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Preface

And there I was, waiting for the big door to open, the big door that stood
between me and my archnemesis. I found little comfort and protection, if
any, sitting in what seemed my thin tin tank, looking around and searching
for people in my same dire straits. Then, with a deep rumble, the big steel
door of the ship opened, engines were started, and I followed the slow stream
of cars. I drove by rather uninterested police officers, and there it was, my
archnemesis: the first roundabout in Dover.

For European continental drivers like me, used to drive on the right side
of the street (and yes, I do mean right), the first driving experience in the
Land of Albion has always been a challenge. That difficulty compounded
with the lack of roundabouts in Italy at the time, turning the whole thing
into sheer nightmare. Yet, after a surprisingly short timespan, maybe thanks
to the understanding and discipline of the indigenous drivers, I got so used
to driving there, and to roundabouts as well, that after my return to Calais I
found driving back in supposedly familiar lanes somewhat confusing.

I had overcome my fear, but I am digressing, am I? Well, this book should
indeed be approached like a roundabout: There are multiple entry and exit
points, and readers are expected to take their preferred route among the many
options, possibly spinning a bit for fun. I should also mention that, however
dreadful that driving experience was to me, it was nothing compared with the
exam labor of my students of the terrifying quantitative methods course. I
hope that this book will help them, and many others, to overcome their fear.
By the same token, I believe that the book will be useful to practitioners
as well, especially those using data analysis and decision support software
packages, possibly in need of a better understanding of those black boxes.

I have a long teaching experience at Politecnico di Torino, in advanced
courses involving the application of quantitative methods to production plan-
ning, logistics, and finance. A safe spot, indeed, with a fairly homogeneous
population of students. Add to this the experience in teaching numerical
methods in quantitative finance master’s programs, with selected and well-
motivated students. So, you may imagine my shock when challenged by more
generic and basic courses within a business school (ESCP Europe, Turin Cam-
pus), which I started teaching a few years ago. The subject was quite familiar,
quantitative methods, with much emphasis on statistics and data analysis.

Xix
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However, the audience was quite different, as the background of my new stu-
dents ranged from literature to mathematics/engineering, going through law
and economics. When I wondered about how not to leave the whole bunch
utterly disappointed, the “mission impossible” theme started ringing in my
ears. I must honestly say that the results have been occasionally disappoint-
ing, despite my best efforts to make the subject a bit more exciting through
the use of business cases, a common mishap for teachers of technical subjects
at business schools. Yet, quite often I was delighted to see apparently hope-
less students struggle, find their way, and finally pass the exam with quite
satisfactory results. Other students, who had a much stronger quantitative
background, were nevertheless able to discover some new twists in familiar
topics, without getting overly bored. On the whole, I found that experience
challenging and rewarding.

On the basis of such disparate teaching experiences, this possibly overam-
bitious book tries to offer to a hopefully wide range of readers whatever they
need.

e Part I consists of three chapters. Chapter 1 aims at motivating the
skeptical ones. Then, I have included two chapters on calculus and linear
algebra. Advanced readers will probably skip them, possibly referring
back to refresh a few points just when needed, whereas other students
will not be left behind. Not all the material provided there is needed;
in particular, the second half of Chapter 3 on linear algebra is only
necessary to tackle Parts I1I and IV.

e Part IT corresponds to the classical core of a standard quantitative
methods course. Chapters 4-10 deal with introductory topics in proba-
bility and statistics. Readers can tailor their way through this material
according to their taste. Especially in later chapters, they can safely
skip more technical sections, which are offered to more mathematically
inclined readers. Both Chapter 9, on inferential statistics, and Chapter
10, on linear regression, include basic and advanced sections, bridging
the gap between cookbook-oriented texts and the much more demand-
ing ones. Also Chapter 11, on time series, consists of two parts. The
first half includes classical topics such as exponential smoothing meth-
ods; the second half introduces the reader to more challenging models
and is included to help readers bridge the gap with the more advanced
literature without getting lost or intimidated.

e Part IIT moves on to decision models. Quite often, a course on quan-
titative methods is declined in such a way that it could be renamed as
“business statistics,” possibly including just a scent of decision trees. In
my opinion, this approach is quite limited. Full-fledged decision models
should find their way into the education of business students and pro-
fessionals. Indeed, statistics and operations research models have too
often led separate lives within academia, but they do live under the same



PREFACE xxi

roof in the new trend that has been labeled “business analytics.” Chap-
ter 12 deals mostly with linear programming, with emphasis on model
building; some knowledge on how these problems are actually solved,
and which features make them computationally easy or hard, is also
provided, but we do not certainly cover solution methods in detail, as
quite robust software packages are widely available. This part also relies
more heavily on the advanced sections of Chapters 2 and 3. Chapter
13 is quite important, as it merges all previous chapters into the fun-
damental topic of decision making under risk. Virtually all interesting
business management problems are of this nature, and the integration
of separate topics is essential from a pedagogical point of view. Chapter
14 concludes Part III with some themes that are unusual in a book at
this level. Unlike previous chapters, this is more of an eye-opener, as
it outlines a few topics, like game theory and Bayesian statistics, which
are quite challenging and can be covered adequately only in dedicated
books. The message is that no one should have blind faith in fact-based
decisions. A few examples and real-life cases are used to stimulate crit-
ical thinking. This is not to say that elementary techniques should be
disregarded; on the contrary, they must be mastered in order to fully
understand their limitations and to use them consciously in real-life
settings. We should always keep in mind that all models are wrong
(G.E.P. Box), but some are useful, and that nothing is as practical as a
good theory (J.C. Maxwell).

e Part IV completes the picture by introducing selected tools from mul-
tivariate statistics. Chapter 15 introduces the readers to the challenges
and the richness of this field. Among the many topics, I have chosen
those that are more directly related with the previous parts of the book,
i.e., advanced regression models in Chapter 16, including multiple lin-
ear, logistic, and nonlinear regression, followed in Chapter 17 by data
reduction methods, like principal component analysis, factor analysis,
and cluster analysis. There is no hope to treat these topics adequately
in such a limited space, but I do believe that readers will appreciate the
relevance of the basics dealt with in earlier chapters; they will hopefully
gain a deeper understanding of these widely available methods, which
should not just be used as software black boxes.

Personally, I do not believe too much in books featuring a lot of simple and
repetitive exercises, as they tend to induce a false sense of security. On the
other hand, there is little point in challenging students and practitioners with
overly complicated problems. I have tried to strike a fair compromise, by
including a few of them to reinforce important points and to provide readers
with some more worked-out examples. The solutions, as well as additional
problems, will be posted on the book Webpage.

On the whole, this is a book about fact- and evidence-based decision mak-
ing. The availability of information-technology-based data infrastructures has
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made it a practically relevant tool for business management. However, this is
not to say that the following simple-minded equation holds:

Data = Decisions

This would be an overly simplistic view. To begin with, there are settings in
which we do not have enough data, because they are hard or costly to collect,
or simply because they are not available; think of launching a brand-new and
path-breaking product or service. In these cases, knowledge, under the guise
of subjective assessments or qualitative insights, comes into play. Yet, some
discipline is needed to turn gut feelings into something useful. Even without
considering these extremes, it is a fact that knowledge is needed to turn rough
data into information. Hence, the equation above should be rephrased as

Dato + Knowledge = Decisions

Knowledge includes plenty of things that are not treated here, such as good
and sensible intuition or the ability to work in a team, which must be learned
on the field. I should also mention that, in my teaching, the discussion of
business cases and the practical use of software tools play a pivotal role, but
cannot be treated in a book like this. Yet, I believe that an integrated view
of quantitative methods, resting on solid but not pedantic foundations, is a
fundamental asset for both students and practitioners.

Use of software. In writing this book, a deliberate choice has been not
to link it with any software tool, even though the application of quantita-
tive methods does require such a support in practice.! One the one hand,
whenever you select a specific tool, you lose a share of readers. On the other
hand, there is no single software environment adequately covering the wide
array of methods discussed in the book. Microsoft Excel is definitely a nice
environment for introducing quantitative modeling, but when it comes, e.g.,
to complex optimization models, its bidimensional nature is a limitation; fur-
thermore, only dedicated products are able to cope with large-scale, real-life
models. For the reader’s convenience, we offer a nonexhaustive list of useful
tools:

e MATLAB (http://www.mathworks. com/) is a numerical computing en-
vironment, including statistics and optimization toolboxes.? Indeed,
many diagrams in the book have been produced using MATLAB (and
a few using Excel).

1The software environments that are mentioned here are copyrights and/or trademarks of
their owners. Please refer to the listed Websites.

2The virtues of MATLAB are well illustrated in my other book: P. Brandimarte, Numerical
Methods in Finance and Economics: A MATLAB-Based Introduction, 2nd. ed., Wiley, New
York, 2006.
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e Stata (http://www.stata.com/) and SAS (http://www.sas.com/) are
examples of rich software environments for statistical data analysis and
business intelligence.

e Gurobi (http://www.gurobi.com/) is an example of a state-the-art op-
timization solver, which is necessary when you have to tackle a large-
scale, possibly mixed-integer, optimization model.

o AMPL (http://wuw.ampl.com/) is a high-level algebraic modeling lan-
guage for expressing optimization models in a quite natural way. A tool
like AMPL provides us with an interface to optimization solvers, such
as Gurobi and many others. Using this interface, we can easily write
and maintain a complex optimization model, without bothering about
low-level data structures. We should also mention that a free student
version is available on the AMPL Website.

e COIN-OR (http://www.coin-or.org/) is a project aimed at offering
a host of free software tools for Operations Research. Given the cost of
commercial licenses, this can be a welcome resource for students.

e By a similar token, the R project (http://www.r-project.org/) offers
a free software tool for statistics, which is continuously enriched by free
libraries aimed at specific groups of statistical methods (time series,
Bayesian statistics, etc.).

Depending on readers’ feedback, I will include illustrative examples, using
some of the aforementioned software packages, on the book Website. Inci-
dentally, unlike other textbooks, this one does not include old-style statistical
tables, which do not make much sense nowadays, given the wide availability

of statistical software. Nevertheless, tables will also be provided on the book
Website.

Acknowledgments. Much to my chagrin, I have to admit that this book
would not have been the same without the contribution of my former coauthor
Giulio Zotteri. Despite his being an utterly annoying specimen of the human
race, our joint teaching work at Politecnico di Torino has definitely been an
influence. Arianna Alfieri helped me revise the whole manuscript; Alessandro
Agnetis, Luigi Buzzacchi, and Giulio Zotteri checked part of it and provided
useful feedback. Needless to say, any remaining error is their responsibility. I
should also thank a couple of guys at ESCP Europe (formerly ESCP-EAP),
namely, Davide Sola (London Campus) and Francesco Rattalino (Turin Cam-
pus); as I mentioned, this book is in large part an outgrowth of my lectures
there. I gladly express my gratitude to the authors of the many books that I
have used, when I had to learn quantitative methods myself; all of these books
are included in the end-of-chapter references, together with other textbooks
that helped me in preparing my courses. Some illuminating examples from
these sources have been included here, possibly with some adaptation. I have
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provided the original reference for (hopefully) all of them, but it might be
the case that I omitted some due reference because, after so many years of
teaching, I could not trace all of the original sources; if so, I apologize with
the authors, and I will be happy to include the reference in the list of errata.
Last but not least, the suffering of quite a few cohorts of students at both Po-
litecnico di Torino and ESCP Europe, as well as their reactions and feedback,
contributed to shape this work (and improved my mood considerably).

Supplements. A solution marnual for the problems in the book, along with
additional ones and computational supplements (Microsoft Excel workbooks,
MATLAB scripts, and AMPL models), will be posted on a Webpage. My
current URL is:

e http://staff.polito.it/paolo.brandimarte

A hopefuily short list of errata will be posted there as well. One of the many
corollaries of Murphy’s law says that my URL is going to change shortly after
publication of the book. An up-to-date link will be maintained on the Wiley
Webpage:

e http://www.wiley.com/
For comments, suggestions, and criticisms, my e-mail address is

e paolo.brandimarte@polito.it

PAOLO BRANDIMARTE
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Quantitative Methods:
Should We Bother?

If you are reading this, chances are that you are on your way to becoming
a manager. Or, maybe, you are striving to become a better one. It may
also be the case that the very word manager sounds dreadful to you and con-
jures up images of unjustified bonuses; yet, you might be interested in how
good management decisions should be made or supported, in both the pri-
vate and public sectors. Whatever your personal plan and taste, what makes
a good manager or a good management decision? The requirements for a
career in management make a quite long list, including interpersonal commu-
nication skills, intuition, human resource management, accounting, finance,
operations management, and whatnot. Maybe, if you look down the list of
courses offered within master’s programs in the sector, you will find quantita-
tive methods (QMs). Often, students consider this a rather boring, definitely
hard, maybe moderately useful subject. I am sure that a few of my past stu-
dents would agree that the greatest pleasure they got from such a course was
just passing the exam and forgetting about it. More enlightened students,
or just less radical ones, would probably agree that there is something useful
here, but you may just pay someone else to carry out the dirty job. Indeed,
they do have a point, as there are plenty of commercially available software
packages implementing both standard and quite sophisticated statistical pro-
cedures. You just load data gathered somewhere and push a couple of buttons,
so why should one bother learning too much about the intricacies of QMs?
Not surprisingly, a fair share of business schools have followed that school of
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thought, as the role of QMs and management science in their curricula has
been reduced,! if they have not been eliminated altogether.

Even more surprisingly however, there is another bright side of the coin.
The number of software packages for data analysis and decision support is
increasing, and they are more and more pervasive in diverse application fields
such as supply chain management, marketing, and finance. Their role is
so important that even books aimed at non specialists try to illustrate the
relevance of quantitative methods and analytics to a wide public; the key
concept of books like Analytics at Work and The Numerati is that these tools
make an excellent competitive weapon.? Indeed, if someone pays good money
for expensive software tools, there must be a reason. How can we explain such
a blatant contradiction in opinions about QMs? The mathematics has been
there for a while, but arguably the main breakthrough has been the massive
availability of data thanks to Web-based information systems. Add to that
the availability of cheap computing power and better software architectures,
as well as smart user interfaces. These are relatively recent developments, and
it will take time to overcome the inertia, but the road is clear.

Still, one of the objections above still holds: I can just pay a specialist
or, maybe, learn a few pages of a software manual, without bothering with
the insides of the underlying methods. However, relying on a tool without a
reasonable knowledge of its traps and hidden assumptions can be quite dan-
gerous. The role of quantitative strategies in many financial debacles has been
the subject of heated debate. Actually, the unpleasing outcome of bad surgery
executed by an incompetent person with distorted incentives can hardly be
blamed on the scalpel, but it is true that quantitative analysis can give a
false sense of security in an uncertain world. This is why anyone involved in
management needs a decent knowledge of analytics. If you are a top man-
ager, you will not be directly involved in the work of the specialists, but you
should share a common language with them and you should be knowledge-
able enough to appreciate the upsides and the downsides of their work. At
a lower level, if you get an esoteric error message when running a software
application, you should not be utterly helpless; by the same token, if there are
alternative methods to solve the same problem, you should figure out what is
the best one in your case. Last but not least, a few other students of mine
accepted the intellectual challenge and discovered that studying QMs can be
rewarding, interesting, and professionally relevant, after all.®

IThe actual term that is often used is “dumbed down,” but this could sound not too
politically correct to some.

28ee Refs. [1, 7], as well as T.H. Davenport, Competing on Analytics, Harvard Business
Review, Jan. 2006, pp. 1-9.

31 am quite proud to say that one of my best QMs master’s students had a degree in classics,
from Oxford University. I am also proud to say that a few of them changed their mind
about statistics: “You know, prof, last year I got a pretty good grade in statistics, but I
couldn’t figure out why...”



1 will spend quite a few pages trying to convince you that a good working
knowledge of QMs is a useful asset for your career.

e When information is available, decisions should be based on data. True,
a good manager should also rely on intuition, gut feelings, and the abil-
ity to relate to people. However, there are notable examples of managers
who were considered geniuses after a lucky decision, and eventually de-
stroyed their reputation, endangered their business, and went to jail in
some remarkable cases. Without going to such extremes, even the best
manager may make a wrong decision, because something absolutely un-
predictable can happen. A good decision should be somewhat robust,
but when things go really awry, being able to justify your move on a
formal analysis of data may save your neck.

e QMs can make you a sort of universal blood donor. The mathematics
behind is general enough to be applied in different settings, such as
supply chain management, finance, and marketing. QMs can open many
doors for you. Indeed, throughout the book I will insist on this point
by alternating examples from quite different areas.

e Even if you are not a specialist, you should be able to work with con-
sultants who have specialized quantitatively. You should be able to
interact constructively with them, which means neither refusing good
ideas merely because they seem complicated, nor taking for granted that
sophistication always works. At the very least, you should be aware of
what they are doing.

I have met some people whose idea of applying QMs is collecting data and
coming up with a few summary measures, maybe some fancy plots to spice
up a presentation, and that’s it. In fact, QMs are much more than collecting
basic descriptive statistics:

1. If QMs are to be of any utility to a manager, they should help her in
making decisions. Unfortunately, modeling to make decisions is a rather
hard topic.

2. By the same token, basic probability and statistics are not enough to
meet the challenge of a complex reality. Multivariate analysis tools have
been applied, but there is a gap between books covering the standard
procedures and those at an advanced level.

We will try to bridge that gap, which is somewhat hard to do by just walking
through a lengthy and dry list of theorems and proofs. In this chapter I will
illustrate a few toy examples, that will hopefully provide you with enough
motivation to proceed.

We have emphasized the role of data to make decisions. If we knew all of
the relevant data in advance, then our task would be considerably simplified.
Nevertheless, we show in Section 1.1 that even in such an ideal situation some
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quantitative analysis may be needed. More often than not, uncertainty makes
our life harder (or more interesting). In Section 1.2 we deal with different ex-
amples in which we have to make a decision under uncertainty. The standard
tools that help us in such an endeavor are provided by probability and statis-
tics, which constitute a substantial part of the book. Nevertheless, we will
show that some concepts, such as probability, can be somewhat dependent on
the context. Indeed, many features of real life may make a straightforward
application of simple methods difficult, and we will see a few examples in
Section 1.3. Finally, in Section 1.4 we will discuss how, when, and why QMs
can be useful, while pointing out their limitations.

1.1 A DECISION PROBLEM WITHOUT UNCERTAINTY: PRODUCT
MIX

Product mix decisions are essentially resource allocation problems. We have
limited resources, such as machines, labor, and raw materials, and the problem
calls for their optimal use in order to maximize profit, which is earned by
producing and selling a set of items. The decision problem consists of finding
the right amounts to produce for each item over a certain timespan. Profit
depends on the cost of producing each item and the price at which they can
be sold. Produced quantities should comply with several constraints, such
as production capacity and market limitations, since we should not produce
what we are not going to sell anyway.

One of the fundamental pieces of information we need is demand. The time
period we work with can be a day, a week, or a month. In practice, demand
varies over time and can be quite uncertain. Here we consider an idealized
problem in which demand is known and constant over time. Furthermore,
demand is not completely exogenous in real life, as we might influence it by
pricing decisions. Price can be more or less under direct control, depending
on the level of competition and the type of market we deal with; in a product
mix problem we typically assume that we are price takers.

In the first example below, products are similar in the sense that they
consume similar amounts of resources. In the second one, we will complicate
resource consumption a bit.

1.1.1 The case of similar products

A firm* produces red and blue pens, whose unit production cost is 15 cents
(including labor and raw material). The firm incurs a daily fixed cost, amount-
ing to €1000, to run the plant, which can produce at most 8000 pens per day
in total (i.e., including both types). Note that we are expressing the capacity

4This example is based on Chapter 2 of Ref. [5].
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constraint in terms of the total number of pens produced, which makes sense
if resource requirements are the same for both products; in the case of radi-
cally different products (say, needles and air carriers), this makes no sense, as
we shall see in the next section. We are not considering changeover times to
switch production between the two different items, so the above information
is all we need to know from the technological perspective.

From the market perspective, we need some information about what the
firm might sell and at which price. The blue pens sell for 25 cents, whereas
things are a tad more complicated for the red ones. On a daily basis, the
first 5000 red pens can be sold for 30 cents each, but additional ones can be
sold for only 20 cents. This may sound quite odd at first, but it makes sense
if we think that the same product can be sold in different markets, where
competition may be different, as well as general economic conditions. Such a
price discrimination can be maintained if markets are separated, i.e., if one
cannot buy on the cheaper market and resell on the higher-priced market.®
In general, there may be a complex relationship between price and demand,
and in later chapters we will consider QMs to estimate and take advantage of
this relationship.

The problem consists of finding how many red and how many blue pens we
should produce each day. Note that we are assuming constant demand; hence,
the product mix is just repeated each day. In the case of time-varying demand
and changeover costs, there could be an incentive to build some inventory,
which would make the problem dynamic rather than static.

1. The production manager, an ugly guy with little business background,
decides to produce 5000 red and 3000 blue pens, yielding a daily profit
of €50 (please, check this result). This may not sound too exciting, but
at least we are in the black.

2. A brilliant consultant (who has just completed a renowned master, in-
cluding accounting classes) argues that this plan does not consider how
the fixed cost should be allocated between the two product types. Given
the produced quantities, he maintains that €625 (3 of the fixed cost)
should be allocated to red pens, and €375 to blue pens. Subtracting
this fraction of the fixed cost from the profit contribution by blue pens,
he shows that blue pens are not profitable at all, as their production
implies a loss of €75 per day! Hence, the consultant concludes that the
firm should just produce red pens.

What do you think about the consultant’s idea? Please, do try finding an
answer before reading further!

5International students may be familiar with book editions that are marked as “Not for
sale in the USA.”
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A straightforward calculation shows that the second solution, however rea-
sonable it might sound, implies a daily loss:

1000 — 5000 x (0.30 — 0.15) — 3000 x (0.20 — 0.15) = €100

It is also fairly easy to see that the simple recipe of the production manager
is just based on the idea of giving priority to the item that earns the largest
profit margin. Apart from that, we should realize that the fixed cost is not
really affected by the decisions we are considering at this level. If the factory
is kept open, the fixed cost must be paid, whatever product mix is selected.
However, this does not mean that the fixed cost is irrelevant altogether. At
a more strategic decision echelon, the firm could consider shutting the plant
down because it is not profitable. The point is that any cost is variable, at
some hierarchical level and with a suitably long time horizon.

From a formal point of view, what we have been trying to solve is a problem
such as

max m(zy, Tp)
s.t. z, + zp < 8000
Zr,Tp > 0

In this mathematical statement of the problem we distinguish the following:

o Two decision variables, x, and zp, which are the amounts of red and
blue pens that we produce, respectively.

o An objective function, 7(z,, xp), representing the profit we earn, depend-
ing on the selected mix, i.e., on the value assigned to the two decision
variables. Our task is maximizing profit with respect to decision vari-
ables.

o A set of constraints on the decision variables. We should maximize profit
with respect to the decision variables, subject to (s.t. in the model formu-
lation) this set of constraints. The first constraint here is an inequality
corresponding to the capacity limitation. Further, we have included
nonnegativity requirements on sold amounts. Granted, unless you are
pretty bad with marketing, you are not going to sell negative amounts,
which would reduce profit. Yet, from a mathematical perspective, man-
ufacturing negative amounts of an item could be an ingenious way to
create capacity for another item, which makes little sense and must be
forbidden. Constraints pinpoint a feasible region, i.e., a set of solutions
that are acceptable, among which we should find the best one, according
to our criterion.

The feasible region in our case is just the shaded triangle depicted in
Fig. 1.1. If you have trouble understanding how to get that figure, you
might wish to refer to Section 2.3; yet, we may recall from high school
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(0, 8000) h,

Fig. 1.2 Shifting a function up and down does not change the optimal solution.

mathematics that an equation like ax; + brs = c¢ is the equation of a
line in the plane; an inequality like az; + bze < c represents one of the
two half-planes separated by that line. To see which one, the easy way
is checking if the origin of the plane, i.e., the point of coordinates (0, 0)
satisfies the inequality, in which case it belongs to the half-plane, or not.

Intuitively, since the firm makes money by selling whatever pen it produces,
the capacity constraint should be binding at the optimal solution, which means
that we should look for solutions on the line segment joining points of coordi-
nates (0, 8000) and (8000, 0). In Chapter 2 we will see how one can maximize
a profit function (or minimize a cost function) in simple cases; a more thor-
ough treatment will be given in Chapter 12. For now, we may immediately
see why the fixed cost should be ignored in finding the optimal mix. Assume,
for the sake of simplicity, that we have just one decision variable and consider
the objective function 7(z) in Fig. 1.2. Let us denote the optimal solution
of the maximization problem, maxn(z), by z*. We see that if the function
is shifted up (or down) by a given amount K, i.e., if we solve maxn(z) + K,
the optimal solution does not change. Yet, the optimal value does, and this
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may make the difference between a profitable business and an unprofitable
one. Whether this matters or not depends on the specific problem we are
addressing.

Takeaways Even from a simple problem like this, there are some relevant
lessons that deserve being pointed out:

e A simple decision problem consists of decision variables, constraints on
them, and some performance measure that we want to optimize, such
as minimizing cost or maximizing profit.

e Not all costs are always relevant; this may depend on the level at which
we are framing the problem:.

e The relationship between price and demand can be complex. In real
life, data analysis can be used to quantify their link, as well as the
uncertainty involved.

1.1.2 The case of heterogeneous products

We solved the previous example by a simple rule: Let us pick the most prof-
itable item and try producing as much as we can; if we hit a market limitation,
consider the next most profitable item, and go on until we run out of resource
availability. However, there must be something more to it. To begin with,
we had just one resource; what if there are many? Well, maybe one of them
will prove to be the bottleneck and will limit overall production. But there
is another issue, as we expressed the capacity constraint as the number of
overall items that we could produce each day. What if each item consumes a
different amount of each resource? In order to see that things may be a tad
more complicated, let us consider another toy example.®
We are given

¢ Two item types (P1 and P2) that we are supposed to produce and sell

e Four resource types (machine groups A, B, C, and D) that we use to
produce our end items

Note that all of the above resources are needed to produce an item of either
type; they are not alternatives, and each part type must visit all of the ma-
chine groups in some sequence. The information we have to gather from a
production engineer is the time that each piece must spend being processed on
each machining center. This information is given in Table 1.1, where columns
labeled T4, ..., Tp are the processing times (say, minutes) for each part type
on each machine type. At this level, we are not really interested in the exact

6This example is based on Chapter 16 of Ref. {10].
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Table 1.1 Data for the optimal mix problem.

Item Ta TR Tc o Cost Price Demand
P1 15 15 15 25 45 90 100
P2 10 35 5 15 40 100 50

sequence of machine visits; probably, some technological reason will force a
sequence of operations, but we want to determine how many pieces we pro-
duce during each period. To make this point clearer, let us say that we want
to find a weekly production mix. Someone else will have the task to specify
what has to be processed on each machine, on each hour of each day during
the week. In most problem settings there is a decision hierarchy, whereby
we first specify an aggregate plan, that becomes progressively more detailed
while going down the hierarchy.

From Table 1.1 we immediately see that end items differ in their resource
requirements. Hence, it makes no sense to express a capacity constraint in
terms of the total number of items that we can produce each week. What we
need to know is how many minutes of resource availability we have each week.
This depends on the work schedule, labor and machines available, etc. Each
machine group may consist of many similar or identical machines; hence, we
are interested in the aggregate capacity, rather than the time that each single
physical machine is available. To consider a simple case, let us assume that
machine availability is the same for all of the four groups: 2400 minutes. Note
that this is the availability, or capacity, for each machine group.

Another limitation on production stems from market size. If demand is
limited, there is no point in making something we can’t sell (remember that,
according to our assumptions, both capacity and demand are constant over
time, so there is no point in building and carrying any inventory). Further-
more, we should consider the cost of producing an item and the price at which
we may sell it. These market and economical data are given in the last three
columns of Table 1.1. The cost given in the third column from the right refers
to each single item and it may also include raw material, labor, etc. Further
to that, let us say that we also incur a fixed cost of €5000 per week. We have
already pointed out that this will not influence the optimal mix, but it makes
the difference between being in the black or in the red. In the two last columns
we see the price at which we sell each unit, which we assumed constant and
independent from the number of items produced, and the weekly demand for
each part type, which places an upper bound on sales.

Our task is to find the optimal production mix, i.e., a production plan
maximizing profit. The task is not that difficult, as we just need two numbers.
Let us denote by z; and x5 the amounts of item P1 and P2 that we produce,
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respectively. Yet, we must be careful to meet all of the capacity and market
size constraints.

A trial-and-error approach  One thing we may try is to apply the same principle
of the red and blue pens: P2 looks more profitable, since its profit margin is
100 — 40 = €60, which is larger than the 90 — 45 = €45 of item P1. So, let us
try to maximize production of item P2. From the technological data, we see
immediately that the bottleneck machine group, on which P2 spends the most
time, is machining center B. An upper bound on x5 is obtained by assuming
that we use all of the capacity of group B to manufacture P2:

35z2 < 2400 = 3 < 68.57

One could object that the true bound is 68, as we cannot manufacture frac-
tional amounts of an item. Anyway, we cannot sell more than 50 pieces, so we
set 2 = 50, and then we maximize production of P1 using residual capacity.
We should figure out which of the four capacity constraints will turn out to
be binding. We can write the following set of inequalities, one per machine
group, and check which one actually limits production:

1521 +10-50 £ 2400 = =x; <126.67

15z; +35-50 <2400 = x; £43.33
152y +5-50 <2400 = x; <143.33

2521 4+ 15-50 <2400 = 1z, <66

which yields x; = 43.33. For the sake of simplicity, let us assume that we are
indeed able to make fractional amounts of items. This is somewhat true when
we deal with things such as paint, and it is a sensible approximation for large
numbers; rounding 1,000,000.489 up or down induces a small error. We will
see in Chapter 12 why forcing integrality of decision variables may complicate
things, and we should do it only when really needed. The production plan
x1 = 43.33, 2 = 50 is feasible; unfortunately, total profit is negative:

45 x 43.33 4 60 x 50 — 5000 = —50

What went wrong? Maybe this is the best we can do, and we should just
shut the business down, or try reducing cost, or try increasing price without
reducing demand too much. Or maybe we missed something. With red and
blue pens, resource consumption was the same for both items, but in our case
P2 features the larger resource consumption on machine B. Maybe we should
somehow consider a tradeoff between profit and resource consumption; maybe
we should come up with a ratio between profit contribution and resource
consumption. It is not quite clear how we should do this, since it is not true
that P2 requires more time than P1 on all of the four resources. Nevertheless,
it could well be the case that, carrying out this analysis, P1 would turn out
to be more profitable. So, let us see what we get if we maximize production
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of P1 first. In this case, machine group D is the bottleneck, and the same
reasoning as above yields

25z <2400 = 7, < 96

Now we do not reach the market bound, which is 100 for P1, but then, since
we use all of the capacity of group D for item P1, we must set zo = 0. Fair
enough, but profit is even worse than before: 45 - 96 — 5000 = —680.

Hopefully, the reader is starting to see that even for a toy problem such
as this one, the art of quick calculations based on plausible and intuitive
reasoning may fall short of our expectations. But before giving up, let us try to
see if there is a way to make the problem simpler. After all, the difficulty comes
mainly form capacity constraints and differentiated resource consumption.
If we look a bit more carefully at Table 1.1, we see something interesting.
Consider resources A and B: Are they equally important? Note that a plan
that is feasible for group B must be feasible for A as well: P1 requires the
same amount of time on both groups, whereas P2 has a larger requirement
on B. We may conclude that group A will never be a binding resource. If we
compare resource requirements for groups B and C, we immediately reach a
similar conclusion. In fact, only resources B and D need to be considered.”

Now the perspective looks definitely better: We just need to find a solution
which uses all of the resources B and D, as this will maximize production.
Unless we hit a market constraint, there is no point in leaving critical resources
unused. We should find two values for our two decision variables, £ and z3,
such that both machine groups B and D are fully utilized. This results in a
system of two equations:

{ 15z + 35x22 = 2400 (1.1)

25z1 + 1529 = 2400

We will see a bit more about solving such a system of linear equations in Chap-
ter 3. For now, let us just say that solving this system yields the production
mix x; = 73.84 and x5 = 36.92, rounding numbers down to the second deci-
mal digit; this results in a total profit of €538.46, which is positive! Intuition
worked pretty well for the red and blue pens problem, but this solution is a
bit harder to get by sheer intuition.

If this seems too hard, please have a reality check. We had to solve just a
toy problem, ignoring all of the complications that make real life so fun:

¢ We had to deal with just two end items (they may easily be thousands).

¢ Demand was known with certainty (you wish).

7A whole managerial philosophy, called the theory of constraints, has been born, based on
the principle that you may simplify a problem and better focus your effort by concentrating
on bottlenecks, i.e., the factors that really limit performance.
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e All of the relevant data were constant over time (same as above).

e We did not consider interactions between demands for different end
items (if a customer wants both items P1 and P2, and we have not
enough of one of them, we might well lose the whole order).

e We did not consider availability of raw materials (one of the most amus-
ing moments you might experience in life is when you cannot finish the
assembly of a $100,000 item because you miss a little screw worth a few
cents).

e We did not consider changeover times between different item types (on
very old press lines in the-automotive industry, setting up production
for another model required 11 hours).

e We did not consider detailed execution and timing.

o We did not consider substitution between raw materials; in some blend-
ing processes (food and oil), there are some degrees of freedom making

the choice even more complicated (we cover blending problems in Sec-
tion 12.2.3).

¢ We did not include integrality constraints on the decision variables,
which would probably make our approach unsuitable (we will see how
to cope with this complication in Section 12.6.2).

If we realize the true complexity of a real-life problem, it is no surprise that
sometimes even getting a feasible solution (let alone an optimal one) may be
difficult without some quantitative support. Hence, we need a more systematic
approach.

A model-based approach In the case of red and blue pens, we hinted at the
possibility of building a mathematical representation of a decision problem.
Maybe, this can be helpful in a complex setting. To begin with, we want to
maximize profit. Formally, this means that we want to maximize a function
such as

45z, + 60z,

We have already remarked that fixed costs do not change where the optimal
solution is, so subtracting €5,000 is inconsequential. From the work we have
carried out before, we see that capacity constraints can be represented as a
set of inequalities:

1527 + 1022 < 2400
15z1 4+ 3524 < 2400
1521 + 522 < 2400

25x1 + 1522 < 2400
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If we also include nonnegativity of decision variables and market bounds, we
end up with the following mathematical problem:

max 45z, + 60x4 (1.2)
8.t. 1521 + 1025 < 2400
15x1 + 35z, < 2400
1521 + bzg < 2400
2521 + 1524 < 2400
0<z1 <100
0< 22 <50

This is an example of a linear programming problem, where linear is due to
the fact that decision variables occur linearly: you do not see products such
as z1 - T3, powers such as z%, or other weird functions such as sin z,. Real-life
problems may involve thousands of decision variables, but they can be solved
by many computer packages implementing a solution strategy called the sim-
plex method, and (guess what?) using this magic you get the optimal solution
above. By the way, good software will also spot and get rid of irrelevant
constraints to speed up the solution process.

More on this in Chapter 12, but in this simple case we may visualize things
graphically in order to better understand why the first simple-minded ap-
proach failed.

A graphical solution As with red and blue pens, we are dealing here with a
bidimensional problem. Each (linear) inequality corresponds to a half-plane.
Since we must satisfy a set of such constraints, the set of feasible solutions is
the intersection of half-planes, and is illustrated in Fig. 1.3. The shaded figure
is a polyhedron, resulting from the intersection of the relevant constraints:
these are the capacity constraints for groups B and D, and the market bound
for item P2.

The parallel lines shown in the figure are the level curves of the profit
function. For instance, to visualize all of the product mixes yielding a profit
contribution of €2000 (neglecting the fixed cost), we should draw the line
corresponding to the linear equation

45z + 60z = 2000

Changing the desired value of profit contribution, we draw a set of parallel
lines; three of them are displayed in Fig. 1.3. It is also easy to see that profit
increases by moving in the northeast direction, i.e., by increasing production
of both part types.

There is an infinite set of feasible mixes (barring integrality requirements
on decision variables), but we see that a only a very few of them are relevant:
those corresponding to the vertices (or extreme points) of the polyhedron,
i.e., points My, M1, ..., My. Point My, the origin of the axes, corresponds to
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/ Increasing profit

]

Fig. 1.3 Graphical solution of the optimal mix problem.

making nothing and is not quite interesting. Point M; corresponds to making
50 items of P2, and none of P1; in fact, during our first attempt, we moved
to that point first, and then to point My, with coordinates (43.33, 50), which
was our first mix. Point My, with coordinates (96, 0), represents the second
tentative mix we came up with. We see that the second solution was worse
than the first one by checking the level curves of profit. Since level curves
are parallel lines, and we should move along the direction of increasing profit,
we see that the optimal solution must be a feasible point that “touches” the
level curve with the highest profit. This happens at point M3, which in fact
corresponds to the optimal mix.

The slope of the level curves depends on the profit margin of each item.
For instance, if we increase the profit margin of P1, the lines rotate clockwise;
if profit margin of P1 is increased enough, the optimal mix turns out to be
point My. In general, changing the economics of the problem will result in
different optimal mixes, as expected, but they will always be extreme points of
the feasible set, and there are not so many of them. Whatever profit margins
are, only points My, M3, and M, can be candidate optimal solutions. If level
curves happen to be parallel to an edge of the feasible set, we have an infinite
number of optimal solutions, but we may just consider one corresponding to a
vertex. In fact, the standard approach to solving a linear programming model,
via the simplex method, exploits this property to find an optimal solution
with stunning efficiency even for large-scale problems involving thousands of
variables and constraints.

Incidentally, if we insist on producing integer amounts, we should only con-
sider points with integer coordinates within the polyhedron. We may draw
this feasible set as a grid of discrete points. Doing so, the optimal mix turns
out to be z1 = 73, g = 37, with total profit 505. Understandably, profit is
reduced by adding a further constraint on production volume. It is tempting
to conclude that we may easily get this solution by solving the previous prob-
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lem and then rounding the solution to the closest integer point on the grid.
Unfortunately, this is not always the case, and quite sophisticated methods
are needed to solve problems with integer decision variables efficiently.

Takeaways

¢ Intuition may fail when tackling problems with many constrained deci-
sion variables.

e Mathematics may yield an optimal solution for the model. Because
modeling calls for simplification, this need not be the best solution of
our problem, but it may be a good starting point.

e Sophisticated software packages are available to tackle mathematical
model formulations. Hence, we need to concentrate on modeling rather
than on complicated solution procedures. Indeed, in Chapter 12 we
focus on models for decision making, while just giving a glimpse of the
computational solution procedures. This is extended in Chapter 13 to
cope with uncertainty.

e Nevertheless, a suitable background in calculus and algebra is needed
to gain a proper understanding of the involved approaches; this is the
subject of Chapters 2 and 3.

1.2 THE ROLE OF UNCERTAINTY

We often have to make decisions here and now, without complete knowledge
about problem data or the occurrence of future events. In distribution logis-
tics, significantly uncertain demand must be faced; in finance, several sources
of risks affect the return of an investment portfolio. In all of these settings,
the future effect of actions is not known for sure. Uncertainty can take several
forms. In the simplest case, we may be able to gather past information and
use that to generate a set of plausible future scenarios. This is where the
standard tools of probability and statistics come into play. They will be the
subject of Part II of the book, and are typically considered the core of any
course on QMs. To get gradually acquainted with them, let us consider a few
toy problems.

1.2.1 A problem in supply chain management

In the product mix problem, we assumed perfect knowledge of future demand,
but, unfortunately, exact demand forecasts are a bit of scarce commodity in
the true world. Indeed, the standard trouble in supply chain management is
purchasing an item for which demand information is quite uncertain. If we
order too much, one or more of the following scenarios might occur:



18 QUANTITATIVE METHODS: SHOULD WE BOTHER?

e Finance will suffer, as money is tied up in inventories.

e Items may become obsolete because of fads or product innovation, and
money will be lost in inventory writeoffs.

e Perishable items may run out of their shelf life before being sold, and
money will be lost again.

On the other hand, if we do not order enough items, we may not be able to
meet customer demand and revenue will suffer (as well as our career; life is
hard, isn’t it?).

To take our first baby steps, let us consider a relatively simple version of
the problem. We are in charge of purchasing an item with a very limited
shelf life. Both purchased quantities and demand are given as small integer
numbers, which makes sense for a niche product. Items are purchased for
delivery at the beginning of each week, and any unsold item is scrapped at
the end of the same week; hence, each time we face a brand-new problem,
in the sense that nothing is left in inventory from the previous time periods.
Demand for the next week is not known, but we do have some information
about past demand. The following list shows demand for the past 20 weeks:

(1.3)

The big question is: How many items should we order right now?

When asked this question, most students suggest considering the average de-
mand, which is easily calculated as

3+1+3+2+---+4+1 52
20 T2

D= 2.6

Not too difficult, even though this result may leave us a bit uncertain, as
we cannot really order fractional amounts of items. Yet, it seems that a
reasonable choice could be between 2 and 3.

Other students suggest that we should stock the most likely value of de-
mand. To see what this means exactly, it would be nice to see some more
structure in the demand history, maybe by counting the frequency at which
each value has occurred in the past. If we sort demand data, we get the
following picture:

1,1,1, 2,2,2,2,2,2,22, 3,3,3,33 4,4, 55
, , & ) - NI o2 22

3 times 8 times 5 times 2 times 2 times

These numbers provide us with the frequencies at which each value occurred
in the observed timespan. If we divide each frequency by the number of
observations, we get relative frequencies. For instance, the relative frequency
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Table 1.2 Frequencies (F), relative frequencies (Frel), and cumulated (relative) fre-
quencies (Feum) for demand data.

Value F Fa Fom

1 3 015 0.15
2 8 040 0.55
3 5 025 080
4 2 010 0.90
) 2 010 1.00

of the value 2 is 2—80 = 0.4 or, in percentage terms, 40%. We may also calculate
average demand by using relative frequencies:

IX14+8x24+5x3+2%x4+2x%x5

D =
20
3 8 5 2 2
= —x14—= — — x4+ —
20>< +20x2+20x3+20x +20><5
= 015x14040%x2+4+025x3+010x4+0.10x5
2.6

Not surprisingly, we get the same average as above. We see that average
demand is a weighted average of observed values, where weights correspond
to relative frequencies. If we believe that the future will reflect the past,
relative frequencies provide us with useful information about the likelihood of
each demand value in the future.

Frequencies and relative frequencies are tabulated in columns 2 and 3 of
Table 1.2. Be sure to note that relative frequencies cannot be negative and
add up to 1, or 100%. Frequencies and relative frequencies may also be visual-
ized using a histogram, as shown in Fig. 1.4. The observed values are reported
on the horizontal axis (abscissa); the vertical axis (ordinate) may represent
frequencies (a) of relative frequencies (b). The two plots are qualitatively the
same, as relative frequencies are just obtained by normalizing frequencies with
respect to the number of observations. After a quick glance at the graphi-
cal representation of relative frequencies, the intuitive idea of a “likelihood
measure” of each demand value comes to mind rather naturally. Indeed, it is
possible to interpret relative frequencies as probabilities. However, some cau-
tion should be exercised and we will see in Chapters 5 and 14 that probability
is not such a trivial concept, as there are alternative interpretations. Still,
this intuitive interpretation may be useful in many practical cases.

Looking at Table 1.2, we see that the most likely value (or the most fre-
quent value in the past, to be honest with ourselves) is 2, which is not too
different from the average value. In descriptive statistics, the most likely value
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Fig. 1.4 Histograms visualizing frequencies and relative frequencies for demand data.
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Fig. 1.5 Two skewed distributions.

is called mode. Since we get similar solutions by considering either mean or
mode, we could be tricked into believing that we will always make a sensible
choice by relying on them. Before we get so overconfident, let us consider the
histograms of relative frequencies in Fig. 1.5. In histogram (a), we see that
the most likely value is zero, but would we really stock nothing? Probably
not. The two histograms in Fig. 1.5 are two examples of asymmetric cases.
They are “skewed” into opposite directions, and we probably need a way to
characterize skewness. We will deal with this and other summary measures in
Chapter 4, but it is already clear that mean and mode do not tell the whole
story and they are not always sufficient to come up with a solution for a de-
cision problem. Lack of symmetry is likely to affect our stocking decisions,
but there is still another essential point that we are missing: dispersion. Con-
sider the two histograms in Fig. 1.6. Histogram (a) looks more concentrated,
which arguably suggests less uncertainty about future demand with respect
to histogram (b). We need some ways to measure dispersion as well, and to
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Fig. 1.6 The role of dispersion.
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figure out how it can affect our choice. Indeed, we need some ways to char-
acterize uncertainty, and this motivates the study of descriptive statistics (to
be carried out in Chapter 4). This is fine, but it is utterly useless, unless we
find a way to use that information to come up with a decision. It is impor-
tant to realize how many points we are missing, if we just consider relative
frequencies.

The role of economics. If we have a stockout, i.e., we run out of stock and
do not meet the whole customer demand, how much money do we lose?
And what if we have an overage, i.e., we stock too much and have to
scrap perished or obsolete items? To see the point, consider the following
problem. We have to decide how many T-shirts to make (or buy) for an
upcoming major sport event. Producing and distributing a T-shirt costs
€5; each T-shirt sells for €20, but unsold items at the end of the event
must be sold at a markdown price, resulting in a loss.® Let us assume
that the discount on sales after the event is 80%, so that the markdown
price is €4. A credible forecast, based on similar events, suggests that
the expected value of sales is 12,000 pieces. We will clarify what we
mean by expected value exactly, but you may think of it as the “best
forecast” given our knowledge. However, demand is quite uncertain.
A consultant, considering demand uncertainty and the risk of unsold
items, suggests to keep on the safe side and produce just 10,000 pieces.
Is this a good idea?

Please! Wait and think about the question before going on.

8The example may not sound too significant, but this kind of situation is typical of fashion
items and, given the pace of technological innovation, presents some features shared by
huge markets such as consumer electronics.
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When we sell a T-shirt, our profit is €15; if we have to mark down, we
lose only €1. Given that, most people would probably suggest a more
aggressive strategy and buy a bit more than the expected value. Indeed,
most fashion stores mark prices down at some time, which means that
they tend to overstock. Would you change your idea if profit margin
were €2 and the cost of an unsold item were €57 Economics must
play a role here, as well as dispersion. Without any information about
uncertainty, we cannot specify how much above or below the expected
value of demand we should place our order. A plain point forecast, i.e.,
a single number, is not enough for robust decision making, a point that
we will stress again in Chapters 10 and 11, when dealing with regression
and time series models for forecasting,.

Predictable vs. unpredictable variability. Consider once again the de-

mand data in (1.3), but this time imagine that the time series, in chrono-
logical order, is

1,1,1,2,2,2,2,2,2,2,2,3, 3,3,3,34,4,5 5

Mean, mode, etc., are not affected by this reshuffling of data, but should
we neglect the clear pattern that we see? There is a trend in demand,
which is not captured by simple summary measures. And what should
we do with a demand pattern such as the following one?

1,2,3,4,3,2,1,2,3,4,3,2,1,2,...

In this case, we notice a seasonal pattern, with regular up- and down-
swings in demand. Trend and seasonality contribute to demand vari-
ability, but we should set predictable and unpredictable components of
variability apart. In chapter 11 we describe some simple methods for
doing so.

The role of time and intertemporal dependence. The previous point

shows that time does play a role, when we can identify partially pre-
dictable patterns such as trend and seasonality. Time may also play
a role when our assumptions about ordering and shelf life are less re-
strictive. Assume that the shelf life is longer than the time between
the orders we issue to suppliers. In making our decision, we should also
consider the inventory level, and this would make the problem dynamic
rather than static. A safe guess is that this is no simplification.

An even subtler point must be considered in order to properly represent
unpredictable variability. I will illustrate it with a real-life story. A
few years ago in Turin, where I live, there was a period of intense rain
followed by an impressive flood. A weird thing with such an event is that
there is way too much water in the streets, but you do not get any from
your water tap at home. In that case, the high level of the main river in
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the city prevented the pumping stations from working. This problem,
as I recall, was solved quickly, but the immediate consequence was a
race to buy any bottle of mineral water around (with plenty of amicable
exchange of ideas between tactful customers at retail stores). Now, if
you were the demand manager for a company selling mineral water,
would you interpret that spike in demand as a signal of an increasing
market share? Well, not really, I guess. On the contrary, you could
expect a period of low demand, when households deplete their unusually
high inventories. More generally, if consumption of an item is relatively
steady over time, a spike in demand (maybe due to a trade promotion)
is likely to be followed by a period of low demand.® In order to take such
issues into account, we need statistical tools to investigate correlation,
which is the subject of Chapter 8. Correlation is useful in many settings
where we ask questions about random variables rather than random
events, such as

o If demand for an item has been larger than usual today, can we say
something about demand tomorrow? Will it be larger or smaller
than usual?

e If the return from a financial investment has been good, does this
tell us something about the return of the same investment in the
future, or maybe about the return from other investments?

The role of alternative items and competitors. We have just considered
one item, disregarding possible interactions with other ones. In practice,
items may interact in many ways:

o Shelf space. Limited shelf space at a retail store must be allocated
to different items; then, stocking decisions are not independent.

o Substitute products. A stockout on one item may be almost irrele-
vant, if the customer switches easily to a substitute item that we
sell.

o Complementary products. Stocking out on one item may have a
detrimental effect on other items, too; imagine a customer order
consisting of several lines, related to different items; the customer
could cancel the order if some order line is not satisfied.

e New products. If the assortment is changed by the introduction
of a new item, sales of older items are likely to be affected by
cannibalization.

9ncidentally, in such a case, a trade promotion might have the only effect of making the
life of logistic managers a misery, without contributing much to the bottom line. In fact,
some retail stores adopt a policy of everyday low prices.
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By the same token, we should not disregard the role of competitors.
If a competitor is about to launch a new product, we should plan in
advance a suitable reaction. In such a case, just looking at past sales
will be as safe and smart as driving a car by just looking into the rear
mirror. Furthermore, pricing is likely to affect sales along multiple di-
mensions: the price of the item, the price of related items, and the price
asked by competitors. We should investigate, among other things, the
relationship between price and demand. One way of doing that involves
regression models, which are the subject of Chapters 10 and 16.

The role of sampling uncertainty. When we evaluate summary measures
such as the mean of a variable, we look at a limited set of past data.
But how reliable is that information? Intuitively, the more data we
have, the better. However, looking too far into the past is dangerous,
as we might take into account information that is hardly relevant for
new market conditions. Would you use information about stock returns
before World War II to manage a pension fund? In Chapter 9 we deal
with inferential statistics, which may help us in assessing the degree of
confidence we can have in our estimates.

Observables vs. unobservables. Finally, available data may not be what
is actually relevant and needed. We have taken for granted that demand
data were at our disposal. Unfortunately, in many practical settings we
do not really observe demand, but sales. If there is a stockout on an item
at our retail store, will the customer inform anyone that her demand
was unmet? Not necessarily; maybe she will just go and buy at another
retail store. If we are lucky, she will just settle for a product substitute.
But even in this case, what we gather is sales data by scanning bar
codes at the cash desk or point of sale. Clearly, this can result in an
underestimation of actual demand. In other cases, data are available,
but they are not gathered because of a wrong business process. Imagine
a business to business setting, where a potential customer calls about
immediate product availability. When the desired items are not in stock,
she tries with another supplier. If the business process is such that only
agreed-on orders are entered into the information system, disregarding
lost sales, we are underestimating demand again. Often we have to settle
for a proxy of what we cannot observe directly, and this might affect
decisions.

After this long list of complicating factors,'® you may feel a little overwhelmed,
but please don’t: There is a long array of powerful quantitative methods that
we may integrate with good old common sense in order to tackle challenging

101f you hate supply chain management, and you are fond of finance, do not fret. The good
news is that you will see plenty of examples related to finance in what follows. The bad
news is that the list of complicating factors is overwhelming in that setting as well.
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problems. Anyway, if you want to take a short route, you could always try
to do just a little better than your competitor. Say that he is able to meet
demand completely in 80% of the weeks. The probability of not having a
stockout is one of the many ways in which one can measure the service level.
By choosing a stocking level S, you are setting the probability of satisfying
all customers. For instance, with the data of Table 1.2, if you choose S =1,
demand will be met only when it is 1, which happens with probability 0.15.
If S = 2, you meet demand when it is 1 or 2; summing the respective relative
frequencies, we see that this happens with probability 0.15+0.40 = 0.55. The
pattern is clear: The service level for increasing stocking levels is obtained
by summing probabilities. This leads us to the concept of cumulative relative
frequencies, which are displayed in the last column of Table 1.2. If you want to
do a little better than the competitor, setting a 85% service level, you should
stock four 1tems, implying a 90% service level.

This last observation leads us to concepts such as cumulative distributions
and quantiles. They are fundamental in many areas, such as inferential statis-
tics and risk management, and will be among the most important topics in
Chapters 6 and 7.

1.2.2 Squeezing information out of known facts

As we have remarked in the previous section, we often have to cope with the
impossibility of gathering in advance all the information we need to make a
decision, partly because of uncertainty about future events, and partly because
some variable cannot be observed directly. However, this is no good reason
not to do our best to exploit partial information. In customer relationship
management, we are not able to read a customer’s mind; nevertheless, we
may observe her behavioral patterns and try to infer if she will be loyal and
hopefully profitable, or not. The analytical tools of probability and statistics
are commonly used for this kind of analysis.

A typical and quite familiar domain in which we have to settle for an
observable proxy of an unobservable variable is medicine. Hence, to get a
feeling for the involved issues, let us consider a medical problem. Quite often
we undergo an exam to determine whether we are suffering from a certain
illness. Thankfully, it is a rare occurrence that our bodies must be ripped
open in order to check the state of the matter. Clinical tests are an indirect
way to draw conclusions about something that cannot, or should not, be
inspected too directly. Now, suppose that we have the following information:

e A kind of illness affects 0.2% of a population.

e A test can reveal the illness, if a person is ill, with a probability of
99.9%; i.e., if you are ill, there is a small probability (0.1%) that the
exam will fail to detect your true state.

e The probability of a false positive is 1%; in other words, if one is perfectly
healthy, the test may wrongly report the illness with probability 1%.
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The issues of how this information is obtained and how reliable it is pertain
to the domain of inferential statistics; for now, we will take someone’s word
for it. We see that there are two kinds of potential errors:

e We may fail to detect illness in an ill subject (missed positive).
e We may see a problem where there is none (false positive).

We would like to know whether a person is ill, but the only thing we can
observe is the result of the test. If the test is positive, we would like to draw
the conclusion that the patient is ill in order to start an adequate treatment.
However, we cannot be that sure. Hence, the question is: If the test is positive
for a person, what is the probability that he is actually ill?

When I ask students this question, I make it somewhat easier and just ask
them to tell in which of the following intervals the required probability lies:
(0,25)%, (25,50)%, (50, 75)%, or (75,100)%?

Please! Pause for a while before reading further, and try giving your
answer.

If you have selected an interval with high probability, you are in good company.
From my experience, the most voted interval is (50, 75)%. I guess the reason is
that the professor maliciously insists on pointing out that the test is reliable,
in the sense that if you are ill, the test will tell you that with high probability.
Some students take me seriously, and vote (75, 100)%. Most students probably
temper that with a bit of skepticism and choose (50, 75)%, based on some good
old intuition. Very few students choose the correct answer, i.e., (0, 25)%.
Let us try to get the answer by a somewhat crude line of reasoning.

1. Say that our population consists of 10,000 persons. How many should
we expect to be ill? Taking 0.2% of 10,000 yields 20 persons; 99.9% of
them will be reported ill, which is 19.98 (almost 20).

2. How many false positives do we expect to get? There are (on the aver-
age) 9980 healthy persons out of the total of 10,000; 1% of them will be
incorrectly reported ill, i.e., 99.80 (which is almost 100, i.e., 1% of the
whole population).

3. Then, on the average we will get
19.98 + 99.8 = 119.78

positives, but only 19.98 of them are in fact ill. So, the correct answer

to our question is
19.98

119.78

= 16.68%
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This is certainly much less than 50%. The problem is that the fraction of ill
people is (luckily) low, in fact much lower than the number of false positives.
Indeed, we could get close to the right answer simply by noting that the
fraction of false positives is about 1% and the fraction of correct positives is
about 0.2%; if we take the ratio

0.2 1

= - =0.1667 ~ 16.68
024+1 6 %

we see that it was bad intuition leading us into the trap, as a closer look into
the data is enough to show that false positives have a large impact here.

Now, on the basis of this result, you should sit a while and broaden your
view by asking a few questions:

1. If this is a cheap test, should we use a more expensive but more reliable
one?

2. Should we use this test for mass screening?
3. What happens in the case of a false positive?
4. What are the social and psychological costs of a false positive?

Of course, there are no general answers, as they depend on the impact of this
illness, its mortality rate, etc. Moreover, spending resources for this illness
may subtract funds from programs aimed at preventing and curing other
types of illnesses. The last question, in particular, shows that in a decision
problem there are issues that are quite hard to quantify.!! So, quantitative
methods will definitely not provide us with all of the answers. Still, they
may be quite useful in providing us with information that is fundamental for
a correct analysis, information that we are going to miss if we rely on bad
intuition.

Generalizing a bit, we note that a priori, if you pick a person at random the
probability that he is ill is 0.2%. If you know that the test has been positive,
that probability is updated to a larger value. The new probability of the event
of interest (he is ill) is conditional on the occurrence of another event (the
test is positive). We will learn about conditional probabilities in Chapter 5,
where we develop a tool to tackle such problems more systematically, namely,
Bayes’ theorem. Bayes’ theorem is the foundation of Bayesian statistics, which
is increasingly relevant in practical settings in which either most past data
are not relevant or you have none, and you have to rely on your subjective
assessment (see Chapter 14).

1171 recall the story of that guy who was diagnosed in a terminal state a while ago. He
started spending all of his money to live what precious time was left to him in the most
entertaining way. The good news was that the doctors were wrong; you imagine the bad
news.
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1.2.3 Variations on coin flipping

In this section, we consider the mother of all random experiments: coin flip-
ping. This is a good way to get acquainted with probabilities, which are
not necessarily relative frequencies, as well as with investments under uncer-
tainty. We illustrate plain coin flipping first, and then some more interesting
variations on the theme.

Plain coin flipping Assuming that we flip a fair coin, what is the probability
of its landing head? Probably, you will not flip the coin one million times to
conclude that this probability is 0.5. The reasoning you are following is, in
fact, based on some form of symmetry that is exploited whenever you think
about gambling by simple mechanisms such as throwing dice, picking cards at
random, or spinning a roulette. Hopefully, you start to see that there may be
different concepts of probability, a topic that we will discuss a bit in Section
5.1. The very nature of probabilities has been the subject of heated debate,
but let us leave such philosophical issues aside and assume that you play a
simple lottery. A fair coin is flipped: You win $10 when it lands head, and you
lose $5 when it lands tail. If the game is repeated a large number of times,
how much money should you win with each flip, on the average? Looking back
at how we computed average demand in Section 1.2.1, you might suggest the
idea of multiplying each possible payoff outcome by its probability:

E[P] = 0.5 x 10+ 0.5 x (—5) = 2.5

We are using a new notation here, as E[-] denotes the ezpected value of a
random variable. Indeed, we are not taking averages based on observed data,
looking backward; rather, we are stating something about the future, looking
forward.

It would be nice to play that game a large number of times without having
to pay for the privilege of flipping the coin. Still, a basic law of economics
says that there is no free lunch; hence, someone will agsk you for some money
to play the game. How much money would you be willing to pay exactly?
Suppose that someone says that, in order to play a fair game, the price is
$2.5; note that, if you pay that amount, the expected overall profit is

—25+05x 10+ 0.5x (=5) =0

which does sound fair. Would you accept? Maybe yes, as the worst that
can happen is losing $7.5, which will not change your life. But let’s scale the
game up a million times: You may win $10,000,000, you may lose $5,000,000.
Would you still be willing to pay $2,500,000 for playing the game? I guess
that the answer is no; probably, you would not play the game even for free.
What you have seen is an example of how risk aversion affects our behavior.
This is a fundamental ingredient of any decision under uncertainty, includ-
ing investments in financial assets or new products. Decision making under
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uncertainty and risk aversion are the subject of Chapter 13. For now, let us
consider a simple investment decision that looks quite similar to coin flipping.

Fancy coin flipping Suppose that you are the lucky manager of a movie com-
pany, which has just signed a contract with a new and promising director.'2
The contract provides that you may produce zero, one, or two movies with
this director, during the next 2 years. To clarify, we could produce a movie
now, investing some money immediately and hopefully collecting some payoff
in, say, one year. At the end of the first year, we could produce a new movie,*3
collecting revenues at the end of the second year. One decision we have to
make is whether we should produce those movies or not. In pondering the
decision, note that any advance money you have paid to the good director is
gone; in other words, it is a sunk cost. If, on second thought, you feel that
producing a movie with him will turn out a disaster, you should not suffer
from the sunk cost syndrome, i.e., the tendency to go on at any cost since you
have already spent money on your endeavor.!* On the contrary, you should
only consider the money you are about to spend now to produce the movie,
and the prospects for future revenue.

To spice things up, let us say that there is another dimension, as we may
select one out of two production and marketing plans, a conservative and
an aggressive one. We may invest more money in well-known actors and/or
special effects, as well as in marketing the movie around the world.

1. Production/marketing plan A costs 2500 whatever monetary unit you
like. This is the money you have to spend for the privilege of flipping
the coin. We have some uncertainty about the success of our pet group.
If the movie is successful, revenue after one year will be 4400 the same
whatever; if it’s a flop, you make nothing. To consider a case as close as
possible to coin flipping, and to simplify calculations, let us assume that
the probability of a success is 50%. Of course, coin flipping is a rather
crude model of uncertainty for such a situation, and you should really
ponder how to come up with a set of sensible scenarios along with their
probabilities. By the way, the astute reader will suspect that here we
should work with yet another, more subjective concept of probability.
The symmetry of coin flipping or dice throwing does not apply and if
this is an unknown director, looking at the past relative frequencies case
might just make no sense. This happens whenever you deal with a brand
new product.'®

12This section is based on an example described in HBS business case [8].

13Well, maybe it will not really be a new movie; sequels are all the rage, aren’t they?
14While we are talking about movies, imagine that you have paid a ticket for a movie that
you find disgusting and/or insufferably boring after 20 minutes. Should you stay seated
there for two more painful hours, just because you paid for the ticket?

15As a case in point, when the first IBM computer, a piece of hardware as large as a big
room, was working (and heating whoever was around it), an IBM boss said that it was
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2. Production/marketing plan B is more aggressive and expensive, as it
costs 4000, but it increases revenue by 50% in the case of a hit, without
changing probabilities (hence, we have two possible outcomes: 6600 or
0, with 50% probability). Arguably, a different marketing plan could
also change success/flop probabilities, but for the sake of simplicity we
will neglect this.

Both plans look like a coin flipping experiment, but in this case we should
consider time or, to be more precise, the time value of money. Let us digress
a bit in order to clarify this issue.

A little digression: time value of money Would you prefer to receive $100 right
now or $100 in one year? Well, easy answer, and you surely concur that $100
in one year is not the same as $100 today. But what if you have to choose
between $100 right now and $106 in one year? In order to make the two
amounts comparable, the standard approach is to take money in the future
and discount it back to now. To do so, we apply a discount rate, which is
related to an interest rate.

Say that you may invest money at an annual risk-free interest rate of 5%;
if you invest $100 now at that rate, in one year you will own

$100 x (1 + 0.05) = $105

The general rule is that to evaluate money in one year, you multiply money
now by (1+r), where r is the prevailing interest rate. If you leave that money
invested for 2 years, and interest on interest is earned, the money in 2 years
will be

$100 x (1+ 0.05) x (1 + 0.05) = $100 x (1 + 0.05)? = $110.25

Note the effect of compounding; without that, in 2 years you would get only
$110, i.e., the initial capital plus twice the interest payment. Now, if you see
things the other way around, how much are $106 in one year worth now? A
little thought should suggest the following rule: Discount money in the future
using the interest rate, and compare it with money now:

$106

— = $100. 100
105 $100.95 > §

which suggests the opportunity of waiting one year to grab almost one extra
dollar.

This is what cash flow discounting is all about. We will see a bit more about
financial mathematics later.!® In practice, the real issue is estimating the

a very nice piece of equipment and that probably they were going to sell 10 in the entire
world. Hardly a good prophecy, and the same difficulty in forecasting sales applied when
the first cell phones were being produced.

165ee Examples 2.7 and 2.33.
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Plan A Plan B
05 4400 0.5 6600
-2500 -4000
0.5 0 0.5 0

Fig. 1.7 Graphical representation of alternative plans for producing and marketing a
movie.

uncertain cash flows and choosing a suitable discount rate. This may be
difficult, as the discount rate should take investment risk into account. For
now, let us assume that we discount cash flows with an annual discount rate
of 10%.

Back to fancy coin flipping One sensible starting point in deciding whether
we should trust the good director with our money is to find out how much we
expect to make using each alternative marketing plan to produce one movie.
Let us consider plan A. We pay 2500 for sure now, and there is a 50-50 chance
of making 4400 or 0 in one year. Taking discounting into account, the money
we expect to make is

5x 44 . 22
25004 22X (1)013 05x0 _ —2500+1—f(()) = —2500+2000 = —500 (1.4)

This —500 is the (expected) net present value (NPV) of our investment. A
basic rule of investment analysis says that we should invest in projects with
positive NPV. Unfortunately, the idea of adopting marketing plan A to pro-
duce a movie now does not seem quite promising. What about using the
bolder plan B? Well, repeating the analysis yields the following NPV:

0.5 x 6600 + 0.5 x 0
—4000 + 2= 11;“ %2 _1000

an even bleaker perspective. A useful way of visualizing lotteries is illustrated
in Fig. 1.7, which depicts a scenario tree. The leftmost node corresponds to
“now,” i.e., the current state of the world, where we have to decide whether we
should spend 2500 or 4400 to start one of the marketing plans. The two nodes
on the right correspond to possible states of the world in the future. In our
case, we have just two possible scenarios, success or flop, which are associated
to given payoffs and probabilities. Clearly, this a two-state scenario tree is a
very crude representation of uncertainty; in practice, scenario trees may be
definitely richer.

It seems there is no hope, but wait: We just considered one movie! What
if we produce two over the next 2 years? If one game of coin flipping is a bad
lottery, can we make it any better by just repeating it? To illustrate the point
with plain coin flipping, what is the probability of getting two heads in a row,
or any other possible outcome? The possible head-tail sequences when you
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4400
(4400-2500)

-2500

(0-2500)
Fig. 1.8 Repeating the fancy coin flipping experiment twice.

flip a coin twice are
HH, HT, TH, HH

The usual symmetry argument suggests that none of these four outcomes is
more likely than the others; hence, the probability of each sequence should
just be % = 0.25 (note once again that probabilities add up to 1). A deeper
reasoning should reveal that, unless the coin has some memory, the result of
the second flip has nothing to do with the result of the first one; the two events
are independent. We will learn in Chapter 5 that the joint probability of two
independent events is just the product of their probabilities. For instance, we
obtain the following equation, which confirms the previous result:

P{HHY} = P{H} x P{H} = = x = = X

2 2 4
Now, what should we conclude if we consider the movie production problem
as no more than a fancy variation on coin flipping? The situation is depicted
in Fig. 1.8, where we produce two movies using plan A (incidentally, we ig-
nore inflation and assume that future production and marketing costs will be
the same as today). We have four equally likely scenarios: success-success,
success—flop, flop—success, flop—flop. Each scenario has probability 0.25. We
should discount cash flows occurring in 1 and 2 years; we should also consider
the net cash flow in one year, resulting from collecting revenues (if any) and
investing in the new movie. For the success—success scenario, the NPV is as

follows: 4400 — 2500 4400
-2 _ ~ 2863.64
500+ ——o— + [ qg) = 28636

Please carry out the calculation for the other three scenarios, and verify that
the expected NPV is

0.25 x 2863.64+ 0.25 x (—772.73) + 0.25 x (—1136.36)
+0.25 x (—4772.73) = —954.55
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The result is negative again, but this is hardly a surprise; if flipping a coin once
has a negative expected profit, repeating that gamble twice will not produce
a positive result, because we are replicating the same experiment. In fact, a
much smarter way to obtain the result is by noting that we are just carrying
out the experiment with plan A twice in a row, and we may use the result of
Eq. (1.4). We have just to discount the expected NPV for the second movie
back from the end of year 1 to now:

(=50)
50 + 110 — 954.55

By the same token, if we try mixing plans A and B in some sequence, we will
hardly get any better, if our problem is just a fancy variation of coin flipping.

But is the movie production case really like coin flipping? In Section 1.2.2
we learned about conditional probabilities: If the test is positive, this does
change your probability of being ill. If the first movie is a success (or a flop),
can we say that producing the next one will just be another coin flipping
experiment? Probably not, as the result of the first trial tells us something
about market reaction to our product. In fact, we need an assessment of
conditional probabilities, i.e., the probability that the second movie is a success
(or a flop), conditional on the fact that the first one has been a success (or
a flop). Reasonably, if the first movie is a success, the probability that the
second one is a success as well is greater than 0.5. By the same token, if we
have a flop in the first trial, we raise our expectation for another flop with
the second movie. Coins are supposed to have no memory, but the tendency
to stack movie sequels one after another suggests that moviegoers are not
memoryless coins. Estimating those conditional probabilities may be quite
hard, but let us consider a very extreme and overly simplified case, just to
illustrate the point. Assume that if the first attempt is a success, the second
one will certainly be as well (i.e., the conditional probability of a second hit
after the first one is 1); on the other hand, assume that after a flop, we will
have another flop for sure. In such a case, it is easy to see that if the first
movie is a success, we should certainly produce the second one; on the other
hand, if the first movie is a flop, we will just cut our losses and forget about it.
This is what managerial flexibility is all about; we do not plan everything in
advance, but we adapt our decisions when we gather additional information
and revise our beliefs.

One sensible idea is to be conservative at the first trial and using plan A
for the first movie; if we are lucky, and discover that the director can deliver a
successful movie, we will be more aggressive and take plan B next year. This
strategy is depicted in Fig. 1.9. In the figure, we do not clearly distinguish
nodes at which we make a decision and nodes at which we observe results,
but we will see a clearer representation of a dynamic decision-making process
under uncertainty in Chapter 13, where we deal with decision trees. If we
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(4400-4000) 6600

-2500

Fig. 1.9 Fancy coin flipping with memory.

calculate the expected NPV, we obtain

0.5 x (4400 — 4000) + 0.5 x 0 0.5 x 1 x 6600

~2500+ 1.10 + (1.10)2

= 409.09

Please beware of a common mistake. The last cash flow in the expression,
6600, occurs with probability 0.5, not 0.25. In order to evaluate the probability
of each node in the scenario tree we must take the product of the conditional
probabilities along the path leading from the root of the scenario tree (the
“now” node) to that node. In our case, 0.5 x 1 = 0.5. This positive result
shows that maybe our investment in the director was not so bad. Clearly, we
should assess how much this conclusion depends on the probabilities that we
have assumed. This process of checking the influence of uncertain data on the
decision suggested by a model is called sensitivity analysis.

If you want to generalize a bit, a situation like this is common in risky
research and development (R&D) projects. You could try a risky venture that,
if successful, will pave the way to huge revenues by expanding the business.
When analyzing investments, one should account for managerial flexibility
and the possibility of learning over time by gathering new information. This
approach leads to so-called real options;'” in the real options literature, our
example is known as a growth option.

Coin flipping in the short or long run Before leaving coin flipping aside, it may
be instructive to consider in more detail the idea of repeating bets. Suppose
that you can play the plain coin-flipping game, where you may either win 10
million or lose 5 million of whatever monetary unit you like. The coin is fair
and memoryless, and you can play the game for free, so that the expected
payoff is 2.5 million.

1. Would you play the game once?

2. Would you play the same game 1000 times in a row?

17They are called “real,” as opposed to financial options based on financial assets such as
stock shares. We will consider options in a few examples in the following chapters.
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The answer to the first question might be no, as the chance of being broke is
far from negligible, even though the expected payoff is rich. But if you may
repeat the game several times, you have the possibility of recovering your
losses. In the long run, the bet is quite profitable indeed, but this is no solace
if you can get out of the business after a losing streak of bad outcomes, without
the time to recover.!® Again, risk aversion does play an important role and
considering long-run, or expected, profits may not be always appropriate. In
other words, the plain expected value of the payoff fails to take into account
risk in the short term. In the movie production case, we have taken for granted
that a proper discount rate can take risk aversion into account, but the issue
is far from trivial and is the subject of quite some controversy in corporate
finance. We investigate the role of risk in decision making under uncertainty
in Chapter 13.

1.3 ENDOGENOUS VS. EXOGENOUS UNCERTAINTY: ARE WE
ALONE?

A colleague of mine draws the line between engineers (like myself) and economists
as follows:

e An engineer believes that fellow human beings are a little dumb, but
otherwise they are generally good chaps. All you have to do is to find a
clever solution for them, and they will live happily ever after.

e An economist believes that fellow human beings are not dumb at all.
The problem is that you cannot turn your back on them, unless you
have a taste for an instant stab.

In fact, the need for analyzing the interactions between noncooperative deci-
sion makers was the driving force for the development of game theory. We
will consider related issues in Section 14.3, where we investigate the role of
misaligned incentives when multiple stakeholders are involved in a decision-
making process. The interaction of multiple actors may also change the nature
of the uncertainty involved in decision making. Simple probability models as-
sume that uncertainty is known and fixed; if we have enough information,
we can make a good decision. However, it might be the case that the very
uncertainty is influenced by decisions.

Example 1.1 To illustrate, let us go once again back to the inventory man-
agement problem of Section 1.2.1. There, we used historical data to charac-
terize demand uncertainty and planned on using that information to come up
with a decision. One tough question is: Does our decision affect the demand

18 As the economist John Maynard Keynes aptly put it, in the long run we are all dead.
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distribution? To get the point, imagine that you stock very few items. In
the long run, you will end up losing customers, not just orders. What’s even
worse, maybe this will also affect the demand for other items.

In practice, there are many cases in which demand is affected by stocking
decisions. At retail stores, the shelf space allocated to a product may have
a remarkable effect on demand. More generally, uncertainty need not be
purely exogenous, i.e., given by outside factors that are not going to change
(at least in the short term); uncertainty may be partially endogenous, i.e.,
influenced by our actions. Representing the dependence between our decisions
and uncertainty may be very difficult, but at least one should be aware of the
issue.

More generally, we should consider that management decisions are made
in a social context, where other people could

e React to our decisions
o Use the same information we have
e Observe our behavior to gather information

Example 1.2 To see another example in a supply chain management con-
text, suppose that we are selling a perishable item. We start selling it in the
morning, and we know that at the end of the day we will scrap what’s left.
One could consider a dynamic pricing strategy, whereby price is marked down
at the end of the day; after all, it seems better to recover some money even
if this implies selling below cost. That’s fine, but we are not considering the
possibility of strategic behavior on the part of customers. Knowing that price
will be reduced, they could wait and buy at dusk, just before closing time.?
The point is that there is no separation between the set of customers who buy
during the first part of the day and customers who buy later. We may apply
price discrimination, i.e., asking different prices for the same product on dif-
ferent markets, provided they are well separated, possibly in space. The above
revenue management policy is a sort of failed price discrimination strategy in
time, rather than in space.

There could also be other reasons not to mark down some products. Some
fresh and quickly perishable produce is not really sold for profit at retail
stores. The real intent is to promote a positive image of “freshness” that has
a positive impact on sales of other, more profitable items. The message would
be lost by selling almost perished items in the evening.

Social issues are even more fundamental in finance. A whole discipline, behav-
ioral finance, was born to investigate the interplay between psychology and

19This is what happened at the fish counter at a big retail store in front of my home. Very
few people bought fish all day long, but queues materialized after 6 p.m., not to mention a
terrible smell. As you may imagine, this brilliant revenue management policy disappeared
rather quickly. Much to the chagrin of my nostrils, the smell didn’t follow.
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finance. When you buy a good, you know its selling price and you may plan
accordingly. However, financial markets are based on a competitive auction
mechanism, so that prices depend on investors’ behavior, on their beliefs (or
lack of information), and on their beliefs about other investors’ beliefs. The
resulting pattern may be quite complex, and indeed it leads to bubbles and
crashes. Everything is made even more complicated by deliberate trading
strategies.

Example 1.3 (Short selling) A short sale is a trading strategy whereby
you sell an asset, say, a stock share, that you do not own. To do so, you have
to borrow that asset from someone.else. It is a strategy that makes sense if
you expect the asset price to drop. To see this, assume that the current price
is Sg = $50 at time ¢t = 0. If you sell the asset short, you borrow the asset and
sell it for $50. Clearly, you will have to give the asset back to its legitimate
owner at some later time ¢ = T', which means that you will have to buy the
asset at a price St in the future. If you are right and the asset price falls,
e.g., to St = $40, your reward will be $10 per share.

At times of financial turmoil, wealthy speculators could do a lot of short
selling, which may itself depress prices, resulting in a self-fulfilling prophecy.
Selling an asset short in large volumes can lead to lower prices, even if the
economic and business fundamentals of the firm are good. Uninformed traders
may just follow the lead, just because they see a drop in price, even if they
do not know why this is happening. A perverse feedback mechanism can be
the result, and indeed short selling is sometimes prohibited, when markets
are under severe pressure. The role of short sellers (the “shorts”) is actually
debated, but the point here is that the interaction between actors can result
in weird patterns.

