar drill for the normal distribution does not work in this case. The 
problem is that the unknown parameter p occurs in a complicated way, since 
it also gives variance. To find a confidence interval in the usual form, we 
should substitute p for p in the denominator of the ratio above. This yields 
the approximate confidence interval 

This confidence interval looks much like the confidence interval for the mean 
of a normal population, with sample variance S2 substituted by p(l — p), 
which is an estimate of the variance of a Bernoulli random variable. This is so 
natural that one tends to forget that there are two approximations involved 
here. The first one has distributional nature and is justified by the central 
limit theorem; the second one relies on the estimate of variance of a Bernoulli 
random variable. 

Using the same machinery, we may run hypothesis tests. A natural hy-
pothesis that we may wish to test is 

H0--P<Po vs. ΗΆ:ρ> ρο 

Under the null hypothesis, we may argue that the test statistic 

Σ"=ι xi - nPo 
y/npo(l-po) 

(9.22) 

has approximately standard normal distribution. We have to rely on the 
central limit theorem here, too; however, since we are plugging the number po 
from the null hypothesis, there is no other trouble. Clearly, we are inclined 
to reject Ho if the count of "yes" answers in the sample is too large, i.e., if 

Σ"=ι Xi - nPo > „ (a 9ox 
/ ,, =T > zi-a (9-23) 

y/npo{l - po) 
for a significance level a. 

Example 9.20 According to process specifications, a certain machine should 
produce no more than 5% defective parts. Then, if we take a sample of 300 



424 INFERENTIAL STATISTICS 

parts, the fraction of defective items should be something like 300 x 0.05 = 15. 
Now assume that, as a matter of fact, we observe 19 defective items. Is this 
finding compatible with the above percentage? We should test the null hy-
pothesis 

H0 : p < 0.05 

against the alternative hypothesis Ha : p > 0.05. Using the normal approxi-
mation, the test statistic (9.22) is 

1 9 - 1 5 
1.0596 V300 x 0.05 x 0.95 

Comparing this value against the quantile 2:0.95 = 1.6449, we see that we 
cannot reject the null hypothesis at 5% significance level. If we use suitable 
software, we find that the quantile at 95% for the binomial distribution with 
parameters n — 300 and p = 0.05 is b = 21. So, we should observe at least 
22 defective items to reject the null hypothesis. We may check the quality 
of the normal approximation by finding this threshold number with normal 
quantiles. Using (9.23) we find 

Ύ^ηΧί > npo + zi^ci/npoil -po) 
i= l 

= 300 x 0.05 + 1.6449 x V300 x 0.05 x 0.95 = 21.2092 

which is compatible with the exact quantile of the binomial distribution. D 

The example suggests that the normal approximations works fairly well, but 
care must be exercised when dealing with small sample sizes and probabilities. 
We should stress that common wisdom suggests that a sample size should be 
at least 30 to use normal approximations, but this rule of thumb does not 
apply here as it disregards the impact of p. It is often suggested that the 
product np should be at least 20 to rely on the normal approximation. 

9.4.4 Estimating covariance and related issues 

Just as we have defined sample variance, we may define sample covariance 
SXY between random variables X and Y: 

SXY = ^ γ Σ(Χ* - Χ)(Υ> - F ) (9·24) 

where n is the size of the sample, i.e., the number of observed pairs (Xi,Yi). 
Sample covariance can also be rewritten as follows: 

sxY = ^\Ì2x^-nXY) 
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To see this, we note the following: 
n n n n n 

Y,(Xi - x)(Yi-Y) = Σχ*γ*-Σχ*γ-ΣΧγ*+Σχγ 
i=l i=l i = l i= l i=\ 

n 
= Y^XiYi-nXY-nXY + nXY 

i=\ 
n 

= ^XiYi-nXY (9.25) 
i= l 

This rewriting mirrors the relationship σχγ = E[XY] — μχβγ from proba-
bility theory. It is important to realize that our sample must consist of joint 
realizations of variables X and Y. If we want to investigate the impact of 
temperature on ice cream demand, we must have pairs of observations taken 
in the same place at the same time; clearly, mixing observations is no use. 

This definition is consistent with sample variance, since S2
X = βχχ. Yet, 

one thing that may not look that obvious is why we should divide by n — 1. 
When dealing with variance, a common justification is that we lose one degree 
of freedom because we estimate one parameter, the unknown expected value. 
This simple rule does not sound convincing here, as we use two sample means 
X and Y as estimators of the respective expected values. Indeed, the best 
idea is to really prove that the estimator above is unbiased. 

T H E O R E M 9.6 The sample covariance (9.24) *s an unbiased estimator of 
covariance, i.e., E[SXY] = σχγ. 

PROOF Using (9.25) and the fact that the pairs (Xi,Yi) are identically 
distributed, we obtain 

E Y^XiYi-nXY 
U = i 

= ^E[Ityt]-nE[iy] 
i = l 

nE[XY] - - E Σ*Σ** 
3 = ί 

- n n 
ηΕ[ΧΥ]--ΣΣΕ[ΧίΥ,} (9.26) 

i= l j = l 

Since the pairs are also independent, for i φ j we have 

Ε[ΧίΥί\=Ε[Χί]-Ε[Υύ\=μχμγ 

There are n2 —n = n(n — 1) such terms in the last double sum in Eq. (9.26), 
hence 

n n 

J2 Σ Ε ίΧίΥΛ =nE tXF] - n(n - * w ^ 
i= l j = l 
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So we see that 

= nElXY] - - (nE [XY] - n(n - 1)μχμγ) 
n 

= (η-1)[Έ,[ΧΥ]-μχμγ] = (η-1)σχγ 

which proves the result. I 

Now let us consider a quite practical question. If we have a large set of 
jointly distributed random variables, what is the required effort if we want 
to estimate their covariance structure? Equivalently, how many correlations 
we need? The covariance matrix is symmetric; hence, if we have n random 
variables, we have to estimate n variances and n(n — l ) /2 covariances. This 
amounts to 

n(n — 1) n(n+ 1) 
n + 2 ~ 2 

entries. Hence, if n = 1,000, we should estimate 500,500 entries in the covari-
ance matrix. A daunting task, indeed! If you think that such a case will never 
occur in practice, please consider Example 8.5, on portfolio management. You 
might well consider 1,000 assets for inclusion in the portfolio. In such a case, 
can we estimate the covariance matrix? What you know about statistical 
inference tells that you might need a lot of data to come up with a reliable es-
timate of a parameter. If you have to estimate a huge number of parameters, 
you need a huge collection of historical data. Unfortunately, many of them 
would actually tell us nothing useful: Would you use data from the 1940s to 
characterize the distribution of returns for IBM stock shares now? We need 
a completely different approach to reduce our estimation requirements. 

Example 9.21 (Single-factor models for portfolio management) The 
returns of a stock share are influenced by many factors. Some are general 
economic factors, such as inflation and economic growth. Others are peculiar 
factors of a single firm, depending on its management strategy, product port-
folio, etc. In between, we may have some factors that are quite relevant for a 
group of firms within a specific industrial sectors, much less for others; think 
of the impact of oil prices on energy or telecommunications. 

Rather than modeling uncertain returns individually, we might try to take 
advantage of this structure of general and specific factors. Let us take the idea 
to an extreme and build a simple model whereby there is one factor common 
to all of stock shares, and a specific factor for each single firm. Formally, we 
represent the random return for the stock share of firm i as 

Ri = on + ßiRm + Ci 

where 

E Y^XiYi-nXY 
i=l 

• Qj and ßi are parameters to be estimated. 
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• Rm is a random variable representing the common risk factor; the sub-
script m stands for market; indeed, financial theory suggests that a 
suitable common factor could be the return of a market portfolio con-
sisting of all stock shares, with a proportion depending on their relative 
capitalization with respect to the whole market. 

• £¡ is a random variable representing individual risk, which in finan-
cial parlance is referred to as idiosyncratic risk; a natural assumption 
about these variables is that E[e¿] = O (otherwise, we would include 
the expected value into a¿). Another requirement is that the common 
factor really captures whatever the stock returns have in common, and 
that the specific factors are independent. Typically, we do not require 
independence, but only lack of correlation. These requirements can be 
formalized as: 

Cov(e¿,ρm) = O (9.27) 
Cov(ei,ej) = 0, i¿j (9.28) 

In the next chapter, where we deal with linear regression, we will see 
that condition (9.27) is actually ensured by model estimation procedures 
based on least squares. On the contrary, condition (9.28) is just an 
assumption, resulting in a so-called diagonal model, since the covariance 
matrix of specific factors is diagonal. 

The model above is called single-factor model for obvious reasons, but what 
are its advantages from a statistical perspective? Let us check how many 
unknown parameters we should estimate in order to evaluate expected return 
and variance of return for an arbitrary portfolio. To begin with, observe that 
for a portfolio with weights w¿, we have 

n n n n 
Rp = Σ w ¿ ( a ¿ + ί * R m + e ¿ ) = Σ Wi0ii+Rm^2 Wifc+Σ wiCi 

i=l i=l i=l i=l 

Then, 

n n n n n 
EiRp\ = Ó wiai+E[-Rm] 5 3 Wi&+Σ WiEi€i\ = Σ wiOLi+'i"iE Wi& 

i=l i=l i=l i=l ¿=1 

where /xm is expected return of the market portfolio (more generally, the 
expected value of whatever common risk factor we choose). From this, we see 
that we need to estimate: 

• n parameters a¿, i = 1 , . . . , n 

• n parameters /3¿, i = 1 , . . . , ç 

• The expected value / im 
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These add up to In + 1 parameters. Variance is a bit trickier, but we may 
use the diagonality condition (9.28) to eliminate covariances and obtain 

( ri \ 2 n 

^íûöË + Ó wl Var(e¿ ) + 2 Ó WiWjCov(Ci, Cj) 
i=l / i=l i^j 

( n \ 2 n 

i=l ) i = l 
where σ^ is the variance of the common risk factor and ó2 is the variance of 
each idiosyncratic risk factor, i — 1 , . . . , n. They amount to n + 1 additional 
parameters that we should estimate, bringing the total to 3n + 2 parameters. 
In the case of n = 1,000 assets, the we have a grand total of 3,002 parameters; 
this is a large number, anyway, but pales when compared with the 500,500 
entries of the full covariance matrix. D 

This example is quite instructive. Please keep in mind that we are not esti-
mating parameters for fun. This is a book about management, and estimates 
are supposed to be used as an input to decision-making procedures; as you 
may expect, wrong estimates may lead to poor decisions. As it often turns 
out in practice, the more sophisticated the decision process, the larger the 
impact of wrong estimates. 

The single-factor model we just outlined has a pervasive impact in both 
portfolio management and corporate finance. In fact, it is the starting point 
of a well-known equilibrium model, the capital asset pricing model (CAPM). 
To put it simply, CAPM is based on rewriting the single-factor model in terms 
of excess returns with respect to the risk-free return r¡ : 

Ri-rf = aii + ßi(Rm - rf) + e¿ 

By taking expected values, we obtain 

ßi-rf =ai + ßi(ßm-rf) (9.29) 

It is useful to interpret the expected excess return ßi—rf as a risk premium, 
since it is the return above the risk-free rate that an investor expects if she 
holds the risky asset i; by the same token, ßm — rf is the risk premium from 
holding the market portfolio, i.e., a broadly diversified portfolio reflecting 
the relative market capitalization of firms. Then, according to CAPM, the 
following conditions hold at equilibrium in Eq. (9.29): 

ai = 0 (9.30) 
= Cov(R R) 

Var(i?m) 

These conditions state that there is no specific risk premium for asset i; the 
risk premium is only due to the correlation of its return with the general 
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market return. This is a controversial result, relying on many debatable as-
sumptions, and we cannot really discuss it in any detail. However, there are 
two possibilities about CAPM: Either it is valid model, or it is not. 

1. If it is a valid model, the practical implication is that you should not 
pay any financial analyst, since the best that you can do is to invest 
in a market portfolio, surrogated by a wide market index. There is no 
hidden alpha to take advantage of by active stock picking, and only 
efficiency in passive portfolio management matters. In fact, this is why 
exchange traded funds (ETFs) are so popular; they are passive funds 
tracking broad market indexes at low cost. Of course, if one believes 
CAPM, statistics should be used to support the thesis empirically. 

2. If it is not a valid model, then you should try to manage a portfolio 
actively. This means that you should try to use statistics to estimate 
parameters in order to gain differential knowledge that can be used to 
make money. Furthermore, from an organizational perspective this task 
may be decomposed in two parts, one pertaining to general market con-
ditions (involving macroeconomic factors), and one pertaining to specific 
information about a firm. 

This brief discussion should convince you about the fundamental role of quan-
titative methods in practice, and their impact on organization of a portfolio 
management firm. 

More generally, this motivates the use of statistical models, which we begin 
discussing in Chapter 10 on simple linear regression. As you may imagine, it 
is hard to believe that one single factor can really capture everything stock 
shares may have in common. As a result, we do not have a diagonal model, 
since there is some commonality left unexplained by a single factor. This 
leads us to consider multiple factor models, which need multivariate statistical 
methods that are outlined in Part TV. 

9.4.5 Correlation analysis: testing significance and potential dangers 

To estimate the correlation coefficient ñ÷ã between X and Y, we may just 
plug sample covariance SXY and sample standard deviations Sx, S'y into its 
definition, resulting in the sample coefficient of correlation, or sample corre-
lation for short: 

RXY = -^±- = ¿ = 1 = (9.32) SXY 

SxSy 

\ 

Y^Xi - X)(Y, - Y) 
¿ = 1 

Σ(*«-*)\ 
The factors n — 1 in SXY , Sx, and SY cancel each other, and it can be proved 
that —1 < rxY < +1 , just like its probabilistic counterpart ñ÷ã. 
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Once again, we stress that the estimator that we have just defined is a ran-
dom variable depending on the random sample we take. Whenever we estimate 
a nonzero correlation coefficient, we should wonder whether it is statistically 
significant. Even if the "true" correlation is ñ÷ã = 0, because of sampling 
variability it is quite unlikely that we get a sample correlation RXY = 0. How 
can we decide if a nonzero sample correlation is really meaningful? A simple 
strategy is to test the null hypothesis 

Ho : PXY =0 

against the alternative hypothesis 

Ç¢: ñ÷ã^Ï 

However, we need a statistic whose distribution under the null hypothesis is 
fairly manageable. One useful result is that, if the sample is normal, the 
statistic 

is approximately distributed as a i variable with n — 2 degrees of freedom, 
for a suitably large sample. In the following example we show how to take 
advantage of this distributional result. 

Example 9.22 Say that you are convinced that there is a positive correla-
tion between normal random variables X and Y. You take a sample of 12 
joint observations. Which is the minimum value of correlation that you would 
find statistically significant? In this case, we should consider a one-sided test, 
with null hypothesis 

H0 : ñ÷ã <0 

tested against the alternative one 

Ha: PXY > 0 

Assume that we test with the standard significance level a — 5%. The degrees 
of freedom we should consider are n — 2 = 10, so the rejection region is 
T > io.05,io = 1-812. Now we have to transform this rejection region for the 
T statistic into a rejection region for the sample correlation. Setting 

B *^ï^b = 1 · 8 1 2 
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we solve for RXY: 

Λ/ΊΟ 
y/l - R\Y = RXY 1.812 

1 - H X Y - KXY � j ^ 

RXY = . 1 = 0.4972 
1 1 0 

+ 1.8122 

where, of course, we should take the positive root. D 

Correlation analysis is very useful, but as with any other tool, we must be 
well aware of its pitfalls and limitations to use it properly. They are a direct 
consequence of a few observations we made in Chapter 8, where we analyzed 
the link between independence and lack of correlation. We repeat them here 
for convenience, along with some additional warning. 

Correlation measures association, not causation: Lurking variables A common 
misunderstanding is the confusion of correlation with causation. When X 
and Y are correlated, it is tempting to conclude that X "causes" Y. This 
may be true, but it is knowledge of the phenomenon that allows us to draw 
such a conclusion. Correlation per se does not measure anything except a 
symmetric association. In fact, the definitions of covariance and correlation 
are symmetric, and this also applies to their sample counterparts: RXY = 
RXY- Therefore, it is not at all clear which variable is the cause and which 
one is the effect. 

Sometimes, we might detect a spurious correlation between X and Y, which 
is actually the effect of another variable Z. To see how this may happen, 
imagine that there is indeed a causal relationship between Z and Y, where 
Z is the cause and Y the effect, which is reflected by a positive correlation 
between Z and Y. If Z is positively correlated with X, because of a pure 
noncausal association, we will detect a positive correlation between X and 
Y as well; however, this positive correlation does not reflect any cause-effect 
relationship. In such a case, we call Z a lurking variable. 

Example 9.23 Consider the relationship between how much we spend in 
advertisements, measured by X, and demand, measured by Y. If we detect 
a positive correlation between X and Y, we might be satisfied by our last 
marketing campaign. But now suppose that Z measures the discount we offer 
to support promotional sales. Quite often, a marketing campaign involves 
increased advertising and a reduction in price to expand the customer base. 
So, it might be the case that the real cause of the increase in demand is the 
reduction in price. D 
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Fig. 9.6 Scatterplot of a nonlinear relationship between X and Y. 

Lurking variables are a quite common issue and we may be easily lead to wrong 
conclusions. We will see other examples in Section 16.2.1, when dealing with 
multiple regression models. 

Correlation measures only linear associations We have already pointed out 
that, in general, lack of correlation does not imply independence. When the 
relationship between X and Y is nonlinear, the coefficient of correlation could 
not reflect this link at all. An example is shown in Fig. 9.6, where there is 
indeed a link between the two variables, but sample correlation is practically 
zero. This happens because when Y is larger than its mean, X can be larger 
or smaller than its mean (see also Example 8.4). To overcome this difficulty, 
there are a few tricks that can be used: 

• One possible strategy is a nonlinear transformation of variables. Some-
times, rather than considering X, we may take V~X or logX. These non-
linear transformations are commonly used to develop statistical models. 

• Another possibility is to account for nonlinearity explicitly, relating X 
and F by a nonlinear model; nonlinear regression is outlined in Section 
16.4. 

The King-Kong effect Another danger of correlation analysis is the impact 
of a single "odd" observation. The issue is illustrated in Fig. 9.7. In Fig. 
9.7(a) we see a random sample from a bivariate normal distribution with zero 
correlation (ñ÷ã = 0). The sample correlation is very small, RXY = 0.0275, 
and this is not significant and clearly compatible with sampling variability. 
Now assume that we add a single observation, (Xk,Yk) = (40,40), which is 
quite far apart, as shown in Fig. 9.7(b). Now sample correlation jumps to 
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Fig. 9.7 An illustration of the King Kong effect. 

RXY — 0.7657, because of the impact of the two deviations (Xk — X) and 
(Yfc - Y) on sample correlation. This is often called the "King Kong" or "Big 
Apple" effect.16 In practice, the King-Kong effect might be the effect of an 
outlier, i.e., a measurement error or, possibly, an observation that actually 
belongs to a different population. 

9.4.6 Estimating skewness and kurtosis 

We have defined skewness and kurtosis as:17 

7 Ξ Ε 
ó° 

ê = Å 

These definitions are related to higher-order moments of random variables. 
Just like expected value and variance, these are probabilistic definitions, and 
we should wonder if and how these measures should be estimated on the basis 
of sampled data. The "if" should not be a surprise. If we know that the 
sampled population is normal, there is no point in estimating skewness and 
kurtosis, since we know that 7 = 0 and ê = 3 for a normal distribution. By 
the same token, for other distributions, skewness and kurtosis are related to 
parameters of the distribution. For instance, a beta distribution is defined 
in terms of two parameters, ai and Q2; any other feature depends on these 
parameters. Hence, we should really estimate these parameters, rather than 

16Statistics on towns in the United States may be affected by the inclusion of New York, 
which has peculiar characteristics. 
17See Section 7.4. 
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the expected value, variance, skewness, or kurtosis. Indeed, we will take this 
more general view in Section 9.9. 

On the contrary, if we do not take a specific distribution for granted, we 
might be interested in an estimate of skewness and kurtosis. One possible 
way to estimate these characteristics relies on the definition of higher-order 
moments.18 If we denote the central moment of order k by 

mk -E (X - ì÷Ô 

we have 
7 = 

TO3 7714 

(m 2 ) 3 / 2 ' (m2)2 

Then, we could consider sample moments of order k 

Ì*=±έ(*-χ)' 

and define sample skewness as follows: 

τ ^ \3 

G 
M3 

^Σ(*-*) 
¿ = I 

( M 2 ) 3 / 2 

1¿(X¿-X)2 
- i3 /2 

By the same token, we would consider the following definition of sample kur-
tosis: 

n 
ôí\4 

K = 
MA 

é-Σ(^-^ 
( M 2 ) 2 

èE(*-*r 
Unfortunately, these are not unbiased estimators of 7 and ê. The following 
corrections are typically used:19 

Gi = Vn(»-1) K! 
n-1 

( n - 2 ) ( n - 3 ) 
[(n + l ) Δ - - 3 ( n - l ) ] + 3 

Neither of these adjustments eliminates bias, however; some software packages 
offer the choice between these two forms of estimator. We stress again that 
if we assume a given distribution, estimating skewness and kurtosis is a false 

See Definition 7.3. 
See, e.g., Ref. [10] for a comparison of measures of sample skewness and sample kurtosis. 
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problem. If we do not take a specific distribution for granted, we might use 
either form of sample skewness and sample kurtosis to get a feeling for the 
sensibility of our hypothesis. For instance, if we are checking normality, we 
should find a sample skewness close to 0 and a sample kurtosis close to 3. 
If the estimates are quite far from what we expect, we should be inclined to 
rule out normality; however, even if we find G « = 0 and K « 3, this would 
not be enough to conclude normality. In fact, there are nonparametric tests 
that can be used to check the plausibility of an assumption about the whole 
distribution, without referring to specific parameters. 

9.5 CHECKING THE FIT OF HYPOTHETICAL DISTRIBUTIONS: 
THE CHI-SQUARE TEST 

So far, we have been concerned with parameters of probability distributions. 
We never questioned the fit of the distribution itself against empirical data. 
For instance, we might assume that a population is normally distributed, and 
we may estimate and test its expected value and variance. However, nor-
mality should not be taken for granted, just like any other claim about the 
underlying distribution. Sometimes, specific knowledge suggests strong rea-
sons that justify the assumption; otherwise, this should be tested in some way. 
When we test whether experimental data fit a given probability distribution, 
we are not really testing a hypothesis about a parameter or two; in fact, we 
are running a nonparametric test. The chi-square test is one example of such 
a test. 

The idea is fairly intuitive and basically relies on the idea of a relative 
frequency histogram, although the technicalities do require some care. The 
first step is to divide the range of possible observed values in J disjoint in-
tervals, corresponding to bins of a frequency histogram. Given a probability 
distribution, we can compute the probability Pj, j — 1 , . . . , J , that a random 
variable distributed according to that distribution falls in each bin. If we have 
n observations, the number of observations that should fall in interval j , if the 
assumed distribution is indeed the true one, should be Ej = npj . This num-
ber should be compared against the number Oj of observations that actually 
fall in interval j ; a large discrepancy would suggest that the hypothesis about 
the underlying distribution should be rejected. As does any statistical test, 
the chi-square test relies on a distributional property of a statistic. It can be 
shown that for a large number of samples, the statistic 

2 = V^ (Oj - EJ)2 

h EJ 
3=1 J 

has (approximately) a chi-square distribution. We should reject the hypothesis 
if x2 is too large, i.e., if χ2 > xi_a¡m, where 

• Xi-a m is a quantile of the chi-square distribution 
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• a is the significance level of the test 

• m is the number of degrees of freedom 

What we are missing here is m, which depends on the number of parameters 
of the distribution that we have estimated using the data. If no parameter 
has been estimated, i.e., if we assumed a specific parameterized distribution 
prior to observing data, the degrees of freedom are J — 1; if we estimated p 
parameters, we should use J — p— 1. 

The idea of the test, as we stressed, is pretty intuitive. However, it relies 
on approximated distributional results that may be critical. Another tricky 
point is that the result of the test may depend on the number and placement 
of bins. Rules of thumb have been proposed and are typically embedded in 
statistical software. Nevertheless, we should mention that there are other 
general strategies to test goodness of fit, like the Kolmogorov-Smirnov test, 
as well as ad hoc testing procedures for specific distributions. 

9.6 ANALYSIS OF VARIANCE 

Analysis of variance (ANOVA) is the collective name of an array of methods 
that find wide applications in inferential statistics. In essence, we compare 
groups of observations in order to check if there are significant differences 
between them, which may be attributed to the impact of underlying factors. 
One such case occurs when we compare sample means taken from m popu-
lations, in order to test the hypothesis that the respective expected values 
are all the same. Note that, so far, we only considered two populations; with 
ANOVA we may check an arbitrary number of populations. The ability to an-
alyze the impact of factors is also useful to assess the significance of statistical 
models, as well as to design statistical experiments. The approach relies on 
the comparison of different estimates of variance, which should not be signifi-
cantly different, if factors are not relevant; if we find a statistically significant 
difference in estimates, then we may reject the hypothesis that factors have 
no impact. 

In this section, we take a somewhat limited view, which is nevertheless 
able to convey the essentials of ANOVA. We consider two simple and specific 
cases: 

1. One-way ANOVA, whereby we assume that there is one factor at work. 

2. Two-way ANOVA, whereby we assume that there are two factors at 
work. 

We will take another view at ANOVA in the context of linear regression in 
Section 10.3.4. 
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9.6.1 One-way ANOVA 

In Section 9.4.1 we considered a test concerning the hypothesis that the means 
of two (normal) populations are the same: 

H0: ßi = ß2 vs. Ç&: ìéö ì2 

It is easy to imagine situations in which we want to check a similar claim for 
more than two populations. To set the stage for the following treatment, let us 
assume that we have m normal populations, i = 1 , . . . , m, and that we take a 
sample of n elements from each population. If the number of observations for 
each population is the same, we have a balanced design; otherwise, we have 
an unbalanced design. Formally, we are considering the following random 
variables: 

Xij ~ Af(ßi, σ2), i = 1 , . . . , m; j = 1 , . . . , n 

where the subscripts i and j refer to populations and observations, respec-
tively. As usual, all observations are assumed independent. We denote by ì^ 
the unknown expected value of population i. Formally, the null hypothesis 
we want to test is 

H0 : ìé = ì2 = ■ · · = ßm 

against the alternative Ha that not all expected values are the same. Another 
key assumption concerns population variances. They are unknown, but it is 
assumed that all of them have the same value ó. This might seem a bold 
assumption, but keep in mind that we want to check the equality of the 
expected values or, more informally, if there is any significant difference among 
the populations; hence, in terms of null hypothesis, it is natural to assume 
the same variance. 

Since we have m samples of size n, we have a grand total of nm independent, 
normally distributed observations. If we standardize, square, and add all of 
them, we obtain a chi-square random variable with nm degrees of freedom 

Σ Σ ( '"i -Xnm (9.33) 
¿=1 j = l 

Since expected values are unknown, we should replace them with sample 
means for each population 

— 1 " 
×ß. = -Ó÷û> i = 1,2,...,m (9.34) 

where the notation X¿. points out that this is a sample mean obtained by 
summing over the second subscript j . If we plug these sample means into Eq. 
(9.33), we get the random variable 

>w 2 
r^j V 2 Ë-çôç—ôç 



438 INFERENTIAL STATISTICS 

where we define 
m n 

SS„, = 2_^ ¿^ \Xij - Xi) 
¿ = 1 j=l 

as the sum of squares within samples, since deviations are taken with respect 
to each expected value within each population. This is again a chi-square 
variable, but with nm — m degrees of freedom, since we have estimated m 
expected values. Given the properties of chi-square variables, we obtain 

E [SS«,] 2 
—: = ó nm — m 

which means that SSW/(nm — m) is an unbiased estimator of σ2, regardless 
of whether the null hypothesis H0 is true. 

Now we build another estimator of σ2, which is unbiased only if i/o holds, 
i.e., if the expected values are the same: μ» = μ, for i = 1 , . . . , m. In such a 
case, we could estimate ì by taking the overall sample mean 

-. m n 
X.. = 

nm 

Then, to estimate σ2, we could take a different route. Let us define the sum 
of squares between samples 

SSb = nJ2(Xi- -*■■)' 
¿=i 

To see the rationale behind the definition, let us observe that, under the null 
hypothesis, the variables 

Xi.-ì . Ë —¡==, é = 1,..., m y/a2/n 

are standard normal. If we square and sum these variables, we get the follow-
ing chi-square variable: 

Ó (×%. - ì) 2 
-2 Xm 

¿ = 1 

If we plug Eq. (9.35) into the sum above to replace the unknown expected 
value ì, under the null hypothesis, we obtain 

Ó \×ß- - X-) 2 
-2 Xm-1 

¿ = 1 

This implies that, under HQ 
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Table 9.5 Sample d a t a for one-way ANOVA. 

i 

1 
2 
3 

Xij 

116 155 32 126 110 
150 150 126 66 128 
115 136 124 83 107 

61 
157 
64 

E j xij 

600 
777 
629 

E [SS6] /ó2 = m - 1 

• SSb/(m — 1) is an unbiased estimator of ó2 

To summarize, we have two estimators for the unknown variance: SSW / (nm — 
m) is always unbiased; SS¡,/(m — 1) is unbiased only if the means are all the 
same. Then, under the null hypothesis, the ratio of the two estimators should 
be close to 1. Moreover, it can be shown that SS¡,/(m—1) tends to overestimate 
ó2 if Ho is not true. Then, we consider the following test statistic: 

T g _ S S t / ( m - l ) 
SSw/(nm — m) 

which under H$ is a F variable with m — 1 and nm — m degrees of freedom. 
We reject the hypothesis when the test statistic is too large. More precisely, 
if Fi-a^m-i^nm-m is the (1 — a)-quantile of the F distribution, we obtain a 
test with significance level a if we reject when TS > -Fi-a,m-i,nm-m· 

Example 9.24 Let us apply one-way ANOVA to the data listed in Table 
9.5, where we have three samples of size n = 6, taken from m = 3 populations. 
The first step is to calculate the sums 

Xx. = 600/6 = 100.00, X2. = 777/6 = 129.50, X3. = 629/6 = 104.83 
X... = (100 + 129.5 + 104.83)/3 = 111.44 

We observe that the three sample means do look rather different. Now we 
should test the null hypothesis 

H0 : μι = ì2 = ì^ 

We proceed calculating the following sums of squares:20 

SS6 = 6 x (100 - 111.44)2 + (129.5 - 111.44)2 

+ (104.83- 111.44)2 

SS™ = 19436.33 

3004.11 

2 0 Calculating SSm is definitely tedious by hand; this task can be streamlined by taking 
advantage of the identity SS™ = Óß Σ 7 · Xh ~ nmX.. — SS¡,. 
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Thus, we find the following alternative estimates of the unknown variance σ2 : 

SS6/2 = 1502.06, SS„,/(18 - 3) = 1295.76 

which do look different, at first sight. The test statistic is 

150^06 
1295.76 

and, assuming a significance level a — 5%, it should be compared with the 
following quantile of the F distribution with 2 and 15 degrees of freedom: 

Fo. 95,2, is = 3.6823 

We see that the test statistic does not fall into the rejection region and, there-
fore, the apparent difference in sample means is not statistically significant. 
Actually, using the CDF of the F distribution, we obtain the p-value 

P = P(Í2,i5 > TS) = 0.3403 

which is pretty large. In order to reject the null hypothesis, we should accept 
a very large probability of a type I error. D 

This procedure can be easily adapted to the unbalanced case, where the m 
samples have not the same size. It is often argued, however, that a balanced 
design is preferable for nonnormal populations, as the resulting test is a bit 
more robust to lack of normality. 

9.6.2 Two-way AN OVA 

In one-way ANOVA we are testing if observations from different populations 
have a different mean, which can be considered as the one factor affecting 
such observations. In two-way ANOVA we consider the possibility that two 
factors affect observations. As a first step, it is useful to reconsider one-way 
ANOVA in a slightly different light. What we are implicitly assuming is that 
each random variable can be expressed as the sum of an unknown value plus 
a random disturbance 

■X-ij = \l% + €ij 

where E[e¿j] = 0. Then, E[Xj.,] = /¿¿, which is the only factor affecting the 
expected value of the observations. If we denote the average expected value 
by μ, where 

.. Ill 

... 

we may write 
E[Xij] = ì + ai 
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where a¿ = ì^ — ì and Ó7ú=é α» = ^· Hence, the average value of a¿ is zero, 
but the null hypothesis of one-way ANOVA is much stronger, since it amounts 
to saying that there is no effect due to a¿, and this is true if GJ¿ = 0 for all i. 

We may generalize the idea and consider two factors 

E[Xi:i] =ß + ai+ßj 

where 
m n 

¿=1 j=\ 

In this case, we are taking into consideration the presence of two factors, 
which are not interacting. If we want to account for interaction, we should 
extend the model to 

E[X¿j] = ì + a¿ + ßj + 7ij 

If we organize observations in rows indexed by i and columns indexed j , we 
may test the following hypotheses: 

1. There is no row effect, i.e., a¿ = O, for all i. 

2. There is no column effect, i.e., ßj = 0, for all j . 

3. There is no effect due to interaction, i.e., 7¿¿ = 0, for all i and j . 

Let us consider the first case, assuming that there is no interaction and that 
variance is ó2, for all i and j : 

HQ : all Q¿ = 0 vs. Ha : not all Q¿ are equal to 0 

As in one-way ANOVA, we build different estimators of ó2, one of which is 
unbiased only if the null hypothesis is true. To obtain an estimator that is 
always valid, let us consider 

ν ^ γ ^ {Xjj — E[Xjj]) _ ν ^ ν ^ (Xjj — M — ai - ßj) /g og-i 

This is a chi-square variable with nm degrees of freedom, if observations are 
normal and independent. To estimate the unknown parameters, we consider 
the appropriate sample means 

μ = X.. ; ai = Xi. — X.. ; ßj = X.j — X.. 

We should recall that, since the sum of the parameters a¿ is zero, we need to 
estimate only m — 1 of them; by the same token, we need to estimate only 
n — 1 parameters ßj. So, we need to estimate a grand total of 

l + (m-l) + (n-l) = m + n-l 
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parameters. Then, if we plug the above estimators into Eq. (9.36), we find 
that 

" " (Xu -ß-aj-ßj) _ " " (÷.. _ X - . _ x . . + x.)2 

¿ = 1 j = l i=\ j=l 

is chi-square with 

nm — (m + n — 1) = (m — l)(n — 1) 

degrees of freedom. Then, if we define the sum of squared errors as 

S S e E ^ ^ ( l i 3 - I , - I , + I . . ) : 

we have 

E S S 

m - l ) ( n - l ) 
= ó2 

Therefore, we have built an unbiased estimator of variance. Now, we build 
another estimator, which is unbiased only under the null hypothesis. In fact, 
under HQ, we have: 

E [Xi] = ì + áß = ì 

Since Varpfj.) = σ 2 /η , the sum of squared standardized variables 

�A (Xj. - ì) 
¿ " ó2/ç 

is a chi-square variable with m degrees of freedom, if the null hypothesis is 
true. Replacing ì by its estimator X.., we lose one degree of freedom. So, if 
we define the row sum of squares 

m 
, = 7 TT >2 SSr = n^2(Xi.-X..y 

¿ = 1 

we have 
E [ S S r / ( m - l ) ] = a 2 

Therefore, we have another estimator of variance, but this one is unbiased 
only under the null hypothesis. When HQ is not true, this estimator tends to 
overestimates ó2. Then, we may run a test based on the test statistic 

T S = SS r /(m - 1) 
S S e / [ ( m - l ) ( n - l ) 
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which, under HQ, has F distribution with (m — 1) and (m — l)(n — 1) degrees 
of freedom. Given a significance level a, we reject the null hypothesis that 
there is no row effect if 

TS > ν l - Q l m - l , ( m - l ) ( n - l ) 

Clearly, a similar route can be taken to check for column effects, where we 
define a column sum of squares 

n 

which is related to a chi-square variable with n — 1 degrees of freedom, and 
we reject the null hypothesis that there is no column effect if 

_ S S c / ( n - l ) 
~ S S e / [ ( m - l ) ( n - 1)] ~ ^-^-l,(m-l){n-l) 

The case with interactions is a bit trickier, but it follows the same conceptual 
path. 

9.7 MONTE CARLO SIMULATION 

Monte Carlo simulation is a widely used tool in countless branches of physics, 
engineering, economics, finance, and business in general. Roughly speaking, 
the aim is to simulate a system on a computer, in order to evaluate its perfor-
mance under random scenarios. The name was actually invented by physicists 
and aptly reflects the role of randomness. Indeed, Monte Carlo simulation is 
one of the more successful, as well as potentially dangerous, application areas 
of probability and statistics. While "Monte Carlo" is typically associated with 
"simulation," a more in-depth view highlights two sides of the coin: 

• Monte Carlo sampling refers to a mathematical method that may be 
used, e.g., to discretize a continuous representation of uncertainty in 
order to generate a set of scenarios. For instance, we may consider a 
normal distribution and generate a sample of observations that are sup-
posed to approximate the original continuous distribution. Monte Carlo 
sampling is also a numerical method to evaluate challenging multidi-
mensional integrals. 

• Monte Carlo simulation relies on Monte Carlo sampling, and it is used to 
predict the performance of a system in which uncertainty and dynamic 
interactions of system components preclude the application of analytical 
modeling techniques. In other words, it is impossible to build a mathe-
matical model giving us a clue of how well a system will work, and we 
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are forced to rely on empirical experimentation with a simulated model 
of reality. 

Whereas Monte Carlo sampling is more of a statistical tool, Monte Carlo 
simulation may also involve nontrivial modeling of complex systems by special 
purpose software environments and programming languages. 

Example 9.25 (Monte Carlo sampling as a numerical integration 
tool) Imagine that we need the value of the following integral: 

/ g(x)dx 
Jo 

From Section 2.13 we know that we should find the antiderivative of function 
g, but this is sometimes impossible to do. A seemingly weird way of tackling 
the problem is obtained if we rewrite the integral in probabilistic terms: 

/ g{x)dx= / g{x)-ldx= / g{x)fu{x)dx = E[g(U)j 
Jo Jo Jo 

What we have done is consider the harmless factor 1 as the PDF of a uniform 
random variable U ~ 14(0,1). Then, the integral can be regarded as the 
expected value of a function of a random variable. Furthermore, if we were 
able to draw a sample of independent random observations U\, U2, ■ ■ ■, Un from 
the uniform distribution, we could apply the arsenal of statistical inference to 
the estimator 

¿ = 1 

If the sample is large enough, this sample mean should converge to the true 
value of the integral above, and we may also check whether the sample is 
indeed large enough by evaluating a confidence interval. 

Actually, there are numerical integration methods that are faster and more 
accurate than Monte Carlo sampling, when we have to integrate a function of 
one variable. But consider the expected value of a function of a vector X of 
random variables taking values in Rm , with a possibly complicated joint PDF 
as follows: 

E[ff(X)] = / S (x) /x(x)dx 
Jv 

This may be an integral in a very high-dimensional space, over a domain 
T> C Km that is the support of the distribution. Standard numerical methods 
are not applicable when m is even moderately large, whereas Monte Carlo 
sampling requires only to generate random variables with a given probability 
distribution and calculate a sample mean. D 

The basic ingredient of Monte Carlo sampling is the generation of observa-
tions of random variables on a computer. Conceptually, this is an impossible 
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task, since there is no randomness in a computer algorithm; however, using 
methods outlined in Section 9.7.2, we are able to generate pseudorandom vari-
ables that are practically satisfactory. Monte Carlo sampling can be used for 
scenario generation21 in many risk management applications. Prom a prac-
tical perspective, the required machinery of Monte Carlo sampling can be 
conceptually challenging, but it is easy to implement, quite often in spread-
sheet form. On the contrary, Monte Carlo simulation of complex dynamic 
systems may require nontrivial programming skills. 

Example 9.26 (Monte Carlo simulation of an inventory control pol-
icy) We must control the inventory of an item subject to random demand. 
Daily demand dt, t = 1,2,3,..., can be just a sequence of i.i.d. variables, or a 
very complicated process subject to intertemporal dependence and seasonal 
patterns.22 We consider a simple control policy, which is widely known as 
(s, S) policy: 

• Every T days we check the inventory level; if it is below a threshold 
level s, we order enough items to bring inventory back to a target level 
5, where S > s; more precisely, we order S — It items, where It is the 
current inventory level when it is reviewed; items are received after a 
delivery lead time LT. 

• If the inventory level is above the threshold s, we do nothing. 

The role of the threshold level s is to avoid ordering too often, since we would 
incur large fixed ordering and transportation costs. The policy parameters 
s and S should be set in order to find a satisfactory balance between in-
ventory holding costs, ordering costs, and penalties due to stockouts. The 
reader should compare this approach with the economic order model that we 
introduced in Section 2.1. Since we check inventory with a review period T, 
the (s, S) policy is called periodic review; on the contrary, the (Q, R) policy, 
based on a fixed order quantity Q and a reorder level R, is a continuous re-
view policy, since we should check inventory level whenever we draw an item 
from inventory. A possible advantage of periodic review policies is that, by 
choosing a common ordering period, we may synchronize and aggregate or-
ders for different items with a common supplier, resulting in a reduction in 
transportation costs. 

In very simple cases, mathematical models can be devised to predict the 
average cost as a function of the control parameters s and S; then, we may 
tune them in the best way. Unfortunately, many complicating factors may 
preclude this approach: 

2 1 See also Section 13.4.3. 
2 2 The time series models that we discuss in Chapter 11 can be used to model and simulate 
virtually any demand pattern. 
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• The demand process can be difficult to deal with analytically, because 
of correlation over time and other nontrivial patterns. 

• Items may be perishable and have limited shelf life. 

• Delivery lead time LT may be uncertain; note that if LT is deterministic 
and smaller than the review period T, the issued order will be received 
before the next inventory review; however, in general, we should take the 
queue of incoming deliveries into account. Indeed, inventory control does 
not rely on physical, on-hand inventory; rather, we should consider the 
inventory position, which includes both on-hand and on-order inventory, 
as well as possible backlog associated with customers that we have not 
yet satisfied because of a stockout. 

• The customer behavior when a stockout occurs may be nontrivial; some 
customers will wait for delivery, possibly reneging if the waiting time is 
too large; other customers may be lost; sometimes, they will switch to 
a substitute item. 

• There could be an interaction between different items held in stock. 

• There could be an interaction between our and suppliers' inventories. 

In these cases, we should resort to performance evaluation by Monte Carlo 
simulation. D 

The reader should appreciate the difference between the two examples. On 
a conceptual level, the simulation of a complex supply chain to estimate its 
average cost is just the estimation of an expected value. We are just integrat-
ing a complicated function that cannot be represented by a formula. How-
ever, from a practical perspective, the second example requires considerable 
modeling skills and cannot be tackled by plain spreadsheets. The dynamic in-
teraction of components and actors calls for much more. We will not consider 
implementation issues at all, but we should mention that a massive array of 
software environments and languages is available to tackle huge simulation 
models. They are also equipped with graphical animation tools that are way 
beyond the scope of this book. What is relevant, from our point of view, is the 
fundamental role that probability and statistics play in a proper simulation 
study. Too often, users fascinated by flashy computer graphics forget this 
point. 

9.7.1 Discrete-event vs. discrete-time simulation 

The time we experience in everyday life is continuous. Engineers simulat-
ing, e.g., the flight behavior of an aircraft, have to build a continuous-time 
model accounting for quite complex dynamics. To make the model amenable 
to numerical simulation, suitable discretization schemes have to be devised; 
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ι t 
Γ, T2 T3 T4 T5 T6 

Fig. 9.8 Sample path of a discrete-event queueing system. 

indeed, nothing is continuous in the digital world of computers. The way in 
which this discretization is done influences the computational burden and ac-
curacy of predictions obtained by running the model. Over the years, we all 
have noticed the improvement in weather forecasts due to more sophisticated 
models and numerical schemes, as well as dramatically faster computer hard-
ware, allowing for fine discretizations. The knowledge involved in suitable 
discretizations of continuous systems is really cutting-edge. 

Luckily, time discretization is often much more natural in many business 
models. In the inventory control problem of Example 9.26, there is really 
no need to model the exact timing of demand, if we review inventory in the 
evening and we receive shipments in the morning. The system will change its 
state only at naturally discrete-time instants, resulting in very simple dynam-
ics: 

h = h-\ +xt-dt 

i.e., inventory at the end of day t is just the inventory at the end of the day 
before, plus what we receive from suppliers on day t, minus demand on day t. 
We see that simulating such a system involves state changes at regular time 
steps. In other cases, system dynamics is not so easy and regularly paced. 
Consider again the queueing system of Section 9.2.1. Assume that there is 
only one server in the system and that its service time for each customer is 
random. If we model the arrival process by a Poisson process, we have to 
simulate the system in continuous time; according to this model, the time 
elapsing between successive arrivals is exponentially distributed, and the ex-
ponential distribution is a continuous one. A possible sample path of such a 
system is illustrated in Fig. 9.8, which shows how the main state variable, the 
queue length L(t), evolves in time. To be precise, L(t) counts the number of 
customers in the system, including the one currently being served. From this 
sample path, it is easy to figure out the sequence of events taking place: 

• At time 7\ the first customer arrives; the server is idle, so service starts 
immediately. 
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• At time Γ2 the second customer arrives; the server is busy, so this cus-
tomers is enqueued; now there are two customers in the system. 

• At time T3 the first customer completes her service, and the second one 
starts being served; the number of customers in the system is decreased. 

• At time T4 the second service is completed; there is no one in the queue, 
and server gets idle. 

• At time T5 the third customer arrives, and so on. 

We notice that the relevant state variable follows a piecewise constant path, 
whereby abrupt changes are due to occurrence of events. Queueing systems 
are the standard example of discrete-event dynamics. To simulate a discrete-
event system we need the following ingredients: 

• A system clock, whose current value is denoted by tc\, representing sim-
ulated time. 

• An ordered list of events - the clock is advanced to the earliest scheduled 
event. 

• Data structures to represent the system state. 

• A set of procedures to manage each type of event; events change the 
system state and possibly schedule the occurrence of later events. 

In a standard queueing system, there are two natural events: the arrival of a 
new customer and the completion of a service. The way in which these events 
should be handled can be outlined as follows. 

Arrival of a customer. When a customer arrives, we check the server state: 

• If it is idle, we start service immediately; we also schedule the next 
completion time, by drawing a random variable Ts according to the 
chosen probability distribution and adding it to the current clock 
time ici; we insert a completion event in the sorted list of events, 
with clock time Ts + tc\. 

• If the server is busy, we insert the customer in the queue. 

In any case, we schedule the next arrival by drawing an interarrivai time 
Ta, and inserting an arrival event in the sorted list of events, with clock 
time Ta -I- tc\. 

Completion of a service. When a service is completed, we should check 
the queue: 

• If it is empty, the state of the server is changed to idle. 
• Otherwise, we pick the first customer in the queue, possibly accord-

ing to some priority scheme, draw a random variable Ts accounting 
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for service time, and insert a completion event in the sorted list of 
events, with time Ts + tc\-

After the current event is processed, we pick the next one in the list, advance 
the clock tc\ accordingly, and process the event as prescribed. 

Conceptually, discrete-event simulations are not so difficult for very sim-
ple systems. However, when there are many entities and resources in the 
system, with complicated interactions, suitable simulation languages and en-
vironments are needed. In particular, the collection of relevant statistics about 
waiting times, queue lengths, and resource utilizations can be awkward with-
out suitable tools. Clearly, it takes some skill to implement a simulation 
model, but this kind of technicality should not hide some more relevant diffi-
culties: 

• Which system features are really important, and which can be ne-
glected? Any model is a simplification of reality; too many details will 
make model building more difficult; even worse, data requirements will 
become unmanageable. There is no point in building a complex model 
if the data we feed are not reliable. This type of decision is more of an 
art than a science, as you can imagine. 

• The output of any Monte Carlo simulation should be regarded as a 
random variable. Which statistical techniques should we use to analyze 
the output? How should we plan the simulation experiments? A good 
knowledge of inferential statistics is an essential ingredient of a serious 
and successful simulation study. 

9.7.2 Random-number generation 

Any Monte Carlo approach relies on the ability of generating variables that 
look reasonably random. Clearly, no computer algorithm can be truly random, 
but all we need is a way of generating pseudorandom variables that would trick 
statistical tests into believing that they are truly random. The starting point 
of any such strategy is the generation of uniform variables on the unit interval 
[0,1]; then, there is a wide array of methods to transform uniform variables 
into whatever distribution we need. 

In the past, the standard textbook method used to generate W(0,1) vari-
ates was based on linear congruential generators (LCGs). A LCG generates 
a sequence of nonnegative integer numbers Z¿ as follows; given an integer 
number Z¿_i, we generate the next number in the sequence by computing 

Zi = {aZi-x + c) mod m 

where a (the multiplier), c (the shift), and m (the modulus) are properly 
chosen parameters and "mod" denotes the remainder of integer division (e.g., 
15 mod 6 = 3). Then, to generate a uniform varνate on the unit interval, 
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Table 9.6 Sample sequence generated by a linear congruential generator. 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Zi 

6 
1 
8 
11 
10 
5 
12 
15 
14 
9 

Ui 

0.3750 
0.0625 
0.5000 
0.6875 
0.6250 
0.3125 
0.7500 
0.9375 
0.8750 
0.5625 

i 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Zi 

0 
3 
2 
13 
4 
7 
6 
1 
8 
11 

Ui 

0.0000 
0.1875 
0.1250 
0.8125 
0.2500 
0.4375 
0.3750 
0.0625 
0.5000 
0.6875 

we return the number (Z¿/m). Clearly, we also need an initial number ZQ to 
start the sequence; this number is the seed of the sequence. 

Example 9.27 Let us take o = 5, c = 3, and m = 16. If we start from the 
seed ZQ — 7, the first integer number we generate is 

Zj = (5 x 7 + 3) mod 16 = 38 mod 16 = 6 

Hence 
Ux = ^ = 0.3750 

Then we obtain 

Z2 = (5 x 6 + 3) mod 16 = 33 mod 16 = 1, U2 = jg = 0.0625 

Proceeding this way, we get the sequence illustrated in Table 9.6. Ü 

It is clear that there is nothing random in the sequence generated by a 
LCG. Starting the sequence from the same seed will always yield the same 
sequence. Furthermore, we actually generate rational numbers, rather than 
real ones; this is not a serious problem, provided that m is large enough. 
But there is another reason to choose a large value for m: The generator is 
periodic! In fact, we may generate at most m distinct integer numbers Z¿, in 
the range from 0 to m — 1, and whenever we repeat a previously generated 
number, the sequence repeats itself (which is not very random at all). We see 
from the previous example that we return to the initial seed ZQ = 7 after 16 
steps. Since the maximum possible period is m, we should make it very large 
in order to have a large period. The proper choice of a and c ensures that 
the period is maximized and that the sequence looks random. Designing a 
good random-number generator is not easy; luckily, when we purchase good 
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numerical software, someone has already solved the issue for us. Actually, 
recent developments have led to better generators, but all we need is an idea 
of what seeds are and how they influence random-number generation. 

The second issue we have to tackle is how to generate a pseudorandom 
variable with an arbitrary distribution. One general approach is based on 
the inverse transform method. Suppose that we are given the CDF F(x) = 
P{X < x}, and that we want to generate random variables according to F. 
If we are able to invert F(x) easily, we may apply the following approach: 

1. Draw a random number U ~ 14(0,1). 

2. Return X = F^iU). 

It is easy to see that the random varνate X generated by this method is 
actually characterized by the distribution function F: 

P{X <x} = P{F~l{U) <x} = P{U < F(x)} = F(x) 

where we have used the monotonicity of F and the fact that U is uniformly 
distributed. 

Example 9.28 A typical distribution that can be simulated easily by the 
inverse transform method is the exponential distribution. If X ~ εχρ(μ), 
where l /μ is the expected value of X, its distribution function is 

F(x) = 1 - e-"* 

Direct application of the inverse transform yields 

x = --\n(l-U) 
ì 

Since the distributions of U and (1 — Í7) are actually the same, it is customary 
to generate exponential variβtes by drawing a random number U and returning 
-]ç{û)/ì. D 

The inverse transform method is only one of the general recipes that are 
used in practice. Sometimes, ad hoc methods are applied to specific distribu-
tions. As far we are concerned, we just need to know that statistical software 
is available to sample virtually any conceivable distribution. 

9.7.3 Methodology of a simulation study 

Building a simulation model requires much more than programming events 
and generating pseudorandom variables. A simulation study involves the fol-
lowing steps as well: 

Input analysis. This phase requires devising probability distributions that 
match empirical data, if available. We should not just assume that, say, 
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a random time has exponential distribution. We should check the fit of 
any distribution, e.g., by running nonparametric tests like the chi-square 
goodness-of-fit test. 

Model verification. Model verification means checking that the program 
does what it is supposed to do, i.e., that there are no bugs. Note that 
this does not imply that the model is a good one; it means simply 
checking that the program behaves according to its specification. 

Model validation. This is a check on the model itself. Even when the pro-
gram works as specified, it is no guarantee of success, if the specifica-
tions themselves are flawed. We should check that the inputs, as well 
as the business rules encoded in the simulation program, are realistic. 
Model validation is fairly easy if we are simulating an existing system; 
we should just compare observed and predicted performance. In other 
cases, things are not that easy. 

Output analysis. This is carried out along the lines of confidence intervals. 
The caveats of Section 9.2.1 apply. 

Finally, we should mention the role of properly designed experiments to check 
the influence of design parameters. ANOVA techniques do play a major role 
here. 

9.8 STOCHASTIC CONVERGENCE AND THE LAW OF LARGE 
NUMBERS 

In this section we start considering in some more depth the issues involved 
in inferential statistics. The aim is to bridge the gap between the elemen-
tary treatment that is commonly found in business-oriented textbooks, and 
higher-level books geared toward mathematical statistics. As we said, most 
readers can safely skip these sections. Others can just have a glimpse of what 
is required to tackle a deeper study of statistical and econometric models. 
Furthermore, the usual cookbook treatment is geared towards normal pop-
ulations, which may result in a distorted and biased perspective. A normal 
distribution is characterized by two parameters, ì and σ2, which have an 
obvious interpretation as expected value and variance, respectively. As a re-
sult, we tend to identify the estimation of parameters with the estimation of 
expected values or variances. However, this is a limited view. For instance, 
the beta distribution23 is characterized by two parameters, a.\ and á-é', if we 
know those parameters, we may compute whatever moment we want, expected 
value, variance, skewness, etc. But to estimate these parameters, we cannot 

See Section 7.6.2. 



STOCHASTIC CONVERGENCE AND THE LAW OF LARGE NUMBERS 453 

just rely on a sample mean. Thus, we need a more general framework to 
tackle parameter estimation. Indeed, there are a few alternative strategies to 
obtain estimators. We should understand what makes a good estimator, in 
order to assess the tradeoffs when alternatives are available. Finally, we have 
derived confidence intervals and hypothesis testing procedures in a somewhat 
informal and ad hoc manner. Actually, there are general strategies that help 
to assess desirable properties of them as well. 

We deal with the above issues in the rest of the chapter, and a good starting 
point to motivate our work is a better investigation of the law of large numbers, 
which we previewed in Section 7.7.4. Intuitively, if we take a large random 
sample, the sample mean should get closer and closer to the true expected 
value. Therefore, we should expect a convergence result loosely stated as 
follows: 

1 " 
lim — y Xi —y ì 

n—>+oo n ¿-^1 

t = l 

The question mark stresses the fact that this convergence is quite critical: In 
which sense can we say that a random variable converges to a number? More 
generally, we could consider convergence of a sequence of random variables 
Xn to a random variable X. The relevance of a "stochastic convergence" 
concept to analyze parameter estimation problems for large samples should be 
obvious. Furthermore, we have illustrated the central limit theorem in Section 
7.7.3. There, we loosely stated that a certain random variable "converges" 
to a normal distribution; we should make this statement more precise. As 
it turns out, there is not a single and all-encompassing concept of stochastic 
convergence, which may be defined in a few different ways; they may be more 
or less useful, depending on the application; furthermore, some convergence 
concepts may be weaker, but easier to verify. 

9.8.1 Convergence in probability 

The first stochastic convergence concept that we illustrate is not the strongest 
one, but it can be easier to grasp. 

DEFINITION 9.7 (Convergence in probability) A sequence of random 
variables, X\,X2, ■ � -, converges in probability to a random variable X if, for 
every e > 0 

lim P ( | X „ - X | > e ) = 0 
n—>-|-oo 

The definition may look intimidating, but it is actually intuitive: Xn tends 
to X if, for an arbitrarily small e, the probability of the event {| Xn — X |> e} 
goes to zero. In other words 

lim P ( | X „ - X | < e ) = l 
n—>+oo 
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i.e., the difference between the two realizations cannot be larger than a small 
and arbitrary constant e. Convergence in probability is denoted as follows: 

Xn —> X 

or 
plim Xn = X 

n—*+oo 

We may also apply the definition to express convergence to a specific number 
a, rather than a random variable. 

Example 9.29 Consider the following sequence of random variables: 

Xn=< 
0 with probability 1 

n 
n with probability — 

We see that, for n going to infinity, Xn may take a larger and larger value 
n, but its probability is vanishing. Indeed, the probability mass gets concen-
trated on the value 0 and 

plim Xn = 0 
n—»oo ç 

Using this concept, we may clearly state (without proof) one form of the law 
of large numbers. 

THEOREM 9.8 (Weak law of large numbers) Let XltX2,... be a se-
quence ofi.i.d. random variables, withE[Xi] — ì and finite variance Var(X¿) = 
ó2 < +0O. Then 

— 1 
Xn — ~ / Xi 

p 

As you may imagine, there must be a different, strong form of this law; as we 
shall see, it uses a stronger form of stochastic convergence. Despite its relative 
weakness, convergence in probability is relevant in the theory of estimation, 
in that it allows us to define an important property of an estimator. Consider 
a sequence of estimators Yn of an unknown parameter È; each Yn is a statistic 
depending on a sample of size n. We say that this is a consistent estimator if 

plim Yn = È 

The weak law of large numbers implies that the sample mean is a consistent 
estimator of expected value. 
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9.8.2 Convergence in quadratic mean 

Consider the ordinary limits of expected value and variance of the sample 
mean: 

2 
lim Å\×]=ì, lim Var (X) = lim — = 0 

n —>oc n—*oo n—>oo 72 
When variance goes to zero like this, intuition suggests that the probability 
mass gets concentrated and some kind of convergence occurs. 
DEFINITION 9.9 (Convergence in quadratic mean to a number) / / 
E[X„] = ìç and Var(X„) = ó\, and the ordinary limits of the sequence of 
expected values and variances are a real number â and 0, respectively, then 
the sequence Xn converges in quadratic mean to â. 

Convergence in quadratic mean is also referred to as mean-square convergence, 
denoted as Xn —^ â. Actually, the definition above is just a very specific case 
of the more general concept of rth mean convergence to a random variable. 

DEFINITION 9.10 (Convergence in rth mean) Givenr > 1, if the con-
dition E[\Xn\] < oo holds for all n, we say that the sequence Xn converges 
in rth mean to X if 

lim E UXn - X)r] = 0 
n—»oo 

Not surprisingly, Definition 9.9 of mean-square convergence is equivalent to 
requiring 

n1 = 0 lim E 
n—»OO 

(Xn - ίf 
Convergence in quadratic mean implies convergence in probability, but the 
converse is not true, as illustrated by the following counterexample. 

Example 9.30 Let us consider again the sequence of random variables of 
Example 9.29 

1 
0 with probability 1 

Xn=< 

Whatever n we take, we have 

n with probability — 

E[Xn] =0-(l--\ + n-- = l \ nj n 

However, this contradicts the finding of Example 9.29, i.e., Xn —> 0. Actually, 
we solve the trouble by noting this sequence does not converge in quadratic 
mean, since variance is not finite for n going to infinity: 

lim Var(Xn) = lim {EÍJ^l _ E2[Xn}} 

= lim ( f l _ l V o 2 + - n 2 - l 2 l 
Twoo {\ nj n J 
+ 0 0 
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9.8.3 Convergence in distribution 

We have already met convergence in distribution when dealing with the central 
limit theorem. 

DEFINITION 9.11 (Convergence in distribution) The sequence of ran-
dom variables Xi,X2,..., with CDFs Fn(x), converges in distribution to ran-
dom variable X with CDF F(x) if 

lim \Fn(x)- F(x)\=0 
n—*oo 

for all points at which F(x) is continuous. 

Convergence in distribution can be denoted as 

Xn±X 
When convergence in distribution occurs, we may speak of a limiting distri-
bution. The central limit theorem states that the limiting distribution of 

7 _ ΣΓ=1 Xn - M 
ó/y/n 

is the standard normal distribution. It is important to notice that convergence 
in distribution does not at all imply convergence to a constant. Furthermore, 
it can be shown that convergence in distribution is weaker than convergence 
in probability to a random variable, in the sense that 

(Xn Ax) => (xn -ix) 
but the converse is not true. 

9.8.4 Almost-sure convergence 

The last type of convergence that we consider is a strong one in the sense 
that it implies convergence in probability, which in turn implies convergence 
in distribution. 

DEFINITION 9.12 (Almost-sure convergence) The sequence of random 
variables X\,X2, ■ ■., converges almost surely to random variable X if, for ev-
ery e > 0, the following condition holds: 

P f lim \Xn-X\<e) = 1 

Almost-sure convergence is denoted by Xn —'—+ X. Sometimes, almost-sure 
convergence is referred to as convergence with probability 1; correspondingly, 
the notation "w.p.l" rather than "a.s." may be found . 
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Comparing definition 9.12 of almost-sure convergence with definition 9.7 
of convergence in probability may be confusing, as they seem quite similar. 
The difference is a swap of the limit operator with the probability operator. 
This commutation is not innocuous at all, and it does make a difference. 
To understand the definition, it is useful to recall the definition of random 
variables as functions X(to) from the sample space Ω to real numbers and 
to reflect on the concept of pointwise convergence of functions. For instance, 
consider a sequence of deterministic functions fn(x), where x e [0,1]. We say 
that this sequence of functions converges pointwise to function f(x) if, for all 
x € [0,1], we have 

lim fn(x) = f(x) 
n—*oo 

Definition 9.12 weakens this condition a bit, in the sense that we require that 
the condition 

lim ×ç{ù) = Χ(ù) 

holds only for almost any ù £ Ω. The set of outcomes ù for which the 
sequence does not converge must be a set of null measure; equivalently, we 
have convergence for a set with probability measure 1. The following nice 
examples illustrate these concepts.24 

Example 9.31 Let the sample space be Ω = [0,1], where probability is 
uniform. Consider the sequence of random variables 

Χη(ù) =ù+ùç 

and the random variable X(u>) — ù. If u> £ [0,1), we see that 

lim ×ç{ù) = ù = ×{ù) 
n—»oo 

This does not happen for ù = 1, since X„(l) = 2 for any n. Hence, we have 
convergence of Xn{io) to X(u>) for all outcomes except a single one, which is 
a set of null measure. Hence 

Χη(ù) ^ Χ(ù) 
0 

Example 9.32 Let the sample space be Ω = [0,1], again with uniform prob-
ability, as in the previous example. The indicator function associated with 
an interval is denoted by I[a,b] (x) and takes value 1 if x £ [a, b], 0 otherwise. 

These two examples are taken from the text by Casella and Berger [3, p. 234]. 



458 INFERENTIAL STATISTICS 

Now define a sequence of random variables as follows: 

×é(ù) 

×2(ù) 

×3{ù) 

XÍ(UJ) 

×5(ù) 

×â(ù) 

= ù + / [0,ι](ù) 

= ü/ + J[0 i i ] (w) 

= ù + É[^,é](ù) 

= ù + / [0 ι 4 ] (ù) 

= ù + É\é 2](ù) 
L 3 ' 3 J 

= ù + 7 [§, ι ] (ù) 

To see the logic behind this sequence, notice that the interval [0,1] is sliced in 
two parts to define X2 and X3; then in three parts to define X4, X$, and X§\ 
etc. These slices, for increasing n, are smaller and smaller. Whatever ù we 
choose, X\ (ù) = s + 1. The other variables in the sequence take either value 
s, or value s + 1, depending on whether ù is in the interval of the indicator 
function associated with each variable in the sequence. 

Now let us consider the random variable ×(ù) = ù. The sequence Xn 
converges in probability to X, i.e., Xn -̂ -> X. To see this, consider the 
probability 

P(\Xn-X\>e). (9.37) 

The random variables ×ç(ù) and ×{ù) differ on a subinterval of Ω that is 
smaller and smaller for n increasing; in other words, the measure of this 
interval goes to zero. In fact, for a suitably small e, the probability in Eq. 
(9.37) is just the probability that Xn falls in this subinterval, but since this 
probability goes to zero, Xn converges in probability to X. However, the 
sequence Xn does not converge almost surely to X. To see this, fix an arbitrary 
ù; for increasing n, the values in the sequence alternate between ù and ù + 1, 
and there is no pointwise convergence. U 

The counterexample shows that convergence in probability does not imply 
almost-sure convergence, whereas it can be shown that almost-sure conver-
gence does imply convergence in probability. Not surprisingly, if we apply 
almost-sure convergence, we get a version of the law of large numbers that is 
stronger than the one in Theorem 9.8. 

THEOREM 9.13 (Strong law of large numbers) LetXuX2, ...be a se-
quence ofi.i.d. random variables, TOÍ/IE[X¿] = ì and finite variance Var(X¿) — 
σ2 < +00. Then, we have 

— 1 " 
Xn = ~~ / Xi -* ì 

¿ = 1 
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A comparison of this theorem with the similar Theorem 9.8 about the weak law 
of large numbers is puzzling, as they do look the same. Actually, finiteness of 
variance is a stronger condition than necessary, and alternative statements can 
be found in the literature; for instance, we could just require E[ |X„|] < oo. 
The price we pay for relaxing assumptions is in terms of quite involved theorem 
proofs, which depend on the type of stochastic convergence involved. We leave 
such technicalities aside and just remark that the convergence concept in the 
strong law of large numbers is indeed stronger than the convergence concept 
used in the weak law. 

9.8.5 Slutsky's theorems 

A few useful theorems in calculus allow us to manipulate limits in an intuitive 
manner and justify the rules for calculating derivatives that we stated back 
in Section 2.8. For instance, the limit of the product of two sequences is 
the product of their limits, if they exist; furthermore, if a function g(-) is 
continuous, than g can be interchanged with the limit operator, i.e. 

lim g(x) - g\ lim x I = g(x0) 
X —*Xo \ X—*XQ J 

These properties are generalized to stochastic limits by a group of results 
called Slutsky's theorems. 

THEOREM 9.14 For a continuous function g(-), we have 

plim g(Xn) = g ( plim Xn ) 
n—>oo \n—>oo / 

The practical implication of this theorem is that if we are able to find a 
consistent estimator of a parameter, we also have a consistent estimator of a 
function of that parameter. 

THEOREM 9.15 If the sequence of random variables Xn converges in dis-
tribution to random variable X, i.e., Xn —� X, and the sequence Yn con-
verges in probability to a constant c, i.e., p l im^^^ Yn — c, then 

Xn + Yn -1+ X + C 

Xn Yn * CX 
Xn/Yn - ^ X/c, ifc^O 

Example 9.33 Standard procedures for confidence intervals and hypothesis 
testing are derived assuming a normal sample, but they are often applied to 
nonnormal populations. We should make sure that this makes sense, at least 
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for large samples. The central limit theorem implies that, if X is the sample 
mean of a sequence of i.i.d. variables, the statistic 

ó/y/ñ 

has an approximately standard normal distribution. However, this result as-
sumes knowledge of σ; if we replace ó by the sample standard deviation S, 
things are not obvious at all. We typically resort to the t distribution, but 
this again assumes a normal sample. This is where Slutsky's theorems come 
in handy. Let us consider the statistic 

„ X-li 

and rewrite it as follows: 

SIsß 

öé{× - ì)/ó 
S/ó 

The numerator converges in distribution to a standard normal, courtesy of 
the central limit theorem: 

ó 

As to the denominator, it can be shown that sample variance S2 is a consistent 
estimator of variance ó2, i.e., S2 —> ó2. Then, using Slutsky's theorems, we 
see that 

c2 

and therefore 

T = X~ ì — S/öß M(0, l) 

9.9 PARAMETER ESTIMATION 

Introductory treatments of inferential statistics focus on normal populations. 
In that case, the two parameters characterizing the distribution, ì and σ2, co-
incide with expected value, the first-order moment, and variance, the second-
order central moment. Hence, students might believe that parameter estima-
tion is just about calculating sample means and variances. It is easy to see 
that this is not the case. 
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Example 9.34 Consider a uniform random variable X ~ U[a, b}. We know 
from section 7.6.1 that 

HX] = ^ , Var(X) = «Lzf. 

Clearly, sample mean X and sample variance S2 do not provide us with direct 
estimates of parameters a and 6. However, we might consider the following 
way of transforming the statistics to estimates of parameters. If we substitute 
ì and σ2 with their estimates, we get 

a + b = 2 X 
-a + b = 2y/3S 

Note that in taking the square root of variance, we should only consider the 
positive root to get a positive standard deviation. Solving this system yields 

â = X- VSS, b = X + V3S 

This example suggests a general strategy to estimate parameters: 

• Estimate moments by a random sample. 

• Set up a system of equations relating parameters and moments, and 
solve it. 

Indeed, this is the starting point of a general parameter estimation approach 
called method of moments. However, a more careful look at the example 
should raise an issue. Consider the order statistics of a random sample of n 
observations of a uniform distribution: 

1/(1) < U{2) < f/(3) < · · · < [/(„) 

If we take the above approach, all of these observations play a role in esti-
mating a and b. But this is a bit counterintuitive; to characterize a uniform 
distribution we need a lower and an upper bound on its realizations. So, it 
seems that only i/(j) and Í7(n), i-e-> the smallest and the largest observations 
should play a role. We might suspect that there are alternative strategies 
for finding point estimators. In this section we outline two approaches: the 
method of moments and the method of maximum likelihood. Since there are 
alternative ways to build estimators, it is just natural to wonder how we can 
compare them. Therefore, we should first list the desirable properties that 
make a good estimator. 

9.9.1 Features of point estimators 

We list here a few desirable properties of a point estimator È for a parameter 
È. When comparing alternative estimators, we may have to trade off one 
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property for another. We are already familiar with the concept of unbiased 
estimator. An estimator È is unbiased if 

Å[è] = È 

We have shown that sample mean is an unbiased estimator of expected value; 
in Chapter 10 we will show that ordinary least squares, under suitable hy-
potheses, yield unbiased estimators of the parameters of a linear statistical 
model. Biasedness is related to the expected value of an estimator, but what 
about its variance? Clearly, ceteris paribus, we would like to have an estimator 
with low variance. 

DEFINITION 9.16 (Efficient unbiased estimator) An unbiased estima-
tor èé is more efficient than another unbiased estimator È2 if 

Var(0i) < Var(02) 

Note that we must compare unbiased estimators in assessing efficiency. Oth-
erwise, we could obtain a nice estimator with zero variance by just choosing 
an arbitrary constant. It can be shown that, under suitable hypotheses, the 
variance of certain estimators has a lower bound. This bound, known as the 
Cramér-Rao bound, is definitely beyond the scope of this book, but the mes-
sage is clear: We cannot go below a minimal variance. If the variance of 
an estimator attains that lower bound, then it is efficient. Another property 
that we have already hinted at is consistency. An estimator is consistent if 
plimo = 0. 

Example 9.35 The statistic 

is not an unbiased estimator of variance ó2, as we know that we should divide 
by n — 1 rather than n. However, it is a consistent estimator, since when 
n —» 00, there is no difference between dividing by n — 1 or n. Incidentally, by 
dividing by n we lose unbiasedness but we retain consistency while reducing 
variance. D 

9.9.2 The method of moments 

We have already sketched an application of this method in Example 9.34. To 
state the approach in more generality, let us introduce the sample moment of 
order k: 

Mk = 
n 

1 
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The sample moment is the sample counterpart of moment m^ = E[Xfc]. Let us 
assume that we need an estimate of k parameters è\, 02, · . . , 0fc · The method 
of moments relies on the solution of the following system of equations: 

mi =01 (0i, 0 2 ) . . . A ) 
m2 = 52(01,02, · · · A ) 

. mk =Sk(0i ,02,- . . A ) 

In general, this is a system of nonlinear equations that may be difficult to 
solve, and we cannot be sure that a unique solution, if any, exists. However, 
assuming that there is in fact a unique solution, we may just replace mo-
ments mk by sample moments Mk, and solve the system to obtain estimators 
01,02, . . . A · 

Example 9.36 Let ×é, X2, ■ ■ ■ Xn be a random sample from a normal pop-
ulation with parameters (0i, 02) = (μ, σ). We know that 

mi = ì, m,2 = ó2 + ì2 

Plugging sample moments and solving the system yields 

ì = Ìé=× 

» = / Mo-X 
1 " 

\ 
Iti^-z)' 

We note that we do not obtain an unbiased estimator of variance. 

9.9.3 The method of maximum likelihood 

The method of maximum likelihood is an alternative approach to find esti-
mators in a systematic way. Imagine that a random variable X has a PDF 
characterized by a single parameter 0; we indicate this as fx (÷;è). If we draw 
a sample of n i.i.d. variables from this distribution, the joint density is just 
the product of individual PDFs: 

n 
fxu...,xn(xi,---,xn;0) = /÷(÷é;è) ■ / χ ( ζ 2 ;0 ) · · ·îx{xn;0) = J J / x ( z ¿ ; 0 ) 

¿=i 

This is a function depending on the parameter 0. If we are interested in 
estimating 0, given a sample Xi — Xi, i = 1 , . . . , n, we may swap the role of 
variables and parameters and build the likelihood function 

L(0) = L(6;xi,...,xn) = fx1,...,xn{xi,...,xn;0) (9.38) 
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The shorthand notation L{6) is used to emphasize that this is a function of the 
unknown parameter È, for a given sample of observations. On the basis this 
framework, intuition suggests that we should select the parameter yielding 
the largest value of the likelihood function. For a discrete random variable, 
the interpretation is more natural: We select the parameter maximizing the 
probability of what we have indeed observed. For a continuous random vari-
able, we cannot really speak of probabilities, but the rationale behind the 
method of maximum likelihood should be apparent: We try to find the best 
explanation of what we observe. 

Example 9.37 Let us consider the PDF of an exponential random variable 
with parameter λ: 

fx(x;X) = Xe-Xx 

Given observed values xi,...,xn, the likelihood function is 

L(\) = fl Xe~Xx = Xn exp I -X ¿ xt 

i = l I, ¿=1 ) 

Quite often, rather than attempting direct maximization of the likelihood 
function, it is convenient to maximize its logarithm, i.e., the loglikelihood 
function 

Z(0)=lnZ,(0) (9.39) 
The rationale behind this function is easy to grasp, since by taking the loga-
rithm of the likelihood function, we transform a product of functions into a 
sum of functions 

/(A) = n In λ — λ 2_] xi 

The first-order optimality condition yields 

n 1 1 

n r> ¿—' 
i = l 

The result is rather intuitive, since ¸[×] = l /λ . In problem 9.17, the reader 
is invited to check that the method of moments yields the same estimator. 

D 
If we must estimate multiple parameters, the idea does not change much. 

We just solve a maximization problem involving multiple variables. 

Example 9.38 Let us consider maximum-likelihood estimation of the pa-
rameters è\ — ì and È2 = ó2 of a normal distribution. Straightforward 
manipulation of the PDF yields the loglikelihood function 

1 n 

1(ì, ó2) = - - 1η(2π) - - Ιησ2 - ^ ^ (x¿ - ì)2 
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The first-order optimality condition with respect to ì is 

dl = ^2 Σ fa - ^ = ° => ί1 = - ΣXi 
a¿ ¿.—< n ¿.—i 8ì ó 2 ^ 

i = l 

Hence, the maximum-likelihood estimator of ì is just the sample mean. If we 
apply the first-order condition with respect to ó2, plugging the estimator ì, 
we obtain 

dl n 1 1 ^ 2 _^ "o 1 X ^ / ' -\2 

i = l ¿=1 

In the two examples above, maximum likelihood yields the same estimator 
as the method of moments. Then, one could well wonder whether there is 
really any difference between the two approaches. The next example provides 
us with a partial answer. 

Example 9.39 Let us consider a uniform distribution on interval [0, È]. On 
the basis of a random sample of n observations, we build the likelihood func-
tion 

Í— for 0 < xi < È, i = 1 , . . . , n 
èç - - ' ' ' 

0 otherwise 
This may look a bit weird at first sight, but it makes perfect sense, as the PDF 
is zero for x > È. Indeed, È cannot be smaller than the largest observation: 

È > maxjxi, X2, � � �, xn} 

In this case, since there is a constraint on È, we cannot just take the derivative 
of L{6) and set it to 0 (first-order optimality condition). Nevertheless, it is 
easy to see that likelihood is maximized by choosing the smallest È, subject 
to constraint above. Hence, using the notation of order statistics, we find 

È = X{n) 
D 

While the application of maximum likelihood to exponential and normal vari-
ables looks a bit dull, in the last case we start seeing something worth noting. 
The estimator is quite different from what we have obtained by using the 
method of moments. The most striking feature is that this estimator does not 
use the whole sample, but just a single observation. We leave it as an exercise 
for the reader that, in the case of a uniform distribution on the interval [a, b], 
maximum-likelihood estimation yields 

à = X(i), b = X(„) 
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Indeed, the smallest and largest observations are sufficient statistics for the 
parameters a and b of a uniform distribution.25 We refrain from stating a 
formal definition of sufficient statistics, but the idea is rather intuitive. Given 
a random sample X, a sufficient statistic is a function T(X) that captures all 
of the information we need from the sample in order to estimate a parameter. 
As a further example, sample mean is a sufficient statistic for the parameter 
ì of a normal distribution. This concept has far-reaching implications in the 
theory of inferential statistics. 

A last point concerns unbiasedness. In the first two examples, we have 
obtained biased estimators for variance, even though they are consistent. It 
can be shown26 that an unbiased estimator of È for the uniform distribution 
on [0, È] is 

r? - I - 1 
^±±X(n) (9-40) 

Again, we see that maximum likelihood yields a less than ideal estimator, even 
though for n —» oo there is no real issue. It turns out that maximum-likelihood 
estimators (MLEs) do have limitations, but a few significant advantages as 
well. Subject to some technical conditions, the following properties can be 
shown for MLEs: 

• They are consistent. 

• They are asymptotically normal. 

• They are asymptotically efficient. 

• They are invariant, in the sense that, given a function g(-), the MLE of 
7 = g{9) is g{6), where È is the MLE of È. 

As a general rule, finding MLEs requires the solution of an optimization prob-
lem by numerical methods, but there is an opportunity here. Whatever con-
straint we want to enforce on the parameters, depending on domain-specific 
knowledge, can be easily added. We obtain a constrained optimization prob-
lem that can be tackled using the theory that we illustrate in Chapter 12. 

9.10 SOME MORE HYPOTHESIS TESTING THEORY 

Arguably, one of the most important contributions of the theory of maximum-
likelihood estimation is that it provides us with a systematic approach to find 
estimators. Similar considerations apply to interval estimation and hypothesis 
testing. We have very simple and intuitive ways of computing confidence 
intervals and testing hypotheses about the mean of a normal population, but 

See Ref. [5, p. 375] for a proof. 
See problem 9.19. 
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we might well be clueless when dealing with less trivial problems. Ad hoc 
methods may be difficult to find, and we need general strategies. Furthermore, 
a sound theory is useful to assess desirable properties of a test. For instance, 
we just considered the probability of a type I error, but we disregarded type 
II errors completely. Actually, we cannot just focus on type I errors. Indeed, 
it is quite easy to obtain a test with zero probability of a type I error; we 
have just to choose an empty rejection region, C = 0. Unfortunately, by doing 
so, we obtain a test where the probability of a type II error is 1. We should 
also keep an eye on type II errors, which leads us to considering both the size 
and the power of a test. In the next two subsections, we first introduce these 
two concepts, and then we get a glimpse of a more general strategy to obtain 
hypothesis testing procedures. 

9.10.1 Size and power of a test 

In the elementary theory of hypothesis testing we consider a null hypothesis 
such as 

-fío : ß = Mo 

against the alternative Ha : ì ö μο- Given a sample X = (X\,..., Xn), we 
considered a rejection region C related to two tails of a standard normal or t 
distribution. In this case, it is quite easy to evaluate the probability of a type 
I error 

a = P w ( X e C ) 
This is just the probability that, even though the null hypothesis is true, 
the test statistic falls in the rejection region. The notation Ρμ ο refers to the 
fact that we associate a probability distribution with the unique value ìï 
considered in the null hypothesis. But which probability distribution should 
we consider when the null hypothesis is Ho : ì < μο? 

To generalize the analysis, let us consider a vector of parameters È and a 
null hypothesis of the form 

Ç0:è£è0 

versus the alternative 
ΗΛ:è€è% 

Here θο is an arbitrary region, and θ§ is its complement. The vector of 
parameters could be subject to additional restrictions; for instance, a subset 
of parameters could take only nonnegative values. Let us denote the set of 
feasible values of parameters by È; clearly, θ = θ ο õ θ § . In the first case above 
the set θο is a singleton, θο = {ìï}, and we speak of a simple hypothesis; 
otherwise, we have a composite hypothesis. 

DEFINITION 9.17 (Size of a test) We say that a test with rejection re-
gion C has size a if 

a = max P#(X € C) 
èåèï 
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Of course, the size of a test is essentially another name for the significance 
level. From its definition, we see that a is related to the worst-case distribution 
in terms of type I errors. Since we want to be conservative, it is natural to 
give priority to type I errors by keeping a reasonably small. However, given 
a test size, we should find a test minimizing the probability of a type II error. 
If È S 0Q, the probability of type II error is 

P 0 ( X ^ ) = l - P e ( X e C ) 

Note that 

Pe(X e C) = { J probability of a type I error, if È G θο 
1 1 - probability of a type II error, if È G θ§ 

DEFINITION 9.18 (Power of a test) The power function for a test 
with rejection region C is a function of È, defined as 

â(è) = P Φ (X e C) 

Note that the power of a test is a function, as it depends on the true value 
the unknown parameter vector; hence, in a practical setting, we are not able 
to find a single value giving the power of the test. Still, we may observe 
that the ideal power function is 0 for È e θο and 1 for È £ 0Q . This ideal 
power function cannot be obtained in practice, but we can look for tests that 
have maximal power when θ ε θ § . The theory of optimal, or most powerful, 
tests is developed in the context of mathematical statistics and it relies on 
systematic ways to devise testing procedures. We outline one of them in the 
next section. 

9.10.2 Likelihood ratio tests 

We have introduced likelihood functions as a useful tool for parameter esti-
mation. They also play a role in hypothesis testing and lead to the so-called 
likelihood ratio test (LRT). The test is based on the likelihood ratio statistic 

_ sop,, L(0;*) 
sup0 e Q L(0;x) 

A LRT is a test whose rejection region is of the form 

C = {x | λ(χ) < c} 

for a suitable constant c < 1. The rationale of the approach is rather intuitive. 
If the statistic λ(χ) is small, the restriction of È to θο does not seem justified. 

Example 9.40 Let us consider again the one-sided test on the expected 
value of a normal population 

Ho : ì < ì0, vs. Ha : ì > ì0 
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For simplicity, let us assume that the variance ó2 is known. In the first part 
of the chapter, we have considered a one-tail test, with a somewhat heuristic 
justification. Let us see if we can find a more formal justification based on a 
LRT. The likelihood function, for a sample of size n, is 

£(ì ;σ 2 , χ ) = 
1 

(2ττσ) n / 2 exp 
ΣΓ=ΙΟΡ<-/*)2 

2σ2 

Note that this is a function of μ, for given x and σ2. In the likelihood ratio, 
we have È = (—oo, +00) and θο = (—οο,μο). We know from Example 9.38 
that the denominator of the likelihood ratio in Eq. (9.41) is maximized for 
μ — x. As to the numerator, there are two cases: 

1. x < μο· In this case, the constraint defining θο is nonbinding27 

in the maximization of the likelihood function at the numerator, and 
λ(χ) = 1. This case is not interesting. 

2. x > μο· In this case, the constraint defining θο is binding and in fact the 
statistic seems to contradict the null hypothesis; the likelihood function 
at the numerator is maximized for ì = μο-

Assuming that the interesting case x > μο applies, the likelihood ratio may 
be rewritten as follows: 

1 

λ(χ) 
(2ðó)' i / 2 exp 2σ2 

[2ðó] ι /2 exp 
Σ?=ιΟ*-*)2 

2σ2 

[ Σ "=1(a;¿ - x + x - ìï)2' 
2σ2 

exp 
2σ2 

[ ΣΓ=ι( ̂ - ^ ) 2 + ΣΓ=Ι(^-ΜΟ) 2 ] 
2ó2 

exp [ ΣΓ=ι(^-«)21 
2σ2 

exp 

exp 

Σ " = Ι Ο Ε - Ê > ) 2 Ί 

2σ2 

ç(÷ - μ 0 ) 2 

2σ2 

2 7We define binding and nonbinding constraints later, in Section 12.1. However, the idea 
is pretty simple. A constraint of the form g(x) < 0 is binding at the optimal solution x* if 
<7(x*) = 0; it is nonbinding if there is some slack, i.e., if <?(x*) < 0. 
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Now, we should reject when λ(χ) < c, which implies rejection when the statis-
tic _ 

Vñ(X - μ0) 
ó 

is large. This is exactly what we do in standard test procedures; the rejection 
region is the left tail of a standard normal distribution. Furthermore, the 
probability of error of type I is set to a by selecting the critical value z\-a. 
The case with σ2 unknown is dealt with by a similar token, even though the 
calculations are a bit more involved. D 

The LRT approach is not only a systematic way to devise testing procedures, 
but it also plays a key role in establishing theoretical results on most powerful 
tests; we refer the interested reader to the advanced references on mathemat-
ical statistics. 

Problems 

9.1 The director of a Masters' program wants to assess the average IQ of 
her students. A sample of 18 students yields the following results: 

130, 122, 119, 142, 136, 127, 120, 152, 141 
132, 127, 118, 150, 141, 133, 137, 129, 142 

• Build a 95% confidence interval for the average IQ. 

• Assuming that IQ is normally distributed, how would you estimate the 
probability that IQ is larger than 130? What if you do not want to 
assume normality? Compare the two approaches. 

9.2 You have to compute a confidence interval for the expected value of a 
random variable. Using a standard procedure, you take a random sample of 
size N = 20, and the sample statistics are X = 13.38 and S = 4.58. 

• Compute a confidence interval at level 95%. 

• If you take additional observations, raising sample size to N = 50, how 
large do you expect the new confidence interval be? What hypothesis 
are you making in your reasoning? 

9.3 Find the 97% confidence interval, given a sample mean of 128.37, sample 
standard deviation of 37.3, and sample size of 50. What is the width of the 
confidence interval? Suppose that you want to cut the confidence interval 
by 50% (i.e., the new width should be half the previous one). How many 
additional observations would you use? 

9.4 In standard confidence intervals, you use the sample mean as an esti-
mator of expected value. Now suppose that a friend of yours suggests the 
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following alternative estimator: 

-̂ " = Τ7 ρ-^1 "t" TT-̂ 2 + Χ-^3 + ρ-^4 + ' ' ' + ρ-^Ov-1 + η-̂ ΛΓ ΛΓ \ 2 2 2 2 2 2 

where we assume that JV is an even number. Prove that 

E X 
2 

= ì, Var ( l ) = 1.25 x ^ 

where E[X] = ì and Var(X) = σ2. Would you use this estimator? Why or 
why not? 

9.5 TakeltEasy produces special shoes for runners, whose average life is 1250 
km. In order to improve the product, they experiment with a new design, and 
test prototypes with a sample of 30 runners. The sample mean of product life 
is 1315 km, with a standard deviation of 70 km. Can we say that TakeltEasy 
has actually improved their product? 

9.6 Air quality is measured by the concentration of a dangerous pollutant. 
The mayor of a city has engaged in a program to improve traffic conditions in 
order to decrease the concentration ofthat pollutant. Of course, there is a lot 
of day-to-day variability in measures. In the past, the average concentration 
was 29 (measured in some units). In a sample of 20 days after completion of 
the program, the sample mean has been 26.9, with a standard deviation of 8. 
Can we say that the mayor's program has been effective? 

9.7 You want to compare the reliability of two machines that insert chips 
onto electronic cards. The main problem is the occurrence of jams in the 
feeding mechanism, as this requires stopping production to fix the trouble. To 
this aim, you observe the number of jams when producing standard batches 
of electronic cards, resulting in the following table: 

Machine 1 Machine 2 

Sample size 46 54 
Sample mean 8.2 9.4 
Sample standard deviation 2.1 2.9 

Is there a significant difference between the two machines? 

9.8 A study was done to measure the impact of fatigue on human perfor-
mance when carrying out a certain task. The performance is measured by an 
appropriate index, the larger the better, which is measured at the beginning 
of the shift and after 3 hours of work. Ten workers are observed, resulting in 
the following table: 
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beginning after 3 hours 

68 
64 
69 
88 
72 
80 
85 
116 
77 
78 

57 
53 
72 
63 
73 
50 
53 
80 
65 
49 

Is there a significant effect due to weariness? 

9.9 The following dataset is a random sample from a normal distribution: 

103.23, 111.00, 86.45, 105.17, 101.91 
92.15, 97.40, 102.06, 121.47, 116.62 

Find a 95% confidence interval for variance. 

9.10 In order to estimate the fraction of defective parts, you take a sample 
of size 1000 and find that 63 are not acceptable. Find a 99% confidence 
interval for the fraction of defective parts. 

9.11 In one-way ANOVA we define the sum of squares SS& and SS™. Prove 
the identity 

s s - = Σ Σ xij -nm*2- -SSb 

i j 

9.12 Apply one-way ANOVA to check equality of means for the following 
sample: 

i = 1 

82.31 
160.98 
230.84 
522.06 
449.25 

t = 2 

240.80 
228.27 
278.73 
278.16 
172.16 

t = 3 

181.55 
188.83 
334.07 
326.81 
327.55 

9.13 A m-Erlang distribution with rate λ is obtained when summing m 
independent exponential random variables with rate λ. This distribution may 
be used to model more realistic random service times in queueing systems. 
Devise an efficient method to generate a sample of pseudorandom variables 
from the m-Erlang distribution. 
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9.14 Define an algorithm to generate pseudorandom variables characterized 
by the following density function: 

/(*) = 4 
x - 1, if 1 < x < 2 
3-x, if 2 < a; < 3 
0, otherwise 

9.15 Consider the simulation of a continuous review (Q, R) inventory con-
trol policy. Define the relevant events for the system, and outline a procedure 
for the management of each event. To deal with a specific case, assume that 
customers arrive according to a Poisson process and order a random amount 
of items drawn from a given probability distribution. Lead time is assumed 
to be deterministic. First assume that customers are impatient, i.e., if their 
order cannot be satisfied immediately from stock, they are lost. Then, adapt 
the event management procedures to the case of patient customers (allowing 
for backlogged demand). 

9.16 Consider a sequence of random variables 

0 with probability 1 
Xn 

n with probability —~ 
n 

Does this sequence converge in probability to a number? What about conver-
gence in quadratic mean? 

9.17 Consider an exponential distribution with rate λ. On the basis of a 
random sample of size n, apply the method of moments to estimate λ. 

9.18 Apply the method of maximum likelihood to estimate the parameters 
of a uniform distribution on the interval [a, b]. 

9.19 Prove the result of Eq. (9.40). You should use the result established 
in Problem 7.11 to find the expected value of X(n), given a sample of n 
independent observations from the uniform distribution on the interval [0,0]. 

For further reading 

• A basic treatment of inferential statistics is offered by many books, 
including Ref. [13]. 

• An excellent reference at the intermediate level is Ref. [15], which has 
influenced the initial part of this chapter. 

• Advanced-level treatments are offered, e.g., by Refs. [3], [5], and [8]. 
The first reference, in particular, has influenced the presentation in the 
advanced sections of this chapter. 
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• Indeed, inferential statistics can involve quite sophisticated mathemat-
ics, if brought to a higher level, but it also raises interesting "philosoph-
ical" controversies. If you want to dig deeper into hypothesis testing, 
Ref. [9] deals with the meaning of significance levels and p-values. See 
also Refs. [4] and [12], which gives a historical perspective as well. 

• We have very briefly touched on the fundamental theme of simulation; 
an extensive treatment can be found in Ref. [11], whereas Ref. [14] offers 
a more succinct exposition. Monte Carlo simulation is also fundamental 
in finance; see Ref. [2], among many other sources. 

• We have hinted at factor models for financial portfolio management; see 
Ref. [1] for a very readable introduction and motivation. 

• A thorough analysis of stochastic convergence can be found in Ref. [7]. 
This is also a fundamental theme in more application-oriented books, 
like those on econometrics; see, e.g., Ref. [6] or [16] (which has also 
influenced the treatment in this chapter). 
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10 
Simple Linear Regression 

In this chapter we take advantage of all the probabilistic and statistical knowl-
edge we have built in the previous chapters to get into the realm of empirical 
model building. Models come in many forms, but what we want to do here 
is finding a relationship between two variables, say, x and y, based on a set 
of n joint observations (XÍ, yi), i — 1 , . . . , n. We got acquainted with correla-
tion in Chapter 8, and if two variables are correlated we can try to put such 
knowledge to good use for decision making and forecasting. The first step in 
building a model is choosing a functional form representing the link between 
the variables of interest. The simplest relationship that comes to mind is 
linear: 

y = a + bx 

This is called a simple linear regression model. It is obviously linear, but one 
could and should wonder whether a more complicated, nonlinear functional 
form is better suited to our task. It is simple since there is only one variable 
x that we use to "explain" the variable y; multiple linear regression models 
rely on possibly several explanatory variables. We cover these more advanced 
models in Chapter 16, since they rely on a definitely more challenging techni-
cal machinery. Yet, even the innocent-looking simple linear regression model 
hides a lot of issues, which are best understood in a simple setting. A deep 
understanding of these issues is needed to tackle nonlinear and multiple re-
gression models. 

It is tempting to interpret x as an input or a cause, and y as an output or 
an effect. Granted, there are many practical cases in which this interpretation 
does make sense, but we should never forget that a regression model relies on 
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association and not causation. The same caveats that we have pointed out 
when dealing with correlation apply to regression models. By a similar token, 
when referring to functions it is customary to call x the independent variable 
and y the dependent variable; obviously, these terms can be a bit misleading 
in a statistical framework. In the following we will refer to x by the terms 
explanatory variable or regressor, y will be called response or regressed variable. 

To build and use a linear regression model, we must accomplish the follow-
ing steps: 

1. We must devise a suitable way to choose the coefficients a and b. 

2. We should check if the model makes sense and is reliable enough. 

3. We should use the model by 

• Building knowledge to understand a phenomenon 

• Generating forecasts and scenarios for decision making under un-
certainty 

We accomplish the first step in Section 10.1, where we lay down the founda-
tions of the least-squares method. Section 10.2 deals with the second step, 
which requires building a statistical framework for linear regression. This is 
needed to state precise assumptions behind our modeling endeavor, which 
should be thoroughly checked before using the model; we also need to draw 
statistical inferences and the test hypotheses about the estimated coefficients 
in the model. We do so in Section 10.3, for the simpler case of a nonstochas-
tic regressor, i.e., when the explanatory variable x is treated as a number 
rather than a random variable. Then, in Section 10.4, we tackle the third 
step. There are different uses of a linear regression model, and statistics in 
general. We might be interested in understanding a physical or social phe-
nomenon; in such model is used for knowledge discovery purposes and 
to ascertain the impact of explanatory variables. In a business management 
setting, we are more likely to be interested in using the model to generate 
forecasts and scenarios as an input to a decision-making procedure. However, 
we should not undervalue model building per se: Gathering data and iden-
tifying a model is often a good way to reach a common understanding of a 
multifaceted problem, possibly involving different members of an organization 
with a limited view of the overall process. Finally, in Section 10.5 we relax a 
few limiting assumptions made in Section 10.3, and outline extensions such as 
the weighted least-squares method, and in Section 10.6 we take a look at the 
links between linear algebra and linear regression. The last two sections can 
be safely omitted by readers who just need a basic understanding of linear 
regression. 



x y 

1 3.7850 
5 14.4688 
8 24.5751 
10 28.6489 
11 22.5761 
15 38.7059 

Fig. 10.1 D a t a for linear regression. 

10.1 LEAST-SQUARES METHOD 

Consider the data tabulated and depicted in Fig. 10.1. These joint observa-
tions are displayed as circles, and a look at the plot suggests the possibility of 
finding a linear relationship between x and y. A linear law relating the two 
variables, such as1 

y = a + bx 

can be exploited to understand what drives a social or physical phenomenon, 
and is one way of exploiting correlation between data. The sample correlation 
coefficient for these data is 0.9623, and even if the sample is a toy one, it is 
significant at 1% confidence level using the test of Section 9.4.5 (the p-value 
is 0.0021). Intuitively, the sign of the slope b should be the same as the sign 
of the correlation. If we relate expenditure in advertisement and revenue, we 
would expect a positive correlation. If we relate price and demand, we would 
expect negative correlation. Before we go on, it is important to insist on two 
points: 

• A linear relationship need not be the best model. We know that cor-
relation picks up only linear associations, but there could be a more 
complicated relationship. Nevertheless, linear models are the natural 
starting point in our investigation. 

• It is tempting to interpret £ as a cause and y as an effect; however, corre-
lation only measures association. For instance, when relating price and 

1 Strictly speaking, we are using a linear affine function; the "linear" term should be reserved 
for the case when a = 0, but we will not bother too much about subtlety. 
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demand we cannot say in general which one is the independent variable, 
as this depends on the specific market and its level of competition. 

Clearly, there is no way to find a "perfect fit" line passing through all of 
the observed points, unless a linear model is an exact representation of re-
ality. This will never be the case in real life, because of uncertainty and/or 
unmodeled factors. 

Now what makes a good model, and how can we measure its fit against 
empirical data? Let us compare the two alternative lines depicted in Fig. 
10.1. It is a fairly safe bet most readers would choose the continuous line 
rather than the dashed one. Our eye is measuring the distance between the 
observed points (xi,yi) and the corresponding points (x¿,y¿) that the linear 
model would predict. To find a prediction j/¿, associated with a setting of the 
regressor x¿, simply requires plugging the latter into the regression model: 

i)i = a + bxi 

To formalize this distance for each individual observation, we can define a 
residual·? 

e¿ = y - Vi = Vi - (a + bxi) 

In order to evaluate the overall fit of a model we must aggregate the single 
residuals into one distance measure. It should be clear that the average resid-
ual is not quite useful, as positive and negative deviations cancel each other. 
Borrowing the variance idea from statistics, we may consider squared devia-
tions to get rid of the sign and define the sum of squared residuals (SSR) as 
follows: 

SSR = ¿ e ? 
¿=i 

According to the least-squares approach, the best-fit line is the one that min-
imizes SSR with respect to the regression coefficients a and b. Of course, 
there is no difference between minimizing SSR or the average squared resid-
ual, as multiplying the objective function by 1/n does not change the optimal 
solution. 

Finding the best coefficients a and b calls for the solution of a least-squares 
problem and, in the case of simple linear regression, is a straightforward exer-
cise in calculus: We just need to enforce the first-order optimality conditions, 
one per regression coefficient.3 A first condition is obtained by requiring sta-

2It is only natural to call e¿ an error. However, this term is reserved for a related quantity 
that will be introduced later. 
3They are sufficient conditions, as the objective function is convex with respect to the 
decision variables. 
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tionarity of the partial derivative of SSR with respect to the intercept a: 

c/SSR v—\ . . 

= - 2̂  2 w ~ a ~ °Xi> 
/ n n n \ 

= -2 E ^ " E a - E k i 

da 

\i=l ¿ = 1 1 = 1 

= - 2 Í Y^y% -na-b^Xi 1 = 0 
\ ¿ = i ¿=i / 

Rearranging the condition yields 

1 n U n 

a* = - yZ Vi y~\ Xi = y - bx (10.1) 
t = l 

where x and y are the average values of x and y. It is useful to interpret 
this condition: It tells us that the barycenter (x, y) of the experimental data 
lies on the regression line, which does make good sense. This condition also 
implies that the average residual for the best-fit model is zero: 

1 " 
λ = - ^2 \Vi - (° + bxi)] =y - a-bx = y - (y - bx) - bx = 0 (10.2) 

i= l 

The second optimality condition is obtained by enforcing stationarity of the 
partial derivative with respect to the slope 6: 

ΦSSR 
db = - 2 ^2 xi (Vi - a - bxi) = 0 

We can get rid of the leading factor —2, which is irrelevant, and plug the 
optimal value a* into this condition: 

Σ' 
¿=i V 3=1 3=1 ) 

1 / n n n n n n \ 
= - I n^Xiyi -Y^Xi -^yi+bY^Xi -^Xi -nb^x"* j = 0 

\ i=l i=l i=l i=\ i=\ i=\ J 

Solving for b yields 

6* = 
¾xm ~ ΣXi ' Σyi 
i=l i=l i=X (10.3) 

n Σ*?- Σ< 
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This way of expressing the optimal slope is arguably the most immediate for 
carrying out the calculations. However, we may also rewrite slope in a way 
that is easier to remember, dividing numerator and denominator by n and 
making averages of x and y explicit: 

n 

^XiVi -nxy 

b' = ^ (10.4) 
Σ 
i=l 

2 —2 
X; — nx 

With least squares, we find explicit expressions for a* and b*. In the following 
we will see how these expressions may be interpreted intuitively to improve 
our understanding; however, it is better to illustrate the approach first by a 
small numerical example. To streamline notation, we will drop the asterisk 
(*) and denote the optimal value of coefficients by a and b. 

E x a m p l e 10.1 Let us apply the least-squares method to the data of Fig. 
10.1. The necessary calculations are reported in Table 10.1. Applying (10.3), 
we have 

, 6 x 1388.1444-50 x 132.7598 „ „„.,„ 
b= 6 x 5 3 6 - 5 0 3 = 2 3 6 1 6 

Plugging this value into (10.1) yields 

1327598 _ 50 
6 6 

So, the linear regression model is 

y = 2.3616a; + 2.4470 (10.5) 

and it corresponds to the continuous line in Fig. 10.1, which in fact is the 
best-fit line in the least-squares sense. D 

10.1.1 Alternative approaches for model fitting 

In the least-squares method, we square residuals and solve the corresponding 
optimization problem analytically. We should wonder what is so special with 
squared residuals. We might just as well take the absolute values of the 
residuals and solve 

min Ó | y» - (a + bxi) \ 
a,b 

¿=1 

Another noteworthy point is that in so doing we are essentially considering 
average values of squared or absolute residuals; please note again that min-
imizing the sum or the average of squared residuals is the same thing, as 
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Table 10.1 Calculations for Example 10.1. 

Vi xi 3>iVi 

1 
5 
8 
10 
11 
15 

3.7850 
14.4688 
24.5751 
28.6489 
22.5761 
38.7059 

1 
25 
64 
100 
121 
225 

3.7850 
72.3440 
196.6008 
286.4890 
248.3371 
580.5885 

Sums 50 132.7598 536 1388.1444 

dividing the function by n does not change the optimal solution. When min-
imizing an average, there might be a good fit for most observations, but a 
rather large discrepancy for a very few ones. These could be outliers that can 
be omitted, but if this is not acceptable, an alternative fitting approach is to 
minimize the worst-case residual: 

min < max | y¿ — (a + bxi) | > 
a,b I ¿=l,...,n J 

This is a min-max problem, where the decision variables are a and b; for 
given values of slope and intercept, we get a different set of n residuals, and 
we pick the largest one in absolute value. The aim is minimizing the maximum 
residuals with respect to regression coefficients.4 

In principle, there is nothing wrong with these alternative fitting models. 
In forecasting, we do consider mean absolute deviations, as we will discover 
in Chapter 11. In function approximation, there is a whole theory concerned 
with the minimization of the maximum approximation error. The real trou-
ble stems from the fact that the two models described above do not lend 
themselves to a closed-formula treatment, since the absolute value is not a 
differentiable function. We will see in Section 12.2 how to transform them 
into linear programming problems, which can be readily solved by commer-
cially available software packages. However, we just get a numerical solution 
precluding any further interpretation. On the contrary, a closed formula al-
lows us to cast least-squares fitting within a proper statistical framework, 
which is essential, as pointed out in the next section. 

4 What we are doing is just applying different concepts of the vector norm, which were 
introduced in Section 3.3.2. 
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10.1.2 What is linear, exactly? 

If we label a model like y = a + bx as linear, no eyebrow should be raised. 
Now, consider a regression model involving a squared explanatory variable: 

y = a + bix + b2x2 (10.6) 

Is this linear? Actually it is, in terms of the factor that matters most: fitting 
model coefficients. True, the model is nonlinear in terms of the explanatory 
variable a;, but the actual unknowns when we apply least squares are the 
coefficients a, b\, and b2. In this respect, the model is linear and we may 
easily apply the multivariate least-squares approach, which we will illustrate 
in Chapter 16. If we want to tell the difference between the two models above, 
we may say that the first one is linear and first-order, whereas the second one 
is linear and second-order. In a polynomial model like (10.6), the order of the 
model is the largest degree occurring in the polynomial. 

10.2 THE NEED FOR A STATISTICAL FRAMEWORK 

So far, we have regarded linear regression as a numerical problem, which is 
fairly easy to solve by least squares. However, this is a rather limited view. 
To begin with, it would be useful to gain a deeper insight into the meaning of 
the regression coefficients, in particular the slope b. The careful reader might 
have noticed that the numerator in formula (10.4) looks suspiciously like a 
covariance between variables x and y, whereas the denominator suggests the 
idea of variance of x. The interpretation must be handled with care since, so 
far, we considered variables x and y as numbers and not random variables. 
Still, let us pursue this line of intuition by manipulating the expression of 
slope a bit. In the following, we will use the rather obvious identities 

^2(xi - Ι ) Ξ 0 and ^(Vi ~ y) = 0 
i = l ¿=1 

Equation (10.4) can be rewritten as 

n n n 

6: i=l i=l i=l 

/ J Xj / J x%x / j %j yXj x) 
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In this ratio, using the identities above, we may subtract zero from both 
numerator and denominator and rearrange, which yields 

n n n 

Y^Xi(yi-y)-^2x{yi-y) ^2{xi-x)(yi-y) 
b = ø !=! = i=L_ (10.7) 

^2 Xi (xi - x) - ^2 % (x* - %) Ó, (Xi _ ^ ) 2 

i=l i=l i= l 

This is yet another way of writing the slope,5 and by dividing numerator and 
denominator by n — 1, we get an expression in terms of sample statistics: 

1 ™ 
— Ó (xi - x) {yi - y) 

^xy 'xy^x^y 'xy^y 
C2 — C2 — C 
°x °x °x 

¿ = 1 

Formally, the quantities Sx, Sy, Sxy, and rxy are similar to sample standard 
deviations, covariances, and correlation coefficients; even if the interpretation 
is debatable, as we are dealing with numbers and not with random samples, 
the notation is quite handy and tells us a lot. The slope coefficient is closely 
related to the sample correlation between x and y. Indeed, we know that 
correlation picks up the linear association between random variables. Posi-
tive correlation results in an upward-sloping regression line, whereas negative 
correlation results in a downward-sloping line. The exact slope depends on 
the standard deviation of x and y, but this is somewhat arbitrary as it is 
influenced by how we measure x and y. 

The interpretation of slope in terms of correlation should be properly cast 
within a statistical framework. Indeed, a regression model relies on observed 
data that we can associate with a sampling mechanism, provided we postu-
late a data-generating process, i.e., an underlying stochastic model that we 
observe through a sample of noisy observations from outside. Within this 
framework, regression coefficients are estimates of the unknown parameters of 
the data-generating process. If we rely on concepts from inferential statistics 
and analyze linear regression as an estimation problem, we are able to 

• Quantify uncertainty about estimates, i.e., calculate confidence intervals 
for the underlying parameters 

• Test hypotheses about the effect of explanatory variables 

5Incidentally, this form is somewhat annoying to use when using a pocket calculator, since 
it involves centering all of the data. If we recall the roundoff issues of Example 4.13, it is no 
surprise that this form is numerically more precise when used with a computer; centering 
data is usually a good idea to improve numerical stability. 
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x y 
1 0.3689 
5 15.1832 
8 35.3745 

10 37.2811 
11 3.0577 
15 41.4946 

Fig. 10.2 A different dataset yielding the same regression line as in Fig. 10.1. 

• Quantify uncertainty about predictions, i.e., calculate prediction inter-
vals in order to come up with robust decisions 

An example will illustrate why all of the above is so important. 

Example 10.2 Consider the dataset tabulated in Fig. 10.2, and plotted 
there as filled diamonds; the figure also includes the dataset of Fig. 10.1, 
represented by the empty circles. The two datasets look quite different, yet 
we invite the reader to check that the two regression lines are the same (disre-
garding slight numerical discrepancies). Now imagine that we want to predict 
the response with the explanatory variable set to XQI = 13 or XQ2 = 17. The 
prediction, based on the two identical linear regression models, would just be 
the same. We have just to plug values of x into the regression line (10.5) to 
obtain 

y01 = 2.3616 x 13 + 2.4470 = 33.1478 
yo2 = 2.3616 x 17 + 2.4470 = 42.5942 

This is straightforward, but in which case should we trust the linear regression 
model more? Intuition suggests that the second dataset is affected by a larger 
level of uncertainty, and that the resulting predictions should be taken with 
due care. Indeed, for the first dataset the sum of squared residuals for the 
best-fit line is SSRi = 53.1495, whereas in the second case it is SSR2 = 1000. 
Furthermore, the value x — 13 lies within the range of the observed sample on 
which the fitting is based, whereas x — 17 does not. Intuition again suggests 
that if we are extrapolating outside the range of observed values we should 
be more uncertain about our predictions, but the least-squares method per se 
does not provide us with tools to address these issues. D 

4 6 8 10 12 14 16 
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The first step in building a statistical framework is a clear statement of the 
assumptions about the underlying data-generating process, i.e., the process 
by which observations of the response variable are generated for given values 
of the explanatory variable. We have two possibilities: 

1. If the explanatory variable is a number x, we speak of a nonstochastic 
regressor and may write a linear data-generating model as 

Yi = a + ßxi + e¿, i = l,...,n (10.8) 

2. If the explanatory variable is a random variable X, we speak of a stochas-
tic regressor and may write 

Yi = a + ßXi+€i, i = l , . . . , n (10.9) 

Even if the regressor is nonstochastic, the response Yi is a random variable 
because of the terms e¿, which are random variables and are called errors. 
Even though errors are modeled as random variables, they need not be ran-
dom in principle. Errors may represent truly random factors, but they could 
also represent other variables that would explain the response, but cannot 
be observed directly. They can also represent modeling errors, i.e., devia-
tions from a simple linear functional form. If so, they have more to do with 
our ignorance and modeling mistakes than with true randomness.6 We will 
just put everything under one roof and random errors will play the role of a 
catchall. However, this does not mean that everything goes: We do model 
errors as random variables, but they are subject to very precise conditions 
for our modeling mechanism to work. It is essential to validate a regression 
model a posteriori by checking whether there is a blatant violation of these 
assumptions. 

The difference between nonstochastic and stochastic regressors has impli-
cations on how the data-generating model should be characterized. Before 
dwelling on the required formal assumptions, we show with a few examples 
that the difference is substantial and not academic. 

Example 10.3 Imagine that we are a monopolist producer of a good and 
we want to set its selling price. The price will arguably affect demand, and 
we could conceive a linear demand model such as 

D = a + ßp + e 

6This dichotomy of views is well known in physics and has been the subject of heated 
controversy between Albert Einstein and Niels Bohr. According to the first view, Nature 
is basically deterministic but it looks random because of our ignorance; according to the 
second view, randomness is an intrinsic feature of Nature. Einstein expressed the first view 
by stating "God does not play dice with universe," to which Bohr replied "Stop telling God 
what to do." 
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where D is demand and p is price. In this market setting, price is a man-
agerial lever under our complete control and, of course, it can be perfectly 
observed, without any measurement uncertainty. Hence, price in this case is a 
nonstochastic regressor and there is a clear causal relationship between price 
and demand. We could try to estimate the demand function in order to find 
the optimal price to maximize profit.7 G 

Example 10.4 Now consider a model relating the random return Rk, that 
we may earn from investing in stock share k, to the random return Rm from 
the market portfolio as a whole. The return from the market portfolio can be 
typically proxied by a broad market index such as S&P500. If we regress Rk 
on Rm, namely 

Rk = a + ßRm + e 

we build a model with a stochastic regressor, as we cannot indisputably claim 
control over the market. Furthermore, in this case we also see an important 
point again: Linear regression models, like correlation analysis, are about 
association, not causation. Unlike the monopolistic producer setting a price, 
in this case it is hard to say which variable is the cause and which one is 
the effect. On one hand, we could say that the general market mood does 
affect return on asset k; on the other hand, asset k is itself part of the market 
portfolio and contributes to return Rm. A regression model like this has many 
uses8 and can be exploited to assess the systematic risk of an asset, i.e., the 
risk component that cannot be diversified away by holding a widely diversified 
portfolio. D 

Example 10.5 Stochastic and nonstochastic regressors may coexist in the 
same model, when there are multiple explanatory variables. Consider a model 
predicting the rating or the share obtained by broadcasting a movie on a TV 
network. The rating depends on many factors, including characteristics of 
the movie itself, such as its genre and the number of star actors and actresses 
featured in it, as well as the broadcast slot, i.e., the time, day, and month of 
the broadcast. These are variables that a TV network may control, because it 
selects which movie to show and when. However, the rating also depends on 
what competitor networks show at the same time, i.e., their counterprogram-
ming decisions. Clearly, the level of competition is not under our control,9 

and should be considered a stochastic regressor. D 

Whether regressors are stochastic or not, Y¿ is a random variable since 
errors make our observations noisy, and a and ß in the underlying data-
generating process are unknown parameters that we try to estimate. What 

7See Section 2.11.5. 
8See Example 9.21. 
9Well, this applies to healthy competitive markets. There are always exceptions to any 
rule, unfortunately. 
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we actually observe should be written, in the case of nonstochastic regressors, 
as 

Yi = a + bxi + ei (10.10) 

where the regression coefficients a and b are found by least squares and the 
residuals e¿ are evaluated by comparing predicted and observed values of the 
response variable. Note the difference between this expression and (10.8). We 
use Roman letters (a,6,e¿) when referring to coefficients and residuals, which 
are estimates and observed variables, respectively; we use Greek letters (a, 
/?, e¿) when referring to underlying things that we cannot observe directly. 
Even if the regressors are nonstochastic, the regression coefficients a and b are 
random variables,10 since they depend on the random variables Y¿ through 
Eqs. (10.1) and (10.3). They are estimators of the unknown parameters a 
and ß. It is very useful to see how this conceptual framework is exactly 
the same we have used when estimating the expected value ì, an unknown 
number, by the sample mean X, an observed random variable. In this case, 
we should also notice that the errors e¿ are not directly observable, since we 
do not know the true parameters. We must settle for a proxy of errors, the 
residuals e¿. 

Least squares provide us with estimators of the parameters in the data-
generating processes (10.8) or (10.9). Whenever we estimate parameters, we 
would like to have unbiased estimators with as little variance as possible. In 
order to investigate the properties of the least-squares estimators, we need a 
precise statement of conditions on regressor variables and errors. In the next 
sections we treat in fair detail the case of nonstochastic regressors, which is 
easier to deal with. We will outline the case of stochastic regressors later, 
in Section 10.5. It turns out that the fundamental results for the case of 
stochastic regressors are not that different, but the underlying assumptions 
must be expressed in a more complicated way. 

The validity of the regression model also depends on our assumptions about 
the errors e¿. Very roughly speaking, it is generally assumed that they are 
independent of each other and that their expected value is zero. Independence 
among errors simplifies results considerably and ensures that we are not really 
missing something systematic in our model; if their expected value were not 
zero, we could just include it in the intercept a. A fundamental issue is 
whether errors are somehow related to the value of Xi or X¿: 

• We speak of a homoskedastic case if the variance of errors is the same 
for each observation, and in particular it does not depend on the value 
of the regressor variable: Var(e¿) = ó\, for all ¿ = 1 , . . . , n. 

• Otherwise, we have a heteroskedastic case. 

10Strictly speaking, we should use uppercase letters A and B, but this would make notation 
a bit unpleasant. An alternative would be to use Ü, â, and κj to emphasize their role as 
estimators and proxies of unobserved variables, respectively. 
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Strictly speaking, the estimation approach we are describing, where errors 
are i.i.d. variables, should be referred to as ordinary least squares (OLS); the 
slope and intercept given by (10.1) and (10.3) are OLS estimators. Variations 
on the theme are used to deal with violations of the assumptions above. 

Finally, in order to derive more specific results on confidence intervals and 
in testing hypotheses about the underlying parameters, we might use further 
assumptions concerning the exact distribution of the errors. If we assume 
normality, rather simple results may be found; alternatively, the central limit 
theorem can be invoked to prove asymptotic normality of estimators, under 
technical conditions. All of these assumptions should not be taken for granted, 
and they should be carefully checked in order to assess the validity of the 
regression model. Whether least-squares estimators are biased or not, as well 
as their efficiency, depends on them. 

10.3 THE CASE OF A NONSTOCHASTIC REGRESSOR 

In this section we want to tackle a few statistical issues concerning the esti-
mation of the unknown parameters of the data-generating model, featuring a 
nonstochastic regressor and homoskedastic errors: 

Yi = a + ßxi + e¿, i = l,...,n 

As we said, the values Xi 3-ΓÈ numbers and the errors e¿ are independent and 
identically distributed random variables satisfying the following assumptions: 

• Their expected value is zero: E[e¿] = 0. 

• The variance for all errors is the same and does not depend on x¿, i.e., 
Var(e¿) — ó\. 

• When needed, we will also assume that errors are normally distributed: 
€i ~ -/V(0, ó\). In such a case, independence can be substituted by lack 
of correlation: E[e¿e,·] = 0, for i ö j . 

Our task mirrors what we did when estimating expected value by sample 
mean: 

1. We want to assess the properties of least-squares estimators a and b in 
terms of bias and estimation error. 

2. We want to find confidence intervals for estimators. 

3. We want to test hypotheses about the regression parameters. 

4. We want to assess the performance of our model in terms of explanatory 
power and prediction capability. 
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Since the results that we obtain depend on the assumptions above, it is impor-
tant to check them a posteriori by analyzing the residuals e¿ = Y¿ — (a + bxi), 
which are a proxy of the unobservable errors. Simple graphical checks are 
illustrated in Section 10.3.5. 

10.3.1 Properties of estimators 

The least-squares estimators a and b, as given by (10.1) and (10.3), are random 
variables, since they depend on the observed response variables Y¿, which in 
turn depend on the errors. Given the underlying assumptions about regressors 
and errors, we see that 

E[Yi]=a + ßxi, Vav{Yi)=a2
t 

In order to assess the viability of the estimators, we must assess some features 
of their probability distribution, which in turn requires rewriting them in 
terms of the underlying random variables e¿. Let us start with the estimator 
of the slope parameter ß. Using Eq. (10.7), where we plug random variables 
Yi in place of numbers y¿, we get the (ordinary) least-squares estimator b: 

n 

j2(*i-s)(Yi-Y) 
& = ^ _ (10.11) 

Σ (x¿ - xf 
¿ = 1 

Given the underlying model, we see that the sample mean of the response 
variables is given by 

Y = a + â÷ + € 
where x is the average of the Xi, and Z is the sample mean of the errors, over 
the n observations. Then we rewrite b as 

n 

y ^ (xi - x) ■ [a + ßxi + ei - (a + ßx + ë)} 
b = ÉÎë 

n 

Σ (x¿ - χ)2 

n 

Ó ø (xi - xf + (xi - %) (ei - λ) 
_ i=l 

n 

2 = 1 

n 

] T (Xi - x) (e¿ - λ) 

= Ñ+^^ (10·12) 
Σ (Xi ~ ^)2 
i = l 
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We see that b is given by the sum of ß and a random term depending on the 
errors e¿. To prove unbiasedness, we need to show that the expected value of 
this random term is zero: 

E[6] E 
Ó fa - x) (e¿ - e) 

ß- i = l 

Σ & ~ xf 
ί + E i=l 

n 

Ó (Xi _ x ) 2 

] P (xi - x) ■ E [e¿ - e] 

ß- i=\ = ß + 0 

Σ & ~x? 
In the manipulations above, we have used the fact that ß and x¿ are numbers 
and can be taken outside the expectation; then we rely on the assumption 
that the expected value of the errors is zero, as well as the expected value of 
their sample mean. 

The same line of reasoning can be adopted to prove unbiasedness of a. We 
rewrite (10.1) relying on the assumptions: 

i n u n 

a = Y — bx = — >^ Yi V^ Xi 
n *—i n ¿-^ 

i=l i=l 
1 n U n 

= -^2{á + ßxi + ei) y^x¿ 
¿=1 i = l 

1 n 1 n 

= a+-y2(ß-b)Xi + -y2ei 

(10.13) 

(10.14) 
¿=i 

We see that a can be broken down in the sum of three pieces; taking the 
expected value yields 

E[a] E -¿03-&)xi + -f> 
n ¿—^ n ¿—^ t = l t = l 

1 " 1 n 

= a+-y"E[ß-b]xi + -y"E[ei]=a 
¿ = 1 ¿ = 1 

In these manipulations we have broken down the expected value of a sum into 
the sum of the expected values, as usual, and we have taken numbers outside 
the expectation. The second term is zero because b is an unbiased estimator 
of ß and the last term is zero because of our assumptions about the errors. 
We should note that these results do not depend on the specific distribution 
of errors, which need not be normal. 
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Having an unbiased estimators is good news, but we also need to assess 
their variability. We are concerned about the estimation errors (b — ß) and 
(a — a). Generally speaking, variability of an estimator can be measured by 
the standard error of estimate, which we denote by SE(·): 

SE(6) = y/E[(b-ßn SE(o) = y/E [(a - a)2} 

Since our estimators are unbiased, we can recast SE into a more familiar form; 
recalling that E[Z2] = Var(Z) + E2[Z], for any random variable Z, we get 

SE(6) = y/V&T(b-ß)+E2[b-ß] = y/V&T(b - â) = γ Α ^ φ ) 

since â is a number. We see that, because of unbiasedness, the standard error 
of the estimate is just the standard deviation of the estimator. A similar 
relationship holds for SE(a), a, and a. 

Let us evaluate SE of the least-squares estimators, starting with b. We may 
rewrite Eq. (10.12) slightly: 

Σ (Xi ~x) (€i ~e) Σ (χ* ~x^ei 

b = ß + i = l 

Σ (** ~ ^)2 
= ß + i = l 

Σ fa ~x? 
» = 1 

(10.15) 

This holds because Óß(÷ß ~ x)e = 0· Then we may calculate the variance of 
b directly: 

Var(b) Var 
y~l {xi - x) ei 

ß + 
Σ( 
¿ = 1 

y ^ {xi - xf σ, 

_ - Ú 2 

Xi XI 

£ V a r [ ( Xi X ) 6¿ 

Σ fo ~ χ)2 

i = l 

¿(xi-x)2] Σ^*-*)2 

U = l 

In the manipulations above we have taken advantage of the nature of the 
Xi (numbers) and of the errors e¿ (mutually independent and with constant 
standard deviation ac). So, the standard error of b is 

SE (6) (10.16) 
- \ 2 \ Σ (*< ~ *) 

\ i= l 
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x 
(a) (b) 

Fig. 10.3 It is difficult to tell the right slope when data are concentrated. 

An apparent missing piece of information in this formula is σε; however, we 
may estimate this on the basis of residuals, as shown later in Section 10.3.2. 
Now it is useful to interpret the result we have obtained. 

• As expected, the reliability of our estimate of the slope depends on the 
intrinsic variability of the phenomenon we are modeling. If the noisy 
contribution from errors is low, then the n observations are very close 
to the line Y = a + â÷ and estimating the slope is a fairly easy task. 
Indeed, we see that SE(6) is proportional to ae. 

• Another fairly intuitive observation is that the more observations we 
have, the better. This is pretty evident in the standard deviation of the 
sample mean, where a factor y/n pops up. We do not see here an ex-
plicit contribution of the number of observations, but nevertheless each 
additional observation adds a squared contribution to the denominator 
of the ratio, reducing SE(6). 

• A less obvious observation is that our ability to estimate the slope de-
pends on where the observations are located. The denominator of the 
ratio includes a term looking like a variance, and it is in fact a measure 
of the (nonrandom) variability of the observations £¿. If the points Xi 
are close to each other, i.e., are close to their average x, we have a small 
denominator. It is difficult to see the impact of small variations of x on 
Y, because this effect is "buried" in background noise. If the observed 
range of x is wide enough, assessing the impact of a; on Y is easier. This 
is illustrated intuitively in Fig. 10.3. 

Formula (10.16) suggests that, in order to get a good estimate of slope, we 
should have observations over a large range of the explanatory variable x. 
However, it is worth noting that a linear relationship might just be an ac-
ceptable approximation of a nonlinear phenomenon over a limited range of 
values. Hence, by taking a wide sample we might run into a different kind 
of trouble, namely a poor fit resulting from the nonlinearity of the observed 
phenomenon. 
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In order to assess the standard estimation error for o, we may follow the 
same route that we took for the slope. We use (10.14) to express variance of 
the estimator: 

Var(a) = Var 
1 a+(ß-b)x+~y^t n *—' 

[SE(ft) · xf + ¿ ¿ Var(€j) + 2Cov Uß - b)x, ± ¿ > ) 
i=l \ i=l / 

ai 2x SE2(b)-x2 + ^ - — Cov [ï-â,Õá 
n n 

(10.17) 
¿=1 

This expression looks quite complex, but it is easy to read. The first term 
relates SE (a) to SE(6); the second term is related to the variance of the sample 
mean of errors ?; finally, we can show that the last term is zero. To see this, 
let us rewrite b — â using (10.15) to make the contribution of errors explicit: 

Cov (b-ß,J2ei) = C o v 

J2{xi-x)ei n 

¿=1 

\f=i } 
Σ Σ Cov ((*< " χ ) C i ' ej) Σ Cov ̂ Xi ~ * ) e i ' ^ 
i=l j = l i=l 

Y(Xj-X 
i=l 

n 

Ya2(xi-x) 

- \ 2 Ó {xi - xf 
ί=1 

i=l 

Σ (Xi ~ xY 
i=l 

where we have exploited the mutual independence between the errors e¿ and 
the fact that their variance does not depend on the observations. Now, plug-
ging the expression of SE(6), we obtain 

SE(a) = σ£ 
ΣΓ=ι (÷ß - ÷Õ 

+ -n 
[SE(b)x]2 + ^ 

n 
(10.18) 

This formula, too, lends itself to a useful interpretation, which is apparent 
when looking at the two nonzero terms in Eq. (10.17). 

• The term SE(6)x tells us that getting the wrong slope will influence the 
error that we make in estimating the intercept, but this depends on the 
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(b) 

• · • 

X 
� 

x = 0 

Fig. 10.4 Schematics of the impact of slope on estimating the intercept. 

average value of the explanatory variable. This may be understood by 
looking at Fig. 10.4. If x = 0, rotating the regression line around the 
barycenter of data has no impact on the intercept, whereas the impact 
is large when x is large. 

• The second term is related to a shift in the intercept due to the variabil-
ity of the sample error. If λ = 0, then there is no such shift; otherwise the 
contribution to the estimation error depends on the sign of this sample 
mean. The magnitude of this effect depends on the intrinsic variability, 
measured by σ€, and by the sample size n. 

Now that we know the expected value and the variance of our least-squares 
estimators, a natural question is how they are distributed. The answer is fairly 
straightforward in our setting, nonstochastic regressors and homoskedastic 
errors, provided that we also assume that errors are normally distributed, i.e., 
e¿ ~ N(0, ó\). A look at Eqs. (10.12) and (10.14) shows that, in our settings, 
the least-squares estimators are essentially linear combinations of errors, i.e., 
linear combinations of normal variables. Since a linear combination of normal 
variables is itself a normal variable, we immediately see that estimators are 
normally distributed, too. We have proved the following theorem. 

THEOREM 10.1 If regress or variables Xi are nonstochastic and errors are 
i.i.d. normal variables, then least-squares estimators are normal random Vari-

ai ables: b~N{ß, SEJ(fc)) and a 
(10.16) and (10.18). 

N(a, SE (a)), with standard errors given by 

This result can actually be generalized. If we do not assume that errors are 
normally distributed, we can invoke the central limit theorem to show that 
least-squares estimators are asymptotically normal.11 In Section 10.5 we also 
see that this holds for stochastic regressors and for heteroskedastic errors, 

1 1Prom a technical perspective, we should add conditions concerning outliers, expressed in 
terms of higher-order moments. 
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but the involved formulas, as well as the underlying theory, are a bit more 
complicated. 

10.3.2 The standard error of regression 

Equations (10.16) and (10.18) help us in assessing the uncertainty about the 
estimate of unknown regression parameters. A missing piece in this puzzle, 
however, is the standard deviation σε of the random errors, which are not 
directly observable. The only viable approach we have is to rely on the resid-
uals e¿ = Yi — Yi as a proxy for the errors e¿. The intuition is that, if we trust 
the estimated model, Y¿ is the expected value of Y¿ and, in order to assess 
the variability of the errors, it is reasonable to consider the variability of the 
observations with respect to their expected value. Another way to get the pic-
ture is by noting that the assumptions behind the statistical model imply that 
σ2 = Var(Yj); however, we cannot just take the usual sample variance of the 
observed Yi, since the expected value of Y¿ is not a constant, but it depends 
on the value of ÷÷. The following result, which holds under our assumptions, 
helps us in estimating the standard deviation of errors. 

THEOREM 10.2 If errors are i.i.d. and normally distributed with standard 
deviation at, then the ratio of SSR (sum of squared residuals) and er2 is a chi-
square random variable with n — 2 degrees of freedom: 

SSR 2 
u e 

Given what we know about the chi-square distribution,12 we immediately 
conclude that an unbiased estimator of the standard deviation of errors is 
given by the standard error of regression (SER), defined as follows: 

SER = ó. 

Example 10.6 Let us find the SER for the data in Fig. 10.1. We recall that, 
in that case, the regressed model was 

Û = 2.4470 + 2.3616z 

Plugging values of the regressors and computing the residuals yields the results 
listed in Table 10.2. Then we obtain 

S E R = W | ^ = 3 . 6 4 5 2 

See Section 7.7.2. 
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Table 10.2 Residuals for the data of Fig. 10.1. 

Yi 

3.7850 
14.4688 
24.5751 
28.6489 
22.5761 
38.7059 

% 

4.8085 
14.2548 
21.3394 
26.0626 
28.4241 
37.8704 

e¿ 

-1.0235 
0.2140 
3.2357 
2.5863 
-5.8480 
0.8355 

We urge the reader to check that, for the data in Fig. 10.2, we get SER = 
15.8114. This much larger SER shows that, even though the regressed models 
are the same, the underlying errors are quite different. D 

The definition of SER in Eq. (10.19) is essentially a sample standard devi-
ation, with a couple of twists: 

1. Deviations are not taken against a constant value, but with respect to 
a sort of moving target depending on the regressors Xi. 

2. Unlike the usual sample standard deviation, we divide by n — 2 rather 
than n — 1. The cookbook recipe way of remembering this is that we 
lose 2 degrees of freedom because deviations depend on two estimated 
parameters, rather than just the usual sample mean X. Also note that 
if we had just n = 2 observations, we could say nothing about errors, 
because the observed points would exactly fit one line, and there would 
be no deviation between Y¿ and Y¿. 

10.3.3 Statistical inferences about regression parameters 

Now we are armed with the necessary knowledge to draw statistical inferences 
about the regression parameters. Mirroring what we did with the estimation 
of expected value, we should 

• Calculate confidence intervals for slope and intercept 

• Check the significance of regression coefficients by testing suitable hy-
potheses 

The technicalities involved here are essentially the same as those involved in 
dealing with estimation of the expected value, and we avoid repeating the 
reasoning. In the case of the expected value, everything revolves around the 
statistic _ 
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where S/y/n is the standard deviation of the estimator X or, in other words, 
its standard error, since the estimator is unbiased. In the case of the slope in 
a regression model, the relevant statistic is 

nn b-ß 
T = — 

SE(6) 
Given our distributional results so far, it is no surprise that this statistic 
has t distribution with n — 2 degrees of freedom, assuming that errors are 
normally distributed. A similar result applies to the intercept. Hence, for 
a large sample, our estimators tend to be normally distributed. Courtesy 
the central limit theorem, it can be shown that least-squares estimators are 
approximately normal even if errors are nonnormal, provided that the other 
assumptions hold. 

To compute confidence intervals, we fix a confidence level 1 — a, get the 
corresponding quantile t i - a /2,n-2 from t distribution, and compute 

&±ti_a / 2 , n_2SE(&) 

for the slope, and 
a ± ίι_α/2,η-2 SE(d) 

for the intercept, relying on formulas (10.16), (10.18), and (10.19). 

Example 10.7 Let us compute confidence intervals for the regression pa-
rameters for the data in Fig. 10.2. We already know that 

a = 2.4470, b = 2.3616, SER = 15.8114 

furthermore x = 8.3333. Using the formulas for standard errors, we find 

15.8114 
SE(6) = = 1.4474 

. ¿ (Xi - 8.3333)2 

\ ¿=i 

and 

SE(a) = 15.8114 x (8.3333)2 

Λ ¿ {xi - 8.3333)2 

- = 13.6803 
6 

If confidence level is 95%, the quantile we need is 

io.975,4 = 2.7764 

The confidence interval for the slope is 

2.3616 ± 2.7764 x 1.4474 = (-1.6571, 6.3802) 
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and the confidence interval for the intercept is 

2.4470 ± 2.7764 x 13.6803 = (-35.5357, 40.4296) 

We see that these are pretty large confidence intervals; even worse, they con-
tain the origin, and we are not really even sure about the sign of the underlying 
parameters! This is no surprise, given the extremely scarce and noisy data, 
but it is what we can honestly say (always keeping the underlying assump-
tions in mind). We urge the reader to check that for the less noisy data of 
Fig. 10.1, we get confidence intervals 

(1.4351,3.2880), (-6.3096, 11.2036) 

for slope and intercept, respectively. Also in this case, with very few data, we 
cannot trust the regression model too much, but at least we have a clear idea 
of the sign of the effect of the explanatory variable on the response variable. 

D 
Hypothesis testing proceeds much along the usual lines. The most common 

test we carry out is a t test concerning the slope, i.e., the significance of the 
effect of an explanatory variable. Even if an explanatory variable has no effect 
on the response variable, i.e., its slope coefficient is ß = 0, the estimated value 
will not be zero because of random errors. It is then natural to test the null 
hypothesis 

Ç0:â = 0 

against the alternative one 
Ç¢:âö0 

It is customary to run a two-tail test, although we could use a one-tail test if 
we have a clear idea about the sign of the effect. Then the test statistic boils 
down to 

SE(6) 

which is calculated by any software package implementing linear regression. 
The p-value of the t test of the slope, given that the test statistic T assumes 
the value t, is 

ρ = 2 Ρ { | Γ η _ 2 | > ί } 

where Tn_2 is a t random variable with n — 2 degrees of freedom. Note that we 
are assuming a two-tail test, and that the result is exact if errors are normal. 

Example 10.8 Continuing Example 10.7, we see that the test statistic for 
the noisy dataset of Fig. 10.2 is 

* 2 · 3 6 1 6 1 fi*1fi t = -, , , „ , = 1-6316 1.4474 
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The quantile for a two-tail test with a = 5% is the same quantile we used to 
calculate the confidence interval 

io.975,4 = 2.7764 

from which we immediately see that the test statistic does not fall in the 
rejection region and we cannot reject the null hypothesis that the actual slope 
ß is zero. The p-value of the test is 

2P{T4 >t} = 0.1781 

where T\ is a t variable with 4 degrees of freedom. We could reject the null 
hypothesis if we accepted a probability of type I error that is just a little 
less than 20%. Hence, we cannot really say that the effect of the explanatory 
variable is significant on the basis of the sparse and noisy data we have. For 
the less noisy first dataset, the test statistic is t = 7.0772 and the p-value is 
0.0021, less than 1%. D 

Testing the intercept requires the same conceptual framework, provided 
we use the standard error SE(a). Usually, we are more interested in testing 
slopes, as they measure the impact of an explanatory variable on the response. 
However, there are situations in which testing the intercept is even more 
important. 

Example 10.9 (Capital asset pricing model) In Example 9.21 we con-
sidered a factor model for returns of a financial asset. This is essentially a 
regression model that can be cast in the following form: 

Rk-rf = ak + ßk(Rm - rj) + ek 

Here Rk is the (random) return from holding the risky asset k for some holding 
period, Rm is the (random) return from holding the market portfolio m for 
some holding period, and r¡ is the risk-free return over the same period (a 
number). This model is expressed in terms of excess return, i.e., the difference 
between a random return and the risk-free return. 

A fundamental piece of financial theory is the capital asset pricing model 
(CAPM). This is much more than a regression model, as it is an equilibrium 
model concerning expected returns. Essentially, the model states that, at 
equilibrium 

E[Δfc - rf] = ßkE[Rm - rt) (10.20) 

In other words, according to CAPM, ak = 0. The practical implication, if 
we believe the model, is that the risk premium from holding asset k, i.e., 
the expected excess return, depends only on the systematic risk, i.e., the risk 
from holding the market portfolio. The unsystematic risk, i.e., the specific 
risk related to firm k, is not rewarded, as it can be diversified away by holding 
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a properly diversified portfolio. Then, the risk is just measured by the asset 
beta: 

= Cov(i?fc, Rm) 
Pk ~ Var(ρm) 

We cannot discuss the exact conditions leading to CAPM, but it is just natural 
to consider an empirical test of the theory. In this case, we are interested in 
testing the null hypothesis 

H0:ak = 0 
against the alternative Ha: ak ö 0, to see if empirical data reject the theory. 
Apparently, it would be easy to check this by running suitable regressions, 
observing returns over consecutive time periods. Unfortunately, this is not 
that easy, and in fact empirical testing of CAPM has raised a fair share of 
controversy. From a financial perspective, it is not so obvious what makes a 
"market" portfolio, even though one could try surrogating that by a broad 
market index like S&P500. From a statistical perspective, there is a quite 
critical point: Who says that errors in consecutive time periods are indepen-
dent? D 

The last remark of this example is a good reminder that assumptions should 
never be taken for granted. More sophisticated regression approaches have 
been devised to cope with correlated errors. 

10.3.4 The R2 coefficient and ANOVA 

Testing the significance of a slope coefficient is a first diagnostic check of the 
suitability of a regression model. However, per se, this test does not tell us 
much about the predictive power of the model as a whole. The reader may 
better appreciate the point by thinking about a multiple regression model 
involving several explanatory variable: A t test checks the impact of each re-
gressor individually, but it does not tell us anything about the overall model. 
Indeed, the standard error of regression is a measure of the uncertainty of 
predictions and can help in this respect, but it suffers from the usual problem 
with standard deviation: Its magnitude depends on how we measure things. 
The typical performance measure that is used to check the usefulness of a re-
gression model is the R? coefficient, also known as coefficient of determination. 
The R2 coefficient can be understood in two related ways: 

• It can be seen as the fraction of total variability that the model is able 
to explain. 

• It can be seen as the squared coefficient of correlation between the ex-
planatory variable x and the response Y, or between the prediction Y 
and the observed response Y. 

Whatever the interpretation, the values of the R2 coefficient are bounded 
between 0 and 1; the closer to 1, the higher the explanatory power of the 
model. 
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Fig. 10.5 Geometric interpretation of the R2 coefficient. 

Let us pursue the former interpretation first, with the graphical aid of Fig. 
10.5. When we look at raw data, we see that the response variable Y is subject 
to variability with respect to its average Y. This variability can be measured 
by the sum of squared deviations with respect to Y, which is called the total 
sum of squares (TSS): 

n 
TSS = ]T(r¿ - Yf 

Not all of this variability is noise, since part of it can be attributed to variabil-
ity in the explanatory variable x. This "predictable" variability is explained 
by the regression model in terms of the predicted response Y — a + bx. So, 
we may measure the explained variability by the explained sum of squares: 

n 

ESS = Ó& - Û? 
t = l 

From Fig. 10.5, we see that there is some residual part of variability that 
cannot be accounted for by model predictions. This unexplained variability is 
related to residuals, more precisely to the sum of squared residuals, that we 
already defined as 

n 
SSR = Ó(Õ> - Yif 

¿=i 

This view is reinforced by the following theorem. 

THEOREM 10.3 For a linear regression model, the total variability can be 
partitioned into the sum of explained and unexplained variability as follows: 

TSS = ESS + SSR 
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PROOF The total variability can be rewritten by adding and subtracting Y¿ 
within squared terms and by expanding them: 

TSS = J2(Yi-Y)2 = J2(Yi-Yi + Yi-Y)2 

i= l i=l 
n n n 

= X](y l-y l)2 + ^(r ν -F) 2 +2^(y ¿ -y ¿ ) (ν > i -ρ 
t = l ¿=1 ¿=1 

SSR ESS 

Now we prove that the last term v = 0. The first step is to rewrite model 
predictions in terms of deviations with respect to averages, using the least-
squares estimator of intercept: 

Yi = a + bxi = Y — bx + bxi = Y + b(xi — x) 

Plugging this expression into the expression of v, and using the least-squares 
estimator of slope, we get 

v = yjYj - Y - b(xj - x)]b(xj - x) 
i= l 

n n 
= b Yi(Yi-Y)(xi-x)-bYi(xi-x) 

.¿=1 ¿=1 
n n 

= b b^2(xi - xf - b^ixi - xf = 0 
i = l 

On the basis of this result, we may define the R2 coefficient as the ratio of 
explained variability and total variability: 

R2 ESS 
TSS 1 

SSR 
TSS 

(10.21) 

We see that R2 is also 1 minus the fraction of unexplained variability. When 
the coefficient of determination is close to 1, little variability is left unexplained 
by the model. 

Recalling the meaning of slope 6, we would expect the regression model to 
have good explanatory power when there is a strong correlation between the 
explanatory and the output variables. Strictly speaking, since we are dealing 
with a nonstochastic regressor, we are a bit sloppy when talking about this 
correlation, and it would be better to consider the correlation between Y¿ and 
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Yi. Hence, let us consider the squared sample correlation: 
n2 

.¿=1 
YY 

Ó, i*-Va-Ó, {*-*)* 
t = l i = l 

It is not difficult to prove that this expression boils down to R2. To begin 
with, we see that the average prediction and the average observation of the 
response variable are the same: 

1 n 1 n 

y = - V Yi = - V ( o + bxi) =a + bx = Y 

Hence, we may rewrite the numerator of r2- as 

Ó{Õ-Õ){Õ-Õ) = ãñé-Ûé + Ûß-ÕÌ-ã) 

= ¿(y4 _£)(£_ F) + ¿(S-F)2 
t = l 

¿=1 ¿=1 

= i / = 0 

We see that we get the same null term v that we encountered in proving 
Theorem 10.3. Hence, we can rewrite the squared correlation as 

Yßi-^Y Y^iYi-ãã 
i = l 

YY R2 

i = l i=l ¿=1 

Thus, we have another aspect to consider in interpreting the coefficient of 
determination. 

The R2 coefficient gives us an evaluation of the overall fit of the model. 
One word of caution is in order, however, when we think of using multiple 
explanatory variables. It is easy to understand that the more variable we 
add, the better the fit: R2 cannot decrease when we add more and more 
variables. However, there is a tradeoff, since adding degrees of freedom means 
that we are increasing the uncertainty of our estimates. Furthermore, the 
more variables, the more parameters we use to improve the fit within the 
sampled data, but this need not translate out of sample. We will return to 
these issues in Chapter 16. 

The interpretation of R2 in terms of explained variability suggests another 
way of checking the significance of the regression model as a whole, rather 
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than in terms of a i test on the slope coefficient. As we mentioned, this 
is important when dealing with multiple regression, which involves multiple 
coefficients; these may be tested individually, but we would also like to have an 
evaluation of the overall model. This test applies concepts that we introduced 
when dealing with analysis of variance (ANOVA) in Section 9.6. Again, there 
are a couple of ways to interpret the idea. 

1. If the model has explanatory power, then the explained variability ESS 
should be large with respect to the unexplained variability SSR. We 
could check their ratio, and if this is large enough, then the model 
is significant. In fact, there are many settings in which one has to 
compare variances. To carry out the test, we need to build a test statistic 
with a well-defined probability distribution, and this calls for a little 
adjustment. 

2. Remembering what we did in Section 9.6, we may consider a joint test 
on the parameters of a multiple regression model: 

Yi = a + ßiXi + ß2X2 H \- ßmXm 

The model is significant if at least one coefficient is nonzero. Hence, we 
may run the following test: 

H0:ßi=ß2 = --- = ßm=0 
Ç¢ : at least one ßi ö 0 

To devise a test, let us use some intuition first. If we assume that errors 
are normally distributed, then the sums of squares are related to the sum of 
squared normals, and we know that this leads to a chi-square distribution. If 
we want to check the ratio of sums of squares, we have to deal with a ratio of 
chi-square random variables, and we know that this involves an F distribution. 
The reasoning here is quite informal, as we should check independence of 
the two sums of squares, the F distribution involves two independent chi-
square variables. Another issue is related to the degrees of freedom, which are 
typically associated with sums of squares and define which kind of chi-square 
variable is involved. To get a clue, let us consider the relationship between 
TSS, ESS, and SSR: 

¿ > - Yf = ¿(ÍÍ - F)2 + f > - f¿)2 

% — \ i = \ 2=1 

We know that the left-hand term has n — 1 degrees of freedom, since only 
n — 1 terms can be assigned freely. We suggested that the last term, which 
is related to the standard error of regression, has n — 2 degrees of freedom. 
Then, the remaining term ESS must have just 1 degree of freedom. To further 
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Table 10.3 Typical ANOVA table summarizing source of variation, sum of squares, 
degrees of freedom, mean squares, F statistic, and the corresponding p-value. 

Source 

Regression 

Error 

Total 

SS 

ESS 

SSR 

TSS 

df 

Ûlexp 

QI en-

u t exp + df e r r 

MS 

, ESS 
MSexp = T 

Ulexp 

S S R 

MSerr = —— 
dferr 

F 

MSexp 
MSerr 

P 

p- value 

justify this intuition, please note that we may rewrite all of the involved terms 
in the ESS as 

Yi-Y= b{Xi - x) 
This shows that any term can be written as a single function of the Y¿, so 
this sum of squares must have 1 degree of freedom. Correcting the sums of 
squares for their degrees of freedom, we define the explained mean square and 
the mean square due to errors: 

ESS SSR MSexp = — - , MSerr = -
1 n — 2 

and consider the following test statistic: 

_ MSexp 
MSerr 

If the true slope is zero, i.e., under the null hypothesis, this variable is a ratio 
of chi-square variables and has F distribution, more precisely an F(l,n — 
2) distribution. We are encouraged to reject the null hypothesis if the test 
statistic is large, as this suggests that the ESS is large with respect to SSR. 
Using quantiles from the F distribution, we may test the regression model. 
Again, we should emphasize that this depends on a normality assumption and 
that we have just provided an intuitive justification, not a serious proof. It is 
customary to express the ANOVA test and the related F test in the tabular 
form shown in Table 10.3. 

Example 10.10 To illustrate the procedure, let us consider the ANOVA for 
the two datasets of Figs. 10.1 and 10.2. The two respective ANOVA tables are 
illustrated in Table 10.4. In both cases, we have 5 degrees of freedom in TSS, 
as there are n = 6 observations; 1 degree of freedom is associated with ESS, 
and n — 2 = 4 with SER. Apart from little numerical glitches, we see that the 
ESS is the same for both regression models, since the regression coefficients 
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Table 10.4 ANOVA tables for the dataseis illustrated in Figs. 10.1 and 10.2. 

(a) 

Source 

Regression 
Error 
Total 

SS 

665.5175 
53.1495 
718.6670 

df MS 

1 665.5175 
4 13.2874 
5 

F 

50.0864 

P 

0.0021 

(b) 

Source 

Regression 
Error 
Total 

SS 

665.5153 
1000.0012 
1665.5164 

df MS 

1 665.5153 
4 250.0003 
5 

F 

2.6621 
P 
0.1781 

and the value of the explanatory variables are the same. What makes the 
difference is the SER, i.e., the sum of squared residuals, which is much larger 
in the second case because of the much larger variability in the second dataset. 
This variability is left unexplained by the regression model. In this simple 
regression model, MSexp = ESS, since 1 degree of freedom is associated with 
explained variability, whereas MSerr = SSR/4. The test statistic is 50.0864 in 
the first dataset. This is a rather large value, for a F ( l ,4 ) distribution, and 
it is quite unlikely that it is just the result of sampling variability. Indeed, 
the p-value is 0.0021, which means that the model is significant at less than 
1%. On the contrary, for the second dataset the test statistic is small, 2.6621, 
and the corresponding p-value is 17.81%. This means that, to reject the null 
hypothesis that the regression model is not significant, we must accept a very 
large probability of a type I error. D 

One should wonder whether this amounts to a test genuinely different from 
the t test on the slope. In the simple regression case, the two tests are actually 
equivalent. Indeed, in Section 7.7.2 we pointed out that an Fi>n variable is just 
a tn variable squared. So, the t test on the only slope in a simple regression 
model or the F test are equivalent. Indeed, the p-values above are exactly the 
same that we got in Example 10.8 when running the t test. Furthermore, for 
the first dataset, we have 

F = 53.1495 = 7.07722 = t2 

This does not generalize to multiple regression models, where there are mul-
tiple coefficients and the degrees of freedom will play an important role. 
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Fig. 10.6 Plot of residuals coherent with the regression model assumptions; e (ordi-
nate) refers to residual and i (abscissa) is an observation index. 

10.3.5 Analysis of residuals 

All of the theory we have built so far relies on specific assumptions about the 
errors e¿, which we recall here once again for convenience: 

• They have expected value zero. 

• They are mutually independent and identically distributed; in particular 
they have the same standard deviation, which does not depend on Xi. 

Since errors are not observable directly, we must settle for a check based 
on residuals. The check can exploit sound statistical procedures, which are 
beyond the scope of this book; for our purposes, it is enough if we reinforce 
the important concepts by illustrating a few visual checks that we can carry 
out just by plotting residuals. 

The assumption about the expected value is automatically met, since the 
way we build the least-squares estimators implies that the average residual is 
zero, as shown in Eq. (10.2). What we need to check is that there is no evident 
autocorrelation and lack of stationarity. The plot of the residuals e¿ should 
look like Fig. 10.6, where we see that they do reasonably resemble pure noise. 
On the contrary, in Fig. 10.7 we see a pattern that is typically associated with 
positively correlated errors. If we observe a positive residual for observation 
number i, the next observation i + 1 is likely to display a positive residual 
as well. The same holds for negative errors, and we see "waves" of positive 
vs. negative residuals. Such a pattern may be observed for at least a couple 
of reasons. The first one is that there is indeed some correlation between 
consecutive observations in time. In such a case subscript i really refers to 
time and to the order in which observations were taken; the obvious case is 
when time is the explanatory variable. Another possible reason has really 
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Fig. 10.7 Plot of residuals suggesting autocorrelation in the errors. 

A A*) 

Fig. 10.8 Using linear regression with a nonlinear underlying function results in "au-
tocorrelated" residuals. 

little to do with statistics: We may also observe a pattern like this when 
there are nonlinearities in the observed phenomenon. Consider, for instance, 
the nonlinear function in Fig. 10.8, and imagine using linear regression to 
approximate it, using a few sample points (possibly affected by noise). The 
nonlinear curve is somehow cut by the regression line, and this results in 
a nonrandom pattern in the residuals: They have one sign in the middle 
range of the interval of x, and the opposite sign near the extreme points. 
Of course, this second case has more to do with the appropriateness of the 
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Fig. 10.9 Plot of residuals suggesting that the mean of the error process is not sta-
tionary. 

selected functional form, and we are somewhat improperly using statistical 
concepts as a diagnostic tool. In passing, we should also clarify the meaning 
of the subscript i associated with an observation. If the explanatory variable 
is time, subscript i refers to the position in the chronological sequence of 
observations. But if we are regressing sales against price, we might wish to 
sort observations according to the value of the explanatory variable, so that 
subscript i does not refer to the order in which we took our samples. Doing 
so, we miss the possibility of seeing potential patterns due to the impact of 
time, however. Hence, it is advisable to plot residuals in any sensible order 
to ensure a multiple check. 

Another check concerns the stationarity of the error process in terms of 
mean and standard deviation. By construction, the average residual is zero 
over the whole dataset, but a plot of residuals like the one in Fig. 10.9 sug-
gests lack of stationarity. If i is actually related to the temporal sequence of 
observations, we could consider running a multiple regression in which time 
is an explanatory variable. Last but not least, we assumed homoskedasticity, 
but a plot of residuals such as Fig. 10.10 suggests that variance is not constant 
over our observations. In Section 10.5 we outline two possible ways to cope 
with heteroskedasticity. We close this section by just giving a hint of more 
quantitative tests. 

• To check autocorrelation, we could measure the correlation between e¿ 
and e¿+i. Again, we should be careful about the meaning of the subscript 
i: If it is time, checking correlation between consecutive samples makes 
sense; otherwise, we should sort observations according to values of the 
explanatory variable. 
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Fig. 10.10 Plot of residuals suggesting that the variance of the error process is not 
stationary. 

• To check whether time should be included as an explanatory variable, 
we may measure the "correlation" between e¿ and i, where i refers to 
the chronological order of observations. 

• Finally, to check homoskedasticity, we may measure the "correlation" 
between e? and i. 

10.4 USING REGRESSION MODELS 

Regression models can be used in a variety of ways, but the essential possi-
bilities are 

1. Using a regression model to assess the impact of explanatory variables 

2. Using a regression model to forecast the value of the response variable 
for given values of the explanatory variables 

In the first case, we are actually concerned with the estimate of slope; the idea 
is that understanding the phenomenon can lead to knowledge and to better 
policies. Apparently, there is little difference from the second case since, after 
all, a good estimate of parameters should lead to good forecasts. In fact, 
there are at least a couple of subtle differences between the two mindsets. If 
the only practical relevance of a regression model is forecasting, we may be 
quite happy with a model that does not yield any plausible explanation of 
a phenomenon, but it is empirically good at forecasting future values of the 
response variables. In the next chapter we will see that, in the limit, one 
can resort to time series models that do not try at all to explain anything; 
their only role is forecasting, without any ambition to find explanations. A 
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completely different approach is taken, for instance, by sociologists, since in 
that case a true understanding of the driving forces behind an observed result 
is the true added value of a regression model. Furthermore, forecasting when 
regressors are themselves stochastic may seem to be a quite tricky business, 
as regressors themselves should be forecasted. For instance, in finance one 
can build a regression model to link the return of many stock shares to a few 
macroeconomic factors, which might be easier to forecast. In this section we 
just deal with forecasting when either regressors are nonstochastic and under 
our control, or when the explanatory variable is time. 

Apparently, forecasting is quite easy. Given the regression model, just plug 
the value of XQ, and the predicted response is 

E ^o a + bxi o 

Note that this is just a point forecast, i.e., a single value. If we knew the un-
derlying statistical model and its parameters, the response would be a random 
variable 

Y0 = a + ßx0 + e0 

Assuming that errors are normally distributed, the response would be normal 
as well, with 

Å[Õ0}=á + â÷0, Õ&ô(Õ0) = ó€ 

This uncertainty is just linked to the variance of the future realization of the 
error eo· However, we should take the uncertainty of our estimators into ac-
count, too. We should consider YQ as a random variable, since it is based on 
estimators a and b. Since we know how to characterize the uncertainty of 
our estimates, we might build a confidence interval for YQ. However, when we 
consider the realization of the error term in the future, we are dealing with 
a prediction interval, which means dealing with the distribution of a random 
variable, rather than the estimation of an unknown parameter, which is a 
number. Indeed, we may even go as far as to build a probability distribution 
for Υ"ο. Assuming that regressors are nonstochastic and that errors are nor-
mally distributed, this distribution will be t with n — 2 degrees of freedom, or 
a normal distribution for a sufficiently large sample. 

Since errors are independent, we may just add the variances of YQ and eo· 
The former depends on the variances of a and b, but we should not forget 
their covariance. So, let us write everything explicitly: 

YQ = a + bxo = Y — b(x — xo) 
n 

^2(XÍ - x)Yi 
= Õ-(÷-×ï)÷ßÎÀ 

Σ(χί - ñf 
¿=ι 
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To streamline notation, let 

Σ(χί ~ x">2 

which is a number under our assumptions. Then 

ÛÏ = Σ,Υ* 
i = l 

Taking its variance, we obtain 

var(r¿; - -n 
»=i L 

Var(y0) = ¿ V a r ( y i ) 

J(XÍ - x){x -XQ) 
n 

■j(Xi -x)(x - XQ) 

= σ« 
n 1 n ~ n 

^2 — + Û (x - XQ)2 ^2(Xi -X)2 (X-XQ) ^2(Xi - X) 
i = l 

1_ (Xp - X) 

n 
(10.22) 

Y^(xi-xf 
¿=i 

Taking into account the variance of the error affecting YQ , we conclude that 

SE(y0) = VVar(lo - a - bx0) = ajl + - + ^*0. ×) _.„ (10.23) 
V n Σί^Ι^-^) 

Here we are using the standard error of YQ, which we should interpret as a 
standard error of prediction, rather than a standard error of estimate. As 
usual, it is important to interpret the result we have obtained. We see that 
variance depends on three contributions: 

1. The first term is just ó2 and is due to the realization of the future error 
term. 

2. The second term, ó2/ç, depends on the underlying uncertainty and is 
mitigated by increasing the sample. 

3. The last term is a bit more complicated. The denominator of the ratio 
tells us that the more observation are spread out, the better; indeed we 
know that this affects our ability to estimate slope. The numerator de-
pends on the distance between XQ, the value of the explanatory variable 
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for which we predict the response, and the average x in the available 
dataset. We see that the farther we go, the less certain we are. Indeed, 
we cannot extrapolate to much outside the available data. Actually, the 
situation can be even worse if the underlying phenomenon is nonlinear, 
and the linear regression model is just a suitable approximation for a 
limited range of the explanatory variable. 

In practice, we must estimate ó2 by SSR, and when computing prediction 
intervals we should use quantiles from tn-2 distribution. With large samples, 
quantiles from the standard normals can be used. 

Example 10.11 A firm observes the following data correlating sales price 
and sales volume (measured in thousands of items) : 

Price (€) 2.6 2.8 3.3 3.5 3.8 
Sales 2.63 3.35 1.86 1.35 0.47 

The firm wants to predict sales if the sales price is raised to €4. Since sales 
are not completely predictable, the firm would also like a prediction interval 
with a 95% confidence level to come up with a robust decision. 

Least squares yield 

a = 8.6096, b = -2.0867 

Not surprisingly, slope is negative, since we expect sales to drop after a price 
increase. Note, however, that the dataset shows that sales were higher when 
price was €2.8 than when it was €2.6; other factors, or just pure randomness, 
may be at play. Then, a point forecast is easily obtained: 

Y0 = 8.6096 - 4 x 2.0867 = 0.2626 

Thus, we expect to sell something like 263 items. To build a prediction inter-
val, we need to estimate SER, based on the residuals e¿ = Y¿ — ν¿: 

ei = 2.6300 - 3.1840 = -0.5540 
e2 = 3.3500 - 2.7667 = 0.5833 
e3 = 1.8600 - 1.7233 = 0.1367 
e4 = 1.3500 - 1.3060 = 0.0440 
e5 = 0.4700 - 0.6800 = -0.2100 

Then 
/ V 5 (Y - Y)2 

SER = àc = ]l ^i=lK ' — = 0.4871 

We may also check that R2 — 0.857, which looks satisfactory. Applying 
(10.23), where x = 3.2, we get 

SE(y0) = 0.4871 X . 1 + - + —£ '-!■ = 0.6631 
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Fig. 10.11 Bad regression-based sales forecast in Example 10.11. 

Since to.975,3 = 3.1824, the 95% prediction interval is as follows, expressed in 
items: 

262.6 ± 3.1824 x 663.1 « (-1848, 2373) 

This is a pretty large amount of uncertainty, but there is something far worse: 
The prediction interval does not make any sense, as it includes negative values. 
On second thought, this is not quite surprising, since SER = 487.1 is large 
with respect to YQ = 262.6. Note, however, that the large value of R2 may 
induce a false sense of security. To visualize what is really going wrong, we 
may have a look at Fig. 10.11. We see that SER is not that large in absolute 
terms, but it is relatively large when the price goes up, because it affects 
much smaller sales volumes. Furthermore, since sales cannot be negative,13 a 
negatively sloped regression line is a sensible model within a limited range of 
prices. When prices are very high, a nonlinear model like the one hinted at 
by the dashed line in the figure would make more sense. D 

10.5 A GLIMPSE OF STOCHASTIC REGRESSORS AND 
HETEROSKEDASTIC ERRORS 

In this section we outline what happens when we relax a bit our assumptions 
about the underlying statistical model: 

Yi = a + ßXi + a (10.24) 

13Well... sales cannot be negative, unless you are very, very bad with marketing! 
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The first thing to note is that now the explanatory variable is random. This is 
certainly going to make things a tad more complicated, but we do not want to 
change our assumptions substantially, which is possible by taking advantage 
of the law of iterated expectations.14 The trick is to restate assumptions 
conditionally on Xi, whenever necessary: 

• (Xi, Yi) are i.i.d. realizations of a joint probability distribution; this also 
implies that errors are independent (but it does not imply that they are 
identically distributed). 

• E[e¿ | Xi] = 0, i.e., the conditional expectation of errors is zero; note that 
by the law of iterated expectations this implies that the unconditional 
expectation of the errors ,is zero: 

E[ei]=E[E[ei\Xi}}=0 

but the converse is not true. 

• A technical assumption, which we will disregard in the following but that 
is needed to derive some results concerning estimators, is that outliers 
are unlikely, in the sense that (Xi, Y¡) have finite fourth-order moments; 
we recall that fat tails are measured by kurtosis, which is related to 
fourth-order moments. 

The assumption of homoskedasticity should be expressed in terms of condi-
tional variance 

Var(e¿|X¿) = ó\ 

but we do not want to take this for granted. 
This framework looks more complicated, but the essential results we have 

shown in the simpler setting hold with the assumptions mentioned above. To 
see an example of the technicalities involved, let us see how unbiasedness of 
the estimate of slope can be proved. Here we concentrate on the slope, since 
it is usually the parameter of interest, but the approach can be used to deal 
with the intercept as well. The starting point is again Eq. (10.12), which 
should be written as 

n 

Y^{Xi-X)ei 
b = ß+i=± =b + W (10.25) 

¿=i 

We would like to prove that E(W) = 0, where W is the ratio of the two sums 
in the equation above. If we take the expectations, in this case we cannot 

See Theorem 8.10. 
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just move explanatory variable outside, since they are not numbers anymore. 
However, we can use the assumptions and the law of iterated expectations, 
by conditioning on Xi, i = 1 , . . . , n: 

E[W} = E[E[W\X1,X2,...,Xn}} 

The conditional expectation allows us to treat explanatory variables as num-
bers, performing the same tricks again: 

n 

J2(Xi-X)E[ei\X1,X2,...,Xn] 
E[W\X1,X2,...,Xn] = ^l _ = 0 

Σ(^-^)2 

Note that we take Xi outside the conditional expectation, and then use the 
fact that 

E{ei\Xl,X2,...,Xn} = E[ei\Xi}=0 

due to assumptions concerning the independence between observations and 
the conditional expectation of errors. An equivalent way of seeing this result 
is that the assumptions imply the conditional unbiasedness of the estimator 

E[(b-ß)\X1,X2,...,Xn}=0 

which in turn implies unbiasedness by the application of iterated expectations. 
Things are not that easy when we consider standard errors without assum-

ing homoskedasticity. To see why, imagine that we consider variance of the 
numerator in W: 

V*r[{Xi-X)ti\. 
Since regressors are stochastic, we cannot take them outside variance. We 
cannot factorize the product and simplify the expression, since e¿ need not 
be independent of X¿. Moreover, we cannot automatically assume that the 
variance of a ratio is the ratio of the variances. If we want to evaluate SE(6), 
we must settle for more complicated formulas. An important asymptotic 
result is the normality of the estimator of slope. 

THEOREM 10.4 The asymptotic distribution of the estimator b, under the 
previously stated assumptions, is characterized by the following limit: 

V [ V a « ] 2 / 

where Vi = (Xi — ßx)ei and —� refers to convergence in distribution. 

PROOF A fully detailed and rigorous proof would be somewhat technical 
and tedious, but we may at least appreciate the role of stochastic convergence 
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concepts, including Slutsky's theorem, which we illustrated in Section 9.8.5. 
Equation (10.25) implies 

1 n — 
- y~* (Xi - ì÷ + ì÷ - X) ti 

V^(6 -â) = Vñx — À¸^-ð n 
i—l 

1 ™ — 1 n 

-ρΣ^ {x - μχ)-¡=J2ei 
" i=l v î = l 

^ Il . . IL 
(10.26) 

where i/¿ = (Xi - ì÷)åß and E[i/¿] = E[E[(X¿ - ì÷)^ | X¿]] = 0. 
To take advantage of Slutsky's theorem, we need to assess which terms 

above converge, in probability or in distribution, to some relevant quantity. 
What we know about sample mean and sample variance implies 

l-±{x-x)2 -^ o\ 
n � i 

(×-ì÷) - ^ 0 

The central limit theorem tells us that 

-L¿ei = v/^^Af(0,ae
2) 

l — í 

Then, applying Slutsky's theorem, we see that the second term in (10.26) 
converges in probability to zero. Applying the central limit theorem to the 
numerator of the first term yields 

1 n 

V n -, A 

— Ϊ Ξ ] _ . 1 , ^ ( 0 , 1 ) 

where au is the standard deviation of i/¿. Then, we also see that 

"7= Σ íΛ / ó" 
Í A f ( 0 , l ) 

from which the theorem follows immediately. We should note that this proof 
is not quite rigorous, as applying the central limit theorem requires finiteness 
of variance, which can be ensured by proper assumptions. I 
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The theorem implies that, for a large sample, the estimator is unbiased, 
asymptotically normal, and consistent. As usual, we do not really know the 
variance of b in the statement of the theorem, but we can estimate it by the fol-
lowing formula, based on observed residuals and the substitution of variances 
with their sample counterparts: 

n ΝE(*-*)a 

When drawing statistical inferences, we use the same procedure as in the 
homoskedastic case, but we use the standard error SE(6) = σ&. Many software 
packages implement these formulas, which are robust to heteroskedasticity and 
require a minimal set of assumptions. 

An alternative to these robust formulas is obtained if we assume some 
more specific structure on the nature of heteroskedasticity. For instance, let 
us assume that 

2 
Var(e¿) = σ2 = ^ 

Wi 
i.e., variances of errors are known up to a proportionality constant ó\. Then 
we may rewrite (10.24) multiplying both sides of the equation by 

y/wiXi = sjwia + y/wißXi + y/w¡U 

Using this trick, we see that Var(v/tü¿e¿) = σ2, i.e., we are back to the ho-
moskedastic case. Now the sum of squared residuals is 

n n 
y ^ (y/wjYj - y/wja + y/w¡bXi) = y^ Wj (Yj - a + bXjf 
i= l i = l 

The resulting approach is called weighted least squares and should be con-
trasted to the ordinary least squares (OLS) that we introduced in this chapter. 
The result is, after all, rather intuitive: We should attribute more weight to 
observations with a large value of Wi, i.e., observations affected by a smaller 
noise. 

What we have accomplished by introducing weighted least squares may 
sound purely academic, as it seems quite hard to have a detailed knowledge 
of variances σ2 or weights tν)¿. However, there are more general approaches 
that can be used to approximate this knowledge. One such procedure is the 
estimation of an equation describing variance, i.e., a model relating σ2 to one 
or more variables by a regression equation. The procedure may be sketched 
as follows: 

1. Fit a regression model using ordinary least squares and evaluate resid-
uals e¿. 
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2. Regress the squared residuals on the explanatory variable to obtain an 
equation predicting variance for each observation as a function of the 
explanatory variable, of = /(x¿); in the case of multiple regression, 
analysis of residuals may suggest the most appropriate variables to use 
to estimate such a variance function. 

3. Given the estimated variance function, obtain estimates of weights w¿ = 
V¿2· 

4. Apply weighted least squares. 

10.6 A VECTOR SPACE LOOK AT LINEAR REGRESSION 

The aim of this section is to broaden our view about linear regression by 
analyzing it in the light of some concepts from linear algebra. In fact, linear 
regression can be regarded as a sort of orthogonal projection within suitably 
chosen vector spaces. To see this, let us group observations and residuals into 
vectors as follows: 

" Xi 

X2 

%n 

, e = 

ei 
â 2 

&ç 

Let us also denote by u = [ 1 , 1 , . . . , 1]T, i.e., a column vector whose entries all 
set to 1. Ideally, we would like to find coefficients a and b such that vector Y 
can be expressed as a linear combination of x and u: 

Y = au + 6x 

However, there is little chance to express a vector in Rn with a basis consisting 
of two vectors only, and we settle for a vector that is as close as possible, by 
minimizing the norm of the vector of residuals: 

min | |e | | 2 , e = Y — (au + bx) 
a, b 

We are looking for a vector in the linear subspace spanned by x and u, which is 
as close as possible to Y. In other words, we are projecting Y on this subspace. 
Prom linear algebra, we know that this projection has some orthogonality 
properties, in the sense that the difference between Y and its projection and 
the projection itself should be orthogonal vectors. Intuitively, if we consider 
a plane, and a point outside the plane, the path of minimal length between 
the point and the plane lies along a line that is orthogonal to the plane itself. 

Y 
Yi 

Yn 
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Therefore, we should expect that15 

e · (au + bx) = 0 

where the product dot · denotes the usual inner product between vectors in R". 
Since inner product is a linear operator, we should just check orthogonality 
between e and the basis vectors u and x. However, from least-squares theory, 
we know that the average of residuals is indeed zero, so 

u = y ^ e¿ = 0 
t = l 

Checking orthogonality between e and x proceeds along familiar lines, based 
on the form of least-squares estimators: 

e � x = ^2 eiXi = J^2¡Yi- (a + bxi)]xi 
¿=i ¿=i 

n n 
= J2[Yi - Y - b{xi - x)]Xi = J2l(Yi - Y)xi - b(x2 - Xix)} 

t= l i= l 
n n 

= Y^iYi-Y^Xi-^-b^tâ-Xix) 
¿=1 i = l 

n / n \ 
= Ó(Õß - Y)(Xi - x) - b ¡Ó÷* - nx2 = 0 

i=l \ i = l / 
Hence, we see that ordinary least squares may be interpreted in terms of 
orthogonal projection on linear subspaces. This view of linear regression in 
linear algebraic terms will prove most useful in understanding multiple linear 
regression. 

So far, in this section, we did not refer to any probabilistic or statistical 
concept. Thus, it may be useful to interpret linear regression in probabilistic 
terms. Note that, in practice, regression is carried out on sampled data; 
however, we may also consider best approximation problems between random 
variables. Let us consider a random variable Y, which we want to approximate 
by a linear affine transformation of another variable X, i.e. 

Y êá + bX 

for coefficients a and b that we must determine in a suitable way. What are 
the desirable properties of such an approximation? To begin with, the two 
expected values should be the same: 

E[Y] - a + bE[X] (10.27) 

See Section 3.3.2 for an introduction to inner products and norms. 
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which is just the probabilistic counterpart of (10.1). To find another condition, 
we should require that the approximation is good in a probabilistic sense. If 
we introduce the error16 e = Y — (a + bX), we may require that its variance 
is small; therefore, we solve the problem 

min Var(e) 
o,fc 

subject to condition (10.27). Actually, from this requirement we find a con-
dition on b only. To see this, let us express variance of error: 

Var(e) = Var(F -a-bX)= Var(Y) + b2 Var(X) - 26Cov(y,X) 

Minimization with respect to b yields 

Cov(Y,X) 
Var(X) 

This is just the probabilistic counterpart of (10.7). 
Since we find a best approximation of Y in terms of X by linear regression, 

the error should not carry any information related to X. In other words e and 
X should be uncorrelated. Indeed 

Cov(e, X) = Cov(Y -a-bX,X)= Cov(Y, X) - b Cov(X, X) 
= Cov(y,JO-&Var(X) = 0 

This also implies that e is uncorrelated with the overall approximation a + bX. 
Now, can we bridge the gap between this probabilistic view of regression, and 
the view above, based on inner products and orthogonal projection? To this 
aim, we should define a suitable inner product between random variables, 
as well as an orthogonality concept. A comparison between the two views 
suggests that we may link orthogonality and lack of correlation. In other 
words, random variables X\ and X2 are "orthogonal" if Cov(Xi, X2) = 0. 
This in turn suggests the definition of an inner product between random 
variables: 

(X1,X2) = Cov(X1,X2) 

Let us see if this makes sense. Prom linear algebra, we recall the properties 
that any legitimate inner product should enjoy: 

1. (X1,X2) = (X2,Xi) 

2. (X1+X2,Z) = (X1,Z) + (X2,Z) 

3. (aXi,X2) = a(Xi,X2), for any scalar a 

16Since we are not dealing with a sample-oriented, statistical model with unobservables, we 
use the error, rather than the residual, which is its observable surrogate. 
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4. (X, X) > 0, and (X, X) = 0 only if X = 0 

The first three properties correspond to properties of covariance that we listed 
in Section 8.3.1. The last property says first that variance cannot be negative, 
which is fine. The problem comes from the second point: Variance is zero for 
any constant random variable, not only for the constant zero. This suggests 
that the might be some more work to do, which is beyond the scope of an 
introductory book, but it turns out that there is way to solve this issue and 
properly define an inner product of random variables.17 

Leaving the last technicality aside, it does seem that we can define a linear 
space of random variables, on which we may take linear combinations, and 
the inner product is just covariance. Within this framework, the two views 
described above are indeed strictly related. They both amount to orthogonal 
projection within linear spaces with a properly defined inner product. The 
inner product also defines a norm 

\\x\\2=(x,x) 

where x may be a vector or a random variable. By least squares, we do 
minimize the squared norm of an error/residual, which is orthogonal to the 
projected element, either vector or random variable. We close this section by 
a short example reinforcing this general framework. 

Example 10.12 (Pythagorean theorem for random variables) We 
know that if vectors x and y are orthogonal, then 

||x + y||2=||x||2 + ||y||2 

If we apply this to the legs and the hypothenuse of a right triangle, we get the 
familiar form of Pythagorean theorem. If we apply the idea to a linear space 
of random variables, whereby the squared norm is variance, we get something 
quite familiar. If two random variables are uncorrelated, we obtain 

| X + Y \\2= Var(X + Y) = Var(X) + Var(F) =|| X ||2 + || Y \ 

Problems 

10.1 Consider the following sales data: 

Week 1 2 3 4 5 6 7 8 9 10 
Sales 30 20 45 35 30 60 40 50 45 65 

Build a linear regression model to predict sales and calculate R2. 

0 

See, e.g., the text by Luenberger [3]. 
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10.2 Given the observed data 

x 45 50 55 60 65 70 75 
y 24.2 25.0 23.3 22.0 21.5 20.6 19.8 

build a 95% confidence interval for the slope. 

10.3 A firm sells a perishable product, with a time window for sales limited 
to 1 month. The product is ordered once per month, and the delivery lead 
time is very small, so that the useful shelf life is really 1 month. Each piece is 
bought at €10 and its sold for €14; if the product expires, it can be scrapped 
for €2 per unit. Over the last 4 months a positive trend in sales has been 
observed: 

Month Jan Feb Mar Apr 
Sales 102 109 123 135 

Hence, the firm resorts to linear regression to forecast sales over the next 
period. How many items should the firm buy, in order to maximize expected 
profit in May? 

For further reading 

• An introductory treatment of linear regression is given, e.g., in Ref. [6]. 

• The treatment in Ref. [7] is slightly higher-level, but quite readable and 
careful about distributional results for estimators. 

• Robust formulas to heteroskedasticity are discussed in Ref. [8], which 
also illustrates many of applications to economics. 

• The use of linear regression for forecasting purposes can be appreciated 
by reading Ref. [4], which also deals with time series models, which we 
cover in the next chapter. 

• Other extensions of basic linear regression modeling are dealt with, e.g., 
in Ref. [5], including generalized and weighted least squares. 

• For more in-depth treatment, the reader may have a look at Ref. [1] or 
[2], among others. 

• Readers interested in the vector space view of regression may find the 
reading of Luenberger's text [3] enlightening. 
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11 
Time Series Models 

Forecasting is a common task in business management. In Chapter 10, on 
simple linear regression models, we have met a kind of statistical model that 
can be used as a forecasting tool, provided that 

• We are able to find potential explanatory variables 

• We have enough data on all the relevant variables, in order to obtain 
reliable estimates of model parameters 

Even though, strictly speaking, linear regression captures association and not 
causation, the idea behind such a model is that knowledge about explanatory 
variables is useful to predict the value of the explained variable. Unfortu-
nately, there are many cases in which we are not able to find a convincing 
set of explanatory variables, or we lack data about them, possibly because 
they are too costly to collect. In some extreme cases, not only do we lack 
enough information about the explanatory variables, but we even lack infor-
mation about the predicted variable. One common case is forecasting sales 
for a brand-new kind of product, with no past sales history. Then, we might 
have to settle for a qualitative, rather than quantitative forecasting approach. 
Qualitative forecasting may take advantage of qualified expert opinion; vari-
ous experts may be pooled in order to obtain both a forecast and a measure 
of its uncertainty.1 Actually, these two families of methods can be and, in 
fact, are often integrated. Even when plenty of data are available, expert 

1Some qualitative forecasting methods, like the Delphi method, have been developed to 
manage the judgmental forecasts of a pool of experts. If poorly applied, these methods 
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opinions are a valuable commodity, since statistical models are intrinsically 
6ac/cword-looking, whereas we should look forward in forecasting. 

In this book, we stick to quantitative approaches, such as linear regression, 
leaving qualitative forecasting to the specialized literature. Within the class 
of quantitative forecasting methods, an alternative to regression models is 
the family of time series models. The distinguishing feature of time series 
models is that they aim at forecasting a variable of interest, based only on 
observations of the variable itself; no explanatory variable is considered. 

Example 11.1 Stock trading on financial markets is one of those human 
endeavors in which good forecasts would have immense value. One possible 
approach is based on fundamental analysis. Given a firm, its financial and 
industrial performance is evaluated in order to assess the prospect for the 
price of its shares. In this kind of analysis, it is assumed that there is some 
rationality in financial markets, and we try to explain stock prices, at least 
partially, by a set underlying factors, which may also include macroeconomic 
factors such as inflation or oil price. On the contrary, technical analysis is 
based only on patterns and trends in the stock price itself. No explanatory 
variable is sought. The idea is that financial markets are mostly irrational, 
and that psychology should be used to explain observed behavior. In the first 
case, some statistical model, possibly a complicated linear regression model, 
could be arranged. In the second case, time series approaches are used.2 D 

(Note: Time series models can be built to forecast a wide variety of vari-
ables, such as interest rates, electric power consumption, inflation, unemploy-
ment, etc. To be concrete, in most, if not all of our examples, we will deal with 
demand forecasting. Yet, the approaches we outline are much more general 
than it might seem.) 

To illustrate the nature of time series models formally, let us introduce 
the fundamental notation, which is based on a discrete time representation in 
time buckets or periods (e.g., weeks) denoted by t: 

• Yt is the realization of the variable of interest at time bucket t. If we are 
observing weekly demand for an item at a retail store, Yj is the demand 
observed at that store during time bucket t. 

• Ftth is the forecast generated at the end of time bucket t with horizon 
of h time buckets; hence, Ft¡h is a prediction of demand at time t + h, 

may lead to a consensus forecast destroying valuable information; in fact, the disagreement 
between experts may be leveraged to find a measure of inherent uncertainty. 
2 For the sake of simplicity, we have stated the two approaches in a somewhat extreme 
and overly simplistic manner. In practice, we may well build a statistical model in which 
behavioral factors are accounted for by suitable explanatory variables; in fact, quantitative 
models of this kind have been proposed for active portfolio management. 
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where h = 1,2,3, It is important to clarify the roles of subscripts t 
and h in our definition of forecast: 

— t indicates when the forecast is made, and it defines the information 
set on the basis of which the forecast is built; for instance, at time 
t we have information about demand during all the time buckets 
up to and including t. 

— h defines how many steps ahead in the future we want to forecast; 
the simplest case is h = 1, which implies that after observing de-
mand in time bucket t, we are forecasting future demand in time 
bucket ί + 1. 

We should distinguish quite clearly when and for when the forecast is 
calculated. One might wonder why we should forecast with a horizon 
h > 1. The answer is that sometimes we have to plan actions in consid-
erable advance. Consider, for instance, ordering an item from a supplier 
whose lead time is three time buckets; clearly, we cannot base our de-
cision on a demand forecast with h = 1, since what we order now will 
not be delivered during the next time bucket. 

In time series models, the information set consists only of observations of Yt ; 
no explanatory variable is considered. Trivial examples of forecasting formulas 
could be 

1 * 
FtA=Yt or FM = - £ > f c 

1 fc=i 
In the first case, we just use the last observation as a forecast for the next 
time bucket. In the second case, we take the average of all of the past t ob-
servations, from time bucket 1 up to time bucket t. In a sense, these are two 
extremes, because we either use a very tiny information set, or a set consist-
ing of the whole past history. Maybe one observation is too prone to spikes 
and random shocks, which would probably add undesirable noise, rather than 
useful information, to our decision process; on the other hand, the choice of 
using all of them does not consider the fact that some observations far in the 
past could be hardly relevant. Furthermore, we are not considering the pos-
sibility of systematic variations due to trends or seasonality. In the following, 
we describe both heuristic and more formal approaches to forecasting. 

There is an enormous variety of forecasting methods, and plenty of software 
packages implementing them. What is really important is to understand a few 
recurring and fundamental concepts, in order to properly evaluate competing 
approaches. However, there is an initial step that is even more important: 
framing the forecasting process within the overall business process. We insist 
on this in Section 11.1. The most sophisticated forecasting algorithm is utterly 
useless, if it is not in tune with the surrounding process. Whatever approach 
we take, it is imperative to monitor forecast errors; in Section 11.2 we define 
several error measures that can be used to choose among alternative models, to 
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fine-tune coefficients governing their functioning, and to check and improve 
performance. Section 11.3 illustrates the fundamental ideas of time series 
decomposition, which highlights the possible presence of factors like trend and 
seasonality. Section 11.4 deals with a very simple approach, moving average, 
which has a limited domain of applicability but is quite useful in pointing out 
basic tradeoffs that we have to make when fine-tuning a forecasting algorithm. 
Section 11.5 is actually the core of the chapter, where we describe the widely 
used family of exponential smoothing methods; they are easy to use and quite 
flexible, as they can account for trend and seasonality in a straightforward 
and intuitive way. Finally, Section 11.6 takes a more formal route and deals 
with autoregressive and moving-average models within a proper statistical 
framework. This last section is aimed at more advanced readers and may be 
safely skipped. 

11.1 BEFORE WE START: FRAMING THE FORECASTING 
PROCESS 

When learning about forecasting algorithms, it is easy to get lost in techni-
calities and forget a few preliminary points. 

Forecasting is not about a single number. We are already familiar with 
inferential statistics and confidence intervals. Hence, we should keep in 
mind that a single number, i.e., a point forecast, may be of quite little 
use without some measure of uncertainty. As far as possible, forecasting 
should be about building a whole probability distribution, not just a 
number to bet on. 

Choose the right time bucket. Imagine that you order raw materials at 
the end of every week; should you bother about daily forecasting? Doing 
so, you add unnecessary complexity to your task, as weekly forecasts are 
what you really need. Indeed, it is tempting to use large time buckets 
in order to aggregate demand with respect to time and reduce forecast 
errors; this is not advisable if your business process requires forecasts 
with small time buckets. 

What should we forecast? If this sounds like a dumb question, think again. 
Imagine that you are a producer of T-shirts, available in customary sizes 
and a wide array of colors. Forecasting sales of each single item may be 
a daunting task. As a general rule, forecasts are more reliable if we can 
aggregate items. Rather than forecasting demand for each combination 
of size and color, we could aggregate sizes and consider only forecasting 
for a set of colors. In fact, demand for a specific combination of color 
and size may be rather volatile, but the fraction of population corre-
sponding to each size is much more stable. We may forecast aggregate 
sales for each T-shirt model, and then use common factors across mod-
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els to disaggregate and obtain forecasts for each single combination. Of 
course, in the end, we want to forecast sales for each individual item, 
but in the process of building a forecast we use suitable aggregation and 
disaggregation strategies. This approach is also quite powerful in pool-
ing demand data across items, thus improving the quality of estimates of 
common factors, but it must be applied to compatible product families. 
We cannot apply size factors that are standard for adults to T-shirts 
depicting cartoon characters (maybe). 

Forecasts are a necessary evil. Common sense says that forecasts are al-
ways wrong, but we cannot do without them. This is pretty true, but 
sometimes we can do something to make our life easier and/or mitigate 
the effect of forecast errors. If our suppliers have a long delivery lead 
time, we must forecast material requirements well in advance. Since the 
larger the forecast horizon, the larger the uncertainty in forecasting, it 
is wise to try whatever we can to shorten lead time (possibly by choos-
ing geographically closer suppliers). The same applies to manufacturing 
lead times. Sometimes, seemingly absurd approaches may improve fore-
casting. Consider the production process for sweaters. Just like with 
T-shirts, forecasting a specific combination of color, model, or size is 
quite hard. Two key steps in producing a sweater are dying the fabric 
with whatever color we like, and knitting. The commonsense approach 
is to dye first and knit later. However, the time needed to knit is much 
longer than the time needed to dye. This means that one has to forecast 
sales of a specific combination much in advance of sales, with a corre-
sponding criticality. By swapping the two steps, knitting first, one may 
postpone the final decisions, and rely on more accurate forecasts. This 
is a typical postponement decision,3 whereby the impact on cost and 
quality must be traded off against the payoff from better matching of 
supply and demand. 

The general point is that the forecasting process should support the surround-
ing business process and should help in making decisions. Forecast errors may 
be numerically large or small, but what really matters is their economic con-
sequence. 

As a last observation, let us consider another seemingly odd question: Can 
we observe what we are forecasting? To be concrete, let us consider demand 
again. Can we observe demand at a retail store? In an age of bar codes 
and point-of-sale data acquisition, the answer could be "yes." Now imagine 
that you wish a pot of your favorite cherry yoghurt, but you find the shelf 
empty; what are you going to do? Depending on how picky you are, you 

The case we are outlining is well known: Benetton reversed the sequence of manufacturing 
steps in order to ease severe difficulties with forecasting. Hewlett-Packard is another com-
pany that has successfully adopted product design for postponement, in order to improve 
supply chain performance. 
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might settle for a different packaging, a different flavor, or a different brand, 
or you could just go home quite angry. But unless you are very angry and 
start yelling at any clerk around, no one will know that potential demand 
has been lost. What we may easily measure are sales, not demand. Hence, 
we use sales as a proxy of demand, but this may result in underforecasting. 
If this looks like a peculiar case, consider a business-to-business setting. A 
potential customer phones and needs 10 electric motors now; your inventory 
level is down, but you will produce a new batch in 5 days. Unfortunately, the 
customer really needs those motors right now; so, he hangs up and phones a 
competitor. Chances are, this potential demand is never recorded anywhere in 
the information system. Again, we risk underestimating demand. Statistical 
techniques have been devised to correct for these effects, but sometimes it is 
more a matter of organization than sophisticated math. 

11.2 MEASURING FORECAST ERRORS 

Before we delve into forecasting algorithms, it is fundamental to understand 
how we may evaluate their performance. This issue is sometimes overlooked 
in practice: Once a forecast is calculated and used to make a decision, it is 
often thrown away for good. This is a mistake, as the performance of the 
forecasting process should be carefully monitored. 

In the following, we will measure the quality of a forecast by a forecasting 
error, defined as 

et = Yt- Fl (11.1) 
This is the forecast error for the variable at time t. The notation F[ refers 
to the forecast for time bucket t. It is not important when the forecast was 
made, but for when. If the horizon is h = 1, then F¡ = ν t - ι , ι , whereas 
F{ = Ft-2,2 if h = 2. Also, notice that by this definition the error is positive 
when demand is larger than the forecast (i.e., we underforecasted), whereas 
the error is negative when demand is smaller than the forecast (i.e., we over-
forecasted). It is important to draw the line between two settings in which 
we may evaluate performance: 

1. In historical simulation, we apply an algorithm on past data and check 
what the performance would have been, had we adopted that method. 
Of course, to make sense, historical simulation must be non-anticipative, 
and the information set that is used to compute Ftih must not include 
any data after time bucket t. This may sound like a trivial remark, 
but, as we will see later, there might be an indirect way to violate this 
nonanticipativity principle. 

2. In online monitoring, we gather errors at the end of each time bucket to 
possibly adjust some coefficients and fine-tune the forecasting algorithm. 
In fact, many forecasting methods depend on coefficients that can be set 
once and for all or dynamically adapted. 
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Whatever the case, performance is evaluated over a sample consisting of T 
time buckets, and of course we must aggregate errors by taking some form 
of average. The following list includes some of the most commonly used 
indicators: 

• Mean error: 
T 

M E = i ¿ e Ι (11.2) 

• Mean absolute deviation: 

MAD = ^Eie*i (n·3) 

• Root-mean-square error: 

T 
t= i 

RMSE: 
λ ^ Σ ε ? (η·4) 
\ t= i 

• Mean percentage error: 

ÌΡΕ = ̂ Σ? (η·5) T ¿-¿Yt 
t= i 

• Mean absolute percentage error: 

M A P E = i ¿ ^ (11.6) 
t= i * 

As clearly suggested by Eq. (11.2), ME is just the plain average of errors over 
the sample, so that positive and negative errors cancel each other. As a conse-
quence, ME does not discriminate between quite different error patterns like 
those illustrated in Table 11.1; the average error is zero in both case (a) and 
(6), but we cannot say that the accuracy is the same. Indeed, ME measures 
systematic deviation or bias, but not the accuracy of forecasts. A significantly 
positive ME tells us that we are systematically underforecasting demand; a 
significantly negative ME means that we are systematically overstating de-
mand forecasts. This is an important piece of information because it shows 
that we should definitely revise the forecasting process, whereas a very small 
ME does not necessarily imply that we are doing a good job. To measure 
accuracy, we should get rid of the error sign. This may be accomplished by 
taking the absolute value of errors or by squaring them. The first idea leads 
to MAD; the second one leads to RMSE, where the square root is taken in 
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Table 11.1 Mean error measures bias, not accuracy. 

Case 

(a) 
(b) 

ei 

0 
+5 

e2 

0 
-5 

e3 

0 
-10 

e4 

0 
+10 

es 

0 
-5 

ee 

0 
+5 

ME 

0 
0 

Table 11.2 RMSE penalizes large errors more than MAD does. 

Case 

(a) 

ei 

+1 
0 

e2 

+1 
-3 

â 3 

+1 
0 

e4 

+1 
0 

e-h 

+1 
+3 

ee 

+1 
0 

ME 

1 
1 

MAD 

1 
1 

RMSE 

1 
1.73 

order to express error and demand in the same units. In case (a) of Table 
11.1, MAD is 0; on the contrary, the reader is invited to verify that MAD is 
ø = 6.67 in case (b), showing that MAD can tell the difference between the 
two sequences of errors. RMSE, with respect to MAD, tends to penalize large 
errors, as we may appreciate from Table 11.2. Cases (a) and (6) share the 
same ME and MAD, but RMSE is larger in case (6), which indeed features 
larger errors. 

The reader will certainly notice some similarity between RMSE and stan-
dard deviation. Comparing the definition in Eq. (11.4) and the familiar defini-
tion of sample variance and sample standard deviation in inferential statistics, 
one could even be tempted to divide by T— 1, rather than by T. This tempta-
tion should be resisted, however, since it misses a couple of important points. 

• In inferential statistics we have a random sample consisting of inde-
pendent observations of identically distributed variables. In forecasting 
there is no reason to think that the expected value of the variable we 
are observing is stationary. We might be chasing a moving target, and 
this has a profound impact on forecasting algorithms. 

• Furthermore, in inferential statistics we use the whole sample to cal-
culate the sample mean X, which is then used to evaluate the sample 
standard deviation; a bias issue results, which must corrected. Here we 
use past demand information to generate the forecast F[; then we eval-
uate the forecasting error with respect to a new demand observation Yt, 
which was not used to generate F(. 

By the same token, MAD as defined in Eq. (11.3) should not be confused with 
MAD as defined in Eq. (4.4), where we consider deviations with respect to a 
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sample mean. In fact, in forecasting literature the name mean absolute error 
(MAE) is sometimes used, rather than MAD, in order to avoid this ambiguity. 

A common feature of ME, MAD, and RMSE is that they measure the 
forecast error using the same units of measurement as demand. Now imagine 
that MAD is 10; is that good or bad? Well, very hard to say: If MAD is 
10 when demand per time bucket is something like 1000, this is pretty good. 
If MAD is 10 and demand is something like 10, this is pretty awful. This 
is why MPE and MAPE have been proposed. By dividing forecast errors by 
demand,4 we consider a relative error. Apparently, MPE and MAPE are quite 
sensible measures. In fact, they do have some weak spots: 

• They cannot be adopted when demand during a time bucket can be 
zero. This may well be the case when the time bucket is small and/or 
demand is sporadic. In modern retail chains, replenishment occurs so 
often, and assortment variety is so high that this situation is far from 
being a rare occurrence. 

• Even when demand is nonzero , these indices can yield weird results 
if demand shows wide variations. A somewhat pathological example is 
shown in Table 11.3. The issue here is that forecast 1 is almost always 
perfect, and in one unlucky case it makes a big mistake, right when 
demand is low; the error is 9 when demand is 1, so percentage error is 
an astonishing 900%, which yields MAPE=90% when averaged over the 
10 time buckets. Forecast 2, on the contrary, is systematically wrong, 
but it is just right at the right moment; the second MAPE is only 18%, 
suggesting that the second forecaster is better than the first one, which 
is highly debatable. 

A possible remedy to the two difficulties above is to consider a ratio of av-
erages, rather than an average of ratios. We may introduce the following 
performance measures: 

ME% = *£ 

MAD% 

RMSE% 

Y 
MAD 

Y 
RMSE 

Y 
The idea is to take performance measures, expressed in absolute terms, and 
make them relative by dividing by the average demand 

1 T 

t= l 

4 I t is important to keep in mind that errors should be divided by demand Yt, and not by 
forecast F¡. This second choice may lead to forecast manipulations when a forecaster's 
wages are tied to forecast errors. 
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Table 11.3 Illustrating potential dangers in using MPE and MAPE. 

(a) 

Period 

Demand 
Forecast 1 
Error 1 
Forecast 2 
Error 2 

1 

10 
10 
0 
12 
-2 

2 

10 
10 
0 
12 
-2 

3 

10 
10 
0 
12 
-2 

4 

10 
10 
0 
12 
-2 

5 

1 
10 
-9 
1 
0 

6 

10 
10 
0 
12 
-2 

7 

10 
10 
0 
12 
-2 

8 

10 
10 
0 
12 
- 2 

9 10 

10 10 
10 10 
0 0 
12 12 
-2 -2 

(b) 

Forecast 1 
Forecast 2 

ME 

-0.9 
-1.8 

MAD 

0.9 
1.8 

MPE (%) 

-90 
-18 

MAPE (%) 

90 
18 

Source: From Ref. [2, page 110]. 

In these measures, it is very unlikely that average demand over the T time 
buckets is zero; if this occurs, there is a big problem, but not with forecasting. 

As we see, there is a certain variety of measures, and we must mention 
that others have been proposed. As common in management, we should keep 
several indicators under control, in order to get a complete picture. We close 
the section with a few additional remarks: 

• Checking forecast accuracy is a way to gauge the inherent uncertainty 
in demand; this is helpful when we want to come up with something 
more than just a point forecast. 

• We should never forget that a forecast is an input to a decision process. 
Hence, alternative measures might consider the effect of a wrong fore-
cast, most notably from the economic perspective. However, how this is 
accomplished depends on the strategies used to hedge against forecast 
errors. 

11.2.1 In- and out-of-sample checks 

As will be clear from the following, when we want to apply certain forecasting 
algorithms, we might need to fit one or more parameters used to calculate 
a forecast. This is typically done by a proper initialization. When the al-
gorithm depends on estimates of parameters, if we start from scratch, initial 
performance will be poor because the algorithm has to learn about the de-
mand pattern first. However, we would like to ascertain how the algorithm 
performs in steady state, not in this initial transient phase. 

If we are carrying out a historical simulation, based on a sample of past 
data, we may use a portion of available information to fit parameters. This 



TIME SERIES DECOMPOSITION 537 

portion of data that we use for fitting and initial learning is the fit sample. 
Arguably, the larger the fit sample, the better the initialization. However, 
this does not leave us with any data to test performance. In fact, it would be 
not quite correct to use knowledge of data to fit parameters, and then predict 
the very same data that we have used to initialize the algorithm. Performance 
evaluation should be carried out out-of-sample, i.e., predicting data that have 
not been used in any way for initialization purposes.5 

This will be much clearer in the following, but it is important to state this 
principle right from the beginning. The available sample of data should be 
split into 

1. A fit sample used for initialization 

2. A test sample to evaluate performance in a realistic and sensible way 

This approach is also known as data splitting, and it involves an obvious 
tradeoff, since a short fit sample would leave much data available for testing, 
but initial performance could be poor; on the other hand, a short test sample 
makes performance evaluation rather unreliable. 

11.3 TIME SERIES DECOMPOSITION 

The general idea behind time series models is that the data-generating process 
consists of two components: 

1. A pattern, which is the "regular" component and may be quite variable 
over time, but in a fairly predictable way 

2. An error, which is the "irregular" and unpredictable component6 

Some smoothing mechanism should be designed in order to filter errors and 
expose the underlying pattern. The simplest decomposition scheme we may 
adopt is 

yt = M + et (11.7) 

where et is a random variable with expected value 0. Additional assump-
tions, for the sake of statistical tractability, may concern independence and 
normality of these random shocks. Faced with such a simple decomposition, 
we could just take an average of past observations in order to come up with 

5We should mention that out-of-sample testing should also be carried out with a regression 
model. 
6 The term "unpredictable" should be better qualified. This component is unpredictable 
conditional on our knowledge. Actually, some components of the observed process could be 
predictable, if we had better information. As a concrete example, consider demand spikes 
due to trade promotions, as observed by a manufacturer who is not informed in advance by 
retailers. 
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an estimate of ì, which is the expected value of Y¿. In real life, we do not 
have constant expected values, as market conditions may change over time. 
Hence, we could postulate a model like 

Yt=fr + et (11.8) 

Here μ4 could be a "slowly" varying function of time, associated with market 
cycles, on which fast swings due to noise are superimposed. Alternatively, 
we could think of ìÀ as a stochastic process whose sample paths are piece-
wise constant. In other words, every now and then a shock arrives, possibly 
due to the introduction or withdrawal of similar products by competitors (or 
ourselves), and μ̂  jumps to a new value. Hence, we should not only filter ran-
dom errors but also track the variation of ìß: adapting our estimate. Equation 
(11.8) may look like a sort of catchall, which could fit any process. However, 
it is typically much better to try and see more structure in the demand pro-
cess, discerning predictable and unpredictable variability. The elements of 
predictable variability that we will be concerned with in this chapter are7 

• Trend, denoted by 0 t 

• Seasonality, denoted by St 

Trend is quite familiar from linear regression, and, strictly speaking, it is 
related to the slope of a line. Such a line represent a tendency of demand, 
on which random shocks and possibly seasonality are superimposed. In the 
following text, the intercept and slope of this line will be denoted as B (the 
level or baseline demand) and T (the trend in the strict sense), respectively; 
hence, the equation of the line is 

e t = B + tT 
Seasonality is a form of predictable variability with precise regularity in tim-
ing. For instance, we know that in Italy more ice cream is consumed in summer 
than in winter, and that demand at a large retail store is larger on Saturdays 
than on Tuesdays. It is important to separate seasonality from the trend com-
ponent of a time series; high sales of ice cream in July-August should not be 
mistaken for an increasing trend. An example of time series clearly featuring 
trend and seasonality is displayed in Fig. 11.1. There is an evident increasing 
trend, to which a periodic oscillatory pattern is superimposed. There is a 
little noise component, but we notice that demand peaks occur regularly in 
time, which makes this variability at least partially predictable. 

Generally speaking, time series decomposition requires the specification of 
a functional form 

Yt = f(et,St,et) 

7I t is also standard procedure to include a cycle component, which we will formally disre-
gard, as it can be subsumed by other components. The name "cycle" stems from its link 
with economic cycles. 
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Fig. 11.1 Time series featuring trend and seasonality. 

depending on each component: trend, seasonality, and noise. In principle, we 
may come up with weird functional forms, but the two most common patterns 
are as follows: 

• The additive decomposition 

Yt = St + St + et (11.9) 

• The multiplicative decomposition 

Yt = et-Sf et (11.10) 

Within an additive decomposition, a possible assumption is that the noise 
term et is normally distributed, with zero mean. This is not a harmless 
assumption for a multiplicative scheme, as it results in negative values that 
make no sense when modeling demand. A possible alternative is assuming that 
et is lognormally distributed, with expected value 1. We recall from section 
7.7.2 that a lognormal distribution results from taking the exponential of a 
normal variable, and it has positive support; hence, if we transform data by 
taking logarithms in Eq. (11.10), we obtain an additive decomposition with 
normal noise terms. It is also important to realize that the seasonal component 
is periodic 

St = St+s 

for some seasonality cycle s. If time buckets correspond to months, yearly 
seasonality corresponds to s = 12; if we partition a year in four quarters, then 
s = 4. The seasonal factor St in a multiplicative scheme tells us the extent to 
which the demand in time bucket t exceeds its long-run average, corrected by 
trend. For instance, if there is no trend, a multiplicative factor St = 1.2 tells 
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that demand in time bucket t is 20% larger than the average. It is reasonable 
to normalize multiplicative seasonality factors in such a way that their average 
value is 1, so that they may be easily interpreted. 

Example 11.2 Consider a year divided in four 3-month time buckets. We 
could associate S\ with winter, 52 with spring, S3 with summer, and S4 with 
autumn. Then, if things were completely static, we would have 

Si = S5 = Sg = ...; S2 = SQ — Sio = ■■■', 

Now assume that, in a multiplicative model, we have 

Si = 1.2, S2 = 1.3, S3 = 0.8 

What should the value of S4 be? It is easy to see that we should have S4 = 0.7. 
D 

Example 11.3 (Additive vs. multiplicative seasonal factors) The kind 
of seasonality we have observed in Fig. 11.1 is additive. In fact, the width of 
the oscillatory pattern does not change over time. We are just adding and 
subtracting periodic factors. In Fig. 11.2 we can still see a trend with the 
superimposition of a seasonal pattern. However, we notice that the width 
of the oscillations is increasing. In fact, the two following conditions have a 
remarkably different effect: 

• Demand in August is 20 items above normal (Fig. 11.1) 

• Demand in August is 20% above normal (Fig. 11.2) 

In the case of an additive seasonality term, the average of the seasonal factors 
in a whole cycle should be 0. With a multiplicative seasonality and an in-
creasing trend, the absolute increase in August demand, measured by items, 
is itself increasing, leading to wider and wider swings. D 

The impact of noise differs as well, if we consider additive rather than 
multiplicative shocks. The most sensible model can often be inferred by visual 
inspection of data. To fix ideas and keep the treatment to a reasonable size, 
we will always refer to the following hybrid scheme, because of its simplicity: 

Yt = (B + tT)St + et (11.11) 

If there were no seasonality, the pattern would just be a line with intercept 
B and slope T. Since we assume E[et] = 0, on the basis of estimates of 
parameters B, T, and St, our demand forecast is 

Yt = (B + tf)St (11.12) 

Here we use the notation Yt, which is closer to the one used in linear regression, 
rather than Ft,h- We do so because, so far, it is not clear when and on 
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Fig. 11.2 Time series featuring trend and multiplicative rather than additive season-
ally. 

the basis of which information the forecast is generated. Given a sample 
of demand observations, there are several ways to fit the parameters in this 
decomposition. 

Example 11.4 Consider a sample of two seasonal cycles, consisting of four 
time buckets each; the seasonal cycle is s = 4, and we have demand obser-
vations Yt, t = 1,2,. . . , 8. To decompose the time series, we could solve the 
following optimization model: 

8 2 

min Σ fo - yt) 
t= i 

s.t. Yi = (B+lx T)Si 
Y2 = (B + 2 x T)S2 

Y3 - (B + 3 x T)S3 

Y4 = (B + 4x T)S4 

y5 = [B + 5 x T)5i 
Yt = {B + 6 x T)S2 

Y7 = (B + 7x T)S3 

Ys = (B + 8x T)5 4 

Si + 52 + 5 3 + Si = 4 
St > 0 

The optimization is carried out with respect to level B, trend T, and the 
four seasonal factors that repeat over time. Note that seasonal factors are 
normalized, so that their average value is 1; furthermore, either level or trend 
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could be negative (but not both), whereas seasonal factors are restricted to 
nonnegative values, otherwise negative demand could be predicted. 0 

The optimization problem in the example looks much like a least-squares 
problem, but, given the nonlinearity in the constraints, it is not as easy to 
solve as the ordinary least-squares problems we encounter in linear regression. 
Alternative procedures, much simpler and heuristic in nature, have been pro-
posed to decompose a time series. We will not pursue these approaches in 
detail, as they are based on the unrealistic idea that the parameters in the 
demand model are constant over time. 

In fact, market conditions do change, and we must track variations in the 
underlying unknown parameters, updating their estimates when new informa-
tion is received. Hence, we should modify the static decomposition scheme of 
Eq. (11.12) as follows: 

Yt+h = Ft,h = (Bt + hft)St+h-a, h = 1,2,3, . . . (11.13) 

Since we update estimates dynamically, now we make the information set, 
i.e., demand observations up to and including time bucket t, and the forecast 
horizon h explicit. In this scheme we have three time-varying estimates: 

• The estimate of the level component Bt at the end of time bucket t; if 
there were no trend or seasonality, the "true" parameter Bt would be 
an average demand, possibly subject to slow variations over time. 

• The estimate of the trend component Tt at the end of time bucket t, 
which is linked to the slope of a line. The slope can also change over 
time, as inversions in trend are a natural occurrence. Note that when 
forecasting demand Yt+h at the end of time bucket t, the estimate of 
trend at time t should be multiplied by the forecast horizon h. 

• The estimate of the multiplicative seasonality factor St+h-s, linked to 
percentage up- and downswings. This is the estimate at the end of time 
bucket t of the seasonal factor that applies to all time buckets similar to 
t + h, i.e., to a specific season within the seasonal cycle. We clarify in 
Section 11.5.4 that such an estimate is obtained at time bucket t + h — s, 
where s is the length of the seasonal cycle, but we may immediately 
notice that at the end time bucket t we cannot using anything like St+h, 
since this is a future estimate. 

This dynamic decomposition leads to the heuristic time series approaches that 
are described in the following two sections. 

11.4 MOVING AVERAGE 

Moving average is a very simple algorithm, which serves well to illustrate some 
tradeoffs that we will face later. As a forecasting tool, it can be used when 
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we assume that the underlying data generating process is simply 

Yt = Bt+et (11.14) 

This is the model we obtain from (11.13) if we do not consider trend and 
seasonality.8 In plain words, the idea is that demand is stationary, with 
average Bt. In principle, the average should be constant over time. If so, we 
should just forecast demand by a plain average of all available observations. 
The average has the effect of filtering noise out and revealing the underlying 
"signal." In practice, there are slow variations in the level Bt. Therefore, if 
we take the sample mean of all available data 

1 T 

t = l 

we may suffer from two drawbacks: 

1. We might be considering data that do not carry any useful information, 
as they pertain to market conditions that no longer apply. 

2. We assign the same weight \/T to all demand observations, whereas 
more recent data should have larger weights; note that, in any case, 
weights must add up to 1. 

A moving average includes only the most recent k observations: 

Bt = l ¿ Yi (11.15) 
i=t-k+l 

The coefficient k is a time window and characterizes the moving average. To 
get a grip of the sum, in particular of the +1 term in the lower limit, imagine 
that k — 2; then, at time t, after observing Yt, we would take the average 

Bt = 2 

We see that the sum should start with time bucket t — 1, not t — 2. In a 
moving average with time window k, each observation within the last k ones 
has weight 1/fc in the average. This is illustrated in Fig. 11.3. The estimate 
of the level is used to build a forecast. Since demand is assumed stationary, 
the horizon h plays no role at all, and we set 

Ft,h = Bt, h = 1,2,3, . . . 

8We should mention that moving averages are also used in some static decomposition algo-
rithms, as a preliminary step to smooth data and expose trend and seasonality components. 
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Fig. 11.3 Time window in a moving-average scheme. 

Example 11.5 Let us apply a moving average with time window k = 3 for 
the dataset 

Y = [12,20,14,15,13,18,22,10] 

and compute MAD, assuming a forecast horizon of h = 1. We can make a 
first forecast only at the end of time bucket t — 3, after observing I3 = 14: 

Y1+Y2 + Y3 12 + 20 + 14 
-^3,1 = -S3 = 15.33 

Here, B3 is the estimate of the level parameter Bt at the end of time bucket 
t = 3. Then, stepping forward, we drop Y\ = 12 from the information set 
and include Y4 = 15. Proceeding this way, we obtain the following sequence 
of estimates and forecasts: 

* 4 , 1 

* 5 , 1 

-^6,1 

B4 

B5 = 
15.33 

Y2+Y3 + Yi 20 + 14 + 15 

Y3+Y4 + Y5 = 14+15 + 13 _ 
3 3 

F7 1 = 17.67, F8,i = 16.67 

16.33 

14.00 

As we noticed, forecasts do not depend on the horizon; since demand is sta-
tionary, any forecast Ftth based on the information set up to and including 
time bucket t will be the same for h = 1,2, For instance, say that at 
the end of t = 5 we want to forecast demand during time bucket t = 10; the 
forecast would be simply 

is,5 = F6tl =B5 = 14.00 

To compute MAD, we must match forecasts and observations properly. The 
first forecast error that we may compute is 

e4 =Y4-F'A = Yi- F3<1 = 15 - 15.33 = -0.33 

By averaging absolute errors over the sample, we obtain the following MAD: 

MAD = 115 — 15.331 -t- ! 13 — 16.331 110— 17.671 = 4.4 
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Note that we have a history of 8 time buckets, but errors should be averaged 
only over the 5 periods on which we may calculate an error. The last forecast 
Fg,! is not used to evaluate MAD, as the observation Yg is not available. D 

A standard question asked by students after seeing an example like this is: 

Should we round forecasts to integer values? 

Since we are observing a demand process taking integer values, it is tempting 
to say that indeed we should round demand forecasts. Actually, there would 
be two mistakes in doing so: 

• The point forecast is an estimate of the expected value of demand. The 
expected value of a discrete random variable may well be noninteger. 

• We are confusing forecasts and decisions. True, we cannot purchase 
17.33 items to meet demand; it must be either 17 or 18. However, 
what if items are purchased in boxes containing 5 items? What about 
making a robust decision hedging against demand uncertainty? What 
about existing inventory on hand? The final decision will depend on a 
lot of factors, and the forecast is just one of the many inputs needed. 

11.4.1 Choice of time window 

In choosing the time window k, we have to consider a tradeoff between 

• The ability to smooth (filter) noise associated with occasionally large or 
small demand values 

• The ability to adapt to changes in market conditions that shift average 
demand 

If k is large, the method has a lot of inertia and is not significantly influ-
enced by occasional variability; however, it will be slow to adapt to systematic 
changes. On the contrary, if k is low, the algorithm will be very prompt, but 
also very nervous and prone to chase false signals. The difference in the be-
havior of a moving average as a function of time window length is illustrated 
in Fig. 11.4. The demand history is depicted by empty circles, whereas the 
squares show the corresponding forecasts (calculated one time bucket before; 
we assume h = 1). The demand history shows an abrupt jump, possibly 
due to opening another distribution channel. Two simulations are illustrated, 
with time windows k = 2 and k = 6, respectively. Note that, in plot (a), we 
start forecasting at the end of time bucket t = 2 for t = 3, since we assume 
h = 1, whereas in plot (b) we must wait for t = 6. We may also notice that, 
when k = 2, each forecast is just the vertical midpoint between the two last 
observations. We see that, with a shorter time window, the forecast tends to 
chase occasional swings; on the other hand, with a longer time window, the 
adaptation to the new regime is slower. 
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Fig. 11.4 Moving average with k = 2 and k = 6. 

Moving average is a very simple approach, with plenty of applications be-
yond demand forecasting.9 However, this kind of average can be criticized 
because of its "all or nothing" character. As we see in Fig. 11.3, the most 
recent observations have the same weight, 1/fc, which suddenly drops to 0. 
We could try a more gradual scheme in which 

• Different weights are attributed to more recent observations 

• A small but non-zero weight is associated with older observations 

In other words, weights should decrease gradually to zero for older observa-
tions. This is exactly what the family of exponential smoothing algorithms 
accomplishes. 

11.5 HEURISTIC EXPONENTIAL SMOOTHING 

Exponential smoothing algorithms are a class of widely used forecasting meth-
ods that were born on the basis of heuristic insight. Originally, they lacked 

9Moving averages of stock prices are used in many trading strategies based on technical 
analysis, whether you believe in them or not. 
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a proper statistical background, unlike the more sophisticated time series 
models that we outline in Section 11.6. More recently, attempts to justify ex-
ponential smoothing have been put forward, but the bottom line is that they 
proved their value over time. Indeed, there is no consistent evidence that more 
sophisticated methods have the upper hand, when it comes to real-life appli-
cations, at least in demand forecasting. However, heuristic approaches are 
less well suited to deal with other domains, such as financial markets, which 
indeed call for more sophistication. Apart from their practical relevance, ex-
ponential smoothing algorithms have great pedagogical value in learning the 
ropes of forecasting. Methods in this class have a nice intuitive appeal and, 
unlike moving averages, are readily adapted to situations involving trend and 
seasonality. One weak point that they suffer from is the need for ad hoc 
approaches to quantify uncertainty in forecasts; always keep in mind that a 
point forecast has very limited value in robust decision making, and we need 
to work with prediction intervals or, if possible, an estimate of a full-fledged 
probability distribution. In the next two sections, we illustrate the basic idea 
of exponential smoothing in the case of stationary demand. We also point 
out a fundamental issue with exponential smoothing: initialization. Then, we 
extend the idea to the cases of trend, multiplicative seasonality, and trend 
plus seasonality. 

11.5.1 Stationary demand: three views of a smoother 

In this section, we deal with the case of stationary demand, as represented by 
Eq. (11.14). In simple exponential smoothing we estimate the level parameter 
Bt by a mix of new and old information: 

Bt = aYt + (1 - a)Bt-i (11.16) 

where a is a coefficient in the interval [0,1]. In (11.16), the new information 
consists of the last observation of demand Yt, and the old information consists 
of the estimate Bt-i, which was computed at the end of time bucket t — 1, after 
observing Yt-\. The updated estimate Bt is a weighted average of new and 
old information, depending on the smoothing coefficient a. To understand its 
effect, it is useful to examine the two extreme cases: 

• If we set a = 1, we forget all of the past immediately, as the new estimate 
is just the last observation.10 If a is large, we are very fast to catch new 
trends, but we are also quite sensitive to noise and spikes in demand. 

• If we set a = 0, new information is disregarded altogether; if a is very 
small, there is a lot of inertia and the learning speed is quite low. 

We see that a plays a role similar to the time window A; in a moving average. 
By increasing a we make the forecaster more responsive, but also more nervous 

1 0In fact, exponential smoothing with a = 1 is equivalent to moving average with k = 1. 
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Fig. 11.5 Effect of the smoothing coefficient a, when demand jumps to a new level. 

and sensitive to noise; by decreasing a, we increase inertia, and noise is better 
smoothed. The tradeoff is illustrated in Fig. 11.5; a relatively small smoothing 
coefficient (a = 0.05) makes the adaptation to new market conditions very 
slow in case (a); by increasing a, the method is more responsive, as shown in 
case (b). In Fig. 11.6 we see the case of a sudden spike in demand. When 
a is small, on one hand the spike has a smaller effect; on the other hand the 
effect is more persistent, making the forecast a bit biased for a longer time 
period, as shown in plot (a). When a is large, there is an immediate effect on 
the forecast, which has a larger error and a larger bias, but this fades away 
quickly as the spike is rapidly forgotten, as shown in plot (b). In fact, the 
smoothing coefficient is also known as the forgetting factor. 

Since we assume a stationary demand, the horizon h does not play any role 
and, just like with moving average, we have 

Ft,h = Êt, ft = 1 ,2 ,3 . . . 

Equation (11.16) illustrates the way simple exponential smoothing should be 
implemented on a computer, but it does not shed much light on why this 
method earned such a name. Let us rewrite exponential smoothing in terms 
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Fig. 11.6 Effect of smoothing coefficient a, when demand has a spike. 

K 

of forecasts for a time bucket, assuming that h = 1, so that 

Bt-i = i*t—1,1 

If we collect terms involving a, we get 

F M = J 5 t = B t _ i + a ( K t - S t _ i ) 

But Yt — Bt-i = Yt — F[ = et, and we get the second view of exponential 
smoothing 

Ft,i = i t - i , i +aet (11.17) 

This shows that the new forecast is the old one, corrected by the last forecast 
error, which is smoothed by the coefficient a < 1. The larger is a, the stronger 
is the correction. This shows why this algorithm is a smoother: It dampens the 
correction induced by the error, which could be just the result of a transient 
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Fig. 11.7 Exponentially decaying weights in exponential smoothing. 

spike. Note that the forecast is increased when the error is positive, i.e., we 
underforecasted demand, and decreased otherwise. 

To understand where the term "exponential" comes from, we still need a 
third view, which is obtained by unfolding Eq. (11.16) recursively. Applying 
the equation at time t — 1, we obtain 

4 - 1 = oYt-x + (1 - a)Bt-2 

Plugging this equation into (11.16) yields 

Bt = aYt + a(l - a)Yt-i + (1 - a ) 2 B t _ 2 

If we apply the same reasoning to Bt-2, -Bt-3, etc., we find 

êt = aYt + Q(1 - a)Yt-! + a{\ - a)2Yt-2 + (1 - a)3Bt-3 

= aYt + a{\ - a)Yt-! + a ( l - a)2Yt-2 + o ( l - a)3Yt-3 + (1 - a)4Bt-4 

= Y^a(l-a)kYt-k (11.18) 
fc=0 

This third view clearly shows that exponential smoothing is just another aver-
age. We leave it as an exercise for the reader to prove that weights add up to 
one, but they are clearly an exponential function of k, with base (1 — a) < 1. 
The older the observation, the lower its weight. Figure 11.7 is a qualitative 
display of exponentially decaying weights, and it should be compared with the 
time window in Fig. 11.3. The exponential decay is faster when a is increased, 
as the base (1 — a) of the exponential function in Eq. (11.18) is smaller. 

11.5.2 Stationary demand: initialization and choice of at 

One obviously weird feature of Eq. (11.18) is that it involves an infinite se-
quence of observations. However, in real life we do not have an infinite number 
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of observations; the sum must be truncated somewhere in the past, right be-
fore we started collecting information. The oldest term in the average, in 
practice, corresponds to the initialization of the algorithm. To see this, let us 
assume that we have observations Y\,..., Õ÷. If we apply Eq. (11.16) at time 
bucket t = 1, we have 

Êi = áÕë + (1 - a)È0 

The term Bo is an initial estimate, or we should better say a guess, since it 
should be evaluated before the very first observation is collected. By applying 
the same idea that lead us to Eq. (11.18), we find 

BT = aYT + α(1 - a)YT-i -̂  l· (1 - a)TB0 

Hence, after collecting T observations, the weight of the initial estimate -Bo in 
the average is (1 — a)T. If a is small, this initial term has a slowly decaying 
impact, for increasing T, and it may play a critical role, as a bad initialization 
will be forgotten too slowly. 

To deal with initialization, we should clearly frame the problem: 

1. If we are applying exponential smoothing online, to a brand-new product 
with no past sales history, we must make some educated guess, possibly 
depending on past sales of a similar product. Arguably, a should be 
larger at the beginning, since we must learn rapidly, and then it could 
be reduced when more and more information is collected. 

2. If we are working online, but we are forecasting demand for an item with 
a significant past sales history, we may use old observations to initialize 
the smoother, but we should do it properly. 

3. By the same token, initialization must be carried out properly when 
working offline and evaluating performance by historical simulation. 

To see what "properly" means in case 2 above, imagine that we are at the 
end of time bucket t = T, and we have an information set consisting of T past 
observations: 

Y\,Yi, · · · ,YT-2,YT-I,YT 

We are working online and want to forecast demand for t — T + 1, and one 
possible way to initialize the smoother is to compute the sample mean of these 
observations, setting 

_ i T 

Åô = Õ=øÓÕô 
fc = l 

Then, our forecast for Õô+i would be FT,I = Âô· However, in doing so, we are 
forgetting the very nature of exponential smoothing, since the sample mean 
assigns the same weight to all of the observations. We should try to set up 
a situation as similar as possible to that of a forecasting algorithm that has 
been running forever. The way to do so is to apply exponential smoothing on 
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the past data, from Υχ to Õô, using the sample mean Y as an initialization 
of Bo. Apparently, we are playing dirty here, since we use past data to come 
up with an initialization that is shifted back to the end of time bucket t = 0. 
However, there is nothing wrong with this, as long as we do not compute 
forecast errors to evaluate performance. 

The last remark is also essential when carrying out historical simulation to 
evaluate performance. Assume again that we have a sample of T observations 
Yt, t = 1 , . . . , T, and that the size of the fit sample is r < T. We partition 
the sample as follows: 

Õé,Õ2,...,Õô, Õô+é,Õô+2, ■ ■ -,Õô 
V v "· v ' 

fit sample test sample 

Then, the correct procedure is: 

1. Use observations in the fit sample to initialize BQ 
2. Apply exponential smoothing on the fit sample, updating parameter 

estimates as prescribed, without calculating errors 

3. Proceed on the test sample, collecting errors 

4. Evaluate the selected forecast error measures 

The reader could wonder why we should carry out step 2; a tempting shortcut 
is to proceed directly with the application of the smoother on the test sample. 
A good way to get the important message is by referring back to Monte Carlo 
simulation of a queueing system (Section 9.2.1). In that case, we should 
discard the initial part of the simulation, which is just a transient phase, if 
the queueing system starts empty, and gather statistics only in steady state. 
The same consideration applies here. By running the smoother on the fit 
sample, we warm the system up and forget the initialization. We illustrate 
the idea in the example below. 

Example 11.6 Consider a product whose unit purchase cost is $10, is sold 
for $13, and, if unsold within a shelf life of one week, is scrapped, with a 
salvage value of $5. We want to decide how many items to buy, based on the 
demand history reported in Table 11.4. If we were convinced that demand is 
stationary, i.e., its expected value and standard deviation do not change, we 
could just fit a probability distribution like the normal, based on sample mean 
and sample standard deviation. Then, the newsvendor model would provide 
us with the answer we need. However, if expected demand might shift in 
time, exponential smoothing can be applied. To see this, imagine taking the 
standard sample statistics when the demand shows an abrupt jump, like the 
demand history depicted in Fig. 11.5. We recall that the underlying demand 
model is 

Yt = Bt+ et 
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Table 11.4 Application of exponential smoothing to a newsvendor problem. 

t 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Yt 

-
99 
94 
122 
138 
139 
70 
103 
58 
61 
100 
154 
73 
113 
92 
139 

Bt 

118.4000 
116.4600 
114.2140 
114.9926 
117.2933 
119.4640 
114.5176 
113.3658 
107.8293 
103.1463 
102.8317 
107.9485 
104.4537 
105.3083 
103.9775 
107.4797 

et 

-
-
-
-
-
-

-49.4640 
-11.5176 
-55.3658 
-46.8293 
-3.1463 
51.1683 

-34.9485 
8.5463 

-13.3083 
35.0225 

e2 

-
-
-
-
-
-

2446.6879 
132.6552 

3065.3768 
2192.9796 

9.8994 
2618.1948 
1221.3998 
73.0396 
177.1111 
1226.5770 

Imagine that, at some time bucket t = t*, the level jumps from value B' to 
a larger value B". If we knew the "true" value of the level Bt at each time 
bucket, demand uncertainty would be related only to the standard deviation 
ae of the unpredictable component ej. If we calculate sample mean and stan-
dard deviation mixing the two components, the jump in Bt would result in 
an estimate of σβ that is much larger than true value; the sample mean would 
be halfway between two values B' and B". In practice, we need to update 
dynamically the estimates of both expected value and standard deviation; 
hence, let us apply exponential smoothing, with a = 0.1 and a fit sample of 5 
time buckets. 

The calculations are displayed in Table 11.4. On the basis of the fit sample, 
the initial estimate of level Bo is 

- 99 + 94 + 122 + 138 + 139 
B0 = = 118.4 

5 

The first demand observation is used to update the estimate of level: 

Å÷ = 0.1 x 99 + 0.9 x 118.4 = 116.46 

Note that we should not compute an error for the first time bucket, comparing 
Y\ = 99 against ίο,ι = #o — 118.4, since the demand observation Õ÷ itself 
has been used to initialize the estimate; incidentally, using a fit sample of 
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size 1, the first error would be zero. It would also be tempting to run the 
smoother starting from time bucket t = 6, the first time bucket in the test 
sample. However, it is better to "forget" the initialization and the consequent 
transient phase, by running the smoother through the full fit sample, without 
collecting errors. We proceed using the same mechanism and, after observing 
Ys = 139, we update the estimate again: 

B5 = aY5 + (1 - a)B4 = 0.1 x 139 + 0.9 x 117.2933 = 119.4640 

Now we may start forecasting and calculating errors: 

e6 = 70 - 119.4640 = -49.4640 

Please note that we should compare Ye — 70 with the forecast in the line 
above in the table, Fsti = 119.4640. Of course, you could arrange the table 
in such a way that each demand observation and the related forecast are on 
the same line. At the end of the test sample, the last forecast is 

Fis.i = 107.4797 

but this is not used in assessing performance, since observation Y\Q is not 
available; however, we use it as an estimate ì of the expected value of demand, 
valid for time bucket t = 16. In so doing, we implicitly assume that our 
estimates are unbiased. 

Now we also need an estimate ó of the standard deviation. Since we cannot 
use sample standard deviation, we resort to using RMSE as an estimator. In 
order to evaluate RMSE, we square errors, as shown in the last column of 
Table 11.4. We obtain 

RMSE = /(-49.4640)2 + (-11.5176)2 + - + (35.0225)2 = 

V 10 

Hence, we assume that demand in time bucket t = 16 is normally distributed 
with the following expected value and standard deviation, respectively: 

ì = 107.4797, ó = 36.2821 

Now we apply the standard newsvendor model. The service level is calculated 
from the economics of the problem:11 

- Ϊ 2 - = - i - = 0.3750 
m + c 3 + 5 

corresponding to a quantile 20.375 = —0.3186. The order quantity should be 

â + -ζο.375σ = 107.4797 - 0.3186 x 36.2821 = 95.9202 « 96 

" S e e Section 7.4.4. 
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After collecting more observations, the above estimates would be revised; 
hence, the order quantity is not constant over time. D 

Apart from initialization, another issue in exponential smoothing is the choice 
of the smoothing coefficient a. The example suggests one possible approach, 
based on historical simulation: Choose the coefficient by minimizing a selected 
error measure. However, a possibly better strategy is dynamic adaptation. 
When dealing with a new product, we said that we could start with a larger 
a in order to forget a possibly bad initial guess rapidly; then, we could reduce 
a in order to shift emphasis toward noise filtering. Another element that we 
should take into consideration is bias. In Fig. 11.5 we have seen that the 
smoother can be slow to adapt to new market conditions, when an abrupt 
change occurs. The effect is that forecasts become systematically biased, 
which is detected by a mean error which is significantly different from zero. A 
strategy that has been proposed in the literature is to increase a when mean 
error is significantly different from zero. However, bias can also be the effect 
of a wrong demand model. Simple exponential smoothing assumes stationary 
demand, but a systematic error will result if, for instance, a strong upward or 
downward trend is present. 

11.5.3 Smoothing with trend 

Demand may exhibit additive trend components that, in a static case, could 
be represented by the following demand model 

Dt = B + tT + et 

where B is the level and T is the trend. Looking at the demand model, 
linear regression seems a natural candidate to estimate these two parameters. 
However, level and trend might change over time, suggesting the opportunity 
of a dynamic demand model and an adaptation of exponential smoothing. 
Given estimates Bt and Tt of level and trend, respectively, at the end of time 
bucket t, after observing Yt, the demand forecast with horizon h is 

Ftth = Bt + hft (11.19) 

Note that, unlike simple moving average and exponential smoothing, the fore-
cast horizon does play a role here, as it multiplies trend. The following adap-
tation of exponential smoothing is known as Holt's linear method: 

êt=aYt + (l-a)(Êt-1+tt-1) (11.20) 

ft = ß(Bt - 4 - i ) + (1 - â){¢-÷) (11.21) 

Here a, ß are two smoothing coefficients in the range [0,1]. Comparing Eq. 
(11.20) against simple exponential smoothing, we note that we cannot update 
Bt solely on the basis of Bt-\ as the two values are not directly comparable 
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when trend is involved. In fact, a forecast for Yt, based on the information 
set up to t — 1, would be 

Ft-1,1 = Bt-i + Tt_i 

Then, by applying the same error correction logic of Eq. (11.17), we should 
adapt the estimate of level as follows: 

Bt = ( S t - i + Tf_i) + a[Yt - (Bt_i + T U ) ] 

which leads to Eq. (11.20). Equation (11.21) uses a smoothing coefficient ß 
to update the estimate of trend. In this case, the new information consists of 
the difference between the two last estimates of level, Bt — Bt-\. We might 
wonder if we should not use the growth in demand, Yt — Yt-i, in updating 
trend estimates. Indeed, this is a possible alternative; however, the difference 
in demand might be oversensitive to noise, whereas the difference in estimated 
levels is more stable. This might be a disadvantage, however, when trend 
changes, since adaptation could be too slow. This can be countered by using a 
larger coefficient ß, which is sensible since the level estimates are by themselves 
noise smoothers. 

We may appreciate the flexibility of the exponential smoothing framework, 
which can be easily and intuitively adapted to different demand models. How-
ever, a careful look at Eq. (11.19) suggests a potential danger when h is large: 
We should not extrapolate a trend too much in the future. In particular, with 
a negative trend, this could even result in a negative demand forecast. The 
above formulas apply to an additive trend, but when demand is low and trend 
is negative, a model with multiplicative trend should be adopted. In such a 
model, the demand forecast is 

Ft,h = Bt ■ (ftf 

and a decreasing trend is represented by Tt < 1; this corresponds to a per-
centage decrease in demand, and it prevents negative forecasts. We will not 
give update formulas for multiplicative trend, but they can be found in the 
specialized literature. 

Exponential smoothing with trend presents the same initialization issues 
that we have encountered with stationary demand. Given a fit sample, there 
are alternative initialization methods: 

• Linear regression on the fit sample 

• Heuristic approaches based on time series decomposition 

Whatever approach we take, the minimal fit sample consists of two demand 
observations. From a mathematical perspective, it is impossible to estimate 
two parameters with just one observation; a simpler view is that with one 
observation there is no way to estimate a trend. Also note that, if we select 
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this minimal fit sample, we will just fit a line passing through two points. 
On this fit sample, errors will be zero, because with two parameters and two 
observations we are able to find an exact fit. This reinforces the view that 
errors should not be computed on the fit sample. 

11.5.4 Smoothing with multiplicative seasonality 

In this section we consider the case of pure seasonality. Forecasts are based 
on the demand model of Eq. (11.13), in which the trend parameter is set to 
Tt = 0: 

Ft,h = Bt ■ St+h-s (11.22) 

where s is the length of the seasonal cycle, i.e., a whole cycle consists of s time 
buckets.12 To get a grip of this model, imagine a yearly cycle consisting of 12 
monthly time buckets, and say that we are at the end of December of year 
X. Then, t = 0 is December of year X and time bucket t = 1 corresponds to 
January of year X + 1. On the basis of the estimate So, h ° w can we forecast 
demand in January? Of course, we cannot take BQ- So, since this involves the 
seasonal factor of December. We should multiply BQ by the seasonal factor of 
January, but this is not S\, because 5i is the estimate of this seasonal factor 
after observing Yi. Since s — 12 and h = 1, the correct answer is 

�Fb,i = Bo ■ So+i-12 = Bo · S-n 

where S-u is the estimate of the seasonal factor of January at the end of 
January in year X. We should use seasonal factors estimated one year ago! 
After observing Õ÷, i.e., January demand in year X + 1, we can update S\, 
which will be used to forecast demand for January in year X + 2. It is easy to 
devise exponential smoothing formulas to update estimates of both level and 
seasonality factors: 

Bt = a J - + ( l - a ) f i , - i (11-23) 
St-s 

St = 7 5 - + ( l - 7 ) 5 t - a (11-24) 
�t>t 

Here a and 7 are familiar smoothing coefficients in the range [0,1]. Equation 
(11.23) is an adaptation of simple exponential smoothing, in which demand Yt 
is deseasonalized by dividing it by the current estimate of the correct seasonal 
factor, Sts- To see why this is needed, think of ice cream demand in summer; 
we should not increase the estimate of level after observing high sales, as this 

12 To be precise, Eq. (11.22) applies only if the forecast horizon does not exceed the cycle 
length, i.e., if h < s; a more general formulation is Ft^ = Bt ■ St+^_^(h-i)/s}+ij.s , where 
[x] is the "floor" operator, rounding down x to the nearest integer. 
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is just a seasonal effect. The need for deseasonalization is quite common 
in many application domains. Equation (11.24) takes care of updating the 
seasonal factor of time bucket t, based on the previous estimate St-S, and the 
new information on the seasonal factor, which is obtained by dividing the last 
observation by the revised level estimate. 

Initialization requires fitting the parameters BQ and Ss- j, for j — 1, 2 , . . . , s. 
We need s +1 parameters, but actually the minimal fit sample consists of just 
s observations, i.e., a whole cycle. In fact, we lose one degree of freedom 
because the average value of multiplicative seasonality factors must be 1. Of 
course, the more cycles we use, the better the fit will be. Assuming that the 
fit sample consists of k full cycles, we have I = k-s observations. A reasonable 
way to fit parameters in this case is the following: 

1. The initial estimate of level is set to average demand over the fit sample: 

1 ' 

Note that we cannot take this plain average if the fit sample does not 
consist of full cycles; when doing so in such a case, we would overweight 
some seasons within the cycle. 

2. Seasonal factors are estimated by dividing average demand of time buck-
ets corresponding to each season within the fit sample, divided by the 
level estimate: 

1 fc-i 

v - = 7τ-Eyi+" for j = 1' ' s (n·26) 
kB0^0 

where k = l/s is the number of full cycles in the fit sample. To un-
derstand the sum above, say that we have k = 3 full cycles, each one 
consisting of s = 4 time buckets. Then, the seasonal factor for the first 
season within the cycle is estimated as 

A Yi+Ys+Yg 
þ-3 — 

3£o 

E x a m p l e 11.7 Table 11.5 shows demand data for 6 time buckets. We as-
sume s — 3, so what we see is a history consisting of two whole cycles. We 
want to initialize the smoother with a fit sample consisting of one cycle, and 
evaluate MAPE on a test sample consisting of the second cycle, applying ex-
ponential smoothing with coefficients a = 0.1 and 7 = 0.2. Initialization 
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Table 11.5 Applying exponential smoothing with multiplicative seasonality. 

t 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 

Yt 

-
-
-

105 
73 
45 

117 
81 
39 

Bt 

-
-

74.3333 
74.3333 
74.3333 
74.3333 
75.1829 
75.9125 
74.7635 

St 

1.4126 
0.9821 
0.6054 
1.4126 
0.9821 
0.6054 
1.4413 
0.9991 
0.5886 

Fi 
-
-
-

105.0000 
73.0000 
45.0000 

105.0000 
73.8343 
45.9560 

et 

-
-
-
-
-
-

12.0000 
7.1657 

-6.9560 

\et\/Yt 

-
-
-
-
-
-

10.26% 
8.85% 

17.84% 

yields the following parameters: 

105 + 73 + 45 
B0 = —— = 74.3333 

ó 

^ = rjb = 1M» 
73 

S-> = 7 0 3 3 3 = ° · 9 8 2 1 

¿o = 74S* r 0 · 6 0 5 4 

A useful check is 
1.4126 + 0.9821 + 0.6054 = 3 

If we apply Eqs. (11.23) and (11.24) after the first observation, we obtain 

èx = 0.1 x - ^ - + 0.9 x 74.3333 = 74.3333 

105 
Sx = 0.2 x + 0.8 x 1.4126 = 1.4126 

74.3333 

We note that estimates do not change! A closer look reveals that the first 
forecast would have been 

F0)i = B0 ■ S-2 = 74.3333 x 1.4126 = 105 

We do not update estimates, because the forecast was perfect. By a similar 
token, errors are zero and parameters are not updated for time buckets t — 2 
and t = 3. On second thought, this is no surprise: We have used a model with 
four parameters, and actually 3 degrees of freedom, to match three observa-
tions. Of course, we obtain a perfect match, and errors are zero throughout 
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the fit sample. All the good reasons for not calculating errors there! Things 
get interesting after observing Y4, and the calculations in Table 11.5 yield 

MAPE = 12.31% 

As a further exercise, let us compute forecasts Fe¿ and 2*6,3: 

�Fe.2 = Be ■ ¿W2-3 = B6 ■ S5 = 74.7635 x 0.9991 = 74.6927 
F6 3 = B6 ■ Se+3-3 = B6 ■ S6 = 74.7635 x 0.5886 = 44.0083 

D 

Once again, the example shows the danger of calculating errors within the fit 
sample; performance evaluation must always be carried out out-of-sample to 
be fair. Of course, we will not incur such a blatant mistake with a larger fit 
sample. In the literature, a backward initialization is often suggested. The 
idea is to run the smoother backward in time, starting from the last time 
bucket, in order to obtain initialized parameters. Doing so with a large data 
set will probably avoid gross errors, but a clean separation between fit and 
test samples is arguably the wisest idea. 

11.5.5 Smoothing with trend and multiplicative seasonality 

The last exponential smoothing approach we consider puts everything to-
gether and copes with additive trend and multiplicative seasonality. The 
Holt-Winter method is based on Eq. (11.13), which we repeat for convenience: 

Ft+h = (Bt + hft) ■ St+h-s (11.27) 

The overall scheme uses three smoothing coefficients and it proceeds as follows 

Bt = a - ^ - + ( l - a ) ( ί t _ i + f t _ i ) 
St-s 

ft = / 3 ( B t - B t - i ) + ( l - /3 ) (T t _i ) 

St = 7 ^ + ( l - 7 ) 5 t _ s 
Bt 

All of the remarks we have made about simpler versions of exponential smooth-
ing apply here as well, including initialization. To initialize the method, we 
need s + 2 parameters, which must be estimated on the basis of at least s + 1 
demand observations, since seasonal factors are not independent. Heuristic 
initialization approaches, based on time series decomposition, are described 
in the references at the end of the chapter. Alternatively, we could use a for-
mal approach based on least-squares-like optimization models, as illustrated 
in Example 11.4. 
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11.6 A GLANCE AT ADVANCED TIME SERIES MODELING 

The class of exponential smoothing methods was born out of heuristic intu-
ition, even though methodological frameworks were later developed to provide 
them with a somewhat more solid justification. Despite these efforts, expo-
nential smoothing methods do suffer from at least a couple of drawbacks: 

• They are not able to cope with correlations between observations over 
time; for instance, we might have a demand process with positive or 
negative autocorrelation, formally defined below, and this must be con-
sidered by forecasting procedures. 

• They do not offer a clear way to quantify uncertainty; using RMSE as 
an estimate of standard deviation, as we did in Example 11.6, may be a 
sensible heuristic, but again it may be inadequate when autocorrelation 
is an issue. 

It is also worth noting that simple linear regression models share some of the 
limitations above, as standard OLS estimates do assume uncorrelated errors. 
If necessary, we may resort to an alternative body of statistical theory that 
deals with formal time series models. In this section we give a flavor of the 
theory, by outlining the two basic classes of such models: moving-average and 
autoregressive processes. They can be integrated in the more general class 
of ARIMA (autoregressive integrated moving average) processes, also known 
as Box-Jenkins models. As we shall see, time series modeling offers many 
degrees of freedom, maybe too many; when observing a time series, it may be 
difficult to figure out which type of model is best-suited to capture the essence 
of the underlying process. Applying time series requires the following steps: 

1. Model identification. We should first select a model structure, i.e., its 
type and its order. 

2. Parameter estimation. Given the qualitative model structure, we must 
fit numerical values for its parameters. We will not delve into the tech-
nicalities of parameter estimation for time series models, but this step 
relies on the statistical tools that we have developed in Section 9.9. 

3. Forecasting and decision making. In the last step, we must make good 
use of the model to come up with a forecast and a quantification of its 
uncertainty, in order to find a suitably robust decision. 

All of the above complexity must be justified by the application at hand. 
Time series models are definitely needed in quantitative finance, maybe not in 
demand forecasting. We should also mention that, quite often, a quantitative 
forecast must be integrated with qualitative insights and pieces of information; 
if so, a simpler and more intuitive model might be easier to twist as needed. 
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In its basic form, time series theory deals with weakly stationary processes, 
i.e., time series Yt with the following properties, related to first- and second-
order moments: 

1. The expected value of Yt does not change in time: E[Yt] = ì. 

2. The covariance between Yt and Yt+k depends only on time lag k. 

The second condition deserves some elaboration. 

DEFINITION 11.1 (Autocovariance and autocorrelation) 
Given a weakly stationary stochastic process Yt, the function 

yy(k) = Cav(Yt,Yt+k) 

is called autocovariance of the process with time lag k. The function 

PY{k) = — — ó 

is called the autocorrelation function (ACF). 

The definition of autocorrelation relies on the fact that variance is constant 
as well: 

n (h\ n(Y V \ Cov(Yt,Yt+k) !Y{k) 
pY{k) = p(Yt, Yt+k) = , , = —5-

In practice, autocorrelation may be estimated by the sample autocorrelation 
function (SACF), given a sample path Yt, t = 1 , . . . , T: 

T 

E (Yt-T)(Y*-k-Y) 
Rk = l-k+1

 ô (11.28) 

where Y is the sample mean of Yt. The expression in Eq. (11.28) may not 
look quite convincing, since the numerator and the denominator are sums 
involving a different number of terms. In particular, the number of terms 
in the numerator is decreasing in the time lag k. Thus, the estimator looks 
biased and, for a large value of A;, Rk will vanish. However, this is what 
one expects in real life. Furthermore, although we could account for the true 
number of terms involved in the numerator, for large k the sum involves very 
few terms and is not reliable. Indeed, the form of sample autocorrelation in 
Eq. (11.28) is what is commonly used in statistical software packages, even 



A GLANCE AT ADVANCED TIME SERIES MODELING 563 

Fig. 11.8 A seasonal time series (left) and its autocorrelogram (right). 

though alternatives have been proposed.13 If T is large enough, under the null 
hypothesis that the true autocorrelations pk are zero, for k > 1, the statistic 
VTRk is approximately normal standard. Since zo.99 = 1.96 « 2, a commonly 
used approximate rule states that if 

\Rk\>^= (11.29) 

the sample autocorrelation at lag k is statistically significant. For instance, if 
T = 100, autocorrelations outside the interval [—0.2,0.2] are significant. We 
should keep in mind that this is an approximate result, holding for a large 
number T of observations. We may plot the sample autocorrelation function 
at different lags, obtaining an autocorrelogram that can be most useful in 
pointing out hidden patterns in data. 

Example 11.8 (Detecting seasonality with autocorrelograms) Con-
sider the time series displayed in figure 11.8. A cursory look at the plot may 
not suggest much structure in the data, but the autocorrelogram does. The 
autocorrelogram displays two horizontal lines defining a band, outside which 
autocorrelation is statistically significant; notice that T = 100 and the two 
horizontal lines are set at —0.2 and 0.2, respectively; this is consistent with 

1 3The denominator in Eq. (11.28) is related to the estimate of autocovariance. In the 
literature, sample autocovariance is typically obtained by dividing the sum by T, even 
though this results in a biased estimator. If we divide by T — fc, we might obtain an 
autocovariance matrix which is not positive semidefinite; see pp. 220-221 of Brockwell and 
Davis [3]. 
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Eq. (11.29). We notice that sample autocorrelation is stronger at time lags 5, 
10, 15, and 20. This suggests that there is some pattern in the data. In fact, 
the time series was generated by sampling the following process: 

Yt=B- 5mod(t,5)+i · e°'02i% t = 1 , . . . , 100 

where: 
• et is a sequence of independent, standard normal variables; taking the 

exponential of et makes sure that we have positive values. 

• mod(i, 5) denotes the remainder of integer division of t by 5; actually, 
this is just a process with a seasonal cycle of length 5, with parameters 
corresponding to the following level and seasonal factors: 

B = 100, 
Si = 0.6410, S2 = 0.3205, S3 = 0.9615, S4 = 2.4359, S5 = 0.6410 

We see that an autocorrelogram is a useful tool to spot seasonality and other 
hidden patterns in data. u 

Another important building block in time series modeling is white noise, 
denoted by et in the following. This is just a sequence of i.i.d. random vari-
ables. If they are normal, we have a Gaussian white noise. As we have 
mentioned, the first step in modeling a time series is the identification of the 
model structure. In the following we outline a few basic ideas that are used 
to this aim, pointing out the role of autocorrelation in the analysis. 

11.6.1 Moving-average processes 

A finite-order moving-average process of order q, denoted by MA(q), can be 
expressed as 

Yt = ì + et - 0iet_i - Q^et-i Gqet-q 

where random variables et are white noise, with E[ct] = 0 and Var(et) = ó2. 
These variables play the role of random shocks and drive the process. It is 
fairly easy to see that the process is weakly stationary. A first observation is 
that expected value and variance are constant: 

E[Yt] =ì + E[et] - 0iE[et_i] #gE[et_g] = ì 
Var(yt) = Var(ct) + 0?Var(et_i) + · · · + tf,Vax{et-g) = σ2 (l + è\ + ■ ■ ■ + 62

q) 
The calculation of autocovariance is a bit more involved, but we may take 
advantage of the uncorrelation of white noise: 

7y(fc) = Cov(YuYt+k) 
= E [(et — #iet_i - · � · - 0qet_q) (et+k — #iet+fc-i — · · · — 6qet+k-q)] 

ίσ2(-0* + Μ*+ι + -·· + 09-/Λ) k=l,2,...,q 
(0 k> q 
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Fig. 11.9 Sample path and corresponding SACF for the moving-average process Yt 
40 + et + 0.8et_i. 

As a consequence, the autocorrelation function is 

Mfc) = ^ = l+ιS + - + flf ' ^ 1 ' 2 ' - ' « (π.30) 
^ Ο ) \ θ , k>q 

Thus, the autocorrelation function depends only on the lag k. We also notice 
that the autocorrelation function cuts off for lags larger than the order of the 
process. This makes sense, since the process Yt is a moving average of the 
driving process et. Hence, by checking whether the sample autocorrelation 
function cuts off after a time lag, we may figure out whether a time series can 
be modeled as a moving average, as well as its order q. Of course, the sample 
autocorrelation will not be exactly zero for k > q; nevertheless, by using the 
autocorrelogram and its significance bands, we may get some clue. 

Example 11.9 Let us consider a simple MA(1) process 

Yt = 40 + et + 0.8et_i 

where et is a sequence of uncorrelated standard normal variables (Gaussian 
white noise). In Fig. 11.9 we show a sample path obtained by Monte Carlo 
simulation, and the corresponding sample autocorrelogram. The sample auto-
correlation looks significant at time lag 1, which is expected, given the nature 
of the process. Note that, by applying Eq. (11.30), we find that the autocor-
relation function, for a MA(1) process Yt — ì + et — 9iet-i, is 

-èé_ 
1 + 0? 

pY(k)=0, k>\ (11.32) 

M l ) = ^ 2 ("-SI) 



566 TIME SERIES MODELS 

Fig. 11.10 Sample path and corresponding SACF for the moving-average process 
Yt =40 + e t-0.8e t_i. 

Figure 11.10 shows the sample path and autocorrelogram of a slightly dif-
ferent MA(1) process: 

y t = 4 0 + e t - 0 . 8 e t _ i 

The change in sign in è\ has an effect on the sample path; an upswing tends 
to be followed by a downswing, and vice versa. The autocorrelogram shows a 
cutoff after time lag 1, and a negative autocorrelation. 

If we increase the order of the process, we should expect more significant 
autocorrelations. In Fig. 11.11, we repeat the exercise for the MA(2) process 

Yt = 40 + et + 0.9et_i + 0.5et_2 

We notice that, in this case, the autocorrelation function cuts off after time 
lag k = 2. 0 

We should mention that sample autocorrelograms are a statistical tool. It 
may well be the case that, for the moving-average processes in the example, 
we get a different picture. This is a useful experiment to carry out with the 
help of statistical software. 

11.6.2 Autoregressive processes 

In finite-order moving-average processes, only a finite number of past real-
izations of white noise influence the value of Yt- This may be a limitation 
for those processes in which all of the previous realizations have an effect, 
even though this possibly fades in time. This consideration led us from fore-
casting using simple moving averages to exponential smoothing. In principle, 
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Fig. 11.11 Sample path and corresponding SACF for the moving-average process 
Yt = 40 + et + 0.9et_i + 0.5et_2. 

we could consider an infinite-order moving-average process, but having to do 
with an infinite sequence of 9t-k coefficients does not sound quite practical. 
Luckily, under some technical conditions, such a process may be rewritten in 
a compact form involving time-lagged realizations of the Yt itself. This leads 
us to the definition of an autoregressive process of a given order. The simplest 
such process is the autoregressive process of order 1, AR(1): 

Yt = S + (j>Yt-x+fit (11-33) 

One could wonder under which conditions this process is stationary, since we 
cannot use the same arguments as in the moving-average case. A heuristic 
argument to find the expected value ì = E[Yt] is based on taking expectations 
and dropping the time subscript in Eq. (11.33): 

r j . ä 

ì = ä + öì =>· ì = -
1 - 0 

The argument is not quite correct, as it leads to a sensible result if the process 
is indeed stationary, which is the case if | ö |< 1. Otherwise, intuition suggests 
that the process will grow without bounds. The reasoning can be made precise 
by using the infinite-term representation of Yt, which is beyond the scope of 
this book. Using the correct line of reasoning, we may also prove that 

a2d>k 

ºã(É*) = ãæø, k = 0 ,1 ,2 , . . . 

In particular 

Var(yt) = 7r(0) = r ^ 
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Fig. 11.12 Sample path and corresponding SACF for the autoregressive process Yt = 
8 + 0.8Ft_i + et. 

and we may also observe that, for a stationary AR(1) process, 

Mk) = 1-X^r = 4>\ fc = 0 , l , 2 , . . . (11.34) 

We notice that autocorrelation is decreasing, but it fades away with no sharp 
cutoff. 

Example 11.10 In Figs. 11.12 and 11.13, we show a sample path and the 
corresponding sample autocorrelogram for the two AR(1) processes 

Yt = 8 + 0.8Yt-i + et and Yt = 8 - 0.8Yt_i + et 

respectively. Notice that the change in sign in the ö coefficient has a sig-
nificant effect on the sample path, as well as on autocorrelations. In the first 
case, autocorrelation goes to zero along a relatively smooth path.14 The sam-
ple path of the second process features evident up- and downswings; we also 
notice an oscillatory pattern in the autocorrelation. D 

The autocorrelation behavior of AR processes does not present the cutoff 
properties that help us determine the order of a MA process. The tool that 
has been developed for AR process identification is the partial autocorrelation 
function (PACF). The rationale behind PACF is to measure the degree of 
association between Yt and Yt-k, removing the effects of intermediate lags, 

1 4This need not be the case, as we are working with sample autocorrelations. Nevertheless, 
at least for significant values, we observe a monotonie behavior consistent with Eq. (11.34). 
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Fig. 11.13 Sample path and corresponding SACF for the autoregressive process Yt = 
8 - 0.8Yt-i + et. 

i.e., Yt-i, ■ ■ .,Yt-k+i- We cannot dwell too much on PACF, but we may at 
least get a better intuitive feeling as follows. 

Example 11.11 (Partial correlation) Consider three random variables 
X, Y, and Z, and imagine regressing X and Y on Z: 

X = ai+biZ 
Y = a2 + b2Z 

Note that we are considering a probabilistic regression, not a sample-based 
regression. Prom Section 10.6, we know that 

_ Cov(X, Z) Cov(y, Z) 
1 _ Var(Z) ' 2 " Var(Z) 

Furthermore, we have regression errors 

X* = X - X = X - (ai + biZ) 
Y* = ã - ã = ã-(á2 + b2Z) 

which may be regarded as the random variables X and Y, after the effect of 
Z is removed. The correlation p(X, Y) may be large because of the common 
factor Z (the "lurking" variable). If we want to get rid of it, we may consider 
the partial correlation p(X*,Y*). D 

Following the intuition provided by the example, we might consider esti-
mating the partial autocorrelation between Yt and Yt-k by the following linear 
regression: 

Yt = b0 + lnYt-i + b2Yt-2 + ■■■ + fcfc-iYt-fc+i + bkYt-k 
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Fig. 11.14 Sample partial autocorrelation function for the autoregressive processes of 
Example 11.10. 

By including intermediate lagged variables Yt-i, ■ ■ ■, Yt-k+ii we capture their 
effect by the regression coefficients i>i, -. -, &Λ—ι· Then, we could use bk as an 
estimate of partial autocorrelation. Actually, this need not be the sounder 
approach, but software packages provide us with ready-to-use functions to 
estimate the PACF by its sample counterpart (SPACF). In Fig. 11.14 we 
show the SPACF for the two AR(1) processes of Example 11.10. We see that 
the SPACF cuts off after lag 1, even though statistical sampling errors suggest 
that there is a significant value at larger lags in the first case. SPACF can be 
used to assess the order of an AR model. 

11.6.3 ARMA and ARIMA processes 

Autoregressive and moving-average processes may be merged into ARMA 
(autoregressive moving-average) processes like: 

Yt = ä + ö^-é + ■■■ + öñÕß-ñ + et - flict_i + � · · + 0 ,e t - , (11.35) 

The model above is referred to as ARMA(p, q) process, for self-explanatory 
reasons. Conditions ensuring stationarity have been developed for ARMA 
processes, as well as identification and estimation procedures. Clearly, the 
ARMA modeling framework affords us plenty of opportunities to fit historical 
data. However, it applies only to stationary data. It is not too difficult to find 
real-life examples of data processes that are nonstationary. Just think of stock 
market indices; most investors really wish that the process is not stationary. 
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Fig. 11.15 A sample path and the corresponding SACF for the random walk Yt = 
y t-i+o.o5jjt. 

Example 11.12 (A nonstationary random walk) A quite common build-
ing block in many financial models is the random walk. An example of random 
walk is 

Yt = Yt-1+0MVt (11.36) 

where % is a sequence of independent and standard normal random variables. 
This is actually an AR process, but from Section 11.6.2 we know that it is 
nonstationary, as ö = 1. A sample path of the process is shown in Fig. 11.15. 
In this figure, the nonstationarity of the process is pretty evident, but this 
need not always be the case. In figure 11.16 we show another sample path for 
the same process. A subjective comparison of the two sample paths would 
not suggest that they are just two realizations of the same stochastic process. 
However, the two autocorrelograms show a common pattern: Autocorrelation 
fades out slowly. Indeed, this is a common feature of nonstationary processes. 
Figure 11.17 shows the SPACF for the second sample path. We see a very 
strong partial autocorrelation at lag 1, which cuts off immediately. Again, 
this is a pattern corresponding to the process described by Eq. 11.36. D 

Since the theory of stationary MA and AR processes is well developed, it 
would be nice to find a way to apply it to nonstationary processes as well. A 
commonly used trick to remove nonstationarity in a time series is differencing, 
by which we consider the time series 

Yl = Yt- Yt-i (11.37) 
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Fig. 11.16 Another sample path and the corresponding SACF for the random walk 
Yt = Yt-i + 0.0577t. 

Fig. 11.17 Sample partial autocorrelation function for the random walk Yt = Yt-i + 
0.05%. 

Applying differencing to the sample path of Fig. 11.15 results in the sample 
path and SACF illustrated in figure 11.18. The shape of the SACF is not 
surprising, since the differenced process is just white noise. 

Example 11.13 (What is nonstationarity, anyway?) A time series 
with trend 

Yt=a + ßt + et (11.38) 

where et is white noise, is clearly nonstationary and features a deterministic 
trend. A little digression is in order to clarify the nature of nonstationarity 
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Fig. 11.18 The effect of differencing on the sample random walk of Fig. 11.15. 

in a random walk 
Yt = Yt-1+€t (11.39) 

The sample paths in Example 11.12 show that in the random walk does not 
feature a deterministic trend. Recursive unfolding of Eq. (11.39) results in 

t 
Yt=Yo + Y^ek 

fc=l 

Therefore 
E[Yt\Y0]=Y0 

Hence, we must have a different kind of nonstationarity in the random walk 
of Eq. (11.39) than in the process described by Eq. (11.38). To investigate the 
matter, let us consider the expected value of the increment Y¡ = Yt — Yt-i, 
conditional on Yt-\: 

E[yt'|yt_1] = E[et] = o 
Therefore, given the last observation Yt-i, we cannot predict whether the 
time series will move up or down. Now, let us consider a stationary AR(1) 
process 

where ö G (—1,1). The increment in this case is 

Õ{ = {ö-\)Õ^1+åé 

Since (ö — 1) < 0, we have 

E[yt ' |y t_i]<o i f y t - i > o 
E[y/ |y t_1]>o i fy t _ !<o 
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This suggests that a stationary AR(1) process is mean reverting, in the sense 
that the process tends to return to its expected value; the nonstationary 
random walk does not enjoy this property. D 

If we introduce the backshift operator B, defined by 

BYt = Yt-i 

we may express the first difference in Eq. (11.37) as 

Yl = Yt- BYt = (1 - B)Yt 

Sometimes, differencing must be repeated in order to obtain a stationary time 
series. We obtain second-order differencing by repeated application of (first-
order) differencing: 

Yt-Yt-i 
(Yt - y t_i) - ( r t _! - y t_2) 
Yt - 2Yt-! + Yt-2 
{l-2B + B2)Yt 

(1 - B)2Yt 

This suggests that we may formally apply the algebra of polynomials to the 
backshift operator, in order to find differences of arbitrary order. By intro-
ducing polynomials 

Φ(Β) = 1-öéÂ öñÂñ 

È(Â) = 1-È1Â eqBq 

we may rewrite the ARMA model of Eq. (11.35) in the compact form 

Ö(Â)Õß = ä + e(B)et (11.40) 

We may extend the class of stationary ARMA models, in order to allow 
for nonstationarity. We find the more general class of ARIMA (autoregressive 
integrated moving average) processes, also known as Box-Jenkins models. An 
ARIMA(p, d, q) process can be represented as follows:15 

$>{B){l-B)dYt = 8 + &{B)et (11.41) 

where Ö{Â) and È(Â) are polynomials of order p and q, respectively, and d 
is a differencing order such that the process Yt is stationary, whereas, if we 
take differences of order (d— 1), the process is still nonstationary. The name 

l s T o be precise, this representation requires that the two polynomials Φ(Β) and È(Β) 
satisfy some additional technical conditions that are beyond the scope of this book. 

Y" = 
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"integrated" stems from the fact that we obtain the nonstationary process by 
integrating a stationary one, i.e., by undoing differencing. In most business 
applications the order d is 0 or 1. A full account of this class of models is 
beyond the scope of this book; we refer the reader to the bibliography provided 
at the end of this chapter, where it is also shown how Box-Jenkins models 
can be extended to cope with seasonality. 

11.6.4 Using time series models for forecasting 

Time series models may be used for forecasting purposes. As usual, we should 
find not only a point forecast, but also a prediction interval. Given an in-
formation set consisting of observations up to Yt, we wish to find a forecast 
Ft,h = Yt+h{t), at time t, with horizon h > 1, that is "best" in some well spec-
ified sense. A reasonable criterion is the minimization of the mean squared 
error 

E (Yt+h-Yt+h(t)) 

It can be shown that this is obtained by the conditional expectation 

E[Yt+h\Yt,Yt-UYt-2,. ■ ] 

To be concrete, assume that we have estimated the parameters of a model like 

Yt = S + öéÕß-é -\ öñÕß-ñ + et - φiet_i 0,et_9 

If we want to forecast with horizon h = 1, we should step forward to 

Yt+i =ä + öÌ + ■■■ <f>pYt-p+i + et+i - 0i et 0,et_,+i (11.42) 

To build a point forecast, we note the following: 

• If all of the observations Yt-p+i, � � �, Yt are available,16 we should just 
plug their values into Eq. (11.42). 

• Of course we do not know the future random shock ei +i ; however, if 
random shocks are uncorrelated, we may just plug its expected value 
E[ei+i] = 0 into the equation. 

• Unfortunately, we cannot directly observe the past shocks et-q+i,..., e¿. 
In chapter 10 on simple linear regression, we faced a similar issue related 
to the difference between unobservable errors and observable residuals. 
We have to estimate êt-q+i, ■ ■ ■, H on the basis of prediction errors. 

1 6In principle, with a high-order model and a small fit sample, we could lack some ob-
servation in the past; however, in this case, the real trouble comes from poor parameter 
estimates. 
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E x a m p l e 11.14 Consider the model 

Yt = Yt-i + €t — ̂ i e t _ i 

In order to forecast Yt+i, we write 

Yt+i = Yt + κt+i — φiet 

where the prediction of the future shock is êt+\ = 0, and the past shock is 
estimated by the observed forecast error 

κt - Yt - Yt{t -1) 

If we want to forecast with horizon h > 1, we should rewrite Eq. (11.42) 
for the appropriate time subscript, and run a multistep forecasting procedure, 
whereby successive forecasts are generated and used. As the reader can imag-
ine, when the moving-average order q is large, things are not as simple as in 
the example above. Indeed, forecasting based on ARIMA models is by no 
way a trivial business, and alternative approaches have been proposed. One 
possibility is to rewrite the model as an infinite-order moving average 

oo 

Yt+h = ä + 2_] 4>ket+h-k 
fc=l 

and plug estimates of random shocks. The procedures to accomplish all of this 
are beyond the scope of this book;17 luckily, statistical software packages are 
available to carry out model estimation and forecasting. These software tools 
also provide the user with a prediction interval, using procedures which are 
not unlike those we used to find confidence intervals. The idea is surrounding 
the point forecast with an interval related to some standard prediction error, 
using quantiles from t or standard normal distributions. When using these 
procedures, we should keep in mind the following: 

• Typically, it is assumed that random shocks are normal and uncorre-
lated. 

• Since the mathematics of time series is quite involved, the only source of 
uncertainty accounted for is the realization of the future random shock. 
However, we have seen in Section 10.4 that uncertainty in parameter 
estimates also plays a role. Unfortunately, simple linear regression is 
a simple problem with an analytical solution, which lends itself to an 
accurate analysis; often, to estimate parameters of time series models, 

17See, e.g., chapter 5 of Brockwell and Davis [3], where the recursive nature of time series 
forecasting is aptly illustrated. 
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numerical optimization is required, which makes a formal analysis quite 
difficult. 

As a result, the forecast uncertainty could be underestimated. Hence, it is 
good practice to split available data into a fit and a test sample, and assess 
forecast errors out-of-sample before applying a model in a business setting. 

Problems 

11.1 Consider the demand data in the table below: 

t 1 2 3 4 5 6 
Yt 35 50 60 72 83 90 

We want to apply exponential smoothing with trend: 

• Using a fit sample of size 3, initialize the smoother using linear regres-
sion. 

• Choose smoothing coefficients and evaluate MAPE and RMSE on the 
test sample. 

• After observing demand in the last time bucket, calculate forecasts with 
horizons h = 2 and h = 3. 

11.2 The following table shows quarterly demand data for 3 consecutive 
years: 

Quarter 
Year I II III IV 

2008 21 27 41 13 
2009 19 32 42 12 
2010 22 33 38 10 

Choose smoothing coefficients and apply exponential smoothing with season-
ally: 

• Initial parameters are estimated using a fit sample consisting of two 
whole cycles. 

• Evaluate MAD and MPE on the test sample, with h = 1. 

• What is F5i3? 

11.3 In the table below, "-" indicates missing information and "??" is a 
placeholder for a future and unknown demand: 
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Quarter 
Year I II III IV 

2008 - - 40 28 
2009 21 37 46 30 
2010 29 43 ?? ?? 

Initialize a smoother with multiplicative seasonality by using a fit sample of 
size 7. 

11.4 We want to apply the Holt-Winter method, assuming a cycle of one 
year and a quarterly time bucket, corresponding to ordinary seasons. We are 
at the beginning of summer and the current parameter estimates are 

• Level 80 

• Trend 10 

• Seasonality factors: winter 0.8, spring 0.9, summer 1.1, autumn 1.2 

On the basis of these estimates, what is your forecast for next summer? If 
the demand scenario (summer 88, autumn 121, winter 110) is realized, what 
are MAD and MAD%? 

11.5 Prove that the weights in Eq. (11.18) add up to one. (Hint: Use the 
geometric series.) 

11.6 Prove Eqs. (11.31) and (11.32). 

11.7 Consider a moving-average algorithm with time window n. Assume 
that the observed values are i.i.d. variables. Show that the autocorrelation 
function for two forecasts that are k time buckets apart is 

f l - i \îk<n 
10 otherwise 

For further reading 

• A classical reference on forecasting is the book by Makridakis et al. [6], 
which covers both regression and time series models, illustrating them 
with a vast array of applications. Among other things, the interested 
reader may find details on static time series decomposition approaches. 

• Another general reference worth looking at is the text by Bowerman et 
al. [1], which offers a succinct treatment, without dwelling too much on 
technicalities. The text by Heij et al. [5], from which Example 11.13 
was taken, offers a good compromise between theory and applications. 
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• There are quite advanced books on time series modeling, like the mon-
umental text by Hamilton [4]. For a gentler treatment, a possible refer-
ence is that by Montgomery et al. [7], whose Chapter 5 has influenced 
the presentation in Section 11.6 above. 

• We have dealt mostly with demand forecasting, but we did not cover 
many important issues, such as forecasting for brand-new products; in-
terested readers may consult Chapter 3 of Ref. [2], which has influenced 
much of the presentation here. 

• For further listening, the title of Section 11.5.1 is a homage to Jaco 
Pastorius' Three Views of a Secret. 
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12 
Deterministic Decision 

Models 

In the last few chapters we have covered tools to represent some standard 
forms of uncertainty. Our main aims were to understand the relationship 
between variables of interest and possibly to forecast their future values. Un-
derstanding how a system works is clearly essential in all scientific disciplines, 
including the social ones. However, in management there is a further step: 
moving from knowledge discovery to decision making. So far, we have just 
hinted at decision models every now and then. In this chapter, we move on to 
a systematic treatment of quantitative models and methods for decision mak-
ing. In this first step, we disregard uncertainty and deal with deterministic 
problems. Later, in Chapter 13, we merge decision models with probability 
and statistics to address the case of decision making under uncertainty. This 
will open up a world of challenging and rewarding models. Yet, we should 
always keep in mind that even the best decision model is always based on 
an approximate description of reality, and it should be regarded as a support 
tool, not a magical oracle. We will further insist on this in Chapter 14, where 
we outline a few complications arising in the practical world. 

From a technical point of view, this chapter relies on concepts that were 
introduced in Chapters 2 and 3, such as:1 

• Convex sets and convex/concave functions 

• Local and global optimizers 

• Quadratic forms and multivariable calculus 

1See Sections 2.11 and 3.9. 
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There, we covered unconstrained optimization of functions of one variable; 
here we deal with problems involving possibly many decision variables and 
constraints. Apart from a very few lucky cases, there is no hope of solving 
such problems analytically, and we must rely on numerical solution methods. 
However, here we place much more emphasis on model building than model 
solving. Extremely efficient and reliable software packages are commercially 
available to solve rather large models; so, it can be argued that only model 
building is relevant. Nevertheless, a modicum of familiarity with the under-
lying solution strategies is needed to choose the right solution method and 
to understand when and why a model is easy or difficult to solve. Further-
more, model building and solving are not always disconnected; sometimes, 
the proper formulation of a model may greatly improve the computational 
performance in solving it. 

We begin with a classification of decision models in Section 12.1; we draw 
the line between linear and nonlinear programming models, as well as between 
convex and nonconvex optimization problems. This classification has a quite 
practical purpose, as it is related to solution methods available to solve each 
class of problems. As we shall see, some models can be tackled by surprisingly 
fast methods that can solve large-scale problems with a reasonable compu-
tational effort; other models are a much harder nut to crack, and we should 
understand why. After this, we turn to model building. A few prototypical 
linear programming models are described in Section 12.2. Then, in Section 
12.3, we illustrate a few tricks of the trade that are helpful in coping with 
less standard cases. The full power of quantitative modeling is unleashed in 
Section 12.4, where we see how to represent quite intricate problems mathe-
matically by using integer programming techniques, involving logical decision 
variables. Section 12.5 is a bit more theoretical and deals with nonlinear pro-
gramming; still, in this section we introduce quite relevant concepts, such as 
shadow prices, which have an important economic and managerial significance. 
Finally, in Section 12.6, we get a glimpse of standard solution algorithms like 
the simplex method for continuous linear programming and the branch and 
bound method for integer linear programming. That section may be safely 
skipped, if the reader so wishes, since its content is not used anywhere in 
the remainder of the book; yet, we should also stress the fact that these ap-
proaches are widely available in commercial software packages, and having at 
least a rough idea of how they work may help in using them properly. 

12.1 A TAXONOMY OF OPTIMIZATION MODELS 

In Part I we got acquainted with two elementary and prototypical optimization 
models, which we recall here for readers' convenience: 
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max 45^1 

s.t. 15xi 

15xi 

15xi 

25a;! 

0< 

0< 

+ 60z2 
+ lOzg < 2400 

+ 35x2 < 2400 
+ 5x2 < 2400 
+ 15æ2 < 2400 

cci < 100 

x2 < 50 

1. The production mix optimization model:2 

(12.1) 
(12.2) 
(12.3) 
(12.4) 
(12.5) 
(12.6) 
(12.7) 

Here the decision variables x\ and X2 represent production quantities of 
two items; in a real-life problem we have many more items, and their pro-
duction could be restricted to integer amounts: x\, X2 € {0,1,2,3, . . .} = 
Z+. In Eq. (12.1) we see a function that must be maximized, as it re-
lates to profit. This objective function is not exactly our profit, as it 
does not consider fixed costs; nevertheless, it differs from true profit by 
a term which is constant with respect to the decisions that we are mak-
ing at this level. Profit is maximized with respect to decision variables, 
subject to (s.t.) a set of constraints, which define a feasible region, also 
called feasible set. Inequalities (12.2)—(12.5) represent limitations due 
to finite capacity of the four resources that are used to manufacture 
the two item types. Finally, constraints (12.6) and (12.7) ensure that 
nonnegative amounts are produced, and that they do not exceed market 
demand bounds. 

2. The economic order quantity model:3 

min *4 + ^ (12.8) 
0>o 2 Q 

In this case, we have only one nonnegative decision variable Q, but the 
form of the objective function is definitely more complicated than Eq. 
(12.1). To begin with, it is nonlinear; then, it is not defined for Q = 0, 
and we should only consider the open interval Q > 0. Nevertheless, if 
we extend the objective function so that it takes the value +oo when 
Q = 0, we immediately see that, since we are minimizing a cost, we may 
consider the interval Q > 0 as the feasible region.4 

2See Section 1.1.2. 
3See Section 2.1. 
4From a theoretical point of view, feasible regions with closed boundaries are always pre-
ferred, as otherwise we cannot even be sure that a minimum or a maximum exists. To see 
this, consider the problem m i n i , subject to the bound x > 2. It is tempting to say that its 
solution is x* = 2; however, this point is not feasible, as the inequality is strict. In fact, the 
problem has no solution. We may find the solution x* = 2 if we consider the problem inf x, 
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Looking at these two examples, we notice similarities and differences: 

• In an optimization model we have an objective function that can be 
minimized or maximized. In the following, we will mostly refer to mini-
mization problems, with no loss of generality. In fact, any maximization 
problem can be converted into an equivalent minimization by changing 
the sign of the objective function or, if you prefer, by flipping it upside 
down: 

max/(x) =^ - m i n [ - / ( x ) ] 

• The objective function can be linear or nonlinear. In the production 
mix problem, we see an example of a linear objective function. A linear 
objective function is characterized by a sum like 

n 

Each decision variable Xj is multiplied by a coefficient Cj, which in a min-
imization problem could be the cost of carrying out activity j at level 
Xj, such as producing an amount Xj of item j . The precise meaning of 
the coefficients depends on the problem. In the production mix prob-
lem, where the objective is maximized, they represent a contribution 
to profit. Recall that adding a constant term would make the function 
linear affine, but this would not change the optimal solution. Any other 
objective form, such as functions involving products of decision vari-
ables or powers with an exponent different from one, is nonlinear. In 
the EOQ model, the term \/Q renders the problem nonlinear. Generally 
speaking, a nonlinear objective function makes the problem more com-
plicated. As we shall see, we may sometimes approximate a nonlinear 
objective by a piecewise linear one. 

• In the EOQ model, we have a very simple restriction on the decision 
variable, which is just restricted to nonnegative values. In this case, 
the feasible set is R.+ . In the production mix model, we have a list of 
more complicated constraints. Generally speaking, the feasible set is 
described by a set of constraints of the following forms: 

— Inequality constraints are represented by inequalities like g(x) < 0 
or <7(x) > 0. When dealing with a generic optimization model, we 
will typically use inequalities of the form 

9(x) < 0 (12.9) 

which has a slightly different meaning that we leave to theoretically inclined treatments. By 
the same token, you may find sup rather than max. A theorem due to Weierstrass ensures 
that if a function is continuous, and the feasible set is closed and bounded, the function 
attains its maximum and minimum within that set. We will steer away from such technical 
complications. 
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There is no loss of generality in this choice, since we may always 
transform an inequality of the larger-than type as follows: 

S(x) > 0 => -g(x) < 0 

We have four such inequalities in the production mix problem; to 
cast constraint (12.2) into form (12.9), we just shift the constant 
term to the left: 

15zi + 10x2 - 2400 < 0 

If the function g is linear (affine), i.e. 

n 
<?(x) = 2 , ajxj — b = a x — b 

3=1 

we have a linear constraint. If function g(-) involves products of 
variables, general powers of them, or exponential functions, etc., 
the constraint is nonlinear. 

— Equality constraints are represented by equations of the form /i(x) = 
0. We do not have equality constraints in the two examples above, 
but we will see examples of them later. A generic linear equality 
constraint can be written as 

n 
2_] cijXj — b = a T x — 6 = 0 
j = i 

Note that changing the sign of all the coefficients involved in this 
constraint has no effect on the feasible set. Equality constraints 
may be nonlinear as well. 

— We may also have simple lower bounds on decision variables, like 
Xj > lj, and upper bounds, like Xj < Uj. In the production mix 
model we see the most common example of lower bound, i.e., a non-
negativity restriction on decision variables, as well as upper bounds 
enforced by market limitations. In principle, simple bounds could 
be treated as inequality constraints. However, most optimization 
algorithms treat them separately for efficiency reasons. 

— Finally, in the following we will find examples of integrality restric-
tions, like Xj S {0,1,2,3, . . .} = Z + . In both examples above, we 
could enforce such restrictions to make sure that we plan produc-
tion of an integer amount of items; this may be not needed when 
we consider items that can be produced in amounts represented 
by continuous (real) variables, such as tons of a chemical element. 
We will see that, in general, restricting variables to integer val-
ues makes the solution of an optimization problem much harder. 
Whenever possible, it is advisable to get rid of such restrictions, 
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even if it entails some degree of approximation. This is acceptable, 
for instance, in the case of items produced in large amounts, since 
rounding 1020.37 up or down implies a negligible error; this is not 
acceptable if production occurs on a very small scale, i.e., just a few 
items. The most common use of integer decision variables stems 
from the need to model logical decisions, such as "open a new man-
ufacturing plant" or "do not open a new manufacturing plant." In 
such a case, we may represent our decision as a binary (or logical) 
decision variable that may take only one of two values: x G {0,1}. 
Clearly, binary variables are discrete in nature, and relaxing them 
to continuous values in the interval [0,1] makes no sense: Either 
you build a plant or not, as building 47% of it has no meaning. 

In general and abstract terms, we may refer to an optimization problem in 
the following form 

min/(x) (12.10) 

where S, the feasible set, is a subset of R™. If S = K™, we have an uncon-
strained optimization problem; otherwise, we have a constrained optimization 
problem. An optimization model like (12.10) is also referred to as a mathe-
matical programming model. The key feature is that there is a finite set of n 
decision variables Xj, j = 1 , . . . , n, collected into vector x. However strange it 
may sound, there are problems featuring an infinite set of decision variables. 
One such example occurs when we are looking for a function u(t) of time, 
where t ranges on the continuous interval [0, T]. The function u(t) should 
satisfy some constraints and be optimal according to some well-defined cri-
terion. These problems are quite common in optimal control theory, where 
u(t) is a control input that should be applied to a system in order to force 
an optimal behavior in terms of desirable output. Optimal control problems 
are widely considered in economics as well, when time is assumed continuous 
in the model. In this book, we will consider only a discrete representation 
of time, which is partitioned into time periods (time buckets) indexed by 
t = 1 ,2,3, . . . , T. Hence, we will only deal with mathematical programs. 

When we consider the actual ways in which we may describe the feasible 
set S, we see that there is a rich set of possible structures of optimization 
models. Yet, this variety can be boiled down to a smaller set of prototypes 
by using simple manipulations. For instance, an inequality constraint may be 
transformed into an equality constraint by introducing a nonnegative slack 
variable s as follows: 

i \ ^ c Ã 5( x ) + s = 0 , . . _ f o(x) — s = 0 
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Fig. 12.1 Inequality constraints may be active/binding or not. 

We may also go the other way around and transform an equality constraint 
into two inequality constraints: 

Λ(Χ) = 0 =� j Λ(χ) < 0 

These tricks of the trade may be useful not only when stating general prop-
erties, but also when considering concrete solution methods. 

A generic inequality constraint g(x) < 0 defines a portion of n-dimensional 
space. In the plane, it may define a region like the shaded one in Fig. 12.1; 
to be precise, in the figure we observe a curve corresponding to equation 
g(x) = 0 and a shaded region corresponding to points such that the strict 
inequality g(x) < 0 applies. With reference to a specific point, an inequality 
constraint may be active or inactive. The constraint is active at point x& in 
the figure, since there it is satisfied as an equality, g(x.b) = 0; on the contrary, 
the constraint is inactive at x a , since g(xa) < 0. It is important to notice that 
we may freely move in a neighborhood x a without going out of the feasible 
set, provided that our step is small enough; on the contrary, we cannot move 
at will around x;,, since only some directions preserve feasibility. Furthermore, 
a little perturbation of the constraint could make x\, infeasible. If we consider 
the optimal solution x*, we also say that an inequality constraint is binding 
if g(x*) — 0, i.e., if it is active at the optimal solution; if g(x*) < 0, the 
constraint is nonbinding. A noteworthy specific case occurs when considering 
the nonnegativity requirement Xj > 0. When all the decision variables are 
strictly positive at the optimal point, i.e., when x^ > 0 for all j , we speak of 
an interior solution. 

Example 12.1 For the optimal mix problem (12.1), we have observed that 
any mix feasible with respect to the second resource is also feasible with 
respect to the first and third ones. In fact, any point satisfying inequality 
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(12.3) will also satisfy inequalities (12.2) and (12.4), since item type 1 has the 
same resource requirement on all of the related resources, whereas item type 2 
has the largest requirement on the second one, which is a bottleneck. Hence, 
(12.2) and (12.4) are redundant constraints and will never be binding for the 
optimal mix. The practical implication is that there is no point in increasing 
the availability of resources that are not saturated, as this would not improve 
profit. D 

It can be expected that some optimization problems are relatively easy to 
solve, whereas others can be quite challenging. Therefore, it is important to 
understand which features draw the line between easy and difficult models. 
As we have seen, important attributes are "linear" vs. "nonlinear," as well 
as "continuous" vs. "discrete." When dealing with calculus, we have also 
considered other important features, which relate to convexity.5 We already 
know that even an unconstrained minimization problem involving a function of 
just one decision variable may be relatively difficult, as it may feature many 
local optima. In this chapter we generalize to problems involving multiple 
variables and constraints; in the following subsections, we illustrate all of 
these concepts by very simple examples. 

12.1.1 Linear programming problems 

A mathematical programming problem is called a linear programming (LP) 
problem when all the constraints and the objective function are expressed by 
linear affine functions, as in the following case: 

min 2÷÷ + 3x2 + 3x3 
s.t. X\ + 2x2 = 3 

X\ + X3 > 3 
x-i,X2,xa > 0 

An LP model can involve inequality and equality constraints, as well as simple 
bounds. The general form of a linear programming problem is 

n 

min 2_] cjxj 
i = i 

n 

s.t. 2.aijxj = h, i € å 

n 

j = l 

Ij < Xj <Uj, j = 1 , . . . , n 

5See Section 2.11. 
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where we denote the set of equality constraints by £ and the set of inequality 
constraints by X; any of these sets may be empty. If variable Xj is unbounded 
from below, we may set lj = — oo; by the same token, we may set Uj = +00 
if the corresponding variable is unbounded from above. An LP model can be 
conveniently written in matrix form as follows: 

min c T x (12.11) 
s.t. Ax = b 

D x < e 
l < x < u 

Of course, an inequality involving vectors is interpreted componentwise, i.e., 
we should think of it as the collection of several inequalities, one per compo-
nent of the vector. 

Example 12.2 Let us consider the LP problem: 

min x\ + 3x3 + 5x4 
S.t. X\ + X2 < 3 

£1 + £3 + 4^4 > 5 

3χι - X2 + X3 = 6 
xi + X4 = 8 

Xl,X2,X3,X/t > 0 

It may be cast in the matrix form (12.11) by defining the following matrices 
and vectors: 

" 1 " 
0 
3 
5 _ 

5 

" 3 - 1 
1 0 

b = 
" 6 ' 

8 € 

1 0 ' 
0 1 

D = 
t Ë~' 

3 
- 5 5 

1 1 0 
- 1 0 - 1 

1 = 

0 ' 
- 4 

" 0 " 
0 
0 
0 

Please note the changes in sign needed to recast the second inequality in less-
than form. The components of u can all be set to +00 or, more simply, the 
vector of upper bounds can just be disregarded. D 

Using the transformations illustrated before, a generic LP model can also be 
cast into either of the following forms, involving one type of constraint: 

• The standard form 

min c T x 
s.t.Ax = b 

x > 0 
(12.12) 
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• The canonical form 

max c T x 
s.t. A x < b (12.13) 

x > 0 

Note that all decision variables are restricted in sign. If a variable is free to 
take whatever sign, we may transform it into the difference of two nonnegative 
variables: 

X j X j dj A 5 dj A -, dj A ^ \J · 

The two variables should correspond to the positive and the negative part of 
Xj. However, this transformation introduces an ambiguity, at least in princi-
ple. For instance, if Xj = 5 we may write 5 = 5 — 0, but also 5 = 8 — 3. As 
a result, we have an infinite set of equivalent solutions, characterized by the 
same value of the objective function. Conceptually, this is not a relevant issue, 
even though it may be from a computational point of view. In practice, the 
careful implementation of solution methods handles free variables efficiently, 
but we need not be concerned with such technicalities. 

The standard form (12.12) is more convenient computationally, as we shall 
see in Section 12.6.1. The canonical form (12.13), however, comes in handy 
to illustrate the geometry of an LP model. In fact, the feasible set for an LP 
problem in canonical form is expressed by a set of linear inequalities. Since 
each linear inequality is associated with a half-space, the feasible set is just the 
intersection of half-spaces, i.e., a polyhedron.6 This is easy to visualize for a 
simple problem in two dimensions, where half-spaces are just half-planes. This 
case is illustrated in Fig. 12.2, together with the level curves of two possible 
objective functions, fa and / ¡ , . The feasible set is the shaded polyhedron, 
which is the intersection of six half-planes. Since the objective function is 
linear, its level curves are parallel lines. Depending on the coefficients in 
the objective function, these lines feature different slopes. If we assume a 
maximization problem, the figure illustrates that, depending on the slope, 
different optimal solutions are obtained, za or z^. If the level curves are 
parallel to the edge connecting zQ and Zf,, any solution on that edge is optimal. 
This shows that an LP problem need not have a unique solution. In fact, the 
following cases may apply: 

1. There is a unique solution. 

2. There are multiple equivalent solutions (an infinite number of them, 
actually). 

3. There is no feasible solution; this may occur, e.g., when the intersection 
of the half-spaces is an empty set. 

See Fig. 1.3 for an illustration in the product mix case. 
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Fig. 12.2 Feasible set and optimal solutions for an LP problem. 

4. The solution is unbounded, i.e., the optimal value of the objective goes to 
plus or minus infinity, for a maximization and a minimization problem, 
respectively. 

It is easy to see tha t these cases are not limited to linear problems, as the 
same situations may arise in nonlinear problems as well. 

E x a m p l e 1 2 . 3 It is easy to build optimization problems which are, respec-
tively: 

1. Unbounded: 

max x\ + x\ 

S.t. X\ + X2 > 4 

2:1,2:2 > 0 

2. Infeasible: 

max 2xi + 32:2 

S.t. X\ + X2 > 4 

0 < 2:1,2:2 < 1 

3. Characterized by an infinite set of optima: 

max x\ + X2 
S.t. 2:1 + X2 < 4 

2:1,2:2 > 0 

The reader is urged to check all of this by drawing the feasible set and the 
level curves of the objective function, for the three problems above. D 
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It is also useful to notice that derivatives of a linear objective function 
/ (x) = c T x never vanish; its gradient is the vector of coefficients, V/(x) = c, 
and it cannot be set to zero (for a meaningful problem). Hence, we need some-
thing more than stationarity conditions to solve a constrained optimization 
problem, and a linear one in particular. However, Fig. 12.2 suggests that, 
when looking for the solution of an LP problem, we may just consider the 
extreme points of the feasible set, i.e., the vertices of the polyhedron. Even 
though the feasible set in the figure includes an infinite number of points, only 
six of them are candidates for optimality. Even if there is an edge of equiv-
alent optimal solutions, there is no loss in restricting our attention to one of 
the two extreme points of the edge. Indeed, this is a fundamental feature of 
LP problems that is exploited in the standard solution method: the simplex 
method, which is described later and is based on the idea of exploring a typi-
cally small subset of vertices to find the optimal solution. You may not really 
need to understand how this method works in depth. What is important is 
that this algorithm is widely available in commercial software tools, and it is 
normally able to solve rather large-scale problems, possibly involving several 
thousands of decision variables, in a few seconds. 

In the LP models above, decision variables are real numbers, subject to 
joint restrictions represented by equality and inequality constraints, as well 
as lower and upper bounds. There are situations in which we must enforce 
some more restrictions on a subset of variables: 

• We might require variables to take only integer values. For instance, we 
could specify that the number of items to be produced in the optimal 
mix problem be integer. In virtually all practically relevant cases, we 
need nonnegative integer variables, i.e., we require Xj £ Z+, for some j . 

• Quite often, we need to express logical decisions, like "we place an or-
der" or "we do not place any order," or "we start an activity" or "we 
don't." Such logical decisions are of all-or-nothing type and are typically 
represented by binary decision variables like Xj € {0,1}. 

If the integrality condition is enforced on all of the decision variables, we have 
a pure-integer linear programming problem (ILP), such as 

min e x 
s.t. Ax < b 

xeZ!f 

Normally, in a pure ILP, we have only inequality constraints and bounds; 
equality constraints, i.e., equations involving integer numbers, are mathemat-
ically interesting and challenging, but they are uncommon in management. If 
the restriction is x € {0,1}™, i.e., we consider only binary variables, we have 
a pure binary LP problem. The most general case is a mixed-integer linear 
programming (MILP) problem, whereby integrality restrictions are enforced 
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Fig. 12.3 The set of feasible solutions of a pure integer LP problem. 

only on a subset £ of variables: 
n 

min 2_] cjxj 

n 
S.t. \]aijxj = h, i € E 

n 
/ CL'ï'j JJ Þ *̂̂  tν¿ · ¿ t -i-

lj < Xj < Uj, j = 1 , . . . , n 

XjGZ, j eCÇ {1,2,...,n} 

In order to specify a binary decision variable, we can enforce the bounds Z¿ = O 
and Uj = 1 on an integer variable in C 

It turns out that, as a general rule, integer programming problems are a 
much harder nut to crack than their continuous counterparts. To get a feeling 
for the reason behind this unpleasing state of affairs, let us have a look at 
Fig. 12.3. There, we see the feasible region of a pure ILP problem in two 
dimensions. If we drop the integrality requirements, we obtain the continuous 
relaxation of the ILP, whose feasible region is the shaded polyhedron depicted 
in the figure. The feasible region for the ILP problem consists of those points 
within the polyhedron that have integer coordinates. This immediately shows 
that we cannot apply familiar concepts from calculus: The derivative makes 
no sense, as we have a discrete set of points and we cannot take ordinary 
limits. However, we know that there is a way to solve a continuous LP. If we 
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drop integrality requirements, we obtain an optimal solution corresponding 
to one of the extreme points (vertices) of the polyhedron in Fig. 12.3. In this 
case, we might expect that, although this vertex has noninteger coordinates in 
general, we could find the optimal solution by rounding the fractional solution 
of the continuous relaxation. For instance, in the optimal mix problem (12.1), 
the continuous LP has the optimal solution 

x\ = 73.85, x*2 = 36.92 

whereas the corresponding ILP has optimal solution 

X\ -— ν O, Xn —- Oí 

It seems that by trying a few combinations of roundings, up and down, we 
should be able to find the optimal solution; some roundings might produce 
infeasible solutions, but when we get a feasible one, we just evaluate its objec-
tive function; by comparing all of the integer solutions found in this way, we 
spot the best rounding. Maybe, it is not trivial to prove that what we get is 
an optimal solution, but at least we should be able to find a pretty good one. 
Unfortunately, this approach does yield a good heuristic approach in some 
cases, but it does not work in general. If we have a large number n of integer 
decision variables, a rough calculation shows that we should try 2" roundings. 
To see this, observe that we should round up or down each of the n variables, 
and this results in an exponential number of combinations. Even worse, it is 
not even true that we may find an optimal solution, or even a feasible one, 
by just rounding up and down. The following nice example shows that things 
may be difficult even in two dimensions.7 

Example 12.4 Consider the following pure ILP problem: 

max x\ + X2 
s.t. lOari - 8x2 < 13 

2x1 - 2x2 > 1 
I i , l 2 € Z + 

If we relax the integrality requirement, i.e., we just require X\,X2 > 0, we can 
apply the simplex method and find 

x\ = 4.5, x*2 = 4 

with an optimal objective value 8.5. The reader is invited to try rounding the 
above solution up and down; unfortunately, the trivially rounded solutions 
are not feasible. In fact, the integer optimal solution is 

Xi = 2, x2 = 1 

Example 12.4 is taken from Williams [13]. 
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Fig. 12.4 Feasible solutions in Example 12.4. 

with optimal value 3. We see that the continuous solution is quite far from 
the true integer minimizer; in this case it is even difficult to find a feasible 
solution by rounding, let alone the optimal one. The reason behind the trouble 
is illustrated in Fig. 12.4. The integer feasible set consists of only two points, 
(1,0) and (2,1). The feasible set of the continuous relaxation is the very 
narrow shaded triangle in Fig. 12.4, and it includes a many noninteger points 
quite far from the two integer solutions. D 

Another interesting observation that we can draw from the example is that 
the continuous relaxation yields a bound on the true optimum value of the 
integer solution. In the example, we find an upper bound, 8.5., since we are 
maximizing. If we consider a minimization problem, the optimal value of the 
continuous relaxation yields a lower bound. To understand why, consider Fig. 
12.3 again. The feasible set of the ILP is a subset of the feasible set of the 
continuous relaxation. Hence, when we drop the integrality requirements, we 
enlarge the feasible set. By doing so, we cannot increase cost, in a minimiza-
tion problem, or decrease profit, in a maximization problem, since all of the 
integer points are still feasible and we are adding opportunities for optimiza-
tion. Incidentally, in the last example, the upper bound we get, 8.5, is rather 
weak with respect to the true optimal value, which is 3. In other cases, the 
bounds yield better estimates of the optimal value. Indeed, this bounding 
approach is the starting point of the branch and bound method, which is the 
standard, commercially available approach to solving ILPs and MILPs. For 
the sake of the interested reader, we outline this algorithm in Section 12.6.2, 
which may be safely skipped at first reading. The branch and bound method 
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is based on a search tree, on which each node corresponds to a continuous 
relaxation of the original MILP. The important message is that care must be 
taken when formulating MILPs, as tackling them may call for the solution of 
thousands of continuous relaxations to find the optimal integer solution. 

12.1.2 Nonlinear programming problems 

In an LP model, all the functions defining the objective and the constraints 
must be linear (affine). If even one function fails to meet this requirement, 
we face a nonlinear programming problem. For instance, the problem 

min 2xi + 3^2 + 3x3 
s.t. x\ + x\ = 3 

X\ + X3 > 3 
Xl,X2,X3 > 0 

is nonlinear because the first constraint involves a squared decision variable. 
The problem 

min 2x\ + 3x2^3 
s.t. x\ + 2x2 = 3 

X1X3 > 3 
21,2:2,2:3 > 0 

is nonlinear because the objective function involves the product of two de-
cision variables; the second constraint is nonlinear, too. Of course, we may 
have arbitrary nonlinearities in both the objective and the constraints. Now 
consider the nonlinear problem 

min 1x\ + 3x | + 3x12:3 
s.t. xi + 2x2 = 3 

xi + X3 > 3 
xi,X2,2:3 > 0 

We see that the feasible set is defined by linear functions, whereas the objec-
tive function is nonlinear. A more careful look at it, though, should ring a 
bell. The objective function involves quadratic terms and is an example of 
a quadratic form.8 We know that, by introducing a suitable symmetric ma-
trix, a quadratic form can be expressed in matrix form. A generic quadratic 

See Section 3.8. 
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programming problem can be represented as follows: 

min - x H x + e x 

s.t. Ax = b 
D x < e 
l < x < u 

We see that, in general, the objective function may also involve a linear term 
(a constant term is irrelevant, as usual). The leading term includes a factor 
\ that is typically just included for convenience, as in so doing we see that 
the matrix H is actually the Hessian matrix of the objective function. We 
have already investigated convexity and concavity of quadratic forms. As it 
turns out, a quadratic programming problem may be very easy to solve or 
not, depending on these features. We recall convexity in the next section, 
but before that it is useful to consider two practical examples of nonlinear 
programming problems. 

Example 12.5 In Example 8.5 we considered a simple portfolio optimiza-
tion model. We must allocate our wealth among n assets, whose return is 
a random variable i?¿, i = 1, . . . ,n . The decision variables are the fractions 
Wi of wealth that are allocated to each asset; these are also called portfolio 
weights. If we rule out short sales, natural constraints on decision variables 
are as follows: 

n 

t = l 

Wi > 0, i = 1, . . . ,71 

The first constraint ensures that we invest exactly our wealth, no more, no 
less. Nonnegativity constraints on portfolio weights ensure that no asset is 
sold short; we could also require that weights not exceed 100%, but this is 
redundant, given the two constraints above. 

We also know from Example 8.5 that the portfolio return is the random 
variable 

n 
RP — y^Wj-Rj 

t = l 

We cannot really maximize (nor minimize) a random variable, and a thorough 
treatment of this decision problem under uncertainty calls for some tools that 
we introduce in the next chapter. Nevertheless, we might pursue a rather 
simple and intuitive strategy. Most of us are risk-averse decision makers and 
do not want an overly uncertain return, such as the one that would result from 
choosing a very risky portfolio. What we certainly would like is a portfolio 
with a large expected return, but this desire must be tempered by a consid-
eration of the risk involved. Hence, a possible way of framing the problem 
consists of 
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1. Choosing a minimum target expected return /^ 

2. Finding the portfolio with minimum variance, such that its expected 
return is not below the target ì^ 

Taking advantage of what we learned about linear combinations of random 
variables in Chapter 8,9 we recall that the variance of portfolio return is 

( n \ n n 

y ^ WÍRÍ ) =Ó,'Ó wiw3Gij — wTEw 
i = l / »=1 j"=l 

where ó^ = Cov (Ri, Rj) is the covariance of returns Ri and Rj, the sym-
metric covariance matrix Σ collects all such covariances, and w is the vector 
collecting portfolio weights. Let μ, be the expected return of asset i. Then, 
we may formulate the following optimization problem: 

min w Σ\ν 
n 

S.t. ^2 Wißi ^ A*t 
¿=1 

n 

i=l 

Wi>0, i = l,...,n 

It is easy to see that this is a quadratic programming problem, since the 
objective function is a quadratic form and the constraints are linear. Q 

Example 12.6 The EOQ model has plenty of limiting assumptions. One 
of them is that the model considers only one item, neglecting possible in-
teractions with other ones. Furthermore, some assumptions concerning the 
involved costs are questionable as well. For instance, consider the fixed order-
ing charge. Some logistic channels are so efficiently organized that the need 
for including this charge should not be taken for granted. Imagine a retail 
store that receives a shipment each and every day from a large supplier. All 
of the item types are included in that shipment, so there is really no need 
to consider a fixed ordering charge per item; in fact such a charge is shared 
among all of the item types and is incurred anyway because shipments are 
arranged daily. Apparently, this would encourage ordering small lots quite 
often. However, there may be a limit on the total number of orders that are 
issued on the average. One possible reason is that orders must be inspected 
and tracked; if the number of persons in charge of purchasing activities is 
limited, an upper bound on the number of orders will result. 

9See Section 8.3.2. 
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In the age of information systems and certified-quality suppliers, limiting 
the number of replenishment orders that we can issue may not seem warranted. 
However, building a model in this vein will turn out to be quite instructive. 
Then, on the basis of these considerations, let us extend the EOQ model to 
jointly order n items, minimizing the total average inventory holding cost, 
subject to an upper bound on the average number of orders issued over time. 
The information we need consists of 

• The inventory holding cost hi and the demand rate d¿ for each item, 
i = 1 , . . . , n; as in the EOQ model, we assume constant demand rates. 

• The upper bound U on the average number of orders issued per unit 
time. 

The decision variables are the order quantities Qi. The dynamics of inventory 
levels is the same as in the EOQ model. Hence, the average inventory cost 
for item i is hiQi/2, and the average number of orders issued per unit time is 
di/Qi- Summing over items, we obtain the following model: 

1 n 

min - ^2 hiQi 
i=\ 

n j 

i = l V î 

Qi > 0, i - Ι , . , . , η 

In this model, the objective function is linear, but the inequality constraint is 
not; hence, this is a nonlinear programming model. Later, in Example 12.22, 
we will show how such a model can be tackled, along with a quite instructive 
economic interpretation. 0 

12.1.3 Convex programming: difficult vs. easy problems 

Let us consider an abstract mathematical programming problem: 

min / (x) 
s.t. xeSÇR' 

Intuition would suggest that an unconstrained problem, where S Ξ R", is 
much easier to solve than a constrained one. Moreover, the same intuition 
would suggest that the larger the problem, in terms of the number of decision 
variables and constraints, the more difficult is solving it. In fact, this intuition 
is wrong. Some unconstrained problems with a few tens of variables are much 
more difficult to solve than some constrained problems involving thousands of 
variables. The key issue is convexity, which we introduced earlier.10 In this 

(12.14) 

(12.15) 

(12.16) 

See Section 2.11. 
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Fig. 12.5 Global and local optima for a polynomial. 

section we extend those basic concepts a bit, and we summarize their impact 
on the difficulty of solving an optimization problem. 

Solving problem (12.16) means finding a feasible global optimizer of func-
tion / . For readers' convenience, let us review the concepts of local and global 
optimality. 

DEFINITION 12.1 Given the optimization problem (12.16), a points* £ 
S is said to be a global minimizer if /(x*) < / (x ) , for all x G S. We have 
a local minimizer if the condition holds only in the intersection between S 
and a neighborhood ofx*. 

When dealing with maximization problems, we speak of maximizers; in 
general, we look for a global optimizer of the objective function. When one 
speaks of an "optimum," a little ambiguity arises, because it is not quite 
clear whether we mean the optimizer x* or the optimal value /(x*); usually, 
the context clarifies what we really mean. We may also use the notation 
x* = argminx €s / (x) to indicate the optimizer. 

Example 12.7 Consider the following unconstrained problem: 

min f(x) = x4 - 10.5a;3 + 39a;2 - 59.5a; + 30 

The objective function is a polynomial, whose graph is depicted in Fig. 12.5. 
We observe that there are two local minimizers, one of which is also the global 
one, and one local maximizer. The function goes to infinity when x is large 
in absolute value, so there is no global maximizer. D 

With a high-degree polynomial, there are potentially many local maxima and 
minima. Yet, polynomials in one variable are a relatively easy case; their 
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derivative is very easy to find and is just a polynomial of lower degree. There-
fore, application of the stationarity condition requires the solution of a nonlin-
ear polynomial equation. While finding all of the roots of a generic nonlinear 
equation is not easy, efficient numerical methods are available to find all of the 
roots of a polynomial. Hence, we are able to find the whole set of stationary 
points of a polynomial, and it is an easy task to enumerate them to find the 
global optimizer, if any exists. However, this does not hold if we consider 
a function of several variables, with the possible complication of constraints. 
We already know that if a function of a single variable is convex and differen-
tiable, then we do find a global minimizer by looking for a stationary point. 
Indeed, convexity is the basic feature that makes a mathematical problem 
relatively easy to solve. 

DEFINITION 12.2 (Convex and concave problems) Problem (12.16) 
is said to be a convex problem if f is a convex function and S is a convex 
set. Problem (12.16) is said to be a concave problem if f is a concave 
function and S is a convex set. 

Note that we are referring to a minimization problem. If we maximize a 
concave function over a convex set, we are actually dealing with a convex 
problem. Assuming that the optimization problem has a finite solution, the 
following properties can be proved. 

PROPERTY 12.3 In a convex problem a local minimizer is also a global 
minimizer. 

PROPERTY 12.4 In a concave problem the global minimizer lies on the 
boundary of the feasible set. 

The first property essentially says that if we are able to find a local optimizer, 
we are done. The second property may look a bit harder to grasp, but an 
example will illustrate it. 

Example 12.8 Consider the following one-dimensional problem: 

min - (x - 2)2 + 3 
s.t. 1 < x < 4 

This is a concave problem, since the leading term in the quadratic polynomial 
defining the objective is negative, and the second-order derivative is negative 
everywhere. In Fig. 12.6 we show the objective function and the feasible set. 
The stationarity point x = 2 is of no use to us, since it is a maximizer. We 
see that local minimizers are located at the boundary of the feasible set. A 
local minimizer lies at the left boundary, x = 1, and the global minimizer is 
located at the right boundary, x = 4. D 

Concave problems are not easy to solve, even though Property 12.4 helps a 
lot. What we wish for is convexity. In Chapter 2 we gave a general definition 
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Fig. 12.6 A concave problem may have local opt ima, bu t they lie on the boundary of 
the feasible set. 

of convex sets and functions, but how can we check convexity operationally? 
In the case of a convex and differentiable function of one variable, we know 
that convexity is linked to nonnegativity of the second-order derivative. If 
the second-order derivative is strictly positive, then the function is strictly 
convex. The following theorem generalizes the result to a function of multiple 
variables. 

THEOREM 12.5 Consider a function / (x) defined on M.n, and assume that 
its Hessian matrix exists at any point x.1 1 The function is convex if and only 
if its Hessian matrix is positive semidefinite for all x. 

Referring back to Sections 3.8 and 3.9, we do understand what is the basic 
message of the theorem. A quadratic form is convex if its matrix is positive 
semidefinite. A generic function, provided that it is suitably differentiable, can 
be approximated by a second-order Taylor's expansion. If the Hessian matrix 
for all Taylor's expansions, taken at different points x, is always positive semi-
definite, then both the approximation and the original function are convex. 
Prom Section 3.8 we also know that this condition could be checked in terms 
of eigenvalues; more practical checks have been developed, which are a bit too 
technical for our purposes. There are practically relevant cases, in which we 
know for sure that an objective function is convex. 

Example 12.9 In Example 12.5 we considered the constrained minimization 
of variance of portfolio return, which is expressed as w T E w . We know that 

11 The theorem can be stated in a less restrictive way, considering the function on an open 
convex subset of E n , but we prefer a simplified formulation to grasp the basic message. 
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Fig. 12.7 A tangent plane underestimates a convex function. 

the covariance matrix Σ is positive semi-definite for sure, otherwise variance 
could be negative for some setting of weights w. Hence, the minimization of 
variance, subject to linear constraints, is a convex problem. D 

We also know that a differentiable and convex function of a single variable 
has the property that, if we draw the tangent line to its graph at any point, 
this line lies below the function graph everywhere.12 Using Taylor's expansion 
for functions of multiple variables, this property can be generalized as follows. 

THEOREM 12.6 Consider a convex function / (x) defined on M.n, and as-
sume that its gradient vector V/(x) exists at any point x. Then the following 
inequality holds for all x and xo : 

/ ( x ) > / ( x 0 ) + [V/ (xo) ] T (x-xo) 

The theorem can be easily visualized for n = 2, and it states that the function 
graph is always above the tangent plane at any point xo- Figure 12.7 was 
shown in Chapter 3 and is repeated here for readers' convenience; we observe 
that the tangent plane lies below the function graph. 

Visualization in higher dimensions is impossible, but this theorem allows 
to prove very easily that stationarity is a necessary and sufficient condition 

See Fig. 2.28. 



606 DETERMINISTIC DECISION MODELS 

for global optimality in an unconstrained problem involving a differentiable 
convex function. 

T H E O R E M 12.7 If function f is convex and differentiable on Rn, the point 
x* is a global minimizer if and only if it satisfies the stationarity condition 

V/(x*) = 0 

PROOF If / is convex and differentiable, the application of Theorem 12.6 
at point x* yields 

/ ( x ) > / ( x * ) + [V/ (x*) ] T (x -x*) 

for any x. Since x* is a stationarity point, for any x we have 

/ ( x ) > / ( x * ) + 0 T ( x - x * ) / ( x * ) = /(x*) 

i.e., x* is a global minimizer. I 

Necessary and sufficient conditions like the one above are, regrettably, a scarce 
commodity in mathematical programming, unless we require convexity. To 
check convexity of the feasible region S, the following properties are useful: 

• The set of points described by the inequality g(x) < 0 is convex if 
function g is convex.13 

• The intersection of convex sets is a convex set.14 

We see immediately that if we have a set of inequality constraints 

Si(x) < 0, i £l 

the resulting feasible set is convex if all functions gi are convex. The case of 
equality constraints 

h¿(x) = 0 , ie£ 

is not as easy. To see this, let us rewrite the equality constraint as two 
inequalities: 

hi(x) < 0, -Λί(χ) < 0 

We have a convex set only if the function hi is both convex and concave. This 
will be the case only if function hi is affine, i.e., the constraint is of the form 

hi(x) = afx-bi = 0 

See Example 2.34. 
See problem 2.9. 
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Furthermore, any integrality requirement will make the feasible set nonconvex 
as well.15 

The best way to wrap up the contents of this section is to list possible struc-
tures of mathematical programming problems and the corresponding solution 
difficulty. 

• A continuous linear programming problem is both a convex and a concave 
problem, since the objective function is linear. This implies that a global 
optimizer can be found by exploring local optimizers on the boundary 
of the feasible set. The simplex algorithm, described later in Section 
12.6.1, takes advantage of these features. More recently, an alternative 
class of methods, called interior-point methods, has been developed and 
offered in commercial packages. The bottom line is that we are able to 
solve rather large continuous LPs quite efficiently. 

• Mixed-integer linear programming problems are nonconvex. Still, the re-
laxation of integrality requirements yields a continuous LP that can be 
used to find a bound (optimistic estimate) on the value of the objective 
function. This is exploited in branch-and-bound methods, described in 
Section 12.6.2, which are also widely available. Unfortunately, they are 
based on a tree search approach that calls for the solution of a possibly 
large number of LPs. Hence, solving a large-scale MILP to optimal-
ity may be rather difficult. Nevertheless, impressive improvement in 
state-of-the-art packages allow one to find a pretty good, if not optimal, 
solution in many practical cases. 

• Convex, continuous nonlinear programming problems are relatively easy 
to solve, if all of the functions involved are differentiable. We will not 
consider methods for nonlinear programming problems in any detail; 
however, we describe some theoretical concepts in Section 12.5, since 
they have a very nice economic interpretation. There is no standard 
method to deal with nonlinear programming problems, and performance 
may depend on the exact kind of nonlinearity. Commercial tools offer a 
set of algorithms, from which the user should select the most appropriate 
one. Unlike linear programming codes, nonlinear ones require an initial 
solution from which a search process is started; however, if the problem 
is convex, the solution does not depend on this starting point. As a 
general rule, we are not able to solve very large-scale nonlinear problems 
as efficiently as the linear case. An exception is quadratic programming. 

15 Integrality requirements make the feasible set discrete; more precisely, we get disconnected 
subsets, possibly consisting of isolated points. Clearly, lines joining such points do not 
belong to the feasible set, which makes it nonconvex. Furthermore, it is not obvious how 
to define local optimality here, since there is no neighborhood in the sense of Definition 
2.13. The bottom line is that , as a general rule with a very few exceptions, integrality 
requirements make an optimization problem much harder than a continuous one. 
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If the functions involved are nondifferentiable, additional complications 
arise. Luckily, most practical management problems may be formulated 
as LPs or MILPs, at least approximately. 

• Nonconvex, continuous nonlinear programming problems are difficult, as 
a general rule. We may apply standard nonlinear programming meth-
ods, but the solution can be just a local optimizer, and it may depend 
on the initial point that we provide to start the search process. There 
is a set of global optimization methods, which may be rather time-
consuming and are not quite general, as they may apply only to specific 
classes of problems. Still, for moderate-scale problems, we are able to 
find good solutions, even though commercial tools are not as standard 
and robust as in the linear programming case. 

• Nonlinear mixed-integer programming problems are the hardest ones. 
Until recently, no commercial software tool was available. Now, some 
advanced packages are available to solve this class of problems; how-
ever, the problem size we are able to tackle efficiently is limited, and 
robustness may be an issue. 

Prom this discussion, it is clear that there are pretty good reasons to rep-
resent a decision problem as a linear, possibly mixed-integer programming 
problem. Sometimes, we have to approximate the problem a bit to obtain a 
more tractable form. Luckily, there are many modeling tricks that we may 
use to this aim, and in the next sections many of them are illustrated. 

12.2 BUILDING LINEAR PROGRAMMING MODELS 

Continuous linear programming (LP) problems are convex mathematical pro-
grams, for which extremely efficient solution methods are widely available. 
Therefore, real-life and large-scale problems can actually be tackled, provided 
that we are able to cast the decision problem in LP form. To squeeze a 
problem into the LP paradigm, we need the ability of formalizing decisions, 
objectives, and constraints, which is more of an art than a science. The first 
step in learning the art of modeling is to get acquainted with a few standard 
problems, which can be regarded as paradigms, as well as building blocks for 
more realistic and interesting problems. In this section we introduce some of 
these stylized paradigms. Most real-life problems contain part or variations 
of these prototypes as submodels. 

It is also important to draw the line between the abstract form of a model, 
capturing its structure, and the numerical problem to solve when we associate 
numerical information to all required data. It is customary to refer to the 
latter as a problem instance, which should not be confused with the problem 
itself. To illustrate how a problem is stated in its most general form, let us 
consider the familiar product mix problem, which we explored with a small-
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scale numerical example in Section 1.1. To generalize that specific problem 
instance to its general form, we need the following elements: 

1. One or more families of indices to refer to real-life objects, like items to 
be produced and resources to be used. These indices correspond to sets 
and are typically used as subscripts when denoting data and decision 
variables. For instance, in the product mix we will refer to item types 
by subscript i = 1 , . . . , TV, where iV is the number of item types; by the 
same token, we consider M resource classes, indexed by m = 1 , . . . , M. 

2. Then, we must list the data we need to gather so as to specify and solve 
a problem instance. In the product mix problem, we need: 

• Maximum demand, i.e., an upper bound for production and sales 
of each item: <i¿, i = 1 , . . . , Í 

• Contribution to profit pi for each item type i 
• Resource availability Rm (per period) for each resource class m = 

Ι , . , . , Μ 
• Resource consumption r¿TO, for each item type i on each resource 

class m 

3. Last but not least, we need to formalize the decisions we have to make. 
In this case, this task is quite easy, since we have to decide only how 
many items to produce for each item type; hence, the decision variables 
can be expressed as Xi, i = 1 , . . .,N. If production volume is high 
enough, these decision variables can be assumed as nonnegative real 
numbers in R+; otherwise, they have to be restricted to nonnegative 
integers in Z + . 

(Remark: The importance of finding the right decision variables cannot be 
stressed enough. All too often, students struggle hopelessly to build an LP 
model because they fail to clarify which kind of decisions should be made. 
When this is clear, additional variables are typically needed to express con-
straints and objectives. Hence, model building is an iterative process in which 
a first set of "natural" decision variables is found; then, auxiliary variables are 
added when considering each constraint in turn and the objective function.) 

Armed with the notation given above, it is now quite easy to state a general 
product mix problem: 

N 

max 2_]Pixi (12.17) 
¿=i 

JV 

s-t. ^2rimXi<Rm, m = l , . . . , M (12.18) 
i=\ 
0<Xi<du i=l,...,N (12.19) 
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Let us consider each element of the model in more detail: 

• Equation (12.17) is the objective function, i.e., the contribution to profit 
that we want to maximize. 

• Equation (12.18) is a set of constraints, one for each resource class; for 
each m, we cannot exceed resource availability. Here we use a simple 
notation where all of the possible values of index m are listed. Alter-
natively, we could define a set M = {1,2, . . . ,m} and write m G ΛΊ. 
You may also find a more mathematically inclined notation, like Vm or 
Vm G Ë4. Here the universal quantifier V is used, which simply means 
"for all." Then Vm G ΛΊ means "for all elements m in the set Ë4." 

• Finally, Eq. (12.19) states that decision variables are nonnegative real 
numbers not exceeding market limitations <α¿ for each item i. We recall 
that simple lower and upper bounds are typically considered separately 
from more complicated inequality constraints, for the sake of algorithmic 
efficiency. Insisting on the nonnegativity of Xi may seem redundant, as 
they enter an objective function that is maximized. However, if we 
forget that, it may be the case that an item with very low profit margin 
is produced in a negative quantity, in order to create a fictitious capacity 
in (12.18), i.e., to make room for the production of more profitable 
items. If necessary, we may also require integrality of decision variables. 
Enforcing Xi G Z + transforms the continuous LP above into a pure 
integer LP. 

This is a rather simplistic model, but it is useful to state a couple of remarks 
in order to avoid common errors when modeling more complex problems. 

• In an optimization model, there must be a well-defined objective func-
tion. Note that in (12.17) we have a sum over index i. This is the only 
subscript occurring in both pi and x¿; hence, we have a well-defined 
expression. Always make sure that all of the subscripts are "covered" 
by a sum; for instance, an expression like 

N 

Σ <*>·*« (12·20) 
is not a well-defined expression since subscript j is not assigned. By a 
similar token, it does not make any sense to write something like 

N 

max 2_.cijxiji Vj (12.21) 
i= l 

Which sum for which j are we maximizing? We will see later how 
to define multiobjective problems in a meaningful way, but usually an 
expression like Eq. (12.21) is the result of a gross mistake. 
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• Also in constraints we must make sure that all of the involved subscripts 
are "covered." However, in the case of a constraint, subscripts may be 
covered either by a sum or a quantifier (but not both). For instance, 
in (12.18) we have a coefficient r¿m, where subscript i is covered by the 
sum and m is covered by the quantifier. Clearly, you must make sure 
that your use of subscripts makes sense. In this case, we must write 
a capacity constraint for each resource class m; in each constraint, the 
sum must run over the whole set of item types using resource m. Also 
note how the sum couples different products; when capacity constraints 
are involved, we cannot plan production of each item separately, as they 
compete for the use of shared and limited resources. 

Now we are ready to tackle some variations on production planning and some 
different classes of models. 

12.2.1 Production planning with assembly of components 

The naive production mix model is just a starting point in modeling pro-
duction planning, as many issues that make real-life models interesting and 
challenging are blatantly disregarded. We will proceed step by step, showing 
how more realistic features may be represented. In this section we consider 
one such issue, related to purchasing raw materials or manufacturing interme-
diate components. In fact, the product mix model directly relates demand to 
manufacturing of items; this means that we are disregarding the possible pres-
ence of components and subassemblies. As an example, let us consider how 
to generalize the product mix model to a two-level assembly-to-order (ATO) 
model. In an ATO system, we do not produce end items directly. First we 
make (or buy) modules; then, modules and components are assembled into 
end items. If manufacturing such modules requires a relatively long lead time, 
production decisions should be based on forecasted demand. Only when de-
mand for end items is realized (i.e., customer orders are received) is assembly 
started. An ATO system is two-level in the sense that we have production to 
stock for modules, before demand is known, and assembly to order for end 
items. The strategy makes sense when a huge variety of end items results from 
combining a relatively limited number of basic modules. The sheer number of 
possible combinations makes stocking end items impossible or way too costly, 
whereas the time needed to make modules prevents pure production to order. 
The idea is to exploit a risk pooling effect, by which demand for modules is 
much less uncertain than demand for end items. A quite familiar example of 
such a system may be observed when you order a pizza. The wide number 
of end items prevents preparing a pizza before receiving a customer's order. 
However, there is a limited number of basic ingredients, which can be pre-
pared in advance and kept ready for use. A more industrial example is car 
or PC (personal computer) assembly, at least for those producers that offer a 
large degree of customization as a competitive weapon. 
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A true appreciation of the ATO system can be obtained only when account-
ing for uncertainty, something that we defer to chapter 13. Yet, as a first step, 
let us consider an unrealistic case characterized by deterministic and known 
demand for end items. Following the drill we have described before, let us 
define the basic sets we need, and the respective indices. We have 

• A set I of modules, indexed by i 

• A set J of end items, indexed by j 

• A set M of resources, indexed by m 

The data we need to tackle the problem extend what we have seen in the 
product mix problem: 

• We need the demand dj for each end item in J\ note that demand is 
given for end items, not modules. 

• We need to know how end items are assembled starting from modules; 
this means that, in our two-level system, we must specify what in man-
ufacturing parlance is the gozinto factor, i.e., the number gij of modules 
of type i £l needed to assemble one end item of type j G J. This is a 
very simple example of a bill of material (BOM); true BOMs may entail 
many more levels and hundreds, if not thousands, of components. 

• On the economic side, we need to know at which price Pj we sell end 
items, and the cost c¿ of each module. In the naive mix problem, these 
two pieces of information are somehow merged into a contribution to 
profit; but here we make separate production and assembly decisions, 
and their economic features should be kept apart. For the sake of sim-
plicity, we disregard assembly cost. 

• On the technological side, we need the availability of each resource class 
m € A4, as well as the amount r¿m of resource m needed to produce 
one module i. In principle, we should also consider similar data for 
the assembly process. However, for an ATO system to be effective, 
assembly must be rather fast. Hence, we assume that assembly is never a 
bottleneck, or, in other words, that the capacity constraint for assembly 
will never be binding. Whenever we know that a constraint is redundant, 
there are at least a couple of reasons for not including it in the model. 
The first reason is that if a constraint is redundant, then we should 
eliminate it in order to speed up computation. Actually, state of the 
art solvers are able to preprocess a model formulation and to eliminate 
redundant constraints before starting the solution algorithm, but there is 
a second, and maybe more important reason to avoid useless constraint: 
Writing them requires collecting data, which is a costly and wasted 
effort. 

Finally, we need to specify our decision variables: 
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• The amount of modules of type i that we produce is denoted by Xi. 

• The amount of end items of type j that we assemble and sell is denoted 

Arguably, both decision variables should be restricted to integer values; for 
the sake of simplicity, we will assume that a continuous approximation is 
acceptable. It is important to stress that we are dealing with an unrealistic 
model, whereby demand is assumed certain. In real-life ATO systems, these 
two decisions are made at different time instants: We must plan production 
of module now, before we know actual demand; only after receiving customer 
orders do we start assembly. This will be essential later,16 when we show how 
to represent uncertainty in demand. Our first step toward the right direction 
is the following deterministic LP model: 

riax - ^2 cixi + Ó/ viyi 
¿ e i jej 

S.t. / ^ TjrnXj _ ^ l m , 
¿ex 

/ ,, 9ijVj _ xii 
i€J 

0 < Vj < dj, 
Xi > 0, 

Vm e M 

Viel 

Vj€j 
V i e l 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

The objective function (12.22) is the difference between revenue from selling 
end items and cost from manufacturing modules. Constraints (12.23) and 
(12.25) are essentially the same capacity and market limitations as in the 
naive optimal mix model. The only constraint worthy of comment is (12.24), 
which links the two sets of decision variables. By multiplying the number of 
assembled end items by gozinto factors, and summing over end item types, 
we obtain the number of modules of type i needed to support assembly; this 
number is constrained by the number Xi of available modules. The careful 
reader will notice that this constraint could be rewritten as an equality con-
straint, as we will certainly not produce more modules than necessary. This 
is true in the idealized deterministic model, but later we will see that this is 
not the case when demand uncertainty enters the stage. For now, it may be 
useful to consider a toy example and analyze its solution. 

Example 12.10 To set up a small problem instance, say that we own a 
(very) small firm, producing just 3 end item types (Ai, A%, A3), which are 
obtained by assembling 5 component types (ci, 02,03,04, C5). The components 
we use for each end item are described by a bill of materials, which is flat (just 

See Section 13.3.1. 
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Table 12.2 Bill of resources, cost of 
components, and available capacity 
(Cap.). 

Mi M2 M3 Cost 

ci 1 2 1 20 
c2 1 2 2 30 
c3 2 2 0 10 
c4 1 2 0 10 
c5 3 2 0 10 

Cap. 800 700 600 

Table 12.3 Demand and selling price of end items. 

¿1 
A2 

A3 

Demand 

90 
45 
90 

Selling Price 

80 
70 
90 

two levels: end items and components). The bill of materials is given in Table 
12.1. Each entry in the table is a gozinto factor; for instance, to assemble 
an end item of type A2, we need 1 component of type C\, 1 of type c2, and 
1 of type C4. From the bill of materials, we see that there are two common 
components, c\ and c2, while the remaining three are specific and characterize 
each end item. We assume that three resource types (Mi, M2, M3) are used 
for the production of components. Table 12.2 lists: 

• The bill of resources, i.e., the time required on each resource to manu-
facture one component. 

• The available capacity for each resource class. 

• The cost of each component; this cost might include both direct variable 
production costs and material costs. Since we assume that assembly is 
not a bottleneck, we do not list any resource consumption or capacity 
information concerning assembly. 

We note that the cost of every end item type is 20 + 30 + 10 = 60; we do 
not make assembly cost explicit, but that would be easy to include. Other 
relevant data concern demand for end items and the price at which they are 
sold. They are given in Table 12.3. The last column displays the price at 

Table 12.1 Bill of materials for the 
assemble-to-order example. 

A1 

A2 
A3 

C\ 

1 
1 
1 

C2 

1 
1 
1 

C3 

1 
0 
0 

c4 

0 
1 
0 

c5 

0 
0 
1 
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which end items are sold.17 For all of the three end items, the selling price is 
larger than 60, the total component cost; however, A3 looks more profitable, 
because its contribution to profit is 90 — 60 = 30, whereas A2 is the least 
profitable. We recall that this reasoning may be misleading, in that it does 
not take into account resource consumption. Solving the model, we obtain 
the following solution (rounded to 2 decimal digits): 

x\ = 116.67, x*2 = 116.67 

x*3 = 26.67, x\ = 0.00, x*5 = 90.00 

y\ = 26.67, y*2 = 0.00, y*3 = 90.00 

The value of the objective function is 3233.33. In this very small example, 
we may easily interpret what this solution tries to accomplish. We assemble 
the maximum number of end items of type A3, subject to its demand lim-
itation (¿3 = 90, since this is the most profitable one; this requires in turn 
the production of a corresponding number of common components C\ and C2, 
and of specific component C5. Since the market limitation is binding for A3, 
there is some capacity left, which is used to produce a limited amount of the 
specific component C3, which is needed to assemble end item A\, plus the 
corresponding number of common components. End item A2 has the lowest 
selling price and is disregarded, as is its specific component 04. It should be 
noted that, in general, one should not take for granted that the production 
of the highest profit item should be maximized; the consumption of available 
resources should be taken into account as well (as we learned by solving the 
production mix problem of Section 1.2). D 

The numerical solution of this toy example is very easy to interpret, but it 
should also be taken with utmost care. Any experienced production planner 
would be very critical about its "extreme" nature: It is essentially a bet on 
demand of the most profitable item. This might make sense if we are quite sure 
about demand, but what if actual demand turns out to be rather different? We 
might end up with a very large number of unused components, with a possible 
loss. The specific component C5 of A3 is risky, since demand for this item could 
be much lower than expected, but any remaining component of type C5 cannot 
be used for anything else. To add insult to injury, if demand for A3 is low but 
demand for other end items is high, we might lack specific components for A\ 
and A2. If so, we will be unable to use available common components as well. 
We need a way to obtain robust solutions when facing uncertain scenarios. In 
Section 13.3.1 we show one possible approach to accomplish this aim. 

17If we do not want to disregard assembly cost, we may substitute selling price by contri-
bution to profit from assembling and selling an item. 
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12.2.2 A dynamic model for production planning 

In the previous two models for production planning there is a major omission: 
They do not involve any inventory buildup and depletion. From the familiar 
EOQ model, we know that there is one possible reason for building inventory, 
i.e., the presence of fixed ordering cost. A similar reason, which may be more 
relevant when producing rather than just purchasing items, is the need for 
a setup time before starting production. Imagine that whenever you want 
to manufacture red pens you have to carry out a setup of machines, taking 
three hours. Clearly, your production run cannot just last 20 minutes, as you 
would waste a lot of production capacity. Modeling fixed charges and setup 
times calls for binary decision variables, and we will cover such models later 
in Section 12.4.4. 

The EOQ model, by nature, disregards two more possible reasons for build-
ing inventories: 

• Demand uncertainty, which can be hedged by setting a safety stock 
level. We have seen a very simple approach in Section 7.8.2. More 
sophisticated approaches may call for the modeling techniques that we 
describe in the next chapter. 

• Demand variability, which is not necessarily due to uncertainty. In 
Chapter 11 we have considered seasonality in time series, which is a 
kind of predictable variability. Now imagine that demand is perfectly 
known, but features remarkable swings over time. How should we set 
our capacity level? One possibility is to set a production capacity level 
corresponding to peak demand, but when demand is low we incur the 
burden of a lot of expensive resources left unused. Another possibility 
is setting an intermediate production capacity level, building inventory 
when demand is low, and depleting inventory when demand is high. 

In this section we extend the production mix model in order to account for 
predictable demand variability; this is our first example of a dynamic decision 
model. When building a dynamic model, the first issue is whether to repre-
sent a continuous or a discrete time. In production planning, discrete time 
is the standard choice. One good reason is that forecasting models we are 
familiar with are all based on discrete time buckets. Another reason is that 
when planning production with, say, weekly time buckets, we build a plan 
leaving room for lower and more detailed decision levels in charge of execut-
ing it. Given this discussion, the first ingredient that we need is a dynamic 
representation of time and demand. We assume that we have a collection of 
equal length time buckets, indexed by t = 1,2,.. . , T. Let us denote by d¿t the 
demand for item i = 1, 2 , . . . , TV,18 during time bucket t. In this case, we may 

1 8Note that , to be uniform with the way we denote the set of time buckets, we explicitly 
enumerate product types, rather than defining a set I and writing i £ I , like we did in the 
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allow for a time-varying resource availability Rmt of each resource, indexed 
by m = 1 , . . . , M. Doing so, we may take into account several practical issues 
such as time-varying working calendars, holidays, or planned maintenance 
activities affecting production capacity. 

Now what decision variables do we need? Clearly, the production amount 
is time-varying too, and we may denote by Xu the amount of item i produced 
during time bucket t. Now, we may immediately generalize the capacity con-
straints we are familiar with: 

N 

Y^VimXit < Rmt, m= Ι , . , . , Μ , t = 1 , . . . ,T 
¿ = 1 

where r¿m is the amount of resource m required for the production of one 
unit of item i. Do we need some more decision variables? From the EOQ 
model, we know that we must account for inventory holding costs. The most 
natural choice is to introduce a set of decision variables In, representing the 
inventory level of item i, at the end of time bucket t. Please note the difference 
between variables xu and I a: We observe inventory levels only at discrete time 
instants, without checking what happens within each time bucket; hence we 
assume that In refers to the level at the end of each period. By a similar 
token, we do not know exactly when the amount xu is produced within each 
time bucket, nor when demand du is met. We assume that the time bucket is 
small enough that this is no concern and check inventory balance only at the 
end of time buckets. Indeed, the inventory balance is a fundamental equation 
in the model, linking the two sets of decision variables.19 In order to formalize 
inventory balance, we must carefully specify which objective we are going to 
pursue - maximization of profit or minimization of cost - as they need not be 
equivalent. 

The case of profit maximization In the static optimal mix model, what we 
produce and what we sell are the same, since there is no inventory decoupling 
production and sales. In a dynamic model, we need to specify how much we 
sell of each item type i during each time bucket t. Let zu be such a variable. 
Clearly, we cannot sell more than demand, so we should enforce the bound 
zu < du- In order to link all of the variables, we need to formalize a rather 
natural principle: The inventory at the end of time bucket t is the inventory 
at the beginning of time bucket t, plus what we produced during the time 
bucket, minus what we sold during the time bucket. Since inventory at the 
beginning of time bucket t is just inventory at the end of time bucket t — 1, 
we write 

lit = h,t-\ + xu - zu, Vi, t 

ATO case. In practice, the two notations are equivalent and we may choose what we feel 
more comfortable with, case by case. 
19See also Section 2.13.4. 
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Strictly speaking, we made a little mistake as far as time bucket t = 1 is con-
cerned; for the first time bucket, the constraint involves the initial inventory 
level lio, which is not a decision variable and is part of the problem data. All 
the involved decision variables are restricted to nonnegative values. 

To write the objective function, we need some fundamental economic in-
formation concerning each item: 

• The inventory holding cost hi 

• The unit production cost c¿ 

• The selling price p¿, where we assume Pi > Ci 

Then, we may write the following LP model: 

NT NT NT 

max Ó~Ó1ÑßÆßÀ ~ÓÓáß×ßß " Σ Σ ' 1 ' 7 ' ' (12.26) 
¿=1 t = l ¿=1 t = l ¿=1 t = l 

s.t. Iit = h,t-i + Xit - zit, i=l,...,N, t = l,...,T 
N 

"^TimXit < Rmt, m = l , . . . , M , t = l,...,T 
¿=i 
zu < du, i = l,...,N, t = l,...,T 
Xit, Zu, ht > 0 

We may make a few observations: 

• If the capacity constraints are nonbinding, i.e., if coefficients Rmt are 
large enough, the optimal solution is obviously x*t = du- We satisfy 
the whole demand producing just in time. It is the capacity constraints 
that may call for decoupling between production and sales, as well as 
cause some lost demand. 

• Even without solving the model, we may be sure that in the optimal so-
lution I*T = 0, i.e., inventories are depleted during the last time bucket. 
This happens because, as far as the model is concerned, the world stops 
at t = T. This kind of "end-of-horizon" effect may induce some dis-
tortions, unless T is large enough, and the solution we get is applied 
according to a "rolling horizon" strategy. The planning horizon rolls 
forward, in the sense that it initially involves time buckets ( 1 , . . . , T), 
then ( 2 , . . . , T + l ) , ( 3 , . . . , T+2), and so on. Only the decision in the first 
time bucket is actually implemented, as the plan is revised after more 
information about demand is collected. By doing so, it is reasonable to 
expect that the end-of-horizon effect will be less critical; however, if the 
planning horizon is too long, we might lack reliable demand data. 
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The case of cost minimization If we compare the model above with the EOQ 
model, we notice a few fundamental differences. Of course, demand is dynamic 
here, and we might introduce fixed charges or setup costs to make the model 
more complete and perhaps realistic. But a more fundamental difference is 
that when we maximize profit we do not take for granted that demand is fully 
satisfied. On the contrary, in the EOQ model we seek a solution allowing us 
to meet the whole demand, at minimal cost. In order to build a model more 
akin to EOQ, we should enforce full satisfaction of demand: 

zu = du, V¿, t 

Doing so has a significant impact on the objective function. 

1. The first term becomes a constant term, 

NT NT 

ΣΣñίÆη = EE? i ( l i ν 
i=\ i = l ¿=1 i = l 

and it may be dropped from the model. Now we are just maximizing a 
sum of terms multiplied by — 1 ; hence we may transform the maximiza-
tion into a minimization. 

2. By a similar token, the second term, which is related to production cost, 
boils down to a constant as well, since what we produce of each item 
is just the sum of demand over the planning horizon, minus an initial 
inventory /¿oi plus a possible value IÍT, if this is explicitly enforced to 
avoid the end-of-horizon effect. 

So, model (12.26) can be simplified as follows: 

N T 

min Σ ΣhiIi t (12-27) 
s.t. lu = h,t-i + Xit - du, i= 1,...,N, t = l,...,T 

N 

Y^rimxit < Rmt, m = l,...,M, t = l,...,T 
i=\ 

Xit, ht > 0 

In this model, it is important to emphasize the role of the nonnegativity 
condition for inventory levels. This, together with inventory balance, implies 

Ii,t-i + Xit > du 

i.e., production during time bucket t plus inventory carried over from the 
previous time bucket must be enough to cover demand, which is never back-
logged. This opens a thorny practical issue: This model, unlike the previous 
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ones, may fail to have a feasible solution. If demand is too large with re-
spect to available capacity, no algorithm will be able to find a solution. This 
may be rather inconvenient; imagine a production planner sitting in front of 
a computer informing her that, alas, there is no feasible solution. It would be 
nice to get some diagnostic clue about which item or which resource seems 
to be critical and when. Later, in Section 12.3.4, we discuss elastic model 
formulations that are a possible way to overcome this difficulty. 

As a final remark, we may note that, strictly speaking, the introduction 
of inventory decision variables is not necessary. Assuming full satisfaction 
of demand, we may substitute inventory holding with the difference between 
cumulative production and cumulative demand: 

t t 

in = ΣXik ~ Σ d i k + ^ ° ' v¿'t 
fc = l fe=l 

As a general rule, however, model readability should have a higher priority 
than the reduction of decision variables. Many years ago, when problems had 
to be solved by hand, such economies were worth pursuing. With lightning-
fast hardware doing the work for us now, the amount of decision variables 
is much less of a concern. Furthermore, state-of-the-art solvers are able to 
carry out automatic preprocessing of a model, possibly eliminating redundant 
variables and constraints to improve its solvability, before starting the solution 
algorithm itself. 

12.2.3 Blending models 

In the production planning models that we have considered so far, there is 
a very precise way of producing each item type. When producing a car, you 
typically need an engine and four wheels. Factors cannot be substituted; 
there is no way to convince a customer to buy a car with 20 wheels and no 
engine. This is typical of discrete manufacturing, but there are situations 
allowing several ways to produce an item by blending ingredients, provided 
we satisfy the constraints that define an acceptable mix. This happens in 
the oil industry, where different chemical components are blended to obtain 
gasoline meeting some economical and regulatory constraints, as well as in 
certain food industries. In fact, the prototypical blending problem is the diet 
problem. 

Example 12.11 (The diet problem) When specifying a diet, we want to 
make sure that we take a minimum amount of certain nutrients, like proteins 
and vitamins. On the other hand, we want to place an upper bound on other 
elements, like fat and sodium. We obtain such elements by eating different 
foods, that have different prices. Now suppose that we want to find the 
minimum cost diet, such that all of the elements stay within their prescribed 
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bounds. This is a very crude approach, of course, as a diet has many more 
features that we should pay attention to, and we are disregarding the need 
for some day-to-day variation. Yet, it is a good starting point. 

To formalize the problem, we define first the basic sets we are dealing with: 
the set T of elements or nutrients, indexed by i, and the set J of food types, 
indexed by j . The information we need is 

• The cost Cj of each food type j € J. 

• The content o¿j of each nutrient i € I contained in a unit amount 
(measured in weight or volume) of food type j G J. 

• The lower and upper bounds, ¿¿ and w¿, on the daily assumption of each 
element; if one of the two bounds is missing, we may just set it to 0 or 
+00, respectively. 

To specify a diet, we use as decision variable the amount Xj of each food j; € J 
that is consumed per day.20 Then, the model is rather easy to write down: 

min y , cjxj 

s.t. li < y^ aijXj <Ui, i e l (12.28) 

Xj>o j e j 

The model is pretty self-explanatory, but once again we invite the reader to 
observe the use of indices in constraint (12.28). The coefficients aij have a 
double subscript, and one is covered by the sum, while the other one is covered 
by the enumeration of constraints. D 

In the diet problem, the lower and upper bounds are given in absolute 
terms, since we specify the minimum and maximum amounts of proteins that 
one should consume per day. In other settings, blending constraints are more 
naturally expressed in percentage terms. To see a trivial example, imagine 
that you have to prepare a cocktail for your next party, blending three liquors, 
La, Lb, and Lc. The alcoholic content of each of the three ingredients is 
da = 20°, db = 32°, and dc = 55°. You want to keep the damage that 
your guests will inflict on your home to an acceptable level, so the alcoholic 
content of your brew should be in the range between lower bound L = 25° 
and upper bound U = 30°. If we assume that the alcoholic content of the 
mixture depends linearly on the percentage of each ingredient, we have the 
following constraint: 

L < daza + dbZb + dczc < U 

2 0These decisions may be also subject to bounds on certain food amounts, in order to avoid 
a very unpleasing diet. 
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where variables za, Zb, and zc are the percentage of each element in the cocktail. 
However, this is not very operational: If you have a given number of half-
empty bottles of each ingredient, you would like to get a recipe giving you 
exactly how much of each liquor you should use. If we denote by xa, Xb, and 
xc the actual volume used of each liquor, respectively, the constraint above 
can be written as 

j < dgXg + dbXb + dcxc 
Xa i Xb i Xc 

This form is not very pleasing however, as it is nonlinear, but it is very easy to 
get an equivalent linear expression. The amount of cocktail we mix, assuming 
there is no loss in volume, is 

y = xa + xb + xc 

and the constraint above can be written as 

Ly < daxa + dbXb + dcxc < Uy 

The introduction of decision variable y is not strictly necessary, but it helps 
to improve model readability. 

Example 12.12 (Optimal mix in a process industry) Let us write an 
optimal mix model suited for process industries, whereby the blend of raw 
materials to produce end items features some recipe flexibility. We disregard 
capacity constraints, but we assume that raw materials are available in limited 
amounts, and we must make the best of them. Limited availability of raw 
materials may be due to budget limitations in purchasing, limited availability 
on the market, or limited stocking capacity. We have a set T of raw materials, 
indexed by i, and a set J of end products, indexed by j . Let us denote 
by IZj the subset of raw materials that we may use in blending end product 
j . In this simple example we go to the opposite extreme with respect to 
discrete manufacturing with fixed and very rigid bills of materials, as we 
assume that we may use any raw material in the proper subset to blend an 
end product. Real-life problems fall somewhere between these extremes. The 
only constraint we enforce on the mix of raw materials relates to a quality 
measure. Each raw material has some feature, which is measured by a score 
Qi (the larger, the better). When we mix ingredients, the quality score of 
the resulting blend is a linear combination, an average, if you prefer, of the 
scores of the inputs, with weights proportional to the percentage of each raw 
material used. The quality score of each end product must fall between lower 
and upper bounds Lj and Uj. The economic side of the coin is represented by 
the unit cost c¿ of raw materials and the selling price pj of end items. Demand 
for end items is bounded by dj, and raw-material availability is represented 
by inventory level /¿. 

Assuming that we want to maximize profit, which decision variables should 
we introduce? On the commercial side, we must decide the amount of each 
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end product that we blend and sell. Let us denote this amount by j/ j . On 
the blending side, we must decide how much of each raw material i we use in 
blending end product j . Let us denote this variable by Xij, which is defined 
only for i G TZj. We may accomplish our aim by solving the following LP: 

max Ó PjVj - E E C 

iXij jej jeJieUj 

s.t. yj = 2_^ xij> 
ieiij 

LjVj < Ó 1ixij ^ UjVj, 
ieiZj 

/ j -Eij — *i î 
j-.ieiZj 

0 < yj < dj 

•Eij IL·. U, 

Vje J 

VjtJ 

Viel 

Vj, e J 
VjeJ,* :&%, 

(12.29) 

(12.30) 

(12.31) 

(12.32) 

Equation (12.29) is profit, expressed as revenue from sales, minus cost of raw 
materials; note that in the second term we have a double sum, where we first 
sum with respect to end products, and then with respect to each raw material 
that may be used to blend that end product. Equation (12.30) is essentially 
a balance constraint related to conservation of mass; when complex chemical 
reactions are involved, a more careful modeling may be needed to account 
for nonlinearities. Equation (12.31) ensures that quality stipulations are met. 
Finally, Eq. (12.32) ensures that we do not use more raw materials than 
available. The sum in Eq. (12.32) might look odd at first sight; the notation 
j : i £ TZj specifies the indices of end products for which raw material i is 
part of the recipe TZj ; formally, it denotes the subset of j € J such that i is 
in TZj. Note that index i is fixed by constraint enumeration, since we have 
one such constraint for each ingredient, and that by doing so we sum only 
over defined variables x¿j. In practice, this is essentially an inversion of the 
mapping represented by TZj, which maps end item j into the set TZj of raw 
materials; given a raw material i, we want to sum over the set of end items 
that use it.21 

Clearly, this is an oversimplified model. One questionable point concerns 
the cost of raw materials. From the perspective of a static model like this one, 
one could argue that this cost is sunk, and we should not consider it, as there 
is no value in keeping unused raw materials. In a realistic model, we would 

2 1 Some readers might find this way of working with sets a bit abstract. In practice, op-
timization models are expressed using special languages, like AMPL, that describe the 
structure of an optimization model. This structure is matched against data to produce a 
specific problem instance that is passed to a solver. These languages have quite powerful set 
manipulation tools, allowing for the expression of quite complicated models in a remarkably 
transparent way. 
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probably consider time and purchasing decisions; in many settings, the timing 
of purchase is important as some raw materials feature quite significant price 
swings. D 

12.2.4 Network optimization 

Many real-life optimization problems relate with transportation of items on 
a network. This is clearly a relevant class of problems in supply chain man-
agement, but also many telecommunications problems involve networks on 
which data flow, rather than physical commodities. More surprisingly, some 
dynamic problems may be represented as network models on which items flow 
in time, rather than space. In this section we describe two stylized models 
that are building blocks for dealing with more realistic problems. To begin 
with, we should formally define what we mean by a "network." 

DEFINITION 12.8 (Network) A network is a collection of nodes and 
arcs. Let AÍ be the set of nodes, which are typically physical locations. Arcs 
represent links between pairs of locations and are actually pairs (i,j) of nodes. 
If the pair is ordered, we have a directed network; otherwise, we have an 
undirected network.22 In a directed network, arcs have a specific direction 
along which items flow. Let us denote the set of arcs by A, which is a subset 
of the Cartesian product of nodes, Ë Ç Ai x J\f. Numerical information may 
be attached to arcs, such as transportation capacity, and nodes, such as the 
maximum throughput of a logistic facility. 

A very simple two-level network is depicted in Fig. 12.8. This is a kind 
of network considered in our first model, which is known as the transporta-
tion problem, even though it is actually a very simplified view of a real-life 
transportation problem. The network is two-level since we have two disjoint 
sets of nodes: the set S of source nodes and the set T> of destination nodes. 
Referring to the figure, we have S = {A, B, C} and V = {1,2,3,4,5,6}. Ex-
amples of (directed) arcs are (A, 1) and (C, 4); there is no (B, 6) arc. Also, 
when there is no arc connecting two sources or two destinations; we say that 
the network is bipartite. Destination nodes may represent retail stores, which 
are characterized by a demand dj, j € V, measured on a timespan of interest. 
In the prototype transportation model, only one type of commodity is consid-
ered. Source nodes might represent production plants, with a given limited 
capacity i?¿, i 6 <S, measured over the same timespan as demand. For each 
source-destination pair, i.e., for each arc (i,j), i € S, j G T>, we have a unit 
transportation cost c¿j. This is considered as a variable linear cost; clearly, 
this is just a very rough approximation of a real-life transportation cost. The 
transportation problem consists in finding the minimum-cost set of flows, over 

2 2 To be precise, when dealing with an undirected network, we should speak of vertices and 
edges, rather than nodes and arcs. 
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Fig. 12.8 A two-level, bipartite network corresponding to a transportation problem. 

all of the links (i,j), such that demand is met and plant capacities are not 
exceeded. 

To represent the transportation problem as a mathematical programming 
model, we have to find suitable decision variables first. In this case, it is fairly 
evident that we need one decision variable for each link (i, j); let Xij be the 
flow on each arc. The resulting linear programming model is 

min Υ^ Υ^ CijXij (12.33) 
¿es jev 

s.t. ^2xij = dj, V j e D (12.34) 
ies 
Y^Xij<Ri, V ie S (12.35) 
jev 
Xij > 0 

The objective function (12.33) is a sum over all the pairs of nodes, and it 
amounts to the total transportation cost. The expression above assumes that 
there is an arc for any source-destination pair, which need not be the case. 
We could think of associating a suitably high cost c¿j with nonexistent arcs, so 
that they are never used. A possibly more elegant solution is to sum directly 
over the set Ë of arcs: Óç j)eACiJXiJ- The c o n s t r a m t (12.34) ensures that 
demand is met at each destination node, by summing inflows from plants. The 
capacity constraint, limiting outflows from any source, is represented by Eq. 
(12.35). Notice the reversal of roles between subscripts i and j in constraints 
(12.34) and (12.35). This model is extremely simplistic and provides us with 
only a starting point for further modeling. To begin with, it is a static model 
ignoring time patterns in demand (demand variability). In principle, it is easy 
to extend the model to a dynamic one by introducing time-varying demand 
djt and inventory variables at nodes. By the same token, we could consider 
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Fig. 12.9 A network corresponding to a minimum-cost flow problem. 

diversified production costs across the plants, different items or families, and 
a more realistic transportation cost structure, possibly including fixed charges 
and economies of scale. 

Another classical model is the minimum-cost flow problem, which features 
a multilevel network like the one depicted in Fig. 12.9. Sometimes, networks 
are arranged in well-defined layers, which may correspond to factories, ware-
houses, large distribution centers, and retail stores. To be as general as pos-
sible, let us deal with an unstructured network, in which one specific node 
denoted by s is the source of a given flow t, which must be routed to the 
destination node denoted by d. Each arc (i, j) in the network is directed and 
associated with a cost c¿¿, and we want to route the flow from s to d at min-
imum cost. In a generic problem, we might have several commodities, more 
than one source and one destination, as well as capacities on both nodes and 
arcs. Let us consider a basic model, whereby flow on arc (i,j) cannot exceed 
an upper bound M¿J. Like in the transportation problem, we have one set of 
decision variables, the flow Xij on arc (i, j). The only issue with this basic 
minimum-cost flow model is representing conservation of flows at each node: 
The flow going out of a node must equal the flow going into the node. When 
considering in- and outflows, we must account for arcs going into and out of 
a node, plus possible exogenous input and output flows. Let Fj be the net 
outflow of node j € ëß. The conservation of flows at node j reads as follows: 

/ j Xij = / j Xji i Ãj 

Note that if the net outflow Fj is positive, it represents the flow absorbed at 
node j ; if it is negative, it represents flow generated at node j . The left-hand 
side of the equality represents the node inflow, i.e., the sum of flows on all 
arcs (i, j) entering node j . The right-hand side includes the node outflow, i.e., 
the sum of flows on all arcs (j, i) going out of node j , plus the net outflow Fj. 
In the simple network of Fig. 12.9, Fj is zero for all nodes except source and 
destination. With our convention, Fs — —t and F¿ — t, and we may write the 
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model as follows: 

min 2_] cijxij (12.36) 
(i,j)eA 

s.t. ] T Xij= J2 Xji + Fj, VjeTV (12.37) 
(i,j)€A U,i)eA 

0 < Xij < UÍJ, V(¿, j) G Ë 

We express the objective function (12.36) as a sum over the arc set A We 
might also mention that not all of the flow balance constraints (12.37) need 
be written. Summing all of them, we get an identity 0 = 0, implying that 
they are not all linearly independent. We may get rid of any one of them, but 
this is not relevant with respect to model formulation and is accommodated 
by solution procedures. 

The transportation and the minimum-cost flow problems may be solved by 
any linear programming solver. Actually, they have very specific structures 
that may be exploited by special purpose solution procedures. State-of-the-art 
commercial solvers offer such procedures, and are even able to detect network 
structure automatically. Such algorithmic tricks are beyond the scope of this 
book, but there is one more feature that is worth mentioning. The decision 
variables x¿j are not restricted to integer values. However, if all of the problem 
data are integers, it can be shown that the solution of the problem will be 
integer even if we apply a solver for continuous LPs. This depends on the 
peculiar structure of the constraint matrix, which defines a polyhedron whose 
vertices have integer coordinates. Unfortunately this nice property is lost 
when we introduce different commodities in the model, competing for limited 
transportation capacity. 

12.3 A REPERTOIRE OF MODEL FORMULATION TRICKS 

The models we have described in the last section rely on two quite relevant 
limiting assumptions: 

1. They are linear, whereas in real life we deal with economies or disec-
onomies of scale that introduce nonlinearities in the model. Yet, the 
efficiency of LP solvers is so remarkable that, whenever we can, we 
should try to squeeze our model into a linear framework. This is rather 
natural when we have a piecewise linear objective function, as we discuss 
in full generality later, in Section 12.4.7. 

2. They optimize a single objective, which amounts to say that whatever 
criteria we use in evaluating a solution can be aggregated into one func-
tion, usually representing cost or profit. However, we might deal with 
conflicting criteria that cannot be expressed in common monetary terms. 
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Luckily, there is an array of modeling tricks that can be used to partially 
overcome these difficulties. In the next sections we illustrate a few of them, 
in order to show that the LP modeling framework is less restrictive than it 
might appear. We also consider a couple of approaches to deal with multiple 
objectives. Then, we discuss the use of elastic model formulations, as well as 
a general and powerful approach, modeling by columns, which may be used 
to model seemingly tough problems in a very simple way. 

12.3.1 Alternative regression models 

When dealing with simple linear regression, we typically use least squares to 
fit the coefficients of a simple linear model y = a + bx. Given a set of joint 
observations (x¿, y¿), i = 1 , . . . , Í, we define residuals 

ei = Vi-{a + bxi), i — 1,...,N 

and minimize the sum of squared residuals: 

N 

a,b 
min y^ et 

=1 

This is actually a quadratic program, but because of the simplicity of con-
straints, we know from Chapter 10 that a straightforward analytical solution 
is available, lending itself to statistical analysis. However, we also pointed out 
that alternative fitting procedures could be considered:23 

• We may take the absolute value of residuals, rather than squaring them: 

N 

minY^L· - {a + bxt) (12.38) 
a,b ' ' I 

t = l 

• We may also consider the minimization of the worst-case residual: 

min< max y¿ — (a + bxi) > (12.39) 
o,6 1^=1,. ..,JV J 

Neither problem looks linear at all. In the first case, we are dealing with an 
absolute value, which is nonlinear and nondifferentiable. In the second case, 
we have a min-max problem which does look a bit awkward. In fact, both 
are easily converted into LP models by quite useful modeling tricks. 

As a first step, consider the representation of absolute value | x |. The 
number x could be either positive or negative. If we denote its positive and 

See Section 10.1.1. 
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negative parts by x+ = max{0, x} and x Ξ max{0, —x}, respectively, we see 
that x can be written as 

x = x+-x~ (12.40) 

Then, the absolute value can be written as 

\x\=x++x~ (12.41) 

As we already remarked, there is a potential ambiguity in Eq. (12.40), since 
there is an infinite number of ways to express a number x as the difference of 
two nonnegative numbers x+ and x~; for instance 5 = 5 + 0 = 8 — 3. So, it 
seems that we should write a nonlinear constraint like x+ · x~ — 0, to make 
sure that at most one of the two auxiliary variables is nonzero. However, 
since the absolute value enters the objective function (12.38), this condition 
will hold in the optimal solution; if we write 5 = 8 — 3 rather than 5 = 5 — 0, we 
increase the objective function by 6 without changing anything substantial. 
Hence, to cast (12.38) in linear form, we introduce auxiliary variables w^ > 0 
and w~ > 0 for each observation, and transform (12.38) as follows: 

N 
min ^ ( w + + w ¿ ~ ) 

¿=ι 

s.t. u)+ - w~ - yt - a - bxi, i = l,...,N 
w+,wr>0, ¿ = 1 , . . . , JV 

It is important to realize that the decision variables in this model are the 
auxiliary variables wf and w~, and the coefficients a and b; Xi and ν/¿ are 
observed data. 

By a similar token, problem (12.39) may be easily transformed into LP 
form by a standard modeling trick as well. To generalize a bit, let us consider 
the following min-max problem: 

min < max o¿(x) xes \i=i,...,jvMn ; 

The idea is that, for a given x in the feasible set S, we should evaluate each 
function <7¿(x) and pick the largest value; this defines the objective function, 
which should be minimized over the feasible set. To transform the model into 
a more familiar form, let us introduce the auxiliary variable z, and rewrite it 
as: 

min z 
s.t. z>gi(x), i = l,...,N 

x e S 

Depending on the nature of set S and functions g¿ (x), this may be a very tough 
or easy problem. Since the functions involved in (12.39) can be transformed 
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in linear form, we obtain an easy LP: 

min z 
s.t. z > w^~ + w^, i = l,..., N 

w^ - w~ = yt - a - bxu i = 1 , . . . , N 
wf,w¡>0, i = l,...,N 

12.3.2 Goal programming 

The deviation variables that we have utilized in order to formulate alternative 
regression models as LPs have other uses as well. Let us consider a generic 
optimization problem over a feasible set S. A standard complication of real-life 
decision problems is that there is not just one criterion to evaluate the quality 
of a solution, but many. Say that such criteria are represented by functions 
/¿(x), i = É,.,.,Ì. We would like to maximize some of these functions, 
whereas others should be minimized. Needless to say, alternative criteria 
are usually in conflict with each other, and there is no easy way to assess a 
satisfactory tradeoff. In the next section we consider one possible approach 
to multiobjective optimization, and in this section we consider a possible 
alternative, based on setting desirable targets, or goals, for each objective. 

Even though it is impossible to find a solution optimizing all the criteria at 
the same time, we might be able to find values such that we would be satisfied 
with them. Let us denote these target values, or goals, by G*. This means 
that if we could find a solution x G S, such that 

/ i ( x ) = G 7 , i = l,...,M 

we would be satisfied. Most likely, even this is impossible to accomplish, 
but we might settle for a solution with minimal deviations from prescribed 
goals. So, let us introduce deviations w~l and w¡~ from goals, associated with 
penalties P¿

+ and P~, respectively. A goal programming model may be stated 
as follows: 

M 

min ^(P+wî+Prwr) (12.42) 
i = l 

s.t. fi(x) = G; + wf - wr, i = l,...,M (12.43) 
x e S (12.44) 

If the functions /¿ are linear, then this will be an LP problem. The difficulty, 
of course, is setting goals and penalties. For a given function /¿, we need not 
set two positive penalties. If the function is linked to a profit, we need not 
penalize a profit larger than a threshold goal, but we should penalize only 
underachievements. 
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/2(x) 

4 1 ,__V* 

5 8 10 

Fig. 12.10 Illustrating the concept of dominated solution. 

The flexibility in setting goals and penalties might look quite confusing, 
but goal programming might be a useful framework for building an interactive 
decision support tool for an experienced user. 

12.3.3 Multiobjective optimization 

Goal programming is one way of dealing with conflicting objectives, but it 
requires the assessment of weights and targets. Unfortunately, it may be very 
difficult, or even unethical, to figure out weights. As an example, consider 
the tradeoff between the cost of a production process and its pollution level. 
Sometimes, we would like to visualize the tradeoff between conflicting require-
ments. Moreover, it would be nice to see which solutions can be safely ruled 
out, in a sense that we can illustrate by a small example. 

Example 12.13 Consider a problem involving two objectives, / i (x) and 
/2(x), that we wish to minimize. Solutions are best visualized on a plane 
illustrating how solutions score with respect to both objectives. Consider the 
three alternative solutions xa , x¡,, and xc depicted in Fig. 12.10. If we compare 
x a and Xb, which solution is the better one? Actually, it depends on our point 
of view: x a is better in terms of the second objective, since 4 < 9, but x& is 
preferable in terms of the first objective, since 5 < 10. Unless we assign some 
priority or weight to objectives, there is no way to rank the two alternatives. 
However, if we compare x& against xc, the answer should be obvious: x& is 
better from both points of view, so no decision maker interested in objectives 
/ i and fe should choose xc, which is a "dominated" solution. D 

From a mathematical perspective, each feasible solution is characterized by 
a vector of objective values; hence, we could consider a "vector" optimization 
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problem: 

"min" Ν £5 X ! 
s.t. x e S 

However, stated as such, the problem has no meaning, and this is why we use 
"min." As the example above illustrates, vectors are not a well-ordered set. 
Given any pair of distinct points on the real line, we may say which one is 
larger, but we cannot rank vectors on a plane in the same way: The number 
5 is larger than the number 2, but we cannot compare vectors [10 4]T and 
[5 9]T that easily. True, we can say that a vector is longer than another one 
by referring, e.g., to the Euclidean concept of vector length. However, this 
means that we are aggregating different components of the vector into a single 
number, using the Euclidean norm. In multiobjective optimization we could 
consider, e.g., weighted sums to transform a vector of objectives into a single 
one; this operation is called scalarization, as it transforms a multidimensional 
vector into a scalar, i.e., a single number. Choosing a scalarization is easy, if 
we can sensibly aggregate several objectives into a single one. However, this 
may be very difficult to do because: 

• Objectives may be associated with different stakeholders, and assigning 
weights may be a tough "political" decision. 

• Some objectives may be difficult to express and compare on a common 
ground, e.g., money. 

Of course, in the end, we must choose one solution, and this choice may involve 
qualitative and political considerations that do not lend themselves to a quan-
titative assessment; nevertheless, we might try at least to spot the reasonable 
solutions to evaluate the tradeoffs between them. If anything, this should ease 
conflicts, or make them more transparent and objective. The intuition from 
Fig. 12.10 is that we may not be able to spot one "optimal" solution, but at 
least we may eliminate unreasonable alternatives from further consideration. 
In other words, we should just concentrate on efficient solutions. 

DEFINITION 12.9 Given the vector optimization problem (12.45), a fea-
sible solution x* is said to be an efficient24 or nondominated solution, if 
there is no other solution x G S such that 

/ i ( x ) < / i ( x * ) and /2(x) < /2(x*) 

24Often we speak of Pareto efficiency, in honor of Italian economist Vilfredo Pareto (1848-
1923), who studied the allocation of goods among economic agents in these terms. It 
is worth noting that although he is best remembered as an economist, he had a degree 
in engineering. Later, in the 1950s, many scholars who eventually made a big name in 
economics also worked on inventory management and workforce planning. Maybe, this 
lesson in interdisciplinarity has been forgotten in times of over-specialization and "publish 
or perish" (or is it publish and perish?) syndrome plaguing academia. 

(12.45) 
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Fig. 12.11 Schematic illustration of the concept of efficient solution. 

O Dominated solution 

Efficient solution 

1 � 

Fig. 12.12 The efficient frontier in the continuous case. 

with a strict inequality for at least one of the two objectives. The set of 
nondominated solutions is called the efficient frontier. 

The idea may be easily grasped by having a look at Fig. 12.11. We see that 
there is not necessarily one optimal solution, but rather a set of "reasonable" 
solutions to which we may restrict the choice, ruling out dominated alterna-
tives. In a continuous mathematical program, the efficient frontier might be 
a continuous curve, as illustrated in Fig. 12.12. What we can do to help the 
decision maker is to generate the set of efficient solutions, which is a subset of 
the whole set of feasible solutions. To this aim, we can scalarize the problem 
according to some strategy, boiling the vector problem down to a family of 
single-objective optimization problems depending on one or more parameters. 
By changing the parameters, we may trace the efficient frontier. 



634 DETERMINISTIC DECISION MODELS 

Minimization 
\^*· ofscalarized 

objective 

0 Undetected efficient 
solution 

� 

Fig. 12.13 A trivial scalarization may not be able to detect all of the efficient solutions. 

The first and perhaps more intuitive approach is to devise a weighted linear 
combination of the two objectives. We introduce a parameter λ, bounded by 
0 and 1, which expresses the relative importance of the objectives; letting λ 
span its range, we solve a sequence of problems 

min λ/!(χ) + ( 1 - λ ) / 2 ( χ ) 
s.t. KG S 

Note that the parameter λ has no precise economic meaning, as it is just a 
tool for spanning the efficient frontier. This approach is clearly intuitive and 
related to the idea of varying a set of weights. We have the guarantee that 
all of the solutions we generate this way are efficient; however, there is no 
guarantee that all of the efficient solutions will be generated. The issue is 
illustrated in Fig. 12.13, where the dotted lines correspond to level curves of 
the scalarized objective, for different values of weights. It is easy to see that 
two of the three efficient solutions can be detected by changing weights, but 
one cannot. This does not occur in Fig. 12.12, where the plot of the efficient 
frontier looks essentially like a convex function. In a discrete optimization 
case, we cannot be sure to generate the whole efficient frontier by a trivial 
scalarization based on a linear combination of objectives. More complicated 
scalarizations have been proposed to overcome this difficulty. 

An alternative approach is based on the idea of transforming one objective 
into a constraint. In other words, we can optimize f\, subject to the constraint 
that /2 cannot exceed some limit (or vice versa): 

min / i (x) 
s.t. x 6 S, 

/2(x) < h 

xv 

Solving a family of scalar problems for varying values of /2, we may trace the 
efficient frontier. It is worth noting that this second approach does not suffer 
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from the aforementioned difficulty with the weighted combination approach, 
but the most important feature, arguably, is that it is more "readable" for a 
decision maker.25 While the parameter λ has no obvious managerial meaning, 
the value of fa is much more readable; it is a threshold level, which might be 
chosen by having a look at what competitors do. For instance, if we have 
to trade off service level against inventory holding cost, having an idea of 
what service level is offered by competitors helps a lot in choosing a sensible 
threshold. 

12.3.4 Elastic model formulations 

An optimization model need not have a unique optimal solution. As we have 
pointed out in Section 12.1.1, the following can occur: 

• There are multiple optimal solutions. In such a case we may afford the 
luxury of using a secondary objective, which is optimized over the set 
of optimal solutions with respect to the original objective. 

• The solution goes to infinity. If so, it is quite likely that there is some-
thing wrong with the model itself, probably a missing constraint. 

• A common and much less pleasing occurrence, however, is when no 
feasible solution is found, because the constraints are too demanding 
and the feasible set is empty. To see a practically relevant example, 
consider the production planning model (12.27), whereby we want to 
satisfy demand at minimum cost. It is easy to see that if demand is 
too large with respect to available capacity, we may fail to satisfy it 
completely. 

Commercial solvers are able to spot infeasible mathematical programs, but, 
from a practical perspective, we cannot just report that, leaving the decision 
maker without a clue. It would be nice to provide her with some usable 
information about what is causing infeasibility. This can be accomplished by 
an elastic model formulation. For the sake of concreteness, we illustrate the 
approach in the specific case of production planning, but the idea is quite 
general: We relax critical constraints and introduce a penalty term into the 
objective function. In our case, the infeasibility may be regarded as the result 
of excessive high demand or insufficient capacity. We may either relax the 
requirement that demand be completely satisfied, or we may relax capacity 
constraints. 

The first route can be pursued by introducing a decision variable za repre-
senting unmet (i.e., unsatisfied) demand of item i during time bucket t. Now, 
rather than issuing du from inventory during each time bucket, we just issue 

2 5 On the other hand, we should also mention that sometimes the model resulting from a 
convex combination of objectives may be easier to solve from a computational perspective. 
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du — zu- We also need to adjust the objective function by penalizing unmet 
demand; if we fail to do so, the obvious optimal solution would be to just shut 
down production. The resulting model is 

(12.46) 
N T N T 

min y^ y ^ hjljt + ù ̂  ^ zit 
¿=1 i = l i = l t = l 

s.t. In = h,t-i +Xit -du + zu, 
N 

/ J Tjm^it _ Jljnti 

i=l 

0<zit< du, 
%it, lit > 0, 

V Í , Í 

Vm,ν 

V¿,ν 
V»,ν 

(12.47) 

The coefficient ù in the objective (12.46) is a penalty coefficient, representing 
the cost of unmet demand. It is important to stress that ù is not just missed 
profit; if we want to maximize profit, we should use model (12.26). The 
penalty coefficient must be suitably large, so that in the optimal solution we 
have some z*t > 0, only if there is really no way to satisfy demand. Information 
about which items are critical, as well as when they are, allows us to spot 
which customer orders are creating the problem; this is helpful in supporting 
a negotiation process with customers, who may be willing to wait a little more 
for delivery or may accept a substitute product. All of these adjustments 
can actually be modeled and explicitly represented in an optimization model, 
but some decision makers may find themselves in trouble when required to 
quantify the costs of these actions. Of course, if some items are strategically 
more important than others, we may use different penalty coefficients w¿. 

As an alternative, we may relax capacity constraints by introducing auxil-
iary variables Omt- The resulting model is 

N T M T 

min ^2 Σ hiIit + ù Σ Σ 0ii 
i = l t = l m = l Ι = l 

s.t. In = Ii,t-i + xu - du, 
N 

/ J Tim-Kit — *ímt i Umt, 
ΐ = 1 

Ou > 0, 
xu, Ut, > 0, 

Vf,i 

Vm, t 

Vm, t 
Vi,i 

(12.48) 

(12.49) 

(12.50) 

The nonnegative variables Omt play the role of overtime capacity added to 
available capacity Rmt in constraint (12.50) and suitably penalized in the 
objective function (12.49). Observing which resources are critical, as well as 
when they are, may help in figuring out a way out of the dilemma. It is 
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also possible to formulate a planning model allowing for true overtime work; 
in such a case, the variables Omt should be multiplied by the actual cost of 
overtime, rather than by a large penalty coefficient. The model should also 
express limits on overtime, reflecting constraints on the amount and type of 
allowable overtime work. 

12.3.5 Column-based model formulations 

Sometimes, we face management problems with quite complicated constraints, 
which seem to defy the best modeling efforts. Column-based model formula-
tions are a formidable tool, which is again best illustrated by a simple example, 
namely, a stylized staffing problem. 

Imagine that we are running a post office, or something like that, with a lot 
of counters; alternatively, if you prefer, imagine a retail store with cashier's 
desks. During the day, we need not keep a fixed number of desks open; there 
are peak hours at which we need more people, and other time periods at which 
many desks may be left closed without running the risk of customers experi-
encing large waiting times at queues. Suppose that each day consists of eight 
opening hours, t = 1,2, . . . , 8 , and that we have time-varying requirements 
represented by Rt, t = 1 , . . . , 8, i.e., the minimum number of desks/counters 
that should be open during time bucket t. We would like to find the minimal 
number of people to hire, taking into account the constraints on the way shifts 
must be organized. For instance, let us assume that each shift consists of four 
consecutive hours, with one hour of rest that may be either the second or 
the third one. To state it more clearly, the work pattern may be one of the 
following: 

1. Work, rest, work, work 

2. Work, work, rest, work 

The pattern may start at t = 1, 2,3,4,5; of course, no pattern can start during 
the last hours of each day. How many workers should we hire for each possible 
pattern, in order to find a staffing schedule with minimal cost? 

This is a drastically simplified case, but expressing regulatory requirements 
on work patterns is a real-life issue in crew scheduling problems, for both 
airlines and train transportation companies. However, there is a standard 
way to represent the problem in terms of combining columns of a matrix. 
Recall that solving a system of linear equations Ax = b is essentially the 
problem of expressing vector b as a linear combination of the columns of 
matrix A.26 Here we may define a set of columns representing the possible 
work patterns; each column is a vector of 8 elements, which may be 1 or 0, 
where a 1 in position t means that the worker is active during hour t. The 

See Section 3.5. 
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possible patterns are 

1 
1 
0 
1 
0 
0 
0 
0 

1 
0 
1 
1 
0 
0 
0 
0 

0 
1 
1 
0 
1 
0 
0 
0 

0 
1 
0 
1 
1 
0 
0 
0 

0 
0 
1 
1 
0 
1 
0 
0 

0 
0 
1 
1 
0 
1 
0 
0 

0 
0 
0 
1 
1 
0 
1 
0 

0 
0 
0 
1 
0 
1 
1 
0 

0 
0 
0 
0 
1 
1 
0 
1 

0 
0 
0 
0 
1 
0 
1 
1 

There are 10 columns a,·, j = 1 , . . . , 10, that can be grouped into a matrix 
A G M8'10, where element atj is set to 1 if the worker following pattern j is 
active at hour t, 0 otherwise. Let us denote by Xj the number of workers hired 
and following pattern j . The total number of workers active at hour t can be 
written as 

10 

Σ 
¿=1 

atjXj 

and this should not be less than the requirement Rt- We may minimize the 
total cost of staffing by solving the ILP: 

10 

min V^ Xj 
J = l 

10 

s.t. ^2atjxj > Rt, 
¿ = 1 

Xi 6 J+> 

t = l , . . . , 8 

j = l , . . . , 1 0 

In this stylized case, we had just 10 columns. In more practical settings, 
we may have to do with a huge number of columns. Then, it may be a wiser 
strategy to generate only useful columns, which provide us with interesting 
building blocks that we may assemble to solve the overall problem. Such 
columns can be generated dynamically as needed. Quite sophisticated (and 
effective) column generation strategies have been devised to solve seemingly 
intractable problems. As they are typically quite problem-dependent, they are 
beyond the scope of the book, but it is important to understand that quite 
involved constraints may be taken into account in the process of generating 
columns; this level of complexity is separated from the issue of putting building 
blocks together, resulting in a nice decomposition of the overall problem. 

12.4 BUILDING INTEGER PROGRAMMING MODELS 

As we have already pointed out, integer programming models may pop up 
when there is a need to restrict purchase or production decisions to integer 
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quantities, maybe multiples of a standard batch. However, the most common 
reason for using such models is by far the inclusion of logical decisions. In this 
section we use a set of illustrative examples to illustrate the basic techniques 
to represent such decisions by binary variables. 

12.4.1 Knapsack problem 

Let us consider a trivial model for capital budgeting decisions. We must 
allocate a given budget B of money to a set of N potential investments. For 
each investment opportunity, we know 

• The initial capital outlay c¿, i — 1 , . . . , n 

• The profit π* that we will get from the investment (which we assume to 
be certain) 

We would like to select the subset of investments that yields the highest total 
profit, subject to a limited budget B. This looks like a portfolio optimization 
model; the key difference is that our decision must be "all or nothing." For 
each investment opportunity we may decide whether we take it or leave it, 
but we cannot "buy" a fractional share of it. In typical portfolio optimization 
models, assets are assumed to be infinitely divisible, which may often be a 
reasonable approximation, e.g., for stocks, but not in this case. It may be 
helpful to think of our investments as projects that can be started or not. 

The decision variables must reflect the logical nature of our decision. This 
is obtained by specifying the following decision variables: 

Í1 if we invest in project i 
0 otherwise 

Now it is easy to build an optimization model: 
n 

max 2_\ ðß÷ß 
¿=i 
n 

s.t. 2_\CiXi — B 
¿ = 1 

z ¿ e { o , i } 

This model is grossly simplified, but it is a first example of an integer pro-
gramming model; more precisely, it is a pure binary programming problem. 
It is also well known as the knapsack problem, as each investment may be 
interpreted as an object of given value 7r¿ and volume c¿, and we want to de-
termine the maximum value subset of objects that fit the knapsack capacity 
B. A model like this looks deceptively simple. However, it cannot be solved 
by ordinary optimization methods for continuous models. One could think 
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of simply enumerating all of the feasible solutions, which are a finite set, in 
order to spot the best one. Unfortunately, this is not feasible in general, as 
the number of feasible solutions may be very large, even though finite. To see 
this, notice that there are n variables that can take two values; hence, there 
are 2n possible variable assignments. Many of them would be ruled out by 
the budget constraint, but we see that the computational effort of complete 
enumeration grows exponentially with the size of the problem. A possible 
solution approach would be to rank the items in decreasing order of their re-
turn 7r¿/c¿ and selecting them until the budget allows. This would work with 
divisible assets, but it does not guarantee the optimal solution in the discrete 
case. As a counterexample, let us consider the following problem: 

max lCtei + 7x2 + 25x3 + 24x4 
s.t. 2xi + 1x2 + 6x3 + 5x4 < 7 

x ¿ e { o , i } 

The returns are, respectively, 5.00,7.00,4.17,4.80. Hence, according to this 
logic we would select investment 2 first, then investment 1, and we would stop 
there, with profit 17, because no other investment fits the residual budget. 
This is a really bad solution, leaving much budget unused (4 units out of 7). 
There are two solutions that exploit the whole budget: [1,0,0,1], with total 
profit 34, and [0,1,1,0], with total profit 32. In this trivial case it is easy to 
see that the first one is optimal. 

An important property of the knapsack problem is that if we solve its 
continuous relaxation, i.e., we relax the integrality requirement x¿ G {0,1} to 
Xi € [0,1] and solve the problem as a continuous LP, we obtain a solution with 
at most one fractional variable. In the case above, [1,1,0,0.8]. It is easy to 
see that this is the solution we obtain by applying the return-based heuristic 
above, allowing for a fractional investment in the fourth project, which is the 
third one in the ranking, in order to saturate the budget. This property can 
be exploited in ad hoc solution methods for the knapsack problem but, for 
the sake of generality, we illustrate later how the problem can be solved by 
general purpose branch and bound methods (see Examples 12.24 and 12.26). 

12.4.2 Modeling logical constraints 

In the knapsack model, each choice is independent from the other ones, as 
there is no link whatsoever among different projects. It may be the case that 
there are additional constraints on subsets of activities, taking into account 
their mutual relationships and overall requirements. Here are a few examples, 
where binary decision variables Xj are again related to the decision of starting 
activity j : 
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• Exactly one activity within a subset S must start (exclusive OR): 

jes 

• At least one activity within a subset S must start (inclusive OR): 

jes 

• At most one activity within a subset S may start: 

jes 

• If activity j is started, then activity k must start, too: 

Xj 2^ X\z 

All the constraints above may be generalized to more complex situations that 
are relevant, for instance, if you want to enforce qualitative constraints on a 
portfolio of investments or activities. 

12.4.3 Fixed-charge problem and semicontinuous decision variables 

The knapsack model and its variants are pure binary programming models. 
In this section we get acquainted with a quite common mixed-integer model, 
arising when the cost structure related to an activity cannot be represented in 
simple linear terms. The fixed-charge problem is one such case. Let decision 
variable x > 0 represent the level of an activity. The total cost TC(:r) related 
to the activity may consist of two terms: 

• A variable cost, which is represented by a term like ex, where c is the 
unit variable cost. 

• A fixed charge / , which is only paid if a: > 0, i.e., if the activity is carried 
out at a positive level. 

In principle, we could introduce a step function such as 

f 1 if ar > 0 
7 ^ = n -f n 

10 if x = 0 

and express total cost as 

TC(x) = ex + fj(x) 
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Unfortunately, the step function is nonlinear and discontinuous at the ori-
gin, as it jumps from 0 to 1. An alternative representation is obtained by 
introducing the following binary variable: 

Í1 i f x > 0 
1 0 otherwise 

Then we link x and ä by the so-called big-M constraint: 

÷<Ìä (12.51) 

where M is a suitably large constant. To see how Eq. (12.51) works, imagine 
that ä = 0; then, the constraint reads x < 0, whatever the value of M is. 
This constraint, together with the standard nonnegativity restriction x > 0, 
enforces x = 0. If ä = 1, the constraint is cc < M, which is nonbinding if M 
is large enough; in practice, we should take a sensible upper bound on the 
level of activity x. In principle, the exact choice of the big-M is not relevant; 
however, the tighter bound we use, the faster a branch and bound solver will 
be in tackling the problem, as we shall see in Section 12.6.3. Apparently, the 
constraint allows for an absurd solution in which ä = 1 and we pay the fixed 
charge / , but we do not carry out the related activity, i.e., we leave x = 0. 
While it is true that this is feasible for constraint (12.51), a solution like this 
will never be optimal for the objective function 

TC(a;) = ex + ¡ä 

Example 12.14 Suppose that we are given a set of activities, indexed by 
i = 1 , . . . , n. The level of activity i is measured by a nonnegative continuous 
variable Xi\ the activity levels are subject to a set of constraints, formally 
expressed as x € S. Each activity has a cost proportional to the level Xi 
and a fixed charge /¿, which is paid whenever x¿ > 0. Assume that we know 
an upper bound M¿ on the level of activity i, and introduce a set of binary 
variables α¿ to represent fixed charges. Then, we should solve the following 
model: 

n 

min ^2 (cixi + fA) 
i=\ 

s.t. Xi < M¿<5¿, V¿ 
x e S 
Xi > 0, Si e {0,1}, V» 

D 
In the next sections we illustrate a few classical examples of problems involving 
the big-M trick of the trade. Another common requirement on the level of an 
activity is that, if it is undertaken, its level should be in the interval [m¿, M¿]. 
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Note that this is not equivalent to requiring that m¿ < Xi < Mi. Rather, we 
want something like 

Xi e {0}U [m¿,M¿] 

which is a nonconvex set (recall that the union of convex sets need not be 
convex). Using the same trick as above, we may just write 

Xi > m¿5¿, Xi < Miôi 

These constraints define a semicontinuous decision variable. Semicontinuous 
variables may be used, e.g., in the following cases: 

• We are blending an end product by using chemicals, and we have a 
choice between several ingredients; however, there is no point in using 
a very small amount of a raw material, as this implies that some piece 
of blending equipment will get dirty for nothing. 

• We want to build a financial portfolio, but we do not want to include 
assets with a very small weight, as this will just make the portfolio hard 
to manage because of transaction costs that are incurred whenever an 
asset is bought or sold. 

12.4.4 Lot-sizing with setup times and costs 

A classical example involving fixed charges is the lot-sizing model, which is 
essentially a generalization of the basic EOQ model to take into account multi-
ple items, limited production capacity, and time-varying demand. To see why 
such a model arises, note that in the multiperiod planning models (12.26) and 
(12.27) we did not consider at all the need for machine setup before start-
ing production. Suppose that, in order to produce a lot of item i, we need 
to spend a setup time r'im for each resource m. This setup time does not 
depend on the lot size, and it gives us an incentive to stock an item, rather 
than producing it in each time bucket. By the same token, we may have a 
fixed cost fi associated with each setup for item i; this may depend, e.g., on 
material which is scrapped at the beginning of a lot because of the need of 
adjusting machines. In purchasing, setup times play no role, but we may need 
to tackle similar issues, e.g., when there is a fixed component in the trans-
portation cost. The decision of producing a lot of item i during time bucket 
t is a logical decision; either we do it or we do not. Hence, we introduce a 
binary decision variable 

I 1 if we carry out a setup for item i during time bucket t 
Oit = \ 

I 0 otherwise 

and link xit and ¿¿t using the big-M constraint 
xit < Mitón 
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In practice, one way to quantify the big-M is to consider that there is no 
economic reason to produce more than what we can sell in the remaining 
time to the end of the planning horizon; therefore, we may choose 

T 
Mit = YjdiT (12.52) 

T=t 

The resulting model, in the case of cost minimization, is a fairly straightfor-
ward extension of (12.27): 

N T 

min Ó Σ (hiIit + f ^ 
¿=i t= i 

s.t. Iit = Ii,t-i + Xu - du, 
N 

Ó (rimXit + r'irnXit) < Rmt, 
i=l 

xu < Mitón, 
xu, Zit, Ut > 0; 6it e {0,1} 

This is a rather innocent-looking MILP problem, which can be solved by 
commercial branch and bound code. In practice, it is very hard to solve 
to optimality; in Section 12.6.3 we consider a suitable reformulation that 
improves model solvability considerably. 

12.4.5 Plant location 

In the network optimization models of Section 12.2.4, we have taken the net-
work structure as given. Hence, the decisions we had to make were tactical 
or operational, and just linked to flow routing. However, at a more strategic 
level, we have to make decisions concerning; 

• The location (or relocation) of production plants 

• The sizing (or the expansion) of production capacities 

• The capacity and location planning for distribution centers 

• The allocation of retail stores to distribution centers 

As far as the last point is concerned, we have considered a purely exogenous 
demand, which should be met at minimum cost. However, there are problems, 
such as the location of retail stores, in which the demand is a result of our 
decisions. 

What we describe here is a straightforward extension of the transportation 
problem, whereby source nodes are just potential locations of plants. We 
should decide where a plant must be opened, within a set of predefined options, 

(12.53) 

i = l,...,N, i = l , . . . , T , 

m = Ι , . , . , Μ , ί = 1, . . . , T 

i = l,...,N, t = l , . . . , T 
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taking into account the related costs. Such decisions, as well as the related 
variables, are logical in nature: Either we open a plant, or we do not. This is 
a typical setting in which binary decision variables are used: 

( 1 if source node i is opened 
0 otherwise 

When opening a plant, the related costs include a fixed component, linked to 
the binary decision variables j/¿. Finding a good solution calls for trading off 
the cost of opening a plant against transportation costs. In fact, to minimize 
the transportation cost, we should open plants close to destinations, but this 
increases the cost of the network structure. We should also note that there 
is a timing difference between the two decision levels. We open plants now, 
and then we transport items over a possibly long time period. Therefore, 
when considering a fixed charge for opening a plant, we must be careful and 
make it comparable to transportation costs; we should transform a one-time-
only cost into a kind of per-unit-of-time fee, say, a monthly or yearly fee. If 
we measure demand and transportation costs on some time unit, we must 
somehow amortize opening costs to make all of them comparable. Doing so, 
we end up with a fixed charge for operating plant i, denoted by /, . The 
classical plant location model, where one item type is considered, has the 
following form: 

min Ó fiVi + Σ Σ CiiXii (12.54) 
íes íes j€V 

s.t. yja;¿j = c?j, Vj£T> 
ies 
Y^Xij^RiVi, Vie<S (12.55) 

Xij>0, in e { 0 , i } 

Comparing this model against the transportation problem, we see two basic 
differences: 

1. There is an additional term in the objective function (12.54), related to 
fixed charges. 

2. The capacity constraint (12.55) does not include a given capacity, but a 
capacity depending on our strategic decisions. If a plant is not opened 
(¡ji = 0), there can be no flow going out of the corresponding node. 

Since the model includes binary decision variables, it must be solved by mixed-
integer programming methods such as branch and bound. Leaving solution 
issues aside, it is important to realize that the main difference between the 
two sets of decision variables is not really due to integrality requirements. One 
set of variables is related to strategic decisions, which are not easy to change 
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on a short timescale; these should be considered as design variables, and are 
the true output of the model. Another set of variables is related to tactical 
decisions: Transportation decisions, should the demand pattern change, can 
be adapted on a short notice, subject to plant capacity constraints; these 
should be considered as control variables. The flow variables x¿¿ are not meant 
for immediate implementation. Rather, their role in a strategic model is to 
"anticipate" the effects of tactical decisions that will be made later. Therefore, 
the second term in the objective function (12.54) is actually an anticipation 
function. Such functions are common in hierarchical optimization models, 
where we need a link between different decision layers. Such a link will be 
approximate in nature, but we should mention that in the basic plant location 
model we are making two gross mistakes: 

• On the one hand, we assume deterministic demand, but since the time 
horizon is relatively long, we should consider an uncertain demand. 

• On the other hand, a linear cost structure cannot account for economies 
of scale which may characterize true transportation costs. Hence, the 
anticipation function should be nonlinear. 

Later, we will see how such limitations can be overcome. 

12.4.6 An optimization model for portfolio tracking and compression 

The portfolio optimization model that we have considered in Example 12.5 
does not place any restriction on the composition of the portfolio. In prac-
tice, bounds are enforced, e.g., to limit exposure to certain risk factors; for 
instance, we might wish to limit exposure to emerging markets or to the en-
ergy sector. Another practical issue that is worth mentioning concerns the 
cardinality of a portfolio, i.e., the number of different stock names that we 
include. If we have a universe of n assets, indexed by i = 1 , . . . , n, enforcing 
a cardinality constraint means limiting the number of assets with a positive 
weight in the portfolio. This aims at simplifying portfolio management and 
the analysis of the related risk, but arguably the best reason for considering 
cardinality-constrained portfolios is index tracking. In fact, equilibrium mod-
els like CAPM, if taken literally, imply that there is no way to systematically 
outperform the market. Hence, a sensible strategy is to invest in a way that 
mimics a broad market index. However, doing this might require the inclusion 
of too many assets in the portfolio, with a possible increase in management 
and transaction costs, which is really unpleasing in a portfolio just tracking an 
index, since its main virtue should be a low cost; indeed, since this is a passive 
management style, there is no reason why a customer should pay high fees, 
which can only be justified by an active strategy based on thorough financial 
analysis. 

Based on these considerations, we want to build a portfolio tracking a 
target portfolio with a limited number of assets. This is also called portfolio 
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compression, and the target portfolio can be an index or whatever you like. As 
usual, we denote the random return of asset i by ρ¿ and its weight by u>i > 0, 
ruling out short selling. We are also given the composition of a benchmark 
portfolio, expressed by weights w\. The return of our portfolio is 

n 
Rp = y^WjRj 

¿=i 

and the return of the benchmark portfolio is 

n 

¿=i 

We want to track the benchmark with a cardinality-constrained tracking port-
folio, i.e., a portfolio including at most Cm a x assets. 

The first thing we need is a way to measure the distance between our 
portfolio and the benchmark. A trivial distance metric can be defined, based 
on absolute values of portfolio weight discrepancy:27 

n 

By proper model formulation, this metric yields a MILP model. However, 
this distance metric does not take into account many important facets of the 
problem. To see this, consider two assets, i\ and ¿2, with a strong positive 
correlation, and assume that w\ = 0.07, w\ = 0.04. The trivial distance 
measure above would include the following two terms: 

wh - 0.07 + wi2 - 0.04 

If Wi1 =0.11 and u>¿2 = 0, how much is the distance from the target? In the 
limit, if the correlation coefficient is Pilti2 = 1, the actual distance is zero, but 
the above distance misses the point completely. Hence, we might consider 
correlations and covariances as well, and focus on actual portfolio return. An 
alternative distance metric is tracking error variance (TEV), defined as 

TEV = Var (Rp - Rb) 

2 7 In fact, this is an alternative norm to the Euclidean one, which squares differences. Some-
times the norm based on absolute values is referred to as L\ norm, whereas the Euclidean 
norm is the L2 norm. 
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To relate TEV to portfolio weights, let us rewrite its definition and use what 
we know about linear combinations of random variables: 

TEV = Var 

Var 

]PWiRi - ] T wbiRi 
.i=l i=l 

n 

Σ (m - ™ϊ) Λ, 
¿=1 

¿=1 j = l 

where ó^ is the usual covariance between the returns of assets i and j . 
In order to express the cardinality constraint, we need to introduce a set 

of binary variables <5¿, one for each asset, modeling the inclusion of asset i in 
the tracking portfolio: 

ä, 
1 if asset i is included in the tracking portfolio 
0 otherwise 

Binary variables <5¿ and continuous variables Wi should be linked by a big-M 
constraint such as 

Wi < Moi 

where M is the by now familiar suitably large constant. A natural choice is 
to set M — 1, as no portfolio weight should exceed 100%. Since we know 
that performance of branch and bound methods depends on the strength 
of the continuous relaxation, the model can be improved by tightening the 
constraint; if we know that, because of policy restrictions, there is an upper 
bound Wi < 1 on the weight of asset i, we may write the constraint as 

Wi < WiSi 

Straightforward minimization of TEV, subject to a cardinality constraint, is 
accomplished by the following model: 

min 2~] /".A^i — w>i)crij('wj ~ w 

i=l j = l 

(12.56) 

s.t. Σ™' = 1 
¿=1 

¿=1 

Wi < WiSi, 

Wi>0, ¿i G {0 ,1} , 

Vi 
Vt 
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This model is a mixed-integer quadratic programming problem. Since the 
covariance matrix is positive semidefinite, the continuous relaxation of binary 
variables (¿¿ S [0,1]) yields a convex quadratic program which is solved very 
efficiently. In fact, recent commercial software packages can tackle the prob-
lem; for large-scale problem instances, specific approximate algorithms have 
also been devised. 

12.4.7 Piecewise linear functions 

Sometimes, there are nonlinear relationships between variables, which cannot 
be disregarded, as forcing the problem into a linear framework would result in 
a blatantly inadequate model. For instance, we may have to do with economies 
or diseconomies of scale: 

• The total transportation cost may depend in a nonlinear way on the 
volume of shipped goods on a timespan of interest. 

• The cost of purchasing items may be affected by volume discount op-
portunities. 

• The transaction cost of a trade on financial markets may depend on the 
amount that we buy or sell. 

One possibility would be to resort to nonlinear programming solvers to cope 
with a nonlinear formulation. Unfortunately, there are two possible compli-
cations: 

• The model may involve integer variables, and solvers for nonlinear inte-
ger programming are nowhere as fast and robust as the linear ones. 

• We may need to minimize a concave cost function, which makes the 
overall problem nonconvex; the net result is that commercial solvers 
may get trapped in a locally optimal solution. 

An alternative strategy is to approximate the nonlinear cost function, or the 
nonlinear link between decision variables, by a piecewise linear function. In 
the following, we will consider the case in which a nonlinear function y = f(x) 
describes the cost of an activity carried out at level x. We may fix a few se-
lected points ÷(÷\ evaluate the corresponding values yW = f (χΜ), and inter-
polate linearly between points (a;M,yM). Such points are usually referred to 
as knots. A few examples are shown in Fig. 12.14. We see that the points x^ 
are the breakpoints separating subintervals on which the function is linear. 
We also see that we may get a convex function, or a concave one, or a function 
that is neither convex nor concave. There are several strategies to choose the 
number of knots and placing them in order to find a satisfactory approxima-
tion of the function. In other cases, a piecewise linear function arises naturally 
in the application, as in the case of a supplier offering discount opportunities 
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xm /2) *(3) 

(a) 
(b) 

(c) 

Fig. 12.14 Piecewise linear functions: (a) convex, (b) concave, (c) neither convex nor 
concave. 

based on volume; then, the breakpoints specify a price schedule depending on 
the number of purchased items. As far as we are concerned, we assume that 
we are given a list of knots describing the function or, alternatively, a list of 
breakpoints and slopes. 

Consider the function in Fig. 12.14(a). Rather than giving the list of knots, 
we may list breakpoints (a^1), x^2\ x^) and slopes {c\, c2, C3, C4). Note that, 
without loss of generality, we assume that the function graph starts at the 
origin. The function could be described as follows: 

fix) = { 

ax, 
c2 (÷-÷^) +da : ( 1 ) , 
es (x - ÷®>) + clXM + c2 (a;(2> - a;*1)) 
C4 (a: - x^) + clXW + c2 (XW - a « ) 

+c3(xW-XW), 

χ ^ < χ < χ ( 2 ) 

XW<x<XW 

x > xW 

Of course, this is correct if the function is continuous. If c\ < c2 < C3 < C4 
(increasing marginal costs), then f(x) is convex [Fig. 12.14(a)]; if c\ > c2 > 
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C3 > C4 (decreasing marginal costs), the function is concave [Fig. 12.14(b)]; for 
arbitrary slopes c¿, the function is neither convex nor concave [Fig. 12.14(c)]. 

The convex case is easy and it can be coped with by continuous LP models. 
The function f{x) can be converted to a linear form by introducing four 
auxiliary variables z\, z2, 23, 24, one for each subinterval. Then, we can express 
x as the sum of each single piece: 

x = z\ + z2 + 23 + ZA (12.57) 
0 < zx < z ( 1 ) 

0 < z2 < (x<2> - a:'1*) 

0 < z 3 < ( x ( 3 ) - z ( 2 ) ) 

0 < Zi (12.58) 

Finally, the function f(x) is rewritten as 

f(x) — C\Z\ + C2Z2 + C3Z3 + C4Z4 

The approach is correct if the auxiliary variables in Eq. (12.57) are activated 
in the right sequence. Clearly, z2 should be positive only if z\ is at its upper 
bound; 23 should be positive only if both z\ and z2 are at their upper bounds, 
etc. Since the slopes are increasing, we are sure that this is the case at the 
optimal solution. There is no incentive to use the more expensive variable z2 
rather than z\, unless the latter is saturated. Hence, if we have a piecewise 
convex function, the whole model can be reformulated as an LP problem. 

Unfortunately, if the function is not convex this is not guaranteed at all. If 
c2 < c\, then the solver will use the cheaper variable z2 before z\. This is no 
surprise, after all; if the problem is nonconvex, there is no way to express it as 
a convex LP problem. However, we may trade one nonconvexity for another 
one, i.e., we may devise a modeling trick based on binary decision variables. 
To get a clue on how a general piecewise linear function may be modeled, it 
is more convenient to describe the function by the list of its knots [x^l\ y^), 
where j/M = / (a;W). An example is shown in Fig. 12.15. There, we have four 
knots for i = 0,1, 2,3. Now consider the line segment from knot (x^%\y^) to 
knot (a;(¿+1),y( i+1)). From our knowledge of convex sets, we know that this 
line segment can be expressed by taking a convex combination of its extreme 
points: 

x = \x(i) + (1 - A)z ( i+1) 

y = AyW + (1 - A)y(i+1) 

where 0 < λ < 1. Now, what about forming a convex combination of the 
four knots? If we take a linear combination of four points, with nonnegative 
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Fig. 12.15 Modeling a piecewise linear function. 

weights adding up to 1, we have 

3 

i=0 

i=0 
3 

£ ^ = 1, A¿>0 
i=0 

However, this is not really what we want, since by doing so we obtain the 
convex hull of the four knots, i.e., the shaded area in Fig. 12.15. However, 
we are close to accomplish our aim. What is wrong with the convex hull? 
The issue is that we take a convex combination of four points, but we should 
only take a combination involving two consecutive knots, in order to describe 
each linear piece. So, we should allow only pairs of "adjacent" coefficients A¿ 
to be strictly positive. This is accomplished by introducing a binary decision 
variable s¿, i = 1, 2, 3, for each line segment (i — l,i). Then, we may describe 
the nonlinear link between x and y = f(x) by the following set of constraints: 

3 

x = J2 XiX{i) 

¿=0 
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0 < ë0 < Si 

0 < λι < si + s2 

0 < λ 2 < S2 + S3 

0 < λ 3 < S3 

3 

Σ * = ι, s¿e{o,i} 
i= l 

We see that if si = 1, we can only combine knots for i = 0 and i = 1, i.e., we 
describe the first linear piece. If s2 = 1, we can only combine knots for i = 1 
and i = 2, i.e., we are on the second linear piece, and so on. 

The overall model is a MILP problem and we see that the nonconvexity of 
the cost function has been replaced by a nonconvexity in the feasible set, as 
we have introduced binary decision variables. Branch and bound codes are 
able to cope with the model above, and there is a clear tradeoff between the 
accuracy of our approximation of the nonlinear function f(x), which would 
require as many knots as possible, and the need of keeping the number of 
decision variables as low as possible. The transformations above may look 
a bit tricky, but luckily many commercial tools allow the user to describe a 
piecewise linear function in readable terms, involving breakpoints and slopes; 
then the software is able to build the corresponding model, invoking the LP 
solver or the MILP one depending on the convex or nonconvex nature of the 
function involved. 

12.5 NONLINEAR PROGRAMMING CONCEPTS 

In this section and the next one, we consider the solution of a mathematical 
programming problem. We will do so essentially for linear programs, contin-
uous and mixed-integer ones, but it is also important to get a feeling for more 
general, theoretical concepts in nonlinear programming. We will not cover 
nonlinear programming methods, but we will stress the economic interpreta-
tion of some fundamental concepts. 

The constrained optimization problem 

min / (x) (12.59) 
s.t. hj(x) = 0, j = l , . . . , r a 

Sfc(x) < 0 , k= 1 , . . . , / 
is a nonlinear programming problem if even one function among / , hj, or gk 
is nonlinear. A stationarity condition for the objective function does not help 
in finding an optimizer; to see why, a look at the following counterexample 
suffices: 

min x2 

2<x<3 



654 DETERMINISTIC DECISION MODELS 

The function is stationary at the origin, but this point is outside the feasible 
region. The obvious optimizer x* = 2 is not a stationarity point, and it is the 
lower bound on x that determines the optimal solution. However, assuming 
that all of the involved functions are well-behaved enough, in terms of dif-
ferentiability, we can try to generalize stationarity concepts to find candidate 
optimal points. 

12.5.1 The case of equality constraints: Lagrange multipliers 

For the sake of simplicity, we start by considering the equality constrained 
case: 

min / (x) (12.60) 
s.t. hj(x)=0, j = l , . . . , m 

which can be dealt with by the classical Lagrange multiplier method. 

THEOREM 12.10 Assume that the functions f and hj in problem (12.60) 
meet some differentiability requirements, that the point x* is feasible, and 
that the constraints satisfy a suitable regularity property in x*. Then, a nec-
essary condition for local optimality of x* is that there exist numbers X*j, 
j = 1 , . . . , m, called Lagrange multipliers, such that 

m 

ν/(χ*) + Σë;ν/ι,·(χ*) = ï 

The reader has undoubtedly noticed that we have been very loose in stating 
the conditions of the theorem. In fact, our aim is just to appreciate the 
concept of Lagrange multiplier and its economical interpretation, and we can 
do it without getting bogged down in too many technicalities. However, it 
is important to realize that the theorem is somewhat weak. It holds under 
technical conditions,28 which we do not describe in detail; furthermore, it is 
only a necessary (hence, not sufficient) condition for local (hence, not global) 
optimality. The good news is that it can be shown that the condition of 
the theorem is necessary and sufficient for a convex optimization problem, 
assuming differentiability of the involved functions. 

28Differentiability is an obvious requirement, since if it does not hold, we cannot take the 
derivatives involved in the condition. The "regularity" conditions are known in the literature 
as constraint qualification conditions and assume many forms. One such condition is that 
the gradients of functions hj are linearly independent at x*. That this condition makes 
some sense is not too difficult to understand. The stationarity condition in Theorem 12.10 
states that the gradient of the objective can be expressed as a linear combination of the 
gradient of the constraints. There are cases in which this is impossible; one such case occurs 
if the gradients of the constraints are parallel, as shown later in Example 12.17. 
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To interpret the condition above, we may observe that it generalizes the 
stationarity condition; the trick is requiring stationarity not for the objective 
function, but for the following Lagrangian function: 

m 

£(x, λ) = / (x) + Ó XihJ « = / W + * T h (x ) (12.61) 
3 = 1 

In practice, the "recipe" requires us to augment the objective function by the 
constraints, which are multiplied by the Lagrange multipliers, and to enforce 
stationarity both with respect to the decision variables x: 

m 

V x £(x, λ) = V/(x) + Ó A J V M X ) = ° (12.62) 

and with respect to the multipliers, which actually boils down to the original 
equality constraints: 

VA£(x,A) 
Λι(χ) 
Λ2(χ) (12.63) 

The mechanism can be best clarified by an example, but it is important to 
note that the conditions above yield a sensible system of equations. We have 
n decision variables and m equality constraints (m < n); Eqs. (12.62) and 
(12.63) yield a system of n + m (possibly) nonlinear equations to find the n 
values x* and the m multipliers λ^. 

Example 12.15 Consider the quadratic programming problem: 

min x\+x\ (12.64) 
s.t. 2:1+2:2 = 4 (12.65) 

Since this quadratic form is convex, we may use Theorem 12.10 to find the 
global optimum. We associate the constraint with a multiplier A, and form 
the Lagrangian function: 

£(Χι, X2J λ) = x\ + x\ + ë{×À + 2 : 2 - 4 ) 

The stationarity conditions, 

dc n , n 
— = 2x! + λ = 0 
OX 1 
r\ p 

—- = 2æ2 + ë = 0 

ÖX2 

^ - = 2 : 1 + 2 : 2 - 4 = 0 
óë 
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are just a system of linear equations, whose solution yields n — 2 and 
λ* — —4. We may notice that the equality constraint can also be written as 
4 — x\ — X2 = 0; if we do so, we have only a change in the sign of the multiplier, 
which is inconsequential. u 

Proving Theorem 12.10 rigorously would call for some additional concepts 
beyond the scope of the book, but we may at least get a better feeling for it by 
trying a justification based on Taylor's expansions. How can we characterize 
the optimal solution x*? It should be a point such that there is no way of 
improving it, without violating constraints. If we want to improve on x*, we 
should look for a displacement e, such that 

/ ( x * + e ) - / ( x * ) < 0 (12.66) 

This condition characterizes e as a descent direction. Of course, the new 
solution must be feasible, i.e., for each equality constraint we must have 
hj(x* + e) — 0. If we apply Taylor's expansion to constraints, we obtain 

fy(x*+e)»fy(x*)+ [V/i*]Te 

where V/i* is a shorthand for the gradient at the optimal point, V/iJ = 
V/ij(x*). But since x* is feasible, this boils down to 

[V/i*]Te = 0 (12.67) 

This condition characterizes feasible directions and states that the displace-
ment must be orthogonal to the gradient of the constraints. If we also apply 
Taylor's expansion to the objective function, we may rewrite (12.66) as 

/(x* + e) - / ( x · ) « [V/*]Te < 0 (12.68) 

The two conditions (12.67) and (12.68) are not compatible if the gradient 
of the objective at x*, V/*, is a linear combination of gradients of the con-
straints: 

m 

v / * + Σ xjvh*j = ° (1 2·6 9) 
J ' = l 

In fact, if we take the inner product of both sides of Eq. (12.69) with e, we 
find: 

m 
[V/*]re + Ó X*[Vh*}Te = 0Te = 0 

If Eq. (12.68) holds, then e cannot be a descent direction. But Eq. (12.69) 
is exactly the requirement of Theorem 12.10. It is important to stress that 
this is no rigorous proof at all, but only a heuristic justification. In fact, it 
may give the impression that the stationarity of the Lagangian is a sufficient 
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Fig. 12.16 A quadratic programming example: geometric interpretation of Lagrange 
conditions. 

condition for local optimality, whereas it is actually a necessary condition, as-
suming regularity of constraints. A correct proof requires the implicit function 
theorem, which is beyond the scope of this book. However, this justification 
does provide us with some value, as shown in the next example. 

Example 12.16 We may get an intuitive feeling for the Lagrange conditions 
by taking a look at Fig. 12.16, where we see the level curves of the objective 
function (12.64) of Example 12.15, a set of concentric circles, and the feasible 
region corresponding to Eq. (12.65), a line. From a geometric perspective, 
the problem calls for finding the closest point to the origin on the line x\ + 
X2 — 4. We note that the optimizer is where this line is tangent to the level 
curve associated with the lowest value of the objective. From an analytical 
viewpoint, the gradient of the objective function / (x) = x\ + x\ is 

V/ (x i ,x 2 ) 

This gradient, changed in sign, is a vector pointing toward the origin, which 
is the steepest-descent direction for the objective. At point x* = (2,2) the 
gradient is [4, 4]T . The gradient of the constraint /i(x) = x\ + X2 — 4 is 

� df_ -
dx\ 

df 
. ÔX2 -

' 2xi 

2x2 

Vh{xi,x2) — 

- dh � 
dx\ 

dh 
. dx2 . 

' 1 " 
1 
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Note that this vector is orthogonal to the feasible region and is parallel to 
the gradient of the objective at the optimizer. If we multiply the gradient 
of the constraint by λ* — —4 and we add the result to the gradient of the 
objective, we get the null vector, as required. Actually, all of this boils down 
to requiring that the negative of the gradient, — V/*, which is the steepest de-
scent direction, be orthogonal to the constraints at the optimizer; this means 
that further improvements could be obtained only by going out of the feasi-
ble region, which is forbidden. The last condition is what characterizes the 
optimizer. 

If we consider point (1,3) on the line, the negative of the gradient there 
is [—2, —6]T which points towards the origin but is not a feasible direction. 
However, we may decompose this vector as 

" - 2 ' 
- 6 = 

' - 4 ' 
- 4 + 2 

- 2 

The first vector is parallel to the gradient of the constraint, and it is an infeasi-
ble direction; the second vector is orthogonal to the gradient of the constraint, 
and it is the feasible component of the objective gradient, representing a step 
along the line. This decomposition in a feasible and infeasible component of 
the desired displacement are illustrated in Fig. 12.16 as well. At the optimal 
solution, there is no feasible component of the (negative) objective gradient. 

D 

As we pointed out, the justification we offered yields a very useful inter-
pretation, but it is not quite a proof. For instance, can we always express 
the gradient of the objective as a linear combination of the gradient of the 
constraints? The following example shows a pathological case where we are 
in trouble. 

Example 12.17 (The role of constraint qualification) To understand 
the issue behind the constraint qualification condition, consider the problem 

min ×é + X2 
s.t. /ii(x) = Xi — Xi = 0 

/i2(x) = xi = 0 

It is easy to see that the feasible set is the single point (0,0), which is the 
(trivial) optimal solution. Let us ignore this fact and build the Lagrangian 
function 

L(x\,xi,\\,\<i) = ÷÷ +÷2 + \\{x<¿ - x\) + A2a;2 
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The stationarity conditions yield the system 

= 1 
dC 
dx\ 

óχ2 

dC 

de 
Χ2 - X 

<9λ5 
= X2 

SXixj = 0 

f ë2 = 0 

= 0 

0 

Unfortunately, this system of equations has no solution; the first equation 
requires x± ^ 0, which is not compatible with the last two equations. This 
is due to the fact that the gradients of the two constraints are parallel at the 
origin: 

V/n(0,0) = 

VMO,O) = 

and they are not a basis able to express the gradient of / : 

V/(0,0) 

' -3x1 ' 
1 

" 0 ' 
1 

x = 0 

x = 0 

= 

' 0 " 
1 

" 0 " 
1 

x = 0 

We say that the origin is not a regular point, as the constraint qualification 
conditions do not hold there. D 

The reader is urged to draw a diagram for the last example, in order to 
visualize the issues involved; constraint qualification conditions ensure that 
such difficulties do not arise. 

12.5.2 Dealing with inequality constraints: Karush-Kuhn-Tucker 
conditions 

Consider the following problem, featuring only inequality constraints: 

min / (x) 

5fc(x) < 0, fc = l , ,1 

In order to characterize a (locally) optimal solution, we may follow the same 
reasoning as in the equality-constrained case; if x* is a locally optimal solution, 
then we cannot find a feasible descent direction at x*. A fundamental obser-
vation is that an inequality constraint can be either active at x*, <?fc(x*) — 0, 
or inactive, <7fc(x*) < 0. Let Ë denote the set of active constraints at x*. 
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• An active inequality constraint is similar to an equality constraint, with 
a significant difference. Unlike the case of equality constraints, here we 
have more degrees of freedom to move around x* by a displacement e, 
as we should just make sure that gk(x* + e) < 0; we are free to move 
along the boundary of the feasible set, but we may also move toward 
its interior. Formally, under regularity conditions on the constraints, 
we may characterize a descent direction as follows. On the basis of a 
first-order Taylor's expansions, a direction e is feasible at x* if 

gk(x*+e)*igk(x*) + [Vg*k]Te<0 

Since the constraint is active at x* and <7fc(x*) 
is characterized by the condition 

[V<?yTe < 0 

0, a feasible direction 

This condition should be compared with Eq. (12.67). 

• If a constraint is inactive, a point x* + e will stay feasible for any dis-
placement, provided that this is small enough. An inactive constraint 
does not contribute to defining the locally optimal solution x* and can 
be disregarded. 

The following example illustrates these considerations. 

E x a m p l e 12.18 Consider the nonlinear programming problem 

min ×é + X2 
S.t. 1112 > 4 

£1,2:2 > 0 

The feasible region is shaded in Fig. 12.17. Taking advantage of this picture, 
and noting the obvious symmetry of the problem, it is easy to see that the 
optimal solution is x* = x\ = 2, the nonnegativity constraints are inactive, 
and the constraint 

g(x) = 4 — £1X2 < 0 

is active. The gradient of the objective function is 

V/(x) = 

In order to improve the objective, we should move along the direction —V/ = 
[—1, - 1 ] T (southwest), as illustrated in Fig. 12.17. The gradient of the con-
straint at x* is 

V5(x*) -X2 
-Xl 

- 2 
- 2 
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Fig. 12.17 Optimality conditions with an inequality constraint. 

Looking again at Fig. 12.17, we observe that at point x* we may not only 
move along the tangent line to the constraint, but also toward the interior of 
the feasible set, along the direction — V<?(x*) = [2,2]T. We notice once again 
that the gradients V/(x*) and V<?(x*) are parallel, like in Example 12.16, 
and there exists a number ì such that 

V / ( X * ) + M V < / ( X * ) = 0 

However, this is not sufficient. We observe that ì = 0.5 > 0. The Lagrange 
multiplier, for an inequality constraint, should be positive. In our example, 
this means that the two gradients point toward opposite directions; otherwise, 
we could improve the objective by moving toward the interior of the feasible 
region. To see this, imagine that the gradient —Vf in Fig. 12.17 points 
northeast, rather than southwest. D 

The example seems to suggest that there is no feasible descent direction at 
x*, if we can express the gradient of the objective as a linear combination of 
the gradients of the active constraints: 

V/* + 5>iV<£ = 0 (12.70) 
keA 

This is not unlike the case of equality constraints, but now we have a nonneg-
ativity restriction on the multipliers associated with inequality constraints: 
μ£ > 0. This condition may be extended to include the inactive constraints, 
for which <7fc(x*) < 0; however, we must enforce a further condition: μ£ = 0 for 
inactive constraints. We may express this condition by requiring μ£(^(χ*) = 0 
for all inequality constraints.29 Everything is wrapped up into the following 

2 9Once again, this line of reasoning is not quite correct, and it should be taken only as an 
intuitive justification. A correct proof requires a bit of hard work. 
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theorem, which allows us to cope with the general problem, including both 
equality and inequality constraints. 

THEOREM 12.11 (Karush-Kuhn-Tucker conditions) Assume that the 
functions f,hj,gk in problem (12.59) are continuously differentiable, and that 
x* is feasible and satisfies a constraint qualification condition. Then a nec-
essary condition for the local optimality of x* is that there exist numbers 
λ* (j = 1 , . . . , m) and μ£ > 0 (k = 1 , . . . , I) such that 

m I 

V/(x*) + £ λ ; ν Λ , · ( χ * ) + 5>£V<7fc(x*) = 0 (12.71) 
j = l fc=l 

Α(χ*) = 0, k=l,...,l (12.72) 

These conditions are called Karush—Kuhn—Tucker (KKT) conditions. 

The condition (12.71) is the familiar stationarity requirement for the La-
grangian function: 

m I 

£{χ,Χ,μ) = f{x) +^Xjhj(x) + ^2ßk9k(x) (12.73) 
j = l fe=l 

Note that all of the constraints, equalities and inequalities, are included in the 
Lagrangian function, multiplied by the respective multipliers. The conditions 
(12.72) are known as complementary slackness conditions. They may be in-
terpreted by noting that if a constraint is inactive at x*, i.e., if <7fc(x*) < 0, the 
corresponding multiplier must be zero; by the same token, if the multiplier 
μ£ is strictly positive, the corresponding constraint must be active (which 
roughly means that it could be substituted by an equality constraint without 
changing the optimal solution). 

Note again that the multipliers for inequality constraints are restricted in 
sign. Moreover, the KKT conditions are, like Theorem 12.10, rather weak, 
as they are only necessary conditions for local optimality, and they further 
require differentiability properties and the additional constraint qualification 
condition (see Example 12.17). They are, however, necessary and sufficient 
for global optimality in the convex and differentiable case. Finding a solu-
tion, at least in principle, requires the solution of a system of equations and 
inequalities, as illustrated by the following example. 

Example 12.19 Consider the convex problem 

min x\ + x\ 
s.t. x\ > 0 

x2>3 
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First write the Lagrangian function 

£(x, ì, λ) = x\ + x\ - ìé÷é - ì2(÷2 - 3) + \[x\ + x2 - 4) 

A set of numbers satisfying the KKT conditions can be found by solving the 
following system of equations and inequalities: 

2xi - μι + λ = 0 
2x2 - μ2 + λ = 0 
÷\ > 0, ×2 > 3 
xi + xi = 4 
μιΧ! = 0 ìé > 0 
μ2(^2 - 3) = 0 μ2 > 0 

We may proceed with a case-by-case analysis exploiting the complementary 
slackness conditions. If a multiplier is strictly positive, the corresponding 
inequality is active, which helps us in finding the value of a decision variable. 

Case 1 (ìé = ì2 = 0) In this case, the inequality constraints are dropped 
from the Lagrangian function. From the stationarity conditions we ob-
tain the system 

2xi + λ = 0 
2x2 + λ = 0 

x\ + X2 - 4 = 0 

This yields a solution X\ = x2 = 2, which violates the second inequality 
constraint. 

Case 2 (μι, ì2 ö 0) The complementary slackness conditions immediately 
yield x\ = 0, x2 — 3, violating the equality constraint. 

Case 3 (μι ø 0, ì2 = 0) We obtain 

xi = 0 
x2 = 4 
λ = - 2 x 2 = - 8 

μι = λ = - 8 

The KKT conditions are not satisfied since the value of ì÷ is negative. 

Case 4 (μι = 0, ì2 ö 0) We obtain 

X2 = 3 

xi = 1 
λ = - 2 

M2 = 4 
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This solution satisfies all the necessary KKT conditions. 

Since this is a convex problem, we have obtained the global optimum. Note 
how nonzero multipliers correspond to the active constraints, whereas the 
inactive constraint x\ > 0 is associated with a multiplier ì\ = 0. D 

The procedure above is obviously cumbersome and cannot be applied to a 
large scale problem. In practice, the KKT conditions are the theoretical back-
ground of many numerical methods for nonlinear programming. Furthermore, 
the analysis can be extended to include the Hessian matrix of the second-order 
derivatives; doing so, it is also possible to find sufficient conditions for local 
optimality in the nonconvex case. 

12.5.3 An economic interpretation of Lagrange multipliers: shadow 
prices 

Lagrange multipliers play a major role in optimization theory, as well as in 
economics. Indeed, within the economic community, they are rather known 
as shadow prices,30 due to their important economical interpretation, which 
we illustrate in this section. Consider an equality-constrained problem and 
apply a small perturbation to the constraints: 

Let e be a vector collecting these perturbations. Solving the perturbed prob-
lem by the Lagrange multiplier method, we get a new solution x*(e) and a 
new multiplier vector λ*(ε), both depending on e. An interesting question 
is how these perturbations affect the optimal solution and its corresponding 
value; in other words, we should be interested in the sensitivity 

'-ψϊ, j = l,...,m 
dej 

To be precise, we should notice that this derivative need not exist in general, 
as the differentiability of /(x*(e)) cannot be guaranteed; nevertheless, when 
the derivative exists, it is related to the Lagrange multiplier for constraint j . 

To see why, let us consider the Lagrangian function for the perturbed prob-
lem 

m 

£(χ,λ,ε) = /(x) +5>, - (Μχ) -e,·) (12·74) 

3 0Another common name for Lagrange multipliers is "dual variables," as opposed to the 
original variables x of the problem which are referred to as "primal." This alternative name 
is related to the theory of duality in mathematical programming. 
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Equality constraints must be satisfied by the optimal solution of the perturbed 
problem, too. Hence 

/*= / (x*(e ) )=£(x*(e ) ,A*(e ) , e ) (12.75) 

Now we can find the derivative of the optimal value with respect to each 
component of e: 

df* dC Γ π „lT<9x . „ „.Td\ dC dC , „ „ „ ^ 

x
 V ' 

=0 

where we have used the stationarity condition of C. Thus, we conclude that 
Lagrange multipliers are, apart from a change in sign, sensitivity measures 
of the optimal value with respect to perturbations in the right-hand side of 
constraints. 

Example 12.20 Consider the quadratic programming problem: 

min (xi - 2)2 + {x2 - 2)2 

S.t. X\ + X2 = b 

where 6 is a parameter, and let us investigate how the optimal value changes 
as a function of b. In fact, the optimal value of the objective is a function 
q(b) = f(xl,X2',b), and in this very simple case we may find this function 
explicitly. To this aim, we may eliminate the constraint in order to obtain an 
equivalent unconstrained problem. From the constraint we get x2 = b — Xi, 
and plugging this into the objective function yields the unconstrained problem 

min (xi -2)2 + (b-2-xl)2 

Then, setting the first-order derivative with respect to x\ to zero, we find 
x\ = 6/2. This also implies x\ = 6/2. This solution may also be easily 
checked geometrically, since the problem ask us to find a point on the line 
x\ + ×2 = b, such that the distance from point (2, 2) is minimal; see Fig. 
12.18. The optimal value as a function of b is then 

q(b) = 2 ^ - 2 

If we take its derivative with respect to b, we obtain 

This shows that the optimal value will decrease, if we increase b when the line 
is below the point (2, 2) (the line gets closer to that point); if the line is above 
that point, increasing b will increase the distance. 
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' b increasing 

Locus of 
/ ' optimal solution 

Fig. 12.18 Illustrating Lagrange multipliers as sensitivity measures. 

Now let us set all of this geometric intuition aside and apply the Lagrange 
multiplier approach. First, we build the Lagrangian function 

C(xi,x2, X) = {xi - 2)2 + (x2 - 2)2 + \{xi + x2-b) 

The stationarity conditions are 

2(÷ ! -2 ) + ë = 0 dC 
dx\ 

— = 2(x2 - 2) + λ = 0 
ox2 

— =x1+x2-b = 0 
oX 

and we find 
b 
2' 

X* =A-b 

This confirms that, apart from a change in sign, the multiplier is actually the 
derivative of the optimal value with respect to 6.31 u 

The theorem above applies to the case of an equality constraint, but what 
about inequality constraints? Thanks to the complementary slackness condi-
tion, we can extend the result to this case as well. There are two possibilities: 

1. If an inequality constraint is inactive, the sensitivity with perturbations 
of its right-hand side is zero, because small changes of the constraint 

3 1 The change in sign is not really relevant, as it depends on how we build the Lagrangian 
function, but differentiability of the value function q(b) is not guaranteed in general. 
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have no effect. In this case, complementary slackness ensures that the 
corresponding multiplier is zero. 

2. If an inequality constraint is active, it basically behaves as an equality 
constraint and the above theorem applies, with the additional caveat 
concerning the sign of the multiplier. In this case, how we write the 
perturbed constraint is essential: 

ffi(x) < efc 

We know that μ* > 0, which implies that df*/dek < 0. But this makes 
sense, as enlarging the feasible region can only decrease cost. 

E x a m p l e 12.21 Let us illustrate the meaning of Lagrange multipliers in the 
case of the optimal mix problem (12.1). Any software tool for linear program-
ming yields the value of the optimal contribution to profit, TTQ = 5538.4615, 
as well as the value of the multipliers for the four capacity constraints (12.2 
- 12.5): 

0.0000, 1.2692, 0.0000, 1.0385 

Not surprisingly, the multipliers for redundant capacity constraints are zero. 
Now, let us tackle two questions: 

1. If we were to increase capacity, which resource should be our top prior-
ity? 

2. How much money should we be willing to pay for one extra hour? 

The first answer is that the second resource is more important, as it is asso-
ciated with the largest multiplier. Note that here we are maximizing profit, 
rather than minimizing cost, so we expect that the optimal profit will increase 
by 1.2692 monetary units for each additional hour on the second resource type. 
In fact, if we solve the problem by changing the right-hand side of constraint 
(12.3) we obtain the following optimal objective values: 

7Γι = 5539.7307 if capacity is 2401 hours 
π2 = 5665.3846 if capacity is 2500 hours 

It is easy to check that ð± — πο = 1.2692 and ¸% — πο = 126.92. There-
fore, we should not be willing to pay more than 126.92 monetary units for 
100 additional hours for the second resource type. Of course, multipliers are 
only "local" sensitivities: If we increase a capacity beyond a limit, then the 
corresponding resource constraints will not be binding anymore. 0 

In the optimal mix above, how should we measure multipliers associated with 
capacity constraints? They are sensitivities of profit (monetary units) with 
respect to resource availability (hours); hence they are measured in money 
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A X2 

s 

Fig. 12.19 Counterexample showing that a constraint may be relevant even if it has 
a null multiplier. 

per unit amount of resource and are interpreted as prices. This is where the 
term shadow price comes from. 

One word of caution, before we leave this section: It may be tempting 
to conclude that if a constraint is associated with a zero multiplier, then it 
can be dropped from the optimization problem without changing the optimal 
solution. The counterexample of Fig. 12.19 shows that this is not the case. 
Here we have a convex quadratic objective, whose level curves are concentric 
circles; the feasible region is the portion of the "bean" S below the constraint 
<?(x) < 0, which is actually an upper bound on x<¿. The optimal solution is 
the point A, and the constraint #(x) < 0 is inactive at that point; however, 
if we eliminate the constraint, the optimal solution is B (A is still a locally 
optimal solution). It is true that the solution does not move at all for small 
perturbations of the constraint; but dropping the constraint is a different 
matter. It is also worth noting that the source of the trouble here is that the 
overall problem is nonconvex. 

Example 12.22 Let us solve the nonlinear programming model of Example 
12.6. There, we built the nonlinear programming model 

1 ™ 
min -^2hiQi 

i-l 
n A ,,. Σ£<õ 

¿ = 1 ^ 

Qi > 0, i = l , . . . , n 

to minimize inventory cost in an EOQ-like setting, subject to an upper bound 
on the average number of replenishment orders. Before applying the theory 
we know, it is advisable to streamline the model a little bit. In fact, we 

fix) decreasing 

(12.77) 

(12.78) 
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observe that the nonnegativity requirements may be dropped, if we assume 
a strictly positive, interior optimal solution Q* > 0. We will check later 
that this is indeed the case, but it is easy to see that no order size can be 
zero, since the function involved in the inequality constraint (12.15) is not 
defined there and goes to infinity for small order sizes, thus exceeding the 
bound U. Furthermore, the inequality (12.78) may be replaced by an equality 
constraint. To see this, observe that the objective function calls for small 
order quantities, which has the effect of increasing the average number of 
issued orders. However, since the objective is linear, we should reduce order 
sizes until the ordering capacity constraint is saturated, i.e., the ordering 
capacity constraint is binding. Since there is no reason to leave any ordering 
capacity underutilized, we may rewrite the model as follows: 

mm lY^hiQi (12.79) 
2 

s •t. Í2§.=U (12.80) 
¿=ι ^* 

Now we see that there is no need for applying the KKT conditions; we just 
introduce a Lagrange multiplier λ and build the Lagrangian function 

1 " / n d \ 
C(Q1,...,Qn,X) = -^hiQi + xl^^-UJ 

A key observation is that the Lagrangian function, for a given value of the 
multiplier λ, can be decomposed with respect to items. Moreover, the cost for 
each item should be quite familiar; it is just the cost function (12.8) for the 
EOQ model, in which the fixed ordering charge A is replaced by the multiplier 
λ. Hence, the application of the stationarity conditions with respect to the 
order size Qi yields 

n* 2Xd* � i 
Q l = V ^ ' , = 1'-'n 

This is just the traditional EOQ formula, but which value of λ should we use? 
Since the equality constraint (12.80) must be satisfied (stationarity condition 
of the Lagrangian with respect to λ), we should find a multiplier such that 
the average number of orders is exactly U. Such a value is easily found 
numerically by trial and error. The important point is that we get an EOQ-
like solution, in which the Lagrange multiplier plays the role of a fixed ordering 
charge, making too frequent orders unattractive. This example contributes 
to explain the popularity of the EOQ model, even when the introduction of a 
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fixed ordering charge is questionable; the problem is that this charge should 
depend on data, rather than being given a priori. In old practice, the fixed 
ordering charge was often overstated, resulting in an unnecessary inventory 
buildup. D 

12.6 A GLANCE AT SOLUTION METHODS 

In this section we outline two standard solution methods: 

1. The simplex method for continuous LP problems (Section 12.6.1) 

2. The LP-based branch and bound method for MILP problems (Section 
12.6.2) 

Both are widely available in commercial software packages, but even a cur-
sory knowledge of their internal working may be a useful asset; nevertheless, 
readers may safely skip this section. We should also stress the fact that we 
are going to describe basic solution strategies, leaving aside a lot of issues con-
cerning robustness and efficiency. They should be regarded as useful starting 
points to understand what commercial tool achieve, as well as their potential 
pitfalls. 

The simplex method is a remarkably fast method, able to solve rather 
large-scale problem instances, and it was invented in 1947 by George Dantzig. 
More recently, alternative algorithms have been proposed, generally labeled 
interior-point methods, which may be more efficient for some problems. The 
state of the art for branch and bound methods is a bit less happy, because 
they are generally slower and there are some kind of problems that are very 
difficult to solve to optimality. One possible alternative is the development of 
heuristic approaches to find a satisfactory solution, possibly a near-optimal 
one. Heuristics can be quite powerful but are typically problem-specific and 
are beyond the scope of this book. Another issue is that, more often than not, 
they require ad hoc software development. Since branch and bound code is 
available on the shelves, it may be more advisable to make the best of it, when 
possible. In fact, branch and bound methods may be applied as heuristics, 
if we give up the guarantee of finding an optimal solution. Furthermore, we 
may sometimes reformulate the model in order to improve its solvability; this 
is where model building and model solving meet each other. We illustrate the 
idea in Section 12.6.3. 

12.6.1 Simplex method 

The simplex method is the standard algorithm to solve LP problems and is 
based on the following observations: 

• An LP problem is a convex problem; hence, if we find a locally optimal 
solution, we have also found a global optimizer. 
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• An LP problem is a concave problem, too; hence, we know that we 
may restrict the search for the optimal solution to the boundary of the 
feasible set, which is a polyhedron. Actually, it can be shown that there 
is an optimal solution corresponding to a vertex, or extreme point, of 
the polyhedron. 

• So, we need a clever way to explore extreme points of the feasible set. 
Geometrically, we may imagine moving from a vertex to a neighboring 
one, trying to improve the objective function. When there is no neigh-
boring vertex improving the objective, we have found a local optimizer, 
which is also global. 

It is useful to visualize this process, by referring to Fig. 1.3. Imagine start-
ing from a trivially feasible solution, the origin Mo- We may improve this 
production plan by moving along the edges of the polyhedron; one possible 
path is (M0, Mi, M2, M3); another path is (M0, M4,M3). Both paths lead to 
the optimizer, even though one seems preferable, as it visits less vertices. In 
large-scale problems, only a small subset of vertices is actually visited to find 
an optimizer. 

Now, in order to obtain a working algorithm, we should translate this 
geometric intuition into algebraic terms. The first step is transforming the 
LP problem in standard form, 

T 

mm c x 
s.t. Ax — b 

x > 0 
where x e M.n, c e Rn, A e Rm·™, and b € Mm. Clearly, the problem makes 
sense only if the matrix A has less rows than columns, i.e., if m < n. If so, 
the set of equality constraints, regarded as a system of linear equations, has 
an infinite set of solutions, which may be considered as ways of expressing 
the right-hand side vector b as linear combinations of columns of A. Let us 
express A in terms of its column vectors a¿, j = 1 , . . . , n: 

A = ai a2 

where &j € Rm. There are n columns, but a subset B of m columns suffices 
to express b as follows: 

jeB 

To be precise, we should make sure that this subset of columns is a basis, i.e., 
that they are linearly independent; in what follows, we will cut a few corners 
and assume that this is the case. A solution of this system, in which n — m 
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variables are set to zero, and only m are allowed to assume a nonzero value is 
a basic solution. Hence, we can partition the vector x into two subvectors: the 
subvector xg € Rm of the basic variables and the subvector xjy € Rn~m of 
the nonbasic variables. Using a suitable permutation of the variable indices, 
we may rewrite the system of linear equations 

Ax = b 

as 
[AflA Ni 

Xί 
XJV 

A ί X g + Ajvxjv = b (12.81) 

where Aί e Rm>m is nonsingular and AJV G R"1'"""1. However, in the LP 
model we have a nonnegativity restriction on variables. A basic solution where 
Xί > 0 is called a basic feasible solution. The simplex algorithm relies on a 
fundamental result, that we state loosely and without proof: Basic feasible 
solutions correspond to extreme points of the polyhedral feasible set of the LP 
problem. 

Solving an LP amounts to finding a way to express b as a least-cost lin-
ear combination of at most m columns of A, with nonnegative coefficients. 
Assume that we have a basic feasible solution x; we will consider later how 
to obtain an initial basic feasible solution. If x is basic feasible, it may be 
written as 

" b Xί 
XJV 0 

where 
b = Áñ% > 0 

The objective function value corresponding to x is 

Lcί CJVJ 
b 
0 c£b (12.82) 

Now we should look for neighboring vertices improving this value. Neighbor-
ing vertices may be obtained by swapping a column in the basis with a column 
outside the basis. This means that one nonbasic variable is brought into the 
basis, and one basic variable leaves the basis. 

To assess the potential benefit of introducing a nonbasic variable into the 
basis, we should express the objective function in terms of nonbasic variables. 
To this aim, we rewrite the objective function in (12.82), making its depen-
dence on nonbasic variables explicit. Using Eq. (12.81), we may express the 
basic variables as 

XB = A B
x (b - AJVXJV) = b A D ' A J V X J V (12.83) 
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Then we rewrite the objective function in terms of nonbasic variables only 

T C X 

where 

CBXB + CjyXjV 

Cg i b - A¿ JAivxjvj + c%Xf 

Cgb + (c^ - CgA^Apf) xN 

f + cJfXN 

�JV — CN CBAB AN (12.84) 

The quantities c¿v are called reduced costs, as they measure the marginal 
variation of the objective function with respect to the nonbasic variables. If 
CJV > 0, it is not possible to improve the objective function; in such a case, 
bringing any nonbasic variable into the basis at some positive value cannot 
reduce the overall cost. Therefore, the current basis is optimal if civ > 0. If, 
on the contrary, there exists a g € N such that cq < 0, it is possible to improve 
the objective function by bringing xq into the basis. A simple strategy is to 
choose q such that 

c„ — mine, (12.85) 

This selection does not necessarily result in the best performance of the algo-
rithm; we should consider not only the rate of change in the objective function, 
but also the value attained by the new basic variable. Furthermore, it may 
happen that the entering variable is stuck to zero and does not change the 
value of the objective. In such a case, there is danger of cycling on a set of 
bases; ways to overcome this difficulty are well explained in the literature. 

When xg is brought into the basis, a basic variable must "leave" the basis 
in order to maintain Ax = b . To spot the leaving variable, we can reason 
as follows. Given the current basis, we can use it to express both b and the 
column a9 corresponding to the entering variable: 

m 
h = Y^xB(i)aB(i) (12.86) 

¿=i 
m 

aq=J2diaB(i) (12-87) 
¿=i 

where B(i) is the index of the ith basic variable (i = 1 , . . . , m), a.B(¿) is the 
corresponding column, and 

d = A ^ a , (12.88) 

If we multiply Eq. (12.87) by a number È and subtract it from Eq. (12.86), 
we obtain 

m 
b = Σ (XBM ~ Mi) a s w + È ¢ Ί ( 1 2 · 8 9 ) 
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From Eq. (12.89) we see that È is the value of the entering variable in the new 
solution and the values of the current basic variables are affected in a way 
depending on the sign of di. If di < 0, XB(Í) remains nonnegative when xq 
increases. But if there is an index i such that di > 0, then we cannot increase 
xq at will, since there is a limit value for which a currently basic variable 
becomes zero. This limit value is attained by the entering variable xq, and 
the first current basic variable that gets zero leaves the basis: 

Xq= min -f (12.90) 
i=l,...,m di 

di>0 

If d < 0, there is no limit on the increase of xq, and the optimal solution is 
unbounded. 

In order to start the iterations, an initial basis is needed. One possibility 
is to introduce a set of auxiliary artificial variables z in the constraints: 

Ax + z = b (12.91) 
x ,z > 0 

The artificial variables can be regarded as residuals, in the same vein as residu-
als in linear regression. Assume also that the equations have been rearranged 
in such a way that b > 0. Clearly, a basic feasible solution of the system 
(12.91) where z = 0 is also a basic feasible solution for the original system 
Ax = b. In order to find such a solution, we can introduce and minimize an 
auxiliary function ö as follows 

m 

min^> = ^ z ¿ (12.92) 
¿=ι 

using the simplex method itself. Finding an initial basic feasible solution for 
this artificial problem is trivial: z = b . If the optimal value of (12.92) is 
ö* = 0, we have found a starting point for the original problem; otherwise, 
the original problem is infeasible. 

The reader is urged to keep in mind that what we have stated here is only 
the principle of the simplex method. Many things may go wrong with such a 
naive idea, and considerable work is needed to make it robust and efficient. 
Indeed, even though the simplex method dates back to 1947, it is still being 
improved today. We leave these refinement of the simplex method to the 
specialized literature and illustrate its application to the familiar optimal mix 
problem.32 

3 2 In LP textbooks, calculations are efficiently organized in a tableau. The tableau is an 
excellent tool, if the purpose is torturing students by forcing them to solve toy LP problems 
using pencil, paper, and pocket calculators. I refrain from doing so, as I prefer to emphasize 
the link between the simplex method and the linear algebraic concepts we have used in 
describing it. 
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Example 12.23 A first step, which is actually carried out by good solvers, is 
to preprocess the formulation eliminating redundant constraints. This results 
in the streamlined problem 

max 45xi + 60x2 
s.t. 15zi + 35x2 < 2400 

25xi + 15x2 < 2400 
0 < x2 < 50 

We should rewrite it in standard form, by introducing three slack variables 
s i , s 2 , s 3 > 0 : 3 3 

min — 45xi — 60^2 
s.t. 15xx + 35ar2 + Si = 2400 

25xi + 15x2 + s2 = 2400 
X2 + «3 = 50 
X l , X 2 , S i , S 2 , S 3 > 0 

In matrix terms, we have: 

15 35 1 0 0' 
25 15 0 1 0 
0 1 0 0 1 

, c = 

-45 
-60 
0 
0 
0 

, b = 
" 2400 
2400 
50 

A = 

Finding an initial feasible solution is easy; as a starting basis, we consider 
{si, S2, S3}, which corresponds to a production plan where Xi = X2 = 0, i.e., 
the origin Μõ in Fig. 1.3. The corresponding basis matrix is Aί = I, i.e., a 
3 x 3 identity matrix. Using the notation we introduced, we have 

k-JV 

15 35 
25 15 

0 1 
CJV = 

-45 
-60 C ί 

" 0 " 
0 
0 

, b = 
' 2400 " 
2400 
50 

Since the cost coefficients of the basic variables are zero, application of Eq. 
(12.84) yields the reduced costs [—45,-60]. To improve the mix, according 
to Eq. (12.85) we should bring X2 into the basis. Geometrically, we move 
vertically along an edge of the polyhedron, from Mo to M\. By the way, this 
is sensible as item 2 has the largest contribution to profit, but we observe that 
this is not necessarily the best choice, as we start moving along the longer of 
the two paths that lead to the optimal solution M3; in fact, selecting the 

3 3 In practice, the simplex method works with simple bounds in a different way, but this is 
beyond the scope of the book. 
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nonbasic variable with the most negative reduced cost is not the strategy of 
choice of modern solvers. Now we should apply Eq. (12.90) to find the variable 
leaving the basis. Since the matrix of basic columns is the identity matrix, 
applying (12.88) is easy: 

d = 1 - ^ 2 = 
35 
15 

1 

and 

X2 
Í2400 2400 50 

�V 35 ' 15 ' 1 
min {68.5714,160,50} = 50 

We see that the slack variable S3 leaves the basis, as X2 reaches its upper 
bound. 

Now, let us avoid terribly boring calculations and cut a long story short. 
Repeating these steps, we would bring x\ into the basis, making one capacity 
constraint binding by driving to zero the corresponding slack variable. We 
know that both capacity constraints are binding at the optimal solution M3. 
Let us just check that this is indeed the optimal solution. The extreme point 
M3 corresponds to the basis {x\,X2, S3}; therefore, we have 

LB = 

15 
25 
0 

35 0 
15 0 

1 1 
, AJV = 

1 0 
0 1 
0 0 

, CB = 
-45 
-60 

0 
, CJV = 

Finding the corresponding basic feasible solution requires solving a system of 
linear equations. Formally: 

X ί A ^ b : 
73.8462 
36.9231 
13.0769 

Now we need the reduced costs of s\ and S2 

cN 0, 0 -45, -60 , 0 
15 
25 

0 

35 
15 

1 

- 1 " 1 0 " 
0 1 
0 0 

= 1.2692, 1.0385 

As both reduced costs are positive, we have indeed found the optimal ba-
sis. We note that in practice no matrix inversion is required; we may just 
solve systems of linear equations using by the Gaussian elimination process 
of Section 3.2.2. 

In closing this example, the very careful reader might notice that the re-
duced costs above are exactly the shadow prices of capacity constraints that 
we have seen in Example 12.21. Indeed, there is a connection, which we can-
not pursue here; we just notice that the simplex method yields shadow prices 
as a very useful by-product. D 
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Fig. 12.20 Search tree for a pure binary programming problem. 

12.6.2 LP-based branch and bound method 

When dealing with a MILP, the simplex method cannot guarantee an integer 
solution; more often than not, we obtain a fractional solution. There is an 
even more troubling fact, which is essentially due to the lack of convexity. In 
fact, if some magical oracle hands over the optimal solution of a continuous 
LP, we know how to verify its optimality by checking reduced costs. Unfortu-
nately there is no such condition for integer LPs; to find the optimal solution, 
we should explore the whole set of feasible solutions, at least in principle. 
Enumerating the whole set of solutions is conceptually easy for a pure binary 
program, such as the knapsack problem of Section 12.4.1. It is natural to 
consider a search tree like the one depicted in Fig. 12.20. At each node, we 
branch on a variable generating two subproblems. At the root node in the 
figure, we branch on Xi, defining a left subproblem in which a;i = 0 (i.e., item 
1 is not included in the knapsack), and a right subproblem in which ÷÷ = 1 
(i.e., item 1 is not included in the knapsack). At each level of the tree we 
branch on a different variable, and the leaves of the tree correspond to a can-
didate solution. Not all of the leaves correspond to feasible solutions, because 
of the budget constraint. Hence, many solutions will be excluded from the 
search process. Yet, it is easy to see that this is not a very practical solution 
approach. If there are n binary variables, there are potentially 2" solutions to 
check, resulting in a combinatorial explosion. We say that this enumeration 
process has exponential complexity in the worst case. 

Things would definitely look brighter, if we could find a way to "prune" the 
tree by eliminating some of its branches. We may avoid branching at a node of 
the tree if we are sure that the nodes beneath that one cannot yield an optimal 
solution; but how can we conclude this without considering all of these nodes? 
We have already observed that if we relax the integrality requirements in a 
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MILP and solve the corresponding continuous LP, we obtain a bound on the 
optimal value of the MILP.34 In the familiar production mix example, solving 
the continuous LP we get an optimal contribution to profit 5538.46. This is 
an optimistic estimate on the true optimal contribution to profit, 5505, which 
we obtain when requiring integrality of the decision variables. In the case 
of a maximization problem, the optimistic estimate is an upper bound UB 
on the optimal objective value (in a minimization problem, the optimistic 
estimate is a lower bound). Such bounds may be calculated at any node of 
the search tree for a MILP by relaxing the free integer decision variables to 
continuous values; free variables are those that have not been fixed to any 
value by previous branching decisions. This is called continuous relaxation or 
LP-based relaxation. 

Now suppose that in the process of exploring the search tree we find a 
feasible (integer), though not necessarily optimal solution. Then, its value is 
a lower bound LB on the optimal objective value for a maximization problem, 
since the optimal profit cannot be lower than the value of any feasible solution 
(a feasible solution yields an upper bound for a minimization problem). It 
is easy to see that by comparing lower and upper bounds, we may eliminate 
certain nodes from the search tree. For instance, imagine that we know a 
feasible solution of a knapsack problem, such that its value is 100; so, we have 
a lower bound LB = 100 on the value of the optimal knapsack. Say that the 
LP relaxation at a node in the search tree yields an upper bound UB = 95. 
Then, we observe that LB > UB and immediately conclude that this node can 
be safely eliminated: We do not know what is the value of the best solution in 
the branches below that node, but we know that it cannot be better than the 
feasible solution we already know. The roles of lower and upper bounds are 
reversed for a minimization problem. The following example shows in detail 
LP-based branch and bound for a knapsack problem.35 

Example 12.24 Consider the knapsack problem 

max lOzi + 7x2 + 25x3 + 2AxA 

s.t. 2x\ + lx2 + 6rE3 + 5^4 < 7 
z ¿ e { o , i } 

We first solve the root problem of the tree (PQ in Fig. 12.21), which is the 
continuous relaxation of the binary problem, obtained by relaxing the inte-
grality of decision variables and requiring 0 < Xi < 1. Solving the problem, 
we get the solution 

X\ = 1, X2 = 1, X3 = 0, X4 = 0.8 

3 4See also Example 12.4. 
3 5 We should mention that there are specific branch and bound approaches for the knapsack 
problem, exploiting its structure, but our aim is illustrating a more general idea in the 
simplest case. 
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*4=0 

Pv 
x=( 1,1,0.6667,0) 
y=33.6667 

Po-
x={ 1,1,0,0.8) 
^ 3 6 . 2 

*4=1 

P2: 
x=(0.5,l,0,l) 
ß=36 

¿=(0,1,0.1667,1) 
/=35.1667 

xH ι,ο,ο,ΐ) 
/=34 

P>-
x=(0,l,0,l) 
/=31 

infeasible 

F/g. Í2.2I Search tree for the knapsack problem of Example 12.24. 

with objective value 36.2. This is an upper bound and, since all of the problem 
data are integers, we can immediately conclude that the optimal value cannot 
exceed 36. We observe that the last variable is fractional, and we branch on 
it, generating two more subproblems: In Ρχ we set x\ = 0, and in Pi we 
set Xi = 1. Note that we are free to branch on other variables as well, but 
this choice seems to make more sense; there is the possibility of obtaining an 
integer solution before reaching the bottom level of the tree. Solving P\ yields 

whereas P?, yields 

x = (1,1,0.6667,0), / = 33.6667 

x = (0.5,1,0,1), / = 36 

It is important to notice that both upper bounds are smaller than the bound 
obtained at the root node. This makes sense, because we are adding con-
straints, and the value of the optimal continuous solution cannot increase by 
doing so. Now we should choose which branch of the tree (i.e., which subprob-
lem) to explore first. One possible rule is to look down the most promising 
branch. Hence, we generate two more subproblems from P2, branching on 
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the fractional variable x\. Setting Xi = 0 results in subproblem P3, whose 
solution yields 

x = (0,1,0.1667,1), / = 35.1667 

Setting x\ — 1 results in subproblem P4, whose solution yields our first integer 
solution 

x = (1,0,0,1), / = 34 

Note that we have found an integer solution without reaching a leaf node; 
when this happens, i.e., when the continuous relaxation yields an integer 
solution, there is no point in further branching at that node. Having found 
our first integer solution, we also have a lower bound (34) on the optimal value. 
Comparing this with the root bound, we could conclude that the optimal value 
must either be 34, 35, or 36. Actually, checking the bound on the lower-level, 
still-active nodes, we may immediately conclude that the optimal value must 
be either 34 or 35, the bound we obtain from node P3. Subproblem P\ may 
be immediately eliminated, as its upper bound is lower than the value of our 
feasible solution. We say that the subproblem has been "fathomed," or that 
the tree "has been pruned." Clearly, the earlier we prune the tree, the more 
subproblems we eliminate. 

We are not done, though, because node P3 looks promising. There, we 
branch on the fractional variable X3. Setting x3 = Q results in subproblem 
P4, whose solution yields a new integer solution 

x = (0,1,0,1), / = 31 

This solution is worse than the first one; yet, it is the best we can do down that 
branch, so we may prune the node. Setting £3 = 1 results in the infeasible 
subproblem P4; indeed, if we try putting both items 1 and 3 into the knapsack, 
we exceed its capacity (2 + 6 > 7). Now we may report solution x = (1,0,0,1) 
as optimal. We have explored a fair amount of nodes, but many of them have 
been eliminated in the process. D 

Let us generalize the above scheme a bit. The idea of branching consists of 
taking a problem P(S), with feasible set S, and generating a set of suproblems 
by partitioning S into a collection of subsets S\,.. .,Sq such that 

S = Si U S2 U · · · U Sq 

Then, for a minimization problem, we have 

min f (x) = min < min fix.) > 
xeSJV ' ¿ = l , . . . , g \ x € S i " / ') 

The rationale behind this decomposition of the feasible set is that solving the 
problems over smaller sets should be easier; or, at least, the bounds obtained 
by solving the relaxed problems should be tighter. For efficiency reasons it is 
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advisable, but not strictly necessary, to partition the set S in such a way that 
subsets are disjoint: 

Si nSj = 9, ßö j 

Of course, in a MILP model involving binary and continuous variables, we 
branch only on binary variables. But what about general integer variables? 
It is clearly unreasonable to create a branch for each possible integer value. 
The standard strategy is again to generate only two subproblems, branching 
on a fractional variable as follows. Assume that an integer variable Xj takes a 
noninteger value Xj in the optimal solution of the relaxed subproblem. Then 
two subproblems are generated; in the downchild we add the constraint36 

xj — lxjJ 

to the formulation; in the upchild we add 

x3 > L%J + ! 

For instance, if Xj = 4.2, we generate two subproblems with the addition of 
constraints Xj < 4 (for the downchild) and Xj > 5 (for the upchild). 

Now we may state a branch and bound algorithm in fairly general terms. 
To fix ideas, we refer to a minimization problem; it is easy to adapt the idea 
to a maximization problem. Given subproblem P(Sk), let i/[P(Sk)] denote 
the value of its optimal solution, and let ß[P(Sk)] be a lower bound: 

ß[P(Sk)] < v[P(Sk)} 

Note that P(Sk) can be fathomed only by comparing the lower bound ß[P{Sk)\ 
with an upper bound on u[P(S)]. It is not correct to fathom P(Sk) on the 
basis of a comparison with a subproblem P(Si) such that 

ß[P(Si)] < ß[P(Sk)} 

Fundamental branch and bound algorithm 

1. Initialization. The list of open subproblems is initialized to P(S); the 
value of the incumbent solution v* is set to +oo. At each step, the 
incumbent solution is the best integer solution found so far. 

2. Selecting a candidate subproblem. If the list of open subproblems is 
empty, stop: The incumbent solution x*, if any has been found, is opti-
mal; if v* = +00, the original problem was infeasible. Otherwise, select 
a subproblem P(Sk) from the list. 

3 6 The notation [a;J corresponds to the "floor" operator, which rounds a fractional number 
down: [4.7J = 4. 
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3. Bounding. Compute a lower bound ß(Sk) on v[P(Sk)} by solving a 
relaxed problem P(Sk). Let x^ be the optimal solution of the relaxed 
subproblem. 

4. Prune by optimality. If x^ is feasible, prune subproblem P(Sk). Fur-
thermore, if /(xfc) < i/*, update the incumbent solution x* and its value 
v*. Go to step 2. 

5. Prune by infeasibility. If the relaxed subproblem P(Sk) is infeasible, 
eliminate P(Sk) from further consideration. Go to step 2. 

6. Prune by bound. If ß(Sk) > v*, eliminate subproblem P(Sk) and go to 
step 2. 

7. Branching. Replace P{Sk) in the list of open subproblems with a list of 
child subproblems P(Ski), P(Sk2),· ■ ·, P(Skq), obtained by partitioning 
Sk', go to step 2. 

A thorny issue is which variable we should branch on. Similarly, we should 
decide which subproblem we select from the list at step 2 of the branch and 
bound algorithm. As it is often the case, there is no general answer; software 
packages offer different options to the user, and some experimentation may 
be required to come up with the best strategy. 

Many years ago, the ability of branch and bound methods to solve realis-
tically sized models was quite limited. Quite impressive improvements have 
been made in commercial branch and bound packages and these, together with 
the availability of extremely fast and cheap computers, have made branch and 
bound a practical tool for business management. Nevertheless, many practical 
problems remain, for which finding the optimal solution requires a prohibitive 
computational effort. Domain-dependent heuristics have been developed, but 
we should note that the above branch and bound scheme can be twisted to 
yield high-quality heuristics by a simple trick. We should just relax the con-
dition ß(Sk) > v* as follows: 

ß(Sk) >v*-e 

where e is a given threshold representing the minimal absolute improvement 
over the incumbent that we require to explore a branch. Doing so, we might 
miss the true optimal solution, but we might prune many additional branches, 
with the guarantee that the difference between the best integer solution found 
and the optimal solution is bounded by e. If we prefer to state the threshold 
in relative terms, we can prune a node when 

ß(Sk)>u*(l-e) 

In this case, e is related to a guarantee on the maximum percentage subop-
timality. If e = 0.01, we know that maybe we missed the optimal solution, 
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but this would improve the best integer solution we found by at most 1%. It 
is up to the user to find the best tradeoff between computational effort and 
solution quality. Another interesting way to reduce computational effort is 
by reformulating the model in order to improve its solvability, as we illustrate 
next. 

12.6.3 The impact of model formulation 

We have seen that commercial branch and bound procedures compute bounds 
by LP-based (continuous) relaxations. Given a MILP problem 

P{S) min c T x + d T y 
s.t. Ax + Ey < b 

x e R + \ yeZ™2 

where S denotes its feasible set, the continuous relaxation is obtained by 
relaxing the integrality constraints, which yields the relaxed feasible set S 
and the relaxed problem: 

P(S) min cTx + d T y 
s.t. Ax + Ey < b 

If we could find the convex hull of S, which is a polyhedron, the application 
of LP methods on that set would automatically yield an integer solution. 
Unfortunately, apart from a few lucky cases, finding the convex hull is as 
hard as solving the MILP problem. A less ambitious task is to formulate a 
model in such a way that its relaxed region S is as close as possible to the 
convex hull of 5; in fact, the smaller S, the larger the lower bound (for a 
minimization problem) and we know that tighter bounds make pruning more 
effective. In the following example, we show how careful model formulation 
may help. 

Example 12.25 (Plant location reformulation of lot-sizing problems) 
When modeling fixed-charge problems, we link a continuous variable x and a 
binary variable ä by the big-M constraint 

x < Ìä (12.93) 

where M is any upper bound on x. In principle, M may be a very large num-
ber, but to get a tight relaxation, we should make it as small as possible. To 
see why, consider Fig. 12.22, where we illustrate the feasible region associated 
with constraint (12.93). The feasible set consists of the origin and the vertical 
line corresponding to ä = 1 and x > 0. When we solve the continuous relax-
ation, we drop the integrality constraint on ä and replace it by ä € [0,1]. This 
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Fig. 12.22 The impact of big-M on a continuous relaxation. 

results in the shaded triangles in the figure, whose area depends on a line with 
slope M. It is easy to see that if M is large, the resulting feasible set for the 
relaxed problem is large as well. In fact, models with big-M constraints are 
notoriously hard to solve, and the lot-sizing problem is a well-known example. 
However, sometimes we may improve the tightness of bounds by resorting to 
clever reformulations. We illustrate the idea for the minimum-cost version 
(12.53) of the model. 

The naive model formulation is based on production variables x¿t, repre-
senting how much we produce of item i during time bucket t. This continuous 
variable is related to a binary setup variable äá by a fixed-charge constraint 
such as 

Xit< ( ¿ d i r 1 s«, Vt,< (12.94) 

Here, the big-M is given by the total demand of item i, over the time buckets 
from t to T. One way to reduce this big-M is to disaggregate the production 
variable xu, introducing a set of decision variables yup, which represent the 
amount of item i produced during time bucket t to satisfy the demand during 
time bucket p > t. This new variable represents a disaggregation of the original 
variable xu, since 

T 

•Kit = / j Vitp 
p=t 

This reformulation is related to a sort of plant location problem, whereby 
locations are "in time," rather than "in space." This is illustrated in Fig. 
12.23. If we "open the plant" in time bucket 1, we pay the setup cost; then 
material can flow outside that supply period in order to meet demand at 
destination nodes. Clearly, if we open a plant in time bucket t, we may only 
use its outflow to meet demand at later time buckets p > t. 
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Fig. 12.23 Interpreting the plant location reformulation of lot sizing problems. 

Doing so, we introduce more decision variables, but now the link between 
continuous and binary setup variables is 

yitP<dipSit, Vi,t,p>t (12.95) 

This constraint involves a much smaller big-M; indeed, if we sum constraints 
(12.95) over p, we find the aggregate constraint (12.94). Now we may also 
get rid of inventory variables; the amount corresponding to yup is held in 
inventory for (p — t) time buckets; hence the corresponding holding cost is 

hi{p-t)yitp 

Finally, we obtain the following model: 

T N / T \ 

min ] [ 3 Σ I fiSu + Ó {p - t)hiyitp 1 
t-l ¿=1 \ p = t + l / 
NT N 

S-t. Ó Σ nrnVitp + Ó rim¿it < Rmt, Vm, t 
i=l p=t i=l 

y%tp < dipSit, Vi,i,p > t 
p 

^Vitp = dip, Vi,p 
i = l 

yitp>0, V z , ν , p > ν 
äá e {0,1}, Vi,i 

It is also worth noting that this model formulation allows us to consider 
perishable items in a quite natural way. If the shelf life of an item is, say, 3 
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Ë: 
x=(0,1,1,0) 
^32 

^=(0.3333,1, 
0.3333,0.6667) 

/=34.6667 

*=(i,o,o,i) 
/=34 

F/g. 12.24 Search tree for the knapsack problem with cover inequalities. 

time buckets, we will not define variables yup for p — t > 3; you may visualize 
the idea by just dropping some arcs in Fig. 12.23. D 

The reformulation we have just considered may look a bit counter-intuitive, 
and it is not always easy to find a suitable model reformulation like this one. 
Luckily, many tricks to strengthen a model formulation may be automated. 

Example 12.26 (Cover inequalities) Let us consider the knapsack prob-
lem of Example 12.24 again: 

max 10a;i + 7:E2 + 252:3 + 24x4 

s.t. 2xi + lx2 + 6x3 + 5a;4 < 7 
n e {0,1} 

If we observe the budget constraint, it is easy to see that items 1 and 3 cannot 
be both selected, as their total weight is 8, it exceeds the available budget. 
Hence we might add the constraint 

X\ + X3 < 1 

which is obviously redundant in the discrete domain, but is not redundant 
in the continuous relaxation. By the same token, we could add the following 
constraints 

£3 + £4 < 1 

x\ + %2 + Xi < 2 

Such additional constraints are called cover inequalities and may contribute 
to strengthen the bound from the LP relaxation, cutting the CPU time con-
siderably. Solving the strengthened model formulation results in the search 
tree depicted in Fig. 12.24. We may notice that the root subproblem Po yields 
a stronger bound than the plain knapsack model (34.66667 < 36.2). What 
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is more striking is that, if we branch on x\, we immediately get two integer 
solutions and the search process can be stopped. D 

Cover inequalities may be automatically generated and are only one of the 
types of cuts that have been introduced in state-of-the-art software packages 
implementing branch and bound. The term "cuts" stems from the fact that 
these additional constraints cut portions of the polyhedron of the continuous 
relaxation, strengthening bounds. Moreover, clever and effective heuristics 
have also been devised to generate good integer solutions as soon as possible 
in the search tree. This generates good upper bounds that help in further 
pruning the tree. Indeed, the improvement in commercial branch and bound 
packages over the last 10 years or so has been dramatic, allowing the solution 
of problems that were intractable a while ago. 

Prob lems 

12.1 Assume that functions /¿(x), i = 1 , . . . , m, are convex. Prove that the 
function 

m 

i= l 

where Q¿ > 0, is convex. 
12.2 Is the function f(x) = xe2x convex? Does the function feature local 
minima? What can you conclude? 
12.3 Consider the domain defined by the intersection of planes: 

3x + y + z = 5 
x + y + z — 1 

Find the point on this domain which is closest to the origin. 

12.4 Solve the optimization problem 

max xyz 
s.t. x + y + z < 1 

x,y,z>0 

How can you justify intuitively the solution you find? 

12.5 Consider the constrained problem: 

min a:3 — 3xy 
s.t. 2x — y = — 5 

5x + 2y> 37 
x,y > 0 
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• Is the objective function convex? 

• Apply the KKT conditions; do we find the true minimizer? 

12.6 In Example 12.12 we considered a single-period blending problem with 
limited availability of raw materials. In practice, we should account for the 
possibility of purchasing raw materials at a time-varying cost and storing 
them. 

• Extend the model to a multiperiod decision model with purchase deci-
sions, assuming that you know the future prices of raw materials and 
that storage capacity is unlimited. (Note: of course, assuming that fu-
ture prices are known may be unrealistic; however, commodity deriva-
tives could be used to eliminate uncertainty.) 

• Assume that raw materials must be stored in separate tanks, which 
are available in a limited number. Hence, you may only store up to a 
given number of raw material types. How can you model this additional 
constraint? 

12.7 Extend the production planning model (12.27)in order to take mainte-
nance activities into account. More precisely, we have M resource centers, and 
each one must be shut down for exactly one time bucket within the planning 
horizon. Furthermore, since the maintenance department has quite limited 
personnel, we can maintain at most two resource centers per time bucket. 

12.8 Extend the knapsack problem to cope with logical precedence between 
activities. For instance, say that activity 1 can be selected only if activities 
2, 3, and 4 are selected. Consider alternative model formulations in terms of 
branch and bound efficiency. 

12.9 In Section 12.4.2 we have illustrated a few ways to represent logi-
cal constraints. Suppose that activity i must be started if and only if both 
activities j and k are started. By introducing customary binary variables, 
it is tempting to write a constraint like Xi = XjXk\ unfortunately, this is a 
bad nonlinear constraint. How can we express this logical constraint linearly? 
Generalize the idea and find a way to linearize the product ΠΓ=ι x* °^ n binary 
variables. 

12.10 In the minimum cost lot-sizing problem, we assumed that demand 
must be satisfied immediately; by a similar token, in the maximum profit lot-
sizing model, we assumed that any demand which is not satisfied immediately 
is lost. In other words, in both cases we assumed that customers are impatient. 

• Write a model for cost minimization, assuming that customers are will-
ing to wait, but there is a penalty. More precisely, backlog is allowed, 
which can be represented as "negative inventory holding." Clearly, the 
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backlog cost 6¿ must be larger than the holding cost hi. Build a model 
to minimize cost. 

• Now assume that customers are indeed patient, but they are willing to 
wait only for two time buckets; after two time buckets, any unsatisfied 
demand is lost. Build a model to maximize profit. 

• In the classical lot-sizing model, we implicitly assume that each customer 
order may be satisfied by items that were produced in different batches. 
In some cases, this is not acceptable; one possible reason is due to lot 
tracing; another possible reason is that there are little differences among 
batches (e.g., in color), that customers are not willing to accept. Then, 
we should explicitly account for individual order sizes and due dates. 
Build a model to maximize profit. 

• As a final generalization, assume that customers are impatient and that 
they order different items together (each order consists of several lines, 
specifying item type and quantity). If you cannot satisfy the whole order 
immediately, it is lost. Build a model to maximize profit. 

12.11 In the portfolio optimization models that we considered in this chap-
ter, risk is represented by variance or standard deviation of portfolio return. 
An alternative is using MAD (mean absolute deviation): 

E · y ^ RiWi - E ^RkWk 
.fc = l 

where Ri is the random return of asset i and w¿ is its portfolio weight. Suppose 
that we do not trust any probability distribution for return, but we have a 
time series of historical data. Let r¿¿ be the observed return of asset i in time 
bucket t, t = Ι , . , . , Τ . 

• Build a MILP model to find the minimum MAD portfolio subject to the 
following constraints: 

— Short selling is not allowed. 
— Expected return should not be below a given target. 
— To avoid a fragmented portfolio, no more than k < n assets can 

be included in the portfolio, and if an asset is included, there is a 
lower bound on its weight. 

— Assets are partitioned according to industrial sectors (e.g., banks, 
energy, chemicals, etc), as well as according to geographic criteria 
(Asia, Europe, etc.). For each set of assets, overall lower and upper 
bounds are to be satisfied. 

• What is the danger of this modeling approach, based on observed time 
series? 
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12.12 A telecommunication network is a set of nodes and directed arcs on 
which data packets flow. We assume that the flow between each pair of nodes 
is known and constant over time; please note that the matrix of such flows need 
not be symmetric, and that packets labeled with a source/destination pair 
(s, oν) are a commodity on their own. Nodes are both source and destination 
of data packets to and from other nodes, respectively; they can be also used as 
intermediate nodes for routing, as some pairs of nodes may not be connected 
directly. Both arcs and nodes are subject to a capacity constraint in terms of 
packets that they can transport and route over a time frame. 

Prom an operational point of view, we would like to route all of the traffic, 
in such a way that no network element (node or arc) is congested. For the 
sake of simplicity, let us assume that a network element is congested when its 
traffic load exceeds 90% of its nominal capacity (in practice, congestion is a 
nonlinear phenomenon). We measure network congestion by the number of 
network elements whose traffic load exceeds this limit. 

• Build a model to minimize network congestion, which has an impact on 
quality of service. 

• Extend the model to include capacity expansion opportunities. For each 
network element, we may expand capacity either by 25% or by 70%; each 
expansion level is associated with a fixed cost. Build a MILP model to 
find a tradeoff between quality of service and network cost. 

For further reading 

• We have been far from rigorous in stating and proving optimality condi-
tions. Readers looking for a more complete treatment, including second-
order conditions and handy criteria to check convexity, may refer to Ref. 
[10] or [11]. 

• A good reference on linear programming, including alternatives to the 
classical simplex method, is Ref. [12]. An in-depth treatment of nonlin-
ear programming can be found in Ref. [2], which also illustrates many 
solution algorithms; see also Ref. [7]. 

• Integer programming is thoroughly dealt with in Ref. [15]. We just 
mentioned powerful methods based dynamic column generation; see Ref. 
[6] for an extensive treatment and many examples. 

• We did not cover at all heuristic methods for integer programming mod-
els and discrete optimization, but there is a huge literature on ad hoc 
methods. Each variant of problem may be tackled by a specific ap-
proach. To avoid getting lost, it is useful to have a grasp of general 
principles that can be tailored to specific problems. For instance, tabu 
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search is described in Ref. [8], and Ref. [9] is devoted to genetic algo-
rithms. 

• The bibliography on optimization methods is quite rich, but unfortu-
nately the same cannot be said with respect to model building. A wel-
come exception is the text by Williams [14], which shows well-crafted 
examples taken from a wide range of application domains. The same 
author has also written a book on model solving, Ref. [13], from which 
Example 12.4 has been taken. 

• It is also useful to have a look at books illustrating the application of 
optimization modeling to specific domains. Readers interested in opti-
mization models for manufacturing management may consult Ref. [3]; 
models for distribution logistics are described in Ref. [4]. Optimization 
models in finance are treated at an introductory level in Ref. [1], which 
also describes nonlinear programming algorithms. At a more advanced 
level, Refs. [5] and [16] are useful readings. 

• From a practical perspective, optimization modeling is of no use if it is 
not complemented by a working knowledge of commercial optimization 
software. There is a wide array of both solvers and modeling tools. 
Solvers are the libraries implementing solution methods, which may be 
hard to use without a suitable interface enabling the user to express the 
model in a natural way. I definitely suggest having a look at 

o http://www.gurobi.com 

o http://www.ampl.com 

Other useful links are 

o http:/ /www.informs.org 
o http://www.gams.com 
o http://www.lindo.com 
o http://www.solver.com 
o http://www.maximal-usa.com 

REFERENCES 

1. M. Bartholomew-Biggs, Nonlinear Optimization with Financial Applica-
tions, Kluwer Academic Publishers, New York, 2005. 

2. M.S. Bazaraa, H.D. Sherali, and CM. Shetty, Nonlinear Programming. 
Theory and Algorithms, 2nd ed., Wiley, Chichester, West Sussex, UK, 
1993. 



692 DETERMINISTIC DECISION MODELS 

3. P. Brandimarte and A. Villa, Advanced Models for Manufacturing Systems 
Management, CRC Press, Boca Raton, FL, 1995. 

4. P. Brandimarte and G. Zotteri, Introduction to Distribution Logistics, Wi-
ley, New York, 2007. 

5. G. Cornuejols and R. Tütüncü, Optimization Methods in Finance, Cam-
bridge University Press, New York, 2007. 

6. G. Desaulniers, J. Desrosiers, and M.M. Solomon, eds., Column Genera-
tion, Springer, New York, 2005. 

7. R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, Chi-
chester, West Sussex, UK, 1987. 

8. F.W. Glover and M. Laguna, Tabu Search, Kluwer Academic, Dordrecht, 
The Netherlands, 1998. 

9. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer-Verlag, Berlin, 1996. 

10. C.P. Simon and L. Blume, Mathematics for Economists, W.W. Norton, 
New York, 1994. 

11. R.K. Sundaram, A First Course in Optimization Theory, Cambridge Uni-
versity Press, Cambridge, UK, 1996. 

12. R. J. Vanderbei, Linear Programming: Foundations and Extensions, Kluwer 
Academic, Dordrecht, The Netherlands, 1996. 

13. H.P. Williams, Model Solving in Mathematical Programming, Wiley, Chich-
ester, 1993. 

14. H.P. Williams, Model Building in Mathematical Programming, 4th ed., 
Wiley, Chichester, 1999. 

15. L.A. Wolsey, Integer Programming, Wiley, New York, 1998. 

16. S. Zenios, Practical Financial Optimization, Wiley-Blackwell, Oxford, 2008. 



13 
Decision Making Under 

Risk 

This chapter represents a synthesis of what we have become acquainted with 
so far. Decision making under uncertainty is a quite challenging topic, merging 
probability theory and statistics with optimization modeling. This mix may 
result in quite demanding mathematics, which we will avoid by focusing on 
fundamental concepts and a few illustrative toy examples to clarify them. 

One preliminary question that we should address is: Which kind of uncer-
tainty should we consider? In this chapter we take a rather standard view, 
i.e., that uncertainty may be represented by the classical tools of probabil-
ity and statistics. In fact, this is not to be taken for granted, as there are 
quite different kinds of uncertainty. Compare the roll of a die against the 
production decision for a brand-new and truly innovative product. In the 
first case we do not know which number will be drawn, and betting on it 
means making a risky decision. However, we have no doubt about the rules 
of the game. In other words, we have a well-defined probability distribution 
of a random variable, and we just do not know in advance its realization. 
In the second case, we do not even know the probability distribution, which 
will be more subjective than fact-based. In extreme cases, even the very use 
of probabilities is questionable. It has been proposed to distinguish between 
decision making under risk and decision making under uncertainty. Strictly 
speaking, what we deal here with is decision making under risk, as we assume 
a known probability distribution. True uncertainty is a more elusive concept, 
possibly involving beliefs, rather than frequentist concepts. We will consider 
issues related to subjective probability in the next chapter. Here we introduce 
the fundamental concepts of risk aversion and the way we may account for it 
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when making decisions. We also outline alternative frameworks, addressing 
additional issues like robustness, disappointment, and regret. 

Our first step in this chapter is the formalization of decision trees, which 
is the subject of Section 13.1. Then, we consider the attitude toward risk. 
Much theory concerning random variables revolves around expected values; 
in previous chapters we have considered, for instance, the maximization of 
expected profit in newsvendor problems. However, such an approach may 
lead to unreasonable solutions for some decision problems, and this motivates 
the need to represent risk aversion. In Section 13.2 we introduce concepts 
related to utility theory and risk measures. Then, we start considering the 
extension of optimization models, namely, linear programming models, to 
decision making under risk. In Section 13.3 we consider two-stage stochastic 
linear programming, which is extended to the multistage case in Section 13.4. 
Stochastic linear programs can be quite challenging to solve, but we will not 
consider specific solution methods that have been proposed; what is really 
important is to consider a couple of basic examples, in order to understand 
the value of this modeling framework and the qualitative difference between 
solutions obtained when uncertainty is disregarded and those obtained by 
considering a set of alternative scenarios. Finally, in Section 13.5, we close 
the chapter by outlining some further developments related to robustness and 
regret. 

13.1 DECISION TREES 

Decision trees are a natural way to describe decision problems under risk, 
involving a sequence of decisions among a finite set of alternative options 
and a set of discrete scenarios, modeling uncertain outcomes that follow our 
decisions. Actually, we have already dealt with decision trees informally in 
earlier examples.1 Now we should treat this formalism more systematically, 
by distinguishing two kinds of node: 

• Decision nodes, represented by squares, correspond to discrete choices 
between mutually exclusive alternatives, as depicted in Fig. 13.1(a). 
At these nodes, the decision maker must choose one among multiple 
available options. 

• Chance nodes, represented by circles, correspond to the realization of 
random outcomes, as depicted in Fig. 13.1(b). Each outcome i is as-
sociated with a probability 7r¿; clearly, the probabilities for the random 
outcomes at each chance node add up to 1. 

A decision tree consists of a set of decision and chance nodes, as shown in 
Fig. 13.2. Typically, decision and chance nodes are interspersed, but we may 

1See Section 1.2.3 and Example 6.10. 
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Choice 1 

Choice 2 

Choice 3 

π , / Outcome 1 

Outcome 2 

Outcome 3 

(a) (b) 

Fig. 13.1 Node types in a decision tree: (a) decision nodes, where choices are made; 
(b) chance nodes, where random outcomes are selected by "nature" according to prob-
abilities. 

Fig. 13.2 A sample decision tree. 

have two chance nodes or two decision nodes in sequence. We also have 
terminal nodes, represented by bullets. Typically, terminal nodes are labeled 
with a payoff, which is essentially the final monetary value of a sequence of 
decisions and random outcomes. It may be helpful to associate cash flows with 
intermediate nodes to clarify the economic impact of each decision. When t ime 
plays a significant role, cash flows may have to be discounted. 

Solving the problem means choosing a strategy, i.e., selecting, for each 
decision node we might visit, one among multiple alternative decisions. In 
the case of a complex decision tree, when the strategy is implemented most 
decision nodes will not be reached, as the sequence of random outcomes will 
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generate a path that does not visit those nodes. However, a strategy must 
plan for every possible contingency. Assuming that payoffs have a monetary 
nature, the most natural criterion to follow in building the strategy is the 
maximization of the expected monetary value (EMV). When a decision node 
is followed by a set of chance nodes, we should label each chance node with 
an EMV, which allows us to choose the best action at the decision node. The 
labeling process should go backward in time, starting from terminal nodes, 
and it is best illustrated by a simple example. 

Example 13.1 Let us solve the decision problem of Fig. 13.2. At chance 
node Λ/4, we calculate the EMV E4 resulting from the three successive terminal 
nodes: 

E4 = 0.1 x 20 + 0.7 x 11 + 0.2 x (-8) = 8.1 

Then, to calculate the EMV E2 for chance node N2 we consider the expected 
value E4 and the value of the sibling terminal node, which yields 

E2 = 0.2 x 10 + 0.8 x 8.1 = 8.48 

These calculations are reflected in Fig. 13.3, where nodes are successively 
labeled. If, at decision node iVi we choose the upbranch, the EMV of the 
decision is 8.48. The downbranch is a bit more complicated, as we must 
consider another decision node. We start labeling chance node iV6: 

E6 = 0 . 6 x 9 + 0 . 4 x 4 = 7 

At decision node N5 we should compare the upbranch, with EMV 5, against 
the downbranch with EMV 7. If we accept the idea of just considering ex-
pected values, disregarding risk, we should choose the downbranch. In the 
figure, this decision is represented by barring (cutting) the suboptimal path 
corresponding to the upbranch, and labeling node N5 with the value of the 
optimal decision, max{5, 7} = 7. Now we label node N3 with the EMV 

0.3 x ( - 5 ) + 0 . 7 x 7 = 4.9 

Taking the maximum between 4.9, and the previously computed EMV 8.48, 
we conclude that the best initial decision is to follow the upbranch. After 
that, there are no more decisions to make, and everything is in the hands of 
Mother Nature. D 

In this trivial example, along the path following the first decision, we do 
not have to make any other choice. In realistic cases, decisions are made 
sequentially, after gathering further information. Moreover, such decisions 
may represent successive investments, calling for a sequence of cash flows. In 
this example we did not consider intermediate cash flows, which should be 
properly weighted probabilistically and possibly discounted, in order to take 
the time value of money into due account. 
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Fig. 13.3 Solution of the decision tree of Fig. 13.2. 

Example 13.2 As a more meaningful example, let us represent the problem 
of Example 6.10 as a decision tree. Figure 13.4 depicts the corresponding 
decision tree, including its solution. The decision tree allows us to visualize 
the strategy: 

• At decision node N\, we choose to run the customers' survey, which costs 
€4000 and provides us with a less uncertain forecast of new product 
success, one way or another. Note once again that the survey does not 
change the unconditional probability of success of the new product. 

• If the result of the customers' survey is promising, we prefer producing; 
otherwise, we sell the license. 

The strategy does not consist of a deterministic sequence of actions; rather, for 
each random outcome, we have a course of action. Furthermore, in drawing 
the tree we subtracted the cost of the survey from the payoff of terminal nodes. 
This does not reflect the true logical sequence of cash flows, but if there is no 
discounting, there is no real difference. However, when time is of the essence 
and discounting is needed, it may be much simpler and more informative to 
associate cash flows with intermediate nodes. D 

The decision trees we have considered are rather trivial, and software pack-
ages for decision analysis provide the user for more options in order to rep-
resent cash flow timing and discounting. Of course, the true difficulty is in 
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60,000 

Sell license 120,000 

16,000 

000 

116,000 

56,000 
Produce ' 

46,000 0 .7 \φ 1 6 ι 0 οο 

Fig. 13.4 Decision tree for new product launch. 

estimating cash flows and the probabilities at chance nodes; typically, a thor-
ough sensitivity analysis is needed in order to check the robustness of the 
recommended strategy. It should be mentioned, however, that the very pro-
cess of structuring a decision tree has value in itself, as it forces the decision 
maker(s) to lay down the structure of the problem, the decisions to be made, 
their logical sequence, and the related risks and opportunities. This think-
ing process in itself may be more valuable than a recommendation relying on 
questionable estimates of probabilities. Furthermore, decision trees also allow 
estimation of the value of information. For the tree of Fig. 13.4 we know 
that the value of the partial information provided by the customers' survey 
is not larger than €5000. In the next section we show how to value perfect 
information. 

13.1.1 Expected value of perfect information 

Decision trees are a very simple tool for framing decision problems with a 
discrete set of alternatives and a discrete representation of uncertainty. We 
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may start moving to more complicated cases by expressing a decision problem 
under risk in a more general way: 

Γ = πιΐηΕω[/(χ,ω)] (13.1) 

xGS 

It is important to understand what problem (13.1) represents: 

• First, we pick up a feasible solution x in the feasible set S. 
• Then, a random event ù occurs, random variables are realized, and we 

have a cost / (x , ù) depending on both our decision (variables under our 
control) and random risk factors (variables not under our control). If 
the function / (x , ù) represent a profit, we should change the problem 
to a maximization. 

This is a here-and-now decision, as we must make a decision before observing 
the realization of random risk factors; all we can do is look for a solution 
that is the best one "on average," which is what is obtained by minimizing 
the expected value of the cost; the notation Εω[·] points out that expectation 
depends on random event ù. The optimal solution yields an expected value 
/ * � 

It would be very, very nice to postpone decisions and make them after we 
observe the realization of risk factors. This wait-and-see solution would, no 
doubt, be better than the here-and-now decision, as we could adapt our choice 
to the specific realized contingency. Unfortunately, in most real-life situations, 
we cannot wait and see and decide under perfect information. Nevertheless, 
we can estimate the theoretical value of perfect information. This is obtained 
by swapping minimization and expectation in (13.1): 

(13.2) 

The subscript in /pj tells us that this is the expected value of cost if we 
could optimize with perfect information, after observing event ù. It stands to 
reason, and it can be shown formally, that for a minimization problem 

/P*, < / * 

The difference in cost is the expected value of perfect information (EVPI): 

EVPI = r - & (13.3) 

When dealing with a maximization problem, the terms in the difference rep-
resent profits, rather than costs, and should be swapped. The EVPI tells us 
something about the impact of uncertainty and is best illustrated by a toy 
example. 

/ P I - E ^ min/(x,w) xes 
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Fig. 13.5 Schematic illustration of EVPI - the value of (waiting for) perfect informa-
tion: (a) here-and-now and (b) wait-and-see decisions. 

E x a m p l e 1 3 . 3 Consider a stylized investment problem. We must select an 
investment strategy between two possibilities, aggressive and conservative. 
These two choices are associated with decisions x\ and x%, respectively; so, 
the feasible set is S = {a; 1,2:2}· Uncertainty is represented by three possible 
states of the economy, which we interpret as follows: 

• ù÷, with probability 0.1, is a "very bullish" economy, in which the ag-
gressive strategy yields 30% and the conservative one yields a much less 
exciting + 6 % . 

• U2, with probability 0.7, is a "moderately bullish" economy, in which 
the aggressive strategy yields 8% and the conservative one yields + 4 % . 

• ù$, with probability 0.2, is a "bearish" economy, in which the aggressive 
strategy loses an epic 40% and the conservative one limits the loss to a 
moderate 2%. 

The here-and-now decision consists of selecting a strategy before observing 
returns. The corresponding decision tree is depicted in Fig. 13.5(a). If we 
take expected return as our objective function, to be maximized, we should 
take the maximum between 

/1 = 0.1 x 30% + 0.7 x 8% + 0.2 x ( -40%) = 6% 

and 
h = 0.1 x 6% + 0.7 x 4% + 0.2 x ( -2%) = 3% 

So, we would choose the aggressive strategy, and / * = 6%. Now, how much 
would be the value of clairvoyance? We should restructure the decision tree as 
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in Fig. 13.5(b). If we could invest after observing return, the expected return 
before the realization of the state of the economy would be 

/ ; , = 0.1 x max{30%, 6%} + 0.7 x max{8%, 4%} 
+0.2 x max{-40%, -2%} = 8.2% 

The EVPI, in terms of percentage returns, is 

EVPI = / ; , - /* = 8.2% - 6% = 2.2%. 

Of course, we swap terms with respect to Definition (13.3), as we seek to 
maximize return. The return could be translated into monetary terms by 
assuming an invested wealth. D 

The careful reader, of course, will notice that there is a missing piece in 
the above example: If an investor really had clairvoyance, in the case of 
the very bullish scenario, she would actually borrow money to pursue an 
aggressive strategy; even a small difference in return can yield a huge amount 
of money, if a correspondingly huge wealth is invested. This strategy is based 
on leveraging, and has been pursued in recent times of low interest rates. As 
the 2008 financial crisis has clearly shown, such leveraged strategies are quite 
risky. In fact, another fundamental missing piece in the example is the role 
of risk: Wise investors are risk-averse. In the next section we take a look at 
modeling risk aversion and measuring risk. 

13.2 RISK AVERSION AND RISK MEASURES 

So far, when dealing with a decision problem under risk, we have used expected 
profit or expected cost as the criterion of choice. We did so, e.g., for the 
newsvendor problem,2 as well as for the decision trees of the previous section. 
But does this actually make sense? The following examples show that this 
need not be the case. 

Example 13.4 (A single bet vs. many repeated bets) Consider the 
following offer by a professor. A fair coin is flipped: If it lands tail, you 
win €10, otherwise you lose €5. When offered this lottery, most students 
would be willing to play. The reasoning is that the expected win (€2.5) is 
positive. But then, the same should apply if we make things more interesting 
by scaling the lottery up: You may win €10 million or lose €5 million. No 
sensible person would play this game, unless he could afford losing €5 million 
without changing his lifestyle. However, if one could play the game many 
times, settling the score only at the end, one should probably accept. Of 

2See Section 7.4.4. 
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course, playing the game a lot of times reduces variance; in the limit, the law 
of large numbers applies and risk disappears. However, if you can be thrown 
out of business in the short term, after a couple of losses, bright long-term 
prospects will be little solace, if any. D 

Example 13.5 (Putting all of your eggs in one basket) Consider an 
investor who must allocate her wealth to n assets. The return of each as-
set, indexed by i = É,.,.,ç, is a random variable i?¿ with expected value 
/x¿ = E[i2¿]. We have introduced this kind of choice in Example 12.5, and we 
know that asset allocation decisions may be expressed by decision variables 
Wi representing the fraction of wealth invested in asset i. If we rule out short-
selling, these decision variables are naturally bounded by 0 < iu¿ < 1. If we 
assume that the investor should just maximize expected return, she should 
solve the problem 

n 

max 2_. ßiwi 
i=l 

n 

S.t. 2_]wi = 1 
¿ = 1 

Wi > 0 

However, its solution is quite trivial; she should simply pick the asset with 
maximum expected return, i* = argmax¿=ii...i„ /x¿, and set Wi* = 1. It is easy 
to see that this concentrated portfolio is a very dangerous bet. In practice, 
portfolios are diversified, which means that decisions depend on something 
beyond expected values. Furthermore, one would also add some additional 
constraints on portfolio composition, bounding exposure to certain geographic 
areas or types of industry, and they would render the trivial solution above 
infeasible. However, it may be necessary to add many such additional con-
straints to find a sensible solution; this means that the solution is basically 
shaped by the user who enforces these bounds. Incidentally, if shortselling 
is allowed, the decision variables are unrestricted, and the expected value of 
future wealth goes to infinity. In fact, one would short-sell assets with low 
expected return, to make money to be invested in the most promising asset. 
This is clearly unreasonable. D 

Example 13.6 (St. Petersburg paradox) Consider the following propo-
sition. You are offered a lottery, whose outcome is determined by flipping a 
fair and memoryless coin. The coin is flipped until it lands tail. Let k be the 
number of times the coin lands head; then, the payoff you get is $2k. Now, 
how much should you be willing to pay for this lottery? We may consider this 
as an asset pricing problem, and set the expected value of the payoff as the 
fair price for this rather peculiar asset. The probability of winning $2fe is the 
probability of having k consecutive heads followed by one tail, which stops 
the game, after k + 1 flips of the coin. Given the independence of events, the 
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probability of this sequence is l/2 f c + 1 , i.e., the product of individual event 
probabilities. Then, the expected value of the payoff is 

E ^ T r 2 f e = 2 X l + 4 X 2 + 8 X 4 + - - - = 2 + 2 + 2+--- = +°° 
fc=0 

This game looks so beautiful that we should be willing to pay any amount of 
money to play it! No one would probably do so. Again, we see that expected 
values do not tell the whole story. D 

These examples should suffice to convince us that considering expected 
monetary values, whether costs or profits, is not enough to fully address de-
cision making under risk. We should find a way to account for the natural 
tendency to avoid unnecessary or excessive risk. Sometimes, ad hoc tools are 
used. For instance, when evaluating an investment, cash flows are discounted 
by a rate accounting for risk.3 In this section we try to find a more general 
framework, which is provided by utility theory. This is a standard approach 
in classical economics, fraught with many difficulties and shortcomings; yet, it 
is a useful conceptual tool. Later, we consider more practical ways to account 
for and measure risk. 

13.2.1 A conceptual tool: the utility function 

The idea that most decision makers are risk-averse is intuitively clear, but 
what does risk aversion really mean? A theoretical answer, commonly put 
forward in economic theory, can be found by assuming that decision makers 
order uncertain outcomes by a utility function rather than by straightforward 
expected monetary values. To introduce the concept, let us consider simple 
lotteries. A lottery is represented by a random variable X that assumes values 
Xi with probabilities p¿; the decision maker should select among alternative 
lotteries and may also combine them, forming new random variables. For 
instance, consider an agent who has to choose between the following two 
lotteries: 

1. Lottery a\, which is actually deterministic and has a sure payoff μ. 

2. Lottery a-¿, which has two equally likely payoffs ì + ä and ì — ä. 

The two lotteries are clearly equivalent in terms of expected payoff, but a 
risk-averse agent will arguably select lottery á,÷. More generally, if we have 
a random variable X and we add a mean-preserving spread, i.e., a random 
variable e with E[e] = 0, this addition is not welcome by a risk-averse decision 
maker. 

3We did so for the growth option example of Section 1.2.2. 



704 DECISION MAKING UNDER RISK 

Given a set of lotteries, the agent should be able to pick the preferred one; 
more precisely, given any pair of lotteries, the agent should be able to tell 
which one she prefers or decide that she is indifferent to a choice between them. 
If so, we have a preference relationship among lotteries. Since preference 
relationships are a bit cumbersome and are not easy to deal with, we could 
map each lottery to a number, measuring the attractiveness of that lottery 
to the agent, and use the standard ordering of numbers to rank lotteries. For 
arbitrary preference relationships, a function representing them may not exist 
but, under a set of more or less reasonable assumptions,4 such a mapping 
does exist and can be represented by a utility function. A particularly simple 
form of utility function, which looks reasonable but is justified by specific 
hypotheses on the preference relationship that it models, is the Von Neumann-
Morgenstern utility, defined as 

n 
U{a) = ^2PÍU(XÍ) 

¿=i 

The definition involves a function u(·), and a is a lottery with n outcomes 
Xi and probabilities p¿. The function u{·) is the utility of a certain payoff, 
and £/(·) is the expected utility. If u{x) = x, then the utility function boils 
down to the expected value of the payoff. Alternative choices of the utility 
function u model different attitudes toward risk. For business problems, it 
is reasonable to assume that utility u{·) is an increasing function, since we 
prefer more wealth to less. 

In the case of the two lotteries above, preference for ax is expressed by 

f/(ai) = ω(μ) > \ç{ì - ä) + \ç{ì + ä) = U(a2) 

Since the inequality is not strict, we should say that lottery a,\ is at least as 
preferred as a2, and the decision maker could be indifferent between the two. 
More generally, if we have two possible outcomes, x\ and x2, with probabilities 
Pi = p and p2 = 1 — p, respectively, a risk-averse decision maker would prefer 
not taking chances: 

u(E[X}) = u(pxx + (1 - p)x2) > pu{Xl) + (1 - p)u(x2) = E[u(X)] (13.4) 

This condition basically states that the function u(-) is concave. Figure 13.6 
illustrates the role of concavity. In Theorem 6.8 we have introduced Jensen's 
inequality for convex functions. Indeed, Eq. (13.4) is just a specific case of 
Jensen's inequality for concave functions of a random variable X: 

u(E[X]) > E[u(X)} (13.5) 

4 The discussion of these assumptions is best left to books on microeconomics or decision 
theory; we should mention that most of them seem rather innocent and reasonable under 
most circumstances, but they may lead to surprising effects in paradoxical examples. 



RISK AVERSION AND RISK MEASURES 705 

u(E[X\) 
E[u(X)] 

μ-ä CE„(^) M μ+ä 

F/g·. 13.6 How concave utility functions imply risk aversion; the certainty equivalent 
is also shown. 

It is fundamental to observe that the specific numerical value that the utility 
function assigns to a lottery is irrelevant per se; only the relative ordering 
of alternatives is essential. In fact, we speak of ordinal rather than cardinal 
utility. Given the linearity of expectation, we also see that an affine transfor-
mation of the utility function u(·) has no effect, provided it is increasing: If we 
use au(x)+b instead of u(x), where a > 0, the relative ranking of alternatives 
is preserved. 

How can we say something about the properties of a specific utility func-
tion? In particular, we would like to come up with some way to measure 
risk aversion. We have said that a risk-averse decision maker would prefer 
a certain payoff rather than an uncertain one, when the expected values are 
the same. She would take the gamble only if the expected value of the risky 
lottery were suitably larger than the certain payoff. In other words, she re-
quires a risk premium. The risk premium depends partly on the risk attitude 
of the decision maker, and partly on the uncertainty of the gamble itself. We 
will denote the risk premium by pu(X); note that this is a number that a 
decision maker with utility u(-) associates with a random variable X. The 
risk premium is defined by the condition 

u(E[X}-Pu{X)) = U(X) (13.6) 

The risk premium implicitly defines a certainty equivalent, i.e., a sure and 
guaranteed payoff CEU (X) such that the agent would be indifferent between 
this certain amount and the uncertain lottery: 

CEu(X) = E[X]-Pu(X) 

Note that the certainty equivalent is smaller than the expected value, and the 
difference is larger when the risk premium is larger. These concepts may be 
better grasped by looking again at Fig. 13.6. 

k " W 
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A difficulty with the risk premium concept is that it mixes the intrinsic 
risk of a lottery with the risk attitude of the decision maker. We might wish 
to separate the two sides of the coin. Consider a lottery X = x + e, where x 
is a given number, and θ is a random variable with E[e] = 0 and Var(e) = ó2. 
Assume that the random variable θ is a "small" perturbation, in the sense 
that any possible realization e is a relatively small number.5 Hence, we may 
approximate both sides of Eq. (13.6) by Taylor's expansions. Consider, for 
instance, the expression u{x + e). Since only numbers are involved here, we 
may write 

u(x + e) « u(x) + eu'(x) + \e2u"(x) 

Using this approximation for the random variable i, under the assumption 
that its realization are small enough, and taking expected values, we may 
approximate the right-hand side of (13.6) as follows: 

U(X) = E[u(x)] « E [u(x) + iu'(x) + \l2u"{x)} 
= u(x) + E[i}u'{x) + ±E[ë2}u"{x) 
= u(x) + 0 · u'{x) + ±Vav(e)u"(x) 
= u{x) + \a2u"{x) 

In the second-to-last (penultimate) line we have used Var(θ) = E[θ2] -E2[θ] = 
E[e2] —0. We may also approximate the left-hand side of (13.6), which involves 
only numbers, by a first-order expansion around E[X) = x: 

u(E[X] - Pu(X)) « «(a;) - pu{X)u'{x) 

Equating the two approximations and rearranging yields 

^'-\v$S <Ι3·7> 
Since we assume the utility function to be concave and increasing, the right-
hand side of Eq. (13.7) is positive.6 We observe that the risk premium is 
factored as the product of one term depending on the subjective agent's risk 
aversion and another one depending on the objective uncertainty of the lottery. 
This justifies the following definition of the coefficient of absolute risk aversion: 

5For the sake of convenience, in this section we denote by κ a random variable and by e 
a realization of that variable. This notation is common in economics; in statistics, one 
typically uses X and x with the corresponding pair of meanings. 
6We recall that , for a differentiable concave function of one variable, we have u"(x) < 0; 
see Section 2.11. 
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We have said that, given the linearity of the expectation operator, transform-
ing the utility function u{x) by an increasing affine transformation is incon-
sequential. Indeed, the definition of the risk aversion coefficient is consistent 
with this observation, as it is easy to see that the coefficients for u(x) and 
au(x) + b are the same. Note that the coefficient Ru(x) does not depend on 
uncertainty, but it does depend on the expected value of the lottery. Prom an 
investor's perspective, this implies that risk aversion depends on the current 
level of wealth. The more concave the utility function, the larger the risk 
aversion. 

By a similar token, we may define the coefficient of relative risk aversion. 
This is motivated by considering a multiplicative, rather than additive, shock 
on an expected value x: X = x(l + e). Using a similar reasoning, we get 

,v. lu"{x) 2 

which suggests the definition 

«�»-W (13'9) 

Example 13.7 (A few standard utility functions) A typical utility 
function is logarithmic utility:7 

u(x) = log(a;) (13.10) 

Clearly this makes sense only for positive values of wealth. It is easy to check 
that, for the logarithmic utility, we have 

Ra
u(x) = 1, Rr

u(x) = 1 

Hence, logarithmic utility has decreasing absolute risk aversion, but constant 
relative risk aversion. We say that logarithmic utility belongs to the families 
of decreasing absolute risk aversion (DARA) and constant relative risk aver-
sion (CRRA) utility functions. We may also consider the exponential utility 
function 

u{x) = -e~ax (13.11) 

for a > 0. Note that this is an increasing function, and it is easy to interpret 
the parameter a: 

R"(x) = <±± = a 
uV ' ae~ax 

Hence, we see that the exponential utility is constant absolute risk aversion 
(CARA). It is important to remark that some utility functions have been used 

7In the following text we will use the notation log, rather than In, to denote the natural 
logarithm. 
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because they are easy to manipulate, but this does not imply that they always 
model realistic investors' behavior.8 

Another common utility function is the quadratic utility: 

u{x) = x - ~x2 (13.12) 

Note that this function is not monotonically increasing and makes sense only 
for x e [0, l /λ ] . Another odd property of quadratic utility is that it is in-
creasing absolute risk aversion (IARA): 

Uu[X) l-Xx^ dx (1 - ë÷)2 > 

This implies, for instance, that an investor becomes more risk averse if her 
wealth increases, which is usually considered at odds with standard investors' 
behavior. Nevertheless, we may also see that quadratic utility emphasizes the 
role of variance, since for this utility 

U(X) = E ÷-ú* = E [ X H j ( V a r ( J » 0 + E ! [ X ] ) 

A decision maker with quadratic utility is basically concerned only with the 
expected value and the variance of an uncertain outcome. D 

Specifying a utility function may be a difficult task, since assessing the 
tradeoff between expected payoff and risk is far from trivial. This may be 
of no concern in economics, if the aim is to build a model explaining some 
observed behavior and qualitative insights that are of interest; however, in 
business decision making, it is an issue. In the following sections, we consider 
more operational approaches. 

13.2.2 Mean-risk optimization 

If asked about our utility function, we would hardly be able to give a sensible 
answer. However, in real life, we do trade off expectations against risk; to do 
so, we need a way to measure risk. 

DEFINITION 13.1 A risk measure is a function p(X), mapping a random 
variable X into the set of nonnegative real numbers R+. 

In practice, the random variable X could be a random profit or a random 
return on an investment; generally speaking, it represents the consequence of 
our decision. The idea behind a risk measure is that the larger its value, the 

See Problem 13.6. 
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riskier our choice are. We should not confuse such a risk measure with a coef-
ficient of risk aversion. The latter is a measure of the subjective attitude of a 
decision maker toward risk; the former is an objective measure of the riskiness 
of a lottery or a prospect, and not a measure of perceived risk. Apparently, 
the most natural risk measure we may come up with is related to variance 
or standard deviation. Standard deviation is more natural in the sense that 
it is measured in the same units as the corresponding expectation; however, 
variance may be more convenient when building optimization models. In fact, 
minimization of variance is equivalent to minimization of standard deviation, 
but the former may result in a convex optimization problem, whereas the lat-
ter does not. Later, we will see that variance and standard deviation might 
not make very good risk measures, but they are a suitable starting point. 

Now, given a random variable X representing profit or return, we should 
find a tradeoff between its expected value E[X] and a risk measure p{X). In 
Section 12.3.3 we have considered multiobjective optimization, and we have 
defined the concept of efficient solution and efficient frontier. Even if we are 
not able to spot a single optimal solution trading off expectation and risk, we 
might trace the efficient frontier with respect to these conflicting objectives. 

Example 13.8 (Mean—variance portfolio efficiency) We are already fa-
miliar with elementary portfolio choice problems.9 Given a universe of assets 
with random return Ri, i — 1 , . . . , n, expected return μ,, and covariance ma-
trix Σ = [aij], we should select portfolio weights Wi adding up to one. Given 
a vector w representing the portfolio, its expected return and variance are 
given as follows: 

n n n 

i = l ¿=1 j=l 

The standard deviation of return, óñ, might be considered as a risk measure, 
as it provides us with a measure of dispersion. Then, we may trade off ex-
pected return ìñ against óñ. Of course the tradeoff may be unclear, but it 
can be visualized by tracing the frontier of mean-variance efficient portfolios, 
depicted in Fig. 13.7.10 The efficient frontier is bent toward the northwest, 
since we want to maximize ìñ and minimize óñ. Portfolios on this frontier are 
called mean-variance efficient, since variance and standard deviation may be 
switched from one to another depending on convenience. A portfolio is effi-
cient if it is not possible to obtain a higher expected return without increasing 
risk or, seeing things the other way around, if it is not possible to decrease 
risk without decreasing expected return. 

It is important to emphasize that we are talking about portfolios. If we 
compare two assets, it is tempting to say that the decision problem is trivial 

9See Example 12.5. 
10Efficient frontiers for multiobjective optimization problems, as well as models to trace 
them, are discussed in Section 12.3.3. 
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^ P 

I & 
Fig. 13.7 Mean-variance efficient portfolio frontier. 

when ìé > ì^ and ó\ = ó\\ < ó^2 = í\· In this case, asset 1 has a larger 
expected return than asset 2, and it is also less risky; hence, a naive argu-
ment would lead to the conclusion that asset 2 should not be considered at 
all. Actually, this may not be the case, since we have neglected the possible 
correlation between the two assets. The inclusion of asset 2 may, in fact, be 
beneficial in reducing risk, particularly if its return is negatively correlated 
(σΐ2 < 0) with the return of asset 1. 

To trace the efficient frontier, there are two main possibilities. One is to 
scalarize the vector of two objectives and solve 

max ìô\í -
71 

S.t. ¿_jWi 

i=l 
Wi > 0 

for various values of coefficient λ. This coefficient penalizes variance, and can 
be interpreted as a risk aversion coefficient. By changing the value of λ, we can 
trace the efficient set. Prom a mathematical perspective, this is a quadratic 
programming model; since the covariance matrix is positive semidefinite, it is 
a convex problem. We see the reason for using variance, rather than standard 
deviation, in this kind of optimization models: Variance is a convex quadratic 
form with respect to portfolio weights; standard deviation involves a square 
root that makes things a bit more complicated. Incidentally, we see that the 
problem is somewhat related to a quadratic utility function.11 Unfortunately, 
it is a bit difficult to get a feeling for the parameter λ. Alternatively, we may 

1 1 It can be shown that the mean-variance framework is compatible with the utility frame-
work if the utility function is quadratic, which may be debatable since we have seen that 

- — w Σνν 
2 
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use the constraint approach, leading to the solution of the problem 

min w T E w 

s.t. \íôì = μ4 

n 

i = l 
Wi > 0 

for various values of the target return ì^,. Again, this is a convex quadratic 
programming problem. For an investor, specifying a target return may be 
more intuitive than struggling with risk aversion coefficient λ.12 Anyway, 
common sense and experience suggest risk aversion coefficients in the range 
between 2 and 4. D 

The mean-variance efficiency framework has played a pivotal role in the 
development of modern financial theory, even though it has quite significant 
practical limitations: 

• The estimation of the relevant data may not be easy. 

• We are neglecting transaction costs. 

• We are assuming that correlations do not change over time, even under 
severe market conditions. 

More generally, the use of a risk measure based on variance or standard de-
viation is questionable. In fact, variance measures both positive and negative 
deviations with respect to the expected return. However, this symmetry does 
not make economic sense: We are certainly not annoyed by extra profits. 
When dealing with a symmetric distribution like the normal one, standard 
deviation makes sense, since the good and the bad tails of the distributions 
have the same shape. However, this does not necessarily apply to skewed 
distributions. It may also be argued that not only skewness, but also kurtosis 
can play a role in measuring risk: Kurtosis might do a better job at measuring 
extreme risks, i.e., those associated with fat tails. More recently, alternative 
risk measures have been proposed, based on quantiles. 

quadratic utility features increasing absolute risk aversion, or if random returns are normally 
distributed, which is rather at odds with observed data. 
12Some optimization models include discrete decision variables; they can be used to con-
strain portfolio cardinality, i.e., the number of different assets included in the portfolio. This 
makes the problem nonconvex, and it can be shown that the first scalarization approach 
does not guarantee that the whole efficient frontier is traced. The constraint approach does 
not suffer from this difficulty; see, e.g., Chapter 12 of Ref. [10]. 

(13.13) 
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13.2.3 Quantile-based risk measures: value at risk 

Given the limitations of standard deviation and variance as risk measures, 
alternative ones have been proposed. To be specific, we will refer once more 
to a financial investment problem, where risk is related to portfolio loss. The 
most widely known such measure is value at risk [VaR; not to be confused with 
variance (Var)]. The VaR concept was introduced as an easy-to-understand 
measure of portfolio risk. In fact, measuring, monitoring, and managing risk 
are fundamental activities for any portfolio manager, but another fundamen-
tal side of the coin is the possibility of communicating about risk with top 
management, through a single number making sense for a broad class of as-
sets. Bonds and stocks involve different forms of risk and derivatives, if used 
for speculation, may be even riskier. Basically, VaR aims at measuring the 
maximum portfolio loss one could suffer, over a given time horizon, within a 
given confidence level. Technically speaking, it is a quantile of the probability 
distribution of loss. Let LT be a random variable representing the loss, in 
absolute value, of a portfolio over a holding period of length T. Then, VaR 
at confidence level 1 — a can be defined as the smallest number VaRi_Q such 
that 

P(LT < VaRi_a) > 1 - a (13.14) 

This definition is consistent with Definition 7.2 of a quantile of a discrete 
probability distribution. If LT is a continuous random variable and its CDF 
is invertible, we may rewrite Eq. (13.14) as 

P(LT < VaR!_a) = 1 - a (13.15) 

In the following discussion, unless otherwise noted, we will assume for simplic-
ity that loss is a continuous random variable. For instance, if we set a = 0.05, 
we obtain VaR at 95%. The probability that the loss exceeds VaR is a. 

Actually, there are different definitions of VaR, which are best clarified by 
relating the distribution of loss to the distribution of return. Let Wo be the 
initial portfolio wealth. If RT is the random return over the holding period, 
the future wealth is 

WT = W0(1 + RT) 

A loss occurs when the wealth increment 

ÖW = WT - W0 = W0RT 

turns out to be negative. So, the absolute loss over the holding period is 

LT = —WQRT 

Let us assume that the holding period return has a continuous distribution 
with density fRT(r). Equation (13.15) implies that loss will exceed VaR with 
a low probability: 

P(LT > VaRi_a) = a 
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where we may indifferently write ">" or ">," since the distribution involved 
is continuous. This can be rewritten as follows: 

P(LT > VaRi_a) = P(-W0RT > VaRi_a) 

- ( * s - ^ ) 
= V(RT<ra)=a (13.16) 

where we have defined 
VaRi_c 

Wo 
The return ra will be negative in most practical cases and is just the quantile 
at level a of the distribution of portfolio return: 

P(RT<ra)= ffRT(r)dr = a 
J — oo 

The quantile ra is obviously associated with a critical wealth wa, which is the 
wealth we end up with if our loss is exactly the VaR: 

wa = W0 - VaR 

We may interpret ra as the worst-case return with confidence level a; if a = 
0.05, return will be worse than ra only in 5% of the cases. By the same token, 
we will end up with a wealth lower than wa only with probability a. 

Now we may define an absolute VaR as 

VaR = W0-wa = -W0ra (13.17) 

Note once again that the critical return ra is usually negative and VaR (ab-
solute value of loss) is positive. We may also define a relative VaR, where the 
reference value to define loss is the expected value of future wealth. Let us 
denote the expected holding period return by ì = E[RT]. Then 

E[WT] = (1 + M)W0 

Relative VaR is defined as 

V a R = E [ W T ] - ™ a = - W 0 ( r a - A i ) (13.18) 

The definitions in Eqs. (13.17) and (13.18) may yield approximately the same 
VaR over a short time horizon, say, a few days. In this case volatility domi-
nates drift13 and E[Wr] ~ Wo- This assumption is not unreasonable, as bank 

13Intuitively, drift is related to expected return, and volatility is related to standard devia-
tion. On a short time interval of length St, drift scales linearly with St, whereas volatility is 
proportional to VSt, which means that when the time interval tends to zero, drift goes to 
zero more rapidly than does volatility. This square-root rule was discussed in Section 7.7.1. 
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regulations require the use of a risk measure in order to set aside enough cash 
to be able to cover short-term losses. 

Computing VaR is easy if we assume that return or, equivalently, loss are 
normally distributed. Let us assume that the holding period return RT is 
normally distributed and that 

E[RT] « 0, Var(#T) = ó2 

Then, there is no difference between absolute and relative VaR. Since loss is 
LT = —WoAT) we obtain LT ~ Af(0, W2a2). We should not overlook the 
fact that we are taking advantage of the symmetry of the normal distribution 
of return with respect to its expected value, which is 0. Hence, the critical 
return ra is, in absolute value, equal to the quantile r i _ a . Then, to compute 
VaRi_a, we may use the familiar standardization/destandardization drill for 
normal variables: 

P d , < VaR,_„) = p ( % l ° < * % ^ ° ) - Ρ ( Ζ < ^ ) 

where Z is a standard normal variable. We have just to find the standard 
quantile z\-a and set 

VaRi_a = zi-aaW0 

Example 13.9 You have invested $100,000 in Quacko Corporation stock 
shares. Daily volatility is 2%. VaR at 95% level is 

$100,000 x 0.02 x zo.95 = $100,000 x 0.02 x 1.6449 = $3,289.71 

We are "95% sure" that we will not lose more than $3,289.71 in one day. VaR 
at 99% level is 

$100,000 x 0.02 x 20.99 = $100,000 x 0.02 x 2.3263 = $4652.70 

Clearly, increasing the confidence level by 4% has a significant effect, since we 
are working on the tail of the distribution. U 

A commonly proposed scaling procedure allows us to compute VaR on 
multiple time periods. If we assume that daily returns are a stream of i.i.d. 
normal variables with standard deviation ó, over a time period spanning T 
days, the application of the square-root rule yields 

VaRi_a(T days) = zi-aVfaW0 = V T V a R i - ^ l day) 

Needless to say, this simple-minded approach hides a few dangers. To begin 
with, when we consider longer time periods, expected return does play a role, 
and we should clarify whether we are interested in the relative or absolute 
VaR. Furthermore, we are assuming that returns on consecutive days can be 
just summed, disregarding compounding effects; this allows us to consider 
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return over T days as the sum of T normal variables, which is normal again. 
Last but not least, we are assuming that there is no correlation between the 
returns on consecutive days.14 The very assumption of normality of returns 
can be dangerous, as the normal distribution has a relatively low kurtosis; 
alternative distributions have been proposed, featuring fatter tails, in order 
to better account for tail-risk, which is what we are concerned about in risk 
management. Nevertheless, the calculation based on the normal distribution 
is so simple and appealing that it is tempting to use it even when we should 
rely on more realistic models. In practice, we are not interested in VaR 
for a single asset, but in VaR for the whole portfolio. Again, a normality 
assumption streamlines our task considerably. 

Example 13.10 Suppose that we hold a portfolio of two assets. The port-
folio weights are w\ = | and w2 = | , respectively. We also assume that the 
returns of the two assets have a jointly normal distribution; the two daily 
volatilities are ó\ = 2% and ó2 = 1%, respectively, and the correlation is 
p = 0.7. Let the time horizon be T = 10 days; despite this, we assume again 
that expected holding period return is zero. To obtain portfolio risk, we first 
compute the variance of the holding period return: 

-I W\ W2 
ó\Ô ñó÷ó2Ô 

ñó÷ó2Ô ó\Ô W2 
0.0025111 

Hence, óñ = 0.05011. If the overall portfolio value is $10 million, and the 
required confidence level is 99%, we obtain 

VaRo.99 = 20.99 · óñ ■ W0 = 2.3263 x 0.05011 x 107 = $1,165,709 

Once again, we stress that the calculations in Example 13.10 are quite 
simple (maybe too simple) since they rely on a few rather critical assumptions. 
Alternative ways of estimating VaR have been proposed: 

• Monte Carlo simulation. In the previous examples, we have taken ad-
vantage of the analytical tractability of the normal distribution, and the 
fact the return of stock shares was the only risk factor involved. Other 
risk factors may be involved, such as inflation and interest rates, and the 
portfolio can include derivatives, whose value is a complicated function 
of underlying asset values. Even if we assume that the underlying risk 
factors are normally distributed, the portfolio value may be a nonlinear 
function of them, and the analytical tractability of the normal distribu-
tion is lost. In this case, we may resort to Monte Carlo simulation,15 

1 4We may also say that returns are not autocorrelated. Lack of correlation is equivalent to 
independence if we assume normality; otherwise, we should require that daily returns are 
independent of each other. 
15See Section 9.7. 
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(a) (b) 

Fig. 13.8 Value at risk can be the same in quite different situations. 

which is a remarkably flexible tool, even though not necessarily the most 
efficient one. 

• Historical VaR. What we have illustrated so far is a parametric ap-
proach, since it relies on a theoretical probability distribution, not nec-
essarily normal. One advantage of the normal distribution is that it sim-
plifies the task of characterizing the joint distribution of returns, since 
we need only a correlation matrix. However, we know that correlations 
need not capture dependence between random variables. Alternative 
distributions can be used, possibly requiring sophisticated numerical 
methods or Monte Carlo simulation, but it is generally difficult to cap-
ture dependence. Rather than assuming a specific joint distribution, we 
may rely on a nonparametric approach based on historical data. The 
advantage of historical data is that they should naturally capture de-
pendence. Hence, we may combine them, according to bootstrapping 
procedures, to generate future scenarios and estimate VaR by historical 
simulation. 

Whatever approach we use to compute VaR, it is not free from some fun-
damental flaws, which depend on its definition as a quantile, and we should 
be well aware of them. For instance, a quantile cannot distinguish between 
different tail shapes. Consider the two densities in Fig. 13.8. In Fig. 13.8(a) 
we see a normal loss distribution and its 95% VaR, which is just its quantile at 
probability level 95%; the area of the right tail is 5%. In Fig. 13.8(b) we see a 
sort of truncated distribution obtained by appending a uniform tail to a nor-
mal density, which accounts for 5% of the total probability. By construction, 
VaR is the same in both cases, since the areas of the right tails are identi-
cal. However, we should not associate the same measure of risk with the two 
distributions. In the case of the normal distribution there is no upper bound 
to loss; in the second case, there is a clearly defined worst-case loss. Hence, 
the risk for density (a) should be larger than with density (b), but VaR does 
not indicate any difference between them. In order to discriminate the two 
cases, we may consider the expected value of loss conditional on being on the 
right (unfortunate) tail of the loss distribution. This conditional expectation 
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yields the midpoint of the uniform tail in the truncated density; conditional 
expected value is larger in the normal case, because of its unbounded sup-
port. This observation has led to the definition of alternative risk measures, 
such as conditional value at risk (CVaR), which is the expected value of loss, 
conditional on being to the right of VaR. 

Risk measures like VaR or CVaR could also be used in portfolio optimiza-
tion, by solving mathematical programs with the same structure as problem 
(13.13), where variance is replaced by such measures. The resulting optimiza-
tion problem can be rather difficult. In particular, it may lack the convexity 
properties that are so important in optimization. It turns out that minimizing 
VaR, when uncertainty is modeled by a finite set of scenarios (which may be 
useful to capture complex distributions and dependencies among asset prices), 
is a nasty nonconvex problem, whereas minimizing CVaR is (numerically) eas-
ier as it yields a convex optimization problem.16 

There is one last issue with VaR that deserves mention. Intuitively, risk 
is reduced by diversification. This should be reflected by any risk measure 
p(-) we consider. A little more formally, we should require a subadditivity 
condition like 

p(A + B)<p(A)+p(B) 
where A and B are two portfolio positions. The following counterexample is 
often used to show that VaR lacks this property. 

Example 13.11 (VaR is not subadditive) Let us consider two corporate 
bonds, A and B, whose issuers may default with probability 4%. Say that, 
in the case of default, we lose the full face value, $100 (in practice, we might 
partially recover the face value of the bond). Let us compute the VaR of each 
bond with confidence level 95%. Since loss has a discrete distribution in this 
example, we should use the more general definition of VaR provided by (13.14). 
The probability of default probability is 4%, and 1 - 0.04 = 0.96 > 0.95; 
therefore, we find 

VaR(A) = VaR(ί) = VaR(A) + VaR(B) = $0 

Now what happens if we hold both bonds and assume independent defaults? 
We will suffer: 

• A loss of $0, with probability 0.962 = 0.9216 

• A loss of $100, with probability 2 x 0.96 x 0.04 = 0.0768 

• A loss of $200, with probability 0.042 = 0.0016 

Note that the probability of losing $0 is smaller than 95%, but 

P(LT < 100) = 0.9216 + 0.0768 > 0.95 

We illustrate this later in Section 13.3.3. 
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Hence, with that confidence level, VaR(A + B) = 100 > VaR(A) + VaR(ί), 
which means that diversification increases risk, if we measure it by VaR. D 

Subadditivity is one of the properties that any sensible risk measure should 
enjoy. The term coherent risk measure has been introduced to specify a risk 
measure that meets a set of sensible requirements. VaR is not a coherent risk 
measure, whereas it can be shown that CVaR is. 

13.3 TWO-STAGE STOCHASTIC PROGRAMMING MODELS 

So far, in terms of concrete procedures, we have considered only decision trees, 
which are well suited to cope with discrete decisions, when uncertainty can 
be represented by a finite set of scenarios. More generally, we would like to 
solve a problem like 

minEu,[/(x,a;)] 
χε£> 

where S is a subset of W1, and the expectation can be taken with respect to a 
multidimensional continuous distribution. The objective function is not nec-
essarily an expected cost or an expected profit (to be maximized), and it could 
be related to a utility function. Unfortunately, this optimization problem in-
volves an expectation, which in turn involves a multidimensional integral, if 
the underlying distribution is continuous. It is a safe bet that a problem like 
this is almost intractable in all but very simple cases. One ingredient to build 
a tractable model is the approximation of continuous distributions by a dis-
crete set of scenarios, i.e., a discrete probability distribution, which boils the 
nasty multidimensional integral down to a more manageable sum. Indeed, 
this is what is typically done to build decision trees, where the description of 
uncertainty is discrete by nature. 

We should also note that, in practice, it is very difficult to specify a high-
dimensional distribution describing the uncertainty we face. The multivariate 
normal distribution is an exception, as in order to describe it we just need 
expected values, variances, and the correlation matrix. In other cases, a set 
of well-crafted scenarios may be the raw material we may start from. They 
may be obtained by Monte-Carlo simulation of a possibly complex dynamic 
model, or by taking advantage of historical data; scenarios can also be the 
result of a discussion with a group of domain experts, if past data are not 
relevant or not available altogether. However, unlike the case with decision 
trees, here we want to deal with complex decisions, rather than the choice 
among a finite and small number of alternatives. As a concrete illustration of 
these concepts, we will treat the stochastic extension of linear programming 
(LP) models. 

Consider the following deterministic LP model (in canonical form): 

min c T x 
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s.t. Ax > b 
x > 0 

We may try to deal with uncertainty by making randomness in the data 
explicit in the model. In the most general case, we may have randomness in 
all of our data, which could be represented by random variables ï(ù), A(u>), 
and b(w), depending on an underlying event ù. However, we cannot simply 
translate the model above to something like 

min c(w)Tx (13.19) 
s.t. Α(ω)χ > b(w) (13.20) 

x > 0 

To begin with, the objective function (13.19) does not make sense, since min-
imizing a function of a random variable has no clear meaning. Still, we could 
solve this issue simply by considering its expected value. The real issue is that 
we should not require that the constraints (13.20) are satisfied for every event 
ù. In some cases, doing so would yield a "fat" solution, which is expected to 
be quite costly. In other cases, it would be simply impossible to do so. To 
see this, consider a simple inventory control system operating under a reorder 
point policy. If demand is assumed normal, 100% service level would imply 
setting the reorder point to infinity. By the same token, imagine that the 
model involves equality constraints; equality constraints for different scenar-
ios are most likely to be inconsistent. Hence, we must relax constraints in 
some sensible way. 

One possible approach to relax the requirements is to allow for a violation 
in a small subset of scenarios. In other words, we settle for a suitably high 
probability â < 1 to satisfy constraints. The chance-constrained programming 
approach deals with models of the form 

min c T x 
s.t. Ax > b 

P{G(w)x > h(w)} > ß 
x > 0 

Note that here we require a high probability of satisfying the joint set of 
constraints; alternatively, we might enforce the condition for each constraint 
separately. This modeling framework has a clear interpretation in terms of 
reliability of the solution. Nevertheless, there are a few difficulties: 

• In technical terms, there is no guarantee that the resulting optimiza-
tion problem is convex in general; nonconvexity may arise with discrete 
probability distributions.17 

1 7Prom a technical point of view, the reason for this difficulty is that the union of convex 
sets is nonconvex in general. 
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Fig. 13.9 Scenario tree for a two-stage problem. 

• Prom a more practical perspective, we are not saying anything about 
what will happen if constraints are violated. Probably, corrective ac-
tions will be taken, but they are left outside the model. Furthermore, 
our previous discussion about VaR shows that disregarding a small set 
of scenarios is dangerous, if they are unlikely, but associated with catas-
trophic consequences. 

• Finally, the above framework is static: We do not account for a dynamic 
decision process, whereby decisions may be adapted when uncertainty 
is progressively resolved. 

An alternative framework to deal with stochastic optimization is stochastic 
programming with recourse. To get a feeling for this modeling framework, 
consider Fig. 13.9. 

• We have a scenario tree. The root of the tree (node on the left) repre-
sents the current state, here and now; the nodes on the right represent 
different future states of nature, or scenarios. Each scenario has some 
probability of occurrence, which can be an objective measure derived 
by statistical information or a subjective measure of likelihood. As we 
have noted before, scenarios can result from a suitable discretization of 
a continuous probability distribution, or a set of plausible forecasts by 
a pool of experts. 

• We should make a set of decisions now, but in the future, when uncer-
tainty is at least partially resolved, we might take some action in order 
to "adjust" our previous decisions on the basis of additional information 
that we have gathered. These adjustments are called recourse actions. 

• We want to find a set of decisions now so as to optimize the sum of two 
terms: 
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1. The cost of immediate actions, which are certain 
2. The expected cost of the future recourse actions, which are uncer-

tain 

In order to get acquainted with this modeling framework, we consider once 
again the assembly-to-order production planning model of Section 12.2.1, al-
lowing for demand uncertainty. 

13.3.1 A two-stage model: assembly-to-order production planning 

In Section 12.2.1 we dealt with a production planning problem within an 
assembly-to-order (ATO) framework. There, we disregarded demand uncer-
tainty and built a deterministic LP model. Now, in order to make the model 
a bit more realistic, we represent demand uncertainty by a scenario tree and 
adopt a two-stage stochastic linear programming framework: 

1. First, we decide how many units of each component we should build, 
subject to manufacturing capacity constraints. This first-stage decision 
sets the total production cost. 

2. After receiving customer orders, we use available components to assem-
ble finished goods. The assembly plan should maximize revenue; the 
cost term in the profit function is fixed by the previous decision (if we 
neglect assembly cost); if components are insufficient to meet customer 
orders, we lose profit opportunities; if too many components are avail-
able, they are scrapped, with a possibly considerable loss of money. We 
see that this problem is a generalization of the basic newsvendor model. 
The optimal use of available components is a second-stage decision, con-
tingent on the realization of a specific demand scenario. 

Of course, we cannot maximize profit, because it is a function of random 
variables (demand for end items), as well as our decisions; nevertheless, we 
may maximize its expected value.18 To be concrete, let us solve the same 
problem instance as in Example 12.10. Economic and technical data are given 
in Tables 12.1, 12.2, and 12.3. The only difference is in demand uncertainty. 
There, we assumed perfect knowledge of end-item demand. Now we assume 
the scenarios represented in Table 13.1. Let us denote the set of scenarios by 
<S. For each scenario s G «S, we have demand dj, for all end items j S J, and 
the probability na. In the table, we consider only three scenarios, Si, S2, and 
S3. We also show the expected value of demand, under the assumption that 
the three scenarios are equally likely. Please note that expected demand is 
just the deterministic demand that we used in Table 12.3, when we solved 
the deterministic version of the model. Hence, the solution we obtained there 

1 8In this first example we disregard risk aversion; in Section 13.3.3 we extend the model by 
considering CVaR as a risk measure. 
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Table 13.1 Demand scenarios and expected value of demand. 

A1 

A2 
A3 

Si 

100 
50 
100 

s2 
50 
25 
110 

s3 
120 
60 
60 

Expected demand 

90 
45 
90 

is what we would get, if we ignored demand uncertainty by considering only 
expected demand. We recall that the deterministic solution was 

x\ = 116.67, x*2 = 116.67, x*3 = 26.67, x*A = 0.00, x*5 = 90.00 
y\ = 26.67, y; = 0.00, y% = 90.00 

with "optimal profit" 3233.33. We should immediately understand that this is 
the value of the optimal profit in the deterministic model, but is not the true 
optimal profit, as this does not make any sense in decision-making under risk. 
To build a two-stage stochastic programming model, we need to introduce 
suitable decision variables at each stage of the decision process: 

1. The first-stage decision is the amount of components that we produce: 
x%, i G X; this decision is the same as in the deterministic model, as 
here-and-now decisions are not scenario-contingent. 

2. The second-stage decision is the amount of end items that we assemble, 
contingent on the demand scenario: yj, j € J, s G <S. Note that, with 
respect to the deterministic model, we add a scenario superscript, since 
second-stage decisions are scenario-contingent. 

Now we may extend the deterministic model as follows: 

max Óá÷ß + Ó*8 ( ÓÑ0. 
iex ses 

Vm € M. 

VjeJ,seS 

V i e l . s e S 

(13.21) 

(13.22) 

(13.23) 

(13.24) 

iex 

Ó gijVj < Xi, 

The big change in this model, with respect to the expected demand model 
[(12.22)-(12.24)], is that demand uncertainty is taken into account explicitly. 
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In practice, we just implement the production plan (first-stage decisions Xi) 
and develop a contingency plan for the assembly operations (second-stage 
decisions yaA. Only when demand is realized do we choose one among the 
contingency plans. With three scenarios, we have three contingency plans. 
Clearly, there is little hope to fully capture demand uncertainty with a hand-
ful of scenarios, and actual realized demand will probably differ from that 
assumed in any scenario. In practice, once demand is realized, we simply 
have to write a second model for assembly decisions, where we need to meet 
the realized demand with a limited availability of components, so as to max-
imize revenue. The aim of scenarios is to make here-and-now decisions not 
myopic and as robust as we can; second-stage decisions need not be immedi-
ately implemented. 

Going into the details of the model above, the objective function (13.21) 
consists of a first-stage (deterministic) term, accounting for the cost of com-
ponents, along with a second-stage term, which is the expected revenue from 
selling end items (not including component cost); the expected value is com-
puted by summing the revenues for each scenario s, weighted by the scenario 
probabilities π5. The capacity constraint (13.22) is unchanged, because it per-
tains to the first-stage decisions only. The market demand constraint (13.23) 
is now scenario-dependent, as it considers the stochastic demand dj. Finally, 
constraint (13.24) links the two stages, stating that assembly is constrained 
by component availability, for each end item j and each scenario s. By solv-
ing this model with the numerical data of our toy example, we obtain the 
following solution: 

x\ = 115.71, x*2 = 115.71, x*3 = 52.86 
xl = 2.86, xl = 62.86 
y\* = 52.86, y\* = 0.00, y\* = 62.86 
yf = 50.00, yf = 2.86, yf = 62.86 
y\* = 52.86, yf = 2.86, yf = 60.00 

The expected profit for this solution is 2885.71. As we pointed out, the real 
outcome of the model is the set of the first-stage decision variables x*. Ob-
serving the component production plan, we immediately see a qualitative 
difference with respect to the model disregarding uncertainty: It is less ex-
treme. We do not produce a large amount of component C5, because we do 
not place a risky bet on high sales of A3. In fact, scenario S3 would prove a 
disaster for the deterministic solution; in that scenario, sales are lower for A3, 
but we could not react because we do not have enough specific components 
for the other end items. So, 30 specific components C5 would be scrapped; 
furthermore common components would be scrapped as well, since they can-
not be used to assemble other end items for the lack of the related specific 
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components.19 The stochastic model, on the contrary, reduces production 
of C5 and increases production of specific component C3, which is needed to 
support assembly and sales of A\ ; even a small amount of component C4 is 
produced, in order to support the least profitable end item A2, which helps 
in using common components when sales are low for other end items. While 
there is a big difference in terms of specific components, we see that, as far 
as common components are concerned, the solutions of the deterministic and 
the stochastic solutions are essentially the same. There is a good reason for 
this, as common components are a flexible resource, which can be exploited to 
assemble different end items. Moreover, the demand for common components 
is the sum of the individual demands for the end items, and by aggregating 
demand we often reduce uncertainty. Indeed, this risk-pooling effect is what 
we try to exploit in assemble-to-order systems. However, it is also important 
to note that when end-item demands are strongly correlated, the risk-pooling 
effect is considerably reduced. In such a case, we should expect that even the 
produced quantities of common components differ in the deterministic and the 
stochastic models. Another relevant factor is capacity: If this is so tight that 
we may sell whatever we are able to produce, a simple deterministic model 
could be a viable option. 

But how do the two solutions compare in terms of profit? The objective 
function from the solution of the second model is 2885.71; apparently, the 
stochastic solution is worse than the deterministic solution, whose optimal 
profit was 3233.33. But this comparison makes no sense, as doing so we are 
actually comparing two different situations, rather than two different solu-
tions. This simply proves that we would rather face a certain demand rather 
than an uncertain one. The objective function of the first model is neither the 
true profit, which is uncertain, nor its expected value. It would be the optimal 
profit, if we knew that the average demand scenario will be realized for sure. 
In the first model [(12.22)-(12.24)] we pretend to know the end-item demand, 
and we get the illusion of higher profits. In order to compare the two solu-
tions, we should fix the production plans for components that the two models 
propose, and then we should solve a set of second-stage problems, where we 
optimize assembly of end items subject to component availability, for different 
demand scenarios. More formally, given the vector x* of first-stage optimal 
decisions of whatever model, we should solve the following second-stage (re-
course) problem for each scenario s in <S: 

Rs(x*) = max 5^p¿ν/J 

19 This applies under our assumption of limited time window for sales and lack of any salvage 
value of unused components. 
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s.t. $<Ü], Vjej 
Ó9ijysj <xi, Viel 

where Rs(x*) is the optimal revenue that we collect under scenario s, given the 
first-stage solution x*, when making optimal use of the available components 
to meet demand. Note that in this model the component availability x* is 
given, either by the stochastic or by the deterministic, expected-value model. 
Whatever the case, the resulting expected revenue is 

s 

Expected profit for an arbitrary solution is obtained by subtracting its first-
stage cost from this second-stage expected revenue.20 To evaluate the deter-
ministic solution, we should plug it into this model. In the case of scenario 
S\, the optimal assembly and sales plan is 

¡/Ξ = 26.67, y*2 = 0.00, y*3 = 90.00 

and the same holds for ¿>2· The bad news is that if scenario S3 occurs, we are 
in trouble, because the high-risk solution does not fit demand very well. The 
optimal assembly and sales plan would be 

y{ = 26.67, y\ = 0.00, y% = 60.00 

This is a pretty bad scenario with low sales and corresponding low profit. As 
we said, we must compute revenue for each scenario, multiply it by its proba-
bility, sum everything to get the expected value, and subtract the component 
cost from the first stage. The expected profit from the deterministic solution 
turns out to be 2333.33, and is much lower than what the objective function 
of the deterministic model [(12.22)-(12.24)] predicts (3233.33), based on one 
average-case scenario. The percentage improvement of the stochastic solution 
with respect to the deterministic one is, in terms of expected profit for the 
three scenarios, 

2885.71-2333.33 
2333.33 

Clearly, we cannot extrapolate general results from a small toy example. In-
deed, the advantage of using a stochastic model is striking here, because 

2 0We are evaluating expected profit in-sample, i.e., by using the same set of scenarios tha t 
are used in the stochastic model; we could use a much larger set of out-of-sample scenarios 
to get a more reliable estimate. This is feasible in practice, since solving a large number of 
small LP problems usually takes much less CPU time than solving one large-scale stochastic 
LP model. 
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specific components have a large impact. In a case featuring much more com-
ponent commonality, the result would be less impressive. Furthermore, we 
have assumed that unused components are scrapped, which need not be the 
case. They could have some salvage value, and we could have a multistage 
problem where remaining components can be used at later stages. 

13.3.2 The value of the stochastic solution 

In Section 13.1.1 we defined EVPI, which is not only a way to price perfect 
information, but also a measure of the impact of uncertainty. If EVPI is low, 
uncertainty is not that relevant in the decision. However, EVPI is in most 
cases a theoretical construct, as we cannot trade the unpleasing here-and-now 
decision problem for the reassuring wait-and-see one. In the example above, 
what we have done is more practical: We assessed the value of solving a 
stochastic model against the solution of a much simpler deterministic model, 
based on expected values of uncertain parameters. Here we formalize the 
concept, using the framework of Section 13.1.1. There, we defined the here-
and-now problem 

πýηΕω[/(χ,ω)1 (13.25) 

which yields an objective value /* and a decision vector x*. 
As we have seen, we could disregard uncertainty and solve a deterministic 

problem based on expected values. Using a somewhat sloppy notation, let us 
denote by þ = Å[ù] the expected value of the problem data and define the 
deterministic "expected value" problem 

/EV = min/(x,¿;) 
x€S 

which yields the "expected value solution" χ(þ). This model also yields a 
value of the objective function, but, as we have seen, the solution χ(ω) must 
be evaluated within the actual uncertain setting. Doing so yields the expected 
value of the expected value solution: 

/EEV =Εω[/(χ(þ),ω)] 

What we should compare is /EEV against /*. The value of the stochastic 
solution (VSS) is defined as 

VSS = /EEV - /* 

for a minimization problem.21 When VSS is large, the additional effort in 
generating scenarios and solving the much more complicated stochastic pro-
gramming effort does pay off. As a final remark, we should note that in this 

It can be shown that VSS is nonnegative; see the text by Birge and Louveaux [7]. 
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discussion we have taken for granted that the scenario tree describes uncer-
tainty adequately. In other words, solutions are compared in sample. If we do 
not feel too comfortable with this assumption, we may compare solutions out-
of-sample on a much larger set of scenarios. This is also a good way to check 
the validity of the selected scenario generation approach and the robustness 
of the solutions that we obtain. 

13.3.3 A mean-risk formulation of the assembly-to-order problem 

Mean-risk formulations are based on the idea of trading off expected profit 
(or return) against a risk measure. Classical mean-variance portfolio opti-
mization relies on an analytical representation of variance, which leads to an 
easy convex quadratic programming problem. This need not be the case if we 
choose another risk measure. Value at risk is easy to evaluate and optimize 
under a normality assumption, but it may turn awkward in general, as its min-
imization may result in a nonconvex optimization problem. Conditional VaR 
is better behaved from this point of view, and it may lead to a (stochastic) 
linear programming model formulation.22 Hence, we may consider minimiz-
ing CVaR, at some confidence level 1 —a, subject to a constraint on expected 
profit or loss; by changing this target expectation, we may trace an efficient 
frontier of solutions. 

Let / (x , Y) be a loss or cost function, depending on a vector of decision 
variables x and a vector of random variables Y with joint density <7γ(ν), and 
consider function JFI_Q(X, æ) defined as 

Fi_Q(x, 0 = C + \ y [/(x, y) - < ] V ( y ) d y 

where [z] = max{z, 0}, and æ € R is an auxiliary variable. It can be shown 
that minimization of CVaR, at confidence level 1 — a, is accomplished by 
the minimization of Fi_Q(x, æ) with respect to its arguments. In a stochastic 
linear programming model based on discrete scenarios, if we denote by / (x , ys) 
the loss in scenario s, s £ S, the minimization of CVaR is equivalent to the 
solution of the LP model 

min æ + — V V " z s 

ses 
s.t. z s > / ( x , y s ) - < , seS 

zs > 0, seS 

where π5 is the probability of scenario s € <S, subject to the additional con-
straints depending on the specific model. 

2 2 In this section, we rely on results from Rockafellar and Uryasev [26, 27], which we take 
for granted, thereby cutting a few corners. 
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The application of this result to the ATO problem is rather straightforward: 

min C-\ Y^ Kazs 

a ¿-^ 
s€S 

S.t. y^JimXj < Rm, Mm£M ¿ex 

Σ 9ijVj < Xi, 

VJGJ,SGS 

Mi 6 J , s 6 S 

Vs€<S 

(13.26) 

(13.27) 

Σð8 Σ^º -Σ***^ 
ses \jeJ } i€i 

zs > Σ °ixi - Σ pJyi ~ £' 

Decision variables, parameters, and constraints have the same meaning as 
in the previous ATO models. The only constraint worth mentioning is Eq. 
(13.26), which sets a lower bound â on expected profit. Also note that we 
change the sign of profit in Eq. (13.27), which should refer to a loss function. 

13.4 MULTISTAGE STOCHASTIC LINEAR PROGRAMMING WITH 
RECOURSE 

Multistage stochastic programming formulations arise naturally as a general-
ization of two-stage models. At each stage, we gather new information and we 
make decisions accordingly, taking into account immediate costs and expected 
future recourse cost. The resulting decision process may be summarized as 
follows:23 

• At the beginning of the first time period (at time t = 0) we select the 
decision vector xo; this decision has a deterministic immediate cost c^xo 
and must satisfy constraints 

Aooxo = b 0 

• At the beginning of the second time period we observe random data 
(Aio, A n , ci , bi) depending on event ù÷; then, on the basis of this 
information, we make decision xi ; this second decision has an immediate 

See, e.g., Ref. [28] for a more detailed discussion. 
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cost c[xi and must satisfy the constraint 

Aioxo + A n x i = bi 

Note that these data are not known at time t = 0, only at time t = 1; 
the new decision depends on the realization of these random variables 
and is also affected by the previous decision. 

• We repeat the same scheme as above for time periods up to H — 1, where 
H is our planning horizon. 

• At the beginning of the last time period H, we observe random data 
(Á-Ç,Ç-1, AH H, CH, bif) depending on event WH; then, on the basis 
this information we make decision x # , which has an immediate cost 
CHXH and must satisfy the constraint 

Á-Ç,Ç-lX-H-l + A.HHX-H = b t f 

Prom the point of view of time period t = 0, the decisions x i , . . . , x # are 
random variables, as they will be adapted to the realization of the stochastic 
process. However, the only information we may use in making each decision 
consists on the history so far. The resulting dynamic decision process can be 
appreciated by the following recursive formulation of the multistage problem: 

min c^xi 
Aioxo + Anxi = bi 

xi > 0 

+ E 

In this formulation, we see that decision x t depends directly only on the 
previous decisions Xt-i- In general, decisions may depend on all of the past 
history, leading to a slightly more complicated model. However, we may 
often introduce additional state variables, such that the above formulation 
applies. For instance, in a production planning model we may "forget" the 
past produced quantities if we know the current inventory levels. It should 
be noted that, in practice, the real output of the above model is the set of 
immediate decisions xo- The remaining decision variables could be regarded 
as contingent plans, which are implemented in time, much in the vein of 
a feedback control policy; however, in a practical setting, it is more likely 
that the model will be solved again and again according to a rolling-horizon 
logic. While this formulation points out the dynamic optimization nature of 
multistage problems, we usually resort to deterministic equivalents based on 
discrete scenario trees. We illustrate the idea with a toy financial planning 
problem. 

min cjxo + E 
Aooxo = bo 

x0 > 0 

+ E min c^Xff 
A H , H - I X H - I + A H H X H = b / / 

xt > 0 
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U(WT) 

Fig. 13.10 Piecewise linear concave utility function. 

13.4.1 A multistage model: asset-liability management 

The best way to introduce multistage stochastic models is a simple asset-
liability management (ALM) model.24 We have an initial wealth Wo, that 
should be properly invested in such a way to meet a liability L at the end of 
the planning horizon if. If possible, we would like to own a terminal wealth 
WH larger than L; however, we should account properly for risk aversion, 
since there could be some chance to end up with a terminal wealth that is 
not sufficient to pay for the liability, in which case we will have to borrow 
some money. A nonlinear, strictly concave utility function of the difference 
between the terminal wealth WJJ, which is a random variable, and the liability 
L would do the job, but this would lead to a nonlinear programming model. 
As an alternative, we may build a piecewise linear utility function like the one 
illustrated in Fig. 13.10. The utility is zero when the terminal wealth WH 
matches the liability exactly. If the slope r penalizing the shortfall is larger 
than q, this function is concave (but not strictly). 

The portfolio consists of a set of I assets. For simplicity, we assume that 
we may rebalance it only at a discrete set of time instants i = 1 , . . . , if — 1, 
with no transaction cost; the initial portfolio is chosen at time t = 0, and 
the liability must be paid at time if. Time period t is the period between 
time instants ί — 1 and t. In order to represent uncertainty, we may build a 
tree like that in Fig. 13.11, which is a generalization of the two-stage tree of 
Fig. 13.9. Each node ç^ in the tree corresponds to an event, where we should 
make some decision. We have an initial node no corresponding to time t = 0. 
Then, for each event node, we have two branches; each branch is labeled by 
a conditional probability of occurrence, Ρ(η& | n¿), where n, = a(nk) is the 
immediate predecessor of node Uk- Here, we have two nodes at time t = 1 and 

24The numerical example is taken from the book by Birge and Louveaux [7, pp. 20-28]. 
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F/g. i3.II Scenario tree for a simple asset-liability management problem. 

four at time t = 2, where we may rebalance our portfolio on the basis of the 
previous asset returns. Finally, in the eight nodes corresponding to t = 3, the 
leaves of the tree, we just compare the terminal wealth with the liability and 
evaluate the utility function. Each node of the tree is associated with the set of 
asset returns during the corresponding time period. A scenario consists of an 
event sequence, i.e., a sequence of nodes in the tree, along with the associated 
asset returns. We have 8 scenarios in Fig. 13.11. For instance, scenario 2 
consists of the node sequence (no, n\, 713, n§ ). The probability of each scenario 
depends on the conditional probability of each node on its path. If each branch 
at each node is equiprobable, i.e., the conditional probabilities are always \, 
each scenario in the figure has probability ð8 = | , for s = 1, . . . ,8. The 
branching factor may be arbitrary in principle; the more branches we use, the 
better our ability to model uncertainty; unfortunately, the number of nodes 
grows exponentially with the number of stages, as well as the computational 
effort. 

At each node in the tree, we must make a set of decisions. In practice, 
we are interested in the decisions that must be implemented here and now, 
i.e., those corresponding to the first node of the tree; the other (recourse) 
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decision variables are instrumental to the aim of devising a robust plan, but 
they are not implemented in practice, as the multistage model is solved on a 
rolling-horizon basis. This suggests that, in order to model the uncertainty 
as accurately as possible with a limited computational effort, a possible idea 
is to branch many paths from the initial node, and less from the subsequent 
nodes. Each decision at each stage may depend on the information gathered 
so far, but not on the future; this requirement is called a nonanticipativity 
condition. Essentially, this means that decisions made at time t must be the 
same for scenarios that cannot be distinguished at time i.25 To build a model 
ensuring that the decision process makes sense, there are two choices: 

• We can introduce a set of decision variables xft, representing wealth 
allocated to asset i at time t on scenario s; we should force decision 
variables to take the same value when appropriate, by writing explicit 
nonanticipativity constraints for scenarios that cannot be distinguished 
at time t. 

• We can associate decision variables with nodes in the scenario trees and 
write the model in a way that relates each node to its predecessors. 

We will illustrate the second alternative in detail, using the following numer-
ical data: 

• The initial wealth is 55. 

• The target liability is 80. 

• There are two assets, say, stocks and bonds; hence, 1 = 2. 

• In the scenario tree of Fig. 13.11 we have up- and downbranches; in the 
(lucky) upbranches, total return is 1.25 for stocks and 1.14 for bonds; 
in the (bad) downbranches, total return is 1.06 for stocks and 1.12 for 
bonds. We see that bonds play the role of safer assets here. We also see 
that returns are a sequence of i.i.d. random variables, but more realistic 
scenarios can be defined. 

• The reward rate q for excess wealth above the target liability is 1. 

• The penalty rate r for the shortfall below the target liability is 4. 

Let us introduce the following notation: 

• ëß is the set of event nodes; in our case 

ëß = {ηο,ηι,η2, . . . , η ι 4 } 

25You may refer back to Section 7.10 to see an abstract discussion of measurability of 
random variables and the role of information. Technically, decisions are a stochastic process, 
which must be adapted to the filtration generated by the data. 
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• Each node n € ëß, apart from the root node no, has a unique direct 
predecessor node, denoted by a(n): for instance, 0(713) = ç÷. 

• There is a set <S C ëß of leaf (terminal) nodes; in our case 

S - {n7, . . . , m 4 } ; 

for each node s £ S we have surplus and shortfall variables w+ and wL, 
related to the difference between terminal wealth and liability. 

• There is a set T c ëß of intermediate nodes, where portfolio rebalancing 
may occur after the initial allocation in node no; in our case 

T = { m , . . . , n 6 } 

for each node n e {no} U T there is a decision variable x¿„, expressing 
the money invested in asset i at node n. 

With this notation, the model may be written as follows: 

max /JTT6(<7^+ —rwL) 
ses 

1 
S.t. ^2xi,n0 = W0 

i= l 
I I 

/ Jfti,n'£i,a.(n) = / ^int " ^ ^ -* 
¿=1 ¿=1 
/ 

^ RisXi,a(s) = L + WS
+-WS_, VseS 

Xin,W+,wL > 0 

where -R¿in is the total return for asset i during the period that leads to node n, 
and π8 is the probability of reaching the terminal node s e S; this probability 
is the product of all the conditional probabilities on the path that leads from 
root node no to leaf node s. This is an LP model that may be easily solved by 
the simplex algorithm, resulting in the solution of Table 13.2. We may notice 
that in the last period the portfolio is not diversified, since the whole wealth 
is allocated to one asset, and we should wonder if this makes sense. Actually, 
it is a consequence of two features of this toy model: 

• We are approximating a nonlinear utility function by a piecewise linear 
function, and this may imply "local" risk neutrality, so that we only care 
about expected return; we should use either a nonlinear programming 
model or a more accurate representation of utility with more linear 
pieces. 
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Table 13.2 Investment strategy for a simple ALM problem. 

Node 

n0 
n-i 
ri2 

n3 
TI4 

n5 
n6 

Stocks 

41.4793 
65.0946 
36.7432 
83.8399 

0 
0 
64 

Bonds 

13.5207 
2.16814 
22.368 
0 

71.4286 
71.4286 

0 

• The scenario tree has a very low branching factor, and this does not 
represent uncertainty accurately. 

However, the portfolio allocation in the last time period is not necessarily a 
critical output of the model: the real stuff is the initial portfolio allocation. 
As we pointed out, the decision variables for future stages have the purpose 
of avoiding a myopic policy, but they are not meant to be implemented. 

13.4.2 Asset-liability management with transaction costs 

To give the reader an idea of how to build nontrivial financial planning mod-
els, we generalize a bit the model formulation of the previous section, in order 
to account for proportional transaction costs. The assumptions and the limi-
tations behind this extended model are the following: 

• We are given a set of initial holdings for each asset; this is a more 
realistic assumption, since we should use the model to rebalance the 
portfolio periodically, according to a rolling-horizon strategy. 

• We take proportional (linear) transaction costs into account; the trans-
action cost is a percentage c of the traded value, for both buying and 
selling an asset. 

• We want to maximize the expected utility of the terminal wealth. 

• There is a stream of uncertain liabilities that we have to meet. 

• We do not consider the possibility of borrowing money; we assume that 
all of the available wealth at each rebalancing period is invested in the 
available assets; actually, the possibility of investing in a risk-free asset 
is implicit in the model. 

• We do not consider the possibility of investing new cash at each rebal-
ancing date (as would be the case, e.g., for a pension fund). 
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Some of the limitations of the model may easily be relaxed. The important 
point we make is that when transaction costs are involved, we have to intro-
duce new decision variables to express the amount of assets (number of shares, 
not the monetary value) held, sold, and bought at each rebalancing date. We 
use a notation which is similar to that used in the previous ALM formulation: 

• M is the set of nodes in the tree; no is the root node. 

• The (unique) predecessor of node n € ëß\{çï} is denoted by a(n); the 
set of terminal nodes is denoted by <5; as in the previous formulation, 
each of these nodes corresponds to a scenario, which is the sequence 
of event nodes along the unique path leading from no t o s g <S, with 
probability ns. 

• T = Λ/"\({τΐο} U S) is the set of intermediate trading nodes. 

• Ln is the liability we have to meet in node n e ëß; liabilities are node 
dependent and stochastic. 

• c is the percentage transaction cost. 

• /i¿ is the initial holding for asset i = 1 , . . . , / at the root node. 

• P " is the price for asset i at node n. 

• z™ is the amount of asset i purchased at node n. 

• r/™ is the amount of asset i sold at node n. 

• x™ is the amount of asset i we hold at node n, after rebalancing. 

• Ws is the wealth at terminal node s G S. 

• u(w) is the utility for wealth w; this function is used to express utility 
of terminal wealth. 

On the basis this notation, we may write the following model: 

max ^2nsu(Ws) (13.28) 
ses 

Vi (13.29) 

V i . V ν i s T (13.30) 
i 

(1 - c) Ó ÑÃí? - (1 + c) Σ W = Ln, Vn S T U {n0} 

(13.31) 

Vs G S (13.32) 

(13.33) 

s.t. *r=c+*r° 
÷ ? = ÷ « ( ç ) + æ ç 

I 

-y?°, 

-y?, 

¿=1 

ws 

3 · " 

= Σ 
¿ = 1 

Z™ 7/™ 

P°x 

Ws 

a(s) 

>o 
-Ls, 
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The objective (13.28) is the expected utility of the terminal wealth; if we 
approximate this nonlinear concave function by a piecewise linear concave 
function, we get an LP problem (as we did in Section 12.4.7). Equation 
(13.29) expresses the initial asset balance, taking the current holdings into 
account; the asset balance at intermediate trading dates is taken into account 
by Eq. (13.30). Equation (13.31) ensures that enough cash is generated by 
selling assets in order to meet the liabilities; we may also reinvest the proceeds 
of what we sell in new asset holdings; note how the transaction costs are 
expressed for selling and purchasing. Equation (13.32) is used to evaluate 
terminal wealth at leaf nodes; note here that we have not taken into account 
the need to sell assets in order to generate the cash required by the last 
liability; but this would make only sense if the whole fund is liquidated at the 
end of the planning horizon. If so, we could rewrite Eq. (13.32) as 

Ws = ( l - c ) ¿ P ^ w - L s 

i=l 

In practice, we would repeatedly solve the model on a rolling-horizon basis, 
so the exact expression of the objective function is a bit debatable. The role 
of terminal utility is just to ensure that we are left in a good position at the 
end of the planning horizon. 

This model can be generalized in a number of ways, which are left as an 
exercise to the reader. The most important point is that we have assumed that 
the liabilities must be met. This may be a very hard constraint; if extreme 
scenarios are included in the formulation, as they should be, it may well be 
the case that the model above is infeasible. Therefore, the formulation should 
be relaxed in a sensible way; we could consider the possibility of borrowing 
cash; we could also introduce suitable penalties for not meeting the liabilities. 
In principle, we could also require that the probability of not meeting the 
liabilities is small enough; this leads to chance-constrained formulations, for 
which we refer the reader to the literature. 

13.4.3 Scenario generation for stochastic programming 

Multistage stochastic programming is a very powerful modeling framework, 
and it can be extended to cope with risk measures like CVaR, as we have seen 
in Section 13.3.3. However, the approach can be only as good as the scenario 
tree on which it is based. Given a multivariate probability distribution char-
acterizing uncertainty, the most obvious way to generate a tree is to draw 
a random sample using the Monte Carlo principles that we have outlined in 
Section 9.7. Unfortunately, one clear issue is the exponential growth of the 
number of tree branches and nodes needed to adequately represent uncer-
tainty. This may be somewhat countered by sophisticated solution strategies. 
However, it is also important to generate scenarios in a way that even with a 
limited set of them, uncertainty is captured in a suitable way. By "suitable" 
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we mean in such a way that the first-stage solution is good enough; we are 
not really interested in representing uncertainty per se on a long time horizon. 
We list here a few ideas that can be used in practice: 

• Variance reduction strategies are a Monte Carlo sampling technique to 
improve the quality of estimates for a given sample size. From inferential 
statistics we know that the width of a confidence interval is related to the 
standard deviation of the sample mean, ó/y/ñ. This expression shows 
the impact of standard deviation ó of observations and sample size n. 
A brute force approach entails increasing n, but since the square root 
is a concave function, this is less and less effective. Apparently, there is 
little we can do about σ; in fact, clever sampling can be used to reduce 
this factor. 

• Low-discrepancy sequences were introduced as a method used to eval-
uate multidimensional integrals numerically with a limited number of 
function evaluations. Unlike Monte Carlo methods, low-discrepancy se-
quences do not resort to a statistical framework in any way, as they are 
a deterministic approach to spread observations in the most regular way 
on a region. 

• Moment and property matching is a rather natural idea. Imagine taking 
a sample from a multivariate distribution with expected value vector ì 
and covariance matrix Σ . A good sample should have sample means 
and sample covariances as close as possible to these values. We may 
extend the idea to skewness, kurtosis, and other properties. A perfect 
matching of the properties of a sample against the required values is 
impossible to obtain, but we may get the best approximation by solving 
a least-squares problem. 

• Optimal approximation of probability measures is a formal approach to 
scenario reduction, based on the idea of approximating a continuous dis-
tribution with a discrete one. In order to pursue this approach, there is a 
need for a precise definition of "distance" between probability measures, 
as well as for suitable computational procedures. 

For more details on these advanced approaches, we refer to the references at 
the end of this chapter. 

13.5 ROBUSTNESS, REGRET, AND DISAPPOINTMENT 

Proper scenario generation is needed to reduce sampling errors and success-
fully apply stochastic programming models. However, there may be more 
fundamental flaws in the approach: 

• How is our information reliable when we assume a probability distribu-
tion? The best scenario generation will not help if we assume a proba-
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bility distribution that has little to do with the true one. There are cases 
in which we have so little information, that building a full-fledged mul-
tivariate probability distribution amounts to pulling a heroic and futile 
stunt. The dependence between variables can be difficult to capture by 
a correlation matrix, as this only picks up linear dependencies. Further-
more, autocorrelation over time may also be an issue. In other words, 
there may be considerable uncertainty about the uncertainty model it-
self. In some case, all we are able to specify is an interval of sensible 
values for uncertain parameters, without attaching any probabilistic in-
formation. 

• Even if the representation of uncertainty is adequate, we may look for 
a conservative solution. A solution which is good in an "average" sense 
may prove unacceptable in some extreme scenarios. 

• Psychological research on the behavior of decision makers facing un-
certainty has revealed patterns that are not fully compatible with the 
maximization of expected utility. Mechanisms such as regret and disap-
pointment may lead to different decisions. 

Chapter 14 illustrates a few issues with standard decision making procedures 
in a world of multiple stakeholders and subjective probabilities. In this section 
we just mention a couple of approaches that have been proposed to improve 
model-based decisions under risk. 

13.5.1 Robust optimization 

Robust optimization is a label that has been attached to a fairly wide vari-
ety of optimization modeling frameworks. A rather confusing feature is that 
"robust" may refer to our inability to represent uncertainty reliably within a 
probabilistic framework; alternatively, "robust" may refer to decision-makers' 
attitude towards risk taking. In this section we mainly refer to the first mean-
ing, which essentially questions the reliability of probability distributions used 
in making decisions. Sometimes, all we know about uncertain parameters is 
that they are bounded to lie in a certain region. For instance, we could say 
that a certain quantity ß is not smaller than 5 and not larger than 15, but 
we are not able to say if the distribution on that support is uniform, beta, 
triangular, or whatever. Some values of these parameters could be particu-
larly nasty, but even if we know that this is an unlikely occurrence, we do 
not want to rely on this; on the one hand, we may feel uncomfortable in esti-
mating small probabilities; on the other hand, ethical reasons may prevent us 
from accepting a solution that could prove a disaster, even with a negligible 
probability. 

All of this is problematic in terms of optimality, but even more so in terms 
of feasibility. Quite often, one would want to find a solution that is feasible 
even in the worst possible setting of the parameters, as well as good enough. 
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One way of formulating the problem is the following. Consider a function 
/ (x , ß), where x e S is the usual vector of decision variables, which should 
stay within the feasible set S. The vector ß represents a vector of uncertain 
parameters, which are bounded by a set Ω. Note that we do not characterize 
this uncertainty in probabilistic terms. Then we can formulate the worst-case 
optimization problem as 

m i n { m a x / ( x , / 3 ) } (13.34) 

You may interpret the problem as a sort of game between you and Nature. 
You choose x in order to minimize cost and then, given your choice, she will 
choose the worst ß for you. What you should do is anticipating her nasty 
behavior by finding a robust solution. Solving a problem like (13.34) requires 
methods which are quite outside the scope of this book,26 and we refer the 
reader to the listed references. This may lead to an overly expensive solution, 
which is usually referred to as fat solution. A chance-constrained approach 
can be used to enforce a reasonable degree of reliability, but we have already 
discussed the hidden dangers in this choice. Whether this is in fact an issue 
depends on the problem at hand and on what is at stake: A few bucks or 
human lives? 

A possible intermediate approach is based on the idea of assuming a prob-
abilistic framework, but relying on a set of probability measures, rather than 
just one. Denoting by V the set of plausible probability measures, we may 
tackle the following problem: 

min < maxEQ [f (x, ù)\ > 
xes [qer õv nJ 

where E^[·] denotes the expectation under a probability measure Q within 
the set V. Again, this typically results in an intractable problem that can be 
suitably approximated by numerical techniques. 

13.5.2 Disappointment and regret in decision making 

When making decisions under risk and uncertainty in our lives, we rarely set 
up a utility function to formalize the problem we are facing. We come up with 
a solution but, unfortunately, sometimes we must admit that we were wrong. 
Indeed, disappointment and regret are emotions that we have all experienced. 
A discussion of disappointment and regret may seem more akin to psychology 
than business decision making. However, they can provide an explanation for 
some typical paradoxes of decision-making models based on the assumption 
of full rationality. 

Note that we are also disregarding feasibility issues: Is x acceptable for any setting of /3? 
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(a) (b) (c) 

Fig. 13.12 An example illustrating the effect of disappointment. 

Example 13.12 Consider the decision trees depicted in Fig. 13.12.27 In Fig. 
13.12(a), the decision maker must choose between a lottery, with expected 
payoff 

0.8 x $4,000 + 0.2 x $0 = $3,200 

and $3,000 for sure. Most people prefer the certain payoff, which is consistent 
with the idea of risk aversion. In Fig. 13.12(b) we are comparing two lotteries, 
whose expected payoffs are 

0.2 x $4,000 + 0.8 x $0 = $800 
0.25 x $3,000 + 0.75 x $0 = $750 

respectively. In this case, empirical research shows that most people prefer 
the first lottery.28 Arguably the increase in win probability is not enough 
to compensate for the reduction in the payoff. Now consider Fig. 13.12(c). 
Here, the root of the decision tree is a chance node, rather than a decision 
node. This basically means that a biased coin is flipped first; with probability 
0.75 the game stops immediately; with probability 0.25, the decision maker is 
faced with the same situation depicted in decision tree (a). If we see things 
this way, common sense suggests that the decision should be the same as in 
case (a): Go for the sure payoff.29 Furthermore, the decision maker should 
not object if requested to make her choice before the flip of the coin, thus 
defining a strategy. However, if we carry out a few calculations, it is easy to 
see that tree (a) is nothing but tree (b) in disguise: 

• If the strategy selects the lower branch for the decision node in (c), there 
is an a priori probability 0.25 x 1 = 0.25 of winning $3,000. 

• If the strategy selects the upper branch for the decision node in (c), 
there is an a priori probability 0.25 x 0.8 = 0.2 of winning $4,000. 

2 7This example is based on the paper by Bell [3], which refers back to Ref. [18]. 
2 8 See Ref. [18]. 
2 9This is an example of a seemingly harmless substitution principle. 
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Now we see a contradiction with the standard choice in case (b). A bit of 
reflection suggests that a rational decision maker should either select the upper 
or the lower branches in all of the three cases. But this is at odds with what 
is empirically observed. Hence, we must be missing something. D 

A possible explanation of the weird finding of Example 13.12 is based on 
disappointment and regret. Imagine taking your chances in the case of Fig. 
13.12(a). If you go for the lottery and you lose, you will certainly regret your 
decision, since you have wasted $3,000 for sure. Then, rather than feeling 
so sorry, it might be better to choose the safer option. In Fig. 13.12(b), the 
probability of winning is low for both lotteries. You are likely lose in both 
cases: Whatever you choose, you will not feel too sorry. Hence, you may just 
go for the lottery with higher payoff in case of win, which is also the lottery 
with the higher expected payoff. Now consider the situation of Fig. 13.12(c). 
If, after the first flip, you are out of the game, so be it. You will be sorry, but 
there is nothing to regret, as this outcome did not depend on your choice. But 
in the lucky case you enter the lottery at the second stage, you will certainly 
be disappointed if you end up losing $4,000 rather than grabbing $3,000 for 
sure. Hence, chances are that in this case you will go for the safer option, 
even though this contradicts the choice in case (b). A formal framework 
for modeling disappointment has been proposed in Ref. [3], where expected 
economic utility is integrated with a psychological view of decision maker's 
behavior. In fact, the paradigm of expected utility is at odds with quite some 
share of observed behavior, and this has suggested alternative frameworks. 

So far, we have been a bit ambiguous when speaking about disappointment 
and regret. They are certainly related, but different emotions.30 To see the 
difference, consider the following experiments:31 

• You spin a simple fortune wheel, where you may just win or loose. There 
is a high probability that you will win the prize, but unfortunately the 
outcome is unsatisfactory. You will be disappointed, but no decision 
was involved: You are comparing the actual outcome with a better one 
that might have resulted. 

• You must spin one of two fortune wheels, say, A and B. Suppose that you 
select wheel A. Then both wheels are spun, and you lose. To add insult 
to injury, you are shown that the result from wheel B is "win." Then, 
you will experience regret, as a better outcome would have resulted, had 
you made a different choice. 

It may seem that the role of emotions in decision making is disconnected from 
business management. However, there are indeed cases in which regret is what 
you should keep under control. Common features of such cases are: 

30See, e.g., Ref. [33] for a thorough discussion. Evidence suggests that these emotions 
activate sections of our brain in different ways; see Ref. [11]. 
3 1 See Ref. [21]. 
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• You are facing a nonrepetitive situation, where the law of large numbers 
does not apply; there is no point in making a decision that would prove 
the best one in the long run. 

• You are evaluated ex post. Expectation is by definition ex ante, but 
imagine a situation in which your performance is assessed in comparison 
to what would have been the optimal decision, had you known the true 
value of uncertain parameters. 

Min-max regret models have been proposed to address such situations. Con-
sider the familiar cost function / (x , ù), where ù is a random event. To be 
specific, say that uncertainty may be represented by a set of scenarios ù8, 
s G S. If you knew that scenario ù8 is going to occur, you would solve the 
problem 

min/(x,ws) 

resulting in an optimal solution x* and cost /* = /(x*,ws). Note that this 
is a rather simple problem that can be solved even for a rather large number 
of scenarios.32 Unfortunately, you have to solve the here-and-now problem, 
resulting in solution x£; whatever model formulation you choose, some value 
of the objective function will result, but this is not what will affect your future 
career; the true ex post cost is what matters to your boss. The cost of the 
here-and-now decision, in scenario s, is fs = {x*h,ujs). Unless you are very 
lucky, this will not be the optimal cost in scenario s, and you will experience 
a regret, formally defined as 

Rs = fs - fs 

The idea is that, if scenario s occurs, you will discover that you had an extra 
cost Rs; the larger Rs, the larger the regret. However unfair this may sound, 
you could be just evaluated this way in real life: You might make a good and 
sensible solution, which turns out to be awkward if a bad scenario occurs. 
Then, a safer strategy could be to minimize maximum regret. By introducing 
an auxiliary variable æ, this min-max model can be expressed as follows: 

min æ 
s.t. C > / ( x , w s ) , Vse<S 

æ > 0, x e S 

Several variations of the model, possibly including expected regret, may be 
formulated. If the original model was a linear programming problem, so will 
be the formulation based on regret. 

3 2 We recall tha t it is usually faster to solve a large number of small scenario-dependent 
problems, than a single large-scale stochastic or robust problem. 
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Problems 

13.1 Consider again the "fancy coin flipping" example of Section 1.2.3, i.e., 
the decision of producing a movie or not. Formalize the problem with a proper 
decision tree. 

13.2 The Research and Development (R&D) division of your firm has de-
veloped a new product that could be immediately launched on the market. If 
so, the probability of success is 60%, in which case profit has a present value 
of €10 million (discounting all future cash flows). In case of flop, you will lose 
€2 million. You might also delay product launch by 6 months, in order to 
improve its design. This delay has advantages and disadvantages: 

• Product improvement would cost €500,000, but it increases success 
probability to 90% (without changing hypothetical profits and losses); 
however, this applies only if no competitor takes advantage of your delay 
and enters the market, eroding your share (see the last bullet below). 

• Delaying product launch has a financial impact, as cash flows are de-
layed; let us assume that the effect of delay is accounted for by a 5% 
discount rate for the 6 months. (Note: This is the rate applying to the 
6 months, not to 1 year.) 

• Delaying product launch has the effect of leaving room for the entry of 
competitors; we assume that the probability of this entry is 50% and its 
effect is not on success probability (which is still 90%), but on cash flows: 
Profit is halved, and loss is doubled, depending on product success or 
flop. 

1. Assuming that you are risk-neutral, what would you do? 

2. In practice all of the above probabilities are the result of educated guess-
work. In particular, the entry probability is quite uncertain. Hence, you 
want to carry out a sensitivity analysis. What is the value of the entry 
probability (if it exists) that would make you change your mind with 
respect to the decision above? 

13.3 You are the manager of a pension fund, and your fee depends on the 
return attained. You can play it safe and allocate wealth to a risk-free port-
folio earning 4% per year. Alternatively, you can pursue an active portfolio 
management strategy, whose a return is normally distributed, with expected 
value 8% and standard deviation 10%. Your fee depends on the earned return 
according to the following tabulation: 
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Return (R) Fee 

R < 0% $0 
0% < R < 3% $50,000 
3% < R < 9% $100,000 

9% < R $200,000 

• Which is your best strategy, if you are risk-neutral? 

• What is the standard deviation of your fee, if you take the active strat-
egy? 

13.4 A decision maker with a quadratic utility function of the form (13.12) 
is offered the following lottery: 

Probability Payoff 

0.20 $10,000 
0.50 $50,000 
0.30 $100,000 

If the risk aversion coefficient is λ = 1/150,000: 

• What is the certainty equivalent of the lottery? 

• What is the risk premium? 

13.5 You own a plant whose value is $100,000. In case of a fire, the value of 
your property might be significantly reduced or even destroyed, depending on 
how severe the accident is. Let us represent risk by the following scenarios: 

Scenario Value ($) Probability 

1 100,000 0.95 
2 50,000 0.04 
3 1 0.01 

For each scenario, we have the value of your property and a probability. 
Clearly, in scenario 1 there is no fire and no loss. Assuming that your risk 
aversion is represented by a logarithmic utility function, what is the maximum 
insurance premium that you would be willing to pay? (Hint: The insurance 
would pay $0, $50,000, $99,999, respectively, in the three scenarios.) 

13.6 An investor has an initial wealth WQ that must be allocated between a 
risk-free asset, with certain return r{, and a risky asset. We assume a simple 
binomial model of uncertainty, like we did in Section 3.1. The return of the 
risky asset will either be ρ u or R¿, with probabilities pu and p¿, respectively. 
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• Find the optimal allocation of wealth if the investor has an exponential 
utility function, like Eq. (13.11), with absolute risk aversion a. 

• How does the value of the initial wealth influence the result? 

13.7 You have invested $150,000 in stock shares of Doom and $200,000 
in stock shares of Mishap. Assume that daily returns follow a multivariate 
normal distribution; daily volatilities for the two stock shares are 2% and 3%, 
respectively, and correlation is 0.8. Find the one-day VaR at 99% confidence 
level. 

13.8 We know that VaR, in general, is not a subadditive risk measure. 
Consider a portfolio of two assets, with jointly normal returns. 

• Show that, in this specific case, VaR is a subadditive risk measure. 

• Is standard deviation a subadditive measure in the case above? What 
can we say in general? 

13.9 Consider the plant location model of Section 12.4.5 [see Eqs. (12.54-
12.55)]. Adapt the model to cope with uncertain demand scenarios, building 
a two-stage stochastic linear programming model with recourse. 

13.10 Consider a point-to-point transportation network consisting of M 
nodes. By "point-to-point" we mean that, given transportation requirements 
between all pair of nodes, there is a direct transportation link from each origin 
to each destination, without transshipment through intermediate nodes (this 
should be understood as a simplification of the real-life problem). Each node, 
in general, is both a source and a destination for many such requirements. 
Transportation requires containers of given volume capacity, measured in the 
same units as transportation requirements. At present, we know how many 
empty containers are present at each node in the network. Before transporta-
tion needs arise, we should consider repositioning containers, so that we will 
be in a better position to meet all requirements. Repositioning is carried out 
now, and transportation occurs in the next period. We know the repositioning 
cost for each container, for each pair of nodes in the network (say that they 
essentially depend on traveled distance). What we do not know are the future 
transportation requirements, but we are able to generate a set of plausible 
scenarios. Each scenario is essentially a matrix describing the transportation 
requirement for each pair of nodes (the diagonal elements are zero), associ-
ated with a probability. If, when requirements are revealed, we do not have 
enough containers to satisfy them at a node, we have to rent containers, which 
implies a rather high fixed cost per container. For the sake of simplicity, let us 
assume that such cost does not depend on nodes, nor traveled distances. On 
the one hand, we would not like to move too many containers; on the other 
one, we do not want to spend too much money to rent containers if spikes 
in transportation demand occur at some nodes. Build a two-stage stochastic 
programming model to minimize the total expected cost. 
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For further reading 

• Extensive examples of modeling by decision trees can be found, e.g., in 
the book by Bertsimas and Freund [5]. 

• We have taken for granted that expected value of an additive utility can 
be used to model preferences. However, the validity of the approach 
depends on critical assumptions concerning the preference structure we 
are representing. A textbook treatment can be found in Chapter 6 of 
Ref. [22]. 

• An extensive discussion of value at risk can be found in Ref. [17]. We 
have also seen that VaR lacks some fundamental properties that make a 
coherent measure of risk; the seminal paper on coherent risk measures is 
Ref. [2]. CVaR optimization is dealt with in the papers by Rockafellar 
and Uryasev [26, 27]. It is also important to be aware of the litera-
ture questioning some basic assumptions behind risk measurement and 
management; see, e.g., Refs. [8] and [25]. 

• When faced with uncertain problem data, sensitivity analysis is often 
applied; however its utility is questioned in Ref. [31], providing support 
for stochastic programming. 

• The first historical source on stochastic programming models is the pa-
per by Dantzig [12]. Short tutorials on stochastic programming can be 
found in Refs. [6], [28], and [30]. An extensive treatment is offered by 
Refs. [7] and [19]. 

• Stochastic programming has been proposed for a wide array of applica-
tions: 

— For an illustration of stochastic programming models in finance, 
see Refs. [34] and [35]. 

— The application to capacity planning in the automotive industry 
is described in Ref. [14]; lot-sizing under demand uncertainty is 
discussed in Ref. [9] ; for a survey on applications to manufacturing 
systems, see Ref. [1]. 

— Energy applications are discussed in Ref. [32]. 
— An early application to telecommunication network planning is de-

scribed in Ref. [29]. 
— On the marketing side, an application to airline revenue manage-

ment is described in Ref. [24]. 

• Scenario generation is a challenging facet of stochastic programming. 
In this context, analyzing sensitivity and stability of solution with re-
spect to selected scenarios is fundamental, as discussed in Ref. [13]. 
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Furthermore, a good scenario tree should capture the relevant uncer-
tainty, without making the overall model intractable; the generation of 
scenarios that match moments and other properties of the underlying 
probability distribution is discussed in Ref. [16]; another idea is to sam-
ple a large tree, which is then reduced minimizing some measure of error, 
as discussed in Ref. [15]. For an elementary introduction to variance re-
duction and low discrepancy sequences in Monte Carlo simulation, see 
Ref. [10]. 

• A demanding but comprehensive treatment of robust optimization can 
be found in Ref. [4]. See also Ref. [20], where the case for regret-based 
models is made. Sometimes, uncertainty is described by giving intervals 
for uncertain parameters; see, e.g., Ref. [23] for such an example. 
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U 
Multiple Decision 

Makers, Subjective 
Probability, and Other 

Wild Beasts 

The previous chapters have presented a rather standard view of quantitative 
modeling. When dealing with probabilities, we have often taken for granted 
a frequentist perspective; our approach to statistics, especially in terms of 
parameter estimation, has been an orthodox one. Actually, these are not the 
only possible viewpoints. In fact, probability and statistics are a branch of 
mathematics at the boundary with philosophy of science, and as such they are 
not free from heated controversy. This might sound like a matter of academic 
debate, but it is not. The "death of probability" was invoked in the wake 
of the 2008 financial turmoil, when the quantitative modeling approach in 
finance has been blamed as one of the root causes of the disaster. Of course, 
truth always lies somewhere between extremes, but this is reason enough to 
see the need for an eye opening chapter, illustrating alternative views that 
have been put forward, like subjective probabilities and Bayesian statistics. 
A similar consideration applies to the chapters on decision models. There, 
we have also followed a standard route, implicitly assuming that decisions 
are made by one person keeping all problem dimensions under direct control. 
We have hinted at some difficulties in trading off multiple and conflicting 
objectives, when dealing with multiobjective optimization in Section 12.3.3. 
However, we did not fully address the thorny issues that are raised when mul-
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tiple decision makers are involved. On the one hand, they can be interested in 
different objectives; on the other one, they may behave without coordinating 
their decisions with other actors. Decisions involving not necessarily coop-
erative actors are the subject of game theory. Rather surprising results are 
obtained when multiple players interact, possibly leading to suboptimal deci-
sions; here, we do not mean suboptimal only for a single decision maker, but, 
for the whole set of them. Finally, standard models assume that uncertainty 
is exogenous, whereas there are many practical situations in which decisions 
do influence uncertainty, such as big trades on thin and illiquid financial mar-
kets or inventory management decisions affecting demand. When all of the 
above difficulties compound, multiple decision makers can influence one an-
other through decisions, behavior, and information flows, possibly leading to 
instability due to vicious feedbacks. Such mechanisms have been put forward 
as an explanation of some major financial crashes. 

We are certainly in no position to deal with such demanding topics exten-
sively. They all would require their own (voluminous) book and the technical-
ities involved are far from trivial. However, I strongly believe that there must 
be room for a chapter fostering critical thinking about quantitative models. 
This is not to say that what we have dealt with so far is useless. On the 
contrary, it must be taken with a grain of salt and properly applied, keep-
ing in mind that we could be missing quite important points, rendering our 
analysis irrelevant or even counterproductive. Unlike the rest of the book, 
the aim of this chapter is not to provide readers with working knowledge and 
ready-to-use methods; rather, a sequence of simple and stylized examples will 
hopefully stimulate curiosity and further study. 

In Section 14.1 we discuss general issues concerning the difference between 
decision making under risk, the topic of the previous chapter, and decision 
making under uncertainty, which is related to a more radical view. In Section 
14.2 we begin formalizing decision problems characterized by the presence 
of multiple noncooperative decision makers, setting the stage for the next 
sections, where we discuss the effects of conflicting viewpoints and introduce 
game theory. In Section 14.3 we illustrate the effect of misaligned incentives 
in a stylized example involving two decision makers in a supply chain. The 
two stakeholders aim at maximizing their own profit, and this results in a 
solution that does not maximize the overall profit of the supply chain. Such 
noncooperative behavior is the subject of game theory, which is the topic 
of Section 14.4. We broaden our view by outlining fundamental concepts 
about equilibrium, as well as games with sequential or simultaneous moves. 
Very stylized examples will illustrate the ideas, but this section is a bit more 
abstract than usual. Therefore, in Section 14.5, we show a more practical 
example related to equilibrium in traffic networks; this example, known as 
Braess' paradox, shows that quite counterintuitive outcomes may result from 
noncooperative decision making. In Section 14.6 we discuss how the dynamic 
interaction among multiple actors may lead to instability and, ultimately, to 
disaster, by analyzing a couple of real-life financial market crashes. Finally, 
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we close the chapter by providing the reader with a scent of Bayesian statistics 
in Section 14.7. Bayesian learning is related to parameter estimation issues in 
orthodox statistics; there, the basic concept is that parameters are unknown 
numbers; within this alternative framework, we may cope with probabilistic 
knowledge about parameters, possibly subjective in nature. As a concrete 
example, we outline the Black-Litterman portfolio optimization model, which 
can be interpreted as a Bayesian approach. 

14.1 WHAT IS UNCERTAINTY? 

When we flip a fair coin, we are uncertain about the outcome. However, we are 
pretty sure about the rules of the game: The coin will either land head or tail, 
and to all practical purposes we assume that the two outcomes are equally 
likely. However, what about an alien who has never seen a coin and does 
not take our probabilities for granted? Probably, it would face a more radical 
form of uncertainty, where the probabilities themselves are uncertain, and not 
only the outcome of the flip.1 By a similar token, sometimes we have plenty 
of reliable and relevant data about a random phenomenon, possibly featuring 
significant variability, which suggests the application of a frequentist concept 
of probability. Again, coming up with a good decision in such a setting may be 
far from trivial, but at least we might feel confident about our representation 
of uncertainty. Unfortunately, we are not always so lucky. Sometimes, we do 
not have relevant data, as we are facing a brand-new situation, as is the case 
when launching a truly innovative product. In other cases, the situation is so 
risky that we cannot have blind faith in statistical data analysis. How about 
an event with a very low probability, but potentially catastrophic? 

Example 14.1 Suppose that we are interested in investigating the safety 
of an airport, in terms of its ability to manage the takeoff-landing traffic. 
Apparently, we should consider the statistics of accidents that may be blamed 
on the airport. However, hopefully, data on such accidents are so scarce that 
they are hardly relevant. In such a case, we should also consider the near 
misses, i.e., events that did not actually result in a disaster, but indicate that 
something is not working as it should. By the same token, car insurance 
companies are also interested in the driving habits of a potential customer, 
and not only in his accident track record. D 

This example shows that sometimes past statistics are not quite relevant be-
cause of lack of data. In other cases, even if we have plenty of data, a structural 
change in the phenomenon may make them irrelevant. In Chapter 5 we have 
pointed out that there are different interpretations of probabilities. Indeed, 
the cases above illustrate both the classical concept of probability, based on 

1We illustrate a Bayesian framework to learn such probabilities in Example 14.14. 
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Fig. 14.1 Schematic illustration of different kinds of uncertainty. 

the idea that there are underlying equally likely outcomes, and the frequentist 
concept. However, probability may also be a measure of belief in a scientific 
theory, possibly including subjective elements. Some have even questioned 
the use of probability as a model of uncertainty. Alternative frameworks have 
been proposed, like fuzzy sets. We will stick to a probabilistic framework, but 
it is important to understand a few basic issues, with reference to Fig. 14.1. 
There, we use a familiar scenario tree (or fan) to represent uncertainty. We 
have to make a decision here and now, but its ultimate consequence depends 
on which future scenario will occur. According to a simple probabilistic view, 
each scenario «S¿ is associated with a well-known probability 7r¿, i = 1,2,3. 
Unfortunately, things are not always that easy. 

14.1.1 The standard case: decision making under risk 

Let us compare two random experiments: fair coin flipping and the draw of 
a multidimensional random variable, with a possibly complicated joint prob-
ability density. The two cases may look quite different. The first one can 
be represented by a quite simple Bernoulli random variable, and calculating 
expected values of whatever function of the outcome is pretty straightforward. 
On the contrary, calculating an expectation in the second case may involve a 
possibly awkward multidimensional integral. However, the difference is more 
technical and computational than conceptual, as in both cases we assume that 
we have a full picture of uncertainty. The important point is that the risk we 
are facing is linked to the realization of a random variable, which is perfectly 
known from a probabilistic perspective. With reference to Fig. 14.1, we are 
pretty sure about: 

1. The possible future scenarios, since we know exactly what might possibly 
happen, and there is no possibility unaccounted for. 



WHAT IS UNCERTAINTY? 755 

2. The probabilities of these scenarios, whatever meaning we attach to 
them. 

Hence, we have a full picture of the scenario tree. This standard case has 
been labeled as decision under risk, to draw the line between this and more 
radical views about uncertainty. Risk may be substantial; to see this, consider 
a one-shot decision when there is a very dangerous, but very unlikely scenario. 
Which decision model is appropriate to cope with such a case? There is no 
easy answer, but, at least, we have no uncertainty about our description of 
uncertainty itself. 

14.1.2 Uncertainty about uncertainty 

If we are about to launch a brand-new product, uncertainty about future sales 
is rather different from that in the previous case. Maybe, we know pretty well 
what may happen, so that the scenarios in Fig. 14.1 are known. However, it 
is quite hard to assess their probabilities. The following definitions, although 
not generally accepted, have been proposed: 

• Risk is related to uncertainty about the realization of a random variable 
whose distribution is known. 

• Uncertainty, in the strict sense, is related to: 

— The parameters of a probability distribution whose qualitative form 
is known 

— A probability distribution whose shape itself is unknown 

We see that there are increasing levels of uncertainty. We may be pretty 
sure that the probability distribution of demand is normal, but we are not 
quite sure about its parameters; this is where we started feeling the need 
for inferential statistics and parameter estimation. Nonparametric statistics 
comes into play when we even question the type of probability distribution 
we should use. But even if we are armed with a formidable array of statistical 
techniques, we may lack the necessary data to apply them. Probability in this 
setting tends to be subjective and based on expert opinion. 

Whatever the level of uncertainty, if the probabilities 7r¿ are not reliable, a 
more robust decision making model is needed, as we pointed out in Section 
13.5.1; however, there may be something more at play, such as prior opinions 
and their revision by a learning mechanism. In Chapters 9 and 10 we have 
taken an orthodox view of statistics, based on the fundamental assumption 
that parameters are unknown numbers. Then, we try to estimate unknown 
parameters using estimators; estimators are random variables, and their re-
alized value, the estimate, depends on data collected by random sampling. 
Given this framework, there are two consequences: 
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1. There is no probabilistic knowledge associated with parameters, and we 
never speak about the probability distribution of a parameter.2 

2. There is no room for subjective opinions, and collected data are the only 
sensible information that we should use. 

However, when facing new decision making problems, relying on subjective 
views may be not only appropriate, but also necessary. This is feasible within 
a Bayesian framework, whereby parameters are regarded as random variables 
themselves. Within this framework, the distribution that we associate with 
a parameter depicts our limited state of knowledge, possibly subjective in 
nature. As we outline in Section 14.7, in the Bayesian approach we start 
with a prior distribution, which reflects background information and subjec-
tive knowledge, or lack thereof; as new information is collected by random 
sampling, this is reflected by an update of the prior distribution, leading to a 
posterior distribution by the application of Bayes' theorem. 

Issues surrounding orthodox and Bayesian statistics are quite controversial, 
but one thing is sure: The probabilities 7r¿ in Fig. 14.1 may not be reliable, 
and we might move move from decision making under risk to decision-making 
under uncertainty. 

14.1.3 Do black swans exist? 

The most troublesome case is when some scenarios are particularly dangerous, 
yet quite unlikely. How can we trust estimates of very low probabilities? To 
get the message, consider financial risk management. Here we need to work 
with extreme events (stock market crashes, defaults on sovereign debt, etc.), 
whose probabilities can be very low and very difficult to assess, because of 
limited occurrence of such events in the past. Can we trust our ability to 
estimate the probability of a rare event? And what if we are missing some 
scenarios completely? 

Example 14.2 (Barings Bank and Kobe earthquake) Barings bank 
was founded in 1762 and it had a long and remarkable history, which came to 
an abrupt end in 1995, when it was purchased by another bank for the nominal 
price of £1 . The bank went bankrupt as a consequence of highly leveraged3 

and risky positions in derivatives, taken by a rogue trader who managed to 
hide his trading activity behind some glitches in the internal risk management 

2 Sometimes, it is stated that a confidence interval contains the uncertain parameter with a 
given probability; this is correct if we refer to an interval estimator, i.e., a pair of random 
variables. On the contrary, it is plain wrong if we refer to an interval estimate, i.e., to a 
pair of numbers realized after random sampling. See the discussion in Section 9.2.2. 
3 A leveraged position is a trade in which you borrow money to invest in risky positions. 
If things turn out well, this has the effect to enhance your gain; in case of loss, this is 
magnified, possibly leading to bankruptcy. 
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system of the bank. These strategies lead to disaster when Nikkei, the Tokyo 
stock market index, went south. When does a stock market crash? This can 
be the result of real industrial or economical problems, or maybe the financial 
distress of the banking system. Risk management models should account for 
the uncertainty in such underlying factors, and even unlikely extreme scenarios 
should enter the picture, when taking very risky positions. However, many 
have attributed that drop in the Nikkei index to swinging market mood after 
an earthquake stroke Kobe. Luckily, the earthquake was not hard enough to 
cause a real economic crisis; yet, its effect was pretty concrete on Barings, 
which had to face huge losses, ultimately leading to its demise. 

Very sophisticated models have been built for financial applications, ac-
counting for a lot of micro- and macro-economic factors, but it must take 
much imagination to build one considering the potential impact of an earth-
quake. D 

Indeed, the most radical form of uncertainty is when we cannot even trust 
our view about the possible scenarios. To reinforce the concept, imagine ask-
ing someone about the probability of a subprime mortgage crisis twenty years 
before 2007. In Fig. 14.1 we have depicted a black scenario with which it is 
impossible to associate a probability, for the simple reason that we do not 
even know beforehand that such a scenario may occur. In common parlance, 
these scenarios are referred to as "black swans."4 When black swans are in-
volved, measuring risk is quite difficult if not impossible. The term Knightian 
uncertainty was proposed much earlier to refer to unmeasurable uncertainty, 
after the economist Frank Knight drew the line between risk and uncertainty.5 

It is quite difficult to assess the impact of unmeasurable uncertainty on a de-
cision model, of course; maybe, there are cases in which we should just refrain 
from making decisions that can lead to disaster, however small its probability 
might look like (if nothing else, because of ethical reasons). 

14.1.4 Is uncertainty purely exogenous? 

The scenario tree of Fig. 14.1 may apply, e.g., to a two-stage stochastic pro-
gramming problem. In a multistage stochastic programming model we have 
to make a sequence of decisions; a multistage scenario tree, like the one shown 
in Fig. 13.11, may be used to depict uncertainty. Even if we take for granted 
that sensible probabilities can be assigned and that no black swan is lurking 
somewhere, how can we be sure that our sequence of decisions will not affect 
uncertainty? 

4 A few centuries ago, in Europe, it was common wisdom that all swans were white, for the 
simple reason that no one ever observed a black one. The picture changed after 1697, when 
one was found in Australia. See N.N. Taleb, The Black Swan: The Impact of the Highly 
Improbable, 2nd ed., Random House Trade Paperbacks, 2010. 
5See F.H. Knight, Risk, Uncertainty, and Profit, Houghton Mifflin, Boston, 1921. 
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Example 14.3 Setting inventory levels at a retail store is a rather standard 
decision making problem under risk. Typically, the task requires choosing a 
model of demand uncertainty, which is an input to the decision procedure. 
However, which comes first: Our decision or demand uncertainty? Indeed, 
our very decision may affect uncertainty. Marketing studies show that the 
amount of items available on the shelves may affect demand. To see why, 
imagine buying the very last box of a product on a shelf, when there is plenty 
of a similar item just below. In this case, consumers' psychology plays an 
important role, but even in a strict business-to-business problem, which need 
not involve such issues, an array of stockouts may be fatal to your customer 
demand. A naive newsvendor model may suggest a low service level because 
of low profit margins; since the order quantity should be the corresponding 
quantile of the probability distribution of demand, it will be very low as well, 
resulting in frequent stockouts. What such a model disregards is that the 
distribution itself will change as a consequence of our decision, if we offer a 
consistently low service level and keep disappointing customers. Even worse, 
this is likely to have an impact on the demand for other items as well. In 
practice, if a firm offers a catalogue of 1,000 items, it may well be the case that 
only 10% of them are profitable; the remaining ones are needed nonetheless, 
to support sales of profitable items. U 

The line we are drawing here is between endogenous and exogenous un-
certainty. Standard decision models may fail to consider how decisions affect 
uncertainty, which is clearly relevant for sequential decision making. These 
issues may be exacerbated by the presence of multiple actors, possibly in-
fluencing each other by means of actions and information flows, giving rise 
to feedback effects. A quite relevant example of such nasty mechanisms is 
represented by financial markets instability and liquidity crises. We consider 
a couple of such stories in Section 14.6. But even if we disregard risk and 
uncertainty, the presence of multiple actors may have a relevant impact, as 
we illustrate in the next sections. 

14.2 DECISION PROBLEMS WITH MULTIPLE DECISION MAKERS 

Consider the decision problem 

max ðé(÷é,÷2) +π2(χι ,Χ2) (14-1) 
S.t. ×÷ G Si, X2 € S2 

The objective function (14.1) can be interpreted in terms of a profit depending 
on two decision variables, X\ and X2, which must stay within feasible sets S\ 
and 52, respectively. Note that, even though the constraints on x% and X2 are 
separable, we cannot decompose the overall problem, since the two decisions 
interact through the two profit functions 7Γι(χι,#2) and ðæ&é,×ú)- Never-
theless, using the array of optimization methods of Chapter 12, we should be 
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able to find optimal decisions, x\ and x%, yielding the optimal total profit 
πΐ+2 = ðé(÷\,÷*2) + iï2{xl,x*2) 

In doing so, we assume that there is either a single stakeholder in charge of 
making both decisions, or a pair of cooperative decision makers, in charge of 
choosing #i and x2, respectively, but sharing a common desire to maximize 
the overall sum of profits. But how about the quite realistic case of two 
noncooperative decision makers, associated with profit functions πι(χι,Χ2) 
and π2(χι,Χ2), respectively? 

Decision maker 1 wishes to solve the problem 

max 7Γι(χι,χ2) (14.2) 

s.t. x\ e Si 

whereas decision maker 2 wishes to solve the problem 

max π2(χι,Χ2) (14-3) 
s.t. x2 € S2 

Unfortunately, these two problems, stated as such, make no sense. Which 
value of X2 should we consider in problem (14.2)? Which value of xi should 
we consider in problem (14.3)? We must clarify how the two decision makers 
make their moves. 

1. One possibility is that the two decision makers act sequentially. For 
instance, decision maker 1 might select x\ € S\ before decision maker 
2 selects X2 6 52. In this case, we may say that decision maker 1 is 
the leader, and decision maker 2 is the follower. In making her choice, 
decision maker 1 could try to anticipate the reaction of decision maker 
2 to each possible value of x\. 

2. Another possibility is that the two decisions are made simultaneously. 
Unfortunately, the conceptual tools that we have developed so far do 
not help us in making any sensible prediction about the overall outcome 
of such a simultaneous decision. 

In Section 14.3 we illustrate the first case with a concrete, although stylized, 
example. Then, in section 14.4 we consider the second case as well, introducing 
a general theory of noncooperative games. Game theory aims at finding a 
sensible prediction of an equilibrium solution (xj ,x | ) , which depends on the 
precise assumptions that we make about the structure of the game. Whatever 
equilibrium solution we obtain, it cannot yield an overall profit larger than 
π*+2, as the following inequality necessarily holds: 

7Γ1+2 = 7Γι(Χι,Χ2) +7Γ 2 (Χι ,Χ2) < ^l{x*l, X2) + ð2(×*1, ×2) = 1 " î + 2 

If this inequality were violated, (x*, x2) would not be the optimal solution of 
problem (14.1). This means that if decentralize decisions, the overall system 
is likely to lose something. 
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14.3 INCENTIVE MISALIGNMENT IN SUPPLY CHAIN 
MANAGEMENT 

The last point that we stressed in the previous section is the potential dif-
ficulty due to the interaction of multiple noncooperative, if not competitive, 
decision makers. The example we consider is a generalization of the newsven-
dor model:6 

1. Unlike the basic model, there are two decisions to be made. The or-
dering decision follows the same logic as the standard case, but there is 
another one, related to product quality, which influences the probability 
distribution of demand. 

2. Since there are two decisions involved, we should distinguish two cases: 

• In the integrated supply chain, there is only one decision maker in 
charge of both decisions. 

• In the disintegrated supply chain, there are two decision makers; 
a producer, who is in charge of setting the level of her product 
quality, and a distributor, who is in charge of deciding his order 
quantity. 

In order to be able to find analytical solutions, we depart from the usual 
assumption of normal demand, and we suppose a uniform distribution, say, 
between 500 and 1000. We will rely on the following notation; the lower 
bound of the distribution support is denoted by a and its width by w; hence, 
the expected value is a + w/2. In the numerical example, a = 500 and w = 
1000 — 500 = 500. The item has a production cost of c = €0.20 and sells 
at a price p = €1.00. To keep things as simple as possible, we suppose that 
the unsold items are just scrapped, and there is no salvage value. With the 
numbers above, we see that service level should be7 

m + cu (p — c) + (c — Q) p 1 

where m = p — c is the profit margin and cu = c is the cost of unsold items, 
when there is no salvage value. The optimal order quantity is 

Q* = a + to/3 = 500 + 500 x 0.8 = 900 (14.4) 

Since the probability distribution is uniform, we may easily compute the ex-
pected profit. This requires calculating fairly simple integrals involving the 

eThis example has been inspired by the Harvard Business School (HBS) case [19], to which 
we refer for additional questions and issues. 
7See Section 7.4.4. 
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constant demand density 

fn(x) = 

(I 1 
— = , for a < x < a + w 
w 500 - -
0, otherwise 

The expected profit depends on Q and it amounts to the expected revenue 
minus cost: 

/

+00 
pmin{a:, Q}fD(x)dx - cQ 

-oo 
çQ ra+w 

= / —xdx+ —Qdx-cQ 
Ja W JQ W 

= ^^—^- + ̂ -Q(a + w-Q)-cQ 
w 2 w 
t ^ , p fQ2-a2 + 2Qa-2Q2 

= <P-C)Q + - { 2 

= mQ-^-{Q-af (14.5) 

This expression of expected profit may be interpreted as profit related to the 
purchased quantity, minus the expected lost revenue due to unsold items? 
To get an intuitive feeling for Eq. (14.5), we may refer to Fig. 14.2, where 
lost revenue is plotted against demand, for a given order quantity Q. When 
demand is at its lower bound, D = a, lost revenue is p(Q — a); when demand 
is D = Q, lost revenue is 0. For intermediate values of demand, lost revenue 
is a decreasing function of demand and results in the triangle illustrated in 
the figure. To evaluate the expected value of lost revenue, we should integrate 
this function, multiplied by the probability density 1/w. But this is simply 
the area of the triangle in Fig. 14.2, P(Q — a)2/2, times 1/w, which in fact 
yields the second term in Eq. (14.5). With our numerical data, the optimal 
expected profit is 

U(Q*) = 0.8 x 900 - n * (900 - 500)2 = 560 
2 x 500 

We may also express the expected profit as a function of the service level ß, 
by plugging Eq. (14.4) into Eq. (14.5): 

Π(/3) = m(a + ßw) - ^ - (14.6) 

8There is a potential source of confusion here, as we may lose potential revenue because 
of a stockout, i.e., when demand is larger than the available inventory. We refer here to 
revenue that we lose because of unsold items, i.e., when demand is smaller than the available 
inventory. 
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Fig. 14.2 A geometric illustration of Eq. (14.5). 

So far, we have always assumed that a demand distribution cannot be influ-
enced by the producer. However, she could improve the product or adopt 
marketing strategies to change the distribution a bit. The result depends on 
the effort she spends, which in turn has a cost. Let us measure the amount of 
effort by h, with unit cost 10. To model the effect of h on demand, we make 
the following assumptions: 

1. For the sake of simplicity, we assume a pure shift in the uniform distri-
bution of demand. Its lower bound a is shifted, but its support width 
w does not change.9 

2. The shift in a should be a concave function of h, to represent the fact that 
effort is decreasingly effective for increasing levels (diminishing marginal 
return). One possible building block that we can use is the square-root 
function. 

Hence, we represent the lower extreme of the distribution support by the 
following function of h: 

a + l00\/h 
For instance, with our numerical parameters, if h = 1 the lower bound a shifts 
from 500 to 600. Using Eq. (14.6), we see that, if we include the effort h, the 
expected profit becomes 

U(ß, h) = m(a + lOOVh + âõë - ^ ã - - 10Λ (14.7) 

Note that the optimal service level does not change, according to our model, 
since we do not change either the unit cost of the item or its selling price. To 

9Earlier in this chapter we insisted on the potential effect of our decisions on uncertainty. 
In this case, we assume that the effort decision affects only the location of the demand 
distribution, but not its dispersion. Nevertheless, uncertainty is indeed partially endogenous 
in our stylized example. 
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find the optimal effort, we should take the first-order derivative of expected 
profit (14.7) with respect to h and set it to 0: 

100m ,„ „ , , / 1 0 0 m . " ,„ 
- 10 = 0 => h* = - — — = 16 2Vh V2xl0 

We notice that this condition equates the marginal increase of expected profit 
contribution from production and sales with the marginal cost of the effort. 
With this effort, the new probability distribution is uniform between 900 and 
1400, the optimal produced quantity increases to Q* = 1300, and by applying 
Eq. (14.7) the new total expected profit is 

z— N 1 x 0.82 x 500 
0.8 x (500 + 100V16 + 0.8 x 500) 10 x 16 = 720 

This is the optimal profit resulting from the joint optimal decisions concerning 
effort level h and purchased amount Q. 

The above calculations are formally correct, but potentially flawed: They 
rely on the assumption that there is one decision maker maximizing overall 
expected profit and in control of both decisions. What if we have a supply 
chain with different stakeholders in charge of each decision, with possibly 
conflicting objectives? To see the impact of misaligned incentives, let us 
assume that there are two stakeholders: 

1. The producer, who is in charge of determining the quality of the product 
and its potential for sales, through the effort h 

2. The distributor, who is in charge of determining the order quantity Q, 
depending on the probability distribution of demand and the prices at 
which he can buy and sell 

We cannot analyze such a system if we do not clarify not only who is in charge 
of deciding what, but also when and on the basis of what information. So, to 
be specific, let as assume the following: 

• The producer is the leader and the distributor is the follower, in the 
sense that the producer decides her effort level h first, and then the 
distributor will select his order quantity Q. It must be stressed that, in 
deciding the effort level h, the producer should somehow anticipate how 
her choice will influence the choice of Q by the distributor. 

• The producer is also the leader in the sense that she is the one in charge 
of pricing decisions, which we assume given. She keeps the selling price 
fixed at €1.00 and sells each item to the distributor for a price of €0.80, 
which is the purchase cost from the viewpoint of the distributor. Please 
note that the profit margin for the distributor is just €0.20; furthermore, 
he is the one facing all of the risk, as items have no salvage value and 
there is no buyback agreement in case of unsold items. 
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• Last but not least, everything is common knowledge, in the sense that 
the producer knows how the distributor is going to make his decision 
and both agree on the probability distribution of demand and how this 
is affected by the effort level ft. 

The last point implies that when the producer makes her decision, she 
can anticipate what the optimal decision of the distributor is going to be; 
hence, she can build a reaction function, also known as best response function, 
describing how the order quantity Q is influenced by her effort level ft. Prom 
the point of view of the follower, i.e., the distributor, once the effort ft is 
decided by the leader, the only thing he can do is to determine the order 
quantity as a function of ft. Under our simple assumption of a pure shift in 
the demand distribution, we have 

Q*(h) = a + lOOVh + ßw 

This expression look just the same as before but there is a fundamental dif-
ference. Under our assumptions, the production cost and the selling price do 
not change, but now, since the profit margin is shared, the optimal service 
level for the distributor is only 

0= i1·0"0·8) 0 2 
H ( 1 . 0 - 0 . 8 ) + (0 .8-0 .0) 

There is a remarkable reduction in the service level, from 80% to 20%, because 
of the high price at which the distributor buys from the producer. Indeed, 
the split of the profit is €0.60 to the producer and €0.20 to the distributor. 
Plugging numbers, the optimal order quantity is 

Q*(h) = 500 + lOOVh + 0.2 x 500 = 600 + WOVh 

This is how the producer can anticipate the effect of her choice of ft on the 
decision of the distributor, which in turn influences her profit. The profit from 
the point of view of the producer is 

0.6 x 600 + 100v^ 10ft 

Applying the first-order optimality condition, we obtain the optimal effort, 
and then the optimal order quantity: 

° - 6 x i ° 0 = io => ft* = 9 => g - = 900 
2y/h* 

The new optimal order quantity depends on the fact that the shifted prob-
ability distribution of demand, with that level of effort, is uniform between 
800 and 1300, and optimal service level is just 20%. A first observation that 
we can make is that both effort and order quantity are reduced when supply 
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chain management is decentralized. This implies that consumers will receive 
a worse product and a reduced service level. What is also relevant, though, is 
the change in profit for the two players. The profit of the producer is 

0.6 x 900 - 10 x 9 = €450 

This profit is considerably reduced with respect to expected profit for the 
producer when she also manages distribution, which is €720. Of course, this 
is not quite surprising, since the producer has given up a fraction of her profit 
margin, leaving it to the distributor. Unlike the producer, the distributor 
faces an uncertain profit. Its expected value can be obtained from Eq. (14.5), 
after adjusting the parameters to reflect the reduced profit margin 

mQ-7T-(Q- af = 0-2 x 900 - „ * (900 - 800)2 = €170 2w 2 x 500 

The expected profit for the distributor is less than the (certain) profit of 
the producer, but this is no surprise after all, considering how margins are 
split between the two parties. Last but not least, the total profit for the 
disintegrated supply chain is 

€450+ €170 = €620 

which is €100 less than the total profit for the fully integrated supply chain. 
Again, this is reasonable, in light of the concepts of Section 14.2. 

These observations raise a couple of points: 

1. One might well wonder why the producer should delegate distribution 
to someone else. Actually, there is a twofold answer: 

• Her profit now is a certain amount and not an expected value, since 
the whole risk is transferred to the distributor. 

• We did not consider fixed costs related to distribution; they may 
not impact optimal decisions at the tactical or operational level, 
but they do have an impact on the bottom line and on strategic 
decisions. 

We may also add further considerations concerning the fact that a dis-
tributor is probably better equipped at making demand forecasts and 
has a better incentive to offer additional services to the customer. 

2. In splitting profit margins and decentralizing decisions, something has 
been lost for everyone: the producer, the distributor, and, last but not 
least, the customers, who receive less quality and less service. In prin-
ciple, we could try to find the "optimal split" of profit margins, i.e., the 
allocation of margins that maximizes the total profit. Of course, this is 
hardly feasible in practice, as it would require cooperation between the 
two stakeholders; furthermore, in general, the overall profit will remain 
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suboptimal, anyway. There are practical ways to realign the incentives 
by shifting fixed amounts of money between the parties, as a lump pay-
ment does not affect the above decisions, since it is a constant amount 
and does not affect the calculation of the derivatives that are involved 
in the optimality conditions. An alternative is to redistribute risks by 
introducing buyback contracts;10 if risk is shared between the two stake-
holders, the optimal service level for the distributor is increased. The 
best strategy depends on the specific problem setting, as well as on the 
relative strengths of the parties involved. 

In closing this section, we should note that, although this supply chain 
problem involves uncertainty in demand, this is not the key point. Coordi-
nation issues arise in purely deterministic problems, like the ones we show in 
Sections 14.4 and 14.5. 

14.4 GAME THEORY 

In the previous section we have considered a case in which two stakeholders, 
a producer and a distributor, make their decisions in a specific order. The 
producer (leader) determines product quality, as well as the probability dis-
tribution of demand as a consequence; the distributor (follower) chooses the 
order quantity. In other cases, however, decisions are taken simultaneously, 
at least in principle. In fact, the term "simultaneously" need not be taken 
literally; the point is that no player has any information about what others 
have previously chosen and cannot use this as an input for her decision. Pre-
dicting the outcome of the joint decisions is no easy task in general, and it 
is the aim of game theory. There is no hope to treat this challenging subject 
adequately in a few pages, but for our purposes it is quite enough to grasp a 
few fundamental concepts; these will be illustrated by very stylized examples 
in this section; in the next one, we consider a paradoxical result in traffic net-
works, which is a result of noncooperation between decision makers, namely, 
drivers in that case. 

For the sake of simplicity, we consider a very stylized setting: 

• There are only two decision makers (players); each player has an ob-
jective (payoff) that she wants to maximize and there is no form of 
cooperation. 

• Only one decision has to be made; hence, we do not consider sequential 
games in which multiple decisions are made over time. 

See Problem 7.9. 
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• We assume complete information and common knowledge.11 Formaliz-
ing these concepts precisely is not that trivial, but (very) loosely speak-
ing they mean that there is no uncertainty about the data of the prob-
lem nor about the mechanisms that map decisions into payoffs. The 
two players agree on their view of the world, the rules of the game, and 
know the incentives of the other party; furthermore, each player knows 
that the other one has all of the relevant information. 

There are different ways to represent a game. The best way to understand the 
basic concepts is by considering the situation in which players must choose 
within a very small and discrete set of available actions, and the game is 
represented in normal form. 

14.4.1 Games in normal form 

The standard example to illustrate the normal form representation of a simple 
game is the prisoner's dilemma, which is arguably the prototypical example 
of a two-player game. The prisoner's dilemma has been phrased in many 
different ways;12 in the next example we use what is closest to a business 
management setting. 

Example 14.4 (Prisoner's dilemma) Consider two firms, say, A and B, 
which have to set the prices at which their products are sold. The products 
are equivalent, so price is a major determinant of sales. On the one hand, 
firm A would like to keep its price high, to keep revenues high as well; on the 
other one, if the competitor firm B lowers its price, it will erode the market 
share of firm A. Indeed, sometimes a price war erupts, reducing profits for 
both firms. To represent the problem, let us assume that there are only two 
possible prices, low and high. Hence, we consider only a discrete set of possible 
actions; it is also possible to formalize a game with a continuum of actions 
represented by real numbers. The following outcomes could result, depending 
on firms' actions: 

• If firm A sets a high price and firm B sets a low price, firm A will be 
wiped off the market and firm B will get a huge reward; we obtain a 
symmetric outcome if we swap firms' actions. 

• If both firms set a low price, the result of this price war will be a fairly 
low profit for both firms. 

11 Since we do not consider multistage games, we do not deal with perfect information. Per-
fect information means that each player knows which moves have been played by the other 
players in the previous stages of the game. Complete information refers to the structure of 
the game and the payoffs of the other players. 
12 In the literal statement of the dilemma, two prisoners are kept in separate cells and are 
invited to confess their crime, in exchange for a reduction in punishment; if both refuse 
to confess, they will be released, but if only one prisoner confesses, the other one will be 
severely punished. 
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Table 14.1 Representation of prisoner's dilemma in normal form. 

Fi rmB 
Firm A Low High 

Low (1, 1) (3, 0) 
High (0, 3) (2, 2) 

• If firms collude and both of them set a high price, the result will be a 
fairly high profit for both of them. 

Depending on the action selected by all of the players, they will receive a 
payoff. Unlike the optimization models that we have described in Chapters 
12 and 13, the payoff for each player is a function of the decisions of all of the 
players. Representing the game in normal form requires to specify the payoff 
to each player, for any combination of actions. The normal form of prisoner's 
dilemma is illustrated in Table 14.1. Firm A is the row player and firm B is 
the column player. Each cell in the table shows the payoff to firms A and B, 
respectively; the first number is the payoff for the row player, and the second 
number is the payoff to the column player: 

• If both firms play high, the payoff is 2 for both of them. 

• If firm A plays high, but firm B plays low, the payoff is 0 for the former 
and 3 for the latter; these payoffs are swapped if firm A plays low, but 
firm B plays high. 

• If both firms play low, the ensuing price war results in a payoff 1 for 
each firm. 

Actions are selected simultaneously, and we need a sensible way of predicting 
the result of the game. U 

It is easy to see that the normal form of a game is appropriate for a small 
and nonsequential game, and different representations might be more suitable 
in other cases. In particular, sequential games involve the selection of multiple 
actions by each player; each action, in general, may depend on the previous 
choices by the other players. When there is a discrete set of actions available 
at each stage of the game, this can be represented in extensive form by a 
tree, much like the decision trees of Section 13.1. Indeed, decision trees may 
be regarded as a multistage game between the decision maker and nature, 
which randomly selects an outcome at each chance node. Solving a decision 
tree requires the specification of a strategy, i.e., a selection of a choice for each 
decision node. By a similar token, a multistage game requires the specification 
of a strategy for each player, i.e., a mapping from each state/node in the tree 
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to the set of available actions of the player that must make a choice at that 
stage of the game. We will not consider the extensive form of a game in 
this book. Furthermore, we consider only pure strategies, whereby one action 
is selected by a player. In mixed strategies, each action is selected with a 
certain probability. Even though we neglect these more advanced concepts, 
we see that actions are only the building blocks of strategies. Therefore, in 
the following text we will use the latter term, even though in our very simple 
examples actions and strategies coincide. 

Now we are able to formalize a simple game involving n players; to specify 
such a game we need: 

• The set of available strategies S¿ for each player, i = 1 , . . . ,n; in other 
words, we need the set of available strategies for each player. 

• The set of payoff functions nj(si, S2,.. . , S „ ) for each player j = 1, . . .,n; 
the payoff depends on the set of strategies s¿ € 5¿ selected by all of the 
players, within the respective feasible set 5¿. 

Note that, given a set of strategies, the payoff is known, as there is no uncer-
tainty involved; furthermore, each player knows the set of available strategies 
of the other players, as well as their payoff functions. Hence, all of the play-
ers have a clear picture of the incentives of the other players and there is 
no hidden agenda. Clearly, this is only the simplest kind of game one can 
consider; partial information and uncertainty are involved in more realistic 
models. Now the problem is to figure out which outcome should be expected 
as a result of the game, where by outcome we mean a vector of strategies 
(si, s2, · · ·, sn), one per player. 

14.4.2 Equilibrium in dominant strategies 

Sometimes, it is fairly easy to argue which outcome is to be expected. If we 
consider the strategies for firm A in Table 14.1, we see that: 

• If firm B plays high, firm A is better off by playing low, since the payoff 
3 is larger than 2. 

• If firm B plays low, firm A is better off by playing low, since the payoff 
1 is larger than 0. 

So, whatever firm B plays, firm A is better off by playing low. The symmetry of 
the game implies that the same consideration applies to firm B, which will also 
play low. If there is a single strategy that is preferred by a player, whatever 
the other players do, it is fairly easy to predict her move. A formalization of 
this observation leads to the concept of dominant strategy.13 

In our simple context of nonsequential games, we could speak of dominant actions. 
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DEFINITION 14.1 (Strictly dominant strategy) A strategy sf strictly 
dominates strategy s¿ for player i if 

Ki(si,s2,...,Si,...,sn) > ni(si,s2,...,si,...,sn) 

for any possible combination of strategies selected by the other players. There 
is a strictly dominant strategy s* for player i if it strictly dominates all of the 
alternatives: 

Ki{Si ,S2,...,S*,...,Sn) > 7T f (s i , S2, � � � , Si, . . . , Sn) 

for all alternative strategies s, ö s* of player i and for all possible strategies 
Sj of players j öß. 

In the above definition we only consider strict domination, which involves 
strict inequalities. For the sake of brevity, in the following we will often just 
speak of dominant or dominated strategies, leaving the "strict" qualifier aside; 
actually, some results in game theory do require strict dominance, but we will 
not be too precise. Clearly, dominant strategies need not exist, but if one exist 
for a player, it is an easy matter to predict her behavior. It is also important 
to notice that, in such a case, the prediction assumes only player's rationality, 
and there is no overly stringent requirement concerning what she knows or 
assumes to know about the other players. Furthermore, if there is a dominant 
strategy for each player, it is also easy to predict the overall outcome of the 
game. 

DEFINITION 14.2 (Equilibrium in dominant strategies) An outcome 
(s\, s2,..., s~n) is an equilibrium in dominant strategies if s¿ G Si is a domi-
nant strategy for each player i, i = l , . . . , n . 

If an outcome is an equilibrium in dominant strategies, given that no ra-
tional player will play a dominated strategy, it is sensible to predict that this 
outcome will be the result of the game. In the prisoner's dilemma, the strat-
egy low is dominant for both players, and we may argue that the outcome will 
indeed be (low, low). An important observation is that the resulting payoff for 
the firms is (1,1); if the two firms selected (high, high), the payoff would be 
(2,2), which is higher for both players. Using the terminology of multiobjec-
tive optimization,14 the second outcome would be preferred by both players 
and is Pareto-dominant. However, the lack of coordination between players 
results in a lower payoff to both of them. The problem with the outcome 
(low, low) is that it is an unstable equilibrium. Incidentally, we observe that 
certain firms are often prone to collude on prices, and this is exactly why 
anti-trust authorities have been set up all around the globe; hence, one could 
wonder if the above prediction makes empirical sense. The key issue here is 

See Section 12.3.3. 
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Table 14.2 Battle of the sexes. 

Romeo 
Juliet Horror Shopping 

Horror (1, 3) (0, 0) 
Shopping (0, 0) (3, 1) 

that we are considering only a one-shot game. Collusion may be the outcome 
of more complicated, as well as more realistic, multistage models that capture 
strategic interaction between firms. 

It is reasonable to expect that an equilibrium in dominant strategies may 
only be found in trivial games. The following is a classical example in which 
no equilibrium in dominant strategies exists. 

Example 14.5 (Battle of the sexes) After a long week of hard work, 
Romeo and Juliet have to decide how to spend their Saturday afternoon. 
There are two choices available: 

1. Attending a horror movie festival, which we denote as strategy horror 
and is much preferred by Romeo. 

2. Going on a shoe shopping spree, which we denote as strategy shopping 
and is much preferred by Juliet. 

Despite their differences in taste, Romeo and Juliet are pretty romantic lovers, 
so they would prefer to spend their time together anyway. Their preferences 
may be represented by the payoffs in Table 14.2. We note that if the two 
players select different strategies, the payoff is zero to both of them, as they 
will be alone. If the outcome is (shopping, shopping), the resulting payoff will 
be 3 to Juliet, who would be very happy, and 1 to Romeo, who at least will 
spend his time and more with his sweetheart. Payoffs are reversed for outcome 
(horror, horror). The game is simple enough, and in practice it can be seen as 
a stylized model of two firms that should agree on a standard to make their 
respective products compatible; these games are called coordination games. 
However, it is easy to see that there is no dominant strategy for either player. 
For instance, Romeo would play horror, if he knew that Juliet is about to play 
horror; however, if he knew that Juliet is going to play shopping, he would 
change his mind. D 

Equilibrium in dominant strategies is based on a very restrictive require-
ment, but we may try to guess the outcome in a slightly more elaborated 
way, by assuming that all players are rational and that everything is common 
knowledge. The idea is iterated elimination of dominated strategies and is best 
illustrated by an example. 
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Table 14.3 Predicting an outcome by iterated elimination of dominated strategies. 

(a) 

Player 1 

Top 
Bottom 

Player 2 
Left Center Right 

(1, 0) (1, 2) (0, 1) 
(0, 3) (0, 1) (2, 0) 

(b) 

Playei 
Player 2 

• 1 Left Center 

Top (1, 0) (1, 2) 
Bottom (0, 3) (0, 1) 

(c) 

Playei 

Top 

Player 2 
: 1 Left Center 

(1, 0) (1, 2) 

Example 14.6 Consider the game in Table 14.3. Table 14.3(a) describes the 
game in normal form; note that the row player 1 has two possible strategies, 
top and bottom, whereas the column player 2 has three available strategies, 
left, center, and right. Let us compare strategies center and right from the 
viewpoint of player 2. Checking her payoffs, we see that, whatever the choice 
of player 1, it is better for player 2 to choose center rather than right, as 
2 > 1 and 1 > 0; indeed, center dominates right. Eliminating the dominated 
strategy from further consideration, we obtain Table 14.3(b). By a similar 
token, from the viewpoint of player 1, we see that strategy bottom is dominated 
by top, since 1 > 0. Eliminating the dominated strategy, we get Table 14.3(c). 
Now, we see that the payoff to player 1 is 1 in any case, whereas player 2 will 
definitely play center, since 2 > 0. Then, we predict the outcome {top, center). 

D 

The procedure above sounds quite reasonable. However, a few considera-
tions are in order. 

• We should wonder whether the resulting outcome, if any, depends on the 
sequence that we follow in eliminating dominated strategies. However, it 
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Table 14.4 Can you trust your opponent's rationality? 

Player 2 
Player 1 Left Right 

Top (1, 0) (1, 1) 
Bottom (-1000,0) (2, 1) 

can be shown that strict dominance makes sure that whatever sequence 
we take, we will find the same result. 

• We may fail to find a prediction, when strict dominance does not apply. 

• We have to assume that all players are rational and that everything is 
common knowledge. This, for instance requires that each of the two 
players knows that the other one is rational, that she knows that the 
other one knows that she is rational, and so on. As we pointed out, 
formalizing the intuitive idea of common knowledge is not quite trivial, 
but the following example shows that this assumption may be critical. 

E x a m p l e 14.7 Trusting the other player's rationality can be dangerous in-
deed. Consider the game in Table 14.4. If player 2 is rational, she should 
choose the strictly dominant strategy right, because it ensures a payoff 1 > 0, 
whatever the choice of player 1 is. If we eliminate left, it is easy to see that 
the outcome should be (bottom, right), since by playing bottom player 1 gets 
a payoff 2 > 1. However, playing bottom is quite risky for player 1 since, if 
player 2 makes the wrong choice, his payoff will be —1000. D 

14.4.3 Nash equilibrium 

The concepts that we have used so far make sense, but they are a bit too 
restrictive and limit the set of games for which we may make reasonable 
predictions. A better approach, in a sense that we should clarify, is Nash 
equilibrium. Before formalizing the concept, imagine a game in which there 
is one sensible prediction of the outcome. If the prediction makes sense, all 
players should find it acceptable, in the sense that they would not be willing 
to deviate from the prescribed strategy, if no other player deviates as well: 
The equilibrium should be stable. 

DEFINITION 14.3 (Nash equilibrium) An outcome (sj, s j , . . . , s*) is a 
Nash equilibrium if no player would gain anything by choosing another strat-
egy, provided that the other players do not change their strategy; in other 
words, no player i has an incentive to deviate from strategy s*. Let us denote 
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Table 14.5 Finding Nash equilibrium for the game in Table 14.3. 

Player 2 
Player 1 Left Center Right 

Top (1,0) (1,2) (0,1) 
Bottom (0, 3) (0, 1) (2, 0) 

the set of strategies played by all players but i as 

s - i = ( S 1 J · � � Ξ si-li si+li · · � i sn) 

This can be used to streamline notation as follows: 

\Si > S - J = ( s l > s 2 ! � · ·> Si > � · · > S n ) 

Then, for any player i, s* is the best response to s*_{: 

TTiνs^sÜJ^TTiνSi.sÜi), ¿ = l , . . . , n , VSJ e S j (14.8) 

The best way to grasp Nash equilibria is by a simple example, in which we 
also illustrate a possible way to find them for two-players games with discrete 
sets of actions. 

Example 14.8 To find a Nash equilibrium, we can: 

1. Consider each player in turn, and find her best strategy for each possible 
strategy of the opponent; for the row player, this means considering 
each column (strategy of the column player) and find the best row (best 
response of row player) by marking the corresponding payoff; rows and 
columns are swapped for the column player. 

2. Check if there is any cell in which both payoffs are marked; all such cells 
are Nash equilibria. 

Let us apply the idea to the game in Table 14.3; the results are shown in Table 
14.5. If we start with row player 1, we see that her best response to left is 
top, as 1 > 0; then we underline the payoff 1 in the top-left cell; by the same 
token, player 1 should respond with top to center, and with bottom to right. 
Then we proceed with column player 2; we notice that her best response to 
top is center, since 2 = max{0,2,1}; if player 1 plays bottom, player 2 should 
choose left. In this game, there is no need to break ties, as for each row there is 
exactly one payoff preferred by the column player, and for each column there 
is exactly one payoff preferred by the row player. The outcome (top, center) 
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is the only cell with both payoffs marked, and indeed it is a Nash equilibrium. 
To better grasp what Nash equilibrium is about, note that no player has an 
incentive to deviate from this outcome, if the other player does not. D 

We see that the Nash equilibrium in the example is the same outcome 
that we predicted by iterated elimination of (strongly) dominated strategies. 
Indeed, it can be proved that: 

• If iterated elimination of (strictly) dominated strategies results in a 
unique outcome, then this is a Nash equilibrium. 

• If a Nash equilibrium exists, it is not eliminated by the iterated elimi-
nation of (strictly) dominated strategies. 

We should note that Nash equilibria may not exist,15 and they need not be 
unique (see problem 14.1). However, they are a more powerful tool than 
elimination of dominated strategies, as they may provide us with an answer 
when the use of dominated strategies fail, without contradicting the prediction 
of iterated elimination, when this works. In other words, since Nash equilibria 
are based on less restrictive assumptions than iterated elimination, it fails less 
often.16 Last but not least, the prediction suggested by Nash equilibria makes 
sense and sounds plausible enough. 

Now it is natural to wonder about more complicated settings, like the case 
in which each player has a continuum of strategies at her disposal. To this aim, 
it is useful to interpret Nash equilibria in terms of best response functions. 

DEFINITION 14.4 (Best response function) The best response func-
tion for each player i is a function 

s* = Ri(s-i) 

mapping the strategies of the other players into the strategy s* maximizing the 
payoff of i in response to s_¿. 

We immediately see that a Nash equilibrium is a solution of a system of 
equations defined by the best response functions of all players. For a two-
player game, we should essentially solve the following system of two equations 

ί β Ϊ = Α ι ( « 3 ) 
\s*2= R2(st) 

1 5To be precise, for the simple games that we consider here, featuring finite sets of possible 
actions, they do exist if we allow for mixed strategies, but this is outside the scope of the 
book. 
16 Actually, they never fail in relatively simple games, if we allow for mixed strategies. 



776 MULTIPLE DECISION MAKERS, SUBJECTIVE PROBABILITY, AND OTHER BEASTS 

14.4.4 Simultaneous vs. sequential games 

In this section we consider Nash equilibrium for the case in which a continuum 
of infinite actions is available to each player. To be specific, we analyze the 
behavior of two firms competing with each other in terms of quantities pro-
duced. Both firms would like to maximize their profit, but they influence each 
other since their choices of quantities have an impact on the price at which 
the product is sold on the market. This price is common to both firms, as we 
assume that they produce a perfectly identical product and there is no pos-
sibility of differentiating prices. This kind of competition is called Cournot 
competition; the case in which firms compete on prices is called Bertrand 
competition, but it will not be analyzed here. We start with the case of si-
multaneous moves, which leads to the Cournot-Nash equilibrium.1,7 Then we 
will consider sequential moves. 

To clarify these concepts it is useful to tackle a simple model, in which we 
assume that each firm has a cost structure involving only a variable cost: 

TC¿(CÍ) = aqi, i = 1,2 

Here, T Q denotes total cost for firm i, c¿ is the variable cost, and η, is 
the amount produced by firm i = 1,2. The total amount available on the 
market is Q = q\ + q2, and it is going to influence price. In Section 2.11.5 
we introduced the concepts of demand and inverse demand functions, relating 
price and demand. There, we assumed the simplest relationship, i.e., a linear 
one. By a similar token, we assume here that there is a linear relationship 
between total quantity produced and price: 

P(Q) = a - bQ, a,b>0; a>Ci 

Incidentally, this stylized model assumes implicitly that all produced items 
are sold on the market. Then, the profit for firm i is 

τ»(9ι, 92) = P(qi + Q2)qi - TCi(c¿) = [a - b(qi + q2)]qi - ĉ q» 

Note that the profit of each firm is influenced by the decisions of the competi-
tor. Assuming that the two firms make their decisions simultaneously, it is 
natural to wonder what the Nash equilibrium will be. Note that we assume 
complete information and common knowledge, in the sense that each player 
has all of the above information and knows that the other player has such in-
formation. We can find the equilibrium by finding the best response function 
Ri(qj) for each firm, i.e., a function giving the profit-maximizing quantity q* 
for firm i, for each possible value of qj set by firm j . Enforcing the stationarity 
condition for the profit of firm 1, we find 

d-^h^. = a-2bq1-bq2-c1 = 0 =* RM = £Z_£L - \q2 (14.9) 

1 7I t is interesting to note that the Cournot duopoly model anticipated Nash equilibrium by 
more than one century, although in a limited setting. 
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Fig. 14.3 Finding a Nash equilibrium in Cournot competition. 

By the same token, for firm 2 we have 

a — C2 
Ä 2 ( « l ) = 26 :Qi (14.10) 

To solve the problem, we should find where the two response functions inter-
sect; in other words, we should solve the system of equations 

Í Ql = Rx{<&) 
\qc2 = RM) 

where we use the superscript "c" to denote Cournot equilibrium. In our case, 
we are lucky, since response functions are linear. In particular, both response 
functions are downward-sloping lines, as illustrated in Fig. 14.3. Hence, to 
find the Nash equilibrium we simply solve the system of linear equations 

9Ο 

<ß = 

a — c\ 
26 

a - C2 

-\& 

26 - 2 « 
which yields 

r a - 2ci + C2 r o - 2c2 + ci 
<7Ο= 51 > «2 = 36 ' ^ 36 

The resulting equilibrium price turns out to be 

. a + c\ + c-2 
P = 5 

(14.11) 

(14.12) 
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and the profit of each firm is 

'a + Cj + Cj \ fa — 2cj + Cj 

= {a~2l+Cj)2 =mf (14.13) 

It is interesting to note that if a firm manages to reduce its cost, it will increase 
its produced quantity and profit as well. We leave this check as an exercise. 
It is also worth noting that if the firms have the same production technology 
(i.e., c\ = C2), then we have a symmetric solution q\ = q\, as expected. 

So far, we have assumed that the two competing firms play simultaneously. 
In the supply chain management problem of Section 14.3, since there are 
two different types of actions, it is more natural to assume that one of the 
two players moves first. Hence, we may also wonder what happens in the 
quantity game of this section if we assume that firm 1, the leader, sets its 
quantity q\ before firm 2, the follower. Unlike the simultaneous game, firm 
2 knows the decision of firm 1 before making its decision; thus, firm 2 has 
perfect information. The analysis of the resulting sequential game leads to von 
Stackelberg equilibrium. Firm 1 makes its decision knowing the best response 
function for firm 2, as given in Eq. (14.10). Hence, the leader's problem is 

maxnl = P(q1+R2(qi))qi-ciqi= a-b(qi-\ y~ ~ ã ) Qi ~ ciQi 

where the superscript "s" refers to von Stackelberg competition. Applying 
the stationarity condition yields 

s a - 2 c i + c 2 3 c 

9Ξ = 26 = ~2ql ( 1 4 · 1 4 ) 

We see that firm 1 produces more in this sequential game than in the Cournot 
game. If we plug this value into the best response function i?2(<7i), we obtain 

g _ a-C2 a-2c2+ci 
9 2 ~ ~26 46 

_ a - 3c2 + 2ci _ a — 2c2 + C\ + {c\ — c2) 
46 = 46 

= 4*2 + ^ 6 — ( 1 4 · 1 5 ) 

We see that the output of firm 2 is a fraction of that of the Cournot game, plus 
a term that is positive if firm 1 is less efficient than firm 2. Now it would be 
interesting to compare the profits for the two firms under this kind of game. 
This is easy to do when marginal production costs are the same; we illustrate 
the idea with a toy numerical example. 

Example 14.9 Two firms have the same marginal production cost, c\ = 
C2 = 5, and the market is characterized by the price/quantity function 

P{Q) = 120 - Q 
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In this example we compare three cases: 

1. The two firms collude and work together as a cartel. We may also 
consider the two firms as two branches of a monopolist firm. Note that 
if the two marginal costs were different, one of the two branches would 
be just shut down (assuming infinite production capacity, as we did so 
far). 

2. The firms do not cooperate and move simultaneously (Cournot game). 

3. The firms do not cooperate and move sequentially (von Stackelberg 
game). 

In the first case, we just need to work with the aggregate output Q. The 
monopolist solves the problem 

max7rm = ( 1 2 0 - Q ) Q - 5 Q 

where superscript "m" indicates that we are referring to the monopolist case. 
We solve the problem by applying the stationarity condition 

120 - 2Q - 5 = 0 => Qm = 57.50 

which yields the following market price and profit: 

pm = 120 - 57.5 = 62.50, ð?+2 = (62.50 - 5) x 57.50 = 3306.25 

In the second case, the solution given by (14.11) is symmetric: 

, ; _ * _ ! » = » + » _ 38.33 

The overall output and price are 

Qc = 2 x 38.33 = 76.77, pc = 120 - 76.77 = 43.33 

respectively. The profit for each firm is 

ð* = ð°2 = (ql)2 = 1469.19 

Note that the total overall profit is 

■K\+2 = 2 x 1469.19 = 2938.89 < 3306.25 = ôø+2 

In fact, the monopolist would restrict output to increase price, resulting in a 
larger overall profit than with the Cournot competition. So, collusion results 
in a larger profit than competition, which is no surprise. 

Let us consider now the von Stackelberg sequential game. Using (14.14) 
and (14.15), we see that 

„ 1 2 0 - 1 0 + 5 „ c „ 1 2 0 - 1 0 + 5 
9i = = = 57.5, q\ = = 28.75 
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Table 14.6 Battle of the sexes, alternative version. 

Romeo 
Morticia Cinema Restaurant 

Cinema (5, -100) (0, 1) 
Restaurant (0, 1) (5, -100) 

from which we see that, with respect to the simultaneous game, the output 
of firm 1 is increased whereas the output of firm 2 is decreased. The total 
output and price are 

Qs = 57.5 + 28.75 = 86.25, ps = 120 - 86.25 = 33.75 

respectively. The price is lower than in both previous cases, and the distribu-
tion of profit is now quite asymmetric: 

ð\ = (33.75 - 5) x 57.5 = 1653.13 
ð3

2 = (33.75 - 5) x 28.75 = 826.56 
TTS

1+2 = 1653.13 + 826.56 = 2479.69 

The overall profit for the sequential game is lower than for the simultaneous 
one; however, the leader has a definite advantage and its profit is larger in the 
sequential game. D 

The toy example above shows that the privilege of moving first may yield an 
advantage to the leader. Given the structure of the game, it is easy to see that 
the leader of the sequential game cannot do worse than in the simultaneous 
game; in fact, she could produce the same amount as in the Cournot game, 
anyway. However, this need not apply in general. In particular, when there 
are asymmetries in information or things are random, the choice of the leader, 
or its outcome when there is uncertainty, could provide the follower with useful 
information. The following example shows that being the first to move is not 
always desirable. 

Example 14.10 (Battle of the sexes, alternative versions) Let us con-
sider again the battle of the sexes of Example 14.5, where now we assume that 
Juliet has the privilege of moving first. Given the payoffs in Table 14.2, she 
knows that, whatever her choice, Romeo will play the move that allows him 
to enjoy her company. Hence, she will play shopping for sure. In this case, 
Juliet does not face the uncertainty due to the presence of two Nash equi-
libria in Table 14.2 and is certainly happy to move first. The situation is 
quite different for the payoffs in Table 14.6. In this case, Romeo is indifferent 
between going to cinema or restaurant. What he really dreads is an evening 
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Fig. 14.4 An example of the Braess ' paradox. 

with Morticia. It is easy to see that this game has no Nash equilibrium, as 
one of the two players has always an incentive to deviate. An equilibrium 
can be found if we admit mixed strategies, in which players select a strategy 
according to a probability distribution, related to the uncertainty about the 
move of the competitor. We do not consider mixed strategies here, but the 
important point in this case is that no player would like to move first. D 

We noted that the first version of the battle of the sexes is a stylized 
coordination game for two firms that should adopt a common standard; in this 
second version, one firm wants to adopt the same standard as the competitor, 
whereas the other firm would like to select a different one. 

14.5 BRAESS' PARADOX FOR TRAFFIC NETWORKS 

The result of the collective interaction of noncooperative players may be oc-
casionally quite surprising. We illustrate here a little example of the Braess' 
paradox for traffic networks.18 Imagine a traffic network consisting of links 
such as road segments, bridges, and whatnot. Most of us had some pretty 
bad experiences with traffic jams. Intuition would suggest that adding a link 
to the network should improve the situation or, to the very least, should not 
make things worse. 

Consider the network in Fig. 14.4.19 In Fig. 14.4(a) we have a four-node 

18For a full treatment of the Braess' paradox see Ref. [3]. The numerical example in this 
section has been taken from a presentation by A. Nagurney, which can be downloaded from 
ht tp: / /supernet .som.vimass .edu/ (CMS 2010 plenary presentation). 
19See Section 12.2.4 for an introduction to network flow optimization. 



782 MULTIPLE DECISION MAKERS, SUBJECTIVE PROBABILITY, AND OTHER BEASTS 

directed network, where the following costs are associated with each arc: 

Ca(fa) = 10/„ 
Cb(fb)=fb+50 
Cc(fc) = fc + 50 
Cd{fd) = lOfd 

The meaning of these costs should be clarified: They are the traveling costs 
for an individual driving along each arc, where the flows fa, fb, fc, and f¿ 
are the total number of drivers using the corresponding arc. Keep in mind 
that in game theory the payoff to each player depends on the decisions of 
the other players as well, and players do not cooperate. In fact, the paradox 
applies to a problem where drivers have to choose a path independently of each 
other, but they interact through the level of congestion. This is not a classical 
network flow problem, where a centralized planner optimizes the overall flow 
minimizing total cost. Each driver selects a route in a noncooperative way, and 
we should look for an equilibrium. Traffic equilibrium is beyond the scope of 
the book, but we may take advantage of the symmetry of the example above. 
Imagine that the total travel demand is 6, i.e., there are six drivers that must 
go from node 1 to node 4. There are two possible paths, i.e., sequences of 
arcs: P\ = (a,c) and P2 = (b, d). Let us denote by fp and fp2 the traffic 
flows along each path at equilibrium. The cost for path P\ is 

Ca(fPl) + CCUPÙ = ID/ft + (/ft + 50) = l l / P l + 50 

But this happens to be the same as the cost for path p¿: 

Cb(fp2) + Cd(fp2) = (fP2 + 50) + 10 / f t = 11/fl, + 50 

Since the problem is symmetric, intuition suggests that, at equilibrium, the 
total travel demand is split in two: fp = fp = 3. Then, the cost of each 
path for each driver is 

C*Pi = Cp2 = 1 1 x 3 + 50 = 83 

No single driver has an incentive to deviate, because if a driver switches to 
the other path, her cost would rise to 11 x 4 + 50 = 94. Hence, this is a Nash 
equilibrium. 

Now consider the network 14.4(b), where arc e has been added, whose cost 
is 

Ce{fe) = /e + 10 

Now, we have an additional path P3 = (a, e, d). Having opened a new route, 
some drivers have an incentive to deviate. For instance, if a driver moves from 
path Pi to path P3, her cost would be 

(10 x 3) + (1 + 10) + (10 x 4) = 81 
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What new equilibrium will emerge? Let us try a symmetric solution again: 
x*Pi = x*p2 = Xp3 = 2. At this level of flow, the costs of the three paths are 

C*Pi = (10 x 4) + (2 + 50) = 92 
C*p2 = (2 + 50) + (10 x 4) = 92 
C*p3 = (10 x 4) + (2 + 10) + (10 x 4) = 92 

We observe that the three costs are the same, and no one has an incentive to 
deviate. However, with this equilibrium, every driver is worse off! 

The peculiarity of the example above might suggest that this kind of prob-
lem is too pathological to actually arise. However, real-life cases have been 
reported in the literature, where closing a link in a network has improved 
the situation or adding a new one has created a congestion.20 The crux of 
the problem, once again, is the collective behavior of several noncooperative 
decision makers. In business management, this is a common occurrence that 
should not be dismissed. 

14.6 DYNAMIC FEEDBACK EFFECTS AND HERDING BEHAVIOR 

Game theory in its simplest form does not consider dynamics, as it revolves 
around a static equilibrium concept: It posits a situation such that no player 
has an incentive to deviate. But how is that equilibrium reached dynamically? 
And what about the disorderly interaction of many stakeholders, maybe stock-
holders in financial markets? Addressing such issues is beyond the scope of 
this book, but we illustrate their relevance with two real-life examples; they 
show that the effects of such interactions may be quite nasty and that uncer-
tainty may not always be adequately represented by an exogenous probability 
distribution. 

Example 14.11 (Long-Term Capital Management) Many financial 
equilibrium models, like CAPM, assume that no player is big enough to in-
fluence markets. However, in specific conditions, players may turn out to 
be so big that their actions on thin or illiquid markets are significant, with 
perverse effects. Long-Term Capital Management (LTCM) was a successful 
hedge fund, which has become famous for its demise.21 The fund took hugely 
leveraged positions, betting on spreads between securities, such as bonds. A 
simplified explanation of the strategy is the following: 

• The required yield on bonds depends on many factors, including the 
credit standing of the issuer. If you do not trust the ability of the issuer 

2 0See h t t p : / / superne t . som.umass .edu / fac t s /b raess .h tml 
2 1 Two Nobel Laureates, Robert Merton and Myron Scholes, were involved in the fund, and 
this has contributed to the fame of this case. In fact, it is often written that they founded 
LTCM, which is false in many respects. For a full account of the story, see Ref. [18]. 
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to repay its debt, you require a higher interest rate to buy its bond, 
whose price is reduced. If the balance sheet of the issuer is rock solid, 
you settle for a lower yield, implying a higher price. The difference in 
required yields is the spread. 

• If a bond issuer is in trouble, but you believe that its difficulties are over-
stated by the market and that it will recover, you could buy its bonds 
(which are cheaper than they should) and take a short position in high-
quality bonds (selling them short), because sooner or later, according 
to your view, the two bond prices will converge.22 

In 1998, the strategy backfired because of a default on Russian bonds; markets 
got nervous and everyone rushed to sell risky bonds to buy safe ones. This 
"flight to quality" widened the spreads, resulting in huge losses for LTCM. 
In such a case, if your positions are leveraged, your creditors get nervous as 
well, and start asking you to repay your debt; in financial parlance, you get 
a margin call. This implies that you should liquidate some of the securities 
in your portfolio to raise some cash. Unfortunately, this exacerbates your 
trouble, since prices are further depressed by your sales. In normal times, a 
small trade on a very liquid market should not move prices too much. But 
if troubled markets get illiquid and you try unloading a huge position in an 
asset, you get a nasty vicious circle: The more you sell, the more money you 
lose, the more margin calls you get, the more you should sell. In the end, a 
committee of bankers had to rescue and bail out the fund in order to avoid a 
dangerous market crash. D 

Example 14.12 (The Black Monday crash of 1987) Portfolio insurance 
is a portfolio management strategy that aims at keeping the value of a portfolio 
of assets from falling below a given target. The idea is to create a synthetic 
put option by proper dynamic trading. To cut a long story short, the idea 
is that when asset value falls, one should sell a fraction of the assets in well-
determined proportions. On Monday, 19 October, 1987, stock markets around 
the world crashed. In what has been aptly named the Black Monday, the Dow 
Jones Industrial Average index dropped by 22.61%. An explanation of this 
crash was put forward, which blames portfolio insurance. The idea is rather 
simple; the market goes south and you start selling to implement dynamic 
portfolio insurance. Unfortunately, you are not alone, as many other players 
do the same; hence, there is a further drop in prices that in turn triggers 
further sales. The result is a liquidity and feedback disaster, exacerbated by 
the use of automated, computer-based trading systems.23 D 

The above stories, and all of the similar ones, are controversial; there is 
no general agreement that portfolio insurance has caused the Black Monday 

2 2 The practical implementation of this strategy is not that simple, and it may require the 
use of financial derivatives. 
2 3This explanation is very simplified. For a much better account see, e.g., Ref. [2]. 
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crash. Whatever your opinion is, feedback effects and the partial endogenous 
character of uncertainty cannot be disregarded. 

14.7 SUBJECTIVE PROBABILITY: THE BAYESIAN VIEW 

In all the preceding chapters concerning probability and statistics we took a 
rather standard view. On the one hand, we have introduced events and proba-
bilities according to an axiomatic approach. On the other hand, when dealing 
with inferential statistics, we have followed the orthodox approach: Parame-
ters are unknown numbers, that we try to estimate by squeezing information 
out of a random sample, in the form of point estimators and confidence inter-
vals. Since parameters are numbers, when given a specific confidence interval, 
we cannot say that the true parameter is contained there with a given prob-
ability; this statement would make no sense, since we are comparing only 
known and unknown numbers, but no random variable is involved. So, there 
is no such a thing as "probabilistic knowledge" about parameters, and data 
are the only source of information; any other knowledge, objective or subjec-
tive, is disregarded. The following example illustrates the potential difficulties 
induced by this view.24 

Example 14.13 Let X be a uniformly distributed random variable, and 
let us assume that we do not know where the support of this distribution is 
located, but we know that its width is 1. Then, X ~ õ[ì — 0.5, μ+0.5], where 
ì is the unknown expected value of X, as well as the midpoint of the support. 
To estimate ì we take a sample of n = 2 independent realizations X\ and X-¿ 
of the random variable. Now consider the order statistics 

X(i) = min{Xi,X2}, X(2) = max{Xi,X2} 

and the confidence interval 

I=[X(1),X(2)] (14.16) 

What is the confidence level of I, i.e., the probability Ρ{μ £ X}? Both 
observations have a probability 0.5 of falling to the left or to the right of ì. 
The confidence interval will not contain ì if both fall on the same half of the 
support. Then, since X\ and X% are independent, we have 

P { / x £ J } = ¸>{×1<ì,×2<ì} + Ñ{×1>ì,×2>ì} 
= 0 .5x0.5 + 0.5x0.5 = 0.5 

So, the confidence level for X is the complement of this probability, i.e., 50%. 
Now suppose that we observe X\ = 0 and Xi =0 .6 . What is the probability 

This example is taken from Ref. [12], page 45, which in turn refers back to Ref. [6]. 
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that ì is included in the confidence interval T resulting from Eq. (14.16), i.e., 
P{0 < μ < 0.6}? In general, this question does not make any sense, since 
μ is a number. But in this specific case, we have some additional knowledge 
leading to the conclusion that the expected value is included in the interval 
[0,0.6] with probability 1. In fact, if X(j) = 0, we may conclude ì < 0.5; by 
the same token, if X@) = 0.6, we may conclude ì > 0.1. Since the confidence 
interval X includes the interval [0.1,0.5], we would have good reasons to claim 
that P{0 < ì < 0.6} = 1. But again, this makes no sense in the orthodox 
framework. By a similar token, if we get X\ = 0 and X2 = 0.001, we would 
be tempted to say that such a small interval is quite unlikely to include ì, but 
there is no way in which we can express this properly, within the framework 
of orthodox statistics. D 

On one hand, the example illustrates the need to make our background 
knowledge explicit. In the Bayesian framework, it can be argued that uncon-
ditional probabilities do not exist, in the sense that probabilities are always 
conditional on background knowledge and assumptions. On the other hand, 
we see the need of a way to express subjective views, which may be revised af-
ter collecting empirical data. Bayesian estimation has been proposed to cope 
with such issues. 

14.7.1 Bayesian estimation 

Consider the problem of estimating a parameter È, characterizing the proba-
bility distribution of a random available X. We have some prior information 
about È, that we would like to express in a sensible way. We might assume 
that the unknown parameter lies anywhere in the unit interval [0,1], or we 
might assume that it is close to some number ì, but we are somewhat uncer-
tain about it. Such a knowledge or subjective view may be expressed by a 
probability density ñ(è), which is called the prior distribution of È. In the first 
case, we might associate a uniform distribution with È; in the second case the 
prior could be a normal distribution with expected value ì and variance σ2. 
Note that this is the variance that we associate with the parameter, which is 
a random variable rather than a number, and not the variance of the random 
variable X itself. 

In Bayesian estimation, the prior is merged with experimental evidence by 
using Bayes' theorem. Experimental evidence consists of independent obser-
vations Xi,..., Xn from the unknown distribution. Here and in the following 
we mostly assume that random variable X is continuous, and we speak of den-
sities; the case of discrete random variables and probability mass functions is 
similar. We also assume that the values of the parameter È are not restricted 
to a discrete set, so that the prior is a density as well. Hence, let us denote 
the density of X by f(x | È), to emphasize its dependence on parameter È. 
Since a random sample consists of independent random variables, their joint 
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distribution, conditional on È, is 

fn(Xl,...,Xn\0)=f(x1\e)-f(x2\e)---f{xn\9) 

The conditional density fn(xi, ■ ■ ■, xn \ È) is also called the likelihood function, 
as it is related to the likelihood of observing the data values x\,..., xn, given 
the value of the parameter È; also notice the similarity with the likelihood 
function in maximum likelihood estimation.25 Note that what really matters 
here is that the observed random variables ×÷,...,Xn are independent con-
ditionally on È. Since we are speaking about n +1 random variables, we could 
also consider the joint density 

g(xi,...,xn,e) 

but this will not be really necessary for what follows. Given the joint con-
ditional distribution fn{xi, ■ ■ -,xn \ È) and the prior ñ(è), we can find the 
marginal density of X\,...,Xn by applying the total probability theorem:26 

gn(x1,...,xn)= / /ç(÷é,...,÷ç\è)ñ(è)Üè 
Jo. 

where we integrate over the domain Ω on which È is defined, i.e., the support 
of the prior distribution. Now what we need is to invert conditioning, i.e., we 
would like the distribution of È conditional on the observed values X¿ — Xi, 
i = 1, . . . ,n , i.e. 

p n (0 |a ; i , . . . , : r n ) 

This posterior density should merge the prior and the density of observed data 
conditional on the parameter. This is obtained by applying Bayes' theorem 
to densities, which yields 

pUe\xu...,Xn)=9{X¡'---'Xn'e¡ = fniXl\---'Xnle)f) (14.17) 
9n \X\i · · · ) Xn) Qn \X\i · · · ) Xn) 

Note that the posterior density involves a term gn(xi,..., xn) which does not 
really depend on È. Its role is to normalize the posterior distribution, so that 
its integral is 1. Sometimes, it might be convenient to rewrite Eq. (14.17) as 

Ñç(è\÷é,...,÷ç) oc /ç(÷é,...,÷ç\è)ñ(è) (14.18) 

where the symbol oc means "proportional to." In plain English, Eq. (14.17) 
states that the posterior is proportional to the product of the likelihood func-
tion /„ ( x i , . . . , xn | È) and the prior distributionp(φ): 

posterior oc prior x likelihood 

2 5 See Section 9.9.3. 
2 6Here we strain a bit some concepts related to conditional densities, which we just outlined 
in Chapter 8, but the intuition should be clear. 
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What we are saying is that, given some prior knowledge about the parameter 
and the distribution of observations conditional on the parameter, we obtain 
an updated distribution of the parameter, conditional on the actually observed 
data. 

Example 14.14 (Bayesian learning and coin flipping) We tend to take 
for granted that coins are fair, and that the probability of getting head is 1/2. 
Let us consider flipping a possibly unfair coin, with an unknown probability È 
of getting head. In order to learn this unknown value, we flip the coin repeat-
edly, i.e., we run a sequence of independent Bernoulli trials with unknown 
parameter È.27 If we do not know anything about the coin, we might just 
assume a uniform prior 

ñ(è) = 1 , 0 < È < 1 

If we flip the coin N times, we know that the probability of getting H heads 
is related to the binomial probability distribution 

¡Í(Ç\è)<÷èÇ(1-è)Í-Ç (14.19) 

This is our likelihood function. If we regard this expression as the probability 
of observing H heads, given È, this should actually be the probability mass 
function of a binomial variable with parameters È and N, but we are disre-
garding the binomial coefficient [see Eq. (6.16)], which does not depend on È 
and just normalizes the distribution. If we multiply this likelihood function 
by the prior, which is just 1, we obtain the posterior density for È, given the 
number of observed heads: 

ÑÍ{è\Ç)(÷èÇ{1-è)Í-Ç, O < 0 < 1 (14.20) 

Equations (14.19) and (14.20) look like the same thing, because we use a 
uniform prior, but they very different in nature. Equation (14.20) gives the 
posterior density of È, conditional on the fact that we observed H heads and 
N — H tails. If we look at it this way, we recognize the shape of a beta 
distribution, which is a density, rather than a mass function. To normalize 
the posterior, we should multiply it by the appropriate value of the beta 
function.28 Again, this normalization factor does not depend on È and can be 
disregarded. 

In Fig. 14.5 we display posterior densities, normalized in such a way that 
their maximum is 1, after flipping the coin N times and having observed H 
heads. The plot in Fig. 14.5(a) is just the uniform prior. Now imagine that 
the first flip lands head. After observing the first head, we know for sure that 

This example is based on Chapter 2 of the text by Sivia and Skilling [23]. 
See Section 7.6.2. 
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Fig. 14.5 Updating posterior density in coin flipping. 

è ö 0; indeed, if È were zero, we could not observe any head. The posterior is 
now proportional to a triangle: 

ñ1(è\1)êè1(1-è)1-1=è, Ο < 0 < 1 

This triangle is shown in Fig. 14.5(b). If we observe another head in the 
second flip, the updated posterior density is a portion of a parabola, as shown 
in Fig. 14.5(c): 

ñ2(è\2)<÷è2(1-è) 2 - 2 è\ 0<è< 1 

If we get tail at the third flip, we rule out È = 1 as well. Proceeding this way, 
we get beta distributions concentrating around the true (unknown) value of 
È. Incidentally, the figure has been obtained by Monte Carlo simulation of 
coin flipping with È = 0.2. u 

Armed with the posterior density, there are different ways of obtaining a 
Bayes' estimator. Figure 14.5 would suggest taking the mode of the posterior, 
which would spare us the work of normalizing it. However, this need not be 
the most sensible choice. If we consider the expected value for the posterior 
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distribution, we obtain 

E [ f l | X i = a : i , . . . , X n = a;n]= / 0/(0 | * i , . . .,xn)dß (14.21) 
JU 

There are different ways of framing the problem, that are a bit beyond the 
scope of the book,29 but one thing that we can immediately appreciate is the 
challenge we face. The estimator above involves what looks like an intimidat-
ing integral, but our task is even more difficult in practice, because finding 
the posterior density may be a challenging computational exercise as well. In 
fact, given a prior, there is no general way of finding a closed-form posterior; 
things can really get awkward when multiple parameters are involved. More-
over, there is no guarantee that the posterior distribution p„(0 | x\,..., xn) 
will belong to the same family as does the prior ñ(è). However, there are 
some exceptions. A family of distributions is called a conjugate family of pri-
ors if, whenever the prior is in the family, the posterior is too. The following 
example illustrates the idea. 

Example 14.15 (A normal prior) Consider a sample (Xi,.. .,Xn) from 
a normal distribution with unknown expected value È and known variance ó\. 
Then, given our knowledge about the multivariate normal, and taking advan-
tage of independence among observations, we have the following likelihood 
function: 

Let us assume that the prior distribution of 0 is normal, too, with expected 
value ì and σ: 

To get the posterior, we may simplify our work by considering in each func-
tion only the part that involves 0, wrapping the rest within a proportionality 
constant. In more detail, the likelihood function can be written as 

fn{x1,...,xn\e)<xexp\-^Y/(xi-ef\ (14.22) 

2 9 One way to frame the problem is by introducing a loss function that accounts for the cost 
of a wrong estimate. It can be shown that Eq. (14.21) yields the optimal estimator when 
the loss function has a certain quadratic form. 
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t = l 

We may simplify the expression further, by observing that 

n n 

Ó(÷ß-è)2 = Ó{÷ß-÷ + ÷-èã 
i = l 

i = l t= l 
n 

¿=1 

where x is the average of x¿, i = 1 , . . . , n. Then, we may include terms not 
depending on È into the proportionality constant and rewrite (14.22) as 

n 
fn(xi, ■ ■ ■ , Xn | È) OC e x p < - — 2 (È - x) 

By a similar token, we may rewrite the prior as 

f (è-ì)2\ ñ(è) oc exp ' 
2ó2 

Multiplying Eqs. (14.23) and (14.24), we obtain the posterior 

Ñç(è\×À,...,×ç) OC e x p H "(è-÷ã + ±-(è-ì)2 

(14.23) 

(14.24) 

(14.25) 

Again, we should try to include È within one term; to this aim, we use a bit 
of tedious algebra30 and rewrite the argument of the exponential as follows: 

"(è-÷)2 + ±(è-ì)2 = ±(è-í)2 n (x - ì)2 (14.26) 
η σ " 

where 

çó2÷+ó\ì 
çó2 + ó\ 

e = çó2 + σ2, 

Finally, this leads to 

ñç(è\÷é,...,÷ç) (÷â÷ñÉ-—(è-í)2[ 

(14.27) 

(14.28) 

(14.29) 

See Problem 14.8. 
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Disregarding the normalization constant, we immediately recognize the famil-
iar shape of a normal density, with expected value v. Then, given an observed 
sample mean X and a prior ì, Eq. (14.27) tells us that the Bayes' estimator 
of È can be written as 

E [ 0 | X i , . . .,Xn] 

Eq. (14.30) has a particularly nice and intuitive interpretation: The posterior 
estimator is a weighted average of the sample mean X (the new evidence) and 
the prior μ, with weights that are inversely proportional to CTQ/TI, the variance 
of sample mean, and σ2, the variance of the prior. The more reliable a term, 
the larger its weight in the average. D 

In the example, it may sound a little weird to assume that the variance 
σ2, of X is known, but not its expected value. Of course, one can extend the 
framework to cope with estimation of multiple parameters, but there are cases 
in which we are more uncertain about expected value than variance, as we see 
in the following section. 

14.7.2 A financial application: The Black-Litterman model 

We considered portfolio optimization in Example 12.5 and in Section 13.2.2. 
For the sake of convenience, let us reconsider the problem here. We must 
allocate our wealth among n risky assets and a risk-free one. The returns of 
the risky assets are a vector of random variables with expected value ì and 
covariance matrix Σ; let r¡ be the return of the risk-free asset. Let wo be 
the weight of the risk free asset in the portfolio, whereas the weights of the 
risky assets are denoted by Wi, i = 1 , . . . , n, collected into vector w € Rn. 
We assume that short sales and cash borrowing are possible; hence, we do not 
enforce any nonnegativity restriction on portfolio weights. Then, the expected 
value of portfolio return is 

n 
w0r{ + ] P Wißi = w0 + wT/x 

¿=i 

and its variance is w T S w . Note that U>Q does not affect variance. If we assume 
a quadratic utility function, we are essentially lead to consider a mean-variance 
objective, with risk aversion coefficient λ, resulting in the following quadratic 

ηó" — 
ηó 

2 +ó ç
2 X + 

ηó 
2+óºÔ 

n -Χ + 
+ 

(14.30) 
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programming problem: 
n ^ 

max wort + YJ tu¿/z¿ — - ΐ w T S w 
¿=i 

n 

S.t. Wo + ̂ 2Wi ~ ^ i=l 

The factor | is not really essential, as it may be included in the risk aversion 
coefficient, but it simplifies the derivatives we take below. This constrained 
optimization problem may be transformed into an unconstrained one by elim-
inating WQ. Plugging 

n 
w0 = l-Y^wi (14.31) 

¿=i 
into the objective, we obtain 

( n \ n j 

i - Σ Wi I r f + Σ Wi^ ~ «ëëνÔΣΛν 
»=1 / i = l 

" 1 
= rf + Y^ tüi(MÍ - rf) - - A w T S w 

i= l ¿ 

n 1 = rf + Σ ^«^e.* ~~ ^λ\νΤΣ\ν 
¿=1 ¿ 

where μ ^ = μ* — rf is the expected excess return of asset i. Since the leading 
rf term is inconsequential, the portfolio choice problem can be restated as 

max /u^w — - A w T E w 

which is a convex optimization problem. Then, to find optimal portfolio 
weights, we just enforce stationarity conditions: 

ìå - ΐSw = 0 =� w* = γ Σ - 1 μ β (14.32) 
Λ 

Solving a system of linear equations is easy enough, and we can find the 
optimal portfolio weights Wi, i = 1 , . . . , n, for the risky assets; then, using Eq. 
(14.31) we also get the weight of the risk-free asset. One of the difficulties of 
this simple framework is the estimation of problem inputs,31 such as the vector 
of expected returns ì and the covariance matrix Σ . Practical experience 
shows that if we take a simplistic approach and use straightforward sample 
estimates of these parameters, quite unreasonable portfolios are obtained. 

See Example 9.21. 
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Indeed, they may include very large positions in a few assets, possibly with 
large short positions as well. 

Example 14.16 Consider a universe consisting of seven assets. The corre-
lations among their excess returns, over an investment horizon, are given by 
the following symmetric table:32 

1.000 0.488 
1.000 

0.478 
0.664 
1.000 

0.515 
0.655 
0.861 
1.000 

0.439 
0.310 
0.355 
0.354 
1.000 

0.512 
0.608 
0.783 
0.777 
0.405 
1.000 

0.491 
0.779 
0.668 
0.653 
0.306 
0.652 
1.000 

Let us assume that the vector of volatilities is 

16%, 20.3%, 24.8%, 27.1%, 21%, 20%, 18.7% 

Based on these data, we may easily build the covariance matrix Σ . If the risk 
aversion coefficient λ is set to 2.5 and the expected excess return is 7% for 
each asset, the resulting portfolio weights are 

0.7136 
0.1528 

-0.0172 
w = -0.3348 

0.2792 
0.3362 
0.3733 

This solution might look unreasonable because weights do not add up to 1, 
but we should remember that there is a weight WQ for the risk free asset, and 
therefore 

7 

w0 = l-^2wi = -0.5032 
»=i 

The portfolio looks a bit extreme, as there are quite large weights. This is 
partially a consequence of a relatively small risk aversion; experience suggests 
that λ can be in the range from 2 to 4. In practice, by forbidding short 
sales and adding policy constraints bounding portfolio weights, we might get 
a more sensible portfolio, but doing so essentially means that we are shaping 
our strategy using constraints. 

The numerical data have been taken from [13]. 
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Fig. 14.6 Portfolio instability with respect to estimates of expected return. 

A very surprising finding is the dramatic effect of changing estimates of 
expected excess returns on portfolio weights. Let us assume that the vector 
of expected (excess) returns is changed to 

7%, 7%, 4.5%, 9.5%, 7%, 4.5%, 7% 

This could be a way to translate an investor's view, feeling that some assets 
will outperform other assets. The new portfolio is 

0.6707 " 
0.1537 

-0.9476 
w = 0.8621 

0.3717 
-0.4156 

0.5747 _ 

The change in portfolio composition is illustrated in Fig. 14.6. For each asset 
we display a pair of bars corresponding to portfolio weights; the second port-
folio is associated with the right (white) bar within each pair. The dramatic 
change in the portfolio weights is rather evident and can be explained by the 
change in expected return of asset 3, 4, and 6, with respect to the first port-
folio choice problem. But is this change justified, or is just due to estimation 
errors? The problem that we are highlighting is that an error in the estimate 
of expected value may have a significant impact on portfolio choice. D 

It is a common opinion that estimating expected return is even more trou-
blesome than estimating covariances, in the sense that it has a stronger effect 
on optimized portfolios. A cynical view states that portfolio optimization is 
the best way to maximize the effect of estimation errors. Even if we refrain 
from being so drastic, it is certainly true that most financial analysts would 
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feel comfortable only with the estimation of a few expected returns, for those 
market segments on which they have the most experience. In practice, ana-
lysts would not just estimate a parameter based on past observations; what 
about predicting an expected return for the future? There is no doubt that 
portfolio management should look forward, rather than backward, but again, 
analysts may do this for limited market segments. For the rest, they might 
just share the market consensus and go for a passive management strategy. 
We also recall that a passive management strategy is a consequence of the 
capital asset pricing model (CAPM).33 According to a passive strategy, one 
should just hold the market portfolio, i.e., a portfolio with stock share weights 
shaped after market capitalization of the corresponding firms. If we accept 
the validity of CAPM, we may even find expected excess returns implied by 
the market portfolio. According to CAPM, for each asset i = Ι , . , . , η , we 
have 

ì% - r i = âß(ìôç - r f ) 

where ìç is the expected return of the market portfolio, which can be ap-
proximated by a broad index. This relationship may be restated in terms of 
expected excess returns: 

Me,i == M¿Me,m 

We also note that expected excess returns can be interpreted as risk premia, 
as they state by how much the expected return of a risky asset exceeds the 
risk-free return r¡. The coefficient ßi looks much like the slope of a linear 
regression, as it is given by 

_ Cov(Ri,Rm) 
Pi — o 

where the numerator is the covariance between the return of asset i and the 
return of the market portfolio, and ó^ is the variance of market portfolio 
return. If we denote by w m the weights of the market portfolio, its return is 

i\m — y ^ ^m,j *tj 
=1 

Hence, we have 

ßi = 

Cov ( Ri, ÓWmjRj ¿ w m j C o v (Ri, Rj) 
3=1 I 3=1 

Thus, we may collect the "asset betas" ßi into vector ß and rewrite CAPM 
as 

ìå = Í E w m (14.33) 

See Example 9.21. 
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where the constant 

trades off the risk premium (ßm — r¡) against squared market volatility. In-
cidentally, a comparison between Eqs. (14.32) and (14.33) suggests some link 
between ä and an average risk aversion coefficient. The important contribu-
tion of Eq. (14.33) is that it yields a consensus market view of the expected 
excess returns, implied by equilibrium. This might be considered as a starting 
point of an estimation process, which is not just backward-looking and based 
on historical data, but also forward-looking. 

If we look forward, rather than backward, we are immediately lead to a 
question: How can we include subjective views that an investor might have? 
For instance, an investor could think that an asset will outperform another one 
by, say, 5%. Black and Litterman proposed an approach whereby expected 
returns are estimated based on two primary inputs: 

• A forecast implied by market equilibrium 

• A set of subjective views on expected returns 

The way the two ingredients are blended depends on the uncertainty that is 
associated with each of them, and can be interpreted as a Bayesian estimate 
blending subjective expectations with an outside input.34 

One way of stating the model is the following: 

1. The vector of expected excess returns is considered as a vector of random 
variables È with multivariate normal distribution: 

è~Ì(ìå,ô¸) 

where ìå is implied by market equilibrium and Σ is the estimated co-
variance matrix. Note that we are trusting the estimate of covariance 
matrix in providing us the covariance matrix τ Σ of the prior distribu-
tion; in fact, one of the main difficulties of the Bayesian framework is 
specifying sensible multivariate priors. The rationale here is that if as-
sets are correlated, the error in estimating their risk premia will be as 
well. The parameter r can be used to fine tune the degree of confidence 
in the market view. 

2. Subjective views about risk premia and expected returns can be ex-
pressed as linear relationships. For instance, say that we believe that 
asset 2 will outperform asset 5 by 2%. Then, we could write a condition 
such as 

ì2-ì5= 0.02 

See Ref. [21] for a detailed proof. 
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In this case, using expected return or risk premia is inconsequential. 
Several similar views could be expressed in terms of excess returns and 
collected in the following matrix form: 

The view above would correspond to a row in matrix P , with elements 
set to 1 in columns 2 and 5, zero otherwise; the corresponding element 
in vector q would be 0.02. Of course, subjective views are uncertain as 
well, and we might express this as 

P 0 ~ 7V(q, Ω) 

where Ω is typically a diagonal matrix whose elements are related to 
the confidence in subjective views. 

The Black-Litterman model, relying on Bayesian estimation, yields the fol-
lowing estimate of risk premia: 

MBL = ((τΣ)-1 + pTn-1p)~1((rE)-Ve + PTνr1q) 
The proof of this relationship is definitely beyond the scope of the book, but 
it is quite instructive to note its similarity with Eq. (14.30). The interpre-
tation is again that the estimate blends subjective views and objective data, 
in a way that reflects their perceived reliability.35 Several variations of the 
Black-Litterman model have been proposed, but the essential message is that 
subjective and more or less objective views may be blended within a Bayesian 
framework. In fact, Bayesian approaches have also been proposed in mar-
keting, where they are most relevant to cope with brand-new products and 
markets, where past data are quite scarce or irrelevant. 

Problems 

14.1 Find the Nash equilibria in the games in Tables 14.2 and 14.4. Are 
they unique? 

14.2 Consider the Cournot competition outcome of Eqs. (14.12) and (14.13). 
Analyze the sensitivity of the solution with respect to innovation in produc-
tion technology, i.e., how a reduction in production cost c¿ for firm i affects 
equilibrium quantities, price, and profit. 

14.3 Two firms have the same production technology, represented by the 
cost function: 

T C i t e ) = ^ + <*>2 « · > » , « _ i , S 
[0 if ft = 0 

3 5 There is also an alternative way of interpreting Black-Litterman model in terms of robust 
"shrinkage" estimators; see, e.g., Chapter 9 of Ref. [8]. 
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The cost function involves a fixed cost F and a squared term implying a 
diseconomy of scale; a firm will produce only when its profit is positive. The 
two firms compete on quantity, and price is related to total quantity Q = 
<7i + 92 by the linear function P(Q) = 100 — Q. Find the maximum F such 
that both firms engage in production, assuming a Cournot competition. 

14.4 Two firms have a production technology involving a fixed cost and 
constant marginal cost, as represented by the cost function: 

TCi( f t ) = { f + C | * * « > 0 . i = 1 , 2 
1̂0 if<7¿=0 

Analyze the von Stackelberg equilibrium when firm 1 is the leader and the 
two firms compete on quantities. 

14.5 Consider the data of the Braess' paradox example in Section 14.5, 
but imagine that a central planner can assign routes to drivers, in order to 
minimize total travel cost. Check that adding the new link e, as in Fig. 
14.4(b), cannot make the total cost worse. 

14.6 Consider again the Bayesian coin flipping experiment of Example 14.14, 
where the prior is uniform. If we use Eq. (14.21) to find the Bayesian esti-
mator, what is the estimate of È after the first head? And after the second 
head? 

14.7 Consider the fraction È of defective items in a batch of manufactured 
parts. Say that the prior distribution of È is a beta distribution with param-
eters «i = 5 and ct2 = 10 (see Section 7.6.2 for a description of the beta 
distribution). A new batch of 30 items is manufactured and two of them are 
found defective. What is the posterior estimate of È, if we use Eq. (14.21)? 

14.8 Prove the identity in Eq. (14.26). 

For further reading 

• Game theory is dealt with at an introductory level in books on industrial 
organization, such as Refs. [4] and [22]. See Ref. [11] for a thorough 
introduction and Ref. [10] for an advanced treatment. 

• For Bayesian statistics, you may see Ref. [6] or the more recent version 
[7]. These books, like the text by Casella and Berger [5], deal with 
Bayesian statistics within a framework that is compatible with the or-
thodox view. A more radical approach is advocated by Jaynes in Ref. 
[16]. An intermediate treatment can be found in Ref. [17]. 

• For a scientific perspective on Bayesian data analysis, see the treatise 
by Sivia and Skilling [23]. 
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• The Black-Litterman portfolio management approach was introduced 
in Ref. [1]; see also Chapter 9 of Ref. [8], or Refs. [13] and [21]. 

• Interesting and instructive accounts of some financial mishaps can be 
found in Refs. [2] and [15]. For discussions on black swans, as well as 
the meaning and the role of probabilities and quantitative modeling in 
finance, you may refer, e.g., to Refs. [9], [14], and [20]. 
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15 
Introduction to 

Multivariate Analysis 

Multivariate analysis is the more-or-less natural extension of elementary in-
ferential statistics to the case of multidimensional data. The first difficulty 
we encounter is the representation of data. How can we visualize data in 
multiple dimensions, on the basis of our limited ability to plot bidimensional 
and tridimensional diagrams? In Section 15.1 we show that this is just one 
of the many issues that we may have to face. The richness of problems and 
applications of multivariate analysis has given rise to a correspondingly rich 
array of methods. In the next two chapters we will outline a few of them, but 
in Section 15.2 we offer a more general classification. Finally, the mathemat-
ics involved in multivariate analysis is certainly not easier than that involved 
in univariate inferential statistics. Also probability theory in the multidimen-
sional case is more challenging than what we have seen in the first part of 
the book, and the limited tools of correlation analysis should be expanded. 
However, for the limited purposes of the following treatment, we just need 
a few additional concepts; in Section 15.3 we illustrate the important role of 
linear algebra and matrix theory in multivariate methods. 

15.1 ISSUES IN MULTIVARIATE ANALYSIS 

In the next sections we briefly outline the main complication factors that arise 
when dealing with multidimensional data. Some of them are to be expected, 
but some are a bit surprising. Getting aware of these difficulties provides the 
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Fig. 15.1 A matrix of scatterplots. 

motivation for studying the wide array of sometimes quite complex methods 
that have been developed. 

15.1.1 Visualization 

The first and most obvious difficulty we face with multivariate data is visu-
alization. If we want to explore the association between variables, one pos-
sibility is to draw scatterplots for each pair of them; for instance, if we have 
4 variables, we may draw a matrix of scatterplots, like the one illustrated 
in Fig. 15.1. The matrix of plots is symmetric, and the histograms of each 
single variable are displayed on the diagonal. Clearly, this is a rather partial 
view, even though it can help in spotting pairwise relationships. Many fancy 
methods have been proposed to obtain a more complete picture of multivari-
ate data, such as drawing human faces, whose features are related to data 
characteristics; however, they may be rather hard to interpret. A less triv-
ial approach is based on data reduction. Quite often, even though there are 
many variables, we may take linear combinations of them in such a way that 
a limited number of such transformations includes most of the really interest-
ing information. Such an approach is principal component analysis, which is 
illustrated in Chapter 17. 

15.1.2 Complexity and redundancy 

Visualization is not the only reason why we need data reduction methods. 
Quite often, multivariate data stem from the administration of a questionnaire 
to a sample of respondents; each question corresponds to a single variable, and 
a set of answers by a single respondent is a multivariate observation. It is cus-
tomary to ask respondents many related questions, possibly in order to check 
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the coherence in their answers. However, an unpleasing consequence is that 
some variables may be strictly related, if not redundant. On the one hand, 
this motivates the use of data reduction methods further. On the other hand, 
this may complicate the application of rather standard approaches, such as 
multiple linear regression. In Chapter 16, we will see that a strong correla-
tion between variables may result in unreliable regressed models; this issue 
is known as coUinearity. By reducing the number of explanatory variables in 
the regression model, we may ease coUinearity issues. Another common issue 
is that when a problem has multiple dimensions, it is difficult to group similar 
observations together. For instance, a common task in marketing is customer 
segmentation. In Chapter 17 we also outline clustering methods that may be 
used to this aim. 

15.1.3 Different types of variables 

In standard inferential statistics one typically assumes that data consist of real 
or integer numbers. However, data may be qualitative as well, and the more 
dimensions we have, the more likely the joint presence of quantitative and 
qualitative variables will be. In some cases, dealing with qualitative variables 
is not that difficult. For instance, if we are building a multiple regression 
model that includes one or more qualitative explanatory variables, we may 
represent them as binary (dummy) variables, where 0 and 1 correspond to 
"false" and "true," respectively. However, things are not that easy if it is 
the regressed variable that is binary. For instance, we might wish to estimate 
the probability of an event on the basis of explanatory variables; this occurs 
when we are evaluating the creditworthiness of a potential borrower, on the 
basis of a set of personal characteristics, and the output is the probability of 
default. Another standard example is a marketing model to predict purchasing 
decisions on the basis of product features. Adapting linear regression to this 
case calls for less obvious transformations, leading to logistic regression, which 
is also considered in Chapter 16. In other cases, the qualitative nature of data 
calls for methods that are quite different from those used for quantitative 
variables. 

15.1.4 Adapting statistical inference procedures 

The core topics in statistical inference are point and interval parameter es-
timation, hypothesis testing, and analysis of variance. Some of the related 
procedures are conceptually easy to adapt to a multivariate case. For in-
stance, maximum likelihood estimation is not quite different, even though it 
is going to prove computationally more challenging, thus requiring numeri-
cal optimization methods for the maximization of the likelihood function. In 
other cases, things are not that easy and may call for the introduction of new 
classes of multivariable probability distributions to characterize data. The 
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Fig. 15.2 A bidimensional hypothesis test. 

following example shows that a straightforward extension of single-variable 
(univariate) methods may not be appropriate. 

Example 15.1 Let us consider a hypothesis test concerning the mean of a 
multivariate probability distribution. We want to check the hypothesis that 
the expected value of a jointly normal random variable Y ~ Ëß(ì, Σ) is μ0. 
Therefore, we test the null hypothesis 

Ho : ì = ì0 

against the alternative one 
Ç¢:ìöìá 

The random vector Y has components Õ÷ and Y2; let us denote the two 
components of vector ì0 by μοι and μο2, respectively. One possible approach 
would be to calculate the sample mean of each component, Õ÷ and Y2, and 
run two univariate tests, one for μοι and one for μο2· More precisely, we could 
test the null hypothesis Ho : μι = μοι on the basis of the sample mean ΥΊ, and 
Ho : â2 = Mo2 on the basis of the sample mean Y^- Then, if we reject even one 
of the two null univariate hypotheses, we reject the multivariate hypothesis as 
well. Unfortunately, this approach may fail, as illustrated in Fig. 15.2. In the 
figure, we show an ellipse, which is a level curve of the joint PDF, and two 
possible sample means, corresponding to vectors YA and Υβ. The rotation 
of the ellipse corresponds to a positive correlation between Õ÷ and Y¿ ■ If we 
account for the nature of the PDF of jointly normal variables (see Section 
8.4), it turns out that the acceptance region for the test above should be an 
ellipse. Let us assume that the ellipse in Fig. 15.2 is the acceptance region 
for the test; then, in the case of YA, the null hypothesis should be rejected; 
in the case of Yg, we do not reject HQ. On the contrary, testing the two 
hypotheses separately results in a rectangular acceptance region around ì0 
(the rectangle is a square if the two standard deviations are the same). We 
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immediately observe that, along each dimension, the distance between ì0 and 
Y A and the distance between ì0 and Υβ are exactly the same, in absolute 
value. Hence, if we run separate tests, we either reject or accept the null 
hypothesis for both sample means, which is not correct. The point is that a 
rectangular acceptance region, unlike the elliptical one in Fig. 15.2, does not 
account for correlation. U 

Incidentally, a proper analysis of the testing problem in Example 15.1 leads 
to consider the test statistic 

T a = n ( Y - / i 0 ) r S - 1 ( Y - i » o ) 

where S _ 1 is the inverse of the sample covariance matrix. Hence, distribu-
tional results for univariate statistics, which involve a t distribution, must 
be extended by the introduction of a new class of probability distributions, 
namely, Hotelling's T2 distribution. 

15.1.5 Missing data and outliers 

Outliers and wrong data are quite common in data analysis. If data are col-
lected automatically, and they are engineering measurements, this may not 
be a tough issue; however, when people are involved, either because we are 
collecting data using questionnaires, or because we are investigating a social 
system, things may turn out to be a nightmare. Having to cope with multidi-
mensional data will naturally exacerbate the issue. While an outlier may be 
easy to "see" in one-dimensional data, possibly using a boxplot,1 it is not ob-
vious at all how an outlier is to be spotted in 10 or more dimensions. Again, 
data reduction techniques may help. Missing data may also be the conse-
quence of real or perceived redundancy. The following example illustrates a 
counterintuitive effect. 

Example 15.2 Imagine collecting data in a city logistics problem. One of 
the most important measures is the percentage saturation of vehicles. No one 
would like the idea of half-empty vehicles polluting air more than necessary in 
congested urban traffic. So, one would naturally want to investigate the real 
level of vehicle saturation to check whether some improvement can be attained 
by proper reorganization. However, capacity is multidimensional. Probably, 
the most natural capacity measure that comes to mind is volume capacity.2 

However, weight may be the main issue with certain types of items; before 
dismissing this issue, think of the impact of weight on the space needed to 
brake a fully loaded truck. Moreover, if small parcels are delivered, the binding 

*See Section 4.4.1. 
2This is likely to stem from our struggle with many suitcases that do not like the idea of 
fitting the trunk of our cheap car. 
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Table 15.1 Difficulties with missing multidimensional da ta . 

time 

100% 
40% 

70% 

volume 

20% 
50% 

35% 

weight 

45% 
60% 

52.5% 

max 

100% 
45% 
60% 

68.33% 

constraint on a vehicle tour will be neither volume nor weight, but time, since 
driving shifts are constrained. 

Now, imagine administering a questionnaire to truck drivers, asking them 
an estimate of their average saturation level, in percentage, with respect to 
the three dimensions of capacity. The result might look like the fictional data 
in Table 15.1. There, we show the hypothetical result of three interviews. 
The first truck driver answered that he is 100% saturated in terms of time; 
the binding factor here is the number of deliveries, and he did not provide 
any answer in terms of the other two capacity dimensions, as they are not 
relevant to him and he had no clue. The second driver was quite thorough, 
whereas the third one did not consider time. In the table, we also give the 
maximum saturation percentage in the last column, over the three capacity 
dimensions, for each driver. The last row gives the average over drivers, 
for each dimension. Finally, we also consider the average of the maximum 
saturation for each driver. Do you see something wrong here? 

The average of the maxima is 

" O + 45 +60 = 68,33% 

but if we take the average saturation with respect to time, we get a larger 
number: HI« = 70% 

2 
This should not be the case, however: How can the average of maxima across 
dimensions (68.33%) be less than the average with respect to one dimension 
(70%)? This surprising fact is, of course, the result of missing data. D 

The example above may look somewhat pathological, since very few data 
are displayed; on the contrary, this is what happened in a real-life case, and 
we display fictional data in Table 15.1 just to illustrate the issue more clearly.3 

3 The case was an investigation of city logistics in Turin and Piedmont Region, carried 
out by a colleague of mine. And if you think that a more thorough interview technique 



AN OVERVIEW OF MULTIVARIATE METHODS 811 

The higher the number of dimensions, the more severe the issues with missing 
data will be. The hard way to solve this issue is to discard incomplete data, 
but this may considerably reduce the sample. Another strategy is to fill the 
holes by using regression models. We may fit regression models with available 
data, and we compute the missing pieces of information as a function of what 
is available. Clearly, this does sound a bit arbitrary, but it may be better 
than ending up with a very small and useless set of complete data. 

15.2 AN OVERVIEW OF MULTIVARIATE METHODS 

Multivariate methods can be classified along different features: 

• Confirmatory vs. exploratory. This feature refers to the general aim of a 
method, as some are aimed at confirming a theory or a hypothesis, and 
others are aimed at analyzing data and discovering hidden patterns. 

• Metric vs. nonmetric. This feature refers to the kind of variables that 
the method is able to deal with, i.e., quantitative or qualitative. We 
recall that sometimes numerical codes are associated with qualitative 
variables, which have no real content. In such a case, we speak of 
nominal scales.4 When variables are quantitative, we distinguish the 
following types of scale: 

— Ordinal scales, where variables have numerical values that can sen-
sibly ordered, but their differences have no meaning. As an exam-
ple, imagine a set of customers ranking different brands by assign-
ing a numerical evaluation. 

— Interval scales, where differences between numerical values have a 
meaning, but there is no "natural" origin of the scale. For instance, 
consider temperatures, which can be measured with different scales. 

— Ratio scales, where there is an objective reference point acting as 
the origin of the scale. 

• Interdependence vs. dependence. When we are focusing on dependence, 
there is a clear separation between the set of independent variables (e.g., 
factors) and the set of dependent variables (e.g., effects). One such case 
is simple linear regression. In interdependence analysis there is no such 
clear-cut distinction. 

would solve the issue, try stopping a voluminous truck driver, at 8 a.m., in the middle of a 
congested road, for a long and amicable conversation. Needless to say, "voluminous " refers 
to the driver. 
4See Section 4.1.1. 
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In the following sections we outline some multivariate methods, suggesting a 
classification along the above dimensions. We do not aim at being compre-
hensive; the idea is getting to appreciate the richness of this field of statistics, 
as well as the classification above in concrete terms. 

15.2.1 Multiple regression models 

In regression models there is a clear separation between the regressed variable 
and the regressors (explanatory variables): 

Y = ß0 + /3iXi +fcX2 + · · · +ßmXm + e 

This does not necessarily mean that there is a causal relationship, but it 
is enough to classify regression models as dependence models. Regression 
models arise naturally for dealing with metric variables, but we may use bi-
nary variables to model qualitative features in a limited way. We may use 
regression models for confirming a theory, by testing the significance of indi-
vidual coefficients or the overall significance of the whole model, as we show 
in Chapter 16. However, we may also use the technology as an exploratory 
tool, by running a sequence of regression models involving different sets of 
regressors. Furthermore, logistic regression models allow for a qualitative re-
gressed variable taking only two values. Alternative methods, such as discrete 
discriminant analysis, may be used for the case of a dependent categorical 
variable assuming more than two values. 

15.2.2 Principal component analysis 

Principal component analysis (PCA) is a data reduction method. Technically, 
we take a vector of random variables X € M.m, and we transform it to another 
vector Z € Rm, by a linear transformation represented by a square matrix 
A 6 M.m'm. In more detail we have 

Z\ = anJTi + ^12-^2 + 1~ o,imXm 

Z2 — a2lXl + CL22X2 + h a-irnXm 

Zm = am\Xi + OLmiXi + · · · + annXm 

These equations should not be confused with regression equations. The trans-
formed Zi variables are not observed and used in a fitting procedure; indeed, 
there is no error term. They are just transformations of the original vari-
ables, which are not classified as dependent or independent. Hence, PCA is 
an interdependence technique, aimed at metric data, and used for exploratory 
purposes. In Section 17.2 we show that, by taking suitable combinations, we 
may find a small subset of Zi variables, the principal components, that ex-
plain most of the variability in the original variables X¿. By disregarding 
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the less relevant components, we reduce data dimensionality without losing a 
significant portion of information. 

15.2.3 Factor analysis 

Factor analysis is another interdependence technique, which shares some theo-
retical background with PCA, as we show in Section 17.3. Factor analysis can 
be used for data reduction, too, but it should not be confused with PCA, as 
in factor analysis we are looking for hidden factors that may explain common 
sources of variance between variables. Formally, we aim at finding a model 
such as 

Y\ = ìé + λιι-Fi + h ΐ i m F m + ei 
Û2 = â2 + A21.F1 + h MrnFm + ^2 

where the variables V¿ are what we observe, Fj are common underlying fac-
tors, e, are individual sources of variability, and m is significantly smaller than 
p. This may look like a set of regression models, but the main difference is 
that factors are not directly observable. We are trying to uncover hidden fac-
tors, which have to be interpreted. Even though the above equations suggest 
a dependence structure between the observations and the underlying factors, 
there is no dependence structure among the observations themselves; hence, 
factor analysis is considered an interdependence method for dealing with met-
ric data. It is natural to use factor analysis for exploratory purposes, but it 
can also be used for confirmatory purposes. 

15.2.4 Cluster analysis 

The aim of cluster analysis is categorization, i.e., the creation of groups of 
objects according to their similarities. The idea is hinted at in Fig. 15.3. 
There are other methods, such as discriminant analysis, essentially aimed at 
separating groups of observations. However, they differ in the underlying 
approach, and some can only deal with metric data. Cluster analysis relies 
on a distance measure; hence, provided we are able to define a distance with 
respect to qualitative attributes, it can cope with nonmetric variables. There 
is an array of cluster analysis methods, which are exploratory and aimed at 
studying interdependence; they are outlined in Section 17.4. 

15.2.5 Canonical correlation 

Consider two sets of variables that are collected in vectors X and Y, re-
spectively, and imagine that we would like to study the relationship between 
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Fig. 15.3 Four bidimensional clusters. 

the two sets. One way for doing so is by forming two linear combinations, 
Z = a T X and W = b T Y , in such a way that the correlation pz,w is max-
imized. This is what is accomplished by canonical correlation, or canonical 
analysis. Essentially, the idea is to study the relationship between groups of 
metric variables by relating low-dimensional projections. When Y reduces 
to a scalar random variable Y, canonical correlation boils down to multiple 
linear regression. To illustrate one potential application of canonical corre-
lation, consider a set of marketing activities (advertising effort, packaging 
quality and appeal, pricing, bundling of products and services, etc.) and a set 
of corresponding customer behaviors (willingness to purchase, brand loyalty, 
willingness to pay, etc.); clearly, to apply the approach, we must introduce a 
metric scale to measure each variable. It is natural to consider the variables 
in the second set as dependent variables; therefore, this is a case in which 
we wish to explore dependence, but canonical correlation can also be used to 
investigate interdependence. In fact, canonical correlation forms the basis for 
other multivariate analysis techniques. 

15.2.6 Discriminant analysis 

Consider a firm that, on the basis of a set of variables measuring customer 
attributes, wishes to discriminate between purchasers and nonpurchasers of a 
product of service. In concrete, the firm has collected a sample of consumers 
and, given their attributes and observed behavior, wants to find a way to 
classify them. Two-group discriminant analysis aims at finding a function of 
variables, called a discriminant function, which best separates the two groups. 
This sounds much like cluster analysis, but the mechanism is quite different: 

• Cluster analysis relies on a measure of distance and tries to find groups 
such that the distance within groups is small, and distance between 
groups is large. 
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• Discriminant analysis relies on a discriminant function / (x) , possibly 
a linear combination of variables, and a threshold value 7 such that 
if / (xa) < 7, object a with attributes x 0 is classified in one group; if 
/ ( x a ) > 7, object a is assigned to the other group. 

Another fundamental difference is that, in discriminant analysis, clusters are 
known a priori and are used for learning. Discriminant analysis can be gen-
eralized to multiple groups, for both exploratory and confirmatory purposes. 

15.2.7 Structural equation models with latent variables 

Consider the relationship between the following variables: 

• Self-esteem and job satisfaction 

• Customer satisfaction and repurchase intention 

The assumption that these variables are somehow related makes sense, but 
unfortunately they are not directly observable; they are latent variables. Nev-
ertheless, imagine that we wish to build a model expressing the dependence 
between latent variables. For instance, we may consider the structural equa-
tion 

where æ and î are latent variables, v is an error term, and 7 is an unknown 
parameter. If we want to estimate the parameter, we need to relate the 
latent variables to observable variables, which play the role of measurements. 
Imagine that the latent variable î can be related to observable variables X\ 
and X2 by the following measurement model: 

Xi = &éî + ei 
Xl = C*2£ + €2 

where o.\ and c*2 are unknown parameters, and €1 and €2 are errors. This 
is an interdependence model, quite similar to factor analysis. By the same 
token, the measurement model for æ can be something like 

Zi = âéæ + m 
Æé = &C + m 
z?, = AC + m 

The overall model can be depicted as in Fig. 15.4. We stress again that a 
structural model with latent variables includes both dependence and interde-
pendence components. Methods have been proposed to estimate the unknown 
parameters, combining ideas from regression and factor analysis. 
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Fig. 15.4 Schematic illustration of a structural model with latent variables. 
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Fig. 15.5 Schematic illustration of multidimensional scaling. 

15.2.8 Multidimensional scaling 

Multidimensional scaling is a family of procedures that aim at producing a 
low-dimensional representation of object similarity/dissimilarity. Consider n 
brands and a similarity matrix, whose entry dij measures the distance between 
brands i and j , as perceived by consumers. This matrix is a direct input of 
multidimensional scaling, whereas other methods aim at computing distances. 
Then, we want to find a representation of brands as points on a plane, in 
such a way that the geometric (Euclidean) distance <5¿j between points is 
approximately proportional to the perceived distance between brands: 

ad �»j) ,j = l , . . . , n ; éö] 

for some irrelevant constant a. The idea is illustrated in Fig. 15.5. In a mar-
keting context, for instance, multidimensional scaling can help researchers to 
understand how consumers perceive brands and how product features relate 
to each other. We observe that multidimensional scaling procedures accom-
plish a form of dimensionality reduction, are exploratory in nature, and can 
be classified as interdependence methods. 
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Table 15.2 Correspondence analysis works on a two-way contingency table. 

Snacks 
Attribute Si S2 · · · Sn 

A2 N2Í N22 ·■■ N2n 

■A-m " m l �'''7712 ' ' ' 1 »mra 

15.2.9 Correspondence analysis 

Correspondence analysis is a graphical technique for representing the infor-
mation included in a two-way contingency table containing frequency counts. 
For example, Table 15.2 lists the number of times an attribute (crispy, sugar-
free, good with coffee, etc.) is used by consumers to describe a snack (cookies, 
candies, muffins, etc.).5 The method deals with two categorical or discrete 
quantitative variables and aims at visualizing how row and column profiles 
relate to each other, by developing indexes that are used as coordinates for 
depicting row and column categories on a plane. Again, this can be used for 
assessing product positioning, among other things. Correspondence analysis 
is another exploratory-interdependence method, which can be considered as 
a factorial decomposition of a contingency table. 

This cursory and superficial overview should illustrate well the richness 
of multivariate analysis and its potential for applications. We should also 
mention that: 

• The boundaries between multivariate analysis tools are not quite sharp, 
as some methods can be considered as specific cases of other methods. 

• Methods can be combined in practice. For instance, in order to ease 
the task of a cluster analysis algorithm, we may first reduce problem 
dimensionality by principal component analysis. 

15.3 MATRIX ALGEBRA AND MULTIVARIATE ANALYSIS 

The methods that we describe in the next two chapters rely heavily on matri-
ces and linear algebra, which we have covered in Chapter 3. In this section we 

5For a complete example, see p. 311 of the book by Myers and Mullen [4]. 
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discuss a few more concepts that are useful in multivariate analysis. Unfor-
tunately, when moving to multivariate statistics, we run out of notation. As 
usual, capital letters will refer to random quantities, with boldface reserved for 
random vectors such as X and Z; elements of these vectors will be denoted 
by Xi and Z¿, and scalar random variables will be denoted by Y as usual. 
Lowercase letters, such as x and x, refer to numbers or specific realizations 
of random quantities X and x, respectively. We will also use matrices such 
as Σ , S, and A; usually, there is no ambiguity between matrices and random 
vectors. However, we also need to represent the whole set of observations 
in matrix form. Observation A; is a vector X ^ ) € Kp, with elements Xj , 
j = l , . . . , p , corresponding to single variables or dimensions. Observations 
are typically collected into matrices, where columns correspond to single vari-
ables and rows to their joint realizations (observations). The whole dataset 
will be denoted by X, to avoid confusion with vector X. The element [X]kj 
in row k and column j of the data matrix is the element j of observation k, 
le.,X) (*). 

X 

x[1] x 
, (2) 

r(n) 

X. 

(1) 
2 
(2) 

r(n) 

x> 
X, 

(1) 
P 
(2) 

X, ( i ) 

For instance, by using the data matrix X, we may express the column vector 
of sample means in the compact form 

X = -XTln n 
(15.1) 

Here, l n € M.n is a column vector with n elements set to 1, not to be confused 
with the identity matrix I„ G Rn , n . A useful matrix is 

J - 1 1 T 

1 1 
1 1 

1 1 

Example 15.3 (The centering matrix) When we premultiply a vector 
X € K™, consisting of uni varνate observations X\,..., Xn, by the matrix 

_ 1 T _ * 
n n 
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we are subtracting the sample mean X from all elements of X: 

H n X = I I n l r e l n 1 X 

1 n 

= X l n / Xi 
n ■ i 

r-p 

= [Xi — X, Xi — X,..., Xn — X\ 

Not surprisingly, the matrix H„ is called centering matrix and may be used 
with a data matrix X in order to obtain the matrix of centered data 

Xc = Ç η Λ 

To understand how this last formula works, you should think of the data 
matrix as a bundle of column vectors, each one corresponding to a single 
variable. D 

15.3.1 Covariance matrices 

Given a random vector X 6 E p with expected value ì, the covariance matrix 
can be expressed as 

Σ = Ε [ ( Χ - μ ) ( Χ - μ ) τ ] 

Note that inside the expectation we are multiplying a column vector p x 1 
and a row vector 1 XJJ, which does result in a square matrix p x p. It may 
also be worth noting that there is a slight inconsistency of notation, since we 
denote variance in the scalar case by σ2, but we do not use Σ here, as this 
would be somewhat confusing. The element in row i and column j of matrix 
Σ, [S\ij, is the covariance σ<3· between X¿ and Xj. Consistently, we should 
regard the variance of X¿ as Cov(X¿,X¿) = CT¿¿. We may also express the 
covariance matrix as 

Σ = E [XX7] - ììô 

This is just a vector generalization of Eq. (8.5). If we consider a linear com-
bination Z of variables X, i.e., 

Z = a T X 

then the variance of Z is 
σ | = a T E a (15.2) 

where Σ is the covariance matrix of X. By a similar token, let us consider a 
linear transformation from random vector X to random vector Z, represented 
by the matrix A, i.e. 

Z = AX 
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It turns out6 that the covariance matrix of Z is 

Σ ζ = A Σ A i (15.3) 

By recalling that a linear combination of jointly normal variables is normal, 
the following theorem can be immediately understood. 

T H E O R E M 15.1 Let X be a vector of n jointly normal variables with ex-
pected value ì and covariance matrix Σ . Given a matrix A € M.m'n, the 
transformed vector AX, taking values in M.m, has a jointly normal distribu-
tion with expected value Áì and covariance matrix Α Σ Α Τ . 

The above properties refer to covariance matrices, i.e., to probabilistic con-
cepts. The same results carry over to the sample covariance matrix, which we 
denote by S. Again, there is a bit of notational inconsistency with respect to 
sample variance S2 in the scalar case, but we will think of sample variance 
in terms of sample covariance, 5 | = Sjj, and adopt this notation, which is 
consistent with the use of Σ for a covariance matrix. The sample covariance 
matrix may be expressed in terms of random observation vectors X^fc': 

s = ^E(x( f e )-x)(x ( f e )-*) 
fe=l 

-é-A±*»[*»]T-
\fc=l 

n X X (15.4) 

The expression in Eq. (15.4) is a multivariable generalization of the familiar 
way of rewriting sample variance; see Eq. (9.7). It is also fairly easy to show 
that we may write the sample covariance matrix in a very compact form using 
the data matrix X. The sum in Eq. (15.4) can be expressed as XTX, and by 
rewriting the vector of sample means as in Eq. (15.1) we obtain 

n - 1 
1 

n - 1 
1 

n - 1 

^-(M(H 
XTX _ ±XTJnx 

X1 
n 

(15.5) 

From a computational point of view, Eq. (15.5) may not be quite convenient; 
however, these ways of rewriting the sample covariance matrix may come 
in handy when proving theorems and analyzing data manipulations. If the 

See Chapter 3 of the textbook by Rencher [5] for a detailed treatment. 
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data are already centered, then expressing the sample covariance matrix is 
immediate: 

1 T S = -<YC Xc n — \ 
We should also note the following properties, that generalize what we are 
familiar with in the scalar case: 

E[AX + b] = AE[X] + b = Áì + b (15.6) 
Cov(AX + b) = Cov(AX) = ACov(X)AT (15.7) 

where b is an arbitrary vector of real numbers. 
If we need the sample correlation matrix R , consisting of sample correlation 

coefficients Rij between X¿ and Xj, we may introduce the diagonal matrix of 
sample standard deviations 

D 
0 

0 
/3£ 

and then let 
R = D _ 1 S D 

15.3.2 Measuring distance and the Mahalanobis transformation 

In Section 3.3.1 we defined the concept of vector norm, which can be used to 
measure the distance between points in Ep . We might also define the distance 
between observed vectors in the same way, but in statistics we typically want 
to account for the covariance structure as well. As an introduction, consider 
the distance between the realization of a random variable X and its expected 
value ì, or between two realizations Xi and Xi- Does a distance measure 
based on a plain difference, such as | X — ì | or | X\ — ×-÷ |, make sense? Such 
a measure is highly debatable, from a statistical perspective, as it disregards 
dispersion altogether. A suitable measure should be expressed in terms of 
number of standard deviations, which leads to the standardized distances 

\×-ì\ \×é — Xi 
ó ó 

Alternatively, we may consider the squared distances 

D2(X,ß) = {×-ìÕ D2(X1,X2) = (Xi - X2) 

To generalize the idea to the distance between observation vectors X^1) and 
X ( 2 ) 

, we may rely on the covariance matrix and define the squared distance 
à 2 ( χ « , χ ( 2 ) ) = ( x w - Χ ^ Σ - 1 ( χ ω _ χ ( 2 ) ) 
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B 

**> 

Fig. 15.6 Illustration of Mahalanobis distance. 

where Σ - 1 is the inverse of the covariance matrix. More often than not, we do 
not know the underlying covariance matrix, and we have to replace it with the 
sample covariance matrix S. We may also express the distance with respect 
to the expected value in the same way: 

£>2(Χ,/χ) = ( Χ - μ ) τ Σ - 1 ( Χ - μ ) 

The last expression should be familiar, since it is related to the argument of 
the exponential function that defines the joint PDF of a multivariable normal 
distribution.7 We also recall that the level curves of this PDF are ellipses, 
whose shape depends on the correlation between variables. This is very helpful 
in understanding the rationale behind the definition of the distances described 
above, which are known as Mahalanobis distances. Consider the two points 
A and B in Fig. 15.6. The figure is best interpreted in terms of a bivariate 
normal distribution with expected value ì; the ellipse is a level curve of its 
PDF. Geometrically, if we consider standard Euclidean distance, the points 
A and B do not have the same distance from ì. However, if we account for 
covariance by Mahalanobis distance, we see that the two points have the same 
distance from ì. Strictly speaking, we cannot compare the probabilities of 
outcomes A and B, as they are both zero; nevertheless, the two points are on 
the same "isodensity" curve and are, in a loose sense, equally likely. 

Mahalanobis distance can also be interpreted as a Euclidean distance mod-
ified by a suitably chosen weight matrix, which changes the relative impor-
tance of dimensions. Measuring distances is essential in clustering algorithms, 
as we will see in Section 17.4.1. Finally, Mahalanobis distance may also be 
interpreted in terms of a transformation, called Mahalanobis transformation. 
Consider the square root of the covariance matrix, i.e., a symmetric matrix 
Σ 1 / 2 such that 

Σ 1 / 2 Σ 1 / 2 = Σ 

7See Section 8.4. 

2<^ 
ì 
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and the transformation 

= ( ^ 2 ) _ 1 ( x - ì ) 

where X is a random variable with expected value ì and covariance matrix Σ . 
Clearly, this transformation is just an extension of familiar standardization of 
a scalar random variable. The distance between X and ì can be expressed in 
terms of standardized variables as follows: 

£ 2 (Χ,μ) = (×-ì)ÔÓ-1(×-ì) 
= ( Χ - μ ) Τ ( Σ 1 / 2 Σ 1 / 2 ) " 1 ( Χ _ μ ) 

\^/Þ'\χ-μ^Ô^η'\χ-μ) 
= Ζ Τ Ζ. 

Now, using Eqs. (15.3) and (15.7), we find that the covariance matrix of the 
standardized variables is 

Σζ = Covν^1/2) '(Χ-μ)] 

= (Σ1/2) - 1 Σ (Σ1/2) - 1 

= (Σ^νν^Σ^ΓΣ1/2)"1 

= In 

Thus, we see that Mahalanobis transformation yields a set of uncorrelated 
and standardized variables. 

For further reading 

• The theory behind multivariate analysis may be rather challenging, but 
a readable treatment can be found in Refs. [1] and [5]. 

• See Chapter 1 of Ref. [6] for a discussion of dependence vs. interdepen-
dence techniques, as well as the different types of scale. 

• One of the most fertile application domains of multivariate methods is 
marketing; see Ref. [4] for an illustration of this kind of applications. 

• A very nice compromise between the need of explaining the theory be-
hind the methods, which is the only way of truly understanding their 
pitfalls, and the urge of presenting concrete and real-life applications 
has been struck in the book by Lattin et al. [3]. 
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• The link between matrix algebra and multivariate statistics is well doc-
umented in the treatise by Harville [2]. 
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16 
Advanced Regression 

Models 

In this chapter we extend the simple linear regression concepts that were 
introduced in Chapter 10. The first quite natural idea is building a linear 
regression model involving more than one regressor. Finding the parameters 
by ordinary least squares (OLS) is a rather straightforward exercise, as we see 
in Section 16.1. What is much less straightforward is the statistical side of the 
coin, since the presence of multiple variables introduces some new issues. In 
Section 16.2 we consider the problems of testing a multiple regression model, 
selecting regressor variables, and assessing forecasting uncertainty. We do so 
for the simpler case of nonstochastic regressors and under restrictive assump-
tions about the errors, i.e., independence, homoskedasticity, and normality. 
Even within this limited framework we may appreciate issues like bias from 
omitted variables and multicollinearity. An understanding of their impact is 
essential from the users' point of view. In fact, given the computational power 
of statistical software, it is tempting to build a huge model encompassing a 
rich set of explanatory variables. In practice, this may be a dangerous route, 
and a sound parsimony principle should be always kept in mind. 

Multiple linear regression models often include categorical regressors, which 
are typically accounted for by dummy, or binary, variables. When it is the 
regressed variable that is categorical, a crude application of regression mod-
eling may lead to nonsensical results. As an example, we could try to model 
purchasing decisions in discrete terms (yes/no); a regression model can be 
adopted, estimating the purchase probability of a consumer as a function 
of explanatory variables related to product features and consumer's profile. 
However, a standard linear regression model could well predict probabilities 
that are smaller than zero or larger than one. In Section 16.3 we consider 
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logistic regression, a possible approach to cope with a categorical regressed 
variable, based on a nonlinear transformation of the output of a linear regres-
sion model. There are many settings in which nonlinearity in data must be 
explictly recognized, leading to nonlinear regression. This is a quite difficult 
topic, but in Section 16.4 we introduce some modeling tricks to transform a 
nonlinear regression model to a linear one. 

16.1 MULTIPLE LINEAR REGRESSION BY LEAST SQUARES 

Running a linear regression with multiple explanatory variables is a rather 
straightforward extension of what we have seen in Chapter 10, especially if we 
assume fixed, deterministic values of the regressors. The underlying statistical 
model is 

Y = ßo + ßlXl + ß2X2 + ■■■ + ßqXq + € 

We avoid using a to denote a constant term, so that we may group parameters 
into a vector ß £ Rq+1. The model is estimated on the basis of a sample of n 
observations, 

* it Xi\i ×%2·> · · · ) X%qi º = 1 , . . . , 71 

which are collected in vector Y and matrix X: 

Yi 
Y2 
Y3 Y = 

Yn 

x = 

1 
1 
1 

xn 
^ 2 1 

Z31 

^ 1 2 · 

^ 2 2 · 

×¢2 ■ 

■ X\q 

■ Xlq 

■ X3q 

L Xnl Xn2 

The data matrix X £ Rn'q+1 collects observed values of the regressor vari-
ables, and it includes a leading column of ones. This makes notation more 
uniform; we may think that coefficient ßo is associated with a stream of con-
stant observations xio = 1. To estimate ß, we apply ordinary least squares, 
on the basis of the following regression equations: 

Yi = b0 + bixn + b2Xi2 H h b\xiq + e¿, i = 1 , . . . , η 

where e¿ is the residual for observation i, and bj is the estimate of parameter 
ßj, j = 0 , . . . , q. If we collect residuals in vector e f l " and coefficients in 
vector b, the regression equations may be rewritten in the following convenient 
matrix form: 

Y = A"b + e (16.1) 

Using least squares, we aim at minimizing the sum of squared residuals, which 
is just the squared norm of vector e: 

mm 
b 

Σ-ΐ T 
e e 

(16.2) 
¿=i 
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Now we only have to follow the familiar least-squares drift, but in matrix 
terms. The concepts of Section 3.9.1, concerning derivatives of quadratic 
forms, come in quite handy here. To see why, let us rewrite Eq. (16.2): 

e T e = (Y - Xbf (Y - Xh) 
= Y T Y - YTA'b - b T ^ T Y + hTXTXb 
= Y T Y - 2 Y r # b + bTA'TA'b (16.3) 

This is a function of the vector of coefficients b and includes a constant term, 
a linear term, and a quadratic form. Furthermore the matrix XTX is square, 
symmetric, and positive semidefinite, implying that the associated quadratic 
form is convex. Hence, we are minimizing a convex function, and stationarity 
conditions are sufficient for optimality; we must just take the gradient, i.e., 
the vector of partial derivatives of the quadratic form with respect to each co-
efficient bj, and set it to zero. From Section 3.9.1, we recall the following rules 
to obtain the gradient of linear and quadratic functions of multiple variables: 

h(z) = a T x => Vft(z) = a 
g(z) = z T Az => Vg(z) = 2Az 

for a column vector a and a square matrix A. By applying these rules to 
(16.3), we immediately get the optimality conditions: 

-2A"TY + 2A,TA,b = 0 =� XT Xh = XTY 

This is just a system of linear equations; the reader is urged to check the size 
of each matrix involved and to verify that all of the sizes match; in particular, 
the square matrix XTX belongs to the space R9 + 1 , 9 + 1 . To solve this system, 
formally, we have just to invert a matrix: 

b= (XTX)'1XTY (16.4) 

Can something go wrong with this matrix inversion? The answer is "defi-
nitely yes," and it is fairly easy to see why, by a proper interpretation of the 
regression equation (16.1). What we are doing is trying to express a vector 
Y € M™ as a linear combination of q + 1 vectors: 

" 1 " 
1 
1 

_ 1 

+ ßl 

E l l 

Z21 

» 3 1 

Xnl 

+ A 

' XVl ' 

Z22 
Z32 

. χη2 

+ · • + ßg 

' Xlq 
X2q 

X3q 

%nq 

= ßoln + ftXl + #2X2 + · · · + ßgXq 

where Xj, j — l,...,q, is a column vector collecting the n observations Xij 
of variable j , and l n £ l n is a vector consisting of elements equal to 1. 
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Since n > q + 1, there is little hope of succeeding, and we must settle for 
an optimal approximation, whereby we project the vector Y £ W1 onto a 
subspace of q+1 vectors, in such a way as to minimize the norm of the residual 
vector e = Y — Xh. In general, we cannot take for granted that these q + 1 
vectors are linearly independent; if they are not, even the coefficients in this 
approximation will not be well defined, since one of the basis columns can 
be expressed as a linear combination of some other columns. So, in order to 
avoid trouble, the vectors 1„ and Xj should be linearly independent, which 
amounts to saying that the data matrix X is full-rank.1 If so, it turns out that 
the matrix XTX is nonsingular and Eq. (16.4) makes sense. Actually, there 
is an even subtler issue: Even if the columns of X are linearly independent, 
some regressor variables could be strongly correlated. Even in such a case, 
it is unlikely that random sampling will result in truly linearly dependent 
columns; however, the XTX could be close to singular, resulting in unstable 
estimates of the regression parameters. This issue is called multicollinearity 
and is outlined in Section 16.2.1. 

16.2 BUILDING, TESTING, AND USING MULTIPLE LINEAR 
REGRESSION MODELS 

The least-squares approach to estimating parameters of a multiple regression 
model is a fairly straightforward extension of simple linear regression. What 
is not so easy is the extension of the statistical testing procedures, which 
present more variants when multiple variables are involved. Nevertheless, the 
necessary intuition for understanding what commercially available statistical 
software tools offer is not difficult to grasp, if one is armed with a solid under-
standing of simple regression. However, when multiple variables are involved, 
new issues arise, which we outline in the following subsections. 

16.2.1 Selecting explanatory variables: collinearity 

When selecting variables, there are a few issues and tradeoffs involved. 

• We might wish to include variables that are not directly observable, and 
we have to settle for an observable proxy. If so, we must ensure that the 
variable we include is an adequate substitute. 

• Our choices are also affected by the availability of data. If data collection 
has been carried out and there is no possibility for adding variables and 
observations, we have to live with it. If data have still to be gathered, 
cost issues may arise. 

xThe data matrix X € R n ' « + 1 has more rows than columns, in nonpathological cases. 
Hence, the maximum rank it may have is q + 1. We also say that it has full column rank. 
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Table 16.1 Sample data illustrating issues in regressor selection. 

Yi 

-15.394 
-37.077 
46.2448 
-10.354 
4.6302 
70.7628 
77.4447 
-7.6364 
15.0487 
20.6672 
-19.91 
26.1656 
-40.13 
90.4386 
-43.971 

Xil 

2.7023 
-0.9968 
4.376 
4.863 
0.5606 
7.5727 
7.5675 
3.8871 
4.9819 
4.5239 
3.4399 
6.1774 
2.2351 
10.5496 
3.5908 

X%1 

-5.3178 
-4.7894 
-0.0892 
-0.0315 
-1.6227 
1.9977 
3.6647 
-6.9382 
-2.2778 
-3.0824 
-8.5812 
-0.4347 
-7.7927 
6.7681 
-5.9036 

Yi 

13.8214 
42.9428 
-4.6615 
-10.619 
-27.627 
6.7162 
-6.5051 
54.5676 
65.3855 
0.2551 
22.6257 
29.0148 
-76.072 
-16.093 
18.2359 

Xil 

4.3418 
7.2003 
4.1778 
3.7131 
1.503 
4.8832 
-0.0085 
6.143 
8.8707 
1.9247 
6.574 
7.762 
-0.7812 
-0.3229 
5.7134 

Xi2 

-1.0346 
0.2621 
-5.8078 
-10.176 
-5.187 
-5.5274 
-4.2406 
0.3391 
6.3123 
-2.7682 
-3.0003 
1.2267 
-10.054 
-6.5207 
-1.7836 

• If observations of many variables are available, it may not be clear which 
subset of regressors offers the best explanatory or predictive power. 
Model building procedures have been proposed to come up with the 
best subset of variables, such as forward selection (a stepwise procedure 
in which one regressor is added at a time) and backward elimination (a 
stepwise procedure in which one variable is omitted at a time). 

Apparently, we should aim at finding the model with the largest R2 coef-
ficient, and, arguably, the more variables we include, the better model we 
obtain. However, the following examples show that subtle difficulties may be 
encountered. 

Example 16.1 (Omitted variables and bias) Let us consider the sample 
data in Table 16.1. If we regress a model specified as 

Y = ß0 + âé÷é + ßx2 + e 

we obtain the following estimates, including a 95% confidence interval for each 
parameter: 

b0 = 0.8507 (-18.2734, 19.9749) 
h = 5.3863 (2.2421, 8.5306) 
h = 5.1532 (3.0311, 7.2753) 
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The R2 coefficient is 0.8424. Now, let us repeat the application of least 
squares, omitting the variable x<¿·. 

b0 = -37.6442 (-52.1744, -23.1140) 
h = 11.1039 (8.2734, 13.9343) 

The R? coefficient now is 0.6975. We see that by omitting a variable, we 
reduce R2, which may not be so surprising. We also see that the estimate of 
âé changes considerably and is increased. Actually, data have been generated 
by Monte Carlo sampling on the basis of the model 

Y = 3 + 5xi+6x2 +e 

The standard deviation of error was ae = 20, and the values of the regressors 
x\ and X2 have been obtained by sampling a multivariate normal distribution 
with: 

ìé = 4 , â2 = —3, ó\ = 3, è2 = 4, ñ = 0.6 

When the two regressors are used, R2 is less than ideal because of the limited 
sample size and the large variability of errors. When we omit the second 
explanatory variable, we loose explanatory power, but there is a subtler effect: 
The estimate of â\ is biased. In fact, since the two regressors are positively 
correlated, the coefficient of χχ in the second regression increases, because 
part of the effect of X2 is attributed to x\. This is an example of distortion 
by omitted variables. 

If correlation is negative, we get a lower estimate. For instance, repeating 
the experiment with p = — 0.6, we obtain 

b0 = 6.2703 (-4.6660, 17.2066) 
h = 4.0314 (1.7020, 6.3609) 
b2 = 5.1532 (3.0311, 7.2753) 

with ρ 2 = 0.5002, when regressing against both variables. If we omit X2, we 
find 

b0 = 0.7558 (-13.7744, 15.2860) 
bi = 1.5039 (-1.3266, 4.3343) 

with R2 = 0.0406. In the last case we see a dramatic reduction of R2, and a 
negative bias in the estimate of â\. D 

The numbers involved in the example above should be considered with due 
care, as we are reporting results obtained with one Monte Carlo sample, and 
no general conclusion can be drawn. What is really important is that when 
a variable is omitted, this may affect the estimate of parameters associated 
with other variables. Then, one might argue that it is better to stay on the 
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Table 16.2 Sample data illustrating the effect of collinearity. 

60 

35.3849 
(-39.6703,110.4402) 

24.8326 
(-53.6050,103.2701) 

-5.0036 
(-78.9659, 68.9588) 

69.2543 
(-22.5259, 161.0345) 

-30.6348 
(-98.8312, 37.5617) 

61 

0.1007 
(-11.9250, 12.1265) 

1.2393 
(-11.3710, 13.8495) 

5.7263 
(-6.0237, 17.4762) 

-6.9745 
(-21.8495, 7.9004) 

11.7167 
(0.9933, 22.4401) 

b2 

10.9388 
(2.0416, 19.8360) 

9.1750 
(-0.0404, 18.3905) 

5.0299 
(-3.9615, 14.0213) 

13.9512 
(2.6788, 25.2237) 

1.6350 
(-6.3319, 9.6019) 

R2 

0.8518 

0.8503 

0.7819 

0.7769 

0.8404 

safe side, and include as many variables as we can. The following example 
shows that this is not the case. 

Example 16.2 (Multicollinearity and instability) Let us repeat the ex-
periment of Example 16.1, but this time let p = 0.98. This means that we are 
regressing against two strongly correlated regressors. Rather than running one 
regression, we use Monte Carlo sampling to generate n = 30 observations, on 
which we apply OLS, and the procedure is repeated 5 times. In Table 16.2 we 
show the estimates of the three parameters, along with their 95% confidence 
intervals, for each sample. The results are quite striking. If we compare the 
estimates for all samples, we notice a lot of variability: for instance, coefficient 
61 is negative in sample 4 and positive in sample 5. Furthermore, even looking 
at one sample at a time, we are often unsure of the sign of an effect. It is 
tempting to attribute all of this to the limited number of observations (30) 
and to large variability in the underlying errors; however, we see that R2 is 
not too bad in the five samples. In fact, the problem is the high correlation 
between the regressors, which leads to difficulties because of multicollinearity. 

D 

To better understand the difficulty revealed by Example 16.2, we should 
reflect on the meaning of parameter â÷. This is supposed to be the increment 
in the expected value of Y, when x\ is incremented by 1, and x-¿ is kept 
fixed. However, this makes no real sense here, because x\ and X2 are strongly 
correlated. We cannot explore the effect of a variation in one variable, while 
keeping the other one fixed. Furthermore, because of this strong link, the data 
matrix X has two columns that are linearly related to each other, although not 
really linearly dependent; as a result, the matrix (XTX) is not really singular, 
but solving the system of linear equations is critical since a little change in 
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the inputs results in a large change in the solution. This is a problem called 
numerical instability in numerical analysis. 

So, we see that we should include neither too few, nor too many explanatory 
variables. Finding the right model requires for a bit of experimentation, as 
well as some understanding of the underlying phenomenon. As the following 
example illustrates, we cannot trust a linear regression model as a black box. 

Example 16.3 (Lurking variables) Consider a regression model used to 
study the impact of car features on mileage, i.e., miles per gallon or kilometers 
per liter of petrol. There are many characteristics of a car that can explain 
mileage; let us choose the turn circle, measured in feet or meters. If you regress 
mileage on turn circle, you will find a positive coefficient, and a significant 
model. But is this a sensible model? No one would really think that turn 
circle determines mileage, but then why is the model statistically significant? 
Actually, the turn circle is positively correlated with vehicle length, which in 
turn is positively correlated with vehicle weight. Arguably, it is weight the 
main determinant of mileage, which is somehow surrogated by turn circle in 
the model. If you include weight and the other characteristics, the coefficient 
of turn circle will be not statistically significant. 

Weight, in this case, is the lurking variable.2 As another example, imag-
ine regressing sales against expenditure in advertisement. Any marketeer will 
be delighted by a regression model showing the positive impact of such expen-
diture on sales. But imagine that advertisements are part of a more general 
campaign in which prices are reduced. How can you be sure that the real 
driver of sales is not just price reduction? D 

These examples show that the interpretation of a regression model cannot 
rely on pure statistical concepts. Regression models may be able to detect 
association, not causation. A statistically significant model need not be sig-
nificant from a business perspective, and domain-specific knowledge is needed 
to correctly analyze model results. 

16.2.2 Testing a multiple regression model 

To investigate the statistical validity of a multiple regression model, the first 
step is to check the variance of the estimators. In this case, we have multiple 
estimators, so we should check their covariance matrix: 

V a r ( b ) = E [ ( b - / 3 ) ( b - / 3 ) T ] (16.5) 

2We encountered lurking variables when dealing with correlation analysis in Section 9.4.5. 
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Using Eq. (16.4), we see that 

b-ß = (×Ô×)~1 ×ô¾-â 

= (×ô×)~1×ô(×â + å)-â 

= ß+(XTX)~1XTe-ß 

= (XTX)'1XT€ (16.6) 

The familiar assumptions about errors, in the multivariate case, can be ex-
pressed as 

E[e] = 0, Var(e) = σ 2 1 
i.e., the expected value is zero and the covariance matrix is the identity ma-
trix times a common variance σ2, since errors are mutually independent and 
identically distributed. Incidentally, in what follows we also assume normal-
ity of errors. The first implication of Eq. (16.6) is that ordinary least-squares 
estimators are, under the standard assumptions, unbiased: 

E[b - â] = 0 

Note that this is easy to obtain if we consider the data matrix A" as a given 
matrix of fixed numbers; if we consider stochastic regressors, some more work 
is needed. To find the covariance matrix of estimators, we substitute (16.6) 
into (16.5): 

Cov(b) = E J [ ( * T # ) " 1 # T e ] [ ( * T # ) " 1 * T e ] T j 

= E{(XTXy1XTeeTX(XTX)~1} (16.7) 

= (XTX)~1 XTE [eeT] X (XTX)_1 

= (xTxy1 ÷ôó2é÷ (xTxy1 

= a2(xTxy1xTx(xTxy1 

= ó2(×ô×)~1 (16.8) 

In (16.7), we have used the fact that, since XTX is a symmetric matrix, the 
transposition of its inverse just yields its inverse 

,-,ô _ , (xTxy1] = (xTxy 
What we are still missing is a way to estimate error variance σ2. Not surpris-
ingly, the problem is solved by an extension of what we know from the theory 
of simple regression. Let us define the sum of squared residuals 

n 
SSR = Y^(Yi - Yif = (Y - * b ) r ( Y - Xh) 
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It can be shown that 
E[SSR}=a2(n-q-l) 

where q is the number of regressors. Then, the following unbiased estimator 
of ó2 is obtained: 

n — q — 1 
The first thing to notice is that if we plug q = 1, we get the familiar result from 
simple regression.3 We wee that the more regressors we use, the more degrees 
of freedom we lose. Indeed, confidence intervals and hypothesis testing for 
single parameters, under a normality assumption, is not different from the 
case of a single regressor; the only caution is that we must account for the 
degrees of freedom we lose for each additional regressor. 

If we test the significance of a single parameter, essentially we run a familiar 
t test. In the case of multiple regressors, however, it may be more informative 
to test the whole model, or maybe a subset of parameters. This leads to an 
F test, based on the analysis of variance concepts that we outlined in Section 
10.3.4. The F statistic is 

J2(Yi-y)2/q 
F = - ^ - ^ 

This is an F variable with q and n — q—1 degrees of freedom, whose quantiles 
are tabulated and can be used to check overall significance. To understand 
this ratio, we should regard it as the ratio of two terms: 

1. Explained variability, in the form of a sum of squares divided by q de-
grees of freedom (note that q is the total number of regression coefficients 
minus 1) 

2. Unexplained variability, the sum of squared residuals divided by n—q — 1 
degrees of freedom 

Finally, the R2 coefficient can also be calculated along familiar lines. However, 
when using the coefficient of determination with multiple variables, there is a 
subtle issue we should consider. What happens if we add another regressor? 
Clearly, R2 cannot decrease if we add one more opportunity to fit empirical 
data, but this does not necessarily mean that the model has improved. The 
more variables we consider, the more uncertainty we have in estimating their 
parameters. As Example 16.2 shows, we may have trouble with uncertain 
estimates because of collinearity. Hence, adding a possibly correlated regressor 

3See Eq. (10.19). 
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may be far from beneficial, and we need a measure to capture the tradeoff 
between adding one variable and the trouble this may cause. The adjusted R2 

coefficient has been proposed, which accounts for the degrees of freedom that 
are lost because of additional regressors: 

RL·, - 1 - (i - R 2 ) { ^ ^ = i - (i - * 2 ) - ^ - r (16.9) 
aaj (error df ) v 'n-q-l 

To see the rationale behind the adjustment, recall that R2 is the ratio of 
explained variability and total variability:4 

2 ESS SSR 
= T S S = ~ T S S 

In the adjusted R2, we divide the two terms of the ratio by their degrees of 
freedom: 

2 _ S S R / ( n - g - l ) 
adj TSS/(n - 1) 

which leads to (16.9). The sum of squared residuals SSR cannot increase, if 
we add regressors. However, the term (n — q — 1) may decrease faster than 
SSR, if the added regressors do not contribute much explanatory power. The 
net result is that an additional regressor may actually result in a decrease of 

16.2.3 Using regression for forecasting and explanation purposes 

We have seen that omitting variables may result in biased estimates, or even 
in debatable models where significant coefficients are associated with regres-
sor variables that may even have no real impact on the response variable. 
However, a rather cynical point of view could be that, as long as the model 
does a good job at forecasting, no one should care. This is an opinion that 
should not be dismissed harshly. We should wonder what our real aim is when 
building a regression model. If we are interested only in a forecasting model, 
then maybe proper variable selection is not an issue, as long as bad choices 
do not result in a model with very little predictive power. This could be the 
point of view of an engineer or someone who is just interested in the deci-
sions that are based on model output; if the decisions are satisfactory, so be 
it. Arguably, the viewpoint of a sociologist would be rather different, as she 
would probably really like to understand what drives a phenomenon. There 
is nothing wrong in either reasoning; they are just two different ways of using 
modeling tools. Indeed, many forecasting modeling frameworks that we do 
not consider here, like neural networks, have been criticized because they do 
not offer any explanation for their output, yet they may be practically useful. 

4See Eq. (10.21). 
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Leaving such philosophical considerations aside, when we have estimated a 
multiple linear regression model, we might be interested in forecasting. Given 
the model5 

Û = b0 + biXi + b2X2 -\ \- bgXg = bTX 

we should just plug xo to obtain a point forecast Yo = bTxo- However, we 
have repeatedly observed that a single, point forecast may be of little use, and 
a suitable prediction interval should be devised. Given an estimate ae and a 
confidence level a2, if we assume normality of errors, it is tempting to build 
a prediction interval like 

YQ ± ¿i-Q /2 : n—q—1°€ 

where in selecting the t distribution we account for estimated coefficients in 
setting the degrees of freedom. However, we know from Section 10.4 that 
doing so is not quite correct, as we would consider the uncertainty only in 
the realization of the error term, and not the uncertainty in the estimate of 
coefficients. To properly cast the problem, we should evaluate the variance of 
the forecast error: 

Var (y0 - b T x 0 ) 

where the random response is given by 

Y0 = âôê0 + e 

Since the estimate of b depends only on previous realizations of the errors 
that affect Y, Yo is independent from them, and we may write 

Var (Y0 - b T x 0 ) = Var(y0) + Var (bTx0) = ó\ + Var (bTx 0 ) 

Now, to evaluate the second term, we may take advantage of Eq. (16.8): 

Var (bTx 0 ) = x^Cov(b)x0 = a^xg (XTX)~l x0 . 

Then, if we knew the "true" standard deviation of errors σ£, we could conclude 

Yo - bTxo 

<7£^/l + x g ' ( * : r * r 1 x o 
<Λ/-(0,1) 

Plugging the estimate <7e, we obtain a t distribution with n — q — 1 degrees of 
freedom, and the following prediction interval with confidence level 1 — a: 

3 xo ± σεί1_α/2 ι„_9_ι 

Consis tent ly with Eq. (16.1), we include a constant 1 in the vector x of explanatory 
variables. 
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16.3 LOGISTIC REGRESSION 

Consider the following questions: 

• Given a set of characteristics, such as age, sex, cholesterol level, and 
smoking habits, what is the probability that a person will die because 
of a heart disease in the next 10 years? 

• Given household income, number of children, education level, etc., what 
is the probability that a household will subscribe to a package of tele-
phone/Web services? 

• Given occupation, age, education, income, loan amount, etc., what is the 
probability that a homeowner will default on his mortgage payments? 

All of these questions could be addressed by building a statistical model, 
possibly a regression model, but they have a troubling feature in common: 
The response variable is either 0 or 1, where we interpret 0 as "it did not 
happen" and 1 as "it happened." So far, we have considered the possibility 
of regression models with qualitative variables as regressors, but here it is the 
regressed variable that is qualitative, and represented by a Bernoulli random 
variable taking values 1 or 0 with probabilities π and 1 — π, respectively. We 
could generalize the problem to a multinomial variable, taking values within 
a discrete and finite set, but for the sake of simplicity we will stick to the 
simple binary case. 

One possibility for building a statistical model relying on linear regression 
would be a relationship such as 

p = ßTx + e (16.10) 

where p is the probability of the event of interest, and e is an error whose 
probability distribution must be chosen. Note that we are not using a binary 
variable as the response variable, since we are not predicting the occurrence of 
the event, but its probability. This is possible, e.g., using linear discriminant 
analysis, whereby we identify a linear combination ß x, a threshold level 7, 
and we predict 

y [ l i f / 3 T x > 7 
1 0 otherwise 

However, for the purpose of forecasting, estimating a probability may have 
some advantages, so we will pursue this alternative approach. To fit a model 
such as (16.10), we could use a dataset in which Y¿ € {0,1} and apply familiar 
OLS. However, this idea suffers from a significant drawback: When the event 
is very likely or very unlikely, the response may well be a probability larger 
than 1 or smaller than 0, respectively. So, we cannot take such a simplistic 
linear regression approach. To overcome the difficulty, we may adopt a non-
linear transformation of the output, which can be sensibly interpreted as a 
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Fig. 16.1 The logistic function. 

(16.11) 

probability. This may be accomplished by using the logistic function 

exp(*) 
J(Z) l + exp(z) 

which is plotted in Fig. 16.1. This is where the term logistic regression comes 
from. The nonlinear transformation allows to express the probability p as 

exp(/3Tx) _ 1 
p = (16.12) 

1 + exp(/3Tx) 1 + exp(-/3Tx) 

Now the probability p is correctly bounded within the interval [0,1]. To gain 
a better insight into the meaning of parameters ßj, we need a more convenient 
form that is obtained by solving Eq. (16.12) for the exponential: 

P exp(/3J x) = 
1-p 

Taking logarithms of both sides and adding an error term, we obtain the 
statistical model 

In P 
1-p 

/3Tx + e (16.13) 

The ratio p/(l — p) provides us with equivalent information in terms of odds. 
Odds are well known to people engaged in betting. When the odds are "1 to 
1," this means that the ratio is 1/1, which in turn implies 

P 
1-p 1 =>. p = 0.5 

When we say "it's 10 to 1 that....," we mean that the event is quite likely; 
indeed: 

—E_ = 10 => p = 0.909 
1-p 
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The logarithm of the odds ratio is known as a logit function. From Eq. (16.13) 
we can interpret the parameter ßj as the increment in the logit, i.e., the 
logarithm of the odds ratio, for a unit increment in Xj. 

Now we need to find a way to fit the regression coefficients against a set of 
observations x¿ and Y, 6 {0,1}, i = 1 , . . . , n. The nonlinear transformation 
operated by the logistic function precludes application of straightforward least 
squares; the common approach used to estimate a logistic regression model ex-
ploits parameter estimation by the maximum-likelihood approach.6 To build 
the maximum-likelihood function, we observe again that Y¿ is the realization 
of a Bernoulli variable, which may be regarded as a binomial variable when 
only one experiment is carried out.7 Hence 

where we write y, as a number, since we are referring to the observed value of 
the random variable Y¿. The probability p¿ depends on observation x¿ and pa-
rameters ß. Of course, we assume independence of the errors, so observations 
are independent and the likelihood function is just the product of individual 
probabilities: 

L = i\pT{i-PiY-y> 

= A / exp(/3Tx¿) \m ( 1 
f=\ \ 1 + exp(/3T

Xi) ; V1 + exp(/3T
Xi) 

The task of maximizing L can be somewhat simplified by taking its logarithm: 

Efficient nonlinear programming algorithms are available to maximize log-
likelihood numerically and estimate a logistic regression model. Commercial 
statistical packages are widely available to carry out the task. 

16.3.1 A digression: logit and probit choice models 

The concepts behind logistic regression and the logit function have also been 
proposed as a tool to model brand choice in marketing applications. Since 
choice models are a good way to see integrated use of decision and statistical 
models, we outline the approach in this section. Consider an individual who 
chooses between two brands. Ideally, we could model her choice in terms of a 

i — Î H 

6See Section 9.9.3. 
7See Section 6.5.5. 
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multiattribute utility function u(x) depending on the features of each brand. 
If such features are collected into vectors xi and X2, the individual would 
choose brand 1 if 

u(xi) > u(x2) 

Of course, we do not know the utility function of the individual; furthermore, 
there may be factors at play that are not included in the vector x; indeed, the 
choice may also depend on factors that are not really related to the product 
itself, but to price, type of display at a supermarket, etc. Last but not least, 
we are actually interested in modeling the choice of a "typical" individual, 
so that we observe different individuals, resulting in some randomness in the 
choice. A simple approach is to split utility into a term that can be related 
to product attributes and a term that is completely random: 

Uu = va + Ut 

where i = 1,2 refers to brand and t to time or observation number. The sim-
plest model for attributes is va = ß x»t, where x¿t is the vector of attributes 
of brand i when offered at time t. The individual chooses brand 1 at time t if 

/3Txit + tu > ßTX2t + e2t 

or, in other words, when the random effect is not larger than the difference in 
utilities linked to attributes: 

£2t - eit < /3T(xii - x 2 t ) 

If we introduce the random variable 7?t = C2t — eu, the probability of choosing 
brand 1 is given by its CDF 

F„ [/3T(xit - x2t)] = P {ç < /3T(xit - x 2 t ) } 

where we also assume that the distribution of ç does not depend on time. 
Choice models differ in the assumed probability distribution for ç. 

• If a normal distribution is assumed, a probit model is obtained. A pos-
sible disadvantage of this choice is that, since the CDF of a normal 
variable is not available in closed form, we do not find an explicit func-
tional form for the probability of choice. 

• An alternative choice, which defines a logit model, is the logistic distri-
bution, which is characterized by a CDF of the form (16.11). Taking 
the derivative of the logistic function, we see that its PDF is given by 

/„ (*)= eXP("Z) 
[ l+exp ( -* ) ] J 

This PDF, as shown in Fig. 16.2, has a shape similar to a normal dis-
tribution, but its tails are a bit different (and fatter). 
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Fig. 16.2 The PDF of the logistic distribution. 

If we assume a logit choice model, the probability of choosing brand 1 over 
brand 2 at time t is given by 

1 
Pli = 7 Γ 

1 - e x p j - / 3 (xit -X2t )J 

exp (/3TxitJ 

exp (j3TxitJ + exp (/3Tx2t) 
Probit and logit models can be extended to cope with the more complex set-
ting of a choice between m > 2 alternatives. In such a case, the probability 
of choosing brand k is just the probability that the random variable Ukt is 
the largest in the set of variables Ujt, j = 1 , . . . , m. Here we must specify a 
joint distribution of a vector et collecting the random terms associated with 
each possible choice. Different assumptions lead to different choice models, 
like multinomial probit and multinomial logit models. Each model has ad-
vantages and disadvantages in terms of readability and ease of estimation, 
whose discussion is beyond the scope of the book. One point worth emphasiz-
ing, from a managerial perspective, is the sensibility of model predictions. It 
turns out that the multinomial logit model implies a property called indepen-
dence of irrelevant alternatives (ΠΑ). In fact, using simplifying assumptions 
about the errors, the predicted probability of choosing brand k is given by 

exp(wfc) 
Pk = -7S 

3=1 

where Vj is a linear function of attributes. The denominator in this ratio is a 
normalizing factor, which does not influence the ratio of choice probabilities 
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Fig. 16.3 Two cases requiring a nonlinear regression. 

of two brands, say, k and I: 

Pk^ _ exp(vk) 
Pi exp(vi) 

If we introduce another brand, this ratio will not change. In other words, 
the model implies that the introduction of a new alternative will diminish 
the probability of choosing the preexisting alternative proportionally. How-
ever, an often cited counterexample involves two soft-drinks, say a cola and a 
lemonade. Assume that the choice probabilities are the same, 50% and 50%. 
If we add a sugar-free cola, it is not quite sensible to assume that the two 
probabilities will change by the same amount; sales of cola are likely to be 
much more influenced by the introduction of a similar product. Alternative 
choice models have been proposed in order to overcome this limitation. 

16.4 A GLANCE AT NONLINEAR REGRESSION 

Logistic regression introduces a nonlinear transformation to account for the 
qualitative nature of the response variable. But even when considering a 
quantitative response, we may be forced to consider nonlinearity. Figure 16.3 
shows two examples. 

• In Fig. 16.3(a) we observe two effects: a threshold and a saturation 
effect. It may be helpful to interpret this case in concrete terms: Let us 
assume that we are regressing sales against advertisement expenditure. 
A linear model would be unable to account for the fact that, unless 
some threshold is exceeded, no effect will be discernible. Consider the 
effect of a couple of spots at 3 a.m. on some unknown local TV station. 
This is why the picture shows an initial portion where the sales level is 
constant. On the other hand, if you swamp all of the major networks 
with spots, sales cannot grow to infinity; the impact will be less and 
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less affective, possibly even counterproductive. In such a case, we could 
imagine a more general regression model based on a nonlinear functional 
form such as 

Y = h(x,ß) + e (16.14) 
or 

Y = h{x,ß)g(e) (16.15) 
for suitable functions h(-, ·) and g(-). Note that we should not take for 
granted that the error component must be additive. 

• The case of Fig. 16.3(b) is a bit different. Here we observe the interaction 
between the quantitative variable Xi and the qualitative (categorical) 
variable x2. Within a linear regression framework, we may consider a 
specification such as 

Y = ί0 + ί1x1 + ί2x2 + e 

where x2 G {0,1}. However, in this case the effect of x2 would be a plain 
shift of a linear function. In Fig. 16.3(b) we observe that when x2 = 1, 
we have a change in slope as well. Hence, we have a more complex 
interaction between the two variables, which cannot be captured by a 
linear form. We have to consider a model such as 

Y = ß0 + ßixi + ß2x2 + â3×é÷2 + e (16.16) 

Given these introductory examples, we should be convinced that sometimes 
a nonlinear regression model is warranted. Unfortunately, this may be a sort 
of quantum leap in terms of complexity: 

1. We must choose a sensible functional form /ι(χ, â), depending on a lim-
ited set of parameters. 

2. We must find a suitable parameter estimation procedure. In principle, 
this should not be that difficult. On the basis of Eq. (16.14) and armed 
with n observations (Y¿,x¿), i = Ι , . , . , η , we may think of solving a 
nonlinear least-squares optimization problem: 

m i n ^ [Yi - h(xi,h)) 
i = l 

Indeed, this is a quite common practice, often referred to as model cali-
bration.8 Powerful software is available to tackle such a problem numer-
ically. Unfortunately, there is a major problem here. First, the resulting 

8 As a concrete example of model calibration, imagine that Y¡ are observed prices of financial 
assets, and x¿ is a vector of observable financial variables. The function h(-, ·) is a pricing 
model depending on parameters â tha t are calibrated from quoted prices. These parameters 
may be used in a variety of ways, both for risk management purposes and for pricing other 
financial assets that are not traded on regulated markets, such as over-the-counter (OTC) 
derivatives. 
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optimization model, unlike ordinary least squares, need not be convex; 
and second, ensuring good properties of estimators is nontrivial. 

3. We must choose a proper statistical framework to tackle issues such as 
bias and uncertainty in estimates, hypothesis testing, diagnostics, etc. 
This last point is definitely beyond the scope of this book, and the reader 
is referred to the listed references. 

Fortunately, there are cases in which all of the above is not as awful as it may 
look. In the remainder of the section we digress a bit on different forms of 
nonlinear regression, and their implications. In fact, from a users' perspective, 
the ability to see advantages and disadvantages of different model formulations 
is by far the most important one; other tasks may be left to suitable statistical 
software. 

16.4.1 Polynomial regression 

A good starting point is polynomial regression. When facing a clearly nonlin-
ear data pattern, like the one in Fig. 16.3(a), we may try to come up with a 
suitable approximation of the nonlinear function relating data. In principle, 
polynomials provide us with an arbitrary degree of flexibility.9 Let us take a 
closer look at a model of polynomial regression, in the case of one regressor: 

Y = ßo + fax + ß%x2 + â3÷3 + ··· + ßmxm + 6 (16.17) 

In this case, there is one regressor variable that is raised to powers in the 
range from 0 to m. The function is clearly nonlinear in x. However, there is a 
very important point: The model is nonlinear in the variables, but it is linear 
in the parameters. To see this, imagine plugging observations Xi,i = l,...,n. 
We obtain a function that is linear in ßj, j = 0 , 1 , . . . , m. We could introduce 
variables Zj = arJ', and a multiple linear regression model would result. The 
same applies to the model with interactions, represented by Eq. (16.16). So, 
we see that sometimes nonlinear regression can be tackled by the machinery 
of classical linear regression. There are, however, a few traps: 

• Polynomial regression may be quite dangerous, as it is tempting to in-
troduce a high-order polynomial to improve fit. The result can be an 
overfitted model that offers very poor performance out of the sample. 
Furthermore, given the oscillatory nature of polynomials,10 extrapola-
tion outside the dataset may result in meaningless predictions. 

• While polynomial regression does not result in additional difficulties if 
we treat the regressors as given numbers, establishing results for stochas-
tic regressors is not trivial. 

9One of the many Weierstrass theorems states that a continuous function can be approxi-
mated to arbitrary accuracy using a polynomial with suitably high degree. 
10See Section 2.3.2. 
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16.4.2 Data transformations 

If we plug values for the regressor variables into Eq. (16.17), we obtain a linear 
function of parameters ßj. Now, let us consider an exponential functional form 
such as 

Y _ e/3o+/9ixi+/32X2 

If we plug values for x\ and x2, we do not obtain a linear function of param-
eters ßj, j = 0,1,2. However, it is easy to see that a proper transformation 
can lead us back to the linear case. Taking the logarithm of both sides of the 
equality yields 

\ogY = ß0 + ß1xl + ß2x2 

This looks a bit like logistic regression, but the underlying model is of a 
completely different nature. The logarithm is just one of the possible trans-
formations that can be used to linearize a relationship. Another common 
example is a regression model of the form 

Y = âï÷^÷î2 

which can be transformed to 

log Y = ß0+ßi\ogxi + â2 log x2 

In this case, we take the logarithm of both the regressed and the regressor 
variables. In other cases, we may also adopt a model such as 

Y = â0 + ßi logxi + ß2 loga;2 

We see that with a little ingenuity, many tricks can be used to our advantage. 
However, we stress again that we must be careful and not forget statistical 
issues. If we want to introduce errors, should we use a form such as 

Y = âï÷^÷î2 + e 

or the following equation? 

Y = fox^xfre' 

An answer can be given only if we choose an appropriate distribution for e 
and, more importantly, if we know the underlying phenomena well enough to 
appreciate the sensibility of each assumption. To illustrate, imagine that e 
is assumed normal. The first model may make no sense if Y is restricted to 
nonnegative values, as, in principle, a negative realization of the normal error 
might result in a negative value of Y. The second model would look more 
sensible from this perspective, since by taking the exponential of a normal 
variable we obtain a lognormal variable.11 Clearly, each choice must be care-
fully pondered and has an impact on the statistical side of regression, in terms 

1 1 See Section 7.7.2. 
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of testing the model and assessing uncertainty in both parameter estimates 
and model predictions. 

Problems 

16.1 Apply the formulas of multiple regression to the case of a single regres-
sor, and verify that the familiar formulas for simple regression are obtained. 

16.2 Use the concepts that we have introduced in Chapter 2 to check the 
qualitative properties of the logistic function of Eq. (16.11). 

For further reading 

• Readers interested in an introductory but rigorous treatment of regres-
sion models can consult Ref. [8]; see also Ref. [7]. 

• A more thorough and challenging treatment can be found in books 
specifically aimed at regression models (e.g., Refs. [1] and [3]). 

• A treatment geared to applications can be found in Refs. [4], [5], and 
[6]. In particular, Chapter 13 of Ref. [4] is recommended for further 
reading on logit choice models, whereas Ref. [5] is a standard reference 
on forecasting models, including but not limited to regression models. 

• Finally, we should also mention references dealing with econometric 
models, which often illustrate regression models with a good balance 
between mathematical rigor and real-life applications. An introductory 
source is Ref. [9], while Ref. [2] is a more advanced reading. 
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17 
Dealing with Complexity: 

Data Reduction and 
Clustering 

This is certainly an age in which we do not suffer from scarcity of data. Using 
information infrastructures and the Web, we may collect plenty of observa-
tions of many variables, resulting in rich datasets waiting for analysis, maybe 
too rich. We sometimes need to simplify data in order to visualize them, to 
discover patterns, and to make decisions based on them. In this chapter we 
outline some of the most relevant techniques, which have several applications 
in supply chain management, marketing, finance, and related fields. First, 
we motivate the need for data reduction in Section 17.1; this is often a pre-
liminary step to make the application of other quantitative methods possible. 
Principal component analysis (PCA), the subject of Section 17.2, is a nice 
illustration of the role played by linear algebra in multivariate statistics; be 
sure to master the material on eigenvalues and eigenvectors from Chapter 3 
before getting here. Section 17.3 illustrates factor analysis, which shares some 
of the technical machinery of PCA, but takes a different view. Factor anal-
ysis is an example of the statistical techniques trying to find latent, i.e., not 
directly observable, variables that may help in understanding an otherwise 
too complicated phenomenon. The chapter closes with Section 17.4, which 
outlines a range of techniques collectively known as cluster analysis. This 
set of methods aims at grouping observations into similar clusters, implicitly 
discovering some common features. Again, this has plenty of applications as 
tariff design and market segmentation, just to name a couple of them. 
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17.1 THE NEED FOR DATA REDUCTION 

Consider a sample of observations X^fe' G W, k = 1 , . . . , n. Each observation 
X(fc) consists of a vector of p elements X\ '. lip = 2, visualizing observations 
is easy, but this is certainly no piece of cake for large values of p. Hence, 
we need some way to reduce data dimensionality, by mapping observations in 
Rp to observations in a lower-dimensional space M9, where q is possibly much 
smaller than p. Reducing data should be helpful in 

• Simplifying our analysis 

• Improving regression (when too many variables are considered, numer-
ical results may not be stable because of collinearity) 

• Speeding up Monte Carlo simulation by concentrating sampling on the 
most relevant dimensions 

• Classifying patterns 

• Spotting outliers 

One possible strategy for reducing dimensionality of data is to discard some 
components of each observed vector. For instance, we could consider only the 
first component X\ of each observation. However, by adopting such a crude 
strategy, we will miss much information. 

Example 17.1 As a concrete example, imagine analyzing grades obtained 
by a sample of students on different subjects. Comparing students on the basis 
of their performance obtained in only one subject, whatever it is, does not 
seem quite appropriate. Taking the average of the grades is a better choice, 
but it does not make much sense, either, even though this is what is typically 
done, since it aggregates different kinds of ability. We might have different 
subjects that are in fact strongly related to one another; the consequence is 
that some grades might be strongly correlated, whereas other subjects shed 
some light on unrelated forms of intelligence. Generalizing a bit, we might 
take linear combinations of grades. In other words, we could consider a small 
set of linear combinations of variables for weight vectors u^: 

p 
Zj = u j x = 2 J UÍJXÍ 

¿=i 

For each weighting scheme j , we find a new variable Zj. But how can we find 
a sensible way to assign weights? We should find a limited set of variables 
Zj, which really contribute the most information. By "most information," 
we mean combinations that maximize variance and are uncorrelated. The 
rationale is that we should keep just a few variables Zj that account for 
most observed variability among students and are not redundant in terms of 
information they provide. This is what principal component analysis does. 
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X, 

X, 

Fig. 17.1 Introducing P C A . 

Alternatively, we could try to find underlying factors, which are latent as 
they are not directly observed, which should explain students' performance. 
This is the approach taken by factor analysis. Each observation X^fc' should 
be rewritten as a linear function of just a very few factors fj. Such latent 
factors might correspond to basic abilities that may have different degrees of 
influence on results obtained in different subjects. 

Alternatively, we might just try to find meaningful groups of similar stu-
dents, which may be ideal candidates for different types of jobs or further 
study, or maybe for supplemental lecture hours in order to help them. This 
is what cluster analysis is all about. D 

17.2 PRINCIPAL COMPONENT ANALYSIS (PCA) 

To introduce principal component analysis (PCA) in the most intuitive way, 
let us have a look at Fig. 17.1, which shows a scatterplot of observations in 
two dimensions, X\ and Xj,. The observations are clearly correlated, and 
correlation is positive. Now, consider the two axes referring to variables Z\ 
and Z2. Of course, we may represent the very same set of observations in 
terms of Z\ and Z^. This is just a change of coordinates, accomplishing two 
objectives: 

• The data have been centered, which is obtained by subtracting the sam-
ple mean X — X; as we observed, this shift in the origin of data is often 
advisable to improve numerical stability in data analysis algorithms.1 

1See Example 4.13 for a numerical illustration. We have defined the centering matrix in 
Example 15.3. 



852 DEALING WITH COMPLEXITY: DATA REDUCTION AND CLUSTERING 

• The variables Z\ and Zi are uncorrelated; this is accomplished by a 
rotation of the axes. 

We recall from Section 3.4.3 that to rotate a vector we multiply it by an or-
thogonal matrix. Since orthogonal matrices enjoy plenty of nice properties, 
we might be able to find a linear transformation of variables with some inter-
esting structure. We notice that variables Z\ and Z2, regarded as coordinates, 
are parallel to the axes of an ellipsoid associated with the scatterplot, and the 
first variable is associated with the largest variance. In fact, there are two 
different ways to introduce PCA: 

1. PCA is a means of taking linear combinations of variables, in such a 
way that they are uncorrelated. 

2. PCA is a way to combine variables so that the first component has 
maximal variance, the second one has the next maximal variance, and 
so forth. 

Let us pursue both points of view. 

17.2.1 A geometric view of PCA 

The linear data transformation, including centering, can be written as 

Z = A(X - X) 

where A € M.p'p. We assume that data have already been centered, in order 
to ease notation. Hence 

Z\ = áéé×é + CL12X2 + � · · + ï,÷ñ×ñ 
%2 = Û21-Xl + «22-^2 + " " " + CL2pXp 

Zp = á,ñ÷×é + αΡ2-^2 + · · · + CLppXp 

The Zi variables are called principal components: Z\ is the first principal 
component. We recall that the matrix A rotating axes is orthogonal: 

A T A = I 

Now, let us consider the sample covariance matrix of X, i.e., βχ . Since we 
assume centered data, we recall from Section 15.3.1 that this matrix is given 
as follows: 

1 T Sx = -XTX n — 1 
Now, we may also find the corresponding sample covariance matrix for Z, Sz, 
taking advantage of the results of Section 15.3.1. However, we would like to 
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find a matrix A such that the resulting principal components are uncorrelated; 
in other words, Sz should be diagonal: 

S z = A S X A T = 

si 
sk 

si. 
where <S|. is the sample variance of each principal component. The matrix A 
should diagonalize the sample covariance matrix Sx, and we have already seen 
such a diagonalization in Eq. (3.16). To diagonalize Sx, we should consider 
the product 

λι 
M 

p J S x P 

ë ψ j 
where matrix P is orthogonal and its columns consist of the normalized eigen-
vectors of the sample covariance matrix; since this is symmetric, its eigenvec-
tors are indeed orthogonal.2 The diagonalized matrix consists of the eigenval-
ues λ,, i — 1 , . . .,p, of the sample covariance matrix Sx. Putting everything 
together, we see that the rows af, i = 1 , . . . ,p, of matrix A should be the 
normalized eigenvectors of the sample covariance matrix: 

A = 

L a p J 

We also see that the sample variances of the principal components Z¿ are the 
eigenvalues of Sx: 

c2 ι,. 
If we sort eigenvalues in decreasing order, we see that indeed Z\ is the first 
principal component, accounting for most variability. Then, the second princi-
pal component Z2 is orthogonal to Z\ and is the second in rank. The fraction 
of variance explained by the first q components is 

λ ι + λ 2 + ···λ„ λι + λ2 + · · · + λ„ 
λ ι + λ 2 + · · · + λρ E¿=i[Sz]¿¿ 

Taking the first few components, we can account for most variability and 
reduce the problem dimension by replacing the original variables by the prin-
cipal components. 

2See Theorem 3.10. 
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17.2.2 Another view of PCA 

Another view is obtained by interpreting the first principal component in 
terms of orthogonal projection. Consider a unit vector u £ MP, and imagine 
projecting the observed vector X on u. This yields a vector parallel to u, of 
length u T X . Since u has unit length, the projection of observation X^^ on 
u is 

P x w = (u r X( f c ) )u 

We are projecting p-dimensional observations on just one axis, and of course 
we would like to have an approximation that is as good as possible. More pre-
cisely, we should find u in such a way that the distance between the originally 
observed vector X'fe) and its projection is as small as possible. If we have a 
sample of n observations, we should minimize the average distance 

Ellx(fc)-px« 
fc=l 

which looks much like a least-squares problem. This amounts to an orthogonal 
projection of the original vectors on u, where we know that the original and 
the projected vectors are orthogonal.3 Hence, we can apply the Pythagorean 
theorem to rewrite the problem: 

l|x(fc)-Px«ll2=l|x(,s)ll2-l|Px«ll2 

Therefore, we essentially want to maximize 

Σΐΐρ*ΐ , , ' X J 2 

¿ = 1 

subject to the condition || u ||= 1. The problem can be restated as 

max uTA'TA'u 

s.t. u T u = 1 

But we know that, assuming data are centered, the sample covariance matrix 
is Sx = XTX/{n — 1); hence, the problem is equivalent to 

max u T S x u (17.1) 
s.t. u T u = 1 (17.2) 

In plain English, what we want is finding one dimension on which multi-
dimensional data should be projected, in such a way that the variance of 

3See Example 3.7. 
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the projected data is maximized. This makes sense from a least-squares per-
spective, but it also have an intuitive appeal: The dimension along which we 
maximize variance is the one providing the most information. 

To solve the problem above, we may associate the constraint (17.2) with 
a Lagrange multiplier λ and augment the objective function (17.1) to obtain 
the Lagrangian function:4 

£(u, A) = u T S x u + λ(1 - u T u ) = u T ( S x - ÄI)u + λ 

The gradient of the Lagrangian function with respect to u is 

2(SX - AI)u 

and setting it to zero yields the first-order optimality condition 

Sxu = Au 

This amounts to saying that A must be an eigenvalue of the sample covariance 
matrix, but which one? We can rewrite the objective function (17.1) as follows: 

u T S x u = AuTu = A 

Hence, we see that A should be the largest eigenvalue of Sx, u is the cor-
responding normalized eigenvector, and we obtain the same result as in the 
previous section. Furthermore, we should continue on the same route, by 
asking for another direction in which variance is maximized, subject to the 
constraint that it is orthogonal to the first direction we found. Since eigen-
vectors of a symmetric matrix are orthogonal, we see that indeed we will find 
all of them, in decreasing order of the corresponding eigenvalues. 

17.2.3 A small numerical example 

Principal component analysis in practice is carried out on sampled data, but 
it may be instructive to consider an example where both the probabilistic and 
the statistical sides are dealt with.5 Consider first a random variable with 
bivariate normal distribution, X ~ ëß(0, Σ) , where 

L P 1 . 

4Strictly speaking, we are in trouble here, since we are maximizing a convex quadratic form. 
However, we may replace the equality constraint by an inequality constraint, which results 
in a concave problem, i.e., a problem in which the optimal solution is on the boundary of 
the feasible solution (see Section 12.1.3). It turns out that the solution we pinpoint using 
the Lagrange multiplier method is the right one. 
5This example has been adapted from Chapter 9 of Ref. [1]. 
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and p > 0. Essentially Xi and X2 are standard normal variables with positive 
correlation p. To find the eigenvalues of Σ , we must find its characteristic 
polynomial and solve the corresponding equation 

1 - λ 
P 

P 
1 - λ = ( 1 - λ ) 2 - ρ 2 0 

This yields the two eigenvalues λι = 1 + p and X?. = 1 — p. Note that the two 
eigenvalues are positive, since p is a correlation coefficient. To find the first 
eigenvalue, we consider the system of linear equations: 

t i l 
u2 

(1 + P) 
U l 

" 2 

Clearly, the two equations are linearly dependent and any vector such that 
ui = i¿2 is an eigenvector. By a similar token, any vector such that u\ = —u? 
is an eigenvector corresponding to ΐ2- Two normalized eigenvectors are 

7 i 
1 

V ^ L 1 
1 

72 = 
1 1 

V / 2 L - 1 J 
These are the rows of the transformation matrix 

Z = A(X - μ) = J_ 
71 

1 
- 1 

Xi 
Xi 

Since we are dealing with standard normals, ì = 0 and the first principal 
component is 

7 X1+X2 

The second principal component is 

Z2 

v/2 

X\ — Xi 
v/2 

As a further check, let us compute the variance of the first principal compo-
nent: 

Var(Zi) = \ [Var(Xi) + Var(X2) + 2Cov(Xi, X2)} = 1 + p = λι 

Figure 17.2 shows the level curves of the joint density of X when p = 0.85: 

1 Γ 1 
/x(x) = 2π(1 - p2) exp T v - i , χ ' Σ 

Since correlation is positive, the main axis of the ellipses has positive slope. 
It is easy to see that along that direction we have the largest variability. 

As we noted, practical PCA is carried out on sampled data. Figure 17.3 
shows a sample of size 200 from the above bivariate normal distribution, with 
p = 0.85. The sample statistics are 
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Fig. 17.2 Level curves of a multivariate normal with p = 0.85. 

X -0.0395 
-0.0568 

0.8269 
0.7118 

0.7118 
0.8768 

Since the sample size is not very large, we see that estimated parameters 
are not too close to what is expected. Nevertheless, the observation cloud 
(scatterplot) displayed in Fig. 17.3(a) clearly shows positive correlation. The 
matrix of normalized eigenvectors is 

C 0.6946 -0.7194 
0.7194 0.6946 

Apart from a sign, the values in this matrix, if the estimates were perfect, 
should be l / \ /2 = 0.7071. The eigenvalues of the sample covariance matrix 
are 

λι = 1.5641, λ2 = 0.1396 
and indeed: 

C S x C 2 1.5641 0 
0 0.1396 

Note that data need be centered, since the sample means are not zero. The 
two small plots in Figs. 17.3(b) and (c) show the two principal components, 
i.e., the projections of the original data. We clearly see that the first principal 
component accounts for most variability, precisely 

1.5641 
1.5641 + 0.1396 

91.81% 

17.2.4 Applications of PCA 

Principal component analysis can be applied in a marketing setting when 
questionnaires are administered to potential customers asking for a quanti-
tative evaluation along many dimensions. Many such questions are, or are 
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(a) 

(b) 

(c) 

Fig. 17.3 PCA on sampled data. 

perceived as, redundant. Spotting the few principal components may help in 
assessing which product features, or combination thereof, are most important. 
They can also tell groups of customers apart, helping in market segmentation. 

PCA can be applied in a financial setting as well, to reduce the dimension-
ality of the term structure of interest rates, which specifies an interest rate for 
different time periods. Let Rt,t+r be the annualized interest rate for a loan 
starting at time t and maturing at time t + r , where τ is the length of corre-
sponding time period. Usually, such rates are not constant and are increasing 
with r . There are different theories trying to explain the term structure; 
one of the possible explanations is based on liquidity risk, which is higher 
for longer maturities. If we observe these rates over time, they are going to 
change randomly. However, such changes must preserve some basic consis-
tency between rates, in order to prevent arbitrage opportunities. Measuring 
and managing interest rate risk is complicated by the presence of so many 
interrelated risk factors; also Monte Carlo simulation can be challenging. One 
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possible approach to make the problem more manageable is to replace the 
term structure by a few key risk factors, possibly obtained by PCA.6 

17.3 FACTOR ANALYSIS 

The rationale behind factor analysis may be best understood by a small nu-
merical example. 

Example 17.2 Consider observations in R5 and the correlation matrix of 
their component variables ×÷, ×2, ■ ■ ■, Xs'-

' 1.00 0.90 0.05 0.05 0.05 " 
0.90 1.00 0.05 0.05 0.05 
0.05 0.05 1.00 0.90 0.90 
0.05 0.05 0.90 1.00 0.90 
0.05 0.05 0.90 0.90 1.00 _ 

Does this suggest some structure? We see that X\ and X2 seem to be strongly 
correlated with each other, whereas they seem weekly correlated with X3, X4, 
and X5. The latter variables, on the contrary, seem to be strongly correlated 
with one another. This suggests that the components of the random vector X 
have some latent structure. In particular, we may imagine the existence of two 
factors, /1 and /2, that explain the two groups of variables. Some additional 
"noise" component must exist, otherwise we would have a perfectly block-
structured matrix, but it seems that we might reduce dimensionality from 5 
to 2, without losing much information. D 

The example displays an obvious structure, which may need some data 
transformation work to be discovered in more general cases. Factor analysis 
(FA) is somewhat related to principal component analysis, as both may be 
regarded as data reduction procedures; however 

• In PCA we build linear combinations of observable variables; in FA we 
look for unobservable underlying factors. 

• In PCA we want to explain most of observed variance; in FA we work 
with covariances and correlations. 

To express FA in formulas, let us introduce a vector f of m factors, fj, j = 
1 , . . . , m, where m <p. These factors are common to all p components X¿ of a 
random vector X; these are also associated with specific factors e¿, ¿ = 1 , . . . ,p, 

6See, e.g., Chapters 3 and 6 of L. Martellini, P. Priaulet, S. Priaulet, Fixed-Income Securi-
ties: Valuation, Risk Management, and Portfolio Strategies, Wiley, New York, 2003. 
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resulting in the following set of relationships: 

-ΧΊ = Ml + λ ι ι / ι + h Xlmfm + Cl 
�̂ 2 = â2 + Mlfl + l· \2mfm + 62 

Xp = μρ + Xpifi + · · · + A p m / m + ep 

The coefficients ë^ are called factor loadings and are related to the impact of 
common factor fj on component X¿. The following conditions are typically 
assumed: 

. E [ / i ] = 0 , V a r ( / j ) = l 

• E[ej] = 0, Var(e¿) = øß (specific variance) 

• Cov(/j, fk) = 0 for j ö k (uncorrelated factors) 

• Cov(e¿, efe) = 0 for i ö k (uncorrelated specific components) 

• C O V ( C Í , / J - ) = 0 

These assumptions imply that E[X¿] = /x¿ and all of the involved factors, 
common and specific, are mutually uncorrelated; in other words, the model 
assumes that the factors fj represent whatever is "common" between the 
components. Since common factors are uncorrelated, we have an orthogonal 
factor model. Since specific factors are uncorrelated as well, we may also 
speak of a diagonal model.7 This way of writing FA bears some resemblance 
to multiple linear regression, but we should note some key differences: 

• We are relating factors to many variables X¿ simultaneously, not a single 
one. 

• In linear regression we use observable explanatory variables; factors fj 
are latent (unobservable). 

We may also express FA in matrix form: 

X = ¿i + Af + e (17.3) 

where the loading matrix A S Mp,m collects the factor loadings λ^. In order to 
make the idea more precise and operational, we need to express the covariance 
matrix of X: 

Σ = Cov(Af ) + Cov(e) 

= ACov(f )ΛΤ + Φ 

= ΛΙΛ Τ + Φ 

= ΛΛ Τ + Φ 

7See Example 9.21. 
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An important consequence of the above assumptions is that the matrix Φ is 
diagonal; in fact, its diagonal contains the specific variances øß. 

The main task of FA is to find the loading matrix Λ. There is a host 
of approaches for doing so, including methods based on maximum-likelihood 
estimation, and commercial software packages for multivariate analysis offer 
the user plenty of choices. A most important point to notice is that, whatever 
method we use, factors are not unique. To see this, consider an orthogonal 
matrix T, representing a vector rotation; since T T T = I, we may rewrite 
(17.3) as 

y = μ + ATT T f + e 
= μ + Λ*Γ + € 

where A* = AT and f * = TTf. This amounts to rotating the factors, and it 
is easy to see that the covariance matrix Σ can be expressed in terms of A* 
as well: 

Σ = Λ*(Λ*)Ô + Φ 
= (ΛÔ)(ΛÔ)Ô + Φ 
= Λ Ô Ô Ô Λ Ô + Φ 
= ΛΛÔ + Φ 

This shows that the choice of factors is not unique. Software tools also offer 
many factor rotation strategies, which may help in finding a sensible inter-
pretation of the factors. Generally, finding such an interpretation is difficult 
when many factor loadings are large for all of the variables; factor rotation 
may be used to find a meaningful structure. Doing so is not trivial at all, as 
it requires experience and domain-specific knowledge. 

Example 17.3 Consider the data-generating model of Eq. (17.3), where: 

40 " 
-30 

60 
100 

- 4 0 

, Λ = 

10 
1 
2 

11 
- 3 

1 " 
8 

-10 
3 
6 

The two factors f\ and f<¿ are independent standard normal variables, and 
the five specific factors e¿, i = 1, . . . ,5, are independent normal variables 
with expected value 0 and standard deviation 5. Of course, in real life, we 
do not know the underlying data-generating process, but let us see what we 
can recover by sampling n = 1000 observations by a Monte Carlo method 
and applying factor analysis on the resulting data. By using a commercial 
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software package,8 we find the following estimates: 

A = 

Ö 

-0.0896 
0.8403 

-0.8865 
0.0709 
0.7738 

0.2374 

0.8687 
0.2362 
0.0194 
0.9122 

-0.2421 

0.2382 
0.2138 

0.1628 
0.3426 

This looks disappointing at first sight, as Β does not look quite like Λ. How-
ever, we should take two points into account: 

1. Factors may need to be rotated to find a meaningful pattern. 

2. For numerical convenience, factor analysis is applied to standardized 
observations. 

The last consideration suggests that we may check the estimates by comparing 
the estimated correlation matrix from the factor model with the straightfor-
ward sample correlation matrix R. The sample correlation matrix for the 
random sample was 

R = 

1.0000 0.1275 0.0924 0.7861 -0.2831 
0.1275 1.0000 -0.7407 0.2764 0.5917 
0.0924 -0.7407 1.0000 -0.0426 -0.6912 
0.7861 0.2764 -0.0426 1.0000 -0.1635 

-0.2831 0.5917 -0.6912 -0.1635 1.0000 

We urge the reader to compare this estimate with the true correlation matrix 
for the data-generating model. The correlation matrix from the factor model, 
due to standardization, is just the covariance matrix 

ΛΛ + * = 

1.0000 0.1299 
0.1299 1.0000 
0.0963 -0.7403 
0.7861 0.2750 

-0.2797 0.5930 

0.0963 0.7861 -0.2797 
-0.7403 0.2750 0.5930 
1.0000 -0.0452 -0.6907 

-0.0452 1.0000 -0.1660 
-0.6907 -0.1660 1.0000 

We see that indeed factor analysis recreates the correlation matrix rather 
well. With a smaller sample and a stronger impact of specific factors (their 

8This numerical example has been solved using the Statistics Toolbox of MATLAB; see 
h t t p : / / www.mathworks.com/. In particular, the function fac to ran has been used, with 
default settings. 
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standard deviation is only 5 in our little experiment), the results can be less 
reassuring. Furthermore, the task of finding the right rotation and a useful 
interpretation remains a challenge. D 

17.4 CLUSTER ANALYSIS 

The aim of cluster analysis is to search for patterns in a dataset by grouping 
similar items. The number of groups (clusters) need not be fixed in advance, 
and, in fact, there is an array of different methods, which share a common 
need: the definition of a distance between observations, which is used to 
measure similarity or dissimilarity. Observations within a cluster should be 
similar one to another and dissimilar from items in other clusters. We first 
outline a few methods to measure distance, and then we describe the two 
main families of clustering methods, hierarchical and nonhierarchical. 

17.4.1 Measuring distance 

Given two observations X, Y 6 W, we may define various distance measures 
between them, such as 

• The Euclidean distance 

d(X,Y) = 
M 

£ (Xj - Yjf = y/(X-Y)T(X-Y) 

The Mahalanobis distance9 

d(X, Y) = ^ ( X - Y ^ S - ^ X - Y ) 

where S is the (sample) covariance matrix. 

Other distances may be defined to account for categorical variables; we may 
also assign weights to variables to express their relative importance. These 
distances measure the dissimilarity between two single observations, but when 
we aggregate several observations into clusters, we need some way to measure 
distance between clusters, i.e., between sets of observations. Four ways of 
defining distance between clusters are illustrated in Fig. 17.4: 

• Figure 17.4(a) illustrates the single linkage (nearest-neighbor) distance 

D(A, B) = min {d(X, Y); XGA,YGB} 

'See Section 15.3.2. 
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(a) (b) 

(c) (d) 

Fig. 17.4 Four different distances between clusters. 

This distance between clusters A and B is given by the smallest distance 
between an element of A and an element of B. 

Fig. 17.4(b) illustrates the complete linkage (farthest-neighbor) distance 

¼{Á,Â)=ôç¢÷{Ü(×,Õ); XeA,YeB} 

This distance between clusters A and B is given by the largest distance 
between an element of A and an element of B. 

Figure 17.4(c) illustrates the average linkage distance 

, NA NB 

NANB 
¡=1 3=1 

This distance between clusters A and B is given by the average distance 
between any pair consisting of an element of A and an element of B; 
NA and NB are the numbers of elements in A and B, respectively. 

Figure 17.4(d) illustrates the centroid distance 

D(A,B) = d(XA,YB) 

In this case we take the sample mean along each dimension for obser-
vations in cluster A, and define the centroid X ¿ ; the centroid X ί for 
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Fig. 17.5 A dendrogram from hierarchical clustering. 

cluster B is defined in the same way, and the distance between clusters is 
given by the distance between these two "representative" observations, 
which are essentially the barycenter of each set [the black squares in 
Fig. 17.4(d)]. 

17.4.2 Hierarchical methods 

A first class of approaches to cluster formation is based on the sequential 
construction of a tree {dendrogram), that leads us to form clusters; Fig. 17.5 
shows a simple dendrogram. The leaves of the tree correspond to objects; 
branches of the tree correspond to sequential groupings of observations and 
clusters. Since a tree suggests a natural hierarchy, methods in this class are 
called hierarchical. Methods differ in the way clusters are built: 

• In divisive methods we start from one big cluster and proceed to build 
disjoint smaller clusters. 

• In agglomerative methods, increasingly large clusters are built by merg-
ing smaller ones. 

The second approach is more common and is best illustrated by a simple 
example. 

Example 17.4 Consider four observations collected in the following matrix: 

X = 

3 
10 
- 1 
20 

6 
- 2 

3 
7 

9 
3 
9 
3 

- 1 
5 

- 2 
- 3 
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Remember that rows correspond to observations and columns to variables; so, 
the first observation is Xi = [3,6,9, — 1]T. Using Euclidean distance, we find 
the following distance matrix: 

0.0000 13.6015 5.0990 18.1659 " 
13.6015 0.0000 15.1987 15.6525 
5.0990 15.1987 0.0000 22.2261 

18.1659 15.6525 22.2261 0.0000 

Now, let us build clusters using an agglomerative (bottom up) strategy based 
on the centroid distance between clusters. The first iteration involves the 
distances between single observations, and we immediately see in matrix D 
that the two closest observations are Xi and X3, whose distance is 5.0990. 
The centroid of these two observations is 

XA = [1.0,4.5,9.0,-1.5]T 

Now we compute the following distances: 

D(KA, X2) = 14.1951, D(KA, X4) = 20.1370 

By comparing these distances with d(X2,X,i) = 15.6525, we conclude that 
we should merge cluster A with X2, obtaining a new cluster B consisting of 
three observations; this is finally merged with the remaining observation X4 
and the process stops, resulting in the dendrogram of Fig. 17.5.10 We observe 
that the centroid of cluster B is 

X B = [4.0000,2.3333,7.0000,0.6667]T 

and its distance from X4 is 17.5278, which is the height of the dendrogram. In 
fact, the height of the vertical bars in the dendrogram is related to distances. 

D 
In the example, we always merge a cluster with a single observation, but 

this need not be the case in general, as we may well merge clusters. We should 
note that in this class of methods we do not necessarily specify the number of 
clusters a priori. Given the tree, we may decide where to draw a horizontal 
line separating clusters, based on the distances. Also note that the approach 
is not iterative, but one-shot: In agglomerative methods we build the tree all 
the way up, without revising previous decisions. 

17.4.3 Nonhierarchical clustering: fc-means 

The best-known method in the class of nonhierarchical clustering algorithms 
is the k-means approach. In the fc-means method, unlike with the hierarchi-
cal ones, observations can be moved from one cluster to another in order to 

The dendrogram has been obtained by applying the Statistics Toolbox of MATLAB. 
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minimize a joint measure of the quality of clustering; hence, the method is 
iterative in nature. The starting point is the selection of k seeds, one per 
cluster, which are used to "attract" items into the cluster. The seeds should 
be natural attractors; i.e., they should be rather different from one another. 
There is no point in selecting two seeds that are close to each other, as they 
would be natural candidates for being placed in the same cluster. We also 
notice that in this approach, we have to specify in advance the number of 
clusters that we wish to form. 

There are several variations on the theme, but a possible fc-means algorithm 
is as follows: 

• Step 1: Select k initial seeds. 

• Step 2: Find an initial partitioning by assigning each observation to 
the closest cluster; in doing so, we may use the distance between the 
observation to be assigned and the centroid of each cluster; the centroid 
of a cluster is updated whenever a new element is added. 

• Step 3: Reassign selected observations to another cluster if this im-
proves an overall measure of the quality of clustering; update centroids 
accordingly, and stop when no further improvement is possible. 

One possible measure of overall clustering quality in step 3 is the error sum 
of squares of the partition (ESS) 

n 

ESS = ¿^(X¿ - Xc(t)) (X* - Xc(o) 
¿=i 

where C(i) is the index of the cluster to which observation X¿ is currently 
assigned, and Χ<?(») is its centroid. Clearly, the procedure is heuristic, because 
we may get stuck in a local minimum, which may depend on the initial seeds. 

For further reading 

• For more details on PCA see, e.g., Chapters 4, 12, and 4 of Refs. [2], 
[3], and [4], respectively. 

• There are actually two possible uses of factor analysis: exploratory and 
confirmatory. They are dealt with in Chapters 5 and 6 of Ref. [2], 
respectively. See also Chapter 13 of Ref. [3] and Chapters 5 and 6 of 
Ref. [4]. 

• The same references cited above may be consulted for cluster analysis: 
[2, Chapter 8]; [3, Chapter 14]; [4, Chapter 7]. 
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discretization, 446 
discriminant 

analysis, 814 
linear, 837 

function, 814 
diseconomy of scale, 115 
dispersion, 20 

measure, 209, 214 
distribution 

F, 330 
asymptotic, 518 
Bernoulli, 278 
beta, 314, 452, 788 
bimodal, 213 
binomial, 283, 422, 788 
CDF of normal, 319 
chi-square, 328, 330, 392, 393, 

419, 506 
discrete, 295 
empirical, 272, 323 
Erlang, 317 
exponential, 314, 340, 375,451 
function, 451 
Gaussian, 317 
geometric, 281, 375, 379 
left-skewed, 212 
lognormal, 332, 539 
multivariate normal, 369 
negatively skewed, 212 
nonparametric, 272 
normal, 317, 340, 341 
parametric, 272 
Poisson, 287, 296, 316, 340 
positively skewed, 212 
right-skewed, 212 
standard normal, 319, 400 
Student's t, 329, 396 
Student's t distribution, 392 
symmetric, 211, 307 
theoretical, 272, 323 

triangular, 313 
uniform continuous, 300, 308, 

312 
uniform discrete, 273 

domain (of a function), 63, 68, 79, 
91 

dot product, 150 
downchild, 681 
drift, 713 
dual variable, 664 
duration 

Macaulay, 106 
modified, 106 

dynamic decision model, 616 

economic order quantity, 49, 96,102, 
126, 130, 585, 616 

model, 336 
multi-item model, 600 

economy of scale, 56, 115 
edge, 624 
effect 

column, 441 
row, 441 
significant, 501 

efficient 
frontier, 633 
portfolio frontier, 709 
solution, 632 

eigenvalue, 175, 183, 187, 358 
and quadratic forms, 183 

eigenvector, 175 
orthogonal, 177, 366 
unit, 175 

elastic model formulation, 635 
elimination of variables, 143 
EMV, see expected monetary value 
end-of-horizon effect, 618 
EOQ model, see economic order quan-

tity 
epigraph, 110 
equation 

nonlinear, 603 
polynomial, 70 
system of, 13 
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system of linear, 137, 141, 672 
equilibrium in dominant strategies, 

770 
error, 487, 537 

assumptions about, 509 
homoskedastic, 490 
nonnormal, 499 
normally distributed, 490, 499 
relative, 535 
type I, 404 
type II, 404 

error sum of squares of the parti-
tion, 867 

ESS, see explained sum of squares, 
see error sum of squares 
of the partition 

estimate, 388 
estimator, 388 

biased, 216 
consistent, 454 
efficient unbiased, 462 
least-squares, 491 
point, 393, 461 
properties, 491 
unbiased, 391, 462, 499 

Euclidean 
distance, 151, 822 
norm, 151, 647 

Euler's number, 73, 90 
event, 238, 256, 343 

algebra of, 238 
complement, 240 
definition, 239 
disjoint, 245 
family of, 257, 343 
field of, 343 
in simulation, 448 
independent, 32, 245, 360 
independent (definition for a 

pair of events), 245 
independent (definition for mul-

tiple events), 246 
EVPI, see expected value, of per-

fect information 
expectation (linearity of), 265 

expected monetary value, 696 
expected profit, 275 
expected return, 365 
expected value, 21, 28, 157, 263, 

301, 359, 490 
of a function of a random vari-

able, 266, 302 
of a function of random vari-

ables, 359 
of a sum of random variables, 

265 
of perfect information, 699 
sum of random variables, 326 
unconditional, 372 
vs. mean, 263 

explained sum of squares, 503 
explanatory variable, 527 
exploratory analysis, 199, 811 
exponent, 71 
exponential 

derivative, 89 
distribution, 314, 397 
function, see function, expo-

nential, 288, 369 
growth, 73 
random variable, 287, 314 
variable, 377 

exponential smoothing, 546 
simple, 547 
with multiplicative seasonality, 

557 
with trend, 555 
with trend and multiplicative 

seasonality, 560 
extensive form, 768 
extrapolation, 486 
extreme point, 57 

F distribution, 421, 443, 506 
F test, 507 
FA, see factor analysis 
face value, 71 
factor analysis, 229, 813 
factor loading, 860 
factor model, 426, 501 
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factorial, 60 
factorization, 360 
fat solution, 719 
fat tail, 310, 329 
feasible 

region, 8, 107, 585 
set, 107, 585 
solution, 14 

field, 343 
generated by a partition, 345 

filtration, 347 
decision adapted to, 348 

finance, 44 
financial portfolio management, 364 
first-order optimality condition, 107 
fit sample, 537 
fixed charge, 51, 52, 642, 645 
fixed-charge problem, 641 
fixed cost, see cost, fixed 
forecast, 21 

accuracy, 533 
bias, 533 
horizon, 528 

forecasting error, 532 
forecasting model 

qualitative, 527 
quantitative, 527 

forgetting factor, 548 
forward contract, 38, 134 
frequency, 203 

cumulative, 25, 219, 223 
relative, 18, 25, 29, 203, 234, 

272, 295 
Pubini's theorem, 191 
function, 63 

composite, 77, 79 
concave, 704 
continuous, 76, 304 
continuous from the left, 260 
continuous from the right, 76 
continuously differentiable, 86, 

99 
curvature, 98 
derivative of composite, 93 
derivative of inverse, 94 

differentiable, 86, 216, 606 
discontinuous, 86, 260 
discontinuous from the left, 76, 

260 
exponential, 71, 73, 81, 101, 

125, 369 
Gaussian, 77 
inverse, 79, 304 
inverse generalized, 306 
monomial, 71 
monotonically increasing, 307 
negative exponential, 73 
nondecreasing, 260, 299 
nondifferentiable, 130, 628 
noninvertible, 304 
piecewise constant, 261 
piecewise linear, 86, 135, 649, 

736 
polynomial, 71 
rational, 68, 95 
strictly concave, 730 
utility, 730 

fundamental analysis, 528 

game theory, 35 
Gaussian 

distribution, 317 
elimination, 143, 173 
process, 341 
white noise, 564 

Gaussian distribution, see normal 
distribution 

geometric series, see series, geomet-
ric 

global optimum, 655 
goal programming, 630 
gradient, 184, 594, 605, 656 

half-plane, 9, 15, 592 
half-space, 592 
here-and-now decision, 699 
Hessian, see matrix, Hessian, 358 

matrix, 599, 604 
heteroskedastic, 489 
heteroskedasticity, 511 
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robustness to, 520 
histogram, 20, 204, 295 
historical simulation, 532, 551 
Holt's forecasting model, 555 
Holt-Winter method, 560 
homoskedastic, 489 
homoskedasticity, 512 
hyperbola, 54 
hypothesis 

alternative, 403 
null, 403, 500 
test, 437, 485 

multivariate, 808 
testing, 402, 500 

i.i.d. variables, 324, 327, 386 
IARA, see increasing absolute risk 

aversion 
IIA, see independence of irrelevant 

alternatives 
ILP, see linear programming, pure-

integer 
image (of a function), 63, 79 
increasing absolute risk aversion, 708 
increment ratio, 66, 83, 89 
increments (independent and sta-

tionary), 340 
independence, 226, 537 
independence of irrelevant alterna-

tives, 841 
independent event, see event, inde-

pendent 
inequality, 12, 15, 57 
inferential statistics, see statistics, 

inferential, 215, 263, 534 
information set, 529 
initialization (in exponential smooth-

ing), 551 
inner product, 150, 153, 160, 164, 

522, 523 
defining properties, 154 

input analysis, 451 
integral, 121, 294 

double, 190, 356 
improper, 125 

in multiple dimensions, 189 
in two dimensions, 355 
linearity of, 124 
multidimensional, 718 

integrality 
requirement, 607, 640 
restriction, 587 

integration, numerical, 444 
interaction (in ANOVA), 441 
interarrivai time, 287, 316 
intercept, 66, 481, 489, 501 
interdependence analysis, 811 
interior solution, 117, 589 
internal rate of return, 68, 79, 104 
interquartile range, 225 
interval, 57, 295, 343 

bounded, 57, 295 
closed, 57 
estimate, 394, 400 
estimator, 400 
open, 57 
open-closed, 57 
unbounded, 57 

inventory 
holding cost, 52 
management, 35, 49 

inventory control, 336, 445 
continuous review, 445 
periodic review, 445 

inverse function, 74 
generalized, 306 

inverse matrix, see matrix, inverse 
inverse transform method, 451 
investment analysis, 68 
IRR, see internal rate of return 

Jensen's inequality, 268, 332, 704 
jointly normal distribution, 341 
jump, of a function, 261 
just-in-time philosophy, 337 

fc-means, 866 
Karush-Kuhn-Tucker conditions, 662 
King Kong effect, 433 
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KKT conditions, see Karush-Kuhn-
Tucker conditions 

knapsack problem, 639 
Kolmogorov, 233 
Kolmogorov-Smirnov test, 436 
kurtosis, 255, 310, 329, 433, 517 

excess, 319 

lack of fit, 47 
lack of memory, 374 
Lagrange multiplier, 654 
Lagrangian function, 655, 663, 855 
Laplace, 233 
latent variable, 815 
law of iterated expectations, 374, 

517 
law of large numbers, 335, 702 

strong, 458 
weak, 454 

law of one price, 136, 139, 167 
LCG, see linear congruential gen-

erator 
lead time, 49, 336, 611 
least squares, 480 

ordinary, 520 
weighted, 520 

least-squares 
estimator, 491 
model, 560 
problem, 542 

level, 538, 542 
level curve, 15, 64, 369, 592, 822 
leveraging, 701 
liability, 730 

uncertain, 734 
likelihood 

function, 463, 787 
log-, 464 
method of maximum, 463 

likelihood ratio test, 468 
limit, 54, 76 
line, 54 

equation of, 9 
real, 57 
tangent, 55, 84, 95, 101, 112 

linear 
affine transformation, 319 
dependence, 169 
independence, 169 
mapping, 163, 166 
operator, 265, 522 
space, 166 
subspace, 169 

linear affine function, see affine, func-
tion 

linear algebra, 478, 521, 817 
linear combination, 155, 165, 265, 

496, 521, 634 
of random variables, 360 

linear congruential generator, 449 
linear equation, 15 
linear programming, 590 

binary, 594 
geometry, 592 
graphical solution, 15 
mixed-integer, 594, 607 
model, 625 
problem, 15 

canonical form, 592 
continuous, 607 
standard form, 591 

pure-integer, 594 
linear regression, 361, 478, 527, 542, 

555, 628 
linear subspace, 522 
Littlewood's capacity control model, 

308 
local 

maxima, 602 
minima, 602 
optima, 590 

location measure, 209, 214, 268 
logarithm, 74, 81, 332, 464, 845 

derivative, 89 
natural, 81 

logistics, 44 
logit function, 839 
logit model, 840 
lognormal random variable, 539 
Long-Term Capital Management, 783 
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longitudinal data, 339 
lot-sizing problem, 684 
LP, see linear programming 
LP relaxation, see continuous re-

laxation 
LRT, see likelihood ratio test 
LTCM, see Long-Term Capital Man-

agement 
lurking variable, 431, 569 

MA, see moving-average process 
MAD, see mean absolute deviation 
MAE, see mean absolute error 
Mahalanobis 

distance, 822, 863 
transformation, 822 

MAPE, see mean absolute percent-
age error 

MAPE%, 535 
marginal, 356 

analysis, 306 
CDF, 356 
density, 357, 370 
distribution, 341 
profit, 306 

markdown price, 21 
market portfolio, 427, 501 
marketing, 44, 277, 839 
Markov 

chain, 378 
process, 378 

mathematical programming, 588 
matrix, 157, 591 

addition, 158 
algebra, 157, 817 
centering, 818 
conformable, 159, 161, 174 
covariance, 819 
diagonal, 174, 178, 182, 821 
diagonalization, 178 
Hessian, 186, 187, 599 
identity, 161 
inverse, 161, 171, 369 
invertible, 172, 174 
laws of algebra, 164 

lower triangular, 174 
multiplication, 158 
multiplication by a scalar, 158 
negative definite, 182 
negative semidefinite, 182 
orthogonal, 163, 175 
positive definite, 182 
positive semidefinite, 182, 366, 

563, 604 
power of, 159, 179 
rank, 171 
singular, 172 
square, 158, 159 
square root, 179 
symmetric, 160, 177, 365 
transposed, 160 
upper triangular, 174 

maturity 
of a bond, 71 
of an option, 134, 267 

maximization problem, 586 
maximizer 

global, 108 
maximum 

local, 68 
maximum-likelihood 

properties of estimator, 466 
estimation, 839 
estimator, 466 

ME, see mean error 
ME%, 535 
mean, 263 

population, 209 
sample, 209, 552 
vs. expected value, 263 

mean absolute deviation, 215, 483, 
533 

mean absolute error, 535 
mean absolute percentage error, 533 
mean error, 533, 555 
mean percentage error, 533 
mean reverting process, 574 
mean square 

due to errors, 507 
explained, 507 
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measurement model, 815 
median, 210, 219, 225, 263, 302 
memory, lack of, 317 
memoryless, 374, 397 

distribution, 379 
property, 289, 375 

method of maximum likelihood, 463 
method of moments, 462 
MILP, see linear programming, mixed-

integer 
min-max problem, 483, 628 
minimization problem, 586 
minimizer 

global, 108, 602, 603 
local, 602 
strict global, 108 

minimum 
global, 68 
local, 68 

minimum-cost flow problem, 626 
minor (of a matrix), 172 
missing data, 809 
MLE, see maximum-likelihood es-

timator 
mode, 20, 212, 263, 273, 302, 316 
model 

calibration, 843 
descriptive, 41 
fit, 480 
identification, 561 
prescriptive, 41 
validation, 452 
verification, 452 

modulus (in LCG), 449 
moment (of a random variable), 310 

central, 310 
first-order, 310 
fourth-order, 517 
higher-order, 310, 434 
sample, 434, 462 

monomial, 67, 91, 165 
Monte 

Carlo simulation, 565 
Monte Carlo 

sampling, 443, 737 

simulation, 385, 443, 552 
moving average, 542 
moving-average process, 561, 564 
MPE, see mean percentage error 
multicollinearity, 828, 831 
multidimensional scaling, 816 
multiobjective 

optimization, 631 
problem, 610 

multiplier (in LCG), 449 
multivariate statistics, 228 

Nash equilibrium, 773 
neighborhood, 108, 602 
net present value, 31, 69, 79, 104 
network, 624 

directed, 624 
optimization, 644 
undirected, 624 

newsvendor model, 51, 552, 554, 
721 

newsvendor problem, 273, 306, 335, 
701 

Niels Bohr, 487 
node (in a decision tree), 694 

chance, 694 
decision, 694 
terminal, 695 

node (in a network), 624 
destination, 624 
source, 624 

nonconvex 
optimization, 608 
problem, 711 
set, 607, 643, 719 

nondominated solution, 632 
nonlinear least squares, 843 
nonlinear programming, 653 

continuous, 607 
convex, 607 
mixed-integer, 608 
nonconvex, 608 

nonparametric test, 435 
nonstationary process, 570 
norm, 521, 647 



880 INDEX 

defining properties, 154 
Euclidean, 632 

normal 
demand, 336 
jointly, 369 
jointly variables, 820 
jointly, random variables, 325 
multivariate, 369 
variable, 496 

normal distribution, 77, 552 
CDF, 319 
three-sigma rule, 322 

normal form, 767 
normality, 537 
NPV, see net present value 
null hypothesis, 403, 420, 438, 500, 

502 
number 

integer, 56 
real, 56 

numerical error, 218 
numerical instability, 832 
numerical integration, 444 

objective function, 8, 585 
linear, 586 
nonlinear, 586 

observation, 200 
odds, 838 
OLS, see ordinary least squares 
omitted variables, 829 

distortion by, 830 
operations management, 44 
optimal mix 

in discrete manufacturing, 9, 
589 

in process industry, 622 
optimal solution, 483 
optimality condition (first-order), 117, 

480, 603 
optimization 

model, 541 
optimization model, 48 
optimization problem 

constrained, 588 

infeasible, 593 
unbounded, 593 
unconstrained, 113, 588 

option, 134 
American-style, 135 
call, 134 
European-style, 135 
growth, 34 
payoff, 267 
real, 34 

order statistic, 208, 211, 323, 785 
ordinary least squares, 520, 561 

estimators, 490 
orthogonal 

eigenvector, 177, 366 
matrix, see matrix, orthogo-

nal, 852 
projection, 522, 523 
vector, see vector, orthogonal, 

521, 656 
orthogonal factor model, 860 
out-of-sample 

performance evaluation, 560 
testing, 537 

outlier, 208, 809 
output analysis, 452 
overbooking, 256, 285, 308 
overflow error, 62 

p-value, 412, 479, 500, 508 
PACF, see partial autocorrelation 

function 
paired 

t test, 418 
observations, 417 

panel data, 339 
parameter, 199 

estimation, 453, 561 
parameter estimate, 485 
Pareto efficiency, 632 
partial autocorrelation function, 568 

sample, 570 
partial correlation, 569 
partial sum, 118 
partition, 344 
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PASTA property, 376 
pattern, 537 
PCA, see principal component anal-

ysis, see principal compo-
nent analysis 

PDF, see probability density func-
tion 

penalty 
coefficient, 636 
term, 635 

percentile, 222 
rank, 221 

percentiles, 302 
perfect information, 699 

expected value of, 699 
periodic review inventory control, 

445 
permutation, 59 
piecewise constant 

function, 122 
plant location model, 645 
plant location problem, 684 
PMF, see probability mass func-

tion 
point estimator, 393, 785 
point forecast, 277 
Poisson 

arrivals see time averages, 376 
distribution, 296, 316, 375 
process, 287, 339,375, 377, 397, 

447 
compound, 340 
inhomogeneous, 340 

random variable, 287 
polyhedron, 15, 592 
polynomial, 165, 602 

degree, 67 
equation, 70 
function, 67, 91 
model, 484 
regression, 844 

population, 198 
mean, 216 
variance, 215 

portfolio 

allocation, 270 
cardinality-constrained, 647 
choice, 709 
efficient, 709 
management, 426 
optimization, 639 
risk, 271 
tracking, 647 

position 
long, 38 
short, 38 

posterior distribution, 787 
power, 71 
predecessor node, 733 
prediction interval, 513, 836 
prediction uncertainty, 486 
price 

markdown, 277 
sales, 274 
spot, 38 

primal variable, 664 
principal component, 852 
principal component analysis, 229, 

812, 851 
prior distribution, 786 
prisoner's dilemma, 767 
probabilistic guarantee, 400 
probability, 19, 25, 28, 135, 157, 

244, 320 
a priori, 244 
additivity property, 242 
as an area, 298 
classical approach, 235 
conditional, see conditional, prob-

ability, 244, 287 
distribution, 208, 530 
frequentist approach, 234 
mass, 261 
measure, 242, 257, 343 
of an interval, 299 
risk-neutral, 139 
space, 257, 343 
subjective approach, 237 
theory, 263 
unconditional, 244, 287 
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probability density function, 294, 
298, 299 

joint, 354, 359, 444 
probability mass function, 259, 261, 

278, 281, 283, 288, 295, 
299 

joint, 354, 359 
marginal, 357 

probit model, 840 
process industry, 622 
product mix, 6 
production mix optimization, 585 
programming 

integer, 639 
linear, see linear programming 
nonlinear, 598, 653 
quadratic, 599, 665 
stochastic multistage, 730 

projection, 521 
proxy, 491 
pseudorandom variable, 445, 449 
Pythagorean theorem (for random 

variables), 524 

quadratic form, 180, 187, 365, 598 
convex, 710 

quadratic program, 628 
quadratic programming, 655 
quantile, 255, 304, 307, 336, 337, 

394, 396, 499, 507, 554, 
712 

of standard normal, 321 
quartile, 225 
queueing system, 396, 447 

R2 coefficient, see coefficient of de-
termination 

random sample, 386 
random shock, 564 
random variable, 537 

continuous, 121, 301 
definition, 256 
measurable, 345 
realization of, 256 
sum of independent, 324 

random variables 
independent, 271, 359 
jointly continuous, 356 
uncorrelated, 370 

random walk, 571 
random-number generation, 449 
range (as a dispersion measure), 214 
range (of a function), 63 
rate 

continuously compounded, 136 
discount, 30, 69, 79, 703 
interest, 30, 47 
of return, 70 
risk-free, 38, 136 

reaction function, 764 
recourse actions, 720 
reduced cost, 673 
regime-switching model, 378 
regression 

logistic, 807 
regression model, 812 
regressor, 478 

nonstochastic, 487, 490 
stochastic, 487 

rejection region, 406, 468, 501 
reorder 

level, 445 
point, 336 

replicating portfolio, 136 
residual, 480 
residuals 

analysis of, 509 
response variable, 512 
return, 70 

investment, 270 
revenue 

management, 44, 115, 130 
marginal, 117 

risk, 70, 257, 271, 337, 364 
aversion, 136, 703, 705, 710, 

730 
coefficient of absolute aversion, 

706 
coefficient of relative aversion, 

707 
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coherent measure, 718 
common factor, 427 
idiosyncratic, 427 
measure, 708 
pooling, 724 
premium, 705 
vs. uncertainty, 693 

risk-averse decision maker, 280 
risk-free return, 501 
risk-neutral decision maker, 280 
RMSE, see root-mean-square error 
RMSE%, 535 
robustness, 698 
rolling horizon, 618 
root 

cubic, 72 
of a polynomial, 68 
square, 72 

root-mean-square error, 533 
rotation matrix, 175 
roundoff, 485 

s.t., see subject to 
SACF, see sample, autocorrelation 

function 
safety stock, 337 
sample, 198, 533 

autocorrelation function, 562 
correlation, 429, 485, 505 
correlation coefficient, 479 
covariance, 424, 425 
mean, 333, 353, 387, 444, 818 
moment, 434 
partial autocorrelation function, 

570 
path, 339, 447, 538 
random, 199, 386 
simple random, 199 
size, 400 
space, 239 
standard deviation, 391, 534, 

821 
variance, 215, 391, 534, 820 

sample statistics, 385 
distributional properties, 392 

sampling uncertainty, 24 
scalar, 148, 632 

product, 151 
scalarization, 632 
scaling (graph a function), 78 
scatterplot, 228, 368, 806 
scenario, 346, 694, 731 

tree, 31, 720, 732 
SE, see standard error of estimate 
seasonal 

cycle, 539, 541 
factor, 542 

additive, 540 
multiplicative, 539 

seasonal pattern, 202 
seasonality, 22, 538, 563 

multiplicative, 557 
semicontinuous variable, 643 
sensitivity analysis, 34, 70,102, 698 
SER, see standard error of regres-

sion 
series, 58, 118 

derivative term-by-term, 121 
geometric, 119, 282, 578 

service level, 25, 305, 307, 635 
set 

complement, 343 
difference, 240, 356 
disjoint, 241 
empty, 241 
intersection, 240, 343, 356 
union, 240, 343, 344, 356 

shadow price, 664 
shift (in LCG), 449 
shifting (graph of a function), 78 
short 

position, 38 
sale, 37 
selling, 37 

short sale, 139, 167 
short-selling, 364 
shortfall, 730 
significance level, 406 
simplex method, 15, 670 
simulation 
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clock, 448 
Monte Carlo, see Monte Carlo, 

simulation 
skewness, 206, 209, 211, 255, 310, 

318, 433 
Bowley, 225 
Pearson, 212 

slack variable, 588 
slope, 56, 66, 82, 95, 479, 482, 485, 

500, 592 
Slutsky's theorem, 459, 519 
smoothing coefficient, 547 
solution 

efficient, 632 
equivalent, 592 
nondominated, 632 
unbounded, 593 

SPACF, see sample, partial auto-
correlation function 

spanning set, 168 
square root, 80, 94, 327 
square-root rule, 327 
SSR, see sum of squared residuals 
St. Petersburg paradox, 702 
standard deviation, 216, 263, 268, 

272, 302, 310, 318, 365, 
534 

computation, 216 
difference of two random vari-

ables, 415 
sample, 552 

standard error, 499 
standard error of estimate, 493 
standard error of regression, 497 
standard normal, 319, 394 
standardization, 319 
standardized variable, 370, 442, 823 
stationarity, 307, 481, 509 

condition, 358, 665 
point, 98 
point of, 185 

stationary demand, 543 
stationary point, 185 
statistic, 199, 387, 498 

robust, 211 

statistical significance, 563 
statistically significant, 403, 413 
statistics 

Bayesian, 384 
descriptive, 198 
inferential, 198 
nonparametric, 385 
orthodox, 384, 389 

steady state, 536 
steepest-descent direction, 657 
stochastic convergence, 453 

almost-sure, 456 
in distribution, 456, 518 
in probability, 453 
in quadratic mean, 455 
in rth mean, 455 
with probability 1, 456 

stochastic process, 314, 339, 346, 
538 

continuous-time, 339 
discrete-time, 339, 357, 378 
Gaussian, 341 
mean reverting, 574 
nonstationary process, 570 
weakly stationary, 562 

stochastic programming 
with recourse, 720 

stock price, 346 
stock share, 38 
stockout, 277, 305 
strategic behavior, 36 
strategy, 695 
strictly dominant strategy, 770 
strike price, 134, 267 
subadditivity, 717 
subject to, 585 
subjective 

knowledge, 785 
probability, 237, 693 

substitution of variables, 143 
sufficient statistics, 466 
sum 

double, 58 
notation, 58 

sum of squared errors, 442 
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sum of squared residuals, 480, 497, 
503 

sum of squares 
between samples, 438 
column, 443 
within samples, 438 

summary measure, 20, 209 
supply chain management, 17, 36, 

624 
support (of a probability distribu-

tion), 258, 261, 266, 304, 
314 

surface plot, 64, 370 
symmetry, 206 

t distribution, 393, 400, 499 
CDF, 408 

t test, 500, 502 
paired, 418 

tangent plane, 187 
Taylor's expansion, 100, 104, 187, 

288, 605, 656, 660, 706 
first-order, 100, 112 
second-order, 101 

technical analysis, 528 
term structure of interest rates, 858 
test, 506 

one-tail, 409 
statistic, 506 
two-sided, 407 
two-tail, 407, 500 

test sample, 537 
testing 

difference in mean of two pop-
ulations, 415 

proportions, 422 
TEV, see tracking error variance 
theory of constraints, 13 
time bucket, 528, 530 
time series decomposition, 537 

additive, 539 
multiplicative, 539 

time series model, 528 
time to delivery, 49 
time value of money, 30, 69, 696 

time window, 543 
total probability theorem, 249, 357, 

374, 787 
total sum of squares, 503 
trace (of a matrix), 177 
tracking error variance, 647 
tracking portfolio, 647 
tradeoff, 631 
transaction cost, 734 
transportation cost, 643 
transportation problem, 624 
traveling salesperson, 60 
trend, 22, 538, 542 

additive, 555, 556 
multiplicative, 556 

triangle inequality, 154 
truncation, 218 
TSS, see total sum of squares 

unbiased estimator, 389 
unbiasedness, 492 
unconditional 

expectation, 517 
probability, 387 

uncorrelated variables, 367 
underlying asset, 134 
uniform distribution, see distribu-

tion, uniform 
uniform random variable, 444 
upchild, 681 
upper triangular form, 144 
upper triangular form (system of 

equations), 144 
utility 

CARA, 707 
CRRA, 707 
DARA, 707 
expected, 736 
function, 704, 730, 735, 840 
IARA, 708 
logarithmic, 707 
ordinal, 705 
quadratic, 708 
Von Neumann-Morgenstern, 704 
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value at risk, 337, 712 
absolute, 713 
conditional, 717 
relative, 713 

value of the stochastic solution, 726 
VaR, see value at risk 
variability 

explained, 503 
predictable, 22 
unexplained, 503 
unpredictable, 22 

variable, 199, 200 
artificial, 674 
categorical, 200, 202 
chi-square, 497 
continuous, 201, 202 
dependent, 53 
discrete, 200, 202 
dummy, 201 
explanatory, 478, 500, 512 
free, 592 
independent, 53 
metric, 811 
nominal, 201 
nonmetric, 811 
nonnegative, 592 
qualitative, 200 
quantitative, 200, 228 
regressed, 478 
response, 478, 512 
standardized, 823 
uncorrelated, 823 
unrestricted, see variable free 

variance, 215, 263, 268, 278, 302, 
318, 359, 490 

of portfolio return, 365 
computation, 216 
conditional, 517 
nonlinearity of, 270 
properties, 269 
sum of independent random vari-

ables, 326 
sum of independent variables, 

271 
vector, 148, 591 

addition, 149 
length, 151 
multiplication by a scalar, 150 
norm, 153 
operation on, 149 
optimization, 631 
orthogonal, 152 
orthonormal, 164 
rotation, 163 
unit, 152 

vertex, 624 
volatility, 378, 713 
VSS, see value of the stochastic so-

lution 

wait-and-see solution, 699 
weakly stationary process, 562 
weighted average, 210 
weighted least squares, 520 
whisker diagram, 225 
white noise, 564 

Gaussian, 564 
worst-case residual, 628 

yield to maturity, 71, 103 




