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Introduction      1

Introduction

Quantitative finance is about applying mathematics and statistics to 
finance. For maths lovers that’s exciting, but for the rest of us it may 
sound scary and off-putting. But I guide you step by step, so no need to 

worry. Quantitative finance helps you to price contracts such as options, manage 
the risk of investment portfolios and improve trade management.

I show you how banks price derivatives contracts based on the statistics of stock 
and bond price movements and some simple rules of probability. Similar maths 
help you understand how to manage the risk of investment portfolios. Quantita-
tive tools help you understand and manage these systems, and this book intro-
duces you to many of the most important ones.

About This Book
This book should be helpful for professionals working in the financial sector – 
especially in banking. It won’t take you to the level of doing the maths for pricing 
the latest derivative contract, but it can help you to contribute, perhaps as a pro-
grammer, data scientist or accountant. It should also be helpful for those taking a 
masters course in finance or financial analysis and who want help in a module on 
quantitative finance. Enough detail is included to really help in understanding key 
topics such as the Black-Scholes equation. The book also has breadth so you can 
discover a range of key financial instruments and how they’re used as well as 
techniques used by traders and hedge fund managers. Whether you plan a career 
as a corporate treasurer, risk analyst, investment manager or master of the uni-
verse at an investment bank, this book should give you a boost.

This book isn’t a traditional textbook and isn’t a traditional book on quantitative 
finance. It is significantly different from either in the following ways:

»» The book is designed as a reference so that you can dive into the section of 
most importance to you. I include lots of cross references to clearly point you 
to other sections and chapters that may have additional or complementary 
information.
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»» The maths is at the minimum level required to explain the subjects. I made no 
attempt to impress with fancy mathematical jargon, lengthy proofs or 
references to obscure theorems.

»» It’s about applying mathematics and probability to finance. That includes 
derivatives but also includes tools to help you with trading and risk manage-
ment. Finance is a subject centred on numbers, so maths is a natural way to 
help you get to grips with it.

»» It includes real-world examples so you can relate quantitative finance to your 
day-to-day job.

If you haven’t done any algebra for a while, remember that mathematicians like 
to write products without multiplication signs. So P(H)P(H) is shorthand for the 
probability of heads multiplied by the probability of heads. For maths with actual 
numbers, I use the symbol * to indicate multiplication. This avoids any confusion 
with the variable x, which is a favourite of mathematicians to signify an unknown 
quantity.

Within this book, web addresses may break across two lines of text. If you’re read-
ing this book in print and want to visit one of these web pages, simply key in the 
web address exactly as noted in the text, pretending the line break doesn’t exist. 
If you’re reading this as an e-book, you’ve got it easy — just click the web address 
to be taken directly to the website.

Foolish Assumptions
I don’t assume that you have any previous experience of quantitative finance. I 
don’t even assume that you’re familiar with the world of finance except for the 
apocalyptic stories you read in the press about crises, greed, bonuses and debt. 
However, I’m assuming that you’re reading this book because you’re working in a 
financial institution such as a bank or a hedge fund and want to know what those 
clever quants (quantitative finance professionals) are doing. Alternatively, you 
may be studying for a Masters in Finance and looking for help with those quanti-
tative modules.

I assume that you’re familiar with mathematics such as logarithms, exponentials 
and basic algebra. In some parts of the book, I also assume some knowledge 
of  calculus both differentiation and integration. The online Cheat Sheet at 
www.dummies.com/cheatsheet/quantitativefinance is a good place to visit if 

http://www.dummies.com/cheatsheet/quantitativefinance
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you need to brush up on some of this maths. Some of the sections with the heaviest 
maths have Technical Stuff icons, which means that you can skip them if you 
wish.

Where I use algebra, I try to take you through it step by step and introduce all the 
symbols before the equations so that you know what they’re about. I also include 
a few example calculations to help you become familiar with them and see how to 
use the equations in practice.

Quantitative finance is what it says it is and involves numbers and maths but you 
don’t need to become bogged down by it. Only then will you see that the numbers 
are useful in real life in your job.

Icons Used in This Book
Icons are used in this book to draw your attention to certain features that occur on 
a regular basis. Here’s what they mean:

This icon is to give those grey cells a little jolt. It’s so easy to forget what you 
learned in school.

This icon points to helpful ideas that can save you time and maybe even money.

Skip paragraphs marked with this icon if you don’t want to go into the gory math-
ematical details. But if you do manage them, you’ll really glow with 
achievement.

Sometimes things can go badly wrong. Follow these sections to avoid disasters.

Where to Go from Here
The obvious answer is to start with Chapter 1. In fact, that’s a good idea if you’re 
not too familiar with quantitative finance as Chapter  1 is a bit like the book in 
miniature. I hope it will fire you up ready to read the rest of the book. Another 
obvious answer is to go to the table of contents. Just find the topic you’d like to 
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know about and go straight there – no messing about. The book is designed to be 
used like that. Check out the topics you want to know about and skip what you’re 
not interested in. A third obvious answer is to use the index, which has been 
conveniently arranged in alphabetical order for you. If some quantitative finance 
jargon is bugging you, go to the Glossary at the back. Finally, if you’re really in a 
hurry, try Chapters 19 and 20. They give quantitative finance to you in ten bite- 
sized sections.

And you can use some free online material to help. The Cheat Sheet is a goldmine 
of handy formulae used in quantitative finance. To view this book’s Cheat Sheet, 
go to www.dummies.com and search for “Quantitative Finance For Dummies 
Cheat Sheet” for additional bits of information that you can refer to whenever 
you need it.

http://www.dummies.com
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IN THIS PART . . .

Realise that the chart of a stock price can look jumpy 
and rather random because market prices are indeed 
very close to being random.

Get to grips with the mathematics of random numbers 
and brush up on probability and statistics.

Enter the strange and fascinating world of random 
walks. Find out how you can use them as models for 
the price movement of financial assets such as stocks.

Use calculus to analyse random walks so that you can 
get going on the classic maths for option pricing.
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IN THIS CHAPTER

Using probability and statistics in 
finance

Finding alternatives for cash

Looking at efficient (and not-so- 
efficient) markets

Tackling options, futures and 
derivatives

Managing risk

Doing the maths (and the machines 
that can help)

Quantitative Finance 
Unveiled

Quantitative finance is the application of probability and statistics to finance. 
You can use it to work out the price of financial contracts. You can use it 
to manage the risk of trading and investing in these contracts. It helps you 

develop the skill to protect yourself against the turbulence of financial markets. 
Quantitative finance is important for all these reasons.

If you’ve ever looked at charts of exchange rates, stock prices or interest rates, you 
know that they can look a bit like the zigzag motion of a spider crossing the page. 
However, major decisions have to be made based on the information in these 
charts. If your bank account is in dollars but your business costs are in euros, you 
want to make sure that, despite fluctuations in the exchange rate, you can still pay 
your bills. If you’re managing a portfolio of stocks for investors and you want to 
achieve the best return for them at minimum risk, then you need to learn how to 
balance risk with reward. Quantitative finance is for banks, businesses and 
investors who want better control over their finances despite the random 
movement of the assets they trade or manage. It involves understanding the 

Chapter 1
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statistics of asset price movements and working out what the consequences of 
these fluctuations are.

However, finance, even quantitative finance, isn’t just about maths and statistics. 
Finance is about the behaviour of the participants and the financial instruments 
they use. You need to know what they’re up to and the techniques they use. This 
is heady stuff, but this book guides you through.

Defining Quantitative Finance
My guess is that if you’ve picked up a book with a title like this one, you want to 
know what you’re going to get for your money. Definitions can be a bit dry and rob 
a subject of its richness but I’m going to give it a go.

Quantitative finance is the application of mathematics – especially probability 
theory – to financial markets. It’s used most effectively to focus on the most fre-
quently traded contracts. What this definition means is that quantitative finance 
is much more about stocks and bonds (both heavily traded) than real estate or life 
insurance policies. The basis of quantitative finance is an empirical observation of 
prices, exchange rates and interest rates rather than economic theory.

Quantitative finance gets straight to the point by answering key questions such as, 
‘How much is a contract worth?’ It gets to the point by using many ideas from 
probability theory, which are laid out in Chapters 2 and 3. In addition, sometimes 
quantitative finance uses a lot of mathematics. Maths is really unavoidable because 
the subject is about answering questions about price and quantity. You need num-
bers for that. However, if you use too much mathematics, you can lose sight of the 
context of borrowing and lending money, the motivation of traders and making 
secure investments. Chapter 13 covers subjects such as attitudes to risk and pros-
pect theory while Chapter 18 looks in more detail at the way markets function and 
dysfunction.

Just to avoid confusion, quantitative finance isn’t about quantitative easing. Quan-
titative easing is a process carried out by central banks in which they effectively 
print money and use it to buy assets such as government bonds or other more 
risky bonds. It was used following the credit crisis of 2008 to stimulate the econo-
mies of countries affected by the crisis.

Summarising the mathematics
I’m not going to pretend that quantitative finance is an easy subject. You may 
have to brush up on some maths. In fact, exploring quantitative finance inevitably 
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involves some mathematics. Most of what you need is included in Chapter 2 on 
probability and statistics. In a few parts of the book, I assume that you remember 
some calculus – both integration and differentiation. If calculus is too much for 
you, just skip the section or check out Calculus For Dummies by Mark Ryan (Wiley). 
I’ve tried to keep the algebra to a minimum but in a few places you’ll find lots of 
it so that you know exactly where some really important results come from. If you 
don’t need to know this detail, just skip to the final equation.

Time and again in this book, I talk about the Gaussian (normal) distribution. 
Chapter 2 has a definition and explanation and a picture of the famous bell curve.

Please don’t get alarmed by the maths. I tried to follow the advice of the physicist 
Albert Einstein that ‘Everything should be made as simple as possible, but not 
simpler.’

Pricing, managing and trading
Quantitative finance is used by many professionals working in the financial 
industry. Investment banks use it to price and trade options and swaps. Their 
customers, such as the officers of retail banks and insurance companies, use it to 
manage their portfolios of these instruments. Brokers using electronic-trading 
algorithms use quantitative finance to develop their algorithms. Investment man-
agers use ideas from modern portfolio theory to try to boost the returns of their 
portfolios and reduce the risks. Hedge fund managers use quantitative finance to 
develop new trading strategies but also to structure new products for their 
clients.

Meeting the market participants
Who needs quantitative finance? The answer includes banks, hedge funds, insur-
ance companies, property investors and investment managers. Any organisation 
that uses financial derivatives, such as options, or manages portfolios of equities 
or bonds uses quantitative finance. Analysts employed specifically to use quanti-
tative finance are often called quants, which is a friendly term for quantitative ana-
lysts, the maths geeks employed by banks.

Perhaps the most reviled participants in the world of finance are speculators. 
(Bankers should thank me for writing that.) A speculator makes transactions in 
financial assets purely to buy or sell them at a future time for profit. In that way, 
speculators are intermediaries between other participants in the market. Their 
activity is often organised as a hedge fund, which is an investment fund based on 
speculative trading.
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Speculators can make a profit due to

»» Superior information

»» Good management of the risk in a portfolio

»» Understanding the products they trade

»» Fast or efficient trading mechanisms

Speculators are sometimes criticised for destabilising markets, but more likely 
they do the opposite. To be consistently profitable, a speculator has to buy when 
prices are low and sell when prices are high. This practice tends to increase prices 
when they’re low and reduce them when they’re high. So speculation should sta-
bilise prices (not everyone agrees with this reasoning, though).

Speculators also provide liquidity to markets. Liquidity is the extent to which a 
financial asset can be bought or sold without the price being affected significantly. 
(Chapter 18 has more on liquidity.) Because speculators are prepared to buy (or 
sell) when others are selling (or buying), they increase market liquidity. That’s 
beneficial to other market participants such as hedgers (see the next paragraph) 
and is another reason not to be too hard on speculators.

In contrast to speculators, hedgers like to play safe. They use financial instruments 
such as options and futures (which I cover in Chapter 4) to protect a financial or 
physical investment against an adverse movement in price. A hedger protects 
against price rises if she intends to buy a commodity in the future and protects 
against price falls if she intends to sell in the future. A natural hedger is, for 
example, a utility company that knows it will want to purchase natural gas 
throughout the winter so as to generate electricity. Utility companies typically 
have a high level of debt (power stations are expensive!) and fixed output prices 
because of regulation, so they often manage their risk using option and futures 
contracts which I discuss in Chapters 5 and 6, respectively.

Walking like a drunkard
The random walk, a path made up from a sequence of random steps, is an idea that 
comes up time and again in quantitative finance. In fact, the random walk is prob-
ably the most important idea in quantitative finance. Chapter 3 is devoted to it and 
elaborates how random walks are used.

Figure 1-1 shows the imagined path of a bug walking over a piece of paper and 
choosing a direction completely at random at each step. (It may look like your 
path home from the pub after you’ve had a few too many.) The bug doesn’t get far 
even after taking 20 steps.
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In finance, you’re interested in the steps taken by the stock market or any other 
financial market. You can simulate the track taken by the stock market just like 
the simulated track taken by a bug. Doing so is a fun metaphor but a serious one, 
too. Even if this activity doesn’t tell you where the price ends up, it tells you a 
range within which you can expect to find the price, which can prove to be 
useful.

Random walks come in different forms. In Figure 1-1, the steps are all the same 
length. In finance, though random walks are often used with very small step sizes, 
in which case you get a Brownian motion. In a slightly more complex form of 
Brownian motion, you get the geometric Brownian motion, or GBM, which is the 
most common model for the motion of stock markets. You can find out in detail 
about GBM in Chapter 3.

Knowing that almost nothing isn’t 
completely nothing
The orthodox view is that financial markets are efficient, meaning that prices 
reflect known information and follow a random walk pattern. It’s therefore 
impossible to beat the market and not worth paying anyone to manage an invest-
ment portfolio. This is the efficient market hypothesis, or EMH for short. This view 
is quite widely accepted and is the reason for the success of tracker funds, invest-
ments that seek to follow or track a stock index such as the Dow Jones Industrial 
Average. Because tracking an index takes little skill, investment managers can 
offer a diversified portfolio at low cost. Chapter 14 has much more about diversi-
fication and portfolios.

FIGURE 1-1:  
A random walk. 

© John Wiley & Sons, Ltd.
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Academics often distinguish different versions of the efficient market hypothesis 
(EMH):

»» Weak efficiency is when prices can’t be predicted from past prices.

»» Semi-strong efficiency is when prices can’t be predicted with all available 
public information.

»» Strong efficiency goes a step further than semi-strong efficiency and says 
that prices can’t be predicted using both public and private information.

Anomalies are systematically found in historical stock prices that violate even 
weak efficiency. For example, you find momentum in most stock prices: If the price 
has risen in the past few months, it will tend to rise further in the next few 
months. Likewise, if the price has fallen in the past few months, it will tend to 
continue falling in the next few months. This anomaly is quite persistent and is 
the basis for the trend following strategy of many hedge funds.

Somehow, though, the EMH smells wrong. Even though you can find many ven-
dors of market information, EMH has a cost. It’s no coincidence that some of 
these vendors are very wealthy indeed. Also, if you examine publicly available 
information, you soon find that such information is not perfect. Often the infor-
mation is delayed, with the numbers published days or even weeks following the 
time period they apply to. Some exceptions exist and you can read about one of 
them in the sidebar, ‘The impact of US employment numbers’.

It’s far more likely that markets are not informationally efficient and that many 
participants for reasons of cost or availability are not perfectly informed. It’s also 
highly likely that most participants are not able to instantly work out in detail the 
consequences of the information presented to them. This working out may take 
some time.

Indeed, if markets were informationally efficient, there would be no incentive to 
seek out information. The cost wouldn’t justify it. On the other hand, if everyone 
else is uninformed, it would be rewarding to become informed as you can trade 
successfully with those who know less than you.

The point that in an efficient market there’s no incentive to seek out information 
and so therefore no mechanism for it to become efficient is the Grossman-Stiglitz 
paradox, named after the American economists Sanford Grossman and Joseph Sti-
glitz. The implication is that markets will be efficient but certainly not perfectly 
efficient.
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Only with deep research into market data do markets have a chance of becoming 
efficient. That’s the norm in financial markets, but pockets of inefficiency are 
always left that market traders and savvy investors can attempt to exploit. Also, 
attempts to use the results of deep research drive the intense trading found in 
many markets. In Chapter 8, I talk about techniques for analysing historical price 
data for patterns.

THE IMPACT OF US EMPLOYMENT 
NUMBERS
One of the most widely anticipated numbers in finance is the so-called nonfarm payroll 
issued by the US Bureau of Labour Statistics. In fact, the nonfarm payroll isn’t just a 
number but a report with almost 40 pages. You can find the November 2015 report at 
www.bls.gov/news.release/pdf/empsit.pdf. Formally, this report is called the 
employment situation. Its headline figure is the nonfarm payroll employment and its 
companion figure is the unemployment rate, so it gives a picture of the employment sit-
uation in the United States.

This number is hugely impactful globally and can move the value of currencies, stock 
markets and bond markets across the world within seconds of its release. In the US, 
though, the number is released one hour before the opening of the New York Stock 
Exchange so that traders get a chance to absorb the information before trading begins. 
Aside from the data being for the largest economy in the world, other factors make it 
influential:

•	 The nonfarm payroll is timely. It’s issued on the first Friday in the month following 
the one it relates to. For example, the September 2015 report was issued on Friday 
2 October 2015 at exactly 8:30 a.m. Eastern Daylight Time. This is no mean feat 
given the amount of information contained in it.

•	 The nonfarm payroll is comprehensive. It has surveys including small business and 
the self-employed so the information is credible.

•	Although estimates and statistical models are used in some of the numbers, revi-
sions are made to these numbers in subsequent months as more information 
becomes available. The existence of timely revisions based on a well-defined pro-
cess supports market confidence in the numbers.

Be warned: If you’re trading any instruments when the nonfarm payroll figures come 
out, you may be in for some significant turbulence!

http://www.bls.gov/news.release/pdf/empsit.pdf
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Recognising irrational exuberance
Most markets are responding constantly to a flow of news on companies, econo-
mies, interest rates and commodities. They also react to changes in the supply and 
demand for the financial asset in question. If more fund managers decide to buy a 
stock than sell it, its price tends to rise. The greater the demand for loans from 
companies, the higher the interest rate lenders demand.

Markets don’t always behave in this sensible way, however. Sometimes, they defy 
gravity and keep on rising, which is called a bubble. Figure 1-2 shows an example 
of this in a chart for the share price of British Telecom, a fixed-line telecom oper-
ator. In September 1996, the Chairman of the US Federal Reserve Bank warned of 
irrational exuberance in markets. Unusual circumstances, especially low interest 
rates, were making markets overly excited. He was dead right. The Internet had 
just been invented so even traditional companies such as British Telecom saw 
their share price rocket upward. The market ignored Chairman Alan Greenspan 
when he made his warning, although the Japanese stock market respectfully 
dipped several per cent on the day of his speech. In a way, the market was right 
and farsighted: The Internet was going to be big, it was just that British Telecom 
wasn’t Google. After rising to a very sharp peak in early 2000, British Telecom 
shares crashed back down to earth and continued on in their usual way.

One thing for sure is that with crazy behaviour like this, the statistics of the price 
movements for shares don’t obey Gaussian statistics. In Chapter  2, I explain 
quantities such as kurtosis, a measure of how much statistical distributions deviate 
from the Gaussian distribution. A large positive value for the kurtosis means that 
the probability of extreme events is far more likely than you’d expect from a 
Gaussian distribution. This situation has come to be called a fat-tailed 

FIGURE 1-2:  
Share price chart 

for British 
Telecom plc. 

© John Wiley & Sons, Ltd.
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distribution. Statistics is the way of measuring and analysing the market price 
data used in quantitative finance, and I try to emphasise this throughout the book.

Another possibility, of course, is that prices crash rapidly downwards far more 
often than you’d expect. The fear of prices crashing downwards is palpable. Mar-
ket participants want to protect themselves against nasty events like that. To do 
that, you need financial instruments such as options and futures, which I explain 
in detail in Chapters 5 and 6, respectively. Options are a form of financial insur-
ance. For example, if you think that the stock market is going to crash, then you 
buy an option that compensates you if that happens. If the market doesn’t crash, 
you’ve lost just the premium you paid for the option, just like an insurance 
contract.

George Soros, a billionaire hedge fund manager, attempted to explain these irra-
tional market events with a concept he called reflexivity. He replaced the efficient 
market hypothesis view that the market is always right with something else:

»» Markets are always biased in one direction or another. An example of this bias 
is the British Telecom shares illustrated in Figure 1-2. The market thought that 
all things telecom would be highly profitable.

»» Markets can influence the events that they anticipate. Financial markets can 
be stabilising. If a recession is anticipated and the currency declines, this 
situation should boost exports and help prevent a recession.

George Soros’s ideas are controversial, but they help to explain some major mar-
ket distortions. He’s been proven correct on enough occasions to have been suc-
cessful using his insights.

Wielding Financial Weapons  
of Mass Destruction

Cash is the most fundamental of all financial assets. Economists write that money 
has three functions. It serves as a:

»» Store of value

»» Means of exchange

»» Unit of account
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These three functions are familiar to anyone with a savings account (store of 
value) who has done some shopping (means of exchange) and carefully compared 
prices (unit of account). Whether in the form of nickel, plastic or paper, cash is 
the key.

Two alternatives to cash – one ancient, one modern – are good to know about:

»» Gold has been used for thousands of years as a store of value and also as a 
means of exchange. Most central banks in the world hold substantial quanti-
ties in vaults. This practice is partly a relic of the time when paper money 
could be exchanged for gold at the central bank. Although this ended in the 
United States in 1971, many investors still hold gold as part of their invest-
ment portfolios.

»» Like gold, the bitcoin is a currency not under the control of any government. 
However, bitcoin isn’t physical. It’s been described as a cryptocurrency because 
bitcoin is completely digital and relies heavily on encryption techniques for 
security. It can be used for payments just like other forms of cash, but at the 
moment these transactions are small compared with, say, the volume of 
credit card transactions.

One of the appeals of both gold and bitcoin is that they’re not under government 
control. In the past, governments have used their power to print money, which 
undermined the value of the currency. The currencies then no longer function well 
as a store of value. By investing in gold, which is limited in supply, this undermin-
ing can’t happen.

Cash exists in the form of many currencies such as the US dollar, the Japanese Yen 
and the Chinese renminbi. These countries all have their own central banks, and 
one of the key functions of these banks is to set the interest rate for the currency. 
This interest is money that you earn by depositing cash at the central bank. Nor-
mally, only other banks are permitted to use central banks in this way, but these 
interests rates are one of the key parameters in quantitative finance. The interest 
rate at a central bank is often called the risk-free rate because the assumption is 
that a central bank can’t go bankrupt. Chapter 4 has some of the maths involved 
with interest rates that’s the basis behind lots of quantitative finance 
calculations.

If you take out a loan to buy a house or expand your business, the loan is said to 
be a floating-rate loan if the interest rate changes when the central bank in your 
country changes its interest rate. The load is fixed-rate if it stays the same when 
the central bank changes the interest rate. However, given that the period over 
which loans are repaid can be long, locking into one type of loan gives you no flex-
ibility. If you have a floating-rate loan, you may decide that you want to keep the 
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interest payments fixed in future. That may help you sleep at night. The solution 
to this fixing is called an interest-rate swap. This instrument allows you to swap 
from a fixed-rate loan to a floating-rate loan or vice versa. Chapter 4 has a section 
which gives you the maths behind this.

Interest-rate swaps are one of the most important instruments used by banks to 
manage risk. They also use more sophisticated tools as well and Chapter 12 pro-
vides an introduction to some of the most common interest-rate derivatives. 
These derivatives have proved very popular with real-estate investors who typi-
cally borrow large sums of money and want to put limits on interest payments.

Cash in one currency can be exchanged for cash in another currency. This transac-
tion is called foreign exchange, often abbreviated as FX. The FX market isn’t organ-
ised on an exchange and normally consists of dealers working in banks. This 
market is the largest financial market in the world with huge volumes of transac-
tions per day.

Because different currencies have different interest rates, you can potentially 
make money by

»» Selling a currency with a low interest rate

»» Buying currency with a high interest rate

»» Earning a high interest rate

Such transactions are called the carry trade and are a big factor in influencing for-
eign exchange rates.

Going beyond cash
Borrowing money from a bank to expand a business is fine, but other ways are 
possible too:

»» Bonds are a form of loan to a business. The borrower (or business owner) 
receives the principal from the lender and in return promises to pay a regular 
interest payment called a coupon. On the bond’s maturity date, the lender gets 
her principal back. The clever bit, though, is that this bond is a financial 
instrument. This means that the lender can sell it to someone else. Then the 
buyer is entitled to the coupon payments and the principal repayment 
on maturity.
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»» Owning stocks or shares in a business means you’re a part owner of the 
business, are entitled to dividend payments and can vote at the annual general 
meeting in support (or otherwise) of the managers.

Businesses issue shares in exchange for cash from investors but they have no 
fixed repayment date as a bond does. Dividend payments are at the discre-
tion of the management and can vary and, in fact, be non-existent. Because of 
this, shares are often considered riskier than bonds.

Bonds and shares are the building blocks for most investment portfolios. Bonds 
are risky because the borrower can default and fail to pay her coupons. Shares are 
risky because the company may be unable to pay a dividend. Shareholders have no 
right to any repayment of capital so are more likely to lose everything. Chapter 4 
gives you the lowdown on the bond and stock markets.

If you’re thinking that you’re never going to invest in shares or bonds because you 
may never get your money back, then you’re not alone. However, the financial 
markets have created a solution to this, using two instruments, options and futures 
that can be used to control and manage the risk of investing in the stock and bond 
markets. They’re both flexible contracts that I cover in great detail in Chapters 5 
and 6, respectively. Quantitative finance developed rapidly in the 1980s after peo-
ple figured out a mathematical way to price options. You can find out about pric-
ing in Chapters 10 and 11.

Inventing new contracts
Every business likes to show off shiny new products so as to boost sales, but the 
financial industry has been better than most at creating new products; some 
would say too successful. After a long career at the heights of the financial world, 
the former chairman of the US Federal Reserve Bank Paul Volcker said that he’d 
encountered only one financial innovation in his career, and that was the auto-
matic teller machine (ATM).

SETTING CONTRACTS IN STONE
Is anything ever written in tablets of stone? Apparently so. Some of the oldest examples 
of documents written in stone are Babylonian futures contracts. These were agricultural 
futures – contracts agreeing to sell or buy grain at a time in the future at a price agreed 
now. The point of these contracts is to reduce the impact of price fluctuations on farm-
ers or buyers of grain such as bakers. Knowing a price in advance makes business 
easier. Exactly the same sort of contracts are used today, although they’re mainly traded 
electronically on the CME (Chicago Mercantile Exchange).
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Volcker’s sceptical remark points out that the nature of the contracts that people 
enter into are not fundamentally different from ancient contracts. Energy futures 
were first created in the 1970s but they’re similar to agricultural futures, which 
have been around for thousands of years. Indeed, they’re now traded on exactly 
the same exchanges. Trading is now electronic and greatly accelerated, but the 
function of these contracts is exactly the same. The success of energy futures led 
to the introduction of financial futures contracts on interest rates and bonds. They 
were, and are still, a big success.

Just as in the futures market, the variety of option contracts available has prolif-
erated. Initially, most options were share options, but they soon found use in the 
foreign exchange and bond markets. You can also buy commodity options such as 
for crude oil, which have proved very popular too.

New option styles have also been introduced. In this book, I stick to what are 
known as plain vanilla contracts which give the holder the right, but not the obliga-
tion, to buy or sell an underlying asset at a predetermined price (the strike price) at 
a specified time in the future. In the plain vanilla contract, the option payoff (the 
amount that you may get paid when the contract expires) depends only on a single 
strike price (the price that has to be reached for there to be any payoff to the 
option) whereas for barrier options, and other more complicated options, other 
prices are involved too.

Finally, credit derivatives give protection against defaulting loans. The most com-
mon of these derivatives are credit-default swaps in which the buyer of the swap 
makes a regular series of payments to the seller; in exchange, the seller promises 
to compensate the buyer if the loan defaults.

Derivatives are useful because market participants who can’t bear certain risks 
can shift them (at a price) to someone who can. As a whole though, trading in 
derivatives can lead to risk being concentrated in a small number of dealers with 
fatal consequences for the likes of Lehman Brothers. As the investor Warren Buf-
fett presciently observed years before the 2008 crisis, ‘derivatives are financial 
weapons of mass destruction’.

Despite the explosive possibilities inherent in the derivatives market, the use of 
derivatives continues because of the constant need to mitigate financial risks. 
Better regulation will hopefully reduce the nasty accidents that have happened.
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Analysing and Describing  
Market Behaviour

Quantitative finance is primarily about prices, but because markets are almost 
efficient, price changes are almost random. Also, you may be interested in not one 
price but many prices – all the prices in an investment portfolio, for example. I 
explain some of the statistical tools that you can use to deal with this problem in 
the next sections.

Measuring jumpy prices
The measure of the jumpiness of prices is called volatility. Chapter 7 is all about 
volatility and the different ways that you can calculate it. Normally price changes 
are called returns even if they’re negative, and the volatility is the standard devia-
tion of these returns. The higher the volatility, the jumpier the prices.

THE 2008 BANKING CRISIS IN A NUTSHELL
In September 2008, the US investment bank Lehman Brothers filed for bankruptcy. This 
event was the first time in decades that a major US bank had collapsed. In the UK, major 
retail banks had to be bailed out by the government, and in Germany the second largest 
bank, Commerzbank, was partly nationalised.

These banks were deemed too big to fail, meaning that the government felt compelled 
to intervene fearing that allowing the banks to fail would create a crisis across the entire 
banking system.

This financial crisis was a complicated event (you can find whole books on it – not just a 
paragraph) but it boils down to the fact that the banks lent way too much money and 
lent some of it to people who were unlikely ever to pay it back. You can be forgiven for 
thinking they just weren’t doing their job properly.

A lot of this lending was done using mortgage-backed securities. These securities are a bit 
like bonds where the coupon payments and final principal repayments come from a 
portfolio of residential mortgages. By ingenious methods, the banks made these securi-
ties appear less risky than they really were. These methods allowed the bank to earn yet 
more fees from the lending but at the expense of building a financial time bomb.
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Because of the instability of financial markets, volatility is constantly changing. 
Prices can go through quiet spells but then become very jumpy indeed. This means 
that calculating volatility isn’t as simple as calculating a normal standard devia-
tion, but Chapter 7 shows you how.

Keeping your head while using lots of data
Most financial institutions are trading, selling or investing many different finan-
cial assets, so understanding the relationships between the prices of these assets 
is useful. In Chapter 9, I show you a special technique for gaining this under-
standing called principal components analysis (PCA). This technique helps because it 
can point out patterns and relationships between assets and even help you build 
predictive models. This is no mean feat given the almost random changes in asset 
prices, but PCA can do it.

Valuing your options
Black-Scholes is the equation that launched a thousand models. Technically, it’s 
a partial differential equation for the price of an option. The reason you need such 
a complicated equation to model the price of an option is because of the random 
nature of price movements. Chapter 10 is the go-to place to find out more about 
Black-Scholes.

If you’re a physicist or chemist, you may recognise part of the Black-Scholes 
equation as being similar to the diffusion equation that describes how heat moves 
in solids. The way you solve it is similar, too.

An option gives you the right, but not the obligation, to buy or sell a financial asset, 
such as a bond or share, at a time in the future at a price agreed now. The problem 
is that because prices move in random fashion you have no idea what the price will 
be in the future. But you do know how volatile the price is, and so from that you 
have an idea what range the future price is in. If the asset price is highly volatile, 
the range of possible future prices is large. So, the price of an option depends on 
the following factors:

»» The risk-free rate of interest

»» The volatility of the asset

»» The time to expiry

»» The strike price
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The Black-Scholes equation makes assumptions about the statistical distribution 
of the asset returns. You can find the details of this geometric Brownian motion 
model in Chapter 3. Chapter 10, gives you an alternative way of calculating option 
prices using probability theory. You don’t need the complicated partial differential 
equation to do this, but you still need the maths that you can find in Chapter 2.

You even have a third way to calculate option prices using simulation. With a simu-
lation, you use the idea that asset prices follow a random walk and use your com-
puter to generate lots of paths that the price may take in the future. From this, you 
can calculate the probability of the price hitting the strike price. You use this 
probability to work out today’s price for the option.

Managing Risk
Quantitative finance and the associated futures and option contracts provide the 
tools for managing financial risk. With futures, you can fix the price now of pur-
chases or sales that you know you need to make in the future. Options can give you 
more flexibility in protecting yourself against adverse price movements, but the 
drawback is that you have to pay a premium up front.

To quantify the overall riskiness of a portfolio of risky financial assets, you can 
use the Value at Risk (VaR) number. VaR is widely used by fund managers, banks 
and companies using derivatives. It gives senior managers an indication of how 
much risk they’re taking on. Regulators use VaR to figure out how much capital a 
bank must hold. Chapter 15 explains this measure.

Hedging and speculating
You can use options either for speculation or hedging. Options have some leverage 
built in, in other words, the returns can be similar to using borrowed money to 
buy shares. This similarity makes them attractive to some market participants. 
You can quickly earn many times more than your original premium, but you can 
easily end up with nought. This game is for professionals.

Options are, however, great tools for hedging. If you have a large investment port-
folio, but you think that the stock market may go down, you can buy a put option 
which pays you compensation if the market goes down before the option expires.

The price of options is very much influenced by how much time is left before they 
expire. The sensitivity of the option price to the time to expiry is called theta, after 
the Greek letter. Chapter 11 shows you how to calculate theta and some of the other 
Greeks, which are useful if you’re trading options.
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Generating income
Most options written are worthless when they expire. That makes the business of 
writing them attractive – your customer pays you a premium to buy an option 
from you and, highly likely, it expires worthless. You can see why bankers like to 
sell options to their clients and why some become rich from it. Of course, a down-
side also exists to selling options. The option may not expire worthless. Your cli-
ent may have had a great insight when buying a call option and that share price 
shoots up, and you have to pay your client a large payoff. Ouch!

To mitigate the risk of selling options, you can and should delta hedge, which 
means to buy or sell the underlying asset associated with your option. Chapter 11 
shows you how to calculate the value of delta for a plain vanilla equity option. If 
you don’t delta hedge and take a naked position, then you run the risk of large 
losses.

Building portfolios and reducing risk
Investment managers build large portfolios of shares, bonds and other financial 
assets. These portfolios are often part of pension funds or made available to pri-
vate investors as mutual funds. How much of each asset should the manager buy 
for the portfolio? This decision depends on the manger’s objective but if, like 
many others, she wishes to maximise returns and reduce risk, she can use a 
framework called modern portfolio theory (MPT for short). MPT is not so modern 
now as it was first worked out by the economist Markowitz in 1952, but the frame-
work and concepts are still applicable today. You can read about it in Chapter 14.

For your portfolio, you need to know the following:

»» The expected return of your assets

»» The volatility of your assets

»» The correlations (statistical relationships calculated from price returns) 
between your assets

From this, you can calculate the portfolio that meets your objectives. That may 
mean minimising the risk but it may also mean achieving some minimum level of 
return.

In practice, using MPT has proved difficult because both correlations and expected 
returns are hard to estimate reliably. But some timeless ideas do exist that were 
usefully highlighted by MPT. The main one is diversification, which has been 
described as the only free lunch in finance because of its almost universal benefits. 
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By placing investments over a wide number of assets, you can significantly reduce 
the risk for the same level of return. Equivalently, you can boost your return for 
the same level of risk. By paying special attention to the correlation between the 
assets in your portfolio you gain maximum benefit from diversification. If the 
correlation between your assets is small or even negative, the benefit is large. 
Sadly that’s not easy to achieve because, for example, many stocks and shares are 
correlated, but at least you know what to look for. Chapter 14 talks more about 
tools to manage portfolios, including correlation and diversification.

Computing, Algorithms and Markets
Data can be gathered directly by monitoring activity on the Internet – especially 
trade data: the price, time and quantity of financial instruments bought and sold. 
The large amounts of data now captured means that more specialised databases 
are used to store it and more sophisticated machine learning techniques are used 
to model it. The better your models are, the more successfully you can trade, and 
the more data you generate for further analysis. A poet once wisely wrote that you 
can’t feed the hungry on statistics. You can’t eat data, but data is now a big indus-
try employing – and feeding – many people. You may be one of them.

Seeing the signal in the noise
The problem with large amounts of data is what to do with it. The first thing is to 
plot it. Plotting allows you to spot any obvious relationships in the data. You can 
also see whether any data is missing or bad, which is an all-too-frequent 
occurrence.

Several kinds of plot are especially useful in finance:

»» Line plot: A line plot or chart shows how a value Y (normally shown on the 
vertical axis) varies with a value indicated on the horizontal axis. The Y values 
are shown as a continuous line. A line plot is good for showing how a price or 
interest rate or other variable (Y) changes with time. You can overlay several 
line plots to compare the movement of several assets.

»» Scatter plot: A plot of two variables, X and Y, against each other where each 
pair of values (X,Y) is drawn as a point. Scatter plots can look like a swarm of 
bees but are good for revealing relationships you may otherwise not spot. For 
example, you may want to plot the daily returns of a stock against the daily 
returns of a stock index to see how correlated they are.
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»» Histogram: Also known as a bar chart, a histogram is great for showing the 
distribution of the returns of a financial asset.

In Chapter 8 I show you how to investigate a bit deeper into histograms and 
discover a better representation of the returns distribution.

The Gaussian distribution is so frequently encountered in quantitative finance 
that you can easily forget that there are often more complex distributions behind 
your data. To investigate this, you can use the expectation maximisation algo-
rithm, which is a powerful iterative way for fitting data to models. Go to Chapter 8 
to find out more about this.

Keeping it simple
If you build models for the expected returns of an asset you’re trading or investing 
in, you need to take great care. If you apply a volatility adjustment to the returns 
of your asset, the returns look much like Gaussian random noise. Normally, 
Gaussian noise is what’s left after you build a model. So, because markets are 
nearly efficient, you have little to go on to build a model for returns. Also, you 
certainly can’t expect anything that has much predictive power.

The temptation in building a model is to introduce many parameters so as to fit 
the data. But given the lack of information in the almost random data you encoun-
ter in finance, you won’t have enough data to accurately determine the parame-
ters of the model.

Always choose the simplest model possible that describes your data. Chapter 17 
shows you in more depth how to fit models in these situations and statistics you 
can use to determine whether you have a good model or not.

Looking at the finer details of markets
In Chapter 18, you can find out more about markets in real life. Some of this infor-
mation isn’t pretty, but it is important. One important mechanism is market 
impact, the amount by which prices move when you buy or sell an asset. In a way, 
this impact is the reason markets are important – prices change with supply and 
demand. The example using Bayes’ theorem shows how markets can take on new 
information and reflect it in changed prices. Doing so is the way that markets can 
become almost efficient.
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Trading at higher frequency
More and more financial trading is completely automated. Computers running 
powerful algorithms buy and sell stocks and futures contracts often with holding 
periods of less than a second – sometimes less than a millisecond. This high fre-
quency trading (HFT) must use maths and algorithms. It is part of quantitative 
finance and many quants are involved with the development of trading 
algorithms.
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IN THIS CHAPTER

Comprehending that events can be 
random

Gathering data to produce statistics of 
random variables

Defining some important distributions

Understanding 
Probability 
and Statistics

If you’ve ever placed a bet on a horse or wondered whether your date for the 
evening is going to turn up, then you know a bit about probability and statistics. 
The concepts get more interesting if you have multiple events or events in 

succession.

For example, if you manage to pick both the first and second place horses in a race 
(an exacta) does that mean you have real skill? This common bet offered by book-
ies is almost as creative as some of the speculative products offered by bankers.

In this chapter, I start with a few ideas about probability and continue by showing 
you how they apply to statistical distributions. I examine applications of probabil-
ity, starting with dice games.

I then look at what happens when you have many random events and a distribu-
tion of outcomes.

Chapter 2
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One distribution of special importance is the Gaussian distribution. It keeps on 
appearing, and I introduce you to its key properties. I also introduce you to the law 
of large numbers, which is a more mathematical way of looking at the outcome of 
a large number of random events.

Probability boils down to a number that refers to a specific situation or event. 
Statistics, on the other hand, is a way of reasoning from large amounts of data 
back to some general conclusion – a tool for dealing with data. The later sections 
of this chapter take you through some widely used results that help in under-
standing data sets.

The situations I present in this chapter come to look like financial markets, where 
day-by-day or even millisecond-by-millisecond prices are changing in a highly 
volatile fashion. So, this chapter gives you a taste of some of the key quantitative 
tools for understanding how modern financial markets work.

Figuring Probability by Flipping a Coin
Humans have a deep fascination for outcomes that are not certain. That may be 
because humans learned early that outcomes in many situations are indeed uncer-
tain. Dice games are the most common method used to examine probability, which 
is the chance of an event taking place or a statement being true. Dice games have 
engaged the interest of many famous mathematicians, and because the games are 
played for money, studying them can be considered the birth of quantitative 
finance.

Archaeological evidence shows that games of chance have been played for at least 
the past 34 centuries. Later (well, much later in fact, only several hundred years 
ago) mathematicians tried to understand the results of these games of chance and 
that is what led to what is now called probability theory, the mathematical study of 
randomness.

Probability is the mathematician’s way of analysing random events. To define 
random isn’t so easy and part of what makes the study of randomness important. 
The rising of the sun tomorrow isn’t a random event but what mathematicians 
(and almost everyone else) define as certain. Every certain event has a probability 
of one. An impossible event (such as having hot sunshine every day throughout 
the summer in England) has a probability of zero. However, whether it will be 
raining tomorrow or not is a random event with a probability somewhere between 
one and zero. That doesn’t mean you have no knowledge of whether it will rain, 
just that even if you have looked at the most reliable forecasts, you still cannot be 
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certain one way or the other. Equally, the flip of a coin is a random event and so is 
the throw of a die. The outcomes cannot be predicted, at least if the coin or die 
isn’t loaded in some way.

Philosophers and mathematicians (for example, the French mathematician 
Laplace) have thought deeply about near-certain events such as the rising of the 
sun tomorrow. There’s no day on record when the sun didn’t rise, and the prob-
ability of the sun rising tomorrow is very, very close to 1, but that isn’t proof that 
it will continue to rise every day. I’m not trying to be apocalyptic; I’m just using 
facts to come to conclusions.

It’s good to be wary of statements about the certainty of something happening or 
not happening. That can be especially true in finance where it’s easy to take some 
things for granted. Governments and banks can go bankrupt and stock markets do 
crash; the probability is very small but not zero.

Mathematicians tend to evaluate the probability of a symmetrical coin turning up 
heads using their usual logic. It seems reasonable to assume that the likelihood of 
the coin turning up heads is the same as that of its turning up tails.

The probability of tossing a head, written as P(H), and the probability of tossing a 
tail, P(T), is P(H) + P(T) = 1. This is because the only result from tossing a coin is 
either heads or tails. (If you can flip a coin and make it land on its edge, please ask 
the publisher of this book for a refund!) Therefore, simple arithmetic shows that 
the probability of tossing a head is 1/2. However, you can never be sure that the 
coin is, in fact, symmetric. The experiment of flipping the coin can give you the 
estimate of the probability. Flip the coin lots and lots of times and count how 
many times it turns up heads. Divide this by the number of throws, and you get 
the estimate of the probability of getting heads. Because the number of throws is 
greater than the number of heads, the estimate is a number between zero and one. 
This number will converge to 0.5 as long as the number of flips keeps increasing. 
This is an empirical fact!

To apply mathematics to the real world, you must make a few assumptions, so you 
need to be clear what these assumptions are. In this case, ignoring the possibility 
of a coin landing on its edge is a good one.

The sum of the probability of all possible events is one as you can be certain that 
one of the possibilities will happen.

A similar analysis can be applied to a fair die: There’s a 1/6 probability of throw-
ing any one of the six faces. Here again you have to put on your mathematician’s 
hat. If the die is fair, the likelihoods of getting 1, 2, 3, 4, 5, or 6 are the same. 
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So, P(i) = 1/6 where i can be any integer from one to six. Now, adding up the prob-
abilities of each way the die can land:

P i
i

i

1
1

6

.

In common practice, I use the capital Greek letter sigma, Σ, to indicate a summa-
tion. This formula follows from the fact that the sum of the probabilities of all 
possible outcomes must be one.

You can also calculate the probability of a number of events. For example, if toss-
ing a coin and turning up heads is P(H) = 0.5, then the probability of tossing two 
heads in succession is P(H)P(H) = 0.5 × 0.5 = 0.25. Because landing a head on the 
first toss is independent of whether you land a head on the second toss, you must 
multiply the probability of the individual events to get the probability of the joint 
event of getting two heads. Independence is an important concept in quantitative 
finance. You can frequently assume that the return of a financial asset on a given 
day is independent of the return on the previous day.

The most common definition for the return, rn, of a financial asset on day, n, in 
terms of the price, pn, on day n is:

r
p p
pn

n n

n

1

1
.

Likewise, the probability of tossing two tails in succession is P(T)P(T) = 0.5 × 0.5 = 
0.25. You need to take care in figuring the probability of tossing a head and a tail. 
Either the head or the tail can be tossed first, so you have two ways of getting a 
head and a tail. In the case of tossing a head first P(H)P(T) = 0.5 × 0.5 = 0.25 and a 
tail first P(T)P(H) = 0.5 × 0.5 = 0.25. Adding up these two probabilities P(T)P(H) + 
P(H)P(T) = 0.5 gives you the probability of a head and a tail, irrespective of which 
face came up first.

Applying these ideas to a die, you can calculate the probability of rolling either a 
three or a four, for example. To do this, you add the probabilities because the 
events of rolling a three or a four are disjoint, meaning that they’re completely 
different and can’t happen together. So the probability of rolling either a three or 
a four is 1/6 + 1/6 = 1/3.

When I calculated the probability of both heads and tails in two tosses, I came up 
with the number 0.5. I got this answer using the idea of disjoint events – the event 
of tossing a head first and then a tail is disjoint from first tossing a tail and then 
a head. So you must add the probabilities of these events to get the overall prob-
ability of getting a head and a tail in two tosses.
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To make this clear in another way, use the example of a deck of cards. The prob-
ability of drawing a king or a spade isn’t simply P(King)+P(Spade) because, of 
course, you can draw the king of spades. So the events of drawing a king or a spade 
are not disjoint and you need to take into account the probability of drawing the 
king of spades.

Probability can be summarised in a few short statements:

»» A probability is a number between zero and one.

»» For a certain event, the probability is exactly one.

»» For disjoint events, the probability of at least one event happening is the sum 
of the individual probabilities for the events.

»» For independent events, the probability of both of them happening is the 
product of the individual probabilities for the events.

You may find it amazing, but that’s all you really need to know about probability.

Playing a game
Now that you’re familiar with coin flipping, I’d like to challenge you to a game. I’ll 
flip a coin again and again until it turns up heads. If it turns up heads on the first 
flip, I’ll give you £2. If it turns up heads for the first time on the second flip, I’ll 
give you £4. If it turns up heads for the first time on the third flip, I’ll give you 
£23 = £8. And if it turns up heads on the nth flip I’ll give you £2n. How much are 
you prepared to pay me to play this game?

To work out how much you may win, you need to calculate some probabilities. The 
probability of the coin turning up heads is always 0.5, and the probability the coin 
turns up tails is also 0.5. If heads appears first on the nth (say, third) flip, then all 
previous flips must have been tails. The probability of that is 1/2(n−1) (so 0.52 if n = 3). 
You must now multiply again by 0.5 to get the probability of heads on the nth flip 
preceded by tails on the previous (n–1) flips. This works out as 1/2n (so 0.5 × 0.52 = 0.53 
if n = 3).

So, heads turn up for the first time on the nth flip with probability 1/2n. If heads 
turns up first on the nth flip, then you win £2n. The total expected pay-off (the 
amount, on average, you receive for winning) is then:

£2/2 + £22/22 + £23/23 + . . .

However, this is just a series of 1s going on forever that adds up to infinity. So, 
then, would you pay me your life savings to play this game in the hope of a 
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staggering return? If heads came up first, you may be disappointed at receiving a 
mere £2 for your savings; but if you had to wait a long time for heads to turn up 
but eventually it did and you were due a substantial pay off, I may not be able to 
pay out your winnings. I don’t think that the Central Bank would print large 
amounts of money to help me out. This is an extreme example in which an unlikely 
event plays a significant role. You may notice a spooky similarity to certain recent 
events in financial markets even though this game was invented several hundred 
years ago.

Flipping more coins
Another fun experiment with a coin is to keep on flipping it again and again to see 
how many times heads comes up. Sometimes heads follows tails and at other 
times there can be long series of either heads or tails.

During long sequences of heads or tails, you can easily believe that you have a 
higher than average probability of the other side turning up to even things up a 
bit. This gambler’s fallacy, however, isn’t valid. The coin has no memory. On each 
flip, the probability of heads remains 0.5, as does the probability for tails.

An important idea that comes out of experimenting with gambling games is the 
Law of Large Numbers. It states that the average result from a large number of tri-
als (such as coin tossing) should be close to the expected value (0.5 for tossing 
heads) and will become closer as more trials are performed. I’ll show you how 
this works.

If Hn is the total number of heads (for example, 4) in the first n tosses (for exam-
ple, 8) then Hn/n should tend towards 0.5 (so, 4/8 = 0.5). Figure 2-1 graphs 1,000 
coin tosses.

The chart fluctuates less and less after more coin flips and the fraction of heads 
converges (gets closer and closer) towards 0.5. This is an example of the Law of 
Large Numbers. You’d be surprised though at how many tosses it takes for the 
chart to settle down to the expected average.

I examine this further by plotting Hn − n/2 where n/2 is the expected number of 
heads after n tosses. The line in Figure 2-2 wanders about and shows that conver-
gence isn’t good. It’s disconcerting that although the fraction of heads tossed 
tends towards 0.5 in relative terms, in absolute terms, the number of heads can 
wander further and further away from the expected value of n/2. You may have 
guessed already that this unstable sequence, called a random walk, can be used as 
a model for how share prices change with time.
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Defining Random Variables
A random variable is a measurement or characteristic that takes on its value by 
chance. A random variable is different from other variables in mathematics: you 
don’t know what its value is before an experiment or trial has been done.

FIGURE 2-1:  
Convergence of 

the proportion of 
tossed coins 

landing heads up. 
© John Wiley & Sons, Ltd.

FIGURE 2-2:  
A plot of coin 

tosses on a 
random walk. 

© John Wiley & Sons, Ltd.
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Random variables can either be discrete or continuous:

»» A discrete random variable can take on only a countable number of values 
that can be listed out such as heads or tails. Another good example of a 
discrete random variable is the value of a die when you roll it.

»» A continuous random variable takes on any real number. A good example is 
the length of a piece of string. The urban myth that each person who mea-
sures a length of string gets a different number is often true!

Typically, a capital letter is used for a random variable. Specific outcomes for a 
random variable are often denoted with a lowercase letter. So in talking about the 
length of a piece of string, you denote that continuous random variable with X. 
The measurement I make is x = 10.6 centimetres. The measurement you make is 
x = 10.4 centimetres. Because of the possibility of multiple measurements, good 
practice is to use a subscript xj, where j indicates the specific measurement 
referred to. For example, j = 1 could refer to my measurement and j = 2 to your 
measurement.

Using random variables
Random variables are powerful tools to analyse random events. They make a fre-
quent appearance in quantitative finance, so you need to know how to use them. 
If you have a discrete random variable, X, which can take on the values xj with  
j = 1 to M, where M is the number of possible outcomes (6 for a die; 2 for a coin), 
and probability pj, then the expected value of X is E(X). The formula for E(X) is 
written:

E X x pj j
j

j M

1
.

E(X) is a weighted average of the possible values, xj, that X can assume. Each value 
is weighted with its probability. A simple example is for the roll of a die where:

E X 1 1
6 2 1

6 3 1
6 4 1

6 5 1
6 6 1

6 3 5. .

Clearly you will never roll a three and a half, but this number, E(X), is the expected 
or average value from rolling a fair die.

The formula for expected value of a continuous random variable is slightly differ-
ent, and I present it in the next section on statistical distributions.



CHAPTER 2  Understanding Probability and Statistics      35

Building distributions with  
random variables
For statisticians, the word distribution is a big one. For a data set, the distribution is 
the possible values of the data and their probability or frequency of occurrence. 
A data set may be all the measurements of the length of a piece of string or the 
daily share price returns for a stock over the past ten years.

The idea is to use random variables to model or represent real data, such as the 
returns of a financial asset. The distribution of the returns is a property of the 
random variable. This is a powerful abstract idea and one used all the time in 
quantitative finance. It can seem very strange, especially if you believe that the 
past is known with certainty, although in fact it never is. You may have a great 
historical data set, but there’s always inherent uncertainty about the future. Prob-
ability is a natural tool for understanding this uncertainty. For example, you can 
guess suitable probability models from past data, and assuming that the model 
itself doesn’t change through time, you’ll have at least some idea about the likely 
outcomes in the future, which can be useful for forecasting.

I again use the example of rolling a die and illustrate the idea of a probability dis-
tribution. Table 2-1 shows the probability distribution for a fair die. P(x) indicates 
the probability distribution function for a fair die.

Continuous random variables also have a probability distribution function, also 
designated with p(x), but in this case, x is a continuous variable.

A simple commonly occurring continuous distribution is the uniform distribution 
between zero and one as shown in Figure 2-3. The value of x can be any real 
number between zero and one. Because each value is equally likely, the chart is a 
straight line.

TABLE 2-1	 Probability Distribution for Rolling a Fair Die
Outcome Probability

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6
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This is a good place to explain how to use the continuous random distribution. In 
the previous section, I show how to calculate the expectation of a discrete random 
variable. To calculate the expectation for a continuous random variable, you use 
the probability distribution p(x). The formula is:

E X xp x dx.

The symbol ∞ indicates infinity – a huge number bigger than any known number.

The formula for the expectation of a continuous random variable involves an inte-
gral, which is a way of summing over all of the possible outcomes of the random 
variable X. It’s indicated by the extended S symbol.

For the uniform continuous distribution, the possible outcomes, x, take values 
only between zero and one, and p(x) = 1, so the integral takes the simpler form:

E X xdx
0

1
.

If you can remember a bit of calculus, the value of this integral is 0.5. This makes 
lots of sense because the expected value for a number drawn from a uniform dis-
tribution between zero and one must surely be 0.5.

The chart in Figure 2-3 is a theoretical distribution and a perfect straight line. 
How does this work with real data? This isn’t quite the real world of financial data. 
You can use a spreadsheet to generate numbers drawn from a uniform random 
distribution (and a normal distribution). Figure 2-4 shows the result of plotting 

FIGURE 2-3:  
The uniform 

probability 
distribution in 

which every 
outcome is 

equally likely. 
© John Wiley & Sons, Ltd.
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the outputs of 200 numbers that I know follow the uniform distribution. On the 
vertical axis is the count of how many of the numbers pulled from the uniform 
random distribution lie within the ranges given on the x-axis, which is split into 
ten bins. These bins are metaphorical: in the same way that recycling sites have 
bins for green, brown and clear glass so as to separate bottles of different colours, 
this distribution has bins for numbers of different magnitude. In other words, 
after pulling a number from the distribution, it goes into a bin depending on its 
value. The first bin is from 0 to 0.1. The next bin is from 0.1 to 0.2 and so on.

Because you have 200 numbers and 10 bins, the expected number for each bin is 
20. However, some bins have more than 20 and some less than 20, which is prob-
ably just what you expect because the 200 numbers are random. Figure 2-5 shows 
the chart redrawn after using 2,000 numbers in the experiment. It looks more like 
a straight line but has definite deviations.

It can be hugely misleading to use small data sets to draw conclusions about 
financial variables. Many financial variables exhibit randomness and make it easy 
to spot a pattern that isn’t really there.

FIGURE 2-4:  
A chart of 200 

randomly 
generated 
numbers. 

© John Wiley & Sons, Ltd.
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Introducing Some Important Distributions
The uniform distribution is a simple one and is particularly important as a way to 
generate random numbers on computers to simulate financial variables. How-
ever, it doesn’t occur much in real data or processes. In this section, I show you 
the distributions that have been found to be important in practice. What is sur-
prising is that only three distributions are needed to describe the majority of real 
data sets:

»» The binomial distribution is used to model the distribution of outcomes for 
discrete events such as coin tosses.

»» The Gaussian, or normal, distribution is used to model financial returns.

»» The Poisson distribution is used to model the distribution of waiting 
times – how long you wait at a supermarket checkout or how long it takes for 
your trade to be executed, for example.

This distribution isn’t so important in finance but it arises frequently in situa-
tions such as waiting for something – a buyer to come along for an offered 
contract, for example – so make sure that you know about it. The nearby 
sidebar, ‘Describing the Poisson distribution’ explains it.

FIGURE 2-5:  
A chart of 2,000 

randomly 
generated 
numbers. 

© John Wiley & Sons, Ltd.
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The importance of these three was discovered several hundred years ago after 
scientists investigated many data sets from diverse fields. The most famous dis-
tribution of all is the Gaussian, or normal, distribution, named after a German 
mathematician. He proved a famous result called the central limit theorem, which 
explains why the distribution occurs so frequently. (I examine this result and its 
consequences in the next chapter.)

Although the Gaussian distribution gives a good approximation to the returns on 
most financial assets such as shares and bonds, it certainly does not hold exactly. 
In fact, almost all traded securities systematically differ from the Gaussian distri-
bution. The successful application of quantitative finance involves understanding 
how to tweak models derived using a Gaussian assumption to fit a non-Gaussian 
world. The expression tail events refers to the fact that events that occur in the tail 
of a Gaussian distribution – a long way from the average – actually happen more 
frequently than expected. The Gaussian gives a poor estimate for the occurrence 
of rare events such as market crashes.

Working with a binomial distribution
The most important discrete distribution is the binomial distribution, which orig-
inates more from probability than statistics. In that sense, this distribution is 
quite fundamental and a good place to start in discussing theoretical distributions. 
The binomial distribution is used in situations with two possible outcomes, such 
as for a coin flip or a simple yes or no such as a referendum.

If you have n trials or events, you have the probability, p, of x successes. You write 
this as p(x;u,n) where u is the probability of success in an individual trial. The 
probability of failure in an individual trial is (1 − u). (See the section ‘Figuring 
Probability by Flipping a Coin’ earlier in the chapter.) The formula for p is:

p x u n u u
n

x
x n x

; , 1 .

The ux is the probability of success in x events, (1 − u)n−x is the probability of fail-
ure in the remaining (n − x) events. The remaining part of the formula,

n

x
n

x n x
!

! !
,

is the binomial coefficient that gives the number of ways that x objects can be 
arranged amongst n objects. The notation n! means n(n − 1)(n − 2) . . . 3.2-1 and is 
the number of ways of arranging n distinct objects. By definition 0! = 1.

The binomial distribution is a basic distribution from which others can be derived 
as you can sometimes model events as the result of many binary events.
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Recognising the Gaussian,  
or normal, distribution
The Gaussian, or normal, probability distribution function is easily the most 
important distribution in quantitative finance. That’s because you can use it as a 
simple model for the returns of a financial asset. The reason it crops up so fre-
quently in quantitative finance is based on a deep result from statistics called the 
central limit theorem, which I describe in detail in Chapter 3. What it says is that if 
you have a random variable that’s the sum of many other random variables, then 
it tends towards the Gaussian distribution. So the Gaussian distribution is impor-
tant whenever there are many influences on a variable (such as a financial return). 
This sounds like the real world and that’s why the Gaussian distribution is so 
important. It’s given by the formula:

p x e x; , /1
2

2 22

where the parameters are the mean of the data, μ, and the standard deviation, σ. 
I explain more about the mean and the standard deviation and how to calculate 
them in the next section. Unlike the binomial distribution, the variable x here is 
continuous rather than discrete and so can take any value between –∞ and ∞.

DESCRIBING THE POISSON DISTRIBUTION
Although the binomial distribution isn’t frequently used in quantitative finance, a spe-
cial limiting case called the Poisson distribution is important. The binomial distribution 
is useful for discrete events (such as coin tosses), but events in continuous time such 
as waiting for a bus can be important as well. The timetable says busses arrive every 
ten minutes, but you know from hard experience that you can wait longer and that 
several busses can come along all at once. How do you calculate the probability of 
these possibilities?

You use the Poisson distribution in which you have an event rate, λ, which is the 
number of events in a time interval. If this interval is divided into n tiny intervals in each 
of which you expect an event with probability p = λ/n, you can use the binomial distribu-
tion to calculate the probability of x events in these intervals. Making n bigger and 
bigger so that the interval is split indefinitely, the binomial distribution becomes the 
Poisson distribution for x events when the expected number is λ:

P x e
x

x

,
!

.

This formula has many applications and is frequently used to model queues and waiting 
times, but also has applications to rare events such as jumps in commodity prices.
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The mean is the typical or expected value for a data set and the standard deviation 
is a measure of its dispersion or spread. The more jumpy or noisy a dataset is, the 
higher its standard deviation.

A picture of the Gaussian probability density with various standard deviations is 
shown in Figure 2-6.

The curves are all centred on x = 5 and have values spread around on either side.

The higher the value of sigma, the more spread the values have. The Gaussian 
distribution can be derived as the limiting case of a binomial distribution when n 
becomes larger and larger. It has been found to be widely applicable. Measure-
ment errors in most fields of science have been found to follow a Gaussian distri-
bution and it also proves to be a reasonable approximation to financial return 
data. Chapter 3 examines this in lots of detail.

Describing real distributions
In the preceding sections I examine theoretical distributions that originate from 
probability theory, which are useful if you know that these distributions apply to 
your data. In this section I show how to calculate some statistics from real data so 
that you can figure out what distribution your data is following.

FIGURE 2-6:  
Gaussian 

probability 
density for 

various values of 
the standard 

deviation. 
© John Wiley & Sons, Ltd.
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I use the symbol xi to represent the ith element in a data set with N elements. In 
other words, I have a random variable, X, with samples, xi . For example, xi may 
be the exchange rate of the US dollar to pound Sterling on the ith day of the year.

A distribution can be characterised by the following statistics:

»» Average: The most frequently reported statistic. The average is a measure of 
the most typical value for a data set is as follows:

x
N

xi
i

N1
1

.

»» Standard deviation: A measure of the width or the spread of the distribution. 
The variance, V, of a distribution is the square of the standard deviation, σ, 
and is given by:

V x
N

x xi
i

N1
1

2

, so that σ2 = V(x).

Another way of writing this equation is to expand the terms in the bracket and 
to use the definition of an average to get

V x
N

x xi
i

N1 2 2

1
.

This can be stated that the variance of x is the average of x squared less the 
square of the average of x. Further statistics can be calculated that depend on 
higher powers of the data values x.

»» Skew: A measure of how lopsided a distribution is. Positive skewed data 
extends more to the right while negative skewed data extends more to the 
left. The skew is

1
3

1

3

N
x xi

i

N

.

»» Kurtosis: Although it sounds like a disease, kurtosis is measure of the fatness 
of the distribution’s tails. Almost all financial assets have positive kurtosis 
meaning that there are more values in the tails of the distribution than 
expected in a normal distribution. Large disruptive events are more common 
than expected!

Kurtosis is calculated from the fourth power of x:

1 34
1

4

N
x xi

i

N

.

For a Gaussian distribution, k is zero.
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To illustrate these statistics, I downloaded 24 years of daily closing price data on 
the DAX from Yahoo! Finance. The DAX is an index that gives an indication of the 
overall level of the German stock markets by using the share price of the 30 largest 
companies. (Chapter 4 talks more about indices.) Figure 2-7 is a chart of the data 
in which I compare the DAX index with a Gaussian distribution with the same 
mean and standard deviation.

Although the mean and the standard deviation of the Gaussian are the same as for 
the DAX data, the charts are a little bit different. The empirical DAX data has a 
narrower peak near the centre and, although they’re not easy to see, higher values 
at the extremes from about ±0.04. Table 2-2 compares the statistics for the Gauss-
ian curve and the DAX data showing that the data has slight positive skew and is 
reasonably kurtotic.

So, I introduce you to the Gaussian distribution and the first dataset you look at 
doesn’t appear to follow this law. Welcome to quantitative finance! There’s noth-
ing wrong with the statistics and probability in this chapter; it’s just that reality 
is a bit more complicated than you may anticipate as Table 2-2 shows.

FIGURE 2-7:  
Comparison of 
empirical DAX 
distribution of 
returns and a 

Gaussian 
distribution. 

Source: Deutsche Borse
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Be careful with the kurtosis and skew. In theory, they converge to their true values 
when the number of observations increase. However, the speed of convergence is 
quite slow. Sometimes it’s enough to have one outlying data point out of many 
thousands of observations to make the empirical kurtosis and skew completely 
unrealistic. However, in the case of the DAX returns, the value of the kurtosis is 
confirmed by the chart, so you can believe it. The distribution of the DAX daily 
returns is not Gaussian. The data from other stock indices shows a similar effect.

TABLE 2-2	 Comparing Expected and Real-World Distributions
Expected Gaussian Distribution Actual DAX Data

Mean 0.0004 0.0004

Standard deviation 0.014 0.014

Skew 0 0.04

Kurtosis 0 5
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IN THIS CHAPTER

Going for a random walk

Using the central limit theorem

Applying formulas to the stock market

Producing random numbers with the 
help of a spreadsheet

Modelling for financial price series

Taking a Look at 
Random Behaviours

In this chapter, I use random numbers to build what’s called a random walk, 
which is a way of using probability and statistics to create models of the price 
movement of financial assets. As the name suggests, a random walk consists of 

a sequence of random steps. Random walks are a mathematical idea as well as a 
nice description of the stock market. You can use them to price options or to figure 
out how risky a portfolio of investments is. To go on a random walk, you need 
random numbers, so I also talk about how to generate them with a computer.

Random walks don’t come in just one variety. I also explain the mean-reverting 
walk, which keeps heading back to where it began. Sometimes home is a nice place 
to be.

Setting Up a Random Walk
You form random walks by adding together random numbers from the same 
distribution. I call the random numbers Xi where the i subscript indicates that 
there are many numbers. In fact, I’ll assume that there are N of them so that i can 

Chapter 3
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take the values from one up to N. To begin with, I assume that Xi has a mean value 
of zero. The distribution may be a binomial distribution, in which Xi is one value 
or another, or a normal distribution, in which Xi takes on a continuous range of 
values between –∞ and ∞. In each of these random steps, X can represent the 
return of a financial asset.

In this section, I show you how to build a random walk and then make the steps 
smaller and smaller until the movement becomes a continuous process. This con-
tinuous process, or Brownian motion, is the basis for a model of market behaviour 
used in pricing options. Both the discrete and continuous versions of the motion 
are important and useful as they can both be used as the basis for pricing options.

It may seem strange that stock prices follow a random pattern. But a number of 
factors affect the price of a stock or investment commodity in ways that are almost 
impossible to predict:

»» Global economic news: Because the world economy is so connected, 
important news from the Far East and North America has implications for 
Europe – and vice versa.

»» Factors specific to a company: New profit information can have a big impact 
on a stock price as can new information on a company’s competitors.

»» Sales of the stock or commodity: Shares and commodities such as crude oil 
are constantly being bought and sold. Any predictable patterns in the price 
movement are exploited by traders to make a profit. They buy or sell immedi-
ately when new information comes to the market. The effect of this trading is 
to move the price. Traders even try to anticipate news so as to get their trades 
in before the news is announced.

The result of all this information and the frantic trading activity in which market 
participants try to anticipate future price movements is to make price movements 
random.

You can simulate these models using a computer spreadsheet such as Microsoft 
Excel, and I show you how to do that in the later section, ‘Getting random with 
Excel’.

You can make the steps in a random walk smaller and smaller until they become 
infinitesimal so that you can use calculus to analyse the movements. Then the 
walk becomes what’s called Brownian motion. When the Brownian motion is used 
as a model for relative or percentage returns rather than additive returns, you call 
it a geometric Brownian motion.
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I talk more about returns in Chapter 4 and explain several definitions. However, if 
the price of a financial asset today is Pn and the price yesterday was Pn-1, then the 
most common definition of return is (Pn–Pn-1)/Pn-1 which is the price difference 
between today and yesterday expressed as a ratio to the price yesterday. It 
expresses how much more (or less) you have today compared with yesterday and 
is the quantity most investors want to know.

This random motion is the key assumption behind the most important model for 
the pricing of derivatives such as equity options.

Brownian motion got its name from a botanist called Robert Brown who observed 
pollen particles under a microscope. He saw that they jiggled about apparently 
moved at random by an invisible force. Mysterious! It turns out that molecules of 
water not visible in a microscope cause this movement. In financial markets, the 
frequent changes in price, up or down, are caused by many trades that move the 
price as the asset is bought and sold.

Stepping in just two directions
The steps in this first random walk are Xi where Xi can only be +1 or –1. You can 
use this assignment for Xi as the model for a walk in which only two possible out-
comes exist – a person disoriented by fog can step only to the left or right. 
Remember though, you can use a random walk to represent the price movements 
of financial assets such as stock prices or commodity prices such as crude oil. 
(Special forms of random walks can represent interest rate movements.)

Now, in the case of the fog-bound walker, after she has taken N steps, her position 
is: R X X X XN N1 2 3 .

Firstly, you want to know the average or expected value of RN. It’s good to know 
whether your walk is getting somewhere or, on average, just staying in the same 
place. That’s easy to discover as the value is just the sum of the expected value of 
each of the Xs:

E R E XN i
i

N

1
.

But each Xi has an expected value of zero because the walker can move to the left 
or the right with equal probability. So the expected value of RN, which is a sum of 
all the Xis, is itself zero. On average, the walker stays in the same place.

Next, you want to find the expected value of the square of RN. The reason is that 
although, on average, the walker gets nowhere, she certainly isn’t standing at the 
point of origin all the time. Because the square of a number is always positive, the 
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average of the squared distance gives you an idea of how far your subject moves 
out from the origin – in the example, the disoriented walker moving to the right 
or the left. Over time, the subject drifts away from the origin and spends an 
increasing time away from it. But how far away? There are lots of terms in the 
equation for the square of RN, but the terms are of only two types. The first type 
are terms such as E X Xi j  with i j. These terms are all equal to zero. The four 
possible outcomes you have to average over are:

X X

X X

X X

X X

i j

i j

i j

i j

1 1

1 1

1 1

1 1

,

,

,

, .

The sum of these products is: 1 1 1 1 0.

To calculate the average of RN squared involves only the terms of the second type, 
E Xi

2 , for which i = j. But each term is equal to one and so, finally, you get the 
simple and memorable result:

E R NN
2 .

Think of it this way: if you walk out of the pub and head briskly to the bus stop, 
you arrive in N steps. If you leave the pub and head to the bus stop in random 
fashion (perhaps you’ve had one too many), after N steps the average of the 
squared distance is N. After taking the square root, the likely distance you’ll have 
travelled is only N , and you may have headed in the wrong direction too. A taxi 
may be the better option.

Getting somewhere on your walk
In this section, I construct a random walk with drift. A walk with drift gets some-
where. Although each step of the walk depends on a random variable, it favours a 
particular direction, which means that there is a bias in the walk. This makes the 
walk more realistic as a description of the movement of financial assets.

Each step takes a time, Δ, so that this walk includes the idea of motion rather than 
just counting steps. The walker makes a jump of distance, δ, with probability, p, 
upwards and probability 1 p  downwards. The formula that summarises this 
looks like the following:

X
p

pi

 with probability 

 with probability 1 .
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A big difference between this random walk and the first one in this section is that 
the expected value of X is not zero. The walker, on average, gets somewhere. This 
is important when you apply these results to financial time series.

The expected value, V X E X E X
2

, of a random variable, X, is given by 
the formula:

E X .

This averages the possible values, Xi, of the distribution with the probability, pj, 
for each possible value. (Chapter 2 has more details on random distributions.) The 
quantity X with no subscript refers to a random variable whereas Xi with a 
subscript refers to the specific numerical values.

The expected value of X for this walk is: E X X pj j
j

N

1
.

V(X), the variance of X, can be calculated with the formula:

E X p p p1 2 1 .

This can be expanded using the probabilities, p and 1 p , for up and down 
moves:

V X p E X p E X
2 2

1 .

Sparing you the algebraic details of substituting for E(X) into the formula for V(X), 
the answer is: V X p p4 1 2.

At time, t, the walker arrives at point X: X t X X X XN1 2 3 .

The Nth step is taken at the time t N , because each of the steps takes a time, Δ. 
Using the central limit theorem (see the upcoming section), you can calculate the 
expected location and the variance (square of the standard deviation) of the loca-
tion, X(t), from the properties of the individual steps. The expected location is just 
the number of steps, N, multiplied by the mean location of a single step. Likewise 
the variance of X(t) is N times the variance of a single step so that:

E X t t p

V X t t p p

2 1

4 1 2.

Taking smaller and smaller steps
In this section, I do something that may seem strange: I shrink the steps to smaller 
and smaller sizes. At the same time, I make the time, Δ, for each step shorter and 
shorter, and I also make the probability of an upwards or downward step close to 
0.5 but not exactly. I’m not doing this on a whim, and although modern finance 
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works on very short timescales, that’s not the only reason. Using small steps 
allows you to use calculus to analyse these random motions which proves helpful 
if you wish to work out the price of options. This random walk drifts only slightly 
because the probability, p, is close to half. You can simplify the equations for the 
variance, V(X(t)), and the expected location, E(X(t)), so that the time dependence 
becomes clear by writing them as:

E X t t

V X t t2 .

Mu (μ) is the drift parameter of this random walk and sigma (σ) is usually referred 
to as the volatility. Comparing the two equations for the variance of X shows that 

2 2  if the probability, p, is approximately equal to 0.5. This equation relates 
the square of the step size, δ, to the time step, Δ, via the volatility parameter, σ.

You can also compare the two equations for the expected value of X and, with a 
little bit of algebra, show that:

p 1
2

1 .

The probability, p, is slightly larger than 0.5 if μ is positive.

In the real world of finance, trading can happen at many different time scales: 
slowly with occasional trades throughout the year or at high frequency with pos-
sibly only milliseconds between trades. The time series used by these different 
participants can have large steps of days or weeks or tiny steps of milliseconds. 
The analysis here indicates that, irrespective of time scale, it can still be applied 
to markets. This is a special feature of the Brownian motion although other 
motions also have this feature of looking similar at different timescales.

Averaging with the Central Limit Theorem
The central limit theorem is an important result in probability and statistics. This 
result isn’t easy to prove (and I don’t do it here) but is quite easy to state and 
apply.

The central limit theorem can be stated as:

If X X X XN1 2 3, , , ,  are independent random variables, each having the same 
distribution with expected value μ and standard deviation σ, then the sum 
X X X XN1 2 3   has an approximately normal distribution with expected 
value N  and standard deviation N  when N is sufficiently large.
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The central limit theorem explains why the Gaussian, or normal, distribution is so 
important and occurs in many different situations whether in finance, measuring 
the blood pressure of many people or explaining all of those near misses when 
you’re trying to hit the bull’s eye on the darts board in the pub.

A statistical distribution tells you the probability with which each value, Xi, of a 
random variable, X, occurs. In quantitative finance, the random variable X is usu-
ally the return of a financial asset so the return distribution is key information 
about what to expect from a financial asset.

The standard deviation, σ, is a measure of the amount of variation or dispersion in 
a random distribution. The larger the standard deviation, the more dispersed the 
numbers are from the average, or mean. Another way of stating the central limit 
theorem is that if you take the N random variables, subtract the expected value N  
and divide by the standard deviation N , then the probability, P, of that value 
being less than a number, x, is given by the cumulative normal distribution:

P X X X N
N

x x e dxN
xx

1 2 21
2

2

... ( ) .

The big thing to keep in mind is that it doesn’t matter what the distribution of the 
individual random variable X is. The process of combining random variables 
together leads to the normal distribution – a mathematical result that’s not at 
first easy to grasp but explains why the normal distribution is so ubiquitous. The 
distribution of the random variables can be discrete, with X taking only the values 

1 or it can be a continuous distribution that isn’t normal. See Chapter 2 if you’re 
not familiar with these two types of distribution.

The central limit theorem is a bit vague (surprising for mathematicians, but 
nobody’s perfect) about how many random variables you need before their sum 
becomes normal, but experience shows that N can be quite small. The following 
example shows the central limit theorem in action: start with 12 uniform distribu-
tions and end up with a close approximation to the normal distribution.

Take X as the uniform distribution. X can take any value between zero and one 
with equal probability. No value is more likely than any other. Now add together 
12 of these distributions. I did this in an Excel spreadsheet, generated 5,000 num-
bers and calculated some statistics from them. The results are shown in 
Table 3-1.

Table 3-1 shows that the numbers lie between –3.25 and 3.32 and are close to a 
standard normal distribution, which has a mean of zero and a standard deviation 
of one.
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Almost all – 99.7 per cent – of the numbers from a normal distribution lie within 
three standard deviations of the mean.

A few numbers in the example lie slightly beyond three standard deviations but 
that’s understandable because the dataset of 5,000 is quite large. So the numbers 
seem to be normal.

Figure 3-1 shows the results of graphing the results by plotting them in bins, or 
ranges, of width 0.1 starting from –3 to –2.9 and ending in 2.9 to 3. The dotted 
line shows the data generated from the uniform distributions whilst the solid line 
is a plot of a normal distribution with the same mean and standard deviation as 
the data. Clearly, you need more than 5,000 numbers to get perfect agreement, 
but it’s remarkable how the 12 uniform distributions approximate the normal 
distribution.

TABLE 3-1	 Statistics of 5,000 Random Numbers
Statistic Value

Maximum Value 3.32

Minimum Value −3.25

Average Value 0.002

Standard Deviation 1.004

FIGURE 3-1:  
Illustrating the 

central limit 
theorem with 
random data. 

© John Wiley & Sons, Ltd.
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Moving Like the Stock Market
In this section, I construct a random walk that you can use as a model for stock 
market prices as well as prices of equity options and commodity future options.

The starting point is the initial price of the share or equity index which I call S0. 
The price changes every Δ time units. At each time step the price changes by a fac-
tor of δ with probability, p, for an upward step and 1 p  for a downward step. 
The share price at time, t, is: S t S X X XN0 1 1 11 2  .

Notice that the random numbers, Xi, are used to multiply the current share price 
by a factor 1 Xi  rather than to add to it.

In the notation Xi, remember that i can take the value i = 1 up to the last step in 
the walk step N. This fact means that the fractional or percentage change in the 
share price is what follows a random series and not the absolute change.

The preceding equation is a bit awkward to cope with so you can use a trick well 
loved by mathematicians and take the logarithm. First, divide both sides of the 
equation by S(0):

log log
S t
S

Xi
i

N

0
1

1
.

The logarithm of a product of numbers is equal to the sum of the logarithms: 
log log logab a b . I admit it: I had a book of log tables at school but calcu-
lators had just been invented. Some knowledge is timeless.

The going gets tough here, as you now use a result from calculus in which you 
expand the logarithm on the right-hand side in powers of x:

ln 1
2 3

1
2 3

x x x x x for .

The absolute value of x (meaning you don’t take into account the sign of x) must 
be less than 1 to use this formula, but because you use small steps in this random 
walk, that’s always true. Now I can write the right side of the equation for the log 
of the share price as:

ln
S t
S

X Xi
i

N

i
i

N

0 1

2

1

1
2 .

The first summation on the right side looks just like a random walk in the preced-
ing section ‘Taking smaller and smaller steps’. That, in fact, is the reason for 
using logarithms: so that the right-hand side looks familiar.
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Additions are easier to handle than multiplications. The second term on the right 
side is new but turns out to be easy to calculate. Remember that X is a random 
variable that can take on the values  so that the X2 is always 2 and 2 2 . The 
complicated sum becomes just:

X Ni
i

N
2

1

2

Remembering that the random walk has N steps of duration Δ, N t. Finally 
then, you end up with an equation that looks a lot better:

log
S t
S

X ti
i

N

0 1

21
2 .

The random walk, Xi
i

N

1
, has a drift of t  if the probability of an upward move is:

1
2

1 .

The drift is due to the fact that you don’t have an equal probability of an upward 
and downward move.

This new Brownian motion formed from ln
S t
S 0

 has a drift given by 1
2

2. 

The variance for ln S t  is 2, just as for the additive random walk, because the 
variance is formed from the same sum of random numbers Xi.

Generating Random Numbers  
on a Computer

Quantitative finance can be highly theoretical with lots of abstract equations, but 
another side to it is where you use real financial data or simulate data in a com-
puter. I do the latter in this section, not just because doing so is fun, but because 
it’s useful. It can help you understand the abstract equations, but more impor-
tantly, it can help you solve problems. For example, by simulating possible future 
values for the price of a stock using geometric Brownian motion, you can value 
financial options that depend upon a future, unknown share price. Another impor-
tant application of random numbers is to simulate the future value of a portfolio 
of assets.

These techniques of using random numbers are appropriately called Monte Carlo 
methods in deference to a casino in Monaco. The next sections show you how to 
generate random numbers in two different ways.
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Getting random with Excel
In Microsoft Excel, you can generate a random number simply by typing =rand() 
into a cell. Try it! You generate a random number between zero and one. In other 
words, this number is a sample from the uniform distribution (which I explain in 
Chapter  2). This function doesn’t accept any arguments, so leave the space 
between the brackets empty. The number changes to a different random number 
each time you press F9, because pressing F9 recalculates the spreadsheet.

A better way to see what many random numbers look like is to copy the formula 
into many cells. You can then draw plots to check that the numbers are as you 
expect: They should all be between zero and one and look random. To check that 
the numbers are uniformly distributed between zero and one, use the Histogram 
tool under the Data Analysis menu on the Data tab.

Generating random numbers drawn from a normal distribution isn’t quite so 
quick and easy. You can do it by using the function called NormInv. This function 
computes the inverse of the cumulative normal distribution. Don’t panic! I show 
you how to do this computation step by step.

The normal distribution is bell-shaped with a width determined by its standard 
deviation and location on the x axis by its mean. The cumulative normal distribu-
tion, Φ(z), comes from integrating the normal distribution, ϕ(x) ,from –∞ to z:

z e dx
x

z
1
2

1
2

2

.

The cumulative normal distribution Φ(z) gives the area under the normal distri-
bution from –∞ up to z. Figure 3-2 shows a graph of this function.

FIGURE 3-2:  
Cumulative 

normal distribu-
tion with σ = 1 

and μ = 0. 
© John Wiley & Sons, Ltd.



56      PART 1  Getting Started with Quantitative Finance

Notice that the cumulative distribution starts at zero and rises up to one. That’s 
because going from left to right on the chart you’re adding up probabilities so that 
finally, on the right-hand edge of the chart, the value is one because the sum of 
all probabilities must be one. Now, you find the inverse cumulative normal distri-
bution, I(x), by turning Figure 3-2 on its side. So if you want to find I(0.8) for 
example, locate the x value corresponding to y = 0.8 on the cumulative normal 
chart, shown by the solid black lines in Figure 3-2.

Maths can help explain the inverse-transformation method of generating normal 
random numbers:

»» U is a uniformly distributed random variable between zero and one.

»» Φ(z) is the probability that a normal random number, Z, is less than z.

In other words: z P Z z .

The variable I U1  is normally distributed just like Z. To show this, you need 
to prove that P I z z . But P I z P I z P U z . 

Because U is uniformly distributed – P U z z  – you can prove that the 
inverse cumulative normal distribution is normally distributed just like Z. This 
proof works for other distributions too.

To generate numbers from a normal distribution, compute the inverse cumulative 
normal distribution with a number taken from a uniform distribution as the argu-
ment. The inverse cumulative normal distribution maps probabilities in the range 
zero to one onto the normal distribution. I took the screenshot in Figure 3-3 when 
I was typing in the formula.

You may wish to just type in the mean and standard deviation required for the 
random number. This technique is flexible and easy. Using Visual Basic within 
Excel, I managed to generate a 100,000 sample random normal numbers within 
about two seconds.

FIGURE 3-3:  
Using Microsoft 

Excel to generate 
sample numbers 

from a normal 
distribution. 

© John Wiley & Sons, Ltd.
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WAITING FOR SOMETHING TO  
HAPPEN WITH POISSON
The Poisson process is used to count events that occur randomly in time, such as the 
arrival of trade instructions or the occurrence of power failures. It has the dual success 
of realism and simplicity, which makes it widely used throughout science and finance. 
For example, it has been successfully used to explain why just a small increase in the 
arrival rate of customers at a supermarket till can lead to a dramatic increase in the wait 
time – an all-too-familiar situation!

The Poisson process is defined by the parameter α which is the expected number of 
events in a given time interval and is called the intensity.

The Poisson process is characterised by the following properties:

•	 The events occur one at a time.

•	 The number of events in one time interval is independent of the number of events 
in another time interval.

•	 The number of arrivals during a given time interval has a Poisson distribution.

The Poisson distribution, which I explain in Chapter 2, is characterised by a single 
parameter, λ and gives the probability of there being exactly k successes in a sequence 
of trials when the average number of success is λ. The Poisson process is related to the 
Poisson distribution. If I take my Poisson process for a fixed time period of t seconds, 
then the probability of getting k orders in these t seconds is determined by the Poisson 
distribution with t.

If the arrival rate of orders is α, then the average time between orders is 1 . The proba-

bility of no order happening by t is e t, so you have an exponentially declining probabil-
ity of receiving no orders as time passes. The figure shows a chart of a Poisson process 
with the dots indicating the arrival of orders in time. What is noticeable is the clustering 
of the points. Remember, though, that the arrival times of the orders are random so the 
clustering isn’t caused by anything and despite appearances is the result of chance.

© John Wiley & Sons, Ltd.
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Using the central limit theorem again
The uniform distribution is a good place to start when generating random num-
bers as almost all software provides a way to generate such numbers and normally 
does so quickly. To then transform those numbers into samples from a normal 
distribution, you can use the central limit theorem: simply add together N random 
numbers, which should start to be a good approximation to normal random num-
bers. N can typically be 10, but experiment with other values. If U is drawn from a 
uniform distribution, R is a sample from a normal distribution:

R
N

Ui
i

N12 0 5
1

. .

The factor of 12
N

 ensures that R has a standard deviation of one. To check this, 

notice that V U 0 5.  is a uniform distribution with a mean of zero and lies 

between 1
2

 and 1
2

. To work out the variance of V, calculate:

x dx2

0 5

0 5
1

12
.

.

.

Given that the N uniform distributions are assumed to be independent, the vari-

ance of N of them is simply N
12

. The standard deviation is the square root of the 

variance so dividing by N
12

 ensures that R has a standard deviation of unity. By a 

simple transformation, R R , you can generate random numbers from a 
normal distribution with mean μ and standard deviation σ.

Generating a million random numbers in this way should only take seconds using 
visual basic code within Microsoft Excel.

Simulating Random Walks
Simulating a random walk is a powerful thing to be able to do in quantitative 
finance because you can use random walks to represent the possible future price 
changes of financial assets such as stocks and shares. You can use them to work 
out the price of contracts such as options or evaluate how risky a portfolio is.

You can generate random numbers by simply using a spreadsheet or other soft-
ware such as Python. The previous section ‘Generating Random Numbers on a 
Computer’ shows you how. By using these random numbers to generate random 
walks, you begin to get a real understanding of the processes so important in 
quantitative finance.
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Now I show you the surprising results of generating a geometric Brownian motion. 
The positions in this walk are designated Sn. The following equation shows how 
each position follows on from the previous position by adding a step distance 
drawn from a normal distribution where N is the normal distribution:

ln ln ,S S Nn n 1 .

Figure 3-4 shows a chart of ten such series each with 500 data points. I used the 
values 0 and 0 05. . For daily price data of a stock with 250 trading days per 
year, the graph in the figure represents two years of price history.

Notice that some Brownian motions, such as the black one, rise rapidly and oth-
ers, such as the dashed one, fall to a quarter of their original value. This rise and 
fall is a realistic feature of the stock market in which some companies prosper 
dramatically and others fall on hard times. But the most astonishing thing to 
notice is that all these ten random walks are generated from random numbers 
coming from exactly the same distribution.

Any investment manager who had chosen to include the black stock in her port-
folio would naturally be happy, but this rapid rise is purely the result of random 
chance. You can easily be fooled by randomness. Beware!

FIGURE 3-4:  
Geometric 

Brownian motion 
for ten simulated 

stock prices. 
© John Wiley & Sons, Ltd.
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Moving Up a Gear
This section is where I get just a little bit more mathematical. That may not sound 
good to you, but maths is helpful. It can make it easy to see the difference between 
related complex ideas. It also makes it easier to work with ideas to find out what 
the consequences are.

Working a stochastic differential equation
A random walk is a process with discrete steps, Xn. Assume that the index, n, takes 
the integer values n 1 2 3, ,  and so on up to infinity. In previous sections, I describe 
these steps as making up a walk and that’s a good way to think about it.

An equation for Xn is X Xn n n1  where n is a random number drawn from a 
Gaussian distribution. You can assume that the mean of these random numbers is 
zero and the standard deviation is one. Another way of writing this equation is:

Xn n.

The big Greek delta, Δ, just stands for a change in something – in this case Xn. 
A good model for a stock price, Sn, is

lnSn n

where the natural logarithm comes in because the relative return of a stock 
S S

S
n n

n

1  and not its absolute return S Sn n1  is a stable random process. But the 

preceding equation assumes a random number n with a zero mean. Stock prices 
tend to drift upwards because of economic growth and the payment of dividends 
so a more accurate model is:

lnSn n.

In this equation, I introduce a drift term of magnitude, μ, and multiply the random 
numbers, ε, by σ so that the second term on the right-hand side represents Gauss-
ian random numbers with a standard deviation, σ.

But the equation so far has no notion of time. Now assume that going from the nth 
to the n 1

th
 step takes a time, t . The equation for ln Sn then becomes:

lnS t tn n .

You may be wondering why the second term has a square root of the time step, t . 
The reason is because the first term is for a motion where you have an expected 
return per unit of time μ and is the same at every time step. The second term is for 
the random element of the return and is much less certain, so increases only with 
the square root of the time step.
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In the section ‘Setting Up a Random Walk’, I show that if someone took N steps at 
random to the left or the right she would expect to move out about N  steps from 
the origin. The square root in the equation for lnSn happens because of exactly the 
same reasoning. For a moment, though, forget about the random term in this 
equation, which reduces it to just: lnS tn .

In the limit of smaller and smaller time steps, it becomes a differential equation:

dS
S

dt,

which is solved by:

S S e t0 .

The stock price grows exponentially at a rate given by μ. This growth is exactly 
what you expect from compound interest.

Turning now to the equation for Sn, including the random terms, you can take the 
limit of smaller and smaller step sizes. In the resulting equation I write the term 
containing the random noise, ε, and the square root of the time step as dz. The 
equation for the natural logarithm of S then becomes:

d S dt dzln 1
2

2 .

The term with σ squared arises for the same reason as in the section ‘Moving Like 
the Stock Market’ where the average of the squared terms of the random steps led 
to the term: 1

2
2t.

In these differential (small step sizes) forms, the equation of the natural loga-
rithm of S is called a stochastic differential equation. This form of equation is widely 
used for the pricing of derivatives because it allows you to find relationships 
between option prices and variables such as a stock price.

An alternative form of the equation for dS is: dS S dt S dz.

Expanding from the origin
This section involves some fairly heavy maths, but when you’re familiar with the 
result you’re equipped to derive the famous Black-Scholes equation for pricing 
options. But if this level of calculus isn’t your thing, don’t worry: I also use another 
method for pricing options called binomial trees, which doesn’t involve calculus, 
in Chapter 10.
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With this formula, you look at the behaviour of a function, F S t, , where S is a 
random variable such as a stock price and t is time, to find out how small changes 
to S and t change F. For a function of two variables such as F, you need to use 
partial derivatives.

You can write a Taylor expansion for F:

F F
S

S F
t

t F
S

S F
S t

S t F
t

t1
2

1
2

2

2
2

2 2

2
2.

In this expression, to note a small change in F you need to look at just how small 
each term is. The terms with just S  and t  are called first-order terms because 
only one Δ is present. All the other terms are second order because two Δs exist. If 
you multiply a small number by another small number, you get a really small 
number – for example, 0 1 0 1 0 01. . . . So if you make S  and t  smaller and 
smaller, you expect all the second-order terms to become insignificant.

But something a little different happens when S is a random variable. In the sto-
chastic differential equation for dS, the dz term is proportional to the square root 
of dt (see the section ‘Working a stochastic differential equation’) and so, cru-
cially, S

2
 has a term proportional to t . This statement means that the preced-

ing equation has an additional linear term when you make S  and t  smaller and 
smaller to get:

F F
S

S F
t

t S F
S

t1
2

2 2
2

2 .

All the second-order terms can be ignored when S  and t  get smaller and smaller.

This type of analysis is used frequently in quantitative finance, so you need to 
know it if you want to understand the subject. The effort in going through the 
maths will be rewarded!

Reverting to the Mean
Not all markets or financial time series behave like a geometrical Brownian 
motion. Some series exhibit a phenomenon called mean-reversion. In these 
motions, the series doesn’t shoot up to a high value or wander down to zero. 
Instead it tends to go back, or revert, to its original value.

For example, in the energy markets a sharp fall in the price of crude oil forces some 
oil companies to shut down oil wells because they become unprofitable. These 
shutdowns reduce supply, so the price should jump back up to its typical value. 
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Similarly, a sharp rise in the price of crude oil encourages explorers to drill more 
wells and to bring previously uneconomic finds into production. The price of oil 
then tends to go back down again. Of course, other factors are in play such as 
action by the OPEC cartel. But stability helps producers and consumers alike, so 
mean reversion tends to hold.

Interest rates are also thought to be mean reverting. In recent times this has 
probably been due to the stabilising actions of central banks. Figure 3-5 shows the 
yield, or interest rate, on three-month US Treasury bills, which is the short-term 
interest rate on loans to the US government. The vertical shaded areas indicated 
US recessions.

The chart is dominated by a peak around 1980. It has taken almost 70 years from 
1940 until around 2010 for the yield on three-month bills to go back down to zero 
percent. The chart has reverted, but slowly. This effect can be expressed in an 
equation:

x X xn n n.

Here, the term in the equation beginning with alpha forces the time series to 
revert back to the mean value X. It does so because if xn is less than X, the term is 
positive and the next step is likely to be positive and xn is boosted back towards X. 
I wrote ‘likely’ in the previous sentence because you also have the random vari-
able term, ε, which means that the time series does not necessarily revert back to 
the mean immediately.

FIGURE 3-5:  
Yield on 

three-month US 
Treasury bills. 

Source: Federal Reserve Bank of St. Louis
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Likewise, if xn is greater than X, the alpha term is negative and brings the time 
series back down towards X. Some examples of this kind of series are shown in 
Figure 3-6 with X0 1 and for three values of α varying from 1 (strong reversion) 
to 0.01 (weak mean reversion).

Only the series with a 0 01.  looks at all like the real interest rate data from 
Figure  3-4 so the mean reversion of interest rates must be weak indeed if 
represented by the simple model in Figure 3-5.

FIGURE 3-6:  
Simulations of 

mean reverting 
time series. 

© John Wiley & Sons, Ltd.
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IN THIS PART . . .

Get up to speed on the most important financial 
instruments and find out how they work.

Understand the bread-and-butter contracts of 
quantitative finance – stocks and bonds.

Join the ancients in using futures contracts, which 
were first used for commodities such as grain, copper 
and oil.

Make the most of the versatility of hedges, which you 
can use to protect yourself against adverse price 
movements or to speculate.
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IN THIS CHAPTER

Finding out about the maths of 
compound interest

Earning money with shares and 
dividends

Watching and measuring the 
behaviour of share prices

Understanding what a bond is

Managing interest-rate risk with swaps

Sizing Up Interest 
Rates, Shares 
and Bonds

The most basic financial asset, and probably the most important, is money in 
the bank. Banks pay interest based on the amount deposited. With a little bit 
of maths, you can calculate the growth of an account due to the interest 

earned on the interest.

Stocks or shares are probably the next most important financial assets. These rep-
resent claims on the ownership of a company. The shareholder is entitled to 
receive dividend payments from the company paid from its profits, and can also 
vote at shareholder meetings. You may, for example, get the chance to vote against 
the chief executive’s huge pay rise!

The third category of asset is bonds. I explain some of the many different kinds of 
bonds in this chapter as well as fill you in on the language used to talk about them. 
In all forms, bonds are a loan to the issuer. The loan can be bought or sold, a bit 
like a share, so its price fluctuates like share prices do.

Chapter 4
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Explaining Interest
A bank pays you interest for depositing money with it. It does this because it then 
lends out the money to other businesses or individuals and charges the borrowers 
a higher rate of interest. That’s how banks make a profit. They can charge high 
rates of interest to some businesses because they might not get their money back 
if the business goes bankrupt. The high interest rate is the bank’s reward for 
taking that risk. If you deposit an amount of money, A, in a bank, you have A Ar ,  
where r is the annual interest rate, in your account at the end of the year (assuming 
you don’t withdraw any money). For example, if I deposit £100 and the interest rate 
is 10 per cent (keep dreaming, only banks earn this rate of interest), at the end of 
the year I have £ £ £100 0 1 100 110. . Using simple algebra, the amount of money 
at the end of the year A Ar  can be written as A r1 .

A percentage indicates a number out of one hundred. So, 10 per cent means ten out 

of a hundred or 10
100

 or 0.1. So 10 per cent of £100 is £10.

Compounding your interest
If you leave money and any interest it earned in the bank for another year, at the 
end of the second year you have the amount at the beginning, B, plus the interest 
rate times B, in other words A Ar A r1 . But B, the amount at the beginning 
of year two, is just the same as the amount at the end of year one and so, the 
amount at the end of year two is A r r1 1 . If you keep your money in the bank 
for many years, say n years, then at the end of the nth year you have A r

n
1  in 

the bank.

Figure  4-1 shows a chart of this formula and how the amount in the account 
grows exponentially. Of course, if the interest rate is only 1 per cent rather than 10 
per cent, the upward curve is hard to spot.

Earning interest on both your original capital and the interest on it is called 
compound interest. Reputedly, the famous physicist Albert Einstein said that 
‘Compound interest is the eighth wonder of the world. He who understands it, 
earns it . . . he who doesn’t, pays it.’ Wise words worth heeding.

Not all accounts pay interest annually. Some make payments twice a year. In that 

case, after six months you have A r1
2

 in the bank. Here I use the interest rate r
2

 

because the rate is only for half a year. At the end of the year, you have 

A r r1
2

1
2

 in the bank. This figure isn’t the same as when you received the 

annual payment when you ended up with A r1 . If you multiply out the brackets 

for the semi-annual payment, then you get A r r1
2

2

, which is a little bit more. 
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Good to know! However, the interest rate, r, is generally small, so if it is, say, 0.1, 

then r
2

2
 is only 0.005.

In practice, you don’t find much difference between annual and semi-annual pay-
ments, especially if the interest rate is low.

To make things a little more complicated, banks offer accounts with interest paid 
any number of times throughout the year – even daily – so you do well to know 
about all the ways to calculate interest. If the annual rate is r, and paid m times 
per annum, your account receives m payments with rate r

m
. At the end of the year, 

you have A r
m

m

1  in the bank, and at the end of n years, you have A r
m

mn

1  in 

the bank.

Compounding continuously
Money in the bank, A, earns interest at the rate of r per annum. If interest is paid 

in m instalments with rate r
m

, then at the end of n years you have A r
m

mn

1  in 
the bank.

This equation looks complicated, but you can write a much simpler formula with 
some advanced maths. The brainy mathematicians in investment banks use the 
simpler formula all the time because it makes complicated valuation calculations 
easier.

FIGURE 4-1:  
Compound 

interest of a bank 
with a 10 per cent 

interest rate. 
© John Wiley & Sons, Ltd.
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Assume that m gets bigger and bigger – all the way to infinity, in fact (but not 
beyond). Now small amounts of interest are being paid all the time. This situation 
is called continuous compounding. In the next formula, the sum of money in your 
bank account is represented by S. If you start with an amount A and this amount 
is compounded m times per year for n years, the equation is:

S A r
mm

mn

lim 1 .

The letters lim indicate the limit as m gets bigger and bigger towards infinity. To 
do the maths, you take the logarithm of this equation. From high school maths, 
you know that ln ln lnab a b . So, if a b, then ln lna a2 2 . More gen-

erally, ln lna n an . The first formula is why logarithm tables were used in 
schools – they make multiplication as easy as addition. In the next formula, I take 
the logarithm (ln) of both sides of the equation for the sum of money, S:

ln ln lim lnS A mn r
mm

1 .

The point of this is to get to a simpler formula for S (very soon, I promise).

Now for the clever bit. As m gets bigger and bigger, r/m gets smaller and smaller. 
This fact allows you to make a nice simplification of the term in the equation with 
the logarithm:

ln 1
2 3 4

2 3 4

x x x x x


 
.

This formula is the Taylor expansion of the logarithm. But remember, x is small 
in this calculation and the square of a small number is even smaller, so you can 
ignore all the terms in the formula (I like that!) except the first one.

Using the approximation ln 1 x x , you get: ln lnS A nr .

Very nicely the m cancels out, and you get a formula with only n. Using the prop-
erties of logarithms again, you can write this formula as S Aenr .

Here e is the base of the natural logarithm. More commonly this formula is writ-
ten with t rather than n to indicate time. Just remember that the interest rate must 
be an annual one.

The simple exponential formula can be written backwards as A Se rn. That’s 

because the inverse of ern is just e
e

rn
rn
1 . You may be thinking, ‘So what?’ or 

‘Why bother?’ But some financial contracts, such as bonds and options, involve 
known payoffs at a time in the future. In that case, the backwards formula tells 
you how much the payoff is worth in today’s money. This figure is particularly 
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helpful if you wish to compare payoffs at different time horizons. By expressing 
them all in today’s money using the simple exponential formula, you can make 
legitimate comparisons. The process of applying the simple exponential formula 
to find today’s value of a future sum S is discounting. That’s because today’s 
amount is typically less than the future amount.

So it’s true: money in the bank grows exponentially. Sadly, not many people can 
leave it there long enough to notice. Table 4-1 shows how much £100 is worth at the 
end of a year depending upon how often the 4 per cent interest is compounded.

Central banks have been known to impose negative interest rates. The purpose 
may be to encourage depositors to spend the money or to exchange it for another 
currency. The simple exponential formula still works, but S is now smaller than A.

Sharing in Profits and Growth
Shares are one of the best known of all financial assets. A share is one of any num-
ber of equal portions of ownership of a company. In this book, I use the word stocks 
to mean the same as shares although it can have a more general meaning.

In the UK, you may come across the expression Treasury Stock, which refers to 
specific UK government bonds, or gilts. Confusing!

Shares are mostly bought and sold on public venues called stock markets such as 
the New York Stock Exchange (NYSE), although large transactions are sometimes 
carried out on private venues called dark pools.

TABLE 4-1	 Compounding Interest on £100 at 4%
Interest Payment Frequency Sum at the End of One Year

Annual £104

Semi-annual £104.04

Monthly £104.0742

Weekly £104.0795

Daily £104.0808

Continuous compounding £104.0811
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Because they’re owners, shareholders have a right to a portion of a company’s 
profits and can also vote on key matters such as appointments to the board of 
directors. Shareholders can also vote on large transactions, such as when a 
company wants to make a big takeover of a rival company.

Shares are often owned by pension funds and also insurance companies. They can 
also be owned by private individuals either directly or as pooled investments 
called unit trusts (mutual funds), or investment trusts.

In all cases, shares of profits are paid out as dividends, typically quarterly. A com-
pany does not have to pay dividends though. Companies at the early stage of their 
development often pay no dividend, instead using their revenue to develop their 
product or acquire technology from other companies. Shareholders expect these 
companies to pay dividends eventually when the company matures.

Dividend payments are typically paid quarterly. By adding all the dividend 
payments together to get the total dividend for the year and dividing the amount 
by the share price, you get what’s called the dividend yield. This number is similar 
to the interest rate for money in the bank and allows investments in shares to be 
compared with cash.

Dividends can vary significantly from year to year depending on the profitability 
of the company. If a company hits a tough time, it may suspend dividends alto-
gether. Contrariwise, if a company becomes highly profitable because of some 
form of windfall, such as the sale of a subsidiary, it may issue a special one-off 
payment to shareholders.

In the long run and on average, dividend payments rise and share prices rise 
because of economic growth. Interest rates, on the other hand, tend to stay fixed 
(Chapter 3 discusses these rates). This means that, in the long run and on average, 
shares offer better returns than cash, which is why pension funds frequently own 
so many of them.

Taking the Pulse of World Markets
The share price of any one company can be affected by many specific factors, such 
as the profitability of one big project or the success or otherwise of a management 
change. So, to get a more accurate picture of general market behaviour, it’s useful 
to track portfolios of shares, especially of the largest companies, which represent 
a significant fraction of the economic activity of a country. Hypothetical portfo-
lios, called stock indices, have been especially constructed for use in monitoring the 
overall level of the stock market.
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A stock index is a weighted average of the components, or companies, of the index. 
The constituent components may vary from time to time. For example, if a com-
pany has a large share price fall, it may drop out of an index. In contrast, if a stock 
not in the index does well and its share price rises significantly, it may be pro-
moted into an index. Table 4-2 shows some of the most important indices.

Not only are these indices used for overall monitoring of a stock market but also 
as the basis for new financial products. In Chapter  5, I talk about stock index 
options and stock index futures in Chapter 6.

Figure 4-2 shows a chart of three major European stock indices. They all share 
common features such as the location of peaks. Over extended periods they move 
closely together, although in recent years the German DAX index has outper-
formed both the London FTSE 100 and the French CAC 40 index. This similar pat-
tern for the indices is a result of the high correlation between the indices.

Correlation is a measure of the relationship between two variables. The correlation 
is a number between –1 and 1. It’s positive if an above-average value of one vari-
able occurs more frequently with an above-average value of the other. On the 
other hand, the correlation is negative if an above-average value of one variable is 
associated more often with a below-average value of the other. Although stock 
indices are highly correlated with each other, they are often negatively correlated 
with bonds (which I talk about in the next section).

You can find out more about the practical importance of this common phenome-
non in Chapter 14 on portfolio theory. Also, in Chapter 9 you can see the mathe-
matical definition of correlation and its close cousin, covariance.

TABLE 4-2	 Important Stock Indices
Index Components

DAX 30 largest companies on the Frankfurt Xetra exchange

Dow Jones Industrial Average 30 large US companies

Hang Seng 50 largest stocks on the stock exchange of Hong Kong

London Financial Times stock exchange 
100 (FTSE 100)

100 largest companies on the London Stock Exchange

Nasdaq 100 100 largest companies on the technology-oriented Nasdaq 
exchange in New York

Nikkei 225 225 largest companies on the Tokyo stock exchange

Standard & Poor’s 500 (S&P 500) 500 of the largest companies on the New York stock exchange
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Defining Bonds and Bond Jargon
Bonds are a form of debt. The original amount of the loan is called the principal. 
They’re described as securities because they’re tradable financial assets. That’s 
what makes them different from regular loans. Another term used for bonds is 
fixed-income security. They’re called that because, typically, bonds make interest 
payments that don’t change once they’ve been issued. These interest payments 
are called coupons. The fixed interest is one of the differences between bonds and 
shares, because the dividends shares pay can vary from year to year. The running 
yield of a bond is the total coupon for the year divided by its market price. It allows 
you to make a simple comparison.

Bonds are graded according to their quality by rating agencies such as Fitch and 
Standard & Poor’s. These agencies give bonds a score according to the likelihood 
of the bond defaulting. A default is when the issuer isn’t able to pay the coupon or 
the principal on the bond. In this case, the holders of the bonds take legal pro-
ceedings to attempt to recover their money. The highest-quality bonds are given 
a triple A rating while lower-quality bonds have B and C ratings. High-quality 
bonds are often called investment grade and lower-quality bonds junk grade. In 
general, junk bonds have a higher coupon than investment grade bonds to 
compensate holders for the risks they’re taking.

FIGURE 4-2:  
Co-movement of 
European Equity 

Indices. 
© John Wiley & Sons, Ltd.
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Bonds can issued by a variety of institutions:

»» National governments: By far the most important bonds, government 
bonds are often referred to as sovereign bonds.

»» Local governments: In some countries, local governments are permitted to 
issue bonds referred to as municipal bonds.

»» Large companies: Companies sometimes finance debt by issuing corporate 
bonds.

Bonds are issued in the primary market, which is an auction. Investors bid for the 
bonds according to rules set by the issuing authority – in the case of sovereign 
bonds, a government department or agency. The outcome for the auction deter-
mines how many bonds are issued to each investor and at what interest rate.

After they’re issued in the primary market, bonds can be bought and sold by mar-
ket participants in the secondary market, which means that they’re traded on 
exchanges just like shares. The majority are traded by broker-dealers who act as 
intermediaries between the buyer and seller of the bond. Many, but not all, 
broker-dealers are major banks.

Most bonds have a maturity that’s fixed at the time of issuance. The maturity is the 
period of time between issuance and redemption, which is when the issuer returns 
the bond holder’s money. The maturity of bonds can be anything from 2 years to 
30 years. On redemption, the issuer returns the principal value to the holder. The 
principal value is the amount paid for the bond at issuance. Sometimes the princi-
pal value is referred to as the face value.

Some confusing terminology is associated with bonds. In the United States, 
government bonds are only called bonds if they have maturity of over ten years. 
Bonds with shorter maturity are called treasury notes. In the United Kingdom, 
bonds are called gilts. In Germany, bonds with a short maturity are called Schatz, 
middle-maturity bonds are Bobls and longer-maturity bonds are Bund.

Coupon-bearing bonds
Coupon-bearing bonds are the most common type of bond. At issuance they have a 
face value, F. The issuer pays a semi-annual (twice a year) coupon, C, to the 
holder. The most common maturities are 2, 5 and 10 years but long bonds with 
maturities of 20 or 30 years are popular too. Long bonds avoid the need for the 
borrower to keep on refinancing their debt by reissuing more bonds.
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United Kingdom Gilt Treasury Stock 2032 4.25% (TR32). These bonds are redeem-
able in June 2032 and each year until then pay a yield of 4.25 per cent on the face 

value of 100 pence (100p). Every six months, a coupon of 2 125 2 125
2

. . p  p  is paid 

for every 100p. The December 2014 price was 123.34p, so the yield for someone 

who has just bought TR32 is 4 25
123 34

3 45.
.

. %.

In June 2032, the UK Treasury will redeem the bonds at 100p so the buyer today at 
123.34 will take a (near) certain loss of 23.34p. An important and useful quantity 
that takes into account both the semi-annual coupon payments and the repay-
ment of the principal is the yield to maturity. This yield is also sometimes called the 
redemption yield, which is calculated by applying the time value of money formula 
to every cash flow from the bond.

The letter y represents this yield and M stands for the current market price of the 
bond. The current time is t and the redemption date is T. The coupon is C and is 
paid at times ti. N coupons are left to be paid until redemption. So the implicit 
equation for yield to maturity for a coupon-bearing bond with principal, P,  

is M Pe Cey T t y t t

i

N
i

1
.

This equation is an implicit equation for the yield to maturity y. In other words, 
you don’t know what y is yet! You can’t just plug in values for P, M and C and 
calculate y. In other words, this equation is saying that the current market value 
M of a coupon-bearing bond is equal to the sum of all the future anticipated pay-
ments from it discounted to the present day at the interest rate y. To evaluate y, 
you must use an iterative procedure in which you make repeated estimates of y 
and improve the estimate based on previous values.

In the formula for M, you see that if the yield y rises, then the price M must fall 
because y always appears as a negative exponential. A negative exponential looks 
like a downward sloping slide, so the higher y goes the lower M becomes.

Zeroing in on yield
Bonds are often called fixed-income securities, but curiously, some of the most 
important bonds do not pay a coupon. These bonds are often simply referred to as 
zeroes.

A coupon is the interest payment made to the holder of a bond. For most govern-
ment bonds, they’re made as cash payments every six months.
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The deal for a zero-coupon bond works as follows: You pay an amount, X, for a 
bond whose issuer promises to pay back an amount, Y, at a time in the future. 
That’s it. Simple. Some of the most important zero-coupon bonds are called bills. 
These bills are issued by both the US and UK treasuries. The maturity of a bill is 
short being anything from 1 month to 12 months.

Normally X Y; in other words, the bond is worth more at redemption than at 
issuance. Instead of receiving interest in the form of a coupon, the holder makes 
a capital gain. If the maturity of the zero bond is T, this capital gain is equivalent 
to an interest rate r where X e YrT  – a formula I explain in the earlier section 
‘Compounding continuously’, which is an example of the time value of money. 
However, in exceptional circumstances, X Y  for short-maturity bills because the 
issuer of the bill, frequently a government treasury, is considered a better credit 
risk than banks. The buyers of the bills regard their money as in safer hands than 
in a bank because the government treasury is less likely to default then a bank. 
Safety can be more important than interest payments.

SOLVING FOR Y
Equations such as M Pe Cey T t y t t

i

N
i

1
 occur quite a lot in quantitative finance, so 

you benefit from knowing how to solve them. They can’t be rearranged to give a simple 
formula for y, so the best way to solve such equations is numerically using a computer.

To show you how to solve this equation, I start with a bit of guesswork. That doesn’t 
sound mathematical, but the important thing is to have a systematic way of improving 
the guess to get the correct value of y. You need to guess what the lowest possible value 
that the interest rate y might take – zero is a good value. Then you need to guess the 
highest value that y might take. A possible value may be the annual coupon, 2C, divided 
by the principal, P. But if the bond trades at less than P, the yield to maturity may be 

higher than this amount. So a possible high guess would be 4C
P

. I call the high guess b’ 

and the low guess a. I also use a midpoint guess of a b
2

.

You can now write the equation as M f y  meaning that the market price, M, is a 
function, f, of a yield to maturity, y. Using the guesses a and b, you can evaluate f(a) and 
f(b). One of these values should be higher than M and the other lower than M because 
the correct yield to maturity y* must lie between the lowest guess, a, and the highest 
guess, b. At the correct value of the yield to maturity, M f y * .

(continued)
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Cleaning up prices
Accrued interest is the interest earned or built up since the last coupon payment of 
a bond. The prices quoted for bonds are clean prices that do not include the accrued 
interest. When you buy a bond, you have to pay both the clean price and the 

By halving or bisecting (official maths jargon) the range from a to b with the point a b
2

, 
you can figure out where the correct yield to maturity might lie.

1.	 Make guess for lower limit, a, of y* and upper limit, b, for y*.

2.	 Calculate f(a), f a b
2

, f(b).

3.	 If f a M f a b
2

, then b a b
2

, and the new search range is a b, ’ .

4.	 If f a b M f b
2

, then a a b
2

, and the new search range is a b, .

5.	 If the new search range is narrow enough to give an accurate value for y*, then 
stop. If not, go back to Step 1.

If the curve f(y) crosses M in the left-hand segment, then y* lies in the range a a b,
2

. 

On the other hand, if f(y) crosses M in the right-hand segment then y* lies in the range 
a b b

2
,  as shown where I plotted f(y) and the point where it intersects the line 

M is y*. By this process, I shrunk the range where you might expect to find the correct 
value y* by half. This action can be repeated or iterated, until an accurate value for y* is 
found. Refer to this figure for an example.

(continued)

© John Wiley & Sons, Ltd.
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accrued interest, which adds up to the dirty price. A chart of the dirty price shows 
sharp drops on coupon days as the accruals fall to zero following the payment of 
the coupon. The clean price chart has much more continuous behaviour.

To calculate the accrued interest, you need to know the number of days elapsed 
since the last coupon date. Various conventions exist for doing this calculation 
depending on the type of bond and country of origin. They all take the form of:

Accrued interest Coupon Days since last coupon
Days in referrence period between coupons

.

In some conventions, a month is always 30 days, so a year has 360 days. The half-
year coupon period is then 180 days. Both the US Treasury bond market and UK 
gilt markets use the actual number of days when counting the days between dates 
and don’t round months to 30 days.

Learning to like LIBOR
LIBOR is the London Interbank Offer Rate and is an essential cog in the financial 
system. This rate is used as a benchmark interest rate in pricing financial products 
such as mortgages. LIBOR is calculated for five currencies:

»» Swiss Frank

»» Euro

»» British Pound (Sterling)

»» Japanese Yen

»» US Dollar

There are seven maturities of interest rate varying from overnight to 12 months 
so, in total, there are 35 LIBOR rates. All these rates are calculated daily based on 
data from banks in London but are considered representative of global short-term 
interest rates. The rates are published at approximately 11:00 a.m. London time.

LIBOR rates are calculated by a poll of contributing banks. For each currency and 
maturity, the banks are asked ‘At what rate could you borrow funds, were you to 
do so by asking for and then accepting interbank offers in a reasonable market 
size just prior to 11:00 a.m. London time?’ They then compile the responses or 
submissions and then list these in numerical order. They then reject the highest 
and lowest 25 per cent of the submissions as outliers and average the remaining 
figures.
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An outlier is a statistical term for an observation or result that is distant from most 
of the other observations. Outliers are deemed to be sufficiently different from the 
population that they can’t be reliably used in calculations.

Despite the apparently robust statistical procedure to calculate LIBOR, the rates 
were manipulated by submitting banks during the financial crisis of 2008. The 
stigma of making outlier submissions encouraged many, if not most, banks to 
make submissions lower than the then-high prevailing rate for interbank lending. 
The methodology is currently (December 2014) being revised.

Plotting the yield curve
The yield curve is the link between the yield to maturity and the maturity of a bond.

The yield to maturity of the bond is the yield taking into account the current price, 
the redemption value and the coupons you’ll receive. The yield to maturity is a 
good measure of the return of a bond if you hold it to maturity.

Bonds of different maturities have different yields. You construct a yield curve 
using the yield-to-maturity calculation from the section ‘Coupon bearing 

bonds’  – M Pe Cey T t y t t

i

N
i

1
 – and repeating it for bonds with different 

maturity values.

To get a more accurate result, however, you do better to use the yield calculated 
from zero-coupon bonds because, unlike a coupon-bearing bond, payment hap-
pens only at redemption so a clear link exists between yield and the time to matu-
rity. A resulting plot of the yield or interest rate for a given maturity is shown in 
Figure 4-3.

FIGURE 4-3:  
Yield curve from 

UK gilt data. 
© John Wiley & Sons, Ltd.
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The shape of this curve is typical, but in certain circumstances, the yield curve is 
humped or indeed downward sloping. Understanding the motion or dynamics of 
the yield curve is one of the hard problems of quantitative finance as you need to 
keep track of all the maturities at the same time. I offer a simple introduction to 
this subject in Chapter 12.

Swapping between Fixed  
and Floating Rates

Interest-rate swaps are one of the most important financial products and one of 
the first financial derivatives to gain widespread acceptance. An interest-rate swap 
is an agreement between two parties such as banks or large companies to trade a 
stream of income at a fixed rate of interest for a stream of income at a floating rate 
of interest. They’re traded over the counter (OTC) and not on exchanges. In an 
OTC trade, banks enter agreements directly with other banks or with a specialist 
swap dealer.

Normally, if a company wishes to enter into an interest-rate swap it contacts a 
swap dealer, an intermediary specialising in buying and selling interest-rate swaps 
and other derivatives.

Although swaps aren’t traded on exchanges, they are subject to standard contracts 
and documentation, which you can find at www.isda.org, the website for the 
International Swaps and Derivatives Association.

About a half of all derivatives trading is in interest-rate swaps. On an average day, 
well over a trillion dollars is traded using interest-rate swaps. So significant is the 
trading in swaps that their prices are often considered more reliable than other 
interest-rate products such as bonds. In a way, they’re the tail that wags the dog.

The floating rate is most frequently the six-month LIBOR (see the earlier section 
‘Learning to like LIBOR’).

An interest-rate swap in action:

1.	 Company A borrows $10 million from a bank and agrees to pay LIBOR 
plus 10 basis points (LIBOR + 10 bp).

Basis point (bp) is a frequently used term in the bond markets and simply 

means one one-hundredth 1
100

 of a percentage point. So if LIBOR is  

4.3 per cent, then LIBOR + 10 basis points is 4 3 10 0 01 4 4. . . %.

http://www.isda.org
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2.	 Company A now thinks that interest rates are going to rise sharply so it 
enters into an interest rate swap agreement with Company B.

3.	 Company B agrees to pay Company A an interest rate of LIBOR.

4.	 Company A agrees to pay Company B a fixed interest of F, say 4 per cent.

The overall effect of this swap is that now Company A pays a fixed interest rate of 
F 10 basis points on its loan. It still makes LIBOR + 10 bp payments to the lending 
bank, but it receives LIBOR back from its swap agreement and pays fixed rate F. 
Essentially, Company A converts a floating-rate loan into a fixed-rate loan. 
Figure 4-4 shows the mechanics of this interest-rate swap.

The flexibility that interest-rate swaps provide is one of the keys to their popular-
ity. A company with a fixed-rate loan that believes the interest rate will fall can 
enter into an agreement to swap that loan for a floating-rate loan. Equally, the 
holder of a fixed-income asset such as a bond who believes that interest rates will 
rise can enter into an agreement to swap the fixed-coupon payments for floating-
rate payments. Interest-rate swaps are therefore of great use for both investing 
and borrowing institutions.

Note that the principal amount of a loan or investment isn’t exchanged in an 
interest-rate swap – only the interest. The expression notional principal is used for 
swaps to make clear that the principal amount isn’t relevant to the swap.

The key number in an interest-rate swap is the fixed rate, F, as the floating rate is 
almost always LIBOR. F is often called the swap rate. The fixed rate is chosen so 
that the present value of the swap is zero, which means that, if you add up the 
discounted value of the fixed-rate payments, they equal the discounted value of 
the floating-rate payments. A swap constructed to have zero value when the 
agreement is started is called a par swap. Maybe this value is another reason for 
the popularity of interest-rate swaps. Who can argue with free?

Although interest-rate swaps may not cost anything to enter, they can end up 
being costly. Each party makes the agreement with its own assumption about how 
interest rates are going to change during the agreement. For example, if you agree 
to swap fixed payments for floating payments and the interest rate goes up 
sharply, you will lose a lot of money over the period of the agreement.

FIGURE 4-4:  
Cash flows for 

an interest-
rate swap. 

© John Wiley & Sons, Ltd.
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Because interest rate swaps are over-the-counter (OTC) instruments, they can be 
tailored to client requirements. They’re issued with a wide range of maturities – 
anything from a year to 30 years. Interest payments are swapped at predeter-
mined intervals, frequently every six months, just as for many government bonds 
and with the floating rate set at six-month LIBOR.

For example, a three-year fixed-for-floating interest rate swap with semi-annual 
payments is agreed between bank A and bank B. The fixed rate is 4 per cent whilst 
the floating rate is six-month LIBOR. Notional capital, P, is £10 million. Bank A pays 
bank B 0.5 × 4% = 2% every six months. For £10 million of notional capital, this 
amounts to £200,000 every six months for three years. Again, remember that the 
notional capital of £10 million is not exchanged. Bank A agreed to make 3 × 2 = 6 
payments of £200,000 to bank B. In exchange, bank B will make 6 payments at the 
rate of six-month LIBOR. Depending on whether A’s payment is greater than or less 
than B’s payment, bank B will receive or pay a net payment.

The six-month LIBOR payment for a given six-month period is based on the 
LIBOR rate prevailing at the beginning of the period. This means that immediately 
after the agreement is set up, both parties know what the first payment in six 
months’ time will be. But the second floating payment to be paid one year after 
the agreement is set up is not known. All LIBOR rates change from day to day so 
that, in six months’ time, the six-month LIBOR rate could be very different from 
what it was when the agreement was set up.

Table 4-3 shows how to calculate the value of these floating rate payments at the 
time the agreement is set up even though you don’t know the LIBOR rate at the 
future payment dates.

TABLE 4-3	 Floating Payments and Cash Flow
Payment Day Floating Rate Deposit Floating Rate Withdrawal

6 months Deposit P at agreement Withdraw P at 6 months

12 months Deposit P at 6 months Withdraw P at 12 months

18 months Deposit P at 12 months Withdraw P at 18 months

24 months Deposit P at 18 months Withdraw P at 24 months

30 months Deposit P at 24 months Withdraw P at 30 months

36 months Deposit P at 30 months Withdraw P at 36 months
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Look at a sample payment day such as for the one in 18 months’ time. The interest 
payment is at six-month LIBOR, which is known at 12 months, and is based on 
notional capital of P. The cash flow from the floating leg is just the interest pay-
ment, so is equivalent to a deposit of P at 12 months and a withdrawal of P at 18 
months. If you add up all the cash flows in the table, you notice that all withdraw-
als, apart from the last, are cancelled by a deposit. Handy! So the equivalent cash 
flow for all the floating-rate payments is a deposit of P at the time of the agree-
ment and a withdrawal of P at the end of the agreement. A withdrawal at the end 
of the agreement has to be discounted using the interest rate for a maturity of 
three years. There are no LIBOR rates for this maturity, so typically a value is 
taken from the yield curve constructed from zero-dividend bonds (see the section 
‘Plotting the yield curve’).

Valuing the fixed-rate payments is a bit simpler because they’re all known in 
advance. For semi-annual payments, P × F/2 is paid every six months, in which P 
is the principal amount and F is the fixed rate. Each of these payments has to be 
discounted by a factor taken from the yield curve. Call the payment times i with 
i 1 up to the last payment N. For the example above N 6. The interest rate with 
maturity i is r i . By equating the present value of the fixed-rate payments to 
the present value of the floating-rate payments, you get:

P e xFP eN N i ir r

i

N

1
1

.

Notice that the principal, P, is a common factor throughout so it can be cancelled. 
You can then simply solve the equation for the fixed rate F that gives the interest-
rate swap zero or par value initially. The term x in the equation takes account of 
the frequency of the interest payments. For example, if the payments are semi-
annual, then x 0 5. .

Cancelling P from both sides and solving for the fixed rate F gives you 

F e
x e

N N

i i

r

r

i

N
1

1

.

This is the swap rate to give the contract zero value at initiation.

An interest rate swap is in two parts so they’re often referred to as legs: the float-
ing leg and the fixed leg.
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IN THIS CHAPTER

Discovering a variety of options

Interpreting trade data

Paying attention to expiration dates

Putting knowledge to practice

Exercising on and off exchanges

Balancing puts and calls

Exploring Options

Everyone likes to have options and financial people are no different. A financial 
option does exactly what it says: it gives the holder the right to buy or sell an 
asset as she determines the situation is favourable for her to do so. The 

downside to this nice feature is that options cost money. Contracts that create 
obligations to buy or sell something, such as futures (which I cover in Chapter 6), 
are effectively free.

One of the reasons for the enormous popularity and importance of options is the 
great expansion in the range of underlying assets. Options are now available on 
interest rates, bonds, equity indices, individual stocks and foreign exchanges. You 
can even have an option on a futures contract for commodities such as gold and oil.

In this book, I focus on equity and interest rate options, but the concepts I explain 
can be applied to the other kinds of options too. Because of their versatility, 
options play a big role in many significant financial transactions such as business 
lending, the management of large portfolios of stocks used in pensions and in 
international transactions in different currencies.

Chapter 5
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Examining a Variety of Options
Options are often called derivatives because their price is derived from an underly-
ing asset such as a stock or a bond. If you need a reminder about stocks and bonds 
please have a look at Chapter 4 which delves into the details about these assets.

Normally, options are traded as separate contracts from the underlying asset. 
However, sometimes options are embedded into other contracts and occur as a 
little twist in the terms of a contract. Figuring out the value of such contract terms 
is an important part of quantitative finance. The most common types of embedded 
options include the following:

»» Callable bond: A bond in which the issuer has the option of calling in the 
bond and giving the investors their money back if the interest payments 
become large compared with current market rates. Nice for the issuer of the 
bond to have that option, but it benefits the purchaser because she pays less 
for a bond because she isn’t guaranteed to receive the attractive interest rate 
offered at the time of issue.

»» Convertible bond: This type of bond gives the holder the right to convert it 
into the equity of the issuing company.

Starting with plain vanilla options
Options are now available in huge variety – so many in fact that you may find it 
hard to get your head around the number or understand the need for so many. 
Think of options as a bit like ice cream flavours: they’re always coming up with 
something more exotic to sell more product. And, just like ice cream, the most 
basic options are referred to as plain vanilla options. A plain vanilla option has a 
single underlying asset and a simple payoff based on the final price.

The most common type of option is one traded separately from an underlying 
asset. That asset may be a stock such as Vodafone or a government bond such as a 
ten-year US Treasury Note. However, whatever the underlying asset, options 
come in two distinct types:

»» A call option gives the holder the right, but not the obligation, to buy a 
particular asset for an agreed price at a specified time in the future.

»» A put option gives the holder the right, but not the obligation, to sell a 
particular asset for an agreed price at a specified time in the future.



CHAPTER 5  Exploring Options      87

This flexibility to buy options that give you rights to buy or to sell at a future price 
is an important part of their appeal. Option contracts have value because they 
define a price now for an unknown price in the future. The more uncertain the 
future price the more value an option has. The measure of the uncertainty in the 
price of an asset is called its volatility. (Chapter 7 is where to go to find out about 
the important concept of volatility and how to measure or calculate it.)

Aiming for a simple, binary option
A binary or digital option has a simpler payoff than a plain vanilla option. If the 
asset price ends higher than the strike price, then the binary call has a payoff, Q, 
irrespective of how much higher the asset price ends up compared with the strike 
price. The payoff is therefore discontinuous. Likewise, a binary put pays off an 
amount, Q, if the asset price ends up lower than the strike price and irrespective 
of how much lower it ends up. (Chapter 10 shows you how simple it is to work out 
how much to pay for a binary option.)

Branching out with more exotic options
Many different kinds of non-standard or exotic options are available. I can offer 
just a small selection here. In fact, such a variety of options exist that it can be 
hard even to categorise them.

However, one category that’s become particularly popular is the path-dependent 
option. The value of these options depends on the price path the underlying asset 
takes up to the expiry date and not just the value at expiry.

Barrier options depend on hitting a particular price, the barrier price, before expiry. 
They come in two types:

»» Knock-in options pay off only if the barrier is reached before expiry.

»» Knock-out options pay off only if the barrier isn’t reached before expiry.

It turns out that the price of a barrier option can be determined in a way not too 
different from that for plain vanilla options but with a bit of extra mathematics.

Lookback options are yet another form of path-dependent option, but they depend 
on the maximum or minimum asset price reached during the life of an option. So 
a lookback call option has a payoff that depends on how much the final asset price 
exceeds the minimum price reached during the life of the option. Similarly, a 
lookback put option has a payoff that depends on how much the maximum price 
reached during the life of the option exceeds the final asset price.
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I provide only a short summary of just one category of exotic option here. Much 
more detailed information can be obtained from textbooks such as Options, Futures 
and other Derivatives by John C Hull, published by Prentice Hall.

Reading Financial Data
Along with the two words of option jargon I define in the preceding section – call 
and put – I now introduce you to the other key words used to describe options. 
Having this vocabulary enables to you to examine the websites of option exchanges 
and understand the figures you see there.

Figure 5-1 is taken from the website of the Intercontinental Exchange, or ICE, and 
shows options for the British supermarket group Tesco as of 12 November 2014 
(which is when I wrote this section). It shows the parts of a financial statement 
that I explain in the following sections.

Seeing your strike price
The strike price or sometimes exercise price is the price at which you have the right 
to buy or sell the underlying asset of an option. The expiration date, or expiry, is the 
date by which you must exercise your option.

Most options are traded (bought and sold) on exchanges, so the holder of an option 
doesn’t necessarily have to exercise the option herself. She can simply sell it on an 
exchange before its expiration date.

Options traded on an exchange are offered for a range of both strike price and also 
expiration date, as shown in Figure 5-1. The price of the underlying shares for 
Tesco is 191pence(p). The table shows two halves with call prices on the left and 

FIGURE 5-1:  
Tesco put, 

call and strike 
prices in 

November 2014. 
Source: Intercontinental Exchange (ICE)
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put prices on the right. The strike price is given in the centre column. Note that 
strike prices apply to both puts and calls.

Abbreviating trading information
The prices at which an option has been bought and sold on the exhange are listed 
under the heading Last in Figure 5-1, meaning the last available price as informa-
tion is updated throughout the day. The other columns in the table are not specific 
to options but this is as good a place as any to explain them.

»» Settl. (settlement): The price at the close of business on the previous 
working day. In Figure 5-1, the previous day is 11 November 2014.

»» O.I. (open interest): The number of option contracts in existence for that 
expiry date and strike price.

»» Day vol (daily volume): The trading volume indicating how many option 
contracts are bought and sold. Notice that a Last price only exists for contracts 
with trading volume because only with trades can prices truly be discovered.

»» Ask: The amount it costs to buy a contract.

»» Bid: The amount you can sell a contract for.

The ask price is always higher than the bid price as the exchange intends to 
make money by offering a platform to trade options.

As the strike price increases, the call prices goes down. That’s because buying at 
higher prices isn’t so attractive as buying at low prices. Contrariwise, the settle-
ment price for a put option rises as the strike price increases as selling at higher 
prices is attractive.

Valuing time
The options shown in Figure 5-1 have an expiration date in November 2014 – at 
16:30 p.m. on the third Friday in that month, 21 November, to be precise. For 
plain-vanilla options the expiry date is set when you buy the option, but there’s 
normally a choice of expiry dates. Near months such as December 2014 and 
January 2015 also trade.

In general, equity options are available in cycles with expiry months in March, 
June, September and December. For the Tesco options traded on ICE in November 
2014, the longest expiry available was for December 2017.

The prices in Figure 5-2, showing December 2014 prices for Tesco options, are all 
higher than those in Figure 5-1, which shows November prices. This is an example 
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of time value, meaning that the longer an option has to reach its strike price the 
more expensive it is. The price change is due to the fact that the longer the option 
exists, the more probable it is that it reaches or exceeds the strike price and gives 
investors a good payoff.

The option exchange, such as the Intercontinental Exchange (ICE), provides other 
important information about these options on other pages of its website. The unit 
of trading, for example, is the number of shares over which the holder of the option 
has rights. The ICE website indicates that one option gives the holder rights over 
1,000 shares. This number is important to know when you’re calculating how 
much you can potentially gain or lose from owning an option.

The price of an option is often referred to as the premium. This language is similar 
to that used by insurance companies, which is no coincidence as options can be 
used as a form of financial insurance. I explain this in the upcoming section 
‘Hedging your risk’.

Getting Paid when Your Option Expires
If you write the price of a share (or any other underlying asset) as S and the strike 
price of an option as X, you can write the payoff of a call option as: Max(S–X,0). 
The notation means ‘the maximum of the share price, S, minus the price of the 
option, X, or 0’. This is the amount you receive from exercising the option at its 
expiry.

You won’t find it encouraging to see a zero in there for the payoff, but that’s real-
ity: a call option has value only if the share price, S, is greater than the strike price, 
X, on the expiration date. Because if S is less than X at expiry, then nobody wants 
the right to buy at a higher price than that available in the market. I show this in 
the form of a chart in Figure 5-3.

FIGURE 5-2:  
Tesco option 

prices in 
December 2014. 

Source: Intercontinental Exchange (ICE)
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The payoff for a put option can be written as Max(X–S, 0) where the share price 
now has to be less than the strike price for the option to have value at expiry. Only 
then would anyone want the right to sell at the higher strike price, X.

Figures 5-3 and 5-4 show charts of the value of call and put options at expiry, but 
options traded on an exchange have prices quoted before expiry. Enabling you to 
figure the valuation of options before expiry is one of the objectives of this book, 
and the chapters in Part 4 go into option pricing in detail.

If, at times before expiry, a share price is above the strike price of a call option, 
then the call option is said to have intrinsic value and to be in the money. Contrari-
wise, if at times before expiry a share price is below the strike price of a call 
option, then the call option is said to be out of the money. If the share price is far 
below the strike price, it’s said to be deep out of the money and the option has a low 

FIGURE 5-3:  
Influence of 

call-option value 
at expiry on the 

share price. 

© John Wiley & Sons, Ltd

FIGURE 5-4:  
Influence of 

put-option 
value at expiry 
on share price. 

© John Wiley & Sons, Ltd
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price. By contrast, an in-the-money put option has the share price below the 
strike price while an out-of-the-money put has the share price above the strike 
price.

The options I describe in this chapter are European options, which can only be 
exercised at expiry. But they aren’t the only kind of option available. American 
options can be exercised at any time before expiry. The upcoming section, ‘Distin-
guishing European, American and other options’ talks about other options.

Using Options in Practice
In this section, I show you how to put your knowledge of options (which I explain 
in the preceding sections) into practice. This type of information could easily be a 
chapter or a book all on its own, but I shrink it down to four subsections. I look at 
how options can be used to control, or hedge, risk. I also show you how they can 
be used to speculate and attempt to make money.

Hedging your risk
Hedging is a special word in finance and has nothing to do with gardening or topi-
ary. Equally, risk is also a special word in finance with subtle variations in mean-
ing. I try to keep it simple here though:

»» A hedge is an investment intended to offset potential losses by another 
investment.

»» Risk is the potential of an investment to lose value. (Chapter 7 on volatility has 
a more elaborate discussion about risk.)

So hedging risk is about buying an investment that helps prevent another invest-
ment lose value.

To give an example of this in action, I look at how an equity option for Vodafone 
works. Wilma owns shares in Vodafone, whose price is 205pence (p). She’s wor-
ried the price may drop but doesn’t want to sell her shares, possibly because if she 
did sell she would have to pay tax on the profits. She would rather insure against 
a capital loss and continue to receive dividends. So, she buys a December put 
option with a strike price of 210p. This means that in December she has the right 
to sell Vodafone at 210p. That’s cool – a higher price than for today, but she has to 
pay 15.25p for this option. What happens if Vodafone takes a dive down to 170p by 
December? Wilma loses 35p on every share she owns – almost 15 per cent. On top 
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of this, she paid 15.25p for the option, so that’s a painful 50.25p of loss per share. 
However, her option to sell Vodafone at 210p is rather useful given that she can 
buy Vodafone at 170p in the stock market. Her options are worth 40p each 
(210p – 170p) so her overall loss is just 10.25p. That doesn’t eliminate the loss but 
makes it much smaller than it would have been. It may even be the case that 
between October and December, when Vodafone was declining in value, she could 
have bought a further option to get closer to a zero loss in December.

But what would have happened if the price of Vodafone had risen to 240p by 
December? Wilma would have made a nice 35p per share profit (240p – 205p), but 
her options would have been worthless. Nobody would want the right to sell Voda-
fone shares at 210p if they can be sold at 240p on the stock market. Overall then, 
Wilma would have made a profit of 35p – 15.25p = 19.75p per share.

This example shows an imperfect example of hedging, when you use a put option 
to protect, or hedge, against the fall in the price of a share you already own. It 
didn’t work perfectly for Wilma, but with a few techniques that I show you in 
Chapter 11, you can improve on this.

Placing bets on markets
You can look at options as bets on the future price of an asset. Because both put 
and call options are available, you can place bets on both a falling and rising asset 
value. Options can therefore be used for purely speculative purposes as well as for 
more defensive hedging purposes.

In this example, I explain how this works. Tesco supermarket has just gone 
through a hard time and its share price is down more than 40 per cent on the year. 
I don’t think that this price is justified and believe that the share price is going to 
rise sharply in the new year after trading results for Christmas are announced. 
Current share price is 195p. For 5p, I can buy a March 2015 call option with a strike 
price of 220p. That looks like a bad idea as the current price is less than the strike 
and this option has no intrinsic value. In other words, if it were expiry day, the 
option would be worthless. But the point is that if by March 2015 the price is 
higher than 220p, my option has value.

Now, in Scenario A, the price of Tesco continues to struggle but ends slightly up at 
200p by March 2015. That’s still below the strike price of 220p so the call option is 
worthless. In Scenario B, imagine that Santa Claus decided to do all of his shop-
ping at Tesco. Sales were fantastic, and the share price shot up to 240p by March. 
The option is worth 240p – 220p = 20p but I only paid 5p for it. The percentage 
return is 100 per cent × (20 – 5)/5 = 300 per cent. If instead, I had simply bought 
Tesco shares at 195p and sold them in March at 220p, my return would have been 
100 per cent × (220 – 195)/195 = 12.8 per cent, which is a nice return but far 
smaller than that from buying the option.
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The potential percentage return has been greatly amplified by buying the deep 
out-of-the-money option. The probability of achieving this return is low, though, 
and Scenario A with its 100 per cent loss is more likely than Scenario B.

Don’t try this kind of hedging at home, however many seductive adverts you see 
from derivatives brokers! Look back at Figure 5-2 and notice that the difference 
between the bid and ask prices is considerable. If a speculative bet starts to go 
wrong, even if you wisely decide to get out, you still lose a lot of money. Option 
trading is for professionals taking a disciplined approach and using good risk 
management across a portfolio.

Writing options
If you buy a put or call option, someone on the other side of the trade issued, or 
wrote, that option. The writer receives the option premium. If you sell a call option, 
you’re said to have a short position in a call option. Likewise, if you sell a put option, 
you’re said to have a short put position.

If you sell a call option and the share price on its expiration date is above the strike 
price, then the option is exercised, and you have to deliver the underlying shares 
to the buyer of your call. Sadly, you have to buy the shares in the market at price S, 
which is above the exercise price, X. So you lose an amount (S – X) for each of the 
underlying shares. Potentially, your losses can be extremely large if the share 
price soared.

Writing a call means that you’re guaranteed to receive the premium up front, but 
you risk huge potential losses. Simply writing a call option is often referred to as 
a naked position because of the potential for embarrassment.

I show this in a payoff diagram Figure 5-5. Notice that the value is never positive 
so the only reason to write a call option is to receive the premium from the buyer. 
In the second chart in Figure 5-5(b), I show the payoff for a short put position. 
Again the value is never positive and the only reason to write a put option is to 
receive the premium.

Earning income from options
Writing a naked call option is a risky business, but an alternative strategy, 
covered-call writing is much safer. In this strategy, the writer – a fund manager, 
for example – already owns the shares she writes calls on. The writer receives the 
premium up front. Only if the share price exceeds the strike price does the writer 
have to deliver shares to the buyer of the call option. As the writer already owns 
the shares, she doesn’t have to buy them in the market.
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In effect, writing the call option limits the up side to the fund manager’s portfolio: 
if the price of the shares she writes a call on rises, she has to cede the shares to the 
option buyer at the strike price. But in compensation she receives the premium 
income.

Writing a naked call option may be a good course of action for a fund manager who 
believes that the market is going to decline but doesn’t want to sell her shares or 
simply wants to increase the cash return from her portfolio. If she’s correct and 
the market declines, then she earns a steady income from the premiums.

Distinguishing European, American 
and other options
The options I describe in this chapter generally are European options, which can 
only be exercised at expiry. But other options have different policies. American 
options can be exercised at any time before expiry. Because the American option 
holder has more rights than a European option holder, American options are more 
valuable. Also, because the holder has more flexibility, American options tend to 
be harder to price than European options. Note that American options can trade in 
Europe and vice versa. The names are an historical curiosity.

A third style is the Bermuda option, which is halfway between an American and 
European option in that it can be exercised on some days but not all days like an 
American option. In this book I cover only at the two simpler types of option – 
European and American.

To complete the range of options with geographical names, you also find Asian 
options where the payoff is based on an average price over a certain time period 
rather than the final price.

FIGURE 5-5:  
Payoff diagrams 

for short call 
(a) and short 

put (b) positions 
at expiry. 

© John Wiley & Sons, Ltd
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Trading Options On and Off Exchanges
Not all options are traded on exchanges such as the Intercontinental Exchange or 
the Chicago Mercantile Exchange. Over-the-counter (OTC) options are traded 
directly between two financial institutions. The advantage of this is that the con-
tract can be tailored to the needs of the buyer. The disadvantage is that the buyer 
is exposed to the credit risk of the writer. This hasn’t deterred buyers, and cur-
rently a substantial portion of option trading volume is transacted OTC. Some of 
these OTC options may involve multiple underlying risk factors such as an equity 
priced in a foreign currency or more complex payoff rules such as the Asian option, 
which is based on an average price rather than a final price. In the next section I 
explain a few more of these non-standard options.

Although OTC options are typically tailored to client requirements, the Interna-
tional Swaps and Derivatives Association (ISDA) has pioneered standardised doc-
umentation for OTC options. This can significantly reduce both legal and credit 
risks surrounding these kinds of options. Some derivatives contracts such as 
swaps (covered in Chapter 4) are exclusively traded OTC and, in those cases, the 
ISDA agreements play a key role in the market.

Exchange-traded options are highly standardised instruments although, as 
Figure 5-2 earlier in the chapter indicates, they come in a range of both strike and 
expiry dates. The advantage of this standardisation is that it attracts trading vol-
ume and, because the exchanges report on trades, market participants have a 
clearer view of what is happening in the market than for OTC markets. This clearer 
view is often referred to as transparency.

In addition, options traded on an exchange always have bid and ask prices so 
that the holder can rapidly and reliably assess the value of their holding. By con-
trast, OTC derivatives may not have any publicly available pricing. In that case 
they can be marked to model, a process in which mathematical models are used to 
value them. An introduction to the development of these models is given in 
Chapter 10.

Relating the Price of Puts and Calls
An important part of quantitative finance lies in valuing options. The plain vanilla 
options come in two varieties (or should that be flavours?) – puts and calls – and 
it’s nice to be able to relate the price of these two types so that you need just one 
formula to price them both.
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Calculating the price or value of an option at its expiration date is easy (see the 
section ‘Getting Paid when Your Option Expires’ earlier in the chapter); sorting 
out the price before expiry is harder. The value depends certainly on the underly-
ing asset price, S, the time, t, and other factors too. (I go into more detail on this 
formula in Chapter 10.)

For European options, which you can exercise only on their expiry date at time T, 
I represent the call and put prices as c(S,t) and p(S,t) to indicate the dependence 
on the underlying asset price S and time t. Options can be bought and sold before 
their expiry so it’s important to have pricing formulae for all of these times t and 
not just at expiry at time T. Sometimes I abbreviate these formulas as c and p if 
the dependencies aren’t important.

In Chapter 4 I explain the wonder of compound interest and how money accumu-
lates at an exponential rate. Sounds fantastic, but sadly the rate, r, at which the 
interest is calculated is often small. The rate I use is the risk-free rate r, which is 
the interest rate offered by the central bank or treasury. Using the exponential 
function signified by the letter e a sum of money U now, at time t, is worth Uer(T-t) 
at a time, T, in the future.

In the following examples, I create two small portfolios containing options and 
show that they have the same value:

»» Portfolio A: A European call option and cash to the value of Xe−r(T-t) where X is 
the strike price.

»» Portfolio B: A European put option plus one share.

The value of both of these portfolios is Max(ST,X) where ST is the share price at 
expiry at time, T, and X is the strike price. I come to this formula because in Port-
folio A the cash is worth X at the expiry by the rule for compound interest (check 
Chapter 4). At expiry I will have the cash, X, to exercise my call option if S (share 
price) is greater than X (strike price). In this case, the portfolio is worth ST, the 
price of the share at expiry. If not, then I just have my cash, X, because the call 
option is worthless. So the portfolio is worth Max(ST,X).

For Portfolio B, if the share ends up greater than the strike price at expiry, (S > X) 
the option is worthless, and the portfolio value is just the value of the one share. 
If, on the other hand S < X, I can exercise my put option and sell the share for the 
strike price, X, so the portfolio has value X. So, again the portfolio has value 
Max(ST,X).
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But if Portfolios A and B have the same values at expiry, they must have the same 
value at any time, t, as European options can’t be exercised prior to expiry. In that 
case, I can equate the portfolio values to get c + Xe−r(T – t) = p + S, in which I include 
time, t, in the compound interest factor to show that the formula is valid for any 
time between buying the option and its expiration date T.

This formula relates the call and put values for European options, but it doesn’t 
work for American options as they can be exercised before expiry.
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IN THIS CHAPTER

Buying futures contracts and opening 
margin accounts

Looking at futures types and prices

Moving your futures month to month

Relating futures to the spot market

Spreading your positions in time

Trading Risk 
with Futures

Futures contracts are one of the oldest forms of financial contract. They origi-
nated thousands of years ago in the agricultural markets. Before a crop was 
harvested – or even planted – a buyer agreed to pay a farmer a certain 

amount for the grain or produce. With this contract in hand, the farmer could then 
budget for expenses related to growing the crop.

Futures markets have evolved significantly, and this chapter explains their mod-
ern form. They’re some of the most heavily traded financial instruments used by 
industrial producers, sophisticated hedge funds and banks.

Surveying Future Contracts
A futures contract is an agreement to buy or sell an asset at a specified price and at 
a specified time in the future. Futures are traded on organised exchanges.

If you buy a futures contract, you’re said to have a long position, and if you sell a 
contract, you have a short position. Most futures contracts are specified by a delivery 
month, also called the expiry, which is when the holder of a long position must take 

Chapter 6
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delivery of the asset and when the holder of a short position must make a delivery 
of the asset. Typically, many delivery months are available for each asset.

A hedger can have a long or short position depending on whether he’s a producer 
or consumer of a commodity. Likewise, speculators can have long or short 
positions.

All futures contracts come in standardised sizes. For example, for corn traded on 
the Chicago Mercantile Exchange (CME), the standard trading amount is 5,000 
bushels, or approximately 127 metric tonnes. For crude oil traded on the Intercon-
tinental Exchange (ICE), the amount is 1,000 barrels, which is approximately  
136 metric tonnes.

Because a futures contract is an agreement that creates obligations on the 
holder – to make or take delivery at a given price – the contract is, in effect, free 
of charge.

Free of charge sounds great but is dangerous. For example, if you enter into a short 
position in corn at 350 cents per bushel and the harvest is bad that year, the price 
on the open market may rise to 700 cents a bushel. In that case, you lose 350 cents 
a bushel on 5,000 bushels, or $17,500. In principle, the losses are unlimited as the 
price could have gone even higher.

By the way, exchanges such as the CME specify their contracts in exacting detail 
(nobody likes to take delivery of thousands of tons of the wrong kind of wheat) 
including how prices are quoted. For corn, you need to use price per bushel. Need-
less to say, it’s fine to use dollars when you finally calculate your gain or loss.

Because futures contracts are traded on an exchange, you can purchase additional 
contracts that offset your existing position. So, if you have one short position on 
corn at 350 cents per bushel and see the price rising to 500 cents per bushel, you 
can buy a long contract with the same delivery month as the first contract so that 
your net position (the balance of your short and long positions) is zero, or flat. This 
process of creating a net position of zero is called closing your position. Going back 
to the example, in practical terms, you’ve lost 150 cents per bushel, or $7,500 
because you sold 5,000 bushels at 350 cents per bushel and bought 5,000 bushels 
at 500 cents. Sometimes this calculation in which you consolidate two positions 
into a single position (in this case a flat position) is called netting.

Futures contracts don’t have just financial implications – they can involve physi-
cal delivery of a commodity. Say that you’re a farmer with 5,000 bushels of corn 
in your barn. You have a futures contract to sell your corn at 350 cents a bushel 
(you were concerned that the price would go down), but when the open-market 
price rises, you aren’t too concerned. You can simply hold the contract until the 
delivery month and deliver the corn to a warehouse or grain elevator managed by 
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the futures exchange. You miss out on selling your corn at 700 cents a bushel, but 
you haven’t lost any cash. You notice a big difference between selling something 
you own and selling something you don’t own.

Trading the futures market
Because of the possibility of going either long or short, the futures market is 
attractive to many market participants.

Markets exist primarily for hedging, which is a method to protect yourself against 
a price movement in the future. If you’re the producer of a commodity, price drops 
are bad news so you go short. On the other hand, if you’re a consumer of a com-
modity, price rises are bad news so you go long.

Other market participants called speculators hope to make a profit by buying and 
selling futures contracts. They may do a detailed statistical analysis of historical 
price movements or use information relevant to the market – weather forecasts 
when trading agricultural futures, for example.

Although speculators have no interest in the deliverable commodity or asset, by 
making many transactions in the futures market, they make it easier for hedgers 
to operate in the futures market. In other words, a speculator is often on the other 
side of a hedger’s position.

Finally, large commodity-trading companies are engaged in the purchase, ship-
ment, storage and sale of commodities. In the agricultural market, the largest 
companies have become known as ABCD because of the first letters in their names: 
Archer Daniels Midland, Bunge, Cargill and Dreyfus. These companies actively use 
the futures market in conjunction with their physical trading activity. There are 
equivalent companies in the oil and gas markets.

Marking to market and margin accounts
Futures are risky, so brokers require users of the exchange to open a margin 
account – money or other assets in an account to offset possible losses.

Each day at the end of trading, the exchange announces a settlement price for each 
contract. Based on your profit or loss (P&L) for the day, the broker adds or deducts 
an amount from your margin account. This process is known as marking to market. 
If the balance on your margin account falls below a maintenance margin level, you 
will be margin called and asked to pay more money into the account. The margin 
call is the broker’s way of ensuring that even if a client has large losses the broker 
still gets paid.
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Minimum margin levels are set by the exchange based on the volatility of the con-
tract. The higher the volatility, the higher the margin as a greater probability 
exists of a large return throwing the client into a loss. (I talk about volatility in 
Chapter 7.)

Say that you think that the price of crude oil is going to go up. On Day 1, you buy 
one futures contract (1,000 barrels) for West Texas Intermediate (WTI) crude oil 
at a price of $45. (WTI is the benchmark price for crude oil in the United States.) 
So, you’re committed to paying $45,000 to take delivery of your 1,000 barrels. The 
initial minimum margin account level is $2,200. So, by depositing $2,200 into a 
margin account, you’re able to realise the profit and loss (P&L) from $45,000 
worth of crude oil. When the WTI price rises by $1 on Day 2 to $46, your margin 
account is credited with $1,000. And when the futures price goes down to $45.5 on 
Day 3, you decide to close out the position by going short one contract of WTI. 
Your account is debited $500 for that day so that its balance is $2,700. This pro-
cess is summarised in Table 6-1.

Hedging – buying a position opposite to one you already hold – isn’t always as safe 
as it may seem. Dramatic price changes can make your margin account balance 
fall precipitously, prompting a margin call, and you may have financial problems 
long before your delivery date!

Dealing in commodity futures
Futures contracts first evolved for agricultural products such as wheat, corn and 
even live cattle. As the usefulness of these contracts to manage risk became evi-
dent, exchanges introduced futures contracts for other commodities as well, 
including metals, crude oil and natural gas. All these futures contracts have devel-
oped into important markets that attract hedgers and speculators alike. Futures 
for gold and copper are closely followed: gold because it continues to be regarded 
almost as a currency and is held by central banks; copper because its use in elec-
trical cables means that its price is a good indicator of economic activity.

TABLE 6-1	 Marking to Market with Oil Futures
Futures Price Action Taken P&L Margin Account Balance

Day 1 $45 Buy one contract $2,200

Day 2 $46 $1,000 $3,200

Day 3 $45.5 Close out –$500 $2,700
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Common to all these commodity contracts is the possibility of physical delivery. 
The detailed mechanics of the commodity and delivery method are specified in the 
contract documents:

»» Product quality: The contract spells out the industry standards the commod-
ity must meet. For example, the gold futures contract trading on CME ‘must 
assay to a minimum of 995 fineness’ meaning that delivering bars of gold that 
have been melted down and blended with copper isn’t permitted. Purity 
specifications are also used for natural gas so that pipelines are not 
contaminated.

»» Product form: The form of the commodity is clearly specified. For example, 
gold must be delivered as bars; orange juice must be frozen. As you’d expect, 
for coffee there’s a testing for flavour.

»» Delivery location: Exchanges such as the London Metal Exchange use a 
global network of licenced warehouses where deliveries can be made. But 
energy contracts typically have a more specific location. The ICE gasoil 
contract is specified for ARA delivery where ARA stands for Amsterdam, 
Rotterdam or Antwerp. (Gasoil is a distillate of crude oil similar to heating oil 
and diesel.) All these cities are near the mouth of the river Rhine and delivery 
is typically by barges, which can travel up and down the river.

»» Delivery date: Most commodity futures contracts are available in a wide 
range of delivery months. Whereas for agricultural contracts the contract 
months are focused on times near harvest, energy contracts are available for 
all calendar months and sometimes for as many as ten years in the future. 
The most frequently traded contracts are always the contracts near to 
delivery. Equally, the open interest is always highest for contracts coming up 
for expiry. The prospect of delivery focuses the mind and speculators 
normally close out their position before then.

Open interest refers to the total number of contracts taken out. Unlike shares, 
which are generally limited in number, futures can increase in number as market 
participants take out more contracts.

Figure 6-1 shows the open interest and trading volume in the ICE Brent crude oil 
futures contract by delivery month. Note that open interest declines exponentially 
the farther away the delivery month. The trading volume also declines exponen-
tially but at a faster rate than open interest does. Nonetheless, this market clearly 
has great depth, meaning that large trades can take place with relatively small 
impact on the price. The maturity nearest to the delivery month, also called the 
front month, has over 300,000 contracts open with almost as much trading volume. 
Bear in mind that each contract is for 1,000 barrels, so this trading volume com-
fortably exceeds global daily production of oil which, in 2015, stands at about  
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90 million barrels. This liquidity is needed in the market to give participants the 
confidence to enter large trades with the knowledge that they will be able to exit 
their position with ease.

This high level of financial trading (speculation) in commodities such as oil isn’t 
always comfortable. But the same is true, for example, in the foreign exchange 
(FX) markets where the amount of currency traded in a day often greatly exceeds 
the economic output of a country. In the oil market, large trading volume means 
that hedgers can put on positions with ease without changing prices too much. 
The high volume of transactions and the large number of participants in the mar-
ket gives credence to the prices. Financial speculation clearly has a role in short-
term price movements but commodity futures are connected to real life by delivery 
and so supply and demand of the commodity will be the dominant influence on 
price.

Few commodity futures contracts are held until delivery. Most are closed out by 
placing an opposing trade as explained in the previous section ‘Marking to market 
and margin accounts’. Many participants roll their position, meaning that they 
close out their position and then replace their original position with a position one 
month farther out. I explain this topic in more detail in the upcoming section 
‘Rolling a Position’. Because futures contracts expire, rolling is a good way of 
maintaining a position in the market. The high level of trade in the front month 
makes this easily possible.

0

50000

100000

150000

200000

250000

300000

350000

Mar-1
5

Sep-15

Mar-1
6

Mar-1
7

Mar-1
8

Mar-1
9

Mar-2
0

Sep-16

Sep-17

Sep-18

Sep-19

Sep-20

Delivery Month

O
pe

n 
In

te
re

st
 a

nd
 T

ra
di

ng
 V

ol
um

e 
in

 C
on

tr
ac

ts

Open Interest Trading Volume

FIGURE 6-1:  
Open interest 

and trading 
volume in Brent 
crude oil futures 

contracts. 

Source: Intercontinental Exchange (ICE)



CHAPTER 6  Trading Risk with Futures      105

Index futures
The futures market isn’t restricted to physical commodities. A good, and highly 
successful, example of financial innovation is the introduction of stock index 
futures, which are futures contracts in which the deliverable is an amount of cash 
determined by the value of a stock index on the delivery date. They’re available for 
most of the world’s major stock indices such as the DAX and the S&P 500. 
(Chapter  4 gives the lowdown on indices.) The DAX is the main index for the 
German stock market. The name comes from Deutscher Aktien IndeX, which, in 
English, means German stock index.

An index future is traded on a futures exchange. Contracts are expressed as a cash 
amount per index point. One of the most liquid contracts is for the S&P 500; its 
settlement is based on $250 per index point. You can also trade a smaller contract 
that is only $50 per index point. The DAX futures contract trades on the Eurex 
exchange on 25€ per point. On its delivery date, the future is settled in cash.

Like all futures contracts, you can go long or short for speculative or hedging 
purposes.

Imagine that you’re the manager of a $100 million portfolio of stocks that’s diver-
sified across the large companies represented in the S&P 500 – a pension portfo-
lio, for example. You believe that the portfolio will do well in the long run because 
you chose the stocks carefully after much research. But you’re concerned about 
the performance of the S&P 500 in the short term. For example, there’s anxiety in 
the market about an election result. What do you do? You could sell a fraction of 
your portfolio and wait until the short term uncertainty in the market as a whole 
has passed. The snag with this are the transaction costs associated with selling 
and buying back shares. A good alternative is to hedge your portfolio using S&P 
500 futures because of the low cost of buying and selling these contracts. You can 
sell some contracts so as to put on a short position. This position will profit if the 
S&P 500 goes down and will compensate you for losses in your portfolio.

To discover how many contracts you need to hedge your portfolio, follow these 
steps:

1.	 Calcuate the value of one futures contract, which is the index value 
(I’m assuming the S&P 500 is at 2,000) times the cost per point.

For this example, the formula is 2 000 250 500 000, $ $ , .

2.	 Determine the number of contracts you need by dividing your portfolio value 
by the value of the futures contract.

The formula is: $ $ ,100 500 000 200 million  contracts.
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So, you sell 200 of the front month S&P 500 futures contract at 1,990. Notice that 
the futures price isn’t the same as the cash index price – I explain why in the 
upcoming section ‘Seeing into the Future’. Several weeks later, the S&P 500 drops 
to 1,800. The front month future has dropped down to 1,790 so your futures 
position has gained a cool $10 million. Calculate this from 200 (contracts) times 
the difference between the initial and current index value 1 990 1 790, ,  times 
$250 per point – or 200 200 250 10$ $  million.

But your portfolio has declined at the same rate as the index. The index declined 
by 10 per cent and so your portfolio lost 10 per cent of $100 million, which is $10 
million. At the end of the three weeks, you manage to retain the value of your 
portfolio. Your clients are happy and you’ve saved yourself some of the transac-
tion costs involved in selling shares.

I made several assumptions in this example. If the portfolio is more volatile than 
the S&P 500, then the calculated amount of futures contracts will be insufficient 
to maintain its value. That’s because the portfolio will decline more than the index 
in percentage terms. Equally, if the portfolio is less volatile than the S&P 500 then 
you will buy too many contracts.

In Chapter 14, I talk about the capital asset pricing model and its constants α and 
β. To more accurately calculate the number of contracts to hedge your portfolio, 
you must multiply the answer given in the steps, 200, by β. In the calculation here 
I assumed your portfolio is similar to the S&P 500 and that its β is equal to 1.

Interest rate futures
Another important group of futures contracts are for short-term interest rates. 
Sometimes these are referred to as STIR futures. The most popular instrument is 
the Eurodollar future traded on the Chicago Mercantile Exchange (CME). This 
contract is a template for other short-term interest rate contracts such as the 
three-month sterling future that trades on ICE or the one-month Euroyen future 
that also trades on CME. Euroyen are Japanese Yen traded outside of Japan.

Eurodollars are US dollars deposited in a bank outside of the United States. The 
Eurodollar futures contract is a contract on the three-month LIBOR (London 
Interbank Offer Rate) for these deposits. (You can read about LIBOR in Chapter 4.) 
The futures contract works by cash settlement on expiry using the price 100 L  
where L is the three-month LIBOR rate. This formula ensures that the futures 
contract has a direct connection with LIBOR and that if LIBOR changes, the futures 
contract will compensate the holder for any lost interest.
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Interest rate contracts are defined so that a one basis point change in the futures 
quote results in a $25 change in the contract value. If you have a $1 million con-
tract then a one basis point increase in the interest rate results in an increase of 
0 01 0 01 1 000 000 100. . $ , , $  in the interest earned per year.

One per cent of an amount, P, is 0.01 × P, so one basis point, which is a hundredth 
of one per cent, is 0.01 × 0.01 × P.

That’s equivalent to $25 in three months. The Eurodollar futures contract is then 
able to lock in a three-month interest rate for $1 million of capital.

A basis point is 0.01 of a percentage point. So an interest rate of 0.06 per cent is one 
basis point higher than 0.05 per cent.

Because the settlement is based on 100 L , a long position gains value when the 
LIBOR rate declines while a short position gains when LIBOR rises. Eurodollar 
futures contracts exist with many delivery dates going out many years. This makes 
them powerful tools for banks and large companies to manage their cash 
deposits.

You can also invest in futures contracts for government bonds such as German 
Bunds, British Gilts and US Treasury Notes among many others. These contracts 
all settle by delivering bonds rather than cash.

There are futures contracts for the different maturities of bonds so, for example, 
there’s a two-year Treasury Note future as well as a ten-year Treasury Note 
future. In effect, all of these contracts allow market participants to hedge or spec-
ulate in longer term interest rates.

Seeing into the Future
A key element of the futures market is that each asset has many contracts with 
different delivery dates. This variation allows participants to manage risk over 
different time horizons. An oil refinery that wants to fix its crude oil purchase 
prices for the year can do so by hedging using contracts throughout the 12-month 
calendar. On a shorter time scale, a large company may use Eurodollar futures to 
fix the interest it earns on a large sum of money deposited in a bank.
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Paying in cash now
The price paid for a commodity for immediate delivery is called the spot price or 
sometimes just the cash price. This pricing seems straightforward, but in practice 
the spot price is a bit more complicated than it seems. For one thing, most physi-
cal commodities can’t be delivered immediately. For example, you need ships to 
transport crude oil and pipelines to transport natural gas, and they’re not always 
immediately available.

For commodities such as crude oil, the spot price absolutely must be assessed by 
an independent agency such as Argus Media, Platts or ICIS Heren, that checks the 
integrity of the quoted cash prices. Both Platts and ICIS Heren are owned by major 
publishers (McGraw Hill and Relex, respectively). The role of all of these agencies 
is as trusted providers of information independent of the market participants. 
Physical traders of crude oil such as oil companies report their traded prices to 
these agencies who then compile a daily index reference price.

Metals have a strong connection between the spot price and the futures price 
because metals are easy to store – that’s one of the reasons for the popularity of 
gold as an investment commodity.

Even cash-settled contracts such as index futures have delivery subtleties. For 
financial futures, such as index futures, the underlying index is often referred to 
as the cash price of the index to distinguish it from the futures price.

Stock index futures are cash settled using the value of the index and a multiplier 
defined by the exchange.

For a futures contract to reflect the reality of the cash index, it must be possible to 
trade the shares representing the index at the contract’s expiry. This possibility 
doesn’t exist if you try to use the closing price of the index – because the exchange 
just closed – so most index futures are settled using a special intra-day auction. 
This auction is run by the stock exchange itself and often at a random time near 
to the close. The purpose of that is to prevent participants manipulating the index 
by making cash purchases or sales of stock to change the index in a way to favour 
their position in the futures market.

If the futures price of the stock index is higher than the cash price close to the 
delivery month, then it’s possible to make a profit by shorting the index future 
and buying the underlying shares of the index. This is called index arbitrage. 
Equally, if the futures price is lower than the cash price of the index, you can buy 
the index future and sell the constituent shares of the index.
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Connecting futures and spot prices
You can relate the spot price of a commodity to the future price using the time 
value of money I talk about in Chapter 4. If the futures price is F, the spot price is 
S, the rate of interest is r, current time is t and delivery month time is T, the equa-
tion looks like this:

F Ser T t

The constant e in the equation for the futures price is the base of the natural loga-
rithm. Its value is e = 2.718. . . The Cheat Sheet at www.dummies.com/cheatsheet/
quantitativefinance has more information on the natural logarithm and the 
exponential function.

The future price is higher than the spot price. This equation is slightly different 
from the one for time value of money because a futures price is on the left side of 
the equation and a cash price is on the right. It’s important that a futures contract 
can be delivered and the cash realised for this equation to hold.

The connection between the spot and futures price is made by arbitrage trades in 
which the same or similar assets are bought simultaneously to exploit price dif-
ferences. It is by making these trades that this equation becomes true.

Here is how arbitrage works:

If F is greater than Ser T t , then you take certain actions now and on the delivery 
date:

Now: You buy a gold bar for spot price S, taking a short position on gold futures.

At expiry: You deliver the gold bar and receive future price F for your gold.

On expiry, you receive the amount, F, and hand over the gold bar. The present 
value of the futures sale is Fe r T t  and so the condition for making a profit is that 
Fe Sr T t , which can be written as F Ser T t . This method is a sure way of 
making money. As people buy gold in the spot market, the price of gold rises. 
Eventually, the inequality becomes an equality and F Ser T t  .

However, if F is less than Ser T t , you have to do a different trade:

Now: You borrow a gold bar from a bank. You sell it for spot price, S, and invest the 
proceeds at a rate, r. You take a long positon on gold futures.

At expiry: Pay future price, F, and take delivery of your gold bar. Hand it over to the 
bank which lent you the gold at the start.

http://www.dummies.com/cheatsheet/quantitativefinance
http://www.dummies.com/cheatsheet/quantitativefinance
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You make a profit if Fe Sr T t . If this works, the spot price of gold declines as 
more sales of physical gold are made. Eventually, the equality F Se r T t  holds.

Accounting for convenience
This arbitrage trade is less straightforward than the first because you have to sell 
something you don’t own. In fact, to borrow gold from a bank you have to pay a 
fee, called the convenience yield, represented by y in the equation expressed as 
F Se r y T t .

The convenience yield exists because banks may not want to lend you a commod-
ity. This yield is a measure of the desirability or convenience of actually holding 
the physical commodity. If the convenience yield is high, then futures contracts 
are priced lower than the spot price, which happens if a shortage of the commod-
ity is evident. By contrast, if surpluses of a commodity exist, then the convenience 
yield is low and futures contracts are priced higher than the spot price.

Settling storage costs
The formula F Se r y T t  is still a bit inaccurate because it doesn’t account for 
the cost of storing a physical commodity. Grain elevators and oil storage tanks are 
expensive. If these costs, u, are expressed as a proportion of the spot price, your 
equation becomes F Se r u y T t .

Adding in dividends
A slightly different formula applies for an index future that has no storage costs, 
but pays dividends. If the dividend yield is q, the formula is F Se r q T t .

Checking trading volume
Although index futures are cash-settled contracts, extensive trading occurs in the 
underlying shares of an index at expiry as hedgers and speculators trade futures 
positions to guarantee a quick profit. Figure 6-2 shows the trading volume of the 
DAX index. Notice the monthly pattern of sharp peaks in trading volume. These 
peaks are caused by arbitrage activity at expiry of the DAX index futures contracts.

Looking along the forward curve
Futures contracts all have delivery dates, and for some commodities you have a 
choice of delivery date extending to beyond ten years in the future. This is an 
important feature because it allows businesses to use futures contracts for both 
short- and long-term planning.



CHAPTER 6  Trading Risk with Futures      111

Oil wells are expensive to develop, so normally oil companies borrow from banks 
to fund their development. The oil company can then use futures contracts to lock 
in the price of the produced oil not just for one month but potentially for many 
months or years into the future. The way these futures prices vary with the deliv-
ery date is a sensitive reflection of the state of the oil market.

Figure 6-3 plots the prices for Brent crude oil futures contracts through nearly 
two years. A graph like this one showing the price of a series of contracts with 
different maturities or delivery dates is called a forward curve.

FIGURE 6-2:  
Trading volume 

for the DAX. 
Source: Deutsche Borse

FIGURE 6-3:  
Forward curve 

for Brent Crude 
Futures 

(February 2015). 
Source: Intercontinental Exchange (ICE)
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The curve slopes upward with a difference of almost $10 between the March 2015 
contract and the March 2016 contract. The incentive for traders to buy crude oil 
now and sell in the futures market for a much higher price must be great. All they 
have to do is store the oil they buy now and deliver it when the futures contract 
comes up for expiry. This makes them a guaranteed profit of $10 a barrel if they 
buy in March 2015 and sell in March 2016. The only thing stopping this trade is the 
lack of available storage. This upward sloping shape is referred to as contango.

However, the oil market isn’t always in contango. This market is often in a state 
of backwardation, which happens when the front month price is higher than the 
price in the later months. Figure 6-4 shows backwardation in the price of West 
Texas Intermediate crude oil (WTI).

The market can switch from backwardation to contango and back again. Typically, 
backwardation happens in times of economic growth when immediate demand is 
great, and contango happens in times of stagnation.

Rolling a Position
You buy a futures contract with an delivery month far into the future. As time goes 
by, your delivery month becomes the front month and eventually your contract 
expires. But some investors don’t want their contracts to expire. They may not 
want to take or make delivery of a commodity, or they may want to maintain a 
position a constant distance into the future. For example, an investor may want to 
hedge a whole year’s production or consumption futures.

FIGURE 6-4:  
Forward Curve 
for WTI Crude 

Oil Futures  
( August 2013) 

© John Wiley & Sons, Ltd.
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To a speculator, a front month future is attractive. Refer to Figure 6-1 to see that 
both the open interest and the trading volume of the front-month contract exceeds 
that of all the other contracts. This liquidity means that the transaction charges 
are low for buying and selling the front month and allows the speculator to make 
the most of opportunities that come along.

Keeping a consistent position
To maintain a position a consistent distance into the future, you need to roll your 
contracts. Rolling means to successively sell (or buy) the front-month contract 
and buy (or sell) the next month contract as shown in Table 6-2:

The March 2015 contract is for physical delivery in March and ceases trading in 
February, so you want to sell this contract before the last trading day in February. 
If you’re a hedger and have long contracts for all the months from March 2015 to 
March 2016, then your roll involves selling March 2015 and buying April 2016.

Adjusting backwards
If market participants are maintaining a front month position – or any other posi-
tion for that matter – by rolling, then, in a sense, the front month is a new form 
of contract. But quantitative analysis of this new kind of contract isn’t easy because 
it consists of many segments of data pasted together from the different monthly 
contracts. Frequently, you can see jumps in the price from one contract to another. 
The solution to this problem is to use a process of back-adjustment, which pro-
duces a continuous data set for a front month, second month or whatever contract 
you wish by splicing together data from the different monthly contracts according 
to a schedule – normally just before the front month comes up for expiry.

If the March 2015 contract is at price, P, on your roll date just before expiry and 
the April 2015 contract is at price Q, then you simply add Q P  to all the March 
prices. So, on the roll date, your old front-month contract has the same price as 
your new front-month contract. Your front-month prices become continuous, 
and you can analyse trends or calculate volatility in a systematic way. Figure 6-5 
shows this process.

TABLE 6-2	 Maintaining a Position by Rolling
Month Futures to Sell Futures to Buy

February March 2015 April 2015

March April 2015 May 2015

April May 2015 June 2015
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Converging Futures to the Spot Price
All futures contracts have an expiry date at which time they’re settled in cash or 
delivered or received. It makes sense then that the futures price must converge 
towards the spot price as the expiry date gets closer. If that did not happen, there 
would be opportunities to make riskless profits by arbitrage.

Arbitrage is the process of taking advantage of the price difference between two 
similar markets – in this case, the spot and futures markets. If the spot price is 
high relative to the futures price as the expiry date of the futures approaches, 
holders of the commodity will sell it and go long on the future. When the future 
expires, these holders buy back the commodity for a lower price. If the spot price 
is low relative to the futures price, then speculators will buy the commodity in the 
cash market and sell futures contracts. On expiry, they deliver the commodity to 
their buyer for a higher price than they bought it.

Traders monitor prices as expiries approach by measuring the basis, which is the 
spot price minus the futures price, or Basis Spot price Futures price, which is a 
simple equation but useful nonetheless.

Figure 6-6 shows schematically how a futures price converges towards the spot 
price.

FIGURE 6-5:  
Adjusting futures 
prices to create a 

continuous 
front-month 

contract. 
© John Wiley & Sons, Ltd.
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If you’re using the futures contract to hedge the production or consumption of a 
commodity, monitoring the basis is crucial. It may be that you start to run out of 
crude oil sooner than you expected. If you then close out your hedge early and buy 
crude oil in the spot market, your hedge won’t work perfectly because the basis 
hasn’t converged to zero yet. This situation is called basis risk. Basis risk also hap-
pens because the futures contract doesn’t exactly match the asset you’re buying 
or selling.

The futures contract doesn’t have to converge to the spot price at expiry. This 
situation is unusual but happens if, for some reason, you cannot carry out the 
arbitrage trades that usually make the prices converge. For example, if the stock 
market crashes around expiry time and delays are imposed on trades, then con-
vergence between an index and the index futures price may not happen.

Using Futures Creatively
Futures contracts are useful for hedging the price of commodities, insuring stock 
market portfolios against crashes and protecting the interest rate of your deposit 
in a bank. But some less straightforward uses of futures are well worth knowing 
about. These uses are possible because of the many different futures contracts out 
there in the market and the creativity of the traders who use them.

FIGURE 6-6:  
Convergence of 

spot price to the 
futures price at 

expiry. 
© John Wiley & Sons, Ltd.
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Calendar spreads
A particularly popular futures trade is the calendar spread, which involves placing 
a long position at one expiry date and a short position at another. For assets such 
as interest rates and crude oil with expiry dates extending many years into the 
future, the calendar spread is an important form of trading.

Because a calendar spread involves short and long positions in equal measure, it 
doesn’t depend on the overall level of the market. A calendar spread is a bet on the 
price difference between contracts with different delivery dates. If every contract 
in the future goes down, for example, you lose money on your long position but 
gain an equal amount on your short position.

For a calendar spread position to change price, one of your contracts must change 
price more than the other. A few reasons for using calendar spreads are

»» You work in a large commodity trading organisation and have knowledge 
about shipments of a commodity. You’re fairly sure that supply will be 
disrupted in the short term but that the commodity won’t be in short supply in 
the future. You could go long on the front month future and short the second 
month. If your view is correct, then a short-term supply problem causes the 
front month price to increase without changing the second month price. In 
addition, if an unanticipated event occurs that changes both prices then your 
position isn’t affected.

»» You work in a hedge fund and want to maintain a long position in a futures 
contract that’s coming up for expiry. You roll the position by going short the 
current front month and buying the current second month. This action is 
equivalent to buying a calendar spread.

A hedge fund is an investment fund that uses riskier strategies than a mutual fund. 
Hedge fund managers normally require their investors to be accredited as having 
a high level of financial knowledge. The minimum investment is often quite large.

Commodity spreads
Futures contracts can be used to hedge commodity prices by producers or con-
sumers of commodities. Using futures contracts in this way allows them to fix 
their input costs or their output prices so as to make running their business less 
risky. Slightly more complex is to hedge both input costs and output prices. Doing 
so can be useful if your industry converts one commodity into another. A good 
example of this action is the crack spread, which is the price difference between 
crude oil and the gasoline and diesel products the former is refined into.
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In the following calculation I use prices from March 2015 Chicago Mercantile 
Exchange (CME) contracts, and assume the 321 crack spread, or that three barrels of 
crude oil is processed into two barrels of gasoline and a barrel of diesel:

3 51 37 154 11

2

 barrels of crude oil at  per barrel

 barre

$ . $ .

lls of gasoline  gallons at  per gallon

 ba

84 1 54 129 36

1

$ . $ .

rrrel of diesel  gallons at  per gallon

Crack

42 1 83 76 86$ . $ .

  spread $ . $ . $ . $ . .129 36 76 86 154 11 52 11

So you make a profit of $17.37 for each barrel of crude oil you process ($ .52 11 3 – 
the crack spread divided by the number of barrels). Liking this high level of profit-
ability, you could purchase three crude oil futures and sell two gasoline futures and 
one diesel future – all for April 2015. This activity would lock in high profitability 
for another month.

Seasonality in Futures Prices
The forward curves I explain in the ‘Looking along the forward curve’ section 
earlier in this chapter don’t all look like Figure 6-3. If the market is in backward-
ation, the curve slopes downwards rather than upwards. However, yet another 
possibility exists: The forward curve can be seasonal. In this case, the forward 
curve has a wave-like pattern corresponding to the seasons of the year. The cause 
of this is changes in supply or demand for the commodity underlying the future. 
Figure 6-7 shows a seasonal curve for natural gas, but as you may expect, many 
agricultural commodities have seasonal curves. Natural gas is seasonal because 
gas is used extensively for heating in homes and commercial premises. Demand is 
high in winter, so prices reach a peak in January or February.

FIGURE 6-7:  
Forward curve for 

UK natural gas 
futures. 

Source: Intercontinental Exchange (ICE)
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Because of the seasonality of the forward curve, the relationships that hold for a 
simple forward curve (see ‘Connecting futures and spot prices’ earlier in this 
chapter) no longer hold. The simpler equations have an exponential relationship 
between futures price and the expiry date T that can’t express a periodic relation-
ship like that for natural gas. To adapt the formula, you can use a seasonal pre-
mium s(T) which depends on the expiry month, indicated by T. Otherwise, the 
formula is the same:

F t T S t es T r u y T t, .
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Examine volatility, which is the key measure of the 
jumpiness of market prices.

Recognise the normal, or Gaussian distribution.

Build models using non-normal distributions.

Use principal components analysis (PCA) to analyse the 
prices of many assets together.
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IN THIS CHAPTER

Discovering the importance of 
volatility

Calculating volatility in various ways

Looking at more complicated models

Forecasting volatility with term 
structures

Reading the Market’s 
Mood: Volatility

Volatility is an important quantity in quantitative finance – it’s like the 
mood of the market. Long periods of calm can be followed by jittery mar-
kets with high volatility. This variation makes modelling volatility chal-

lenging and interesting. Volatility occurs naturally if you’re trying to model 
financial asset prices. It’s also closely connected with the idea of risk. Risk is often 
measured using variance (see Chapter 2 on probability and statistics), which is the 
square of the volatility. Because of that, volatility is often used to calculate the size 
of positions in financial trading so as to maintain a constant level of risk in a port-
folio. In addition, the price of derivative products such as options depends very 
much on the volatility of the underlying asset.

You can’t observe volatility in the market directly. You can only see market prices. 
You need to calculate volatility from a model, and in this chapter I tell you how to 
do this.

Chapter 7
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Defining Volatility
Volatility is a measure of how changeable market prices are. If prices frequently 
make large moves up and down, volatility is high. On the other hand, if the market 
is calm with only small price changes, volatility is low. But volatility itself is con-
stantly changing.

An indicates an asset with a price, A, on day n, which can be any integer, such as 
1, 2, 3 or higher. An is a good shorthand to use. You deal with lots of historical 
financial data, so you need a simple way of referring to specific days. The asset 
price on the previous day is then: An 1.

The return on day n is written Rn and defined by the formula:

R A A
An

n n

n

1

1
.

The numerator of the formula is the change in asset price from day n 1 to day n. 
Divide it by the price on day n 1 so that the return is a relative quantity. You can 
then use this formula to compare the returns for one asset with another because 
it doesn’t rely on the absolute value of the asset. If you multiply Rn by 100, you get 
the familiar percentage return used on many financial products.

Another common way to define returns in quantitative finance is to use 
natural logarithms. The online Cheat Sheet at www.dummies.com/cheatsheet/
quantitativefinance gives you a heads up on natural logarithms. They behave 
just like logarithms to base 10 except that they’re to base e where e = 2.718 . . . . 
Using such a strange number as the base of a logarithm may seem obtuse, but as 
the Cheat Sheet shows, it makes other properties of the natural logarithm a lot 
simpler than logarithms to base 10. With this new definition, I use Un to mean the 
return on the nth day:

U A
An

n

n
ln

1
.

An advantage of this definition is that if you add the return for M successive days, 
where M is an integer such as 5, the result is equal to the multi-day return (good 
to know):

U U U U A
AM
M

1 2 3
0

 ln .

This equation isn’t true for the other definition of return, Rn. On the other hand, 
U Rn nln 1 , so if Rn is small, nearly equal to Un. Plug numbers into your calcu-
lator for values such as 0.1 and 0.05 if you’re sceptical, and see for yourself!

http://www.dummies.com/cheatsheet/quantitativefinance
http://www.dummies.com/cheatsheet/quantitativefinance
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You can expand the natural logarithm of 1 + x using a Taylor expansion:

ln ...1 1
2 3 4

2 3 4

x x x x x .

By using just the first term in this expansion, you get the approximation that 
Rn = Un if the return is small because squared returns and higher powers of the 
returns are even smaller.

The returns of a financial asset can be considered a random variable. (See Chapter 2 
for more on random variables and distributions.) If the returns of financial assets 
were predictable, it would be possible to systematically make money from the 
markets. However, you can’t do so (or if you can, you’ve kept it a closely guarded 
secret). The statistical distribution of returns is often approximately a Gaussian 
distribution. The volatility of a financial asset is the standard deviation of the 
returns and is one of the parameters in the Gaussian distribution. Although the 
Gaussian distribution is a good approximation to financial returns, don’t forget 
that very large losses (and gains) occur much more frequently than predicted by 
this distribution. This is the phenomenon of fat tails.

A high value of the standard deviation (σ) means that the distribution is broad and 
that the asset price can be expected to rise and fall a lot. By contrast, a small stan-
dard deviation means that the distribution of returns is narrow and that the asset 
price doesn’t fluctuate much.

Financial returns are not stable, though. No single standard deviation describes 
the return distribution. That’s why the word volatility is used and not just standard 
deviation. Volatility varies with time. During periods of political uncertainty or 
economic troubles, volatility can become high.

Figure 7-1 shows a plot of the daily returns on the Hang Seng index (HSI) – the 
main indicator of the Hong Kong stock exchange – from 1990 until 2014. The 
graph shows major bursts of activity when the index had large returns – both 
positive and negative – in 1997 and also in 2008. These dates correspond with 
Hong Kong becoming a special administrative region within China in 1997 and the 
global financial crisis in 2008. The standard deviation of returns during both years 
was high compared to, say, 2005 when it was low. Bursts of activity like this inter-
spersed with periods of calm are typical of financial markets. The figure also 
shows the extent to which financial markets are connected with world events and 
that they can indeed be part of world events.
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Using Historical Data
One way to calculate the volatility of a financial asset is to use historical prices. 
Because the volatility is constantly changing, any calculation based on historical 
data is only an estimate of the current volatility. Calculating a standard deviation 
of the returns of all the available data normally isn’t adequate because it averages 
over periods of high and low market activity. In the following sections, I offer a 
variety of ways of calculating volatility.

Weighting the data equally
The simplest calculation of volatility to use is the standard deviation over M days 
of returns:

n n i
i

M

M
R2

1
2

1

1 .

In words, this formula says that the square of the volatility, σ, on day n is the 
average of the squared returns on the M previous days. You can choose to let M be 
much smaller than the total number of data points so that you can make a running 
chart of the volatility, such as the one shown in Figure 7-2.

FIGURE 7-1:  
Returns on the 

Hang Seng Index. 
© John Wiley & Sons, Ltd.
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Figure 7-2 uses the Hang Seng data presented in Figure 7-1 but only from 2007 
until 2011. I used M 64 so that the volatility is calculated from almost three 
months of historical data – the 64-day volatility in the figure. (Lest you be con-
fused about 64 days being equal to 3 months, the number of days the markets 
operate in three months is roughly 64 days.)

Figure 7-2 shows almost a fourfold increase in volatility from 2007 to 2010 and 
then a subsequent steady decline. The plateau in December 2008 is artificial and 
due to the way the volatility was calculated using data from the 64 previous days. 
So it includes the days with exceptional returns towards the end of October 2008. 
When those days drop out of the 64-day window, the volatility starts to decline.

Although this method of calculation shows clearly the rise and fall of volatility, 
the method isn’t as responsive as it could be to changes in market conditions.

Weighting returns
The volatility of a financial asset is constantly changing, and if you use the latest 
returns, M, to calculate it, you’ll be using some stale information. If you treat each 
of the M historic data points as equally important, data from M days ago have the 
same importance as data from today. You can avoid this by using the method of 
exponential smoothing, which is also called an exponentially weighted moving average 
(EWMA).

FIGURE 7-2:  
Comparing 

volatility 
calculations for 
the Hang Seng 

Index. 
© John Wiley & Sons, Ltd.
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In a weighted average, you don’t treat the numbers being averaged equally. Some 
are considered more important than others and get a higher weight. In the EWMA, 
recent returns get higher weight than the returns from a longer time ago. It intui-
tively makes sense that market participants pay more attention to recent history.

In this method, you calculate the square of the volatility on day n using a weighted 
average of the squared volatility on the previous day and the squared return on 
day n. You can choose the value of the weighting, λ, to be anything between 
0 and 1. Sometimes λ is called a smoothing parameter because by averaging over 
previous values of the squared returns, the EWMA smooths out jumps in the 
squared returns. If you choose a value close to 0, there is very little smoothing of 
the squared returns. On the other hand, a value close to 1 leads to lots of smooth-
ing and the EWMA can be used to see trends in volatility. Many market practitio-
ners use a value of 0.95. You can see a chart in which various values of λ have been 
used in Figure 7-3. Finally, the formula for volatility using exponential weighting 
is: n n nR

2
1

2 21 .

However, you don’t yet know the value for the volatility on day n 1 . To sort that 
out, you can write the formula again with n replaced by n 1. However, then you 
need to know the volatility on day n 2 and so on. You can keep on going further and 
further back (mathematicians call this iterating) and then the formula looks like:

n
i

n i
i

R2 1
1

2

1
1 .

Now you can see that the squared volatility on day n is a weighted average of all 
the historical squared returns. As you go further and further back in time, how-
ever (higher value of the index, i), the weighting gets smaller and smaller. That’s 
because λ is between 0 and 1 and if raised to the power i 1, it becomes smaller 
still. Your data set will never go back all the way to infinity, but don’t worry: 
because the terms get smaller and smaller, you can just set the return at the 
beginning of your data set to zero. That means you can always calculate the for-
mula. But to calculate the EWMA, always prefer the simple iterative calculation 
because the computation time is much shorter.

Figure 7-2 shows a plot of this volatility indicated as EWMA volatility. You can 
clearly see that after the financial crisis of 2008 the EWMA volatility drops quicker 
than the equally weighted 64-day volatility. In the EWMA calculation, I use the 
value λ = 0.98.

Exponential weighting is used to make a running, or day-by-day, calculation of 
the volatility (but you can use any time increment). A running calculation is, in 
effect, an update formula from the previous day’s value. The first few values you 
calculate will be inaccurate because at the beginning of your data you’re forced to 
use a return of zero. Sometimes this initial period with inaccurate values is called 
a warm-up phase, like a steam engine that takes time to work up to full power.
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Figure 7-3 shows the effect of different values of λ on the calculation of the EWMA 
volatility. For the lowest value of 0 875. , the EWMA volatility is more reactive to 
big market events, but the high volatility then dies away quickly.

Choosing the value of λ is probably more of an art than a science. In general, 
though, for longer-term models and forecasts use a value close to one so that it’s 
not too responsive to the most recent history.

If you use a small value of lambda in a period of low volatility, the exponential 
smoothing method will give you a low value for volatility because the formula only 
uses data from that period of low volatility. This value can be misleading. Chances 
are that there were periods of high volatility in the past and that there will be high 
volatility again in the future – don’t let anyone tell you otherwise! It’s good prac-
tice to check your value of volatility using a high value of lambda – something close 
to one – and use that number to limit how low your estimate of volatility can go.

Shrinking Time Using a Square Root
Price returns data can come in many different frequencies: daily, weekly, monthly 
or even hourly. If you calculate a volatility from this data and then want to make 
comparisons with the volatility of another asset, you must calculate both at the 

FIGURE 7-3:  
EWMA volatilities 

using different 
smoothing 

factors. 
© John Wiley & Sons, Ltd.
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same frequency. A common solution to this problem is to annualise the volatility 
by converting all asset returns to a yearly frequency. This conversion makes com-
parisons straightforward between the riskiness of different assets whether they’re 
stocks, bonds or commodities.

To calculate an annualised volatility, you need to know how many price returns 
there are every year for your price return data. A generally used assumption is that 
there are 250 trading days per year, so N 250. (Trading days are those days when 
an exchange or market is open. It excludes weekends and public holidays.) The 
annualised volatility is an estimate of the standard deviation of annual price returns. 
You can calculate the annualised volatility from daily volatility by assuming that 
the asset follows a random walk. (I explain random walks in Chapter 3.) The vari-
ance of an N-step walk increases with the number of steps, N, and therefore the 
standard deviation or volatility increases with N , so:

Annualised volatility 100 N %.

To annualise a volatility calculated from daily data, a good approximation is just 
to multiply by 16. And don’t forget to then multiply by 100 to express it as a per-
centage. Typical values are 10 per cent for long bonds and stock indices and 20 per 
cent for riskier stocks and commodities. The previous formula is quite general, 
and if you have volatility calculated from weekly data and you want to annualise 
it, you just multiply by the square root of 52 and then multiply by 100 to get a 
percentage.

Comparing Volatility Calculations
Calculating volatility from historical price data, as explained earlier in the section 
‘Using Historical Data’, isn’t the only way to find a value for volatility. You can use 
the price of an option, which is the right to buy or sell an asset in the future at a 
price agreed to in the present. (Chapter 5 talks more about options.)

Because the price of an option depends on a future unknown price for an underly-
ing asset, an increase in volatility tends to increase an option price because it 
becomes more probable that the option will hit the strike price – the price at which 
the option holder can buy or sell – on its delivery date and have some value (many 
options expire valueless). Higher volatility means larger price moves for the 
underlying asset of an option and increases the chance of hitting the strike price.
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The price of a call option can be written as C f r S K, , , , . This equation means 
that the price of a call option is a function of the risk-free interest rate, r; the 
underlying asset price, S; the time to expiry, τ; the option’s strike price, K; and the 
market volatility, σ. However, for every option you can find S and C from market 
data feeds and τ and K from the option specification. For r, you can use the central 
bank base rate or the yield on a short-term (three months, for example) govern-
ment bill. Using these known parameter values means that only σ is an unknown 
in the equation for C. In Chapter 10, I offer formulae for option prices to use as the 
function f, such as the solutions to the famous Black-Scholes equation. Here, I 
show you the results of using a few of these formulae.

To calculate σ from the formula C f r S K, , , , , you need to be consistent with 
the data that you put into the formula. The best way is to use annualised volatility 
and express τ in years. Similarly C, S and K should all be expressed in the same 
units and currency. The risk-free rate should be expressed as a decimal fraction. 
For example, use 0.03 for a 3 per cent rate.

For exchange-traded options, always check the contract specifications to find out 
the expiry date. Normally, this date is the third Friday of the expiry month.

To calculate the time to expiry, τ, use the formula Trading days until expiry
Trading days in the year

 so 

that τ is now in fractions of a year. Most exchanges have about 250 trading days 
per year. Good evidence is available that trading activity itself can create volatility 
in asset prices, so you’re better to calculate τ with this definition rather than with 
calendar days.

The chart in Figure 7-4 shows the results of some calculations for the implied 
volatility of the March 2015 Brent crude oil future. It shows that if you take data for 
a range of strike prices, the volatility is certainly not constant, which is a bit unset-
tling. The shape of the curve has been called the volatility smile. It may have been a 
joker in the City of London who thought that expression up, but it’s an important 
feature of option markets. The nickname reflects the fact that many analyses of 
option prices make simplifying assumptions about volatility. In particular, the 
assumption that the volatility is constant is mathematically convenient but not 
quite right. By fitting the Black-Scholes formula – C f r S K, , , ,  – to market 
data by adjusting σ, you violate one of the assumptions made to derive the formula 
for f. However, this choice is pragmatic. Making more realistic assumptions about 
volatility is possible but makes the mathematics of pricing options exceptionally 
complex.
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The smile shape probably results from the kurtotic returns from most financial 
markets.

Kurtosis is a measure of the fatness of the tails of a statistical returns distribution. 
If the kurtosis of a financial returns distribution is greater than that for a Gaussian 
distribution, then it is fat tailed. Then large price changes, both positive and nega-
tive, happen much more frequently than assumed in the Gaussian distribution.

Because of the fat-tailed nature of financial market returns, out-of-the-money 
options are more likely to become in-the-money options than is assumed in con-
stant volatility Black-Scholes. The high implied volatility corrects for this situa-
tion in the only possible way.

The plot of implied volatility against strike price doesn’t always look like the smile 
in Figure 7-4. That’s a pity, but in the equity market, the chart often has a negative 
skew with higher implied volatilities for low strike call options and lower implied 
volatilities for high strike options, as shown in Figure 7-5. The chart shows the 
implied volatility for the Royal Bank of Scotland (RBS). The Black-Scholes model 
under-prices in-the-money call options, so the implied volatility has to be higher 
at low strike prices. The reason may be that large falls in the equity market are 
often associated with rising volatility. If the underlying price of an in-the-money 
call option falls sharply back down towards the strike price, traders may not be too 
concerned because they anticipate an increase in volatility associated with the 
price fall and are happy to pay a slightly higher price for the option.

FIGURE 7-4:  
Implied volatility 

of March 2015 
Brent Crude 

Future on 19 
January 2015. 

Source: Intercontinental Exchange (ICE)
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However, you don’t just have to use call options to calculate implied volatility. You 
can use put options, too. The chart in Figure 7-6 shows this use for the FTSE 100 
Index. The markets smile has returned (sort of), but you can still see a sharp rise 
in implied volatility for out-of-the-money puts with low strike price.

Yet another way to plot a chart for implied volatility is to compute it for a range of 
different expiry months rather than strike prices. Figure 7-7 shows an example of 
this possibility using call option data for RBS.

The historical volatility on the same day was 28 per cent, so the implied volatility 
is slightly higher and seems to be declining slowly towards the historical 
volatility.

FIGURE 7-5:  
Volatility skew of 

an equity call 
option. 

Source: Intercontinental Exchange (ICE)

FIGURE 7-6:  
Implied volatility 
from June 2015 
FTSE 100 Index 

put options. 
Source: Intercontinental Exchange (ICE)
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Estimating Volatility by Statistical Means
Because volatility is so important for understanding the riskiness of assets, quan-
titative financial analysts, called quants, have worked out even better ways than 
using historical data to do the calculations. These methods are inevitably more 
complex, with more parameters, but they describe some quite subtle and impor-
tant effects.

The symmetric GARCH model
The GARCH model for volatility is one of the most successful, although it isn’t as 
easy to use as equally weighted or the exponentially weighted moving average 
model (EWMA). Think of the GARCH model as a slightly more complicated version 
of EWMA.

GARCH is an acronym of generalised autoregressive conditional heteroscedastic. Believe 
me, the model is simpler than its name. The academics who developed the model 
were probably trying to show off. In reverse order, the terms mean:

»» Heteroscedastic is just a big word to say that the variance of the returns isn’t 
constant. If it were, the model would be homoscedastic (or constant), but 
referring to Figure 7-1 shows that the volatility clusters into regions of high 
volatility.

FIGURE 7-7:  
Term structure of 
implied volatilities 

for RBS on 
20 January 2015. 

Source: Intercontinental Exchange (ICE)
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»» A probability is conditional if it depends on an event that’s already happened. 
GARCH is conditional because the volatility varies over time and depends on 
the previous squared returns. The model does, however, have an uncondi-
tional variance (squared volatility). You can use GARCH models to forecast 
volatility; these forecasts show that the volatility tends towards the uncondi-
tional volatility.

»» Autoregressive means that the volatility at a given time step is related to the 
volatility at the previous time step.

»» Generalised because there are more parameters than in simpler volatility 
models such as EWMA. More accurately, there is an ARCH model in which the 
volatility depends on a weighted average of the earlier squared returns but 
not on the earlier volatility. It isn’t good at modelling the volatility so I skip it 
and go straight to GARCH.

Many different variants of the GARCH model exist. However, especially for finance, 
the simplest models are the most effective, so I focus on the plain vanilla GARCH 
model, which is sometimes called GARCH(1,1) because, thankfully, it has only one 
parameter of each kind in it.

The equation has three constants: α, β and ω. The ω parameter behaves like a con-
stant volatility you expect in a homoscedastic model while the α and β parameters 
are a generalisation of the parameters in an exponentially weighted moving aver-
age model. The formula is:

n n nR2
1

2
1

2 .

This GARCH model becomes the EWMA volatility model if 0 and 1. It is 
indeed a generalised model. Sometimes the constant B is called the persistence 
because if it’s large, sharp rises in volatility take a long time to die down. The 
constant α is sometimes called the reaction because it determines how the volatil-
ity is affected by the latest return data.

The difficulty with GARCH is to figure out what the value of the parameters should 
be. You can do this calculation using the method of maximum likelihood. (I explain 
this method with more detail in Chapter 17.) Using the GARCH parameters α, β and 
ω, the likelihood for a dataset with N independent price returns, ri , and a proba-
bility density function of returns, P, is denoted by L and given by:

L P rn
n

N

, , ;
1

.

The formula produces the probability density function for each of the data points. 
Usually, the normal probability density function is used although you can make 
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good arguments for using functions that better model the fat tails of financial 
market returns. This alternative turns out to be a complex task, and so, in prac-
tice, you use the normal distribution.

The probability density for the normal distribution with standard deviation, σ, and 
a mean of 0 is given by:

P x e x, 1
2 2

22 2

.

Taking natural logarithms of the formula for L, it becomes:

ln L pn
n

N

1

with

p
r

n n
n

n

1
2

2
2

2ln .

You can then substitute the GARCH formula for n
2 together with its parameters α, 

β and ω. You can then find the maximum value of ln(L) by adjusting the GARCH 
parameters. To do this well, you need to use dedicated software or a programming 
language such as Python or R.

The GARCH model doesn’t account for asymmetry in markets because it involves 
only squared returns and so doesn’t distinguish between a market’s rises and 
falls. The plain vanilla GARCH model only picks up on changes in magnitude of 
price movements irrespective of their sign.

The leverage effect
In some markets there appears to be an asymmetry between upward and down-
ward price movements: After a sharp fall in an equity market, the volatility is 
higher than if there had been a sharp rise. The GARCH model doesn’t incorporate 
this effect. However, with a small modification, you can still use a GARCH model, 
but you need an extra parameter: n n nR2

1
2

1
2 .

The extra parameter, δ, makes fitting this equation more difficult than for plain 
vanilla GARCH.

A reason for the existence of leverage effects often given for equity markets is that 
after a sharp fall in share price, a stock becomes riskier as the proportion of debt 
to equity in the company rises. However, it may just be that investors get spooked 
by price falls and start trading more and generating volatility.
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Going Beyond Simple Volatility Models
Volatility is, perhaps, the most important concept in quantitative finance. Because 
of this, many advanced models for volatility exist, including the two in this sec-
tion. The thoughts behind these more advanced models are straightforward, but 
the maths isn’t, so the following sections contain mainly words.

Stochastic volatility
In the GARCH model, the conditional volatility depends on previous random price 
returns and volatilities. But there’s a more general possibility called a stochastic 
volatility model in which the volatility depends on an outside random variable.

Stochastic is a fancy word to mean a process that is non-deterministic, or ran-
dom. Generally stochastic is used for a time-dependent process that fluctuates 
due to a random external influence. The geometric Brownian motion I describe in 
Chapter 3 is an example of a stochastic process. But remember, in that model, 
that volatility is assumed to be constant.

Quants have tried to go beyond the limitations of a constant volatility model. By 
applying the Black-Scholes solution for call and put option prices to real market 
data, you find that the solutions fit the data only if you assume that the volatility 
depends both on the option strike price and the time to expiry. To get around these 
constraints, some quants use a much more complex model called the Heston 
model in which both the asset price, S, and the volatility, V, are assumed to be 
stochastic processes. It is the best known stochastic volatility model.

The Heston model has three equations and extra parameters:

»» dS S dt V Sdz: The first equation in the Heston model is very similar to 
the usual geometrical Brownian motion model for stock prices (see 
Chapter 3).

»» dV V dt V dW : This equation is for the volatility, V. It’s assumed 
to be mean-reverting to a value, θ, at a rate given by k. The symbol σ is now 
used as the volatility of the volatility.

»» dzdW dt : The symbols dz and dW represent the random variables that 
create the fluctuations in the asset price, S, and the volatility, V. They’re 
assumed to be connected by the third equation. The parameter ρ measures 
the strength of this connection.

Solving these equations is an exercise in advanced mathematics. It’s impressive 
that quants attempt to overcome the limitations of the Black-Scholes model.
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Regime switching
Volatility is a measure of the magnitude of the fluctuations in the price returns of 
a market. In the simplest approach, volatility is assumed to be constant. With the 
slightly more complex EWMA model, the volatility is slowly varying as explained 
in the earlier section, ‘Using Historical Data’.

Figure 7-8 shows the EWMA volatility calculated for the US natural gas spot price. 
(The spot price is the price to buy gas for delivery the next day.) The volatility itself 
is clearly volatile with frequent spikes during winter when shortages or fear of 
shortages emerge.

The spikes don’t appear every winter, and they don’t always appear during the 
same month. Sometimes prices spike in November and at other times in December 
or even February.

Models that take this kind of effect into account are called regime switching. A fast-
moving panicky winter regime and a calmer summer regime can be seen, but the 
market doesn’t switch between them in automatic fashion. The switching time is 
stochastic. In the winter regime, the EWMA model needs a smaller value of λ than 
in summer so that it can be more responsive to the rapid changes in supply and 
demand.

FIGURE 7-8:  
EWMA (λ = 16) 

volatility of 
United States 

natural gas 
market. 

Source: US Energy Information Administration
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Estimating Future Volatility 
with Term Structures

To forecast future volatility, you can use the GARCH model explained in the previ-
ous section ‘Estimating Volatility by Statistical Means’, but you can first try to use 
the EWMA to make a volatility forecast. Remember that the equation for the 
EWMA volatility is: n n nR1

2 2
1

21 .

I shifted the subscript from n to n 1  to make it clear that you want to use the 
equation to make a forecast for the next step. If you take the expectation of this 
equation, then you can use the formula E Rn n1

2
1

2 .

Calculating expectations of random variables such as financial returns is explained 
in Chapter 2. Because I’m not calculating numbers at the moment, I don’t need to 
specify the probability distribution of the financial returns.

The variance, or squared volatility, is just an expectation of the squared return. 
Substituting this into the EWMA volatility equation, you find that n n1

2 2 because 
the λ cancels from the equation, which means that the EWMA volatility has no 
power to forecast volatility. It just says that the best estimate for tomorrow’s 
volatility is today’s volatility. That probably isn’t a bad prediction, but isn’t par-
ticularly exciting. You also find that EWMA volatility is inconsistent with calcula-
tions of implied volatility which, even for short life options, indicate volatilities 
different from the historical volatility.

Going back to the GARCH model for volatility, n n nR1
2 2 2, and taking 

expectations, you get:

n n1
2 2.

This equation can be used to estimate the variance at time step n + 1 from the vari-
ance at time step n. If you write that n n1

2 2, then:

2

1
.

This value of σ2 is the long-term value of variance that GARCH estimates converge 
towards provided 1. You can also see here that ω must be greater than 
zero; otherwise you can’t take the square root to find the volatility.

For example, if 0 1. , 0 1.  and 0 7. , then the long-term or unconditional 
value of the variance is:

0 1
1 0 1 0 7

0 5.
. .

. .
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Starting at an initial value of 1
2 2, you can use the GARCH variance equation 

n n1
2 2 to calculate all the future values of the variance (squared vol-

atility). The forecast of the variance, unsurprisingly but interestingly, converges 
to the unconditional variance because as the time lag advances, the process “for-
gets” its conditioning (initial starting value).

The chart in Figure 7-9 shows that variance quickly declines down to the long-
term value of 0.5. The chart in Figure 7-7 shows a similar effect albeit calculated 
from implied volatilities. That curve has ups and downs because the points are 
calculated from real market data. In both cases, the volatility reverts back to its 
long-term value. This property by which the volatility returns to a long-run his-
torical value is called mean reversion. The same is also true of interest rates. You 
can find out more about this property in Chapter 3.

FIGURE 7-9:  
GARCH term 

structure showing 
convergence to 

long-term value. 
© John Wiley & Sons, Ltd.
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IN THIS CHAPTER

Discovering techniques to smooth 
out data

Working out probabilities of returns

Going beyond the normal distribution

Analysing All 
the Data

Data, mainly in the form of numbers, but also as text, is collected and 
analysed in huge quantities by banks, hedge funds, insurance companies 
and other financial organisations. Making sense of this data isn’t easy. 

There may be nuggets of gold, but you have to look hard for them. I show you 
some of the techniques available to help analyse all this data in this chapter.

These techniques can be useful if you want to develop trading strategies or find 
patterns in large data sets. They involve going beyond using just the normal 
(Gaussian) or Poisson distributions you can read about in Chapter 2. In real life, 
financial markets can deviate from these distributions. By building more accurate 
models of returns distributions you can manage risk better.

Data Smoothing
Price returns are almost random. They can be positive or negative with almost 
equal probability. Sometimes they’re large in magnitude; sometimes they’re 
small. No wonder that it can be hard to detect what’s really going on in financial 
markets.

Chapter 8
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To be able to see patterns or trends in financial data, it helps to smooth it, which 
you do by making use of averages so that the short term up and down movements 
in price are removed (averaged out) and longer term trends are revealed. Even for 
data such as trading volume in which trends and patterns are more obvious than 
with prices, it’s helpful to smooth out random fluctuations.

Random up and down fluctuations are sometimes called noise because the first 
people to investigate them were physicists interested in sound.

Smoothing doesn’t just allow you to figure out trends in the price but also to esti-
mate the underlying statistical distribution of your data. This is useful in financial 
trading and in understanding the risk involved in holding a particular portfolio of 
financial assets.

Putting data in bins
Calculating the average value and the standard deviation of your data is a good 
start in understanding it. Calculating the skew and kurtosis (which I explain in 
Chapter 2) of your distribution is a good idea. Although risk is closely connected 
with the standard deviation of returns, a high value of kurtosis (over five, say) is 
also undesirable because it means there’s an increased chance of large losses (and 
gains).

Knowing the distribution of your data can give you useful information. For exam-
ple, it gives you an immediate idea whether the normal distribution is a good 
distribution to use. By calculating the histogram of your data, you may find that 
it’s bimodal and has two peaks rather than the single peak of the normal distribu-
tion. This can be informative as it can be better to model financial returns as being 
governed by two distributions. You may have different distributions for summer 
and winter or for investment grade bonds and high-risk (junk) bonds.

Start with one-dimensional data, meaning that each piece of data is just a single 
number. The numbers can be any of many things: the time taken for a bond to 
default; the return on a stock index; the daily trading volume of a stock.

You work out the maximum value of all of your data and the minimum value. You 
then split this data range into bins. Each bin is a small range within the data 
range. You then count up how much of your data falls into each bin. Nothing could 
be simpler but it’s nonetheless a powerful technique.

The area under a probability distribution curve must add up to one. The x-axis 
represents all possible data values, and if you add up the probability of everything 
that can possibly happen the answer must be 1 because the probability of a certain 
event is one. It can be handy to create a histogram that does the same so that you 
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can compare it directly with probability distributions such as the normal 
distribution.

If you have N data points in total and ni data points in the ith bin, which has a 
width of Δj then you can assign the probability pi to the probability distribution at 
the bin’s location:

p n
Ni

i

i
.

Because the total number of points in all of the bins must equal the number of data 
points, N, if there are nb bins:

N ni
i

nb

1
.

The Greek letter sigma, Σ, indicates the sum of the quantities to the right of it. The 
lower index value i = 1 tells you where to start the sum, and the upper index value, 
nb, tells you where to end the sum. The formula shows that the total number of 
data points N is equal to the number of points in the first bin plus the number of 
points in the second bin and all the way up to the number of points in the nbth bin. 
There are nb bins altogether.

If you’re wondering where the equation for pi comes from, try rearranging the 
equation and then summing the index, i, over all the bins:

p
N

ni i
i

nb

i
i

nb1 1.

The right-hand side is equal to 1 because of the summation in the equations to 
find pi and N. But the left-hand side is the discrete version of the equation for the 
normalisation of a probability distribution function:

p x dx 1.

So the equation for pi correctly makes the link between the discrete world of bins 
and the continuous world of probability distribution functions.

You can unearth the probability distribution – or at least an estimate of it – using 
a histogram. A histogram represents data in graphic form. A histogram looks like a 
bar chart (see Figure 8-1). They’re usually used to show data that has a continuous 
range of values – such as financial returns. Most spreadsheets have helpful tools 
to build histograms.
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In the histogram in Figure 8-1, the vertical axis is the probability pi. I’m going to 
’fess up: I made up this data by using 50 random numbers. I did this so that you 
can see how good the histogram is at showing the underlying distribution of the 
data. The data ranges from −2.4 to 2.4, and in the figure I put it into bins of width 
0.2. Because there are only 50 data points, a lot of noise is in the histogram.

The main hump on the right doesn’t look smooth at all. But if you increase the 
width of the bins so that you have more data in each bin, you can smooth out the 
hump. The new chart is shown in Figure 8-2.

FIGURE 8-1:  
Histogram of a 

distribution with 
a too-narrow 

bin width. 
© John Wiley & Sons, Ltd.

FIGURE 8-2:  
Histogram of a 

distribution with 
a well-chosen 

bin width. 
© John Wiley & Sons, Ltd.
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If you go a step further and increase the bin width to 1.2, you get the histogram in 
Figure  8-3. The black line still shows the underlying distribution with its two 
peaks, but the lower peak in the histogram has disappeared. The width of the bins 
increased too much, and the detail in the distribution was lost. Therefore, you can 
conclude that the best result is obtained with an intermediate value of 0.6 for the 
width.

The sequence of histograms in Figures 8-1 to 8-3 shows a simple but effective way 
to determine the width of the bins in your histogram: too narrow and your histo-
gram is noisy with lots of little peaks; too wide and detail is smoothed over.

Smoothing data with kernels
Histograms are extremely useful for getting a quick visualisation of a statistical 
distribution, but they have limitations. For one thing, and especially with a low 
value of the bin width, the histogram never produces a curve that resembles the 
underlying distribution. Also, with larger bin widths, you get less spiky represen-
tations, but the width of the bins means that the estimate of the location of peaks 
in the underlying distribution isn’t accurate. A solution to this problem is to use 
kernels.

A kernel is a function, k(x), that can be used to estimate a smooth approximation 
to the probability density of a data set. Because the kernel is, in effect, used for 
counting the data in the bins for you, it must be positive and the area under the 
curve k(x) for the kernel must be equal to 1. These are exactly the same conditions 
as for a probability distribution function. In other words:

k x k x dx0 1.

FIGURE 8-3:  
Histogram of a 

distribution with 
wide bins. 

© John Wiley & Sons, Ltd.
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There are quite a few possible choices for the function k(x). A good choice is the 
normal distribution because it will pick out the data in a well-defined vicinity of its 
average value. You can estimate a probability density, p(x), using the equation:

p x
N

k x x
N

ei

i

N x x

i

N i

1 1 1
21

2

1

2

2 .

The normal distribution curve is hump-shaped with the width of the hump deter-
mined by the standard deviation, Δ. Beyond approximately three Δ from the mean 
of the normal distribution, the value of the kernel k(x) value falls almost to 0. Each 
normal distribution kernel is centred on the point x, and because of the humped 
shape of the normal distribution, the terms in the sum for p(x) will only have a 
value close to one if xi is in a region of approximately Δ from x. The formula for 
p(x) is a way of averaging the data in a region near x.

The value of Δ here plays exactly the same role as the width of the bins in the pre-
vious section ‘Putting data in bins’: it defines a region over which you’re taking an 
average of the data. The difference in using the kernel k(x) is that you can work 
out the probability density p(x) at any point, x, you wish using the formula and 
not just at the location of a bin. So, although using kernels is more complicated 
than using bins, it’s more useful.

If you choose x x j, then nj is the number of points in its vicinity and p(xj) becomes 
approximately:

p x
n
Nj

j .

This is the same equation as in the ‘Putting data in bins’ section, which shows 
that the kernel is doing the job of counting data points. To illustrate the use of 
kernels, I created a chart, shown in Figure 8-4, using that same data.

FIGURE 8-4:  
Kernel density 

estimation to a 
bimodal 

distribution. 
© John Wiley & Sons, Ltd.
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With a small value of Δ, the kernel density estimation is quite spiky. For a large 
delta value, the second peak in the distribution is lost. The intermediate value of 

0 4.  shows that the kernel density reproduces the bimodal pattern of the under-
lying data.

However, if you overlay the estimated probability density using 0 4.  with the 
actual probability density, you get the curves shown in Figure 8-5. This figure 
demonstrates that although the kernel density estimation is smooth and has two 
peaks, it’s quite spread out compared with the actual distribution.

With a larger data set, the estimated distribution is closer to the actual distribu-
tion. However, you can’t always obtain more data. The choice of kernel function, 
k(x), is also an influence on the result. For example, you can use the Epanechnikov 
kernel, kE(x), instead of the normal distribution:

k x x
E

3
4

1
2

2 .

The kernel kE(x) is zero for values beyond a distance Δ from x. Figure 8-6 shows a 
chart of the Epanechnikov kernel. Again, Δ plays the role of the width of the bins 
used to build histograms of data. Now, using the Epanechnikov kernel to estimate 
the distribution of the data, the estimated distribution turns out better than with 
a normal kernel as you can see in Figure 8-6 by comparing with Figure 8-5.

FIGURE 8-5:  
Comparing an 

estimated kernel 
distribution with 

the true 
distribution. 

© John Wiley & Sons, Ltd.
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The results from the Epanechnikov kernel show closer correspondence with the 
two humps of the distribution, but the estimated distribution isn’t as smooth as 
in Figure 8-5, which shows the normal kernel. The Epanechnikov kernel is opti-
mal in the sense that it accurately models smooth probability density distribu-
tions. Figure 8-7 shows a comparison of the normal and Epanechnikov kernels. 
The Epanechnikov kernel is more localised near 0 so is more likely to be able to 
model a peak in a probability density distribution well.

FIGURE 8-6:  
Density  

estimation with 
Epanechnikov 

kernel. 
© John Wiley & Sons, Ltd.

FIGURE 8-7:  
Comparing the 

normal and 
Epanechnikov 

kernels. 
© John Wiley & Sons, Ltd.
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Using moving averages as filters
A moving average is an average calculated using only the latest values of a time 
series and not the whole of the time series. As more data become available, you 
can update the value of your moving average and so its value changes with time. 
This makes moving averages well adapted to financial time series such as prices, 
which are constantly fluctuating.

A time series is data such as stock or bond prices that’s updated on a regular basis. 
The data consists of lots of numbers, with each number associated with a different 
time.

Normally, the data is updated on a regular basis, be it hourly, daily, weekly or 
some other frequency. However, some time series are not updated regularly. For 
example, with individual trades on a stock exchange there can be quiet periods of 
the day (lunchtime?) when the time between trades is longer than the busy peri-
ods at the beginning and end of the trading day. These time series are harder to 
analyse as the time between trades is additional data, which makes them like two 
time series rolled into one.

A nice feature of moving averages is that you can update them as more data 
becomes available without redoing the complete recalculation of the moving aver-
age. This makes them fast and easy to use and is one of the reasons for their popu-
larity. Moving averages provide information that you can use to take immediate 
action rather than waiting for an analysis of a complete data set. They’re used 
extensively in financial trading and come in at least two distinct types:

»» Simple moving average, or SMA

»» Exponentially weight moving average, or EWMA (head to Chapter 7 for a 
complete discussion of EWMA)

If you calculate a simple moving average with the latest n data points, you call it 
SMA(n).

You choose the value of n depending on how rapidly you think your data is chang-
ing. If the data is jittery, you may have a low value with n 5 while if it’s varying 
slowly then you could choose n 100. Every time a new data point in the series 
arrives, you shift the block of numbers that you average forward so that it always 
includes the latest value. Assuming that you have a price series, Pi, with N values, 
the formula for the SMA(n) is:

SMA n
n

PN i
i

n1
1

1
.

The SMA is simple, but it’s effective. By averaging the latest values of a price 
series, the short term up and down fluctuations in the time series are removed. 
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You can think of the SMA as a filter because it removes these short-term fluctua-
tions. The purpose is to give you an idea of the direction that the time series is 
heading in independent of the fluctuations present in the data. The SMA is good at 
uncovering signal in time series data, which is unexpected for something so, well, 
simple.

The short-term fluctuations in price I talk about in this section are sometimes 
called noise. With speech, noise is unhelpful and masks what someone is saying. 
With a financial time series, the noise masks the signal or trend in the data.

An alternative to the simple moving average is the exponentially weighted moving 
average (EWMA). Chapter  7 demonstrates how to calculate an EWMA using a 
weighted average of the most recent time series value and the previous EWMA 
value. You can use an EWMA directly on price data as well, although it detects 
trends the same way as with an SMA. The advantage of the EWMA is that it 
responds better to changes in trend in the time series because of its extra weight-
ing on recent data values.

A new possibility arises now for both the SMA and EWMA. You can calculate two 
moving averages with different periods and then compare them by subtraction. 
This situation is often called a moving average crossover. The purpose of this calcu-
lation is to detect changes in the trend of the data. The point where the two mov-
ing averages cross over each other can be identified as a change in trend and is 
often called a signal by traders because it indicates that it may be a good time to 
buy or sell the financial asset whose price you’re tracking.

Figure 8-8 shows an example that charts the recent history of the price of West 
Texas Intermediate (WTI), a frequently traded grade of US crude oil, along with 
two SMAs.

FIGURE 8-8:  
WTI Crude oil 

price with two 
simple moving 

averages. 
Source: Energy Information Administration
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The chart in Figure 8-8 shows that the SMAs effectively smooth out the noise in 
the WTI price with the SMA(80) curve being smoother than the SMA(20) curve 
because of the averaging over more data points. In periods of strong price uptrends, 
the short-term simple moving average SMA(20) is above the long-term average 
SMA(80). In periods of strong downtrends, such as late 2014, SMA(20) is signifi-
cantly beneath SMA(80).

The usefulness of moving average crossovers is as trading signals. You can use 
them to identify periods of rising or falling asset prices. Traders can then take a 
long or short position on the asset.

You can also use the EWMA to build crossovers and, to some extent, whether you 
use that to smooth the data or the SMA is a case of trader preference.

Estimating More Distributions
This section looks a bit deeper into probability distributions. You discover how to 
generate random numbers that have some of the real-life features of financial 
returns such as positive kurtosis. These numbers are useful for testing out other 
models that need realistic data.

Kurtosis is a measure of how likely high losses or gains are for a financial returns 
distribution. If kurtosis is positive, then high losses or gains are more likely than 
for the normal distribution. Distributions with positive kurtosis are often called 
fat tailed. The tails of a distribution are the edges, a long way from the average 
values. Chapter 2 is the place to go to see the mathematical definition of kurtosis 
and more explanation of statistical distributions.

Mixing Gaussian distributions
The Gaussian mixture is a way to create models of financial returns with positive 
kurtosis. The fat tails associated with positive kurtosis are a key feature of finan-
cial markets, so it’s useful to create numbers with this property.

The Gaussian mixture is what it says it is: a mixture of Gaussian distributions, but 
you need to be careful in the way you generate them. By mixing Gaussian distribu-
tions, you can come up with a distribution much more like a real financial returns 
distribution with positive kurtosis. With realistic simulated data, you can test out 
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how well a portfolio or trading strategy might work in the future. (Chapter 3 talks 
about generating random numbers, so you may wish to check there.)

Use this process to mix your distributions:

1.	 Select the parameters for your Gaussians σ1, μ1 , σ2 , μ2 and the mix-
ture ratio r.

There will be r of Gaussian 1 and (1–r) of Gaussian 2 in the mixture.

2.	 Generate a uniform random number between 0 and 1.

If the number is less than r, generate a number from a Gaussian distribu-
tion with parameters σ1 and μ1.

If the number is greater than r, generate a number from a Gaussian 
distribution with parameters σ2 and μ2.

3.	 Repeat Step 2 as many times as you’d like random samples from a 
Gaussian mixture.

You can see the result of generating numbers according to this scheme in the sec-
tion ‘Putting your data in bins’ earlier in the chapter. The distribution there had 

1 0 5. , 1 1, 2 0 5. , 2 1 and r 0 75. . Refer to Figure 8-1 and note that the 
two humps in the distribution are due to the fact that one of the normal distribu-
tions in the mixture has a negative average and the other has a positive average. 
The heights of the humps are different because the 75 per cent of the data points 
are for the normal distribution with a positive average.

The probability density function for the Gaussian mixture P is written as a 
weighted sum of the probability density functions ϕ for the constituent Gaussian 
distributions:

P x r x r x; , ; ,1 1 2 21 .

Going beyond one dimension
Most of equations in this chapter use one-dimensional data, which means that 
only one piece of data exists for every time step. But, if you want to know the 
probability for two asset returns together, you need to build a two-dimensional 
distribution.

Instead of splitting a line into segments of width, Δ, and counting how many data 
points are in each bin, you need to split a plane into squares and work out how 
many data points lie in each square.
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This process can be time consuming, but it’s still possible in two dimensions 
especially if you use the kernel methods from the earlier section ‘Smoothing data 
with kernels’. Going beyond two dimensions becomes rather difficult.

In one dimension, if your return data has a maximum value L and a minimum 
value −L when you create bins of width Δ, there are 2L  of them. In two dimen-

sions, you need 2 2L  square bins to cover the area where your data lies. (In three 

dimensions, you need 2 3L  cubic bins.) The amount of data required to fill these 

bins and get a good estimate of the density distribution soon becomes prohibitive. 
So, in practice, you cannot use the histogram method I describe in this chapter for 
more than one or two-dimensional data. However, the kernel method is more 
powerful and you can try it for higher dimensional data.

Modelling Non-Normal Returns
In this section I show you a powerful technique called expectation-maximisation, 
or EM for short, that you can use to fit a Gaussian mixture model to financial 
returns data.

If financial returns are normal, their parameters are the mean and the standard 
deviation. But two random processes may determine an asset’s returns with differ-
ent means and standard deviations. The magic of EM is to resolve what these dif-
ferent averages and standard deviations are. In a way, EM is a generalisation of the 
usual formula to calculate the average and standard deviation of a distribution.

A parameter is a measurable quantity that defines the behaviour of a system.  
A parameter is usually constant. In the normal distribution, the mean and the 
standard deviation are parameters. By contrast, a variable is a changeable quantity 
often determined during a measurement. For example, time is often a variable.

The earlier section ‘Smoothing data with kernels’ shows how to fit a probability 
distribution with a general kernel smoothing function. Although the kernel has 
width, you have no mathematically simple function with its own parameters that 
you can fit the density distribution to. This kind of statistics is often called non-
parametric statistics. You can now impress your colleagues at those cocktail parties.

Testing and visualising non-normality
A simple way to test for normality is to take the standardised returns from your 
distribution, plot the distribution using the method in the earlier ‘Putting data in 
bins’ section and compare it with the theoretical curve for the normal distribution.



152      PART 3  Investigating and Describing Market Behaviour

You can test your data sample for normality by calculating the skew and kurtosis. 
The skew is a measure of how lopsided the returns distribution is whilst the kur-
tosis is a measure of how fat tailed the distribution is. For a normal distribution the 
skew and kurtosis should both be zero, but for real financial returns distributions 
they aren’t. (I talk in depth about skew and kurtosis in Chapter 2.)

The standard deviation of these fluctuations in kurtosis is 24
N

 where N is the 

number of data samples. Likewise, the standard deviation in the fluctuations of 

the skew is 6
N

. What this means is that if the value of kurtosis that you calculate 

for your data is greater than three times the standard deviation of the kurtosis 
fluctuations, it’s highly unlikely to have happened by chance. You can then say 
that the data isn’t normal.

Another way to investigate whether your data is normal is to use the cumulative 
distribution rather than the probability density distribution itself. The cumulative 
distribution, P(z), is the probability that your data has a value in the interval from –∞ 
to z. You calculate it from the probability density p(x) using the formula:

P z p x dx
z

.

The cumulative distribution can give more reliable answers because it’s a bit like 
taking an average, and so it’s less liable to be influenced by random fluctuations 
in the data.

To create a cumulative distribution, follow these steps:

1.	 Create z values, which are simply standardised data.

To standardise data, calculate the average and the standard deviation, then 
subtract the average value from every data point and divide by the standard 
deviation.

2.	 Order your data from smallest to largest.

Number the smallest j 1, the next smallest j 2, all the way up to the 
largest j N.

3.	 From the index j calculate the probability p j
N

 that your data has a 
value less than the z value of the jth data point.

By transforming your data, you can compare it with the cumulative normal distri-
bution. Take the z value from your data and read off the probability that data is 
less than this value from your calculated table. Using the inverse cumulative nor-
mal distribution, you can use this same probability and calculate the value of z 
that would apply for a normal distribution. If, for example, your empirical data is 
kurtotic, there should be more data values less than a given small value of p than 
you’d find from a normal distribution.
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The best way to show this situation is by a chart called the QQ plot. The Qs stand 
for quantile. Quantiles occur when you split an ordered data set into q equal parts. 
The values separating the parts are the quantiles. For example, the median is a 
quantile. It’s the value of a data set with equal numbers of data values above and 
below it. For normally distributed data, the mean is close to the average value, but 
if the data isn’t normal, then it may differ considerably. In an ordered data set, 
you can regard each data point as an equal part of the sample. For a given value of 
za such that a fraction p of the data has a value of z less than za, compute za for 
both the cumulative normal distribution and the financial returns data. You need 
to use the inverse normal cumulative distribution to calculate the z values corre-
sponding to the probabilities in your ordered table of data.

A sample QQ plot is shown in Figure 8-9. The solid black line shows where a nor-
mal distribution would lie on the chart. The other two series are for a small oil 
company (IGAS) and an integrated major oil company (BP). The increased depar-
ture away from the normal distribution line indicates that the data for the smaller 
company has a higher kurtosis.

Maximising expectations
If your distribution isn’t normal, it’s still nice to have a simple quantitative model 
of it. Building a histogram, which I talk about in the first section of this chapter, 
is a good start but may not be practical in subsequent calculations with the distri-
bution. A formula is handy to have if you have more calculations to do. A good way 
to estimate a formula for your distribution is to assume that the underlying dis-
tribution is a mixture of Gaussian distributions.

FIGURE 8-9:  
QQ plot for 

IGAS and BP. 
© John Wiley & Sons, Ltd.
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In the earlier section ‘Mixing Gaussian distributions’, I show you how to generate 
random numbers from a Gaussian mixture. This process is something different – 
in fact, you go backwards! Taking real-life financial returns data, you can figure 
out the parameters of a Gaussian mixture that best fits the data. These parameters 
include the standard deviation, the mean and percentage weight given to each 
distribution. The algorithm to do this is called Expectation Maximisation (EM), 
which consists of two stages which are simply called E and M.

An algorithm is a well-defined sequence of steps for coming up with an answer to 
a mathematical problem.

To keep things simple, I only consider a single return time series. The starting 
point of the technique is the probability P(x) used in the earlier section ‘Mixing 
Gaussian distributions’. I write the equation more generally assuming that there 
are K Gaussian distributions in the mixture, each with weight rk, average μk and 
standard deviation σk:

P x r x rk k k
k

K

k
k

K

; ,
1 1

1.

The equation for rk ensures that at every time step the probability of actually hav-
ing a data point is equal to 1. Another way to see this is to integrate the equation 
for P(x) over all values of the returns x. The answer is equal to one because P is a 
probability density. But all the individual Gaussian distributions in the mixture 
are also probability densities, so the right side is the sum over the rk, which takes 
you to the second equation.

In fact, EM is a neat way of maximising the likelihood function, which I explain in 
Chapter 17. The likelihood function is:

L P xn
n

N

1

.

In this section I use the natural logarithm a lot. It’s written simply as ln and has 
very similar properties to the usual logarithm to base ten. The online Cheat Sheet 
at www.dummies.com has more details.

Using the property that the logarithm of a product is the sum of the logarithms, 
the equation becomes:

ln ln ; ,L r xk n k k
k

K

n

N

11
.

This equation is often just referred to as the log likelihood. To maximise the log 
likelihood, you must now do some calculus and differentiate this equation with 
respect to the parameters μk and σk and set the resulting equations to zero. 

http://www.dummies.com


CHAPTER 8  Analysing All the Data      155

Remember that you’re trying to find the values of μ and σ that maximise the natu-
ral logarithm of the likelihood, ln L so xn isn’t differentiated.

To find the maximum value of a function, f(a), with respect to a, differentiate the 
equation with respect to a and set the resulting equation to zero. When you then 
solve that equation for a, you find the location of the maximum value. The maxi-
mum value of a function is the point where the function turns horizontal and 
changes from going up in value to going down in value. The slope of the function 
is therefore zero at the maximum and located by where the first derivative is zero. 
You may also find a minimum value by this process because it also has zero slope. 
To tell the difference, you need to calculate the second derivative at the turning 
point. A maximum value has a negative second derivative while a minimum value 
has a positive second derivative.

So, differentiating with respect to μk:

r x

r x
xk n k k

j n j jj

K n k k
n

N ; ,

; ,
1

1

1
0.

To stop the algebra getting messy, I introduce another function, g, which I define as:

g x
r x

r x
n k k

k n k k

j n j jj

K; ,
; ,

; ,
1

.

Using this new function, you can rewrite the first equation as:

g x xn k k n k
n

N

; ,
1

0.

With one more definition:

N g xk n k k
n

N

; ,
1

,

you can now write an equation for the mean of the kth Gaussian distribution as:

k
k

n k k
n

N

nN
g x x1

1
; , .

Similar calculations after differentiating with respect to σk gives you:

k
k

n k k n k
n

N

N
g x x2 2

1

1 ; , .

The nice thing about these equations is that the mean and standard deviation of 
the components of the Gaussian mixture have the same form as the usual equa-
tions for a mean and standard deviation. The difference is that here the sums are 
weighted by the function g.
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The function g depends on the data point xn, and the mean and standard deviation 
of the kth Gaussian in the mixture. It takes the form of a probability divided by the 
sum of all of those probabilities in the denominator.

You may have guessed that g itself is a probability. It can be interpreted as, given 
the data xn, the probability that the Gaussian distribution k is responsible for the 
data point xn. This statement sounds strange, but if you go back to the ‘Mixing 
Gaussian distributions’ section, each data point is generated by a random choice 
between two Gaussians with a ratio of r in one Gaussian and 1 r  in the other. 
Now, though, you’re trying to figure out how the mixture was created after the 
event, and g is your best guess of which Gaussian distribution was used to create 
the data point xn. Mathematicians call this situation a posterior probability.

A good way to think about the Gaussian mixture is that it has an extra random 
variable, z. The value of z determines which of the K Gaussian distributions was 
used to create the data point xn. Because you can’t tell the value of z by looking at 
the data, it’s called a hidden or latent variable. Its probable value is inferred from 
the data.

Maths can be a bit confusing sometimes. I use capital K to indicate how many 
Gaussian functions are in my mixture. I use lowercase k to indicate a specific 
Gaussian function. For example, μ with a subscript k indicates the average value 
of the kth Gaussian in the mixture.

You use the Bayes’ theorem to explain a bit more about g. Write the probability of 
k, given that x has happened, as P(k|x). Bayes’ theorem then says that:

P k x
P x k P k

P x
.

P(x) can be broken down into a sum depending on the Gaussian k so that:

P k x
P x k P k

P x k P k
j

K

1

.

But P(k) is just the probability of the kth Gaussian in the mixture and so rk. P(x|k) 
is the probability of x given that Gaussian k generated that point so:

P k x x k k; , .

Now you can see that P(k|x) is the function g x k k; , . Sometimes the probabil-
ity rk is called the prior probability of k because it’s the probability you would apply 
if you were generating the data yourself.

The final equation you need for EM is the one for the probabilities rk. You can 
do this calculation mathematically using calculus, but given some of the 
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interpretation you now have of g, you can see intuitively what the answer must be. 
If you go back to the equation for Nk, you see it’s a sum over all the functions g. 
Therefore, this equation is the best estimate you have of how many of the data 
points were generated by the Gaussian k. Given that you have N data points in 
total, it follows that the best estimate of rk is:

r N
Nk
k .

You now have all three equations for the parameters of the Gaussian mixture. But 
you have a snag to deal with. The equations for μk, σk and rk all contain those same 
parameters on the right-hand side of the equation because the function g depends 
on those parameters. So you can’t just work out the parameters from those equa-
tions. It looks as though you have to do some heavy maths to solve them, but in 
fact you don’t. The EM algorithm allows you to work out μk, σk and rk iteratively by 
first guessing some values and then successively improving them.

The beauty of EM (expectation maximisation) is that the iterations always improve 
the estimates, so EM is a powerful and simple technique to use. Here’s how in five 
steps:

1.	 Guess the initial values for μk ,σk and rk.

2.	 Calculate the log likelihood.

This is the expectation, or E, step. Use the values from Step 1.

3.	 Compute g x k k; ,  for all the data points xn.

4.	 For the M, or maximisation, step, improve your values for the parameters 
using the equations:

k
k

n k k
n

N

n

k
k

n k k n k

N
g x x

N
g x x

new

new

1

1
1

2

; ,

; ,
2

1n

N

k
kr

N
N

new

Remember that N g xk n k k
n

N

; ,
1

.

5.	 Calculate the log likelihood function again.

If the log likelihood has converged to a value close to the one you previously 
calculated, then stop. Otherwise, go back to Step 2 using your improved values 
for the parameters.
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Figure 8-10 shows the log likelihood as a continuous black line. After almost 30 
iterations, the curve levels out and the log likelihood is at its maximum. The two 
dashed lines show the convergence of the values for the standard deviations of the 
two normal distributions towards their value of 0.5. The chart has two y axes with 
the values for likelihood shown on the right-hand axis and the values for the 
standard deviations on the left-hand axis.

Figure 8-11 shows the convergence of the values for the averages to their values 
of +1 and –1 and the mixture ratio to its value of 0.25.

FIGURE 8-10:  
Convergence of 

the log likelihood 
for the EM 
algorithm. 

© John Wiley & Sons, Ltd.

FIGURE 8-11:  
Convergence of 

mixture ratio for 
the EM algorithm. 

© John Wiley & Sons, Ltd.
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IN THIS CHAPTER

Putting data on a reducing diet

Understanding principal components 
analysis (PCA)

Modelling using PCA

Analysing Data 
Matrices: Principal 
Components

Principal components analysis, or PCA for short, is a powerful mathematical 
technique for analysing large data sets. Think of historical price data on a 
large portfolio of stocks, bonds or other financial assets. With PCA you can 

figure out which linear combinations of prices explain as much as possible about 
your data set. These combinations are called principal components. You can then use 
these principal component values to visualise your data. That’s not possible with 
the raw data because of the large numbers. But typically only a few principal com-
ponents are needed to accurately model your data. This reduction in the complex-
ity of your data set is useful because you can then quickly do further calculations 
such as working out how risky your portfolio is.

PCA is especially useful if you’re getting duplicate information in different parts 
of a large dataset. Historical prices from one asset may be telling a similar story to 
historical prices from another asset. Bond yields of 20-year maturity may follow 
closely those for 30-year maturity. In these situations other statistical techniques 
such as linear regression can fail because they’re confused between the similar 
asset prices or yields. In contrast PCA gives you a few combinations of prices or 
yields that explain the majority of your data.

Chapter 9
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Reducing the Amount of Data
Numbers – and lots of them – are the lifeblood of quantitative finance. Sometimes 
this fact can be a problem: the overabundance of numbers can prevent you from 
understanding what they mean. You end up not seeing the wood for the trees. 
Often financial data is set out as a table or a data matrix. Each row of the matrix 
may have the price of many assets on a given day. Therefore, for a large portfolio, 
you can have hundreds of columns.

Spreadsheets are perhaps the most common way of analysing this kind of data. 
But they’re by no means the best way. The computer languages R and Python both 
have dedicated ways to handle data matrices which they call data frames. They’re 
well suited to this job because both languages have built-in tools that make han-
dling data in this form easy. These tools include standard operations such as 
importing data from other sources such as databases or text files, sorting data into 
alphabetical or numerical order and joining data matrices together.

Table 9-1 shows a snapshot of a data matrix containing the share prices for some 
of the stocks from the Dow Jones Industrial Average (DJIA) Index. I downloaded 
the data from Yahoo Finance, which is one of the best sources for free stock-
market data. The first row identifies the stocks whose prices are contained in the 
given column. Stock exchanges are brief when it comes to naming stocks so that 
traders can place orders quickly. Short ticker codes also help when you’re search-
ing databases or displaying data. In this example, the ticker codes are AXP for 
American Express, BA for Boeing Company, CAT for Caterpillar Inc., CSCO for 
Cisco Systems Inc. and CVX for Chevron Corporation. The first column shows the 
dates for the share prices, which are normally in chronological order.

TABLE 9-1	 Date Matrix with DJIA Numbers
AXP BA CAT CSCO CVX

04/01/2010 38.11 50.65 52.47 22.53 68.01

05/01/2010 38.02 52.31 53.1 22.43 68.49

06/01/2010 38.64 53.9 53.26 22.29 68.5

07/01/2010 39.27 56.08 53.48 22.39 68.24

08/01/2010 39.24 55.54 54.08 22.51 68.36

11/01/2010 38.79 54.88 57.47 22.44 69.57

12/01/2010 39.3 54.48 55.78 22.09 69.17
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AXP BA CAT CSCO CVX

13/01/2010 39.42 55.14 55.86 22.49 68.65

14/01/2010 39.92 55.5 55.55 22.77 68.43

15/01/2010 39.65 54.83 54.25 22.27 68.15

19/01/2010 40.18 54.68 54.98 22.68 68.54

20/01/2010 40.2 54.27 53.92 22.28 67.23

21/01/2010 39.43 53.37 51.3 21.88 65.58

The data shown in Table 9-1 is only a corner of a larger matrix with the prices for 
all 30 stocks in the DJIA Index and for dates going all the way up to the present 
day. (I know you’re glad I didn’t fill this book with all those numbers.) Although 
large enough that it won’t fit onto the page of this book, this data matrix is com-
paratively small. My computer says that the file containing the whole table is 
300 kilobytes in size. Financial institutions are used to dealing with data in giga-
bytes or more. That’s because they’re concerned with far more than 30 assets and 
may be looking at prices as they fluctuate throughout the day.

The quantity of data is measured in bytes. One byte is sufficient to store a 
character such as a. A thousand bytes is called a kilobyte (often abbreviated to kB, 
at least on my computer); a million bytes is a megabyte (MB); a billion bytes a 
gigabyte (GB).

As a first step in understanding the properties of a large amount of data, such as 
the sample in Figure 9-1, you can calculate summary statistics for each of the 
columns. The summary statistics are numbers that describe the columns of a data 
matrix as a statistical distribution. (Chapter 2 explains statistical distributions.) 
These statistics are calculated from the entire time series in each column and are 
a compact way of saying something useful about the data for each of the stocks.

A time series is a range of data values at different points in time such as stock 
prices on every trading day of the year. Each column of the Dow Jones data matrix 
is a time series. Before you calculate the summary statistics, you need to trans-
form the prices into returns.

Prices are important, of course, but anyone holding a financial asset is looking for 
a return. To calculate this, divide the price change between today and yesterday by 
the price yesterday. In maths this is r p p pn n n n1 1/  in which rn is the return 
on day n and pn is the price on day n. I’m assuming that you have price data for 
many days and the index n indicates which one. Using returns is important 
because it allows you to compare one asset with another on the same scale.
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Price returns also have statistical properties that are much more stable than prices 
over time and that, on average, are close to zero. This stability over time is called 
stationarity. It doesn’t mean that the returns don’t change. It means that the sum-
mary statistics don’t change. In contrast, prices meander similar to the geometric 
Brownian motion I describe in Chapter 3 and so are much harder to measure.

Figure 9-1 shows a chart of the annualised volatility of the stocks that make up 
the DJIA Index.

The volatility is the standard deviation of the returns of a financial asset such as a 
stock. Often it’s calculated using daily price data but then annualised so that you 
can compare the number with the annualised volatility of other assets. Chapter 7 
gives more detail on how to do this. If the annualised volatility is 20 per cent, then 
you can fully expect the asset price to rise or fall by 20 per cent over a year.

Companies that provide for life’s necessities, such as Proctor and Gamble (PG), 
which makes nappies, or McDonalds (MCD), which flips hamburgers, have a low 
volatility. By contrast, high-rolling investment banks such as Goldman Sachs (GS) 
and JP Morgan (JPM) have high volatility. The chart in Figure 9-1 was created 
using the latest five years of data on the stocks, and it’s unlikely the order of the 
stocks in the bar chart will change much in the future. In five years’ time (that’ll 
be in 2021), making nappies will probably still be less risky than investment 
banking. By knowing the volatility of individual stocks, you can build portfolios 
tailored to the needs of a client’s risk tolerance.

The ticker codes for all the stocks in the DJIA Index are shown in Table 9-2.

FIGURE 9-1:  
Annualised 

volatility of stocks 
in the Dow Jones 

Industrial 
Average. 

© John Wiley & Sons, Ltd.
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Understanding collinearity
Frequently, close connections between the prices of assets are evident. The 
30 stocks of the DJIA Index tend to move together, whether up or down, because 
as the US economy does well, most stocks rise, and if the United States goes into 
recession, most stock prices fall.

Figure 9-2 shows the way the DJIA stocks moved together from April 2010 through 
April 2014.

Most of the stocks move up from the bottom left of the chart to the top right, and 
most experience a sharp downturn in 2011. This similar movement in the price of 
financial assets is called collinearity. One way to characterise collinearity is using 
the correlation matrix. It’s a matrix because a correlation exists between each of 
the 30 stocks in the DJIA Index. So it’s a 30-by-30 matrix.

TABLE 9-2	 Ticker Codes for DJIA Companies
Ticker Code Company Ticker Code Company Ticker Code Company

AXP American  
Express Co.

IBM International 
Business 
Machines Corp.

PFE Pfizer Inc.

BA Boeing INTC Intel Corp. PG Proctor & 
Gamble Co.

CAT Caterpillar Inc. JNJ Johnson &  
Johnson

T AT&T Inc.

CSCO Cisco Systems JPM JPMorgan 
Chase & Co.

TRV The Travelers 
Companies Inc.

CVX Chevron KO Coca-Cola Co. UNH UnitedHealth 
Group Inc.

DD DuPont MCD McDonald’s  
Corp.

UTX United 
Technologies Corp.

DIS Walt 
Disney Co.

MMM 3M Co. V VISA Inc.

GE General 
Electric Co.

MRK Merck & Co. Inc. VZ Verizon 
Communications Inc.

GS Goldman 
Sachs 
Group Inc.

MSFT Microsoft Corp. WMT Walmart

HD Home 
Depot Inc.

NKE Nike Inc. XOM Exxon Mobil Corp.
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Before calculating a correlation, you need to calculate the covariance. As the name 
suggests, covariance is like a variance (see Chapter 2) but connects two different 
stocks. The following formula uses xi to refer to the returns of the first stock and 
yi to refer to the returns of the second stock. The index, i, is used to show that the 
returns are a time series and so i is used to indicate each time there is a quoted 
price. Working with data for N days of returns in my data matrix. In other words, 
it has N rows.

The formula for the covariance, C, between these returns is:

C x y
N

x x y yi i
i

N

, 1
1 .

The bars over x and y indicate the average value. If you put x yi i in this formula, 
it becomes the formula for the variance of a stock’s returns. The covariance C(x,y) 
is large and positive when the stocks x and y behave in similar ways and is large 
and negative if they behave in dissimilar ways. For example, if the stock x tends to 
fall in value when stock y is rising, then the covariance is negative.

You can use this formula with a small value of m such as ten but you’re likely to 
get a misleading value for the covariance. You’re better advised to use a large 
value in the hundreds to get a more reliable figure. Also, you can use data over any 
timeframe. You’re fine to use intraday data (for example every minute) or daily, 
weekly or monthly data.

FIGURE 9-2:  
Price movement 

of the DJIA stocks. 
© John Wiley & Sons, Ltd.
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The covariance is a useful quantity to know about, but a more frequently quoted 
value is the correlation between the two stocks x and y because the correlation can 
only be a number between −1 and 1. It places the degree of connectedness between 
the price returns of x and the price returns of y on a simple scale. You find the 
correlation by dividing C(x,y) by both the standard deviation of x and the standard 
deviation of y. So, if you calculate the correlation between the same two stocks, 
you divide the variance by the square of the standard deviation. In other words, 
you divide the variance by the variance, which is just 1. So stocks that move in 
exactly the same way have a correlation of 1.

If the standard deviation of x is σ(x) and the similar formula for the standard 
deviation of y is σ(y), the formula for the correlation is:

Corr ,x y m
x x y y

x y

i ii

m1
1 .

The formula for the standard deviation σ(x) is:

x
N

x xii

m1 2 2
1

.

Figure 9-3 shows the result of using the formula for Corr(x,y) on the returns for 
the stocks in the DJIA. The correlation is indicated on the chart by shades of grey 
as well as numerical values. Dark shades indicate low or negative correlation 
whilst d shades indicate high correlations near one. The majority of the values are 
high around 0.8 to 0.9 indicating that most of the stock prices move in unison 
with each other. The stock marked CSCO, the internet hardware company Cisco 
Systems, is a bit of an exception with some low and even slightly negative correla-
tions. The correlations on the top left to bottom right diagonal of the matrix are 
all equal to one because every stock is perfectly correlated with itself.

High correlations are also normal in other situations such as for the yield curve for 
bonds.

FIGURE 9-3:  
Correlation 

matrix (part) for 
the DJIA Index. 

© John Wiley & Sons, Ltd.
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Check the data you use from any source for errors – a process called data cleaning. 
If you’re working for a company that already has a team doing data cleaning and 
has built a clean database, great. Otherwise, plotting data as I did in Figure 9-3 
and calculating summary statistics as in the previous sections are good ways to 
check for errors. Bad data should show up clearly on a plot and is likely to produce 
some summary statistics way out of line. You should also check that all the data is 
actually there. This check may need to be automated with a computer program for 
a large data matrix. If you have missing data, you’re okay to estimate it. In fact 
PCA is a good tool to do this.

Another way to look at data is to mark data points on a scatter plot in which you 
show the returns of one asset on the X axis and the returns of another on the 
Y axis. Figure 9-4 shows a scatter plot.

Note that most of the data points lie along a line. If the return on the DAX is high, 
the returns on the CAC 40 is very likely to be high, too.

Standardising data
Another helpful (I hope) way to look at principal components analysis is to calcu-
late a correlation matrix Z from the data matrix with the formula Z X XT . For this 
calculation to work, you must first take each column of your data matrix X and 
standardise it. To standardise data, follow these steps:

FIGURE 9-4:  
Scatterplot of the 

returns for the 
DAX and CAC 40 

stock indices. 
© John Wiley & Sons, Ltd.
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1.	 Find the mean of every column of the data matrix and subtract it from 
every element in that column.

The mean is the sum of the numbers divided by the number of entries in the 
column.

2.	 Divide every column by the standard deviation of that column.

If the N elements in the column are xi, the standard deviation σ is 

x
N

x xii

m1 2 2
1

 where the mean of the column is x.

The result is that every column of the data matrix has a mean of zero and a stan-
dard deviation of one. Having every variable start off on an equal footing can be 
useful. This pre-processing of the variables often helps to reduce the number of 
principal components you need. Standardising isn’t the only way of pre-processing 
the data matrix, but it is a common one.

A potential problem with standardising your data matrix is that you use all of each 
column to work out your standard deviations. Because the columns are often in 
chronological order, you process the data at the top of a column with information 
from the bottom of the column, which belongs to a future time. It doesn’t make 
sense to do this processing if you eventually use your principal components model 
to try to predict, say, how a yield curve may change in the next few days because 
your model itself contains information about the future.

Brushing up some maths
To size up and analyse data matrices, it’s helpful to be familiar with the maths of 
matrices. This section is designed to remind you of those bits of maths you’ve 
forgotten. If you’re an expert on matrices, then please feel free to skip this 
section.

I start with matrices with only one row or column. Sometimes such matrices are 
called vectors because they can be used to indicate directions in space. I indicate a 
vector with a bold lower case letter like this:

a =
1

1
.

The individual elements of vectors are often referred to using subscripts. So, for 
the vector a above the elements are a1 = 1 and a2 = 1. Taking things simply I now 
introduce a second vector:

b
1

1
.
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If you like to think of vectors as directions in space, then a represents one step to 
the right and one step up whereas b represents one step to the right and one step 
down.

You can multiply vectors in a special way called a dot product. For vectors with just 
two elements, it’s written like this:

a.b a b a b1 1 2 2

Doing the maths, you find that for the two vectors a and b, the dot product a.b is 
equal to 0. Vectors that have a dot product of 0 are called orthogonal.

But vectors don’t have to have just two elements; they can have many more.. You 
can think of these vectors as being in an N dimensional space and not just a two-
dimensional piece of paper. This idea may seem like a stretch (mathematicians are 
known for their flights of fancy), but the idea is to use familiar ideas and thoughts 
from ordinary geometry to better understand larger data sets. I call these two 
vectors pi and pj. In N dimensions, the dot product is:

p pi j i j i j i a j a i N j Np p p p p p p p, , , , , , , ,1 1 2 2  .

If the vectors pi and pj are orthogonal, then p pi j 0 if i j. If i j, then the dot 
product is the sum of the squares of the components of pi . If you divide pi by 
p pi i. , then p becomes normalised to a length of one. The sum of the squares of 

the elements of the normalised vector is equal to one. It’s often useful to use 
vectors like this because they’re like the axes of a diagram.

I turn now to matrices with more than one row or column, which I indicate in bold 
and in capitals. In this chapter, you frequently see the data matrix X. The indi-
vidual elements of the matrix are Xi,j. The notation using bold letters is handy 
because it gets annoying looking at lots of subscripts. But sometimes you want to 
see the detail, so it’s worth knowing both ways to write a matrix.

With matrices you can pretty much do what you want with numbers but also lots 
more. I start with multiplication. To multiply two matrices, you need to work out 
the dot product of each row of the first matrix with each column of the second 
matrix. The example here shows how this works for two-by-two matrices where 
I multiply T by Q to get:

X TQ
t t

t t

q q

q q

t q1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

1 1 1 1, ,

, ,

, ,

, ,

, , t q t q t q

t q t q t q t q
1 2 2 1 1 1 1 2 1 2 2 2

2 1 1 1 2 2 2 1 2 1 1 2 2 2

, , , , , ,

, , , , , , , 22 2,

.

Later in this chapter I show that you can write the data matrix X as the product of 
two large matrices, T and Q. I show the formula for this using a dummy index, k, 
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to indicate the sums needed for each element. I assume that the matrix, T, has 
M columns:

X t qi j i k k j
k

M

, , ,
1

.

This formula means that every element of X is calculated by working out the sum 
of the products of a row of T and a column of Q. To do this, the number of columns 
in T must be the same as the number of rows in Q. The summation, indicated by 
the big Greek sigma, goes from one up to the integer M.

You can do things with matrices that you can’t do with numbers – this is where 
the fun begins. The transpose of a matrix is found by just switching around the 
indices – so P Pi j

T
j i, , . As an example:

If  P
2 3

1 4

3 0

, then  PT 2 1 3

3 4 0
.

Because the number of columns of a transposed matrix always equals the number 
of rows of the original matrix, you can always multiply them together:

Z P PT
4 10

10 25
.

The matrix Z is said to be symmetric because the top-right element is equal to the 
bottom-left element. The covariance matrix and the correlation matrix are both 
symmetric. A matrix is symmetric if it’s the same as its transpose. Check with the 
matrix Z that Z ZT .

Another special case of matrix is the diagonal matrix. In a diagonal matrix, all the 
elements equal zero except along the diagonal line from the top left to the bottom 
right. The matrix Λ is diagonal:

15 0

0 2
.

One last special matrix is the identity matrix, which is a diagonal matrix with all its 
diagonal elements equal to one.

A special kind of equation that only exists for matrices is called an eigenvalue 
equation. For a square matrix, Z, the eigenvalue equation is:

ZP P .
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The constant λ is called the eigenvalue whilst the vector p is the eigenvector. For a 
square matrix with M rows and M columns, there are M values for λ, each with 
their own eigenvector.

Computer languages such as Python have built-in software to calculate eigenval-
ues and eigenvectors of a square matrix. In Python, it’s part of the NumPy 
(Numerical Python) module that you can download, along with the Python lan-
guage itself, from www.python.org. In the NumPy reference manual on the Python 
website is the eigenvalue routine within the linear algebra section.

If you’re wondering, eigen is a German word meaning ‘own’ or ‘self’. The eigen-
vector is the own vector of a matrix because if you multiply the eigenvector by the 
matrix, you get back to a multiple of the eigenvector.

Decomposing data matrices into 
­principal components
Principal components analysis starts with a data matrix, X. This matrix may con-
tain the returns for a stock market in each of its columns or it may contain the 
daily changes in yields for bonds of different maturities.

Assume that X has N rows of data and M columns where N and M are integers. 
Remember that M can be any integer – it may be as few as 5 or as large as 500 or 
greater. Principal components analysis is especially useful with cumbersome data 
matrices with lots of columns (large M). Sometimes these columns are called 
variables because they’re the quantity of interest to you such as a share price 
return. So there are M variables in principal component analysis.

The big idea of principal components analysis is to write the data matrix X as the 
product of two other matrices, T and P:

X TPT.

The superscript, T, on P indicates that it’s the transpose of P.

The matrix T has N rows and M columns – M is the number of principal compo-
nents. The matrix P has M rows and M columns, so it’s a square matrix. This kind 
of equation is called a decomposition because the matrix X is broken down into two 
parts.

At the moment, you don’t know what T and P are. In the next section, ‘Calculating 
principal components’ I show you how to calculate them, even if you’re working 
with a very large data matrix. If you’re itching to find out how to calculate T and 
P for your own data matrix, then please go straight to that section. For the 

https://www.python.org/
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moment, I tell you more about T and P. You can also see an example of how to use 
principal components analysis in the upcoming section ‘Applying PCA to Yield 
Curves’.

Here’s a clever bit about principal components analysis: The matrix P is orthonor-
mal, which is short for orthogonal and normalised. Think of P as made up of column 
vectors, which I call pi. The index, i, can take the values from one to M – the num-
ber of rows and columns in P. Each of these vectors has a length of one and is 
orthogonal to the other column vectors. The same, in fact, is true of the row vec-
tors of P. As a result, P P IT  where i is the identity matrix. Because P has a length 
of 1, it can be used to rotate vectors and to find new combinations of variables that 
are more useful than the old variables. Here’s how: you can rewrite the decompo-
sition of X using the elements of P, pi,j and the columns of T which I call ti.:

x t t ti i i i M Mp p p, , ,...1 1 2 2

(The lowercase x indicates a single column of X.)

This is the principal components representation of the ith column vector of the data 
matrix X. The matrix T is, then, the matrix of the M principal components. The ith 
principal component is ti.

At the moment, this equation for xi doesn’t look useful because I just rewrote the 
data matrix X in terms of M new variables ti . Hold on though – I show you how 
it’s helpful in a minute.

Another helpful way to write these equations is to multiply the matrix decomposi-
tion equation for X on the right side by P, which gives you the equation T XP. 
This follows by using the property P P IT  since P is orthonormal. Remember that 
in this equation, I is the identity matrix which has ones on its diagonal and zero 
everywhere else. This equation for T can be written using the elements of the P 
and X matrices as:

t x x xi i i M i Mp p p1 1 2 2, , ,... .

Each principal component, ti, is a linear combination of the columns of the data 
matrix. The elements of the matrix P tell you how much of each of the variables 
(columns of X) to use in each principal component. Because of that, the columns 
of P are sometimes called weight vectors.

If you substitute for X in the matrix decomposition equation for the correlation 
matrix Z X XT , you get that Z PT TPT T. Now multiply both sides of the equation 
by P on the right to get ZP PT TP PT T . Because P is orthonormal, you can simplify 
this equation to get ZP PT TT . This kind of equation is called an eigenvalue equa-
tion in mathematics. The previous section “Brushing up some maths” explains 
eigenvalues and eigenvectors if you’re a bit hazy on them.
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A matrix eigenvalue equation such as ZP PT TT  looks a bit funny because an 
eigenvector P is on each side of it. The product TTT is a diagonal matrix often writ-
ten using the capital Greek letter lambda, Λ. The elements along the diagonal are 
the eigenvalues.

I’m not going to prove it, but the sum of the eigenvalues of a correlation matrix is 
equal to the number of variables. For example, for the Dow Jones Industrial Aver-
age Index data matrix I use in Figure 9-3, the sum of the value of the eigenvalues 
is equal to 30. Figure 9-5 shows the first 20 eigenvalues of the correlation matrix.

The figure shows one particularly large, or dominant, eigenvalue followed by 
much smaller ones. This is the main point of principal components analysis: Nor-
mally only one or two eigenvalues are large, and you can ignore the others. Because 
the variance of each principal component is given by its eigenvalue, the first prin-
cipal component, t1, explains a very large fraction of the variance in the data 
matrix X. In the principal components representation of X you only need to retain 
a small number of principal components. This can lead to important simplifica-
tions for calculations on large portfolios. In the upcoming section “Checking your 
model with cross-validation” I show you how to decide how many principal com-
ponents to retain in your model of the data matrix.

Going back to the Dow Jones data matrix in Table 9-1, the large eigenvalue is con-
nected to an eigenvector (a column of the matrix P) that combines all the DJIA 
components in almost equal measure. So this first principal component is similar 
to the Dow Jones Index itself. It means that most of the variability that can be 
explained in the DJIA stocks is explained by the overall market. However, there are 
still some residual, smaller amounts of variability explained by the smaller prin-
cipal components.

FIGURE 9-5:  
Eigenvalues of 
the DJIA Index 

correlation 
matrix. 

© John Wiley & Sons, Ltd.
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Calculating principal components
In this section, I show you how to calculate the matrices T and P from X in a prin-
cipal components analysis (finally, I hear you say).

In principal components analysis, you write a N × M data matrix, X, as the product 
of two other matrices, T and PT.

One way is to use specialised software to compute the eigenvalues and eigenvec-
tors of the correlation matrix Z calculated from the data matrix using Z X XT . 
However, you can use a simpler method that makes use of the fact that often only 
a few eigenvalues of significance are present. A big advantage of this second 
method is that if your data matrix is large with maybe hundreds of variables, you 
can still do the calculations in a short amount of time on an ordinary computer.

This second method is called non-linear iterative partial least squares which is 
quite a mouthful and is often abbreviated to NIPALS.

The algorithm in the following steps works out the eigenvalues and eigenvectors 
one at a time starting from the largest eigenvalue first. That’s good news as it 
starts with the most important principal components, and you can stop when your 
decomposition is accurate enough. The calculations are iterative, which means that 
you go through a loop time and again, each time improving the accuracy of your 
estimates of t and p until you’re happy with them.

To build a PCA representation, follow these steps:

1.	 Start with a guess for the first principal component, t1.

A good guess is the values in first column of the data matrix.

2.	 Calculate an estimate of the first weight vector p1 using p X tTi j.

3.	 Normalise p1.

To do so, calculate the length, L, of p1. If the components are pi,1, then the 
length is:

L pi
i

n

,1
2

1
.

You can write your normalised p1 as p
p

j
j

L
* .

4.	 Update your guess for t1 by calculating your new value: t X pj j j
*.

5.	 You now have a new value of t1 that you need to compare with the old value 
that you guessed at the beginning if this calculation.

Do this by calculating t told new
2. Remember that the square of a vector is 

calculated using the sum of the squares of the components.
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If Δ is less than a small number, say 0.001, then you’re finished with this 
iteration. Mathematicians like to say that your iterations have converged. 
Continue to Step 6. If not, go back to Step 2 and use your new updated vector, 
t1. Each time you go back to Step 2, you should see a drop in Δ and finally you’ll 
get through to Step 6.

6.	 Shrink the data matrix by calculating X X t pT
shrunk 1 1 .

This formula uses your new value for t1 . Remember that X is a matrix and the 
product t pT

1 1  is also a matrix calculated from a column vector t1 and a row 
vector pT

1 . Shrinking happens when the information about a principal compo-
nent is peeled off from the data matrix and you get ready to calculate the next 
principal component.

7.	 Go back to Step 1 to calculate the next principal component.

You can calculate as many principal components as you wish with this process.

Try this process for yourself using Excel VBA, Python or R. Each step is straight-
forward to code. Find some financial data and try building your own model. Good 
sources of data are the Federal Reserve Economic Database (FRED), which has 
excellent interest-rate data, and Yahoo Finance, which has many historical stock 
price quotes.

The procedure in the numbered steps is an example of an algorithm, which is just 
a set of step-by-step operations. Algorithms are what you need for many of the 
calculations in quantitative finance and this is a good example of one.

Checking your model with cross- validation
Building a PCA model involves decomposing the data matrix X into a product of 
the principal components T and the weights P. You need to make the important 
decision of how many principal components to retain in your model. I call this 
number of components MC. By leaving out many principal components from your 
model, you’re saying that they don’t contain useful information. Another way of 
saying this is that PCA splits the data matrix into useful information and noise like 
this:

X TP ET Useful information Noise.

Noise most commonly means an unwanted sound, but in financial analysis, it’s 
used to refer to data containing little information. Noise is random data; you can 
assume that it has a Gaussian distribution. (Chapter 2 gives you more information 
on random variables and the Gaussian distribution.)
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The principal components decomposition of your data matrix uses only a few 
principal components, and because it doesn’t perfectly reconstruct the data 
matrix, you also have a noise term, E. To work out exactly how many principal 
components to use, you can use a technique in which you split your data set into 
two parts. The data matrix is split into a region for building the models and a 
region of withheld test data. There’s no hard-and-fast rule about how to do this, 
so just splitting your data set in two halves is fine.

The models are then used to predict the data for the test region. None of the test 
data is used to build models. This technique is therefore called out-of-sample 
testing. In fact, you need to carry out two principal component analyses. The first 
analysis uses data for all the assets (variables) but not for all the time. The second 
analysis uses data for all the time but not all the assets. I show this in Figure 9-6 
where the regions of data used for each principal component analysis are shown 
in light grey. The overlap region common to both the PCA models shows as dark 
grey and the withheld data is in white as it isn’t used in either model.

Using the results (the T and P matrices) from the two principal components anal-
yses, you can predict the withheld data. You do this using the usual decomposition 
formula, X TPT, but this time you use the principal components T from the 
analysis with all the time steps and the weights P from the analysis with all the 
assets. Then, the formula for the predicted data matrix values is X T Ppred

T
1 2  

where the subscripts 1 and 2 indicate the two different principal component 
analyses.

FIGURE 9-6:  
Defining 

calibration and 
test data regions 

for cross- 
validation. 

© John Wiley & Sons, Ltd.
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Using the predicted values for the withheld test part of the data matrix, you can 
compare them with the actual values. Take the difference between them and then 
calculate the sum of the squared values to get a statistic, Δ.

X X
j

P

pred
2

1
.

The chart in Figure 9-7 shows a plot of how delta varies as the number of princi-
pal components is increased from zero. To begin with, it drops sharply, and then 
it starts to rise again.

The lowest point (just) on the curve is for two principal components, so there’s no 
good reason to use more than two principal components. The second principal 
component gives you only a marginal benefit.

What this chart shows is that if you use a model with more than two principal 
components, it’s worse at predicting new data than a smaller model with only two 
components. More complicated models with more principal components are mod-
els of noise rather than useful information. When such a model is used to make 
predictions, it does poorly.

This technique of using a model to make predictions for data not used in its con-
struction is widely applicable. It enables you to figure out how complicated to 
make a model and to get a good idea of what its performance might be in real life.

Going back to the Dow Jones example, the first principal component is closely 
connected with the overall market. A PCA model with two components gives a 
good parsimonious description of the DJIA Index.

FIGURE 9-7:  
Calibrating a PCA 

model using 
out-of-sample 

predictions. 
© John Wiley & Sons, Ltd.
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Applying PCA to Yield Curves
PCA can be applied to yield curves because the different maturities of bonds are 
highly correlated. Figure  9-8 shows the yield from US Treasuries at constant 
maturity. Notice the clear similarity among the curves, although the period during 
the onset of the 2008 financial crisis associated with the collapse of the invest-
ment bank Lehman Brothers is a bit chaotic. Also notice that the 3-month yield 
(indicated as a dotted line) is almost always the lowest, and the 20-year yield is 
almost always the highest. In the past two decades, only during the so-called dot-
com bubble in 2000 and the financial crisis of 2008 has the 3-month yield risen 
above the 20-year yield.

The unstable relationship in time for these bond yields means that you’re well 
advised to take the difference between yields from one day to another as the basic 
variable in the PCA.

Figure 9-9 shows a chart of the correlation matrix between the different maturi-
ties of US Treasury bonds. It shows the typical behaviour for a yield curve with 
positive correlations that tend to get close to one for close maturities. The lowest 
correlation at 0.105 is between the 1-month and 30-year maturities.

FIGURE 9-8:  
Constant 

maturity US 
Treasury yields. 

Source: Federal Reserve Economic Database
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The chart in Figure 9-10 shows the weights (or eigenvectors) from the first three 
principal components. The weights for the first principal components all show 
quite different patterns:

»» The first principal component, which belongs to the largest eigenvalue, is 
called the trend.

»» The second principal component is the tilt as it relates to changes in the slope 
of the yield curve.

»» The third principal component is the convexity and relates to changes in the 
curve of the yield curve.

FIGURE 9-9:  
Correlations of 

US constant 
maturity Treasury 

yields. 
Source: Federal Reserve Economic Database

FIGURE 9-10:  
Trend, tilt and 

convexity for the 
US Treasury yield 

curve. 
© John Wiley & Sons, Ltd.
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These principal components give an idea of the main ways a yield curve can move. 
The first component, the trend, which has the largest eigenvalue, is the dominant 
one, and is associated with a shift of the entire yield curve up or down because all 
the weights are positive. The second component is associated with a change in the 
slope of the yield curve. The weights are positive for short maturities less than two 
years and negative for longer maturities greater than two years. These move-
ments can happen when an increase in the short-term interest rates by the cen-
tral bank reduces the prospect for long-term rates and so tilts the yield curve. The 
third component is associated with a more complex movement in which the 
weights are positive for short-term maturities less than six months, negative for 
medium-term maturities and positive again for long-term maturities greater 
than three years.

The importance of these three movements can be evaluated using the R2 value 
after each of the principal components has been calculated and comparing with 
the sum of the squared values S2 for the data matrix. The R2 value is the sum of the 
squares of all the elements of the data matrix after principal components have 
been peeled off using the iterative algorithm described in the ‘Calculating princi-
pal components’ section earlier in the chapter. The cumulative R2 is called C2 and 
is calculated from both R2 and S2:

C R
S

2
2

21 .

Before any iterations of the PCA algorithm, C2 is equal to zero, as you may expect. 
However, after all the principal components are calculated and the data matrix 
has been shrunk to zero, then R 2 0 and C 2 1. So the cumulative R2 ranges from 
zero to one as a principal components representation is built up. Table 9-3 shows 
the values for the yield curve analysis.

After calculating three principal components, 95 per cent of the variation in the 
data matrix is explained. Given that nine maturities are in the data matrix, this 
high percentage shows the efficiency of the principal components representation.

TABLE 9-3	 Sample R2 Ranges
Principal Component Cumulative R2

PC1 0.79

PC2 0.90

PC3 0.95
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Using PCA to Build Models
The PCA decomposition of a data matrix can help you do a couple things with data:

»» Identify clusters of similar assets.

»» Build predictive models. You can use the principals components as new 
variables to predict related quantities. In the case of the yield curve, because 
interest rates are so important to the economy as a whole, you can even 
consider trying to predict stock index returns.

Identifying clusters of data
To discover how your data is grouped, you can graph your numbers in a chart of 
the principal components weights, as shown in Figure 9-11. The x-axis value for 
the jth stock in the Dow Jones index is the value p1,j, whilst the y-axis value is p2,j. 
So you can construct your own charts from your data after you do your principal 
components analysis.

FIGURE 9-11:  
PCA weight plot 

for the DJIA Index. 
© John Wiley & Sons, Ltd.
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The x-axis is the PC1 weight. All the values are positive and close to 0.18 so this 
principal component is putting approximately equal weight on all the constituents 
of the Dow Jones Index. This principal component is effectively the index itself. 
It’s not surprising that PC1 explains a lot of the variability in the data matrix.

The second principal component separates the Dow Jones constituents into clus-
ters above and below the x-axis. The cluster below contains defensive stocks that 
are expected to do fine even if the economy does badly because they sell essential 
goods and services. Examples are Walmart (discount stores), Proctor and Gamble 
(nappies and other household goods) and Verizon (telecom).

The cluster above the line contains companies that depend more on the economy 
doing well. These companies include investment banks and major industrials 
such as General Electric. This classification has happened because the principal 
components are calculated to be orthogonal. The second principal component of 
the DJIA data matrix is therefore characterising stocks by dissimilarity to the 
index and so naturally picks out defensive stocks. You can use this application of 
PCA to gain insight into the construction of investment portfolios with particular 
risk characteristics.

Principal components regression
Principal components analysis is highly versatile and can be used to build predic-
tive models. If your data matrix is X, then you may have a quantity, Y, that depends 
on the variables in X. A good technique to find a relationship between X and Y is 
linear regression, which I explain in more detail in Chapter  16. In this section, 
I tell you how to adapt linear regression to use the results from a principal com-
ponents analysis as input. Because PCA reduces the dimensionality of a data 
matrix, you can use far fewer predictor variables than in a normal linear regres-
sion model.

To do a principal components regression, follow these steps:

1.	 Set up your data matrix X with pre-processing so as to standardise the 
variables.

Check the ‘Standardising data’ section for information on how to do this.

2.	 Use out-of-sample validation to figure out how many principal components 
you need.

The ‘Checking your model with cross-validation’ section covers this.

3.	 From your PCA, find the T matrix.

You obtain the T matrix from the algorithm in ‘Calculating principal 
components’.
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4.	 For your Y values, you treat the T matrix as a matrix of predictor variables, so 
you’re trying to find a relationship, Y TC, where C is a vector of constants.

You can now do this using standard software for calculating a linear regression 
such as the function linest in Excel.

It may be that even with the reduced number of variables from your PCA, you 
don’t need all of them in your regression model. You can detect how many you 
need by examining the t statistics.

The t-statistics are the ratios of the estimated coefficients, C, in your regression 
and the standard error of the coefficients. The larger they are in magnitude, the 
more significant is that variable. Typically, if the t-statistic for a variable is less 
than three, leave it out of the model.

After leaving out variables that do not have large t-statistics, you can rebuild your 
model with the remaining significant variables.

If you change your pre-processing step, the results for your PCA change. Deciding 
not to use standardised data, which has a mean of zero and standard deviation of 
one, may mean that you need an extra principal component to represent your data 
matrix.
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IN THIS PART . . .

Make pricing clearer with the Black-Scholes equation.

Build pricing trees as an alternative method of working 
out the price of options.

Go to the Greeks (letters used in maths terms) for 
ratios that come in handy when you’re using options.

Use interest-rate options as banks and real estate 
investors do.
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IN THIS CHAPTER

Composing a simple portfolio

Doing simple pricing

Growing trees to price options

Using delta to make a portfolio riskless

Using the Black-Scholes equation

Examining the 
Binomial and 
Black-Scholes 
Pricing Models

Options are versatile financial instruments that derive their price from an 
underlying asset such as a share or a bond. In this chapter, I show you 
how to price them, relating this price to the price of the underlying asset 

and other factors such as the interest rate.

You benefit from having more than one tool at your disposal, so I explain two 
main methods to price options and add a third method that’s useful for valuing 
some of the more exotic kinds of option.

Chapter 10
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Looking at a Simple Portfolio 
with No Arbitrage

A simple but big idea is the basis of most option pricing: if you set up a portfolio 
that includes the option but has no risk, the portfolio return must be given by the 
risk-free interest rate.

You hear a lot about the risk-free rate in this chapter, but what exactly is it? A 
good definition of the risk-free rate is the interest rate offered by short-term gov-
ernment bills such as the three-month US Treasury bill. Short-term bills are 
frequently traded so their interest rates reflect market conditions. Governments 
are unlikely to go bust, so the interest rate they offer can be considered to be risk 
free. On the other hand, if you lend money to a bank, you may earn a higher inter-
est rate called LIBOR (London Interbank Offered Rate) but you’re subject to the 
risk of the bank going under. This risk is real – during the 2008 financial crisis, 
queues of worried depositors formed outside some banks.

If you hold a call option, which is a right to buy an underlying share at a strike 
price, X, at some time in the future, you’re exposed to the risk of the share price 
going down. To make your option riskless, you must short the underlying share so 
that you make money as the share price declines. A short position is one in which 
you borrow shares and then sell them in the market. This position is equivalent to 
holding a negative amount of shares.

Shorting is a way of gaining when share prices decline but losing when they rise. 
For example, say you borrow 10 shares worth £100 each and promptly sell them 
for £1,000. The shares then decline in price to £90. You buy 10 shares for £900 
and return them to your lender. You made £100, or £10 per share. If the share 
price had gone up by £10, you would have lost £100 because you would have had 
to buy them back at a higher price than you sold them for. Finance is a topsy-turvy 
world sometimes!

By holding a call option together with a short position in the underlying stock, you 
can make your overall position riskless. Likewise, if you hold a put option, you can 
make your position riskless by buying the underlying stock. A put option is a right 
to sell an underlying share at the strike price, X, at some time in the future.

You can compensate for any loss or gain in an option position with a market posi-
tion in the underlying asset.
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The fact that the payoffs from options can be replicated by stocks and cash is 
referred to as the completeness of markets. In a way, options aren’t needed, but they 
prove to be convenient instruments. Crucially, the completeness means that 
options can be hedged using the underlying stock and that is the idea that allows 
them to be priced.

Pricing in a Single Step
In this section, I show you how to price an option using a portfolio constructed to 
be risk free using a simple model for the behaviour of stock prices called the bino-
mial model. In this model, time is discrete – it goes in steps. You can think of it as 
a price quoted at the close of business every day rather than having prices quoted 
continuously throughout the day.

I write the time today as t = 0 and the time tomorrow as t = 1. In addition, at every 
time step, the price can only end up in one of two possible states: it can go up by 
a specified amount or it can go down by a specified amount. This seems simplistic, 
but it incorporates the key characteristic of stock prices – they’re random. At t = 0 
you don’t know what the price will be at t = 1. Figure 10-1 shows a diagram that 
illustrates a binomial model of prices for an underlying stock.

Now I show you how to use the underlying stock to hedge an option by creating a 
riskless portfolio. To make things easy (if that seems soft, then please skip ahead 
to ‘Branching Out in Pricing an Option’), start with a call option that has only one 
day left until expiry. Today the underlying stock is worth £100; tomorrow it will 
be worth either £102 or £98. You short a quantity, Δ, of this stock to hedge the 
option. At the moment you don’t know the value of Δ. The option has a strike price 
of £100, so if the stock goes up to £102, the option is worth £2. On the other hand, 
if the stock goes down to £98, then the option is worthless. For this little portfolio 
to be riskless, its value must be the same regardless of whether the stock goes up 
or down. You can write an equation for this, remembering that the value of the 
shares is their price multiplied by the quantity Δ:

2 102 98 .

The equation has the form: (Value if stock price goes up) = (Value if stock price 
goes down). Remember that you’re short the stock, so that the terms in the equa-
tion for the stock are negative.

Solving for Δ, you get that 1
2

, so you need to short one stock for every two 
options you hold.
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This quantity, Δ – the amount needed to make your investment risk free – keeps 
coming up in quantitative finance. It gives its name to delta hedging, which means 
to hedge an option by holding an amount Δ of the underlying asset.

So if the stock goes up to £102, your portfolio is worth −£49, and likewise if the 
stock goes down, your portfolio is worth –£49. The negative portfolio value is 
because you’re short the stock.

The calculation for Δ involves equating the portfolio values for the up and down 
states of the stock at the end of the time step. It’s good to know Δ, but you really 
want to know V – the option price. The value of the portfolio today, when the 
stock is worth £100, is V 100  – using subtraction for the short position in Δ of 
stock. However, if the interest rate is zero, the portfolio value must be equal  
to −£49, the portfolio value at t = 1. Because the portfolio is hedged and risk free, 
its value at t = 0 must be the same as its value at t = 1, assuming the interest rate 
is zero. This means that V V100 49 49 100

2 1. You now have the 
price of the option at t = 0. The graph in Figure 10-1 summarises this calculation.

The calculation for V depends in a big way on the range of possible values for the 
stock. This, in turn, depends on the volatility of the stock. So the volatility is a key 
quantity in calculating option prices. V also depends on the strike price (the price at 
which you can exercise your option) for the option because that determines the 
payoff at expiry. Although I assumed here that the interest rate is zero, this too 
influences option prices.

Entering the world of risk neutral
In the preceding section, I show you how to price an option in a world with a 
single time step, from t = 0 to t = 1 by constructing a hedged portfolio with no risk. 

FIGURE 10-1:  
Calculating the 

price, V, of an 
option using a 

one-step 
binomial tree. 

© John Wiley & Sons, Ltd.
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Notice that I didn’t have to specify the probability of the stock going up or down 
at t = 1 to find that the option value, V, is V = 1. But you can calculate the probabil-
ity, p, of the stock going up that is consistent with the option price of V = 1. If the 
stock goes up, the option payoff is £2, and if the stock goes down the payoff is 
zero. The expected value of the option at t = 1 is 2 0 1p p V( ) . But this expected 
value at t = 1 must be equal to the option value at t = 0 because the interest rate is 
zero, so 2p = V = 1. Using simple algebra, p = ½.

The correct pricing of the option implies a probability of 0.5 for the stock to move 
up. This probability is called the risk-neutral probability because it’s the probability 
consistent with the risk-free portfolio I constructed.

Now, to make the calculations more realistic, I stick with a single time step but 
introduce the interest rate, r, and use algebra for the stock and option prices so 
that you can do the option price calculation no matter what the initial price of the 
stock is and no matter what the possible prices for the stock are at t = 1.

Figure 10-2 shows the portfolio with more general prices.

Now the stock price, S, can rise by a factor, u, or fall by a factor, v. I make no 
assumption about the final price of the option, so this analysis is correct no matter 
what the strike price of the option is. The portfolio is the same as in the previous 
section with a call option hedged by a short position in the underlying stock. The 
value of this portfolio, P, is given by the option value, V, minus (because you’re 
short) the stock price multiplied by the amount of stock you hold. As always, while 
hedging options the amount of stock is denoted by Δ: P V S .

FIGURE 10-2:  
Binomial tree 
with general 

prices. 
© John Wiley & Sons, Ltd.
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At the end of the time step, the portfolio changes value to: 

P V Su P V Svor .

However, to be riskless, P+ must equal P− so that the portfolio value is independent 
of whether the share price rises or falls. These two equations can then be com-
bined and rearranged (you may need to get a pencil and piece of paper out to check 
the combination for yourself) to give an equation for Δ:

V V
S u v

.

Riskless by construction, the portfolio at the end of the time step must have a 
present value equal to the value of the portfolio at the beginning. The riskless 
portfolio of option and shares must be valued using the risk-free rate, otherwise 
there would be an arbitrage opportunity against a portfolio holding just cash. To 
calculate the present value of the expected portfolio value, I use the time value of 
money formula from Chapter 4 which uses the risk-free interest rate, r. Remem-
ber that in this formula, e (for exponential) is the base of the natural logarithm: 
V S P e rt .

You can use P− in this equation instead of P+ but it makes no difference because of 
the equality with P+. You can now rearrange the equation (that piece of paper and 
pencil may have to come out again) to get an equation for the option price V: 
V S ue V ert rt1 .

Now, using the equation for Δ and a bit more algebra (treat yourself to a fresh 
sheet of paper), this equation can be rewritten as:

V e pV p V p e v
u v

rt
rt

1 where .

This equation for the option price, V, tells one of the big results of quantitative 
finance. The formula for V is a weighted sum of the possible values of the option 
after one time step discounted to the present time using the risk-free interest 
rate, r. I use a new variable, p, which looks suspiciously like it may be a probabil-
ity. The equation for p involves only the risk-free interest rate r and the numbers 
u and v, which determine the possible future values of the share price; u and v 
depend on the volatility of the underlying share.

Nowhere in the formula is there reference to the probability of the share price ris-
ing or falling, which means that the formula for V does not depend on the expected 
return of the share. To check this, you can calculate the expected return of the 
share using the probability given by p. In Chapter 2, I show you how to calculate 
expected values for random variables. The expected return for the share price E(S) 

is E S pSu p Sv1 . Then substitute: p e v
u v

rt

 to get that the expected 
return for the share price is: E S Sert.
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What this shows is that if you use the formula for p given here, you’re essentially 
assuming that the share price rises at a rate given by the risk-free interest rate. In 
the real world, the expected value of a share price is more likely to be given by 
E S Se t  where μ is the growth rate of the share. The reason you find an 
expected return given by the risk-free rate in this calculation is that risk has been 
eliminated from the hedged portfolio of share and option. The formula you use for 
the probability, p, is the correct one if the share price drifts with an expected 
growth rate given by the risk-free interest rate, r.

In a risk-neutral world, options can be valued as the expected present value of the 
option using probabilities assuming that the underlying share drifts at the risk-
free rate.

Calculating the parameters
The constants u and v, used to indicate by how much the share can rise and fall 
in the time step, can be related to the share price volatility. Now assume that the 
time step in the binomial tree is small. (Later in this chapter, I create binomial 
trees with many steps so that they more realistically model financial assets. It 
makes sense to have many small steps to build the path taken by the share price 
in time.)

You have some freedom in calculating the values of u and v provided that the 
resulting tree of prices reflects the correct volatility, σ, of the share. Making use of 
this freedom, write that u R1  and v R1  so that R is the return of the share in 
the time step. S × u is now S + SR, so the absolute price of the share increases by 
SR in the time step. The steps in this binomial tree are just like the steps in the 
geometric Brownian motion explained in Chapter 3. In that case, the change in the 
price of the share in a single step must be S t , so R t . Now you can use 
the formula:

u t v t1 1,

in binomial tree calculations. Substituting these values into the formula for p, 
you get:

p r t1
2 2

.

To work this formula out from the equation for p, I use the fact that the time step 
is small – δ t – so I can use the approximate formula: e r tr t 1 , which is valid 
provided that rt is small (much less than one).
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The formula for the probability, p, is saying that in the limit of a very small time 
step, t, the probability of the stock going up is slightly more than 0.5 and the 
probability of it going down is slightly less than 0.5. And if the risk-free rate is 
high, then the probability of the stock going up increases.

Branching Out in Pricing an Option
Pricing an option in a world with a single time step is a bit unrealistic. In these 
sections, you can see how to grow your tree of prices into many steps so that you 
can price options more accurately.

Building a tree of asset prices
So far in this chapter, the binomial tree has only two branches. After the price 
rises by a factor, u, the tree can rise again by a factor u or fall by a factor v. Thus, 
each branch can branch out farther. These branches build up a tree that shows the 
range of possible outcomes of moving forward in time from the present, as shown 
in Figure 10-3. The root of the tree at time t = 0 is on the left side. On the right side 
of the diagram are all the possible prices of the share and beneath each is the 
probability of reaching that price. The factors of three in the probabilities are due 
to the three different paths that can arrive at the middle points.

Building a tree of option prices 
by working backwards
The key step in using the binomial tree to price an option is to work from the 
expiry date all the way back to the root. First, you need to work out the option 

FIGURE 10-3:  
A binomial tree 
model showing 

stock prices and 
the probability 

of reaching 
that value. 

© John Wiley & Sons, Ltd.
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prices. Doing so is easy because you’ve worked out the stock prices and, because 
you’re using the expiry date, you calculate the option price from the payoff 
function.

The payoff function tells you how much an option is worth at expiry given the 
stock price and the strike price for the option.

To go backwards, you must now use the equation:

V e pV p Vrt 1 .

This equation relates an option price, V, to the two prices, V+ and V−, closer to 
expiry. Using the formula for p from the preceding section, ‘Calculating the 
parameters’, you can work your way backwards all the way to the current time at 
the root. In this way, you can calculate the current value of the option. Notice that 
by calculating the option prices backwards, you never need to use the stock prices. 
You need the stock prices only to calculate the option payoff at the expiry.

To show how this works, take this numerical example: You want to value a Euro-
pean call option that has two months left until expiry. The strike price is £180 and 
the underlying stock is currently at £200. The annual risk-free interest rate is  
1 per cent, so: r 0 01. . The annual volatility is 30 per cent, so: 0 3. .

To convert percentages to fractions, divide the percentage by 100 – simple to do; 
easy to forget.

Always use the same units throughout any calculation. In this example, time is 
measured in years, so I use annual volatility and an annual interest rate.

Using two time steps of one month each should give you a reasonable estimate of 
the option value. Because I’m measuring time in years, the time step is one month:

t 1
12

0 0833. .

You need the factors u and v calculated to build up your tree of stock prices:

v u1 0 3 0 0833 0 913 1 0 3 0 0833 1 0866. . . . . .and .

Figure 10-4 shows the result. The numbers in the box show the stock price at the 
top and the option price at the bottom. So, at the root, the stock price is £200. At 
the top right, after the stock has risen for two months in a row, the price is 
£ £200 236u u . The option price in the top right is £56 because the option is a 
call option with a strike price of £180. The option holder then has the right to buy 
the stock at £180 which she will promptly do and then sell at £236 to make a profit 
of £56. By contrast, in the bottom right, the stock price is only £167, which is 
lower than the strike price. Buying at £180, above the market price, is pointless, 
so the option expires worthless.
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The probability, p, is calculated using the formula:

p 0 5 0 01 0 0833
2 0 3

0 505. . .
.

. .

With this, you can start calculating more of the option prices. When the stock price 
rises, the option price one time step beyond the root is:

V e 0 01 0 0833 0 505 56 0 495 18 0 999 28 8 9 37 15. . . . . . . .

The other two prices are calculated in similar fashion. The price for the option 
turns out to be £23.

Pricing an American option
The binomial tree can be applied to American options. (Chapter 5 explains about 
the different types of American options.) Unlike a European option, an American 
option can be exercised at any time during its life, not just at expiry.

With a few simple changes, the binomial tree method can be adapted to work for 
American options. Here’s how it goes.

1.	 Build the binomial tree of prices just as for a European option.

Start with the stock price S at the root on the left hand side. At the end of an 
upward branch, multiply by u to get the price and at the end of a downward 
branch multiply by v. Go all the way to the right-hand side of your diagram.

FIGURE 10-4:  
Sample pricing of 
call option in two 

time steps. 
© John Wiley & Sons, Ltd.
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2.	 Work out the option prices at expiry just as for a European option by using 
the payoff function.

For a call option with strike price X, the payoff is S – X if S is greater than X and 
zero otherwise. For a put option with strike price X, the payoff is X – S if S is less 
than the strike price and zero otherwise.

3.	 Work backwards by calculating the option prices at the time step before 
expiry using the equation V S ue V ert rt1  just as for a European 
option.

4.	 Check all the option prices at each node (points on the tree where it branches 
in two) from Step 3 to see whether the option price is greater or less than the 
payoff from exercising the option.

Remember, an American option can be exercised at any time before expiry, so 
any node on the tree where the option price is below the payoff will be 
arbitraged. So, if the payoff is higher than the option price you just calculated, 
you must replace that option value with the payoff.

5.	 Continue going backwards in the tree, checking at each node whether early 
exercise is optimal.

When you get down to the root at the left side of the tree, you’ve calculated the 
current price of the American option.

This procedure is a simple but powerful one and is good to know because it’s the 
only way to price American options other than using simulation (see the final sec-
tion in this chapter ‘Valuing Options Using Simulations’).

It turns out that for non-dividend paying stocks, American call options have the 
same price as European call options. However, American put options are always 
more valuable than European put options. This makes sense because American 
options give the holder, well, more options because she can exercise them when 
she likes.

Making Assumptions about Option Pricing
Like all mathematical theories, option pricing makes assumptions that may or 
may not be true:

»» The stock price follows the geometric Brownian motion process. In 
Chapter 3, I emphasise that the statistical properties of markets are similar to 
geometric Brownian motion but that real markets have fat tails. The greater 
chance of large returns in the real world than in the geometric Brownian 
motion model is usually accommodated by using an implied volatility.
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»» Both the volatility, σ, and the interest rate, r, are constant in time. The 
assumption of constant volatility is clearly not true. Chapter 7 should per-
suade you of that. However, in some models this assumption is relaxed, but 
those models are complex. In practice, option traders use an implied volatility, 
a volatility fitted to make the option value correct. Using option pricing models 
has evolved as a bit of an art form to adapt to market realities.

»» Short selling of stock is permitted. Remember that the no-arbitrage 
argument used to price options (and covered in the first section in this 
chapter) relies on a portfolio with short positions. The argument is invalid if it 
isn’t possible to short stock.

Restrictions indeed exist on short selling, but in practice they don’t invalidate 
the construction of the riskless portfolio that shorts stock.

»» You incur no transaction costs. The risk-free portfolio I use to price options 
has to change from time step to time step, but I assume that this change 
doesn’t cost anything.

Clearly, you incur transaction costs in the real world. The construction of a 
riskless portfolio with delta hedging definitely has costs. For the most heavily 
traded stocks, this cost may be low but for others it may lead to an inaccuracy.

»» Dividends don’t apply. Most stocks do pay dividends, and they can be 
included in the analysis if required. Dividends are usually treated as fixed, just 
as interest is, but in reality are random. But this complication is one for 
experts.

Introducing Black-Scholes – The Most 
Famous Equation in Quantitative Finance

In this section, I explain the Black-Scholes equation for option pricing. The 
Black-Scholes equation is the basis for a lot of what quantitative analysts do. 
Although this section is highly technical, the ideas of no-arbitrage and risk 
neutrality are the same as those in the binomial model. Check out the section 
‘Looking at a Simple Portfolio with No Arbitrage’ at the beginning of this chapter 
if you missed it.

Just as in the binomial model, I set up a portfolio with positions in an option and 
a short position in stock. The value of the portfolio is P where P V S t S, .
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The brackets after the V indicate that the option price, V, depends both on the 
stock price, S, and time, t. Delta, Δ, is a constant that tells you how much stock you 
need to make the portfolio riskless. Assume that the stock price, S, follows a geo-
metric Brownian motion (GBM), which I talk about in depth in Chapter 3, and use 
the equation:

dS S dt S dz.

The two terms on the right side tell you that the movement of the stock price 
drifts in time, t, at a rate, μ, but that it also has a random component dz with a 
volatility determined by σ. The statistical distribution of this random component 
is described by the normal distribution. Now, for the portfolio to be riskless, you 
need to work out the changes in the portfolio value, P, so as to relate them to 
changes in a riskless portfolio with only cash in it. As always, the position size for 
the stock is given by Δ:

dP dV dS .

In Chapter 3, I show how you can work out how small changes in V depend on the 
small changes in S and t that drive changes in option prices. The equation is:

dV V
t
dt V

S
dS S V

S
dt

2 2 2

22
.

THE ECONOMISTS BEHIND BLACK-SCHOLES
The Black-Scholes equation was derived by economists Fischer Black and Myron Scholes 
in 1973. It allowed a mathematical way of pricing options for the first time.

Its success meant that banks became confident enough to invent new forms of financial 
derivatives in the knowledge that they could be priced accurately using the ideas and 
analyses pioneered by Black and Scholes. Quantitative finance flourished and became 
an accepted new subject. Soon quants, or quantitative analysts, became regular employ-
ees of investment banks. Typically quants have PhDs in mathematics or physics and are 
good at coding their mathematics as computer programs. Now, many specialist masters 
courses are run at universities for those wishing to become expert in quantitative 
finance.

In 1997, Myron Scholes and a fellow economist Robert Merton were awarded the Nobel 
Prize for their work on option pricing. Sadly, Fischer Black died several years earlier but 
would almost certainly have been included in the prize had he survived.
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In other books, this equation is called Ito’s lemma. Please don’t ask what a lemma 
is, but it often seems to be a handy equation.

You can now use the equation for dV in the equation for the portfolio change dP 
to get:

dP V
t
dt V

S
dS S V

S
dt dS

2 2 2

22
.

Two terms in this equation represent dS, the small change in the stock price. 
Because you’re constructing a hedged portfolio that should be risk free, dP 
shouldn’t depend on dS, which is a random variable. Notice, though, that by a 
careful choice of Δ, the terms in dS disappear! Do this using

V
S

.

It’s that simple. But it means that to maintain a riskless portfolio, you have to 
keep the option hedged with an amount of stock, Δ. Remember that V V S t, , so 
the option price is constantly changing with time and with the price of the under-
lying stock. This fact means that Δ also constantly changes, and you need to buy 
and sell stock continuously to keep your portfolio riskless. If transaction costs are 
low, it should be possible to periodically rebalance your portfolio and keep it close 
to riskless.

The next step in the derivation of the Black-Scholes equation is to make use of the 
fact that the portfolio, P, is riskless. Any small change in its value over time can 
only be due to the risk-free rate of interest. If the returns to the portfolio were 
different from the returns on cash, there would be arbitrage opportunities. For 
example, if the portfolio earned less than cash, it could be shorted and the pro-
ceeds invested in a cash account earning more. That would generate riskless prof-
its and so should not be possible.

And so:

dP Pr dt .

This equation is just saying that the interest, dP, earned on an amount of money, 
P, can be calculated by multiplying by the interest rate, r, and the length of time 
in the bank, dt. Putting together the two equations for dP you get:

Pr dt V
t
dt S V

S
dt

2 2 2

22
.
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But now you can use the defining equation for P at the top of this section and 
cancel the dt throughout. You also need to use the equation for Δ in terms of the 
partial derivative of V with respect to S:

V
t

S V
S

rS V
S

rV
2 2 2

22
0.

This is the world-famous Black-Scholes equation for the price of an option. The 
equation is a partial differential equation because the option price, V, is a function 
of both the underlying stock, S, and time, t.

Solving the Black-Scholes Equation
The Black-Scholes equation isn’t simple and solving it is less so. Whole books 
have been devoted to solving partial differential equations in two variables. It’s 
possible to solve the Black-Scholes equation analytically (using algebra) for some 
special cases such as European puts and calls.

But the Black-Scholes equation has many solutions depending on the final condi-
tions. Many of these solutions can be found only by numerical methods – computer 
calculations that rely on creating a grid of values for the stock price and time and 
finding numbers that satisfy the equation itself, the final conditions and the ini-
tial value of the underlying. In a way, this is similar to the binomial tree method 
(see ‘Pricing in a Single Step’ earlier in this chapter) in which the life of an option 
is split into discrete time steps and the possible values of the underlying stock are 
explored at each step by considering up and down moves in the stock.

Black-Scholes applies only to a non-dividend paying stock, but it applies to both 
put and call options whether they’re European or American style. With small 
modifications, the Black-Scholes equation can be used for future options, cur-
rency options and index options. It does not apply to bonds, however, because 
they don’t follow the geometric Brownian motion. As a bond comes to close 
redemption, its value fluctuates less and less because it’s soon to be paid back as 
cash. (Chapter 12 has an equation that applies for bonds.)

To make use of Black-Scholes, you need to know the final conditions, a maths 
expression for knowing what happens at expiry. The final conditions are the pay-
off function. For a call option, the final condition is that V S T S X, max , 0 , 
while for a put option it’s V S T X S, max , 0 . In both cases, X is the strike 
price for the option.
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A third way to solve the Black-Scholes equation is by using the Monte Carlo simula-
tion, a method in which you generate random numbers to mimic the geometric 
Brownian motion assumed in the Black-Scholes analysis. By creating many pos-
sible paths for the underlying asset between the current moment and expiry, you 
can value options using the concept of risk neutrality. The upcoming section 
‘Valuing Options Using Simulations’ has more on this.

The solution for the Black-Scholes equation for a European call option at time t, 
with strike price, X, and expiry date, T, is given by the formula:

V C SN d Xe N dr T t
1 2 .

C indicates that this is the price of a call option. The parameters d1 and d2 are given 
by the formulae:

d
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r T t

T t
1

21
2

ln

d

S
X

r T t

T t
d T t2

2

1

1
2

ln
.

Sigma, Σ, is the volatility of the stock, and r is the risk-free rate of interest. The 
function N(x) is the cumulative normal distribution function. This function is 
defined by an integral over the normal distribution:

N x e d
x

1
2

1
2

2

.

By integrating the normal distribution from minus infinity up to x, the equation 
calculates the probability that the variable is less than x.

The formula for a put can be expressed using the same parameters:

V P Xe N d SN dr T t
2 1 .

Deriving these formulae for call and put options analytically using algebra is no 
small task. The Black-Scholes equation itself can be simplified by changes of vari-
able but advanced maths is still required to solve it. An alternative approach is to 
directly use the risk-neutral concept introduced in the section on the binomial 
method ‘Looking at a Simple Portfolio with No Arbitrage’. The value of an option 
is the expected value of the payoff at expiry, assuming the asset followed geomet-
ric Brownian motion with an expected return equal to the risk-free rate.

For a call option, you can write this phrase mathematically, using E to indicate the 
expected value:

C e E S Xr T t max , 0 .
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The payoff for a call option is S X , if S X  and is zero otherwise, so it can be 
written in the form shown. The payoff is the maximum of the two values indicated 
in brackets. To calculate the expected value, you need to know the statistical dis-
tribution of the stock prices. In Chapter 3, I show that a stock price follows a geo-
metric Brownian motion:

ln
S t
S

X ti
i

N

0

2

1

1
2

.

The additive motion given by the sum of the steps, Xi, has a drift given by γ if the 
probability of an up move is:

p 1
2

1 .

When pricing options, you must work in the risk-neutral world so you must 
replace γ by the risk-free interest rate, r. Then the equations for probability are 
identical and correspond with the correct probabilities for the risk-neutral pro-
cess. As shown in Chapter 3, ln S t  (ln is the natural logarithm) has a normal 
distribution but with a mean and standard deviation given by:

ln , .S r T T
2

2

In a risk-neutral world, the value of an option can be expressed as the discounted 
value of the expected value of the option at time, t. The formula in the first section 
of this chapter for the value of an option, V, working backwards through the bino-
mial tree is exactly this form. Here you use the probability distribution for the 
natural logarithm motion of S. Also, you need to use a formula from Chapter 2 for 
the expectation, E, of a random variable distributed according to a continuous 
distribution such as the normal distribution. Putting all these formula together, 
you get this formula:

C e E S Xr T t
Tmax , 0 .

Note: In this formula, the time to expiry of the option is T whilst the current 
time is t.

The expectation, E, is an integral over a normal probability distribution, which I 
denote by Φ, but with ln ST as the argument. The arguments of Φ indicate the 
mean and standard deviation:

C e S r T t T t S X dS
S

r T t
T

T

T
ln , max ,

2

2
0 .

Because ln ST is normally distributed, the differential is d ln ST, which equals dST/
ST, which explains the last part of the integral.
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To calculate an integral requires a few tricks. You’ll find it awkward integrating 
over a normal distribution if the variable is a logarithm of another variable. A good 
idea is to introduce a new variable, max , 0S XT . If you remember that the dif-

ferential of a logarithm, ln S, is equal to 1
S

, then dy dS
S

. (Remember that the 

lowercase d indicates a differential from calculus.)

Rearrange this calculation to get dS S dy and then use the fact that e Sy  to get 
dS e dyy . I made use of properties of the exponential function indicated with the 
e. The online Cheat Sheet at www.dummies.com has more about the exponential 
function. Doing so allows you to change the variable in the integral from S to y and 
life gets a little easier.

The exponential function is the inverse of the natural logarithm. So if y Sln , 
then S e y. Also, keep in mind that e 2 718.  is the special base of the natural 
logarithm.

If that wasn’t enough, here’s more: the integral for C is over the payoff function, 
which is non-zero only if S X . This fact means that you can replace the lower 
limit of the integral with X and no longer need to use the max function. After the 
change of variable using the natural logarithm, this lower limit becomes ln(X).

The normal distribution probability density with a mean, μ, and standard  
deviation, σ, is given by the formula:

, 1
2

1
2

2 2

e
x

.

Using the formula for the normal distribution and making the change of variable, 
the integral for the value of a call option becomes:

C e
T t

e e X
r T t y S r T t T t

y

2

1
2

22
2

2ln
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Xln

.

Properties of the Black-Scholes Solutions
Although the solutions to the Black-Scholes equations look complicated, they 
have some properties that are quite straightforward. First, I look at how the price 
of a put option depends on the time to expiry. This dependence is shown in 
Figure 10-5 for an option with strike price X 200.

http://www.dummies.com


CHAPTER 10  Examining the Binomial and Black-Scholes Pricing Models      203

The price of the put options declines towards expiry. For a randomly moving 
underlying stock, time is what you need to achieve a favourable outcome, so as 
time runs out, the option price declines, and at-the-money S 200 and out-of- 
the-money options S 200 expire worthless, as Figure 10-6 shows.

The option price always rises as a function of the underlying stock price. The 
dispersion in prices due to volatility has a maximum effect when the option is at- 
the-money for which S X . Deep out-of-the-money options with S X  are 
effectively valueless.

FIGURE 10-5:  
Put option price 
for strike of 200 

and various 
underlying stock 

prices. 
© John Wiley & Sons, Ltd.

FIGURE 10-6:  
Call option price 

for a variety of 
volatilities, strike 
of 100 and time 
to expiry of one 

year. 
© John Wiley & Sons, Ltd.
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Generalising to Dividend-Paying Stocks
Most stocks pay dividends, unlike the examples I use earlier in this chapter, and 
you can modify the basic Black-Scholes equation to take into account dividends 
and analytical solutions. The derivation of the Black-Scholes equation needs to be 
changed a little bit.

Assume that dividends are paid continuously – a bit like interest payments. This 
assumption is not completely realistic but gives you a good idea of the impact of 
dividends, d, on option prices. In the equation for the change in the portfolio 
value, dP, you must include a term for the dividends paid out (remember that the 
portfolio is short an amount of stock, Δ). Writing the dividend rate as q, the equa-
tion then becomes:

dP V
t
dt S V

S
dt qS dt

2 2 2

22
.

Substituting for the value of Δ and equating to Prdt, you get a modified Black-
Scholes equation:

V
t

S V
S

r q S V
S

rV
2 2 2

22
0.

This equation can be solved in similar fashion to the non-dividend paying equa-
tion resulting in

V C Se N d Xe N dq T t r T t
1 2  and

V P Xe N d Se N dr T t q T t
2 1 .

The parameters d1and d2 are now slightly changed:
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An intuitive way to see that these new formulae are correct is that an option on a 
stock with a continuous dividend of q must have the same value as a non-dividend 
paying stock of value: Se q T t .

When a stock goes ex-dividend, someone who buys the stock isn’t eligible to 
receive the latest dividend. On the ex-dividend date, the stock drops in value by an 
amount equal to the dividend payment. The day before, buyers of the stock were 
eligible to receive the dividend. So in the real world of discrete dividend payments, 



CHAPTER 10  Examining the Binomial and Black-Scholes Pricing Models      205

the stock price declines by an amount equal to dividend payments. In the approxi-
mate, but convenient, world of continuous dividend payments, the stock price 
declines continuously with a factor determined by the dividend rate, q.

Substituting in Se q T t  to the Black-Scholes solutions for C and P results in the 
equations in this section.

Defining other Options
So far in this chapter, I talk about how to price call and put options with a payoff 
that depends on how far above or below the strike price the stock price ends up at 
expiry. You may also have options that pay off depending only on whether the 
stock price ends up above or below the strike price. These options are called binary 
options because the only thing that matters for the expiry price is the above or 
below strike price outcome. The payoff function can be written using the Heaviside 
function, H(x), which is zero for x values less than zero and one for positive x values 
as shown in Figure 10-7.

Using this function, the payoff for a binary call option is H S X ; for a binary 
put option the payoff is H X S . These options can be valued in similar 
fashion to the calculations in the section ‘Solving the Black-Scholes Equation’. 
The results are simpler and can be written using exactly the same definition of 
parameter d2:

C e N d P e N dr T t r T t
2 21and .

FIGURE 10-7:  
Heaviside 

function used to 
define binary 

option payoff. 
© John Wiley & Sons, Ltd.
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Valuing Options Using Simulations
A third way to value options that’s good to know about is called the Monte Carlo 
simulation, which I introduce in Chapter 3. Exactly as for the binomial tree and 
Black-Scholes equation, this method uses the idea that the value of an option is 
the present value of the expected payoff using a risk-neutral random walk. The 
method works like this:

1.	 Simulate a risk-neutral random walk starting from today’s price and 
going up until expiry of the option.

If the expiry time is T and the current time, t, equals zero, and you use N time 
steps, then the time steps are t T N/ . Starting at t = 0, you calculate the 
stock price, S(t), at every time step up to the expiry at t = T. Use the formula 
S t t S t rS t t S t t  to calculate the stock price at any given 
time step from the price at the previous time step. The volatility of the stock is 
σ, and r is the risk-free interest rate; ϕ is a random number drawn from a 
normal distribution with mean zero and a standard deviation of one.

2.	 Calculate the option payoff using the strike price and the equation 
max , 0X ST  for a put or max , 0S XT  for a call.

3.	 Repeat Steps 1 and 2 many times.

Depending on how accurate a value for your option you want, you can repeat 
the steps as many as a 100,000 times.

4.	 Calculate the average value of all the payoffs from Step 3.

5.	 Calculate the present value (t = 0) of your option from the average of the 
pay-offs using the risk-free interest rate.

As a formula, this present value is written as V e E S Xr T t
Tpayoff ,  

where r is, as usual, the risk-free interest rate. Chapter 4 explains about 
calculating present values if you need to brush up.

Instead of the time step formula given in Step 1, you can use instead:

S t t S t e
r t t1

2
2

.

This formula is slightly more complicated, but it’s more accurate so you may get 
away with using far fewer time steps.

Chapter  3 gives some details about these time-step formulae for a geometric 
Brownian motion and also how to generate random numbers. Monte Carlo simu-
lation is easy to implement using a computer, especially if you use a language 
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such as Python or R, but it can be time consuming because of the large number of 
walks needed to get a good answer.

A big advantage of the Monte Carlo simulation is that it’s flexible enough to value 
some exotic options such as barrier options. Barrier options have a payoff that 
depends on the path taken by the stock price as time passes towards expiry – not 
just on the final stock price at expiry. Typically, barrier options depend on the 
stock price breaching a specific value prior to expiry or the opposite – the stock 
price not breaching a specific value prior to expiry. Both of these payoffs are easy 
to calculate given the simulated risk-neutral walk. You just need to check every 
walk to see if specific barrier values are breached or not.
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IN THIS CHAPTER

Understanding the solutions of  
Black-Scholes

Managing risk by delta hedging

Meeting the other Greeks

Seeking portfolio balance

Preventing possible errors

Using the Greeks 
in the Black-Scholes 
Model

In this chapter, I talk about more solutions to the Black-Scholes equation. (I talk 
about Black-Scholes in Chapter 10 as well.) The Black-Scholes model for the 
pricing of vanilla options has limitations, but the solutions to the model equa-

tion provide a good framework for understanding the behaviour of options.

I introduce the Greeks here – not the ancient philosophers but the quantities that 
show how sensitive the Black-Scholes solutions are to variations in parameters 
such as the interest rate and volatility and in variables such as time and the under-
lying asset price. For banks that sell or write option contracts, using the Greeks is 
a way of working out how the value of their portfolio of options may change and 
to hedge portfolios of options.

Chapter 11
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Using the Black-Scholes Formulae
The price of a European style call option, C, with strike price X and time to matu-
rity T on a non-dividend paying stock with price S and volatility σ is 
C SN d Xe N drT

1 2 , where 

d

S
X

r T

T1

21
2

ln
 and d d T2 1 .

The parameter, r, is the risk-free rate of interest, which is set to one per cent in 
the following example, so r 0 01. .

The constant e = 2.718. . . in the formula for C is the base of the exponential func-
tion. You can find out more about it in the Cheat Sheet at www.dummies.com. The 
function N(x) is the cumulative normal distribution, and I explain more about it 
just below.

The two constants d1 and d2 occur a lot in this chapter. They’re used to make the 
algebra of the Black-Scholes solutions simpler but they don’t have any simple 
interpretation. The formulas for them show you how to calculate them from sim-
pler parameters such as the volatility and the risk free rate.

As an example, I set S 200 with a strike price of X 220. You can think of this 
example in any currency you want, but you must use the risk-free rate appropri-
ate to that currency. Given that the interest rate is expressed as a return per 
annum, you must express the time to maturity in years. As an example, I use 
T 0 5.  so that there are six months to go until the option expires. The volatility, 
σ, must also be expressed on an annual basis.

To convert a volatility calculated using daily returns data, multiply by the square 
root of the number of trading days in the year, which is normally about 250. So, 
multiply a daily volatility by approximately 16 to get the annual volatility:

d1

200
220

0 01 0 5 0 2 0 2 0 5

0 2 0 5
0 568

ln . . . . .

. .
.

d d2 1 0 2 0 5 0 568 0 2 0 707 0 709. . . . . . .

N(x) is the cumulative normal distribution function that I explain more fully in 
Chapter 10. N(x) is defined by an integral that can’t be expressed as a simple for-
mula. If you’ve forgotten your school calculus then think of an integral as repre-
senting the area under a curve. So N(x) is the area under a normal distribution 
from minus infinity up to x. The calculation has to be done numerically or by 
using an approximation. I used the function Norm.Dist provided in Excel.  

http://www.dummies.com
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If you use the Norm.Dist function, opt for the cumulative normal distribution by 
choosing the fourth argument as True. Doing so, I get that N d1 0 285.  and that 
N d2 0 239. .

This calculation means that I can now write for the option price:

C e200 0 285 220 0 239 4 680 01 0 5. . .. . .

The option is quite cheap because it starts with the share price less than the strike 
price so it’s out of the money.

Hedging Class
Many options are traded on exchanges such as the Chicago Board Options Exchange 
and Eurex. However, most are sold by banks to clients wanting a more tailored 
product. The bank is left with the problem of managing the risk in its option port-
folio. It may earn a good premium for selling the option but that may be more than 
wiped out if a change in the price of the underlying asset means that the bank has 
to pay the buyer of the option a substantial payoff at expiry. In principle, this 
problem doesn’t matter. The bank may lose badly on one sale but do well on the 
next. If it prices the options correctly and charges clients higher prices than given 
by the Black-Scholes formula, in the long run it should make a profit.

The problem is that the short-run profit and loss can look nasty, which means 
that the bank has to hold a lot of capital in reserve to stay solvent during unprofit-
able periods. In practice, this isn’t an acceptable way of running a business. If the 
bank sold many options, the effect of occasional large losses is reduced because of 
the constant profit gains from options that are worthless at expiry. But despite 
that, these so-called naked positions, in which options are sold without being 
hedged, gives plenty of scope for an embarrassing profit and loss account. In con-
trast a covered position is much safer. It involves hedging an option with an equal 
and opposite position in the underlying asset.

Sometimes selling an option is referred to as writing an option. That’s because the 
buyer receives a document. It doesn’t matter which word you use.

The solution adopted by banks to reduce the riskiness of selling options is hedging. 
Hedging means to buy (or sell) some other asset that offsets the risk taken in sell-
ing (or buying) an option. I talk about hedging options in Chapter 5.

A bank that has sold an option can hedge by buying or selling the underlying 
shares. The simplest form of hedging is static hedging. In a static hedge, the bank 
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buys (or sells) the underlying asset and leaves it in place until the option expires. 
For example, the bank sells a call option on a stock it can simultaneously buy. If 
the option expires in the money, the bank has no problem, it just sells its stock 
position to settle up with the client. The bank doesn’t experience the big loss that 
a naked position would have caused. The snag, though, is if the stock price drops 
and the option expires worthless. The bank was paid the premium for the option 
but it lost money on the stock used to hedge the option.

In the following list, I consider several scenarios involving basic hedging strate-
gies. A bank sells call options on 10,000 shares for £47,000. The strike price is 
£220 while the share price is £200. The risk-free rate is 0.01 and the annual vola-
tility of the shares is 0.2. The option has a time to maturity of 6 months, or 
0.5 years. For a non-dividend paying stock, the Black-Scholes formula for this 
gives a price of £4.70 (check the preceding section for the calculations).

»» Scenario 1: The bank adopts a naked position. At the end of the six months, 
the share price ends at £170 and the option is worthless because the share 
price is less than the strike price. The bank receives £47,000 in premium  
income.

»» Scenario 2: The bank adopts a naked position, but at the end of six months 
the share price is £230. The share ends up £10 higher than the strike price 
and so the bank has to pay 10 000 10, £ £100,000 to the client. This loss is big 
given the £47,000 premium.

»» Scenario 3: The bank adopts a covered position and purchases 10,000 shares 
at £200 for £2 million. The share drops to £170 by the end of the six months. 
The bank received the £47,000 premium but lost £30 10,000 £300,000 on its 
hedge, which makes the net loss £253,000.

»» Scenario 4: The bank adopts a covered position, but the share price rises  
to £230 at the end of the six months. The client exercises her option at  
expiry and buys the shares at the strike price of £220. The bank made 
£ 10,000 £200,00020  on the hedge and £47,000 premium income for a total 
of £247,000.

You can certainly conclude from these scenarios that simple covered or naked 
positions are risky and can produce large losses. Static hedging is not a good idea. 
The solution is dynamic hedging in which the size of the hedge is adjusted accord-
ing to changes in the price and volatility of the underlying assets. To do this you 
need to be able to calculate the sensitivity of the option price to the underlying 
asset price – otherwise known as delta, or Δ. Please read on in the next section to 
find out more.
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That’s Greek to Me: Explaining  
the Greek Maths Symbols

A bank uses the Greeks to work out how sensitive its overall option position is to 
change. Probably the most important change is a change in the underlying asset 
price. That Greek is called delta and is written Δ. Other important Greeks are also 
in evidence, such as theta, or Θ, which gives the sensitivity of option value to time 
to expiry. Then you have a quantity called vega, which isn’t a letter in the Greek 
alphabet but was carefully thought up to sound like one. Vega measures the sen-
sitivity of option value with respect to changes in volatility. Vega is often denoted 
using ν, the symbol for the Greek letter nu.

Delta
The most important Greek is delta, which measures the change in the value of 
options as the underlying asset price changes. Delta measures the sensitivity of 
the option value, V, with respect to changes in the underlying asset price, S:

V
S

.

Using the cumulative normal distribution, N(x), calculations show that for a non-
dividend paying European call option, Call N d1 , where d1 is the same quantity 
as in the first section in this chapter, ‘Using the Black-Scholes Formulae’.

To work out the formula for Δ, you need a bit of algebra. However, Δ is such an 
important quantity that it’s good to know where it comes from.

The formula for the price of a call option, C, is:

C SN d Xe N drT
1 2 .

In this formula, S is the underlying asset price whilst X is the strike price of the 
option. The risk-free interest rate is r and the time to expiry of the option is T. 
Lowercase e indicates the exponential function and has the value e = 2.718 . . . .

To differentiate this formula with respect to the stock price S, remember that the 
quantities d1 and d2 both depend on S. Also, the cumulative normal distribution is 
defined by an integral so that:

N
x

x
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where ϕ is the standard normal distribution. That’s the normal distribution with 
mean = 0 and standard deviation = 1. You can now use the chain rule of calculus so 
that:

N
S

N
d

d
S

d d
S1

1
1

1 .

The derivatives of both d1 and d2 can be found by remembering that the derivative 
of the natural logarithm ln(x) is simply 1

x
. Using the definition of d1 again you get 

that:

N d
S

d
S T

1
1

1 .

The same formula applies for d2 because d1 and d2 differ by an amount that doesn’t 
depend on S, so their derivatives are the same. To differentiate the first term of 
the formula for the call option price, you need to use the product rule from calcu-
lus giving you:

C
S

N d
S T

S d Xe drT
1 1 2

1 .

The term in square brackets turns out to be equal to zero. To see this, you need to 
use the formula for d2 and for the standard normal distribution –ϕ(x). The argu-
ment x in brackets shows the point at which you need to calculate the normal 
distribution function:

d d T2 1

x e x1
2

2 2.

Substitute the expression for d2 into the second term in the square brackets to get:

Xe erT
d T

1
2

1
2

2 .

Expanding the squared term, you can rewrite this formula as:

Xe d erT d T T
1

21
2

,

which uses the definition of ϕ.

Going back to the first section in this chapter, you can now substitute in the defi-
nition for d1 to get:

Xe d erT rT S X r T T
1

2 22 2ln
.
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The formula looks complicated but, remarkably, almost all the terms cancel out 
leaving:

X d e S dS X
1 1

ln .

Going back to the formula for Δ with the square brackets, the whole term in square 
brackets cancels out so that finally you have:

Call N d1

as stated at the beginning of this section.

Similar calculations show that for a European put option on a non-dividend pay-
ing stock: Put N d1 1.

Delta is positive for a call option but negative for a put option. If delta is positive, 
the option price rises with the underlying stock price. A short position in a call 
option is then hedged by a long position of the stock. If the stock price rises, the 
drop in value of the short call position is exactly compensated for by the rise in the 
long stock position. By contrast, with negative delta, a short position in a put 
option is hedged by a short position of the stock. Then, if the stock price rises, the 
rise in the value of the short put position is exactly matched by the fall in the value 
of the short position in the stock. A plot of delta is shown in Figure 11-1.

The figure shows that if the stock price is substantially below the strike price, you 
don’t need to hedge. Only when the stock price rises towards the strike price do 
you need to start hedging with stock.

FIGURE 11-1:  
Delta for calls and 

puts with strike 
price of £100 in 

any currency. 
© John Wiley & Sons, Ltd.
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Delta is at the heart of option pricing. The concept of delta neutral was introduced 
so as to create a riskless position that could be valued using the risk-free interest 
rate. A position is delta neutral if its overall value doesn’t alter with changes in the 
price of the underlying asset.

This is the way banks like to manage their option portfolios so as not to lose 
money (or, in fact, to gain money) with sudden changes in asset markets. The 
plan is to make a steady income from the option premiums and to remove risk 
from their positions with hedging. Like all good plans, a snag can be found: the 
delta of an option changes as the price of the underlying asset changes, which you 
can see plotted in Figure 11-1. This variation means that the amount of underlying 
asset used in the hedge has to change from time to time to keep the overall posi-
tion delta neutral.

Dynamic hedging and gamma
Delta allows you to figure out how to hedge an option position using the underly-
ing asset. A great start, but delta varies with the price of the underlying asset and, 
in fact, with the passage of time. That variation is because delta, through the 
quantity d1 defined earlier in this chapter, depends upon the underlying asset 
price and its volatility. So, as time goes by delta changes even if the underlying 
asset price does not. The process of adjusting a portfolio so as to maintain a delta 
neutral position is called rebalancing. Normally, it involves buying or selling the 
underlying asset. If the rebalancing is carried out frequently, it’s sometimes called 
dynamic hedging.

Hedging an individual option daily or even more frequently would be expensive 
for the bank because each trade has transaction costs. Over the life of the option, 
these mount up. Reducing the frequency of hedging may help, but realistically the 
bank would need a large portfolio of options so that the cost of hedging is offset 
by the profit from many premiums.

A useful quantity to look at if you’re frequently adjusting a hedged portfolio is the 
gamma value (Γ) defined as the second derivative of the option price with respect 
to the underlying asset price. In other words, the gamma value is the first deriva-
tive of delta with respect to the underlying asset price because delta is already the 
first derivative. As an equation, the definition of gamma is then:

S
V
S

2

2 .

For a European call option on a non-dividend paying stock with price S, volatility 
σ and time to expiry T, the gamma is given by the formula:

d

S T
1 .
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Phi is the standard normal distribution, and d1 is a complicated function of the 
underlying asset price and volatility. Figure 11-2 shows a chart of gamma and how 
it varies with the stock price for a call option with a strike price of 100 in any cur-
rency, time to expiry of 0.5 and annualised volatility of 0.2.

The chart has a big hump around the strike price of £100 showing that at-the- 
money options have a large gamma. Delta therefore changes rapidly with changes 
in the underlying asset price and so at-the-money options are costly to hedge 
because of the need to rebalance more frequently.

The gamma value of an underlying asset is zero because the second derivative of 
S with respect to S is zero. This fact means that you can’t adjust the gamma of an 
option portfolio by buying or selling the underlying asset. You can, however, 
change it by buying or selling other options. A bank that sells over-the-counter 
options can potentially hedge its portfolio using exchange-traded options so as to 
make its portfolio gamma neutral – in other words, make the overall value of 
gamma for its portfolio equal to zero.

The advantage of a gamma-neutral portfolio is that the delta hedging can be less 
frequent as the portfolio value is initially independent of the underlying asset 
price. The snag is that options have higher transaction costs than the underlying 
asset so that achieving gamma neutrality by buying or selling options can be 
costly.

FIGURE 11-2:  
Gamma of a call 

option with a 
strike price 

of £100. 
© John Wiley & Sons, Ltd.
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Theta
Theta (Θ) is the rate of change of option value with respect to time. If V is the value 
of a call or put option, theta is defined by the equation:

V
t

.

For a European call option with a strike price, X, on a non-dividend paying stock 
with price S, theta works out to be:

S d

T
rXN d e rT1

22
.

T is the time to expiry of the option, r is the risk-free interest rate and σ is the 
volatility. The parameters d1 and d2 are complicated functions of the underlying 
asset price and its volatility defined earlier in this chapter.

Figure 11-3 shows a plot of how theta varies with the underlying stock price for 
options with a strike price of 100 in any currency. Notice that for a call option 
theta is always negative.

As the time to maturity gets shorter and shorter, the value of an option tends to 
decline because the opportunities for a successful exercise become fewer and 
fewer. Time is on the side of optionality.

FIGURE 11-3:  
Variation of theta 

with stock price 
for European put 

and call options 
with a strike 

price of £100. 
© John Wiley & Sons, Ltd.
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Rho
Rho (P) is the rate of change of the value of an option with respect to the risk-free 
interest rate. The risk-free rate is often quite stable over the life of an option, so 
rho is of less significance than the other Greeks.

You can calculate the value of rho from the Black-Scholes solution in much the 
same way as for the other Greeks. For a European call option on a non-dividend 
paying stock with strike price X and time to expiry T, rho is given by XTe N drT

2 .

Vega
Vega (ν) is the rate of change of the value of an option with respect to the volatil-
ity. V is the value of an option or a portfolio of options:

V .

For a European call option with time to expiry, T, on a non-dividend paying stock 
with price, S, vega is given by the formula: S T d1 .

In a way, vega doesn’t make sense because sigma is assumed to be constant in the 
Black-Scholes analysis. However, analysis with more complex models that don’t 
assume constant volatility shows that the vega derived from the Black-Scholes 
equation is a reasonable approximation to a more realistic model. But beware! 
Figure 11-4 shows a plot of vega against the stock price for a non-dividend-paying 
call option. Note the peak around S 100, which is the strike price. This figure 
shows again that options that are out of the money or well in the money are much 
easier to hedge as they have much less sensitivity to the volatility of the underly-
ing asset.

FIGURE 11-4:  
Variation of Vega 

with the 
underlying stock 

price for an 
option with a 
strike price of 

£100. 
© John Wiley & Sons, Ltd.



220      PART 4  Option Pricing

Relating the Greeks
From the Black-Scholes equation, you know that:

V
t

S V
S

rS V
S

S
2 2

22
0.

You can certainly find an equation relating the value of the Greeks because all the 
terms in the Black-Scholes equation are, in fact, Greeks. So you can rewrite the 
equation using theta (Θ), gamma (Γ) and delta (Δ):

2 2

2
S rS rV .

For an option or a portfolio of options that’s delta neutral, this formula simpli-
fies to:

2 2

2
S rV .

Rebalancing a Portfolio
You can calculate the delta of a portfolio of options from the deltas of the con-
stituent options. If the portfolio consists of n options each in a quantity ci, then 
the delta of the portfolio is given by:

ci i
i

n

1
.

For example, in a portfolio consisting of options in the same stock:

Long 1,000 call options with 0 6.

Short 2,000 put options with 0 4.

1 000 0 6 2 000 0 4 1 400, . , . , .

The delta of the portfolio is 1,400, which means that it can be hedged (made delta 
neutral) by shorting 1,400 of the underlying shares. Notice that the delta for the 
put is negative while the call option has positive delta. A short position is given a 
negative sign, while a long position has a positive sign as the positions respond in 
opposite ways to changes in the price of the underlying share.

You can calculate the gamma of a portfolio of options from the gammas of the 
constituent options:

ci ii

n

1
.
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Imagine that you have a short position in a call option with a delta of 0 but a 
gamma of −1,000. You want to make this position both gamma and delta neutral. 
To do this, you can buy traded call options in the same underlying asset with a 
gamma of 0.25 and a delta of 0.5. You need to buy 4000 of these options to make 
the position gamma neutral as 4000 0 25 1 000. ,  neutralises the gamma of the 
original option. Now, however, your position has a delta of 4000 0 5 2000. . To 
neutralise this, you have to short 2000 shares in the underlying asset. Because the 
gamma of the underlying asset is always zero, this doesn’t affect the gamma of 
the overall position and so you’re now delta and gamma neutral. The final position 
is short call position with

0

1 000,

4,000 call options with 0 5.  and 0 25.

Short position in stock of 2,000.

Troubleshooting Model Risk
Models such as Black-Scholes, but certainly not limited to Black-Scholes, are used 
extensively by financial institutions such as banks. This use presents risks to the 
institutions because each model comes with its own assumptions and limitations. 
Some of these assumptions and limitations may not be as well understood as the 
ones for Black-Scholes. A lot of potential exists for the misapplication of formulae 
from quantitative finance because of the proliferation of financial contracts.

As an example, the Black-Scholes equation cannot be applied to bonds. Sovereign 
bonds are redeemed at a known date in the future for an amount guaranteed by a 
government. The bond price therefore converges to this amount. The assumption 
of geometric Brownian motion used in the Black-Scholes analysis doesn’t apply 
because it produces a large variation in possible prices at the redemption date and 
not a fixed value.

Because of the risks of using models, banking regulators such as the Office of the 
Controller of Currency in the United States now provide guidance on how to man-
age model risk. Model risk can arise because

»» The concept behind the model is wrong.

»» The data used to determine the model parameters has errors.

»» The model is misapplied.

»» Incorrect computer code is used.
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A few ways to mitigate these risks include

»» Control risk at the source by using a controlled framework for model develop-
ment with good documentation.

»» Do independent model validation and testing.

»» Have an ongoing review process of model performance.

»» Change the management process for models.

These statements may seem like simple common sense, but in practice banks 
sometimes get the application of quantitative finance badly wrong. A disciplined 
and structured approach is needed for the development, deployment and mainte-
nance of complex models.
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IN THIS CHAPTER

Using caps and floors to limit interest-
rate risk

Examining single parameter interest-
rate models

Understanding arbitrage free models 
of the yield curve

Gauging Interest-
Rate Derivatives

Interest-rates are key quantities in finance because they define the cost of 
borrowing money. Financial market participants naturally want to protect 
themselves against changes in the interest-rate.

Interest-rates themselves are not tradable financial instruments. However, 
instruments such as bonds or swaps are closely connected to interest-rates, and 
so options on these contracts can be used to manage interest-rate risk.

When dealing with interest-rates, you must look at the yield curve for loans of all 
maturities, not just one maturity. Strong connections exist between the interest-
rate of one maturity and the interest-rate of another maturity so that the rates at 
different maturities don’t change in time independently of one another. In prac-
tice, modelling the entire yield curve is a tall order, and market practitioners fall 
back on familiar models such as Black-Scholes (explained in Chapter 10). How-
ever, in the last section of this chapter I give you a flavour of the models for the 
entire yield curve that you can use to price interest-rate derivatives consistently 
with market prices.

Unlike for equity markets where the geometric Brownian motion is considered a 
good model for the movement of stock prices, there is no clearly favoured model 

Chapter 12
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for interest-rates. A variety of models are used, and most of them show some 
form of mean reversion. Some of these models can be solved exactly and used to 
price options on zero-coupon bonds.

Looking at the Yield Curve  
and Forward Rates

Before diving into interest-rate derivatives, you do well to know a bit more about 
bonds and interest-rates themselves. Chapter 4 gives you definitions of interest-
rates and also an introduction to bonds and to bond yields. In this section, I give 
you more about the yield curve and how to work out bond yields.

Funnily enough for a section about interest-rates, a zero-coupon bond doesn’t 
pay any coupon. Instead, you pay an amount, Z, for the bond now, and on maturity 
you receive back £1. So, normally, Z is less than £1. Instead of being paid interest 
in cash, the holder of a zero-coupon bond receives a return on his investment 
through the capital repayment on redemption. The formula Z Z t T,  indicates 
that the price of the zero-coupon bond depends on both the current time, t, and 
the maturity date, T, when you get your £1 back. In Chapter 4, I show that you can 
use the time value of money to work out the value of the zero-coupon bond as 
Z t T e y T t, , where y is the yield to maturity of the bond.

The yield to maturity is a way of expressing the capital return of the zero-coupon 
bond as an interest-rate. Zero-coupon bonds with many different maturities 
exist, and the yield to maturity depends on the maturity date so that y y T . 
However, if you know the yield for a two-year investment and also the yield for a 
one-year investment, you must know the yield for a one-year investment starting 
in a year’s time. That’s a bit amazing. The yield curve seems to be saying some-
thing about the future course of interest-rates.

Before doing the maths, let me provide a couple definitions:

»» The spot interest-rate for an n year investment is the interest-rate for an 
investment beginning now and lasting for n years.

»» A forward interest-rate is the interest-rate for an investment beginning at a 
time in the future. Normally forward rates are inferred from the spot rates for 
investments of different maturities.
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If you invest your money in a zero-coupon bond at a rate of y1 for T1 years or y2 for 
T2 years, in both cases starting from now, then you can work out the forward rate, 
F, for a period starting after T1 years. Using the equation for the time value of 
money, and assuming that T T2 1, you can write e e ey T y T F T T2 2 1 1 2 1 .

By investing now at a rate of y2 for a period of T2, the return is the same as for 
investing now at a rate of y1 for a period T1 and then the remaining T T2 1  years 
at the forward rate of F.

To help with the upcoming algebra, it’s handy to remember that e e eA B A B.

Gathering together the exponents in the interest-rate equation, you can rearrange 

them to get F y T y T
T T

2 2 1 1

2 1
.

If T1 1 year, T2 2 years, y1 0 5. % and y2 1%, then F 2 0 5
2 1

1 5. . .

So, the forward one-year rate is higher than the spot one-year rate.

Forward rates aren’t always higher than the spot rates but often are. Usually, the 
yield curve slopes upward and forward rates are higher than spot rates but occa-
sionally that situation reverses. When short maturity rates are higher than long 
maturity rates, the yield curve is said to be inverted. Sometimes, you get a hump in 
the yield curve for intermediate maturity bonds. Figure 12-1 shows a schematic 
chart of yield curves. The short rate, for a maturity near 0, is 2 per cent for all the 
curves and is shown as 0.02.

FIGURE 12-1:  
Possible shapes 
of yield curves. 

© John Wiley & Sons, Ltd.
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LOOKING AT US TREASURY YIELD CURVES
Economic folklore has it that an inverted yield curve is the sign of an upcoming reces-
sion. The figure here shows constant maturity US Treasury yields. These yields are calcu-
lations based on traded instruments that allow time series to be plotted when the 
maturity is always the same.

Source: Federal Reserve Bank of St Louis Economic Database

The chart shows an inversion in 2000 and then again from the middle of 2006 until 
the middle of 2007 when the one-year maturity has a higher yield than the ten-year 
maturity.

Given the significant financial crisis that ensued in 2008, this chart may seem to prove 
the folklore. But that issue is something for economists. I just wanted to show that quan-
titative models of the yield curve must be able to cope with normal and inverted shapes 
and have a dynamic for moving from one to the other. It’s a big ask and not included in 
this book!
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The equation for the forward rate, F, can be rewritten as F y y y T
T T2 2 1

1

2 1
.

This equation makes it clear that if the yield curve is sloping upward with y y2 1 
then the forward rate, F, is greater than the interest-rate for the longer maturity 
loan at y2. If you make the time period from T1 to T2 smaller and smaller by making 
T T1 2, then y2 tends towards y1 and the equation can be rewritten using deriva-
tives as:

F y T
y
T

.

This rate is now the instantaneous forward rate as it applies for a short time period 
in the future at time T.

You can write this equation in a different way as I describe later in this chapter, so 
I need to explain it here. The forward rate is often written using the price of a 
zero-coupon bond Z as:

F
t

Zln .

If the zero-coupon, at time t 0, has a yield to maturity of y, then Z e yT .

If you now take the logarithm and differentiate this equation, you get back to the 
equation in the previous paragraph.

Forward rate agreements
A forward contract is an agreement in which you promise to buy from or sell to the 
counterparty a financial asset, and the counterparty promises to sell to or buy the 
asset from you at a specified future date at a price agreed today. That makes them 
similar to futures contracts, which you can read about in Chapter 6.

An example of a forward contract, a forward rate agreement (FRA) is an agreement 
between two parties that a specified interest-rate will apply to a specified princi-
pal amount at a future start date and for a specified period.

The main difference between forward contracts and forward rate agreements is 
that forward contracts are less standardised and tend to be traded over the counter 
rather than on an exchange.

The principal amount in a FRA is notional, meaning that the amount is never 
exchanged between the parties and is used only to calculate the magnitude of the 
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interest payment between the parties. The following terms show how an FRA 
works:

»» T 0: The FRA is agreed with notional amount P, forward interest-rate F, start 
time T1 and maturity date T2.

»» T T1: The FRA is for a notional loan of P starting at T1 ending at T2. The value 
of the notional loan is –P while it has to be paid back at T2 with interest 
determined by the forward rate agreed at T 0. The repayment of the 
notional loan is at T2 and so has to be discounted at the interest-rate prevail-
ing at T1. This interest-rate is normally the LIBOR rate rL applicable for the 
period T1 to T2. The cash settlement amount is therefore: e eF T T r T TL2 1 2 1 . 
(I talk about LIBOR in Chapter 4.)

»» T T2: End of the maturity period. This date is only used for the purpose of 
calculating the settlement amount. The contract is settled in cash. If r FL , 
then the cash amount is zero and nothing has to be paid. However, if the 
interest-rate for the period T1 to T2 turns out to be greater than the forward 
rate when the contract was agreed and so r FL , then the payment is 
negative. In other words, the party who was long the loan and wanted to fix 
his interest-rate at F receives a cash payment to compensate for the rise in the 
interest-rate for the period from T1 to T2.

Interest-rate derivatives
The figure in the nearby ‘Looking at US Treasury yield curves’ sidebar shows time 
series for the 1-year US treasury yield and the 10-year US treasury yield. In both 
cases, they vary in time quite strongly. This variation presents risks to market 
participants exposed to these interest-rates especially to businesses borrowing at 
a variable rate. An interest-rate derivative contract designed to deal with this sit-
uation is the so-called cap. It does what is says and places an upper limit on the 
interest-rate paid by a business with a floating rate loan. An interest-rate that 
would otherwise be variable is capped. The floating rate used in the loan is nor-
mally LIBOR. This rate is reset after a period of a month, three months or longer 
and then the new LIBOR rate applies for the next period. Interest is paid at the end 
of each period until the loan expires.

Realistically, a loan is at a higher rate than LIBOR as banks like to make a profit. 
For example, a loan maybe quoted as three-month LIBOR + 1.5 per cent.

A cap provides a payoff for any period of the loan for which the interest-rate 
exceeds the cap rate. Each of these payments for a period is called a caplet. Caps 
are valued by summing the value of all their caplets. If the principal of the loan is 
P, the reset period τ, LIBOR rate of rL and cap rate of rC, then the payment for each 
caplet is: C P r rL Cmax , 0 .
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The max function indicates that the payment is the maximum of the two quanti-
ties between the brackets separated by a comma.

An analogous product to a cap is a floor. Floors work by limiting the interest-rate 
on a floating rate loan from below. Similar to caps, the cash flows are subdivided 
into floorlets and are given by: C P r rF Lmax , 0 .

A portfolio consisting of a long cap and short floor where the cap rate has the same 
value as the floor rate is: C P r r P r r P r rL C C L L Cmax , max ,0 0 .

The combination of a cap and short floor converts the floating rate loan at LIBOR 
into a fixed-rate loan at the cap rate, rC. However, this conversion is the same as 
the interest-rate swap contract from Chapter 4. You can write this as an equation: 
Cap price Floor price Swap price.

Another important type of interest-rate derivative is the swaption. You’ve guessed 
that this derivative is a swap option, and you’re right! (Chapter 4 explains what a 
swap is.) So a swaption gives the holder the right but not the obligation to enter 
into a swap contract at a defined time in the future. This kind of optionality is 
useful to a company that knows it may want to borrow money in the future and 
wants to fix the rate in advance. A possible reason is a business deal that may or 
may not happen.

Many other kinds of interest-rate derivatives exist and especially bond options. 
Some of the most popular are exchange-traded contracts for US T-Notes (ten-
year bonds) where the underlying is a T-Note futures contract rather than the 
bond itself.

SEEING HOW CAPS PLAY OUT
A business wishes to take out a five-year loan for £10 million to fund its expansion. Its 
bank offers it six-month LIBOR plus 2 per cent, resetting every six months and payable in 
arrears. The company wants to limit interest-rate costs to no more than 4 per cent and so 
buys a cap from its bank to fix the maximum borrowing rate at 4 per cent. At the start of 
the loan, six-month LIBOR is at 1.75 per cent so the company is paying 3.75 per cent on 
its loan. However, at the end of the first six months, six-month LIBOR is at 2.25 per cent, 
so the loan rate is at 4.25 per cent, which is above the cap rate of 4 per cent. The bank 
pays the company a sum of 4 25 4 10 6

12
. % % £ £12,500 million .

So, the company is effectively paying 4 per cent on its loan. At the end of 12 months, 
6-month LIBOR has dropped back to 1.75 per cent and then declines further so there 
are no further payments from the cap.
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Black 76 model
In 1976, Fischer Black (the co-author of the Black-Scholes equation) worked out 
a model for pricing options on futures contracts. Futures options, as these are 
called, are popular in the energy markets but also in the fixed-income market. 
Most bond options are, in fact, options on a futures contract for a bond. In this 
section though, you see how to price caps and floors using the Black 76 model.

Black’s equation for the price, V, of an option on a futures contract with price F, 
risk-free rate r and volatility σ is:

V
t

F V
F

rV
2 2 2

22
.

This equation comes from taking the Black-Scholes equation for a dividend-
paying stock (see Chapter 10 for information on stocks) and setting the dividend 
rate, q, equal to the risk-free rate, r. A futures price can be treated in a similar way 
to a dividend-earning stock at a rate, r, when derivatives are being valued. You can 
find the solutions for the price of call and put options by putting q r  in the solu-
tion equations from Chapter 10:

V C e FN d FN dT t
1 2

V P e XN X XN XT t
2 1 .

Now the constants d1 and d2 are given by slightly simpler formulae because some 
terms nicely cancel out when you set q r :

d

F
X T t

T t
1

2

2ln

d d T t2 1 .

This (fairly) simple model can be used for pricing interest-rate derivatives such as 
caps and floors. I start with caps but the solution for floors follows in a similar way.

The reset period for the loan is τ, so resets happen at kτ where k n1 2 3, , , , . For 
example, for the five-year loan in the previous section with six monthly resets, 
n 9 because the last reset is six months before the end of the loan. At the first 
reset at time τ, you normally get no payoff from the cap as the initial rate is known 
when you enter the contract. At subsequent resets at time kτ, the cap holder will 
receive a payoff at time k 1 . The idea is to value the cap by valuing each of 
these caplets separately using the Black 76 model. The strike price, X, in the model 
is going to be the cap rate, rC. That’s because the forward price I’m using in the 
model is the forward interest-rate for the given reset period. I denote this rate 
by Fk. Equally, a volatility exists for this period, which I denote by σk. The cash 
payment (if any) from a caplet is received at the end of the reset period. To value 
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the caplet correctly, you need to calculate the present value of this payment. The 
present here means the time at which the cap was sold at the beginning of the first 
reset period. The interest-rate you need to use is the yield of a zero-coupon bond 
with a maturity equal to the time of the cash payment, that is k 1 . I write this 
rate as y k 1 . The value of a caplet, using again the notation N for the stan-
dard cumulative normal distribution, is:

C Pe F N d r N dC
y k

k C
1

1 2  where 

d

F
r

k

k
d d k

k

C
k

k
k1

2

2 1

1
2

ln
, .

The value for a floorlet is given by a similar equation using the put formula P from 
Black’s 76 model:

P Pe r N d F N df
k y k

f k
1 1

2 1  where d1 and d2 are given by the 
same expressions as for the caplet.

Figure 12-2 shows a schematic chart of how the forward volatilities, σk, depend on 
maturity. It shows that a hump appears at an intermediate maturity, which is 
often at around two to three years. One explanation is that for short maturities 
rates are hugely influenced by the central bank and so tend to be stable. For long 
maturities, the mean-reversion of interest-rates dampens down the volatility 
leaving the intermediate maturities with the highest volatility.

In this section, I make the assumption that the distribution of the interest-rate is 
lognormal so that Black’s model can be applied. In addition, I assume a constant 
interest-rate for discounting the payoffs back to the present time. This assump-
tion is a bit inconsistent with the assumption of stochastic interest-rates to calcu-
late the payoff (that’s why caps and floors exist!), but in practice it seems to work.

FIGURE 12-2:  
Volatility hump of 

the forward 
volatility 

measure. 
© John Wiley & Sons, Ltd.
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Bond pricing equations
In this section, I assume that the interest-rate is time dependent. This assumption 
leads to some useful formulae for the price of bonds and some equations that can be 
helpful for pricing interest-rate derivatives by simulation. The interest-rate I focus 
on is the short-term interest-rate, r(t). You can think of this as the interest-rate pre-
vailing on a specific day. Sometimes this rate is called the spot interest-rate. This 
name is potentially confusing though as I use spot rate to distinguish interest-rates 
applicable now from forward rates. So I use the phrase short rate to refer to r(t).

If the short rate depends on time, then so must bond prices. I use t to refer to the 
current time and T for the maturity time of the bond. So the bond price is 
Z Z t T, .

The equation Z Z t T,  just means that Z is a function of (depends on) t and T. 
The equation is a way of letting you know that you must pay attention to both the 
current time, t, and time to maturity, T, when pricing a bond.

Bonds offer investors fixed returns and so compete directly with bank deposits 
offering returns at the short rate r(t). As far as cash flow concerns, they’re identi-
cal. Therefore, the change in the value of a bond dZ in a short period of time, dt, 
is given by the equation: dZ r t Z dt .

So, the instantaneous return from the bond is proportional to the short rate r(t). 
The equation can be rearranged as:

dZ
Z

r t dt and then solved by integration to give: Z t T Z eT
r dt

T

, .

This equation is a generalisation of the usual equation that I explain in Chapter 4 
for the present value of a bond VT at a time, T, in the future. It shows that if the 
short rate, r, is fluctuating, you must average it with an integral over time. 
Remember, though, that the short rate, r(t), isn’t only varying in time but is 
stochastic, or random, so you need to calculate the expectation value of Z(t,T) to get 
the bond price:

Z t T E Z eT
r dt

T

, .

A useful application of this formula is to calculate option values using Monte Carlo 
simulation in a similar way to the explanation in Chapter 10.

You can price bonds another way that leads to an equation similar to the Black-
Scholes equation for option pricing. It seems strange to write about pricing bonds. 
After all, bonds are traded in their own right with quoted prices not too dissimilar 
to equities. They’re not derivatives like options. However, the thought is that the 
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short-term interest-rate r(t) is the key quantity and longer maturity bonds have 
prices derived from r(t). This suggests the idea of constructing a hedged portfolio 
of bonds of different maturity say T1 and T2, where the bond prices are Z1(r,t;T1) 
and Z2(r,t;T2) and there are Δ of the latter bond compared with the first bond. The 
value of this portfolio is: Z Z1 2.

Over a time period, dt, this portfolio changes by an amount dΠ. To calculate 
changes in the bond prices, Z, though, you need to know how the short rate, r, 
changes as Z is dependent on r. A simple model to express how r changes with 
time, t, is to assume that it drifts at a rate, m, and is subject to Brownian distur-
bances, X, with a standard deviation of dr mdt dX .

With this equation, you can now write an equation to show how the portfolio 
changes in value as the short rate changes with time. For a single zero-coupon 
bond, the change in value in a time step dt, which also entails a change in the 
short rate dr, is:

dZ Z
t
dt Z

r
dr Z

r
dt1

2
2

2

2 .

To work out this equation, I used Ito’s Lemma, which I talk about in Chapter 10.

The reason for the extra term in dZ depending on 2 is that if you expand dZ using 
terms of second order (mathematicians call this situation a Taylor expansion), then 
the term dr2 turns out to be partly linear in dt. This result is because, on average, 
for a Brownian motion: dX dt2 . The portfolio with the two bonds will change by 
an amount d dZ dZ1 2.

This portfolio will, though, depend on the stochastic variable dr, which isn’t good 
since the whole idea of hedging is to get rid of risk, thus you’d like the return of 

the portfolio to be r(t). However, if I set Z
r

r Z
r

1 2 0, then dΠ won’t depend on 

dr at all and so will be risk free. Then: d r dt .

Using the equations for both Π and dΠ in terms of Z1 and Z2, this equation turns 
out to look like:

Z
t

Z
r

tZ

Z
r

Z
t

Z
r

tZ

Z
r

1 2
2

1
2 1

1

2 2
2

2
2 2

2

1
2

1
2 .

The left side appears to depend on the maturity date T1 while the right side appears 
to depend on T2. This situation is inconsistent and suggests, in fact, that both 
sides are independent of the maturity date. They must then only be a function of 
r and t. Usually the equation is written as a r t r t m r t, , ,  in terms of the 
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volatility of the short rate σ, the drift m(r, t) of the short rate and a new function 
λ, which is often called the market price of risk. The bond pricing equation is then:

Z
t

Z
r

m Z
r

r1
2

2
2

2 .

This equation can be used to work out the price of zero-coupon bonds under vari-
ous assumptions about the governing equation for the short-term interest-rate r.

The market price of risk
The bond pricing equation from the previous section contains a function, λ, which 
is a bit mysterious. One way to make it clearer is to write the change in a bond 
price as: dZ m Z dt Z dXB B .

This equation defines an average bond return, mB, and the volatility of the bond. 
You can now compare this equation with the equation for dZ, used to work out the 
bond pricing equation. By equating the coefficients of both dX and dt, you find out 
after a bit of algebra that m rB B.

This equation is saying that the average return on a bond is equal to the short-term 
interest-rate r plus a term that is proportional to the volatility of the bond. The 
second term represents the additional return a bond holder can expect to earn above 
the short-term rate for taking on the additional risk of holding a longer-term bond.

Modelling the Interest-Rate
Interest-rates are stochastic, or random. In this section, you see models where 
this fact is explicitly taken into account so there is hope of building pricing models 
of interest-rate derivatives that make fewer assumptions than, for example, in 
the section ‘Black 76 Model’. This section begins with the equilibrium models that 
use a stochastic equation for the short-term interest-rate, r, and ends with an 
arbitrage-free model where the prices of the bond contracts themselves are 
modelled.

Stochastic is another word for random used especially for a process such as an 
interest-rate that changes with time.

The Ho Lee model
A simple model for the stochastic dynamics of the short-term interest-rate, r, is: 
dr dt dX .
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In this equation, t is time as usual and X is a Brownian increment. The two param-
eters are η and σ. The first parameter defines the average direction in which the 
short rate moves. The second parameter is the standard deviation of the short-
term interest-rate, r. The Ho Lee model can be made more general by allowing η to 
be time dependent. Doing so allows you to fit its prediction for zero-coupon bond 
values for different maturities to actual market rates, which means that you can 
then – hopefully accurately – value interest-rate derivatives such as bond options.

However, other aspects of the model aren’t so satisfactory. For example, the stan-
dard deviation of forward rates is predicted to be independent of maturity. In 
practice, that doesn’t hold. Although the model can indeed be used to value vari-
ous interest-rate derivatives, other models have become more prevalent.

The one-factor Vasicek model
One of the problems with the Ho Lee model for interest-rates is that it doesn’t 
show mean reversion. This subject was introduced in Chapter 3 and refers to behav-
iour in which, if the interest becomes high, it’s pulled back down to a long-term 
average value. Equally, if it’s particularly low, the interest-rate tends to be drawn 
back up to the long-term average value. Reflecting this, the Ho Lee equation (see 
the previous section) is modified with an extra parameter – γ:

dr r dt dX .

Now, the interest-rate tends towards the value  in the long run. If it deviates 

from this value, it reverts at a speed given by γ because this term in the equation 
is the only one dependent on the interest-rate. There will always be fluctuations 
around the long-run value because of the Brownian term dX. Figure 12-3 shows a 
chart of these patterns and compares the Vasicek model with the Ho Lee model.

FIGURE 12-3:  
Movement of 

short rates for Ho 
Lee and Vasicek 
models with the 

same random 
impulses.

© John Wiley & Sons, Ltd.
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In this Vasicek model , nothing prevents the interest-rate from going to a nega-
tive value because the random term, σdX, has a constant standard deviation. So, 
even if the interest-rate is low, it can still fluctuate by the same amount. Also, the 
drift term with dt has a coefficient that can be negative.

The Vasicek model has been criticised because of the possibility that it can create 
negative rates, but, in fact, interest-rates (yields) on short-term government 
bonds do go to negative values. That happens if investors like the safety of a gov-
ernment guarantee (compared with depositing money in a bank) even if they get 
less back from their bond than they pay for it. However, you can see in the chart 
of one-year US government bond yields in the ‘Looking at US Treasury yield 
curves’ sidebar earlier in the chapter, that the short-term interest-rate stays just 
above zero for a long time without crossing below zero. So, interest-rates or gov-
ernment bond yields like to stay above zero. Negative bond yields quickly become 
unattractive as simply storing cash under the mattress or perhaps more safely in 
a bank vault should lead to smaller losses.

Using the bond pricing equation with m r  from the Vasicek model, you can 
work out the value of zero-coupon bonds. To do this, assume that 
Z t T eA t rB t T; ;T ;  and substitute into the bond pricing equation. The maths is 
complicated so best to leave that for a rainy day. The results are that:

B e T t1 1

A B t T T t
B t T1

2 42

2

;
;

.

From these equations, you can now draw charts of yield curves (yield as a function 
of the maturity, T) and see how they change as you vary the parameters γ and η. 
The interest-rate or yield for a maturity of T is found from the value of a bond 
using the equation:

R t T
T t

Z t T; ln ;1 .

In fact, I already did this task in the chart of US bond yields. There you can see 
three yield curves all drawn using the equations given here with the constants 
given in Figure  12-4 and also assuming that the curves are for t 0. I chose 
r t 0 2 so that all three curves begin there at short maturities.

FIGURE 12-4:  
Parameters for 

the Vasicek yield 
curves. 

© John Wiley & Sons, Ltd.
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The yield curves in the chart in the ‘Looking at US Treasury yield curves’ sidebar 
all have the same values for σ and γ but have different values for η. When the short 
rate, r, is lower than the long-term rate, η, you can see a normal upward sloping 
yield curve.

Arbitrage free models
The models introduced so far in this section start with an equation for the short 
rate r(t). From this, you can work out expressions for the price of zero-coupon 
bonds of different maturities. However, you have another way of developing mod-
els for the yield curve that allows much more flexibility to create a model that fits 
the actual yield curve on a given day. This way is important if you wish to price 
derivatives such as bond options using the yield curve.

You start with an equation for the zero-coupon bond price itself with a usual fac-
tor depending on the short rate, r(t), but also with an additional term representing 
Brownian noise:

dZ t T r t Z t T dt t T Z t T dX; ; , ; .

This equation can be transformed using Ito’s lemma (see Chapter 10) to an equa-
tion for the forward rates F(t; T). The calculation here is similar to the one in 
Chapter 3 for equities:

dF t T
T

t T T t dt
T

t T dX

t T
T

t T d

; , ,

, ,

1
2

2

tt
T

t T dX, .

In this equation, I used the fact that:

F t T
T

Z t T; ln ; .

This equation is explained at the end of the section ‘Looking at the Yield Curve and 
Forward Rates’ at the beginning of this chapter. If I now write:

t T
T

t T, , ,

then the equation for dF can be simplified (a little) to:

dF t T m t T dt t T dX; , ,  where m t T dt t T t s ds
t

T

, , , .

Now the equation is in a useful form because only a single function υ exists to 
describe its dynamics. Also the expression for the drift, m(t,T), is an integral that 
can be easily done numerically. The equation for dF is then a good starting point 
for modelling the forward curve and pricing derivatives.
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Look at quantitative finance risk with the standard 
deviation of the returns of a portfolio of financial assets.

Control risk with derivatives contracts.

Choose simple as well as more complex ways of 
controlling risk.

Diversify holdings to reduce risk in a portfolio.

Measure risk using the Value at Risk (VaR) measure often 
required by regulators.
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IN THIS CHAPTER

Looking at investment risk

Setting stops

Balancing with hedges

Gambling strategies

Using utility functions

Estimating covariance

Managing Market 
Risk

Market risk is what happens when a market price goes against you, whether 
it goes up or down. Credit risk is a similar form of financial accident that 
happens when a company or nation defaults on a loan. Banks are pri-

marily exposed to credit risk. For financial institutions that invest or trade in 
financial assets on behalf of others, managing market risk is a crucial task.

Market risk is distinct from operational risk, which is about failures with people, 
processes and systems. If market risk gets out of hand, it can lead to financial 
instability, which happens when firms are no longer able to perform critical finan-
cial services such as buying and selling shares. This chapter introduces ideas 
about market risk and the following two chapters extend the analysis with detailed 
ways of building portfolios to reduce risk.

Investing in Risky Assets
The reason for investing in risky financial assets is to make a profit, or to earn a 
return in excess of what you can get by depositing money in a bank or lending 

Chapter 13
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money to a government in the form of short-term loans (treasury bills). Low or 
even negative deposit rates can intensify the search for investments with higher 
risk and higher return. Indeed, the purpose of low or negative interest rates is to 
encourage money to move out of safe bank deposits into business investment so 
as to stimulate the economy.

For most investment companies, and that includes insurance companies with 
large investment portfolios, the key to managing risk is diversification, or investing 
in a wide range of different assets. The idea of diversification isn’t to boost per-
formance. In fact, if you invest over a wide range, you’re guaranteed to invest in 
some lower-performing, lower-return assets. Diversifying doesn’t guarantee you 
against losses, but it certainly increases your chances of achieving a positive 
return.

Diversification is a simple technique to achieve a better outcome with risky 
investments − an example of the homespun wisdom of not putting all your eggs in 
one basket.

As an example, imagine lending money to N companies. Each loan of £1 is for a 
year and has an interest rate of ten per cent. The default probability is two per cent 
for each company. (A default is when a borrower is no longer able to make interest 
payments or pay back the principal on a loan.)

Start by assuming that N 1. You have a 2 per cent chance that the loan defaults 
and you get nothing in return but a 98 per cent chance that the company survives 
the year and your return is 10 per cent. The average return is 
0 98 1 1 0 02 0 1 0 078. . . . , or 7.8 per cent. The first term in this formula is the 
probability of not defaulting (0.98) multiplied by the total value of your invest-
ment at the end of the year which is £1 plus 10 per cent interest or £1.1. The second 
term in the formula is the default probability (0.02) multiplied by the value of 
your investment (zero) at the end of the year. I’ve then subtracted the initial value 
of your investment (£1) so that you’re left with the return of 7.8%. If N 2, the 
chance of both loans defaulting is 0 02 0 02 0 0004. . . , which is a small number. 
Now, however, one or both loans can default, so you have a 2 0 02 0 04. . , or  
4 per cent, chance of one loan defaulting leaving you with an almost 50 per cent loss 
(but not as bad as a 100 per cent loss). The non-defaulting loan earns 10 per cent.

So, as N gets bigger, the chance of a total loss gets smaller and smaller. You can’t 
possibly earn more than 10 per cent and the expected return is 7.8 per cent no 
matter how many companies you lend out to.

However, the distribution of returns becomes different as N gets bigger. Figure 13-1 
shows the probability of ending the year with a given amount of capital from  
N 100 loans of £1 at 10 per cent per annum to companies with a default probability 
of 2 per cent.
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With a big N, you have almost no chance of getting back less than £100. Getting 
back 10 per cent is unlikely but possible. Far more likely is getting back around 
£108 after sustaining a couple of defaults. This outcome seems much more satis-
factory than exposing yourself to a 100 per cent loss with a single loan.

This example is helpful in understanding portfolios of loans but not so useful for 
equity portfolios. For one thing, equities don’t default, and for another, they tend 
to be highly correlated. (Correlation is a statistical measure of the extent to which 
asset prices move together or not. Chapter 9 explains how to calculate correla-
tions.) By paying attention to the correlation between the assets, you can reduce 
the overall risk of the portfolio. You can read more about portfolio risk in 
Chapter 14.

If two time series are correlated, you may be tempted to think that they must look 
the same, but that’s not always the case. Figure 13-2 shows a chart of two time 
series created using the same random numbers so that the correlation coefficient 
of the returns of the time series is exactly equal to 1. Upward moves in one series 
are matched by upward moves in the other, and likewise for downward moves. But 
for an extended period, series 2 drifted higher than series 1.

Series 2 was generated using random numbers, n from a standard normal distri-
bution in the equation:

P Pn n n1 0 1. .

Series 1, on the other hand, was generated using the equation:

P Pn n n1
1
2

0 1. .

Correlation tells you something about the similarity of short-term movements 
but nothing about longer-term movements.

FIGURE 13-1:  
Probability of 

end-of-year  
value for a  

large diversified 
portfolio of loans.

© John Wiley & Sons, Ltd.
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Stopping Losses and other Good Ideas
If a financial asset is risky, nothing is simpler than just selling it if its price 
declines more than a given amount. Deciding the price at which you’ll sell the 
asset is called setting a stop loss. The stop loss can be an absolute price at which 
you’ll sell or it can be set relative to the most recent high price of your asset. Then 
you decide to sell if the asset declines more than a set percentage from the most 
recent high price, which means that if your asset continues to rise in price from 
the date at which you bought it, your stop loss rises in price and is called a trailing 
stop loss because it follows behind a rising price.

Although it appears to be sure and simple, the stop loss mechanism has 
drawbacks:

»» If you set the stop loss close to the current price, the stop loss is likely to be 
activated by a random fluctuation in the market. In that case, a stop loss is 
likely to increase your trading costs, especially if the stop is activated during a 
time when trading volume is low and the difference between the buying and 
selling prices in the market is high.

»» Even if the stop loss is set a good distance from the current price, there’s no 
guarantee that it will actually protect you from a large price movement. Often 
these occur overnight in a big jump so you can’t execute the stop loss 
immediately.

Careful use of stop losses can be beneficial, but mostly setting them increases 
trading costs. Other methods of managing risk are often preferable.

FIGURE 13-2:  
Two simulated 

time series with 
exactly correlated 

returns.
© John Wiley & Sons, Ltd.
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Hedging Schemes
Risk can be reduced by hedging, which is buying (or selling) an investment so as to 
offset the risk in another investment.

Hedging is routinely used by commodity producers and consumers using the 
futures market to reduce exposure to changes in the price of the commodity. 
Clearly a producer wants protection from a fall in the commodity price while a 
consumer wants protection from a rise in price. (Chapter 6 gives a detailed expla-
nation of futures.)

For the producer who is long the commodity and short the future, the change in 
the value of her position, P, depends on changes of the futures price, F, the spot 
price of the commodity, S, and the size, h, of the futures position:

P S h F .

The delta symbol indicates a change in the following quantity. In this case, the 
change is due to prices changing with time.

For a consumer with a long futures position and short the commodity, the equa-
tion is:

P S h F .

I define risk as the variance, V, of the change in value of the positions, P.

Chapter 2 explains random variables and some of their properties. In this chapter, 
you need to work out what happens when you add two random variables – x and y. 
Using x and y makes the equations simpler and clearer, and you can then use the 
result in other contexts.

Let z x y . Then E z E x E y  where E indicates the expected value of 
random variable. The variance, V, of a random variable x is V(x):

V x E x E x E x E x
2 2 2 .

A similar equation holds for y. Now if you replace x with x + y in the preceding 
equation you get:

V z V x y E x y E x E y
2

.
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After a little bit of algebra, and using the equation for V(x) and V(y), this equation 
becomes:

V z V x V y E xy E x E y2 .

The last term is the same as 2cov(x, y), or twice the covariance between x and y. 
Covariance, a measure of the extent of the relationship between two random variables, 
is discussed in Chapter 9 and is defined using the expectation operator, E, as:

cov ,x y E x E x y E y ,

which simplifies to the expression in the equation for V(z). So:

V z V x V y x y2cov , .

Remember also that [writing the correlation between x and y as corr(x, y)]:

2 x V x  and that corr x y
x y

x y
,

cov ,
.

Phew!

Writing the correlation between x and y as ρ, you can see that for both the 
consumer and producer the variance of the hedged position is:

V P h hS F S F
2 2 2 2 .

The standard deviation of the spot price is written as σ with a subscript for the 
spot price, S, and the futures price, F. The variance of the hedged position depends 
on the size of the futures position in a non-linear way (there is a term with h2).

Differentiating V(P) with respect to h and setting the resulting equation to zero, 
you can find the location of the minimum variance:

dV
dh

h hF S F2 2 02 .

The value of h that solves this equation is:

h S

F
.

So, the best way to reduce the variance of the hedged position isn’t necessarily to 
have your futures and physical positions matched in size. You should use the 
calculated value of h for your futures position size. Clearly, though, if the correla-
tion, ρ, is one and the standard deviation of the spot price is equal to the standard 
deviation of the futures price, the best value of h is one.
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Commonly, you don’t use exactly the same commodity for the futures as the spot. 
The reason is partly because of the restricted range of futures contracts compared 
with the number of commodities in the world, but also because a hedger often 
likes to use the most liquid (heavily traded) futures contract so that she can reduce 
or increase her position at low cost.

Betting without Losing Your Shirt
You may have noticed that financial markets have something in common with 
casinos or betting in general. That common element is the random nature of the 
outcome of trades and bets. In this section I show you how to find a way to opti-
mise bets or investments, despite this randomness, so as to maximise your long-
term average growth rate. You find out just how useful probability is!

In gambling activities such as casino games, the house makes the rules and those 
rules are in favour of the house – of course. On average, bettors lose as the casino 
intends to make a profit. In the stock market, over time and on average, prices rise 
because of economic growth, and investors probably get a good return. But the 
stock market is volatile, and in the short run, you can easily lose money. The for-
eign exchange market is much more like a casino though. You bet against other 
participants in a zero-sum game, apart from some interest payments. Systemati-
cally making gains is unlikely.

If you make a sequence of bets (or trades if you prefer financial markets), each bet 
has an uncertain outcome. You start with an amount of capital, P. The idea is to 
grow this money at the highest rate you can without going bust – in other words, 
without your account going to zero.

You have a probability, p, of winning each bet and a probability, 1 p , of losing 
it. If you place a stake of $1, you get f dollars if you win and nothing if you lose. 
Win or lose, you also lose your stake, so f must be greater than 1 for the gamble to 
make any sense. If f is less than 1, you’re certain to lose money on every bet. How-
ever, if fp is greater than 1, your expected return on each bet exceeds your stake, 
so, on average, you come out winning.

That sounds good, but accidents still happen. For example, by bad luck, you may 
have a losing streak to begin with and run out of capital before you can start mak-
ing money. You need to place bets of the right size so as to conserve capital and be 
able to withstand the downturns that inevitably happen just by random chance. Of 
course, if your bet size is too small, you won’t benefit from the positive expected 
return from your bets. So, you need to work out the optimum size of bet to capture 
the positive returns available without exposing yourself to too much risk.
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Assume that you bet a fixed fraction, α, of your capital each time. If you start with 
P, after the first bet you have:

P X P1 1 .

The random variable, X, takes the value f with probability p and the value zero 
with probability 1 p . If X equals zero, you have 1 P  of capital left because 
you’ve just lost a fraction – α – of it. On the other hand, if you win, and X equals 
f, the formula for P1 splits up into the capital you held back 1 P  and your win-
nings (αfP). After placing n bets in sequence, you have an amount of capital Pn 
remaining given by the following formula. I added a subscript to X to indicate that 
it’s not always the same outcome:

P X X Pn n1 11  .

The 


 in the middle of the formula indicates that lots more terms like the first 
and last ones exist. In fact, a term exists for each of the n bets.

I take the logarithm of the formula for Pn because I’m expecting the gambling to 
turn out well with exponential growth. The logarithm should be connected to the 
growth rate of the account:

1 1 1
1n

P
P n

Xn
j

j

n

ln ln .

By writing 1
n

 on each side of the equation (that’s allowed!), the right-hand side 

looks just like the average value of the quantity inside the brackets. Using the 
probability, p, and the payoff, f, you can now to write the equation as:

1 1 1 1
n

P
P

p f pnln ln ln .

Calling this quantity γ, a little algebra gives you:

P Pen
n.

So γ is the growth rate of the account. To find the value of α that maximises the 
growth rate, differentiate the equation for γ with respect to α to get:

p f
f

p1
1

1
1

0.

You can solve this for α to get:

a pf
f

* 1
1

.

This is the optimal fraction of your account to bet each time so as to achieve the 
highest growth rate. It shows, for example, that if pf 1, then the growth rate is 
negative, which is to be expected.
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Figure 13-3 shows a chart of the result of making 200 bets with p 0 4.  and f 3. 
The optimal value of α is 0.1 (you can check this value using the previous formula). 
However, I also plotted the account values for twice this value (0.2) and half this 
value (0.05).

If you choose 0 1. , the account grows as expected but is quite volatile. If you choose 
0 2. , you have an exciting time but end up with almost nothing. By contrast, if 
0 05. , which is half the optimal value you calculated, the account isn’t volatile and 

actually ends up higher than for 0 1. , but most of the time is beneath the curve for 
0 1. . The growth rate for 0 05.  is slightly less than for 0 1. , but the returns 

are less volatile, so you’ve good reason to choose a value of α less than the optimal 
value. This statement is certainly true if you’re unsure of the values for p and f.

Evaluating Outcomes with 
Utility Functions

When it comes to money, the common factor in most people’s minds is that more 
is better. That seems to be universally true, but money, or more generally wealth, 
is held in many different forms, and they all have different risk characteristics. 
Investments such as stocks have high risk and high returns while cash has low 
risk and low return. How then to make the best decision about allocating invest-
ments or making financial decisions?

A common framework is to use utility functions. These functions assign a number, 
U, to an amount of wealth, W. The preferred outcome of any financial decision is 
always the one with highest utility. In a financial decision, outcomes with 

FIGURE 13-3:  
Betting with 

medium, large 
and small 

fractions of your 
wealth.

© John Wiley & Sons, Ltd.
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probability, pi, result in wealth, Wi. The expected utility is calculated by weighting 
the utility of each of the n possible outcomes of your decision by its probability. 
For an investment, P, you can write this as:

EU P p U Wi i
i

n

1
.

This formula shows you how to calculate the overall utility in terms of the utility 
of the possible outcomes. Deciding on the form of the function U for individual 
outcomes isn’t quite so easy. Certainly you’d be sensible to assume that more is 
better, so the derivative of U must be positive. U must increase if W increases.

Seeking certainty
A useful concept to use while thinking further about utility functions is certainty 
equivalence. That sounds abstract but it refers to something simple. For example, 
which would you prefer:

»» Choice A: £50 for certain

»» Choice B: £100 if a coin turns up heads but nothing if it turns up tails

Say that the utility, U, is a simple linear function of W, so U W . This fact satisfies 
the ‘more is better’ rule of money. It also means that the utility of £50 for certain 
is exactly equal to the utility of £100 with probability 50 per cent assuming that 
the coin is fair. Most people prefer choice A to choice B. The risk of coming out 
with nothing makes them prefer the first option.

To make both choices have the same utility, the value of option A must be a lot less 
than £50. This value is the certainty equivalent of the 50 per cent bet on £100. 
Figure 13-4 shows a possible curve for the utility as a function of wealth.

FIGURE 13-4:  
Convex utility 

function.
© John Wiley & Sons, Ltd.
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U 100 1, so the utility of winning £100 with 50 per cent chance is 0.5. However, 
the chart shows that the utility of £50 is more like 0.9 and so the curve shows a 
clear preference for £50 with certainty. However, the utility of £15 is approxi-
mately 0.5 and so is the same as £1,000 with 50 per cent. £15 is the certainty 
equivalent of the £100 gamble with this utility function.

The fact that the certainty equivalent of the risky bet is less than its expected value 
means that the gambler (investor) is risk averse. Some investors, however, are risk 
loving and place a higher certainty equivalent value on a bet than its expected 
value. Gamblers who enjoy the pleasure of betting are risk loving.

The certain equivalent, C, of a risky bet can be worked out from the formula for 
the expected utility:

U C p U Wi i
i

n

1
.

Notice that the slope (the first derivative of U) of the chart in Figure 13-4 gets less 
and less as W gets bigger. This fact means that the second derivative, or curvature, 
of U(W) is negative. In maths, you can write this as:

d U
dW

2

2 0.

This formula is the condition for what is called a convex function. The shape of the 
curve shows that there is diminishing utility to extra wealth when you become 
wealthy. Intuitively, this statement makes sense. The extra utility you gain by 
increasing your wealth beyond your current level is called marginal utility. This 
phrase is economists’ jargon, but it’s helpful because it reminds you to think 
about changes in wealth and utility and not just absolute values. Most financial 
decisions are made with reference to your current position rather than the abso-
lute position.

Because the curvature of the utility function in Figure 13-4 is negative, it is always 
true that a risky bet with the same expected value as a certain bet has lower utility. 
A risky bet has to have a higher payoff than a certain bet to have the same expected 
value because of the reducing value of the slope of the utility curve. By the same 
argument, the certainty equivalent of a risky bet is always less than the expected 
value of a risky bet if the utility function is convex (has negative curvature). A con-
vex utility curve is therefore linked directly with risk aversion. In a way, the convex-
ity of the utility curve and the diminishing marginal utility explains risk aversion.

Modelling attitudes to risk
Different forms of the utility function are used to model different attitudes to risk. 
In the previous section, ‘Betting without Losing Your Shirt’, I took the logarithm 
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of the wealth after the nth bet and maximised that. The logarithm is another com-
mon utility function and, in fact, one of the first ever used.

It should be clear that I could have chosen a different utility function – for example, 
one that would have reduced the fluctuations in the account value. Rarely does an 
organisation adopt a risk-loving utility function in making financial transactions. 
Systematic gains could be made by offering the organisation transactions that 
result in losses. To be sure, judging what level of risk is safe is the hardest thing.

Avoiding risk always
A special group of utility functions that prove useful are those that show constant 
absolute risk aversion, which have the property that if C is the certainty equivalent 
of a risky amount of wealth, W, you can say the same thing even if you shift both 
values by delta, Δ. So then C  is the certain equivalent of W .

This property means that when considering a new risky investment, what matters 
is the change in utility and wealth. You don’t need to know the initial wealth. This 
makes intuitive sense as most investors are looking for gains in wealth irrespec-
tive of their starting points. The only function that satisfies this and also shows 
risk aversion is the exponential utility function:

U W e W1 .

The simple form of this equation makes it well suited to practical problems in 
optimising investment portfolios.

Becoming risk loving with prospect theory
In the previous section, ‘Seeking certainty’, I offer a simple risk experiment that 
involves choosing between a certain gain and a risky gain. Here, I present a simi-
lar choice, but this time about losing money not gaining money. Which do you 
prefer?

»» Choice A: A certain loss of £50.

»» Choice B: A loss of £100 if a coin turns up heads but no loss if the coin turns 
up tails.

The expected loss from B is £50 if the coin is fair, which is the same as the certain 
loss in A. However, most people prefer option B. The prospect of a certain loss is 
painful and most people gamble on avoiding the loss. Suddenly, they become risk 
loving rather than risk averse. Figure  13-5 shows a possible utility function to 
model this effect. The model is convex for positive values but concave for negative 
values. For gains in wealth, it represents risk aversion while for losses it repre-
sents risk loving.
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Prospect theory is a more general view on utility functions in which the peculiari-
ties of human behaviour are taken into account. It includes the effect that people 
can become risk loving when faced with only losing prospects.

Using the Covariance Matrix  
to Measure Market Risk

The covariance is a measure of the extent of the relationship between two random 
variables – normally, asset returns.

The covariance matrix is the combination of many random variables, not just two. 
You may encounter a covariance matrix if you’re looking at the returns of all the 
assets in a portfolio.

In all cases, you find the correlation by dividing the covariance by the standard 
deviation of both of the variables being correlated. This division ensures that the 
correlation lies between –1 and 1 and that the correlation is a good indicator of the 
short-term relationship between the two variables.

To keep things simple, I assume that your portfolio contains just two stocks. I 
denote the returns on these stocks by R1 and R2. You have an amount, w1, of the 
first stock and w2 of the second stock. The return for the portfolio is R. The return 
for the portfolio is the weighted average of the return for the individual stocks:

R w R w R w wP 1 1 2 2 1 2 1with .

The second equation just shows that the proportions of the stocks in the portfolio 
add up to one, which is just common sense.

FIGURE 13-5:  
Utility function 
showing both 

risk-averse and 
risk-loving 
behaviour. 

© John Wiley & Sons, Ltd.
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The variance of the portfolio is V(P) and the equation for it is:

V P w V R w w R R w V R1
2

1 1 2 1 2 2
2

22 cov , .

Because the variance is calculated by squaring the equation for the portfolio 
returns, the formula has the term with the covariance between the returns of the 
two assets. If the assets aren’t correlated and the covariance is equal to 0, the 
portfolio covariance is a weighted sum of the variances of the stocks. However, 
with negative covariance you can reduce the variance of the portfolio significantly. 
This point is when diversification can be particularly powerful and reduce the risk 
of investing.

Estimating parameters
By estimating the expected covariance of the assets in your portfolio, you can 
work out how much risk (portfolio standard deviation) you’re exposing yourself 
to. By finding assets with negative covariance (correlation), you can reduce the 
risk a lot. Any parameter (such as the covariance) that’s calculated from market 
returns, however, is only an estimate. Even if your two assets have a stable (con-
stant) correlation over time, you can still calculate the correlation only from a 
sample of data points. If the correlation changes with time, you may want to 
calculate the correlation from a smaller sample of points.

More worrying is that if your portfolio has M assets, where M is a big number such 
as 500, you have many correlations to calculate. In fact, an accumulation of errors 
is evident, and you’re unlikely to get an accurate covariance matrix unless you 
have an extremely large number of historical data points.

Shrinking the covariance matrix
Using a covariance matrix estimated from sample data in a calculation is poten-
tially dangerous. If you’re trying to reduce the variance of your portfolio, you may 
end up increasing the variance if many of the values of the matrix are inaccurate. 
The presence of errors can produce misleading results. A way to avoid this prob-
lem is to use a technique called shrinkage. In this technique, you create a weighted 
average of the sample covariance matrix, C, calculated from your data and a target 
matrix, T. The target matrix is normally chosen to be a simplified diagonal matrix. 
If I is the unit diagonal matrix and av

2  is the average value of the variances of the 
variables in your data set, a good choice is:

T Iav
2 .

Using a factor Δ, the shrinkage estimator for the covariance matrix is:

1 C T .
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DOING THE STATISTICS
When you calculate a statistic such as an average from market data, the numerical value 
of the statistic itself is uncertain – you need statistics for the statistics. Here, you can find 
out how to calculate the variance of an average.

If you have a quantity Xav that’s the average of N random variables, each with mean μ 
and standard deviation σ, then:

X
N

x x xav N
1

1 2  .

Assuming that the variables are uncorrelated, the variance of Xav is just the sum of the 
variance of the terms on the right side:

V X V
x
Nav
i

i

N

1
.

But the variance is calculated by taking squares, so you can rewrite this equation as:

V X
N

V xav i
i

N1
2

1
.

The variance of each variable (N of them) is σ2, so this formula simplifies to:

V X
Nav

2

.

This formula gives you a measure of the variance on your estimate of the average. You 
can find the standard deviation of your average by taking the square root of the equa-
tion to get 

N
. The standard deviation of the average is N  smaller than the standard 

deviation of each data point. This fact is why taking averages is a good idea: it reduces 
the error on the estimate of a quantity. However, some error is still left.

You can do similar but more complicated calculations for the correlation ρ. If the 
number of samples N is large, then the standard deviation of a correlation is:

1
1

2

N
.
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IN THIS CHAPTER

Exploring diversification

Getting variance under control

Looking at the capital asset pricing 
model

Checking performance

Comprehending 
Portfolio Theory

This chapter talks about trying to obtain as much return as possible from 
risky assets at minimum overall risk. This endeavour is a bit like having 
your cake and eating it, too, but such is the magic of diversification. By 

investing in risky assets, you gain the possibility of earning higher returns at the 
expense of higher risk. You can then lower this risk by careful portfolio construc-
tion and making best use of diversification.

To do so you need to use optimisation, which is the mathematical process of find-
ing the maximum or minimum value of a function of many variables. In portfolio 
theory, optimisation involves minimising risk as a function of the amount of each 
asset. Often you need to apply constraints, restrictions on the possible amount of 
each asset. Normally, common sense guides your constraints – ensuring that the 
total value of the portfolio adds up to the correct amount, for example.

If the assets in your portfolio are correlated (meaning that price movements of one 
asset are closely related to price movements of other assets), and they normally 
are, then you need to calculate a correlation matrix for the returns of your assets. 
The correlation matrix contains the correlation between each of the assets in your 
portfolio. You also need to estimate the expected returns of your assets. That’s not 
at all easy because of the ups and downs in markets, so you’ll need a lot of data to 
do this accurately. Portfolio theory then shows you how to build the optimum 
portfolio by trading off risk against return.

Chapter 14
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In this chapter, risk is the same as the volatility (the standard deviation of the 
returns) of the portfolio. This statement assumes that the fluctuations in the 
market are Gaussian, or have a normal distribution. While this assumption does 
not take into account rare events, it can be a good starting point for investigating 
portfolio construction.

Diversifying Portfolios
Diversification is the process of building a portfolio in a way that reduces exposure 
to any one asset or risk. Usually this is done by investing in many assets whilst 
ensuring that those assets are not all exposed to the same risk factors. In this 
section I talk about a portfolio, N, with risky investments such as stocks but no 
correlations between the assets. Such a portfolio is a bit unrealistic but it makes 
the maths easier. I assume that a fraction of the portfolio, pi, is invested in the  
ith asset so that:

pi
i

i N

1
1

.

The return of each asset is ri so that the return of the portfolio, rp, is

r p rp i i
i

i N

1
.

If all the assets are independent, then the total variance of the portfolio is the 
square of the portfolio volatility, p. You can calculate this total variance from 
the formula:

p i i
i

i N

p2 2 2

1
.

The chart in Figure 14-1 shows the result of a simulation of 100 such uncorrelated 
assets. The price of the ith asset on day t is Pi,t and I generated the numbers using 
the formula:

P P ei t i t
i t

, ,
,

1
1.

ε is a random number drawn from a Gaussian distribution. I’ve chosen the stan-
dard deviation of the numbers to be 0.0126 and the mean to be 0.0008. Using the 
square root of time rule, which I cover in Chapter 7, I calculate that the annual 
volatility is 0.2 or 20 per cent. The average return is 250 × 0.0008 = 0.2, which is 
again 20 per cent. The price series for each of the 100 assets are shown as light 
grey lines.



CHAPTER 14  Comprehending Portfolio Theory      259

The black line in the middle of the tangle of grey lines is the price series for a 
portfolio that is equally invested in the 100 assets. This portfolio is much less 
volatile than any of the individual stocks. In fact, using the formula for the vari-
ance of the portfolio shows that because the portfolio holds each asset in equal 
proportions, pi = 1/N, and because the volatility of each asset is the same:

p N
N N

2
2

2 21 .

So the volatility of the portfolio is N  – smaller than the volatility of the indi-
vidual assets, which is a big reduction!

Most stocks have a correlation of about 0.5, so the benefits of diversification are 
less than shown in the preceding example. However, long-term government 
bonds with a maturity of ten years or greater often have a negative correlation 
with stocks. They can provide powerful diversification and so in managing a port-
folio one of the most important decisions is to work out how much money to 
allocate to bonds.

Minimising Portfolio Variance
In statistics, variance is a measure of how dispersed numbers are. If the variance 
is zero then there is no dispersion and all of the numbers are the same. In this 
section I assume that you have a portfolio of N risky assets as I did in the preced-
ing section, but now I try to minimise the variance of the portfolio.

FIGURE 14-1:  
Simulation of 
uncorrelated 

portfolio of 
assets. 

© John Wiley & Sons, Ltd.
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If the assets aren’t correlated, then you can use the same formula as in the previ-
ous section: for the portfolio variance Vp:

V pp p i i
i

i N
2 2 2

1

.

To find the portfolio with minimum risk or variance, you need to find the values 
of the asset proportions, pi, that make Vp as small as possible. However, in doing 
this calculation, you need to ensure that the sum of all the invested proportions 
add up to 1. To begin, though, I show you what happens for a portfolio with only 
two assets:

V p pp 1
2 2

2
2 2

1 .

I’ve ensured the constraint that the sum of the asset proportions must add up to 1 
by writing the proportion of the second asset as 1 − p. So now you have only one 
variable, p, available to minimise the portfolio variance. You can work out the 
value of p to minimise the portfolio variance by calculating its derivative with 
respect to p:

V
p

p pp 2 2 1 01
2

2
2 .

With a little bit of algebra you can solve this equation for p to get the following:

p p2
2

1
2

2
2

1
2

1
2

2
21; .

The numerator (top line!) of these equations shows that if σ1 is bigger than σ2, the 
portfolio has the second asset in a higher proportion than the first asset. This is 
how the variance is minimised – by increasing the proportion of the asset with 
lower volatility.

Substituting the value for p into the equation for Vp gives the value of the variance 
at the minimum, written as V*p:

Vp
1
2

1
2

2
21 /

.

This equation shows that V*p is always less than 1
2 because the denominator 

(bottom line) is greater than 1. So the portfolio always has lower variance than the 
individual stocks.

Using portfolio budget constraints
A portfolio of stocks can have many constituents in an effort to benefit from 
diversification. As more and more stocks are added to a portfolio, the variance of 
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the portfolio can, in principle, get lower and lower if the stocks are not correlated. 
In practice, the majority of the benefit of diversification is achieved well before 
even 100 stocks are in the portfolio.

Optimising a portfolio of this size isn’t as straightforward as a simple portfolio 
with just two assets. In this section, I show you some smart maths that can help 
you sort out problems of this kind.

The variance, Vp, of your portfolio, N, of risky assets depends on what proportion, 
pi, of your fund is invested in each asset. These proportions must add up to 1. A 
technique called Lagrange multipliers minimises the portfolio variance while 
respecting the constraint that you remain 100 per cent invested.

The first step in using Lagrange multipliers is to build the function you want to 
minimise. I call it L:

L V p p p pp N i
i

i N

1 2
1

1, ,..., .

The constant, λ, is the Lagrange multiplier. At the moment, you don’t know its 
value but by doing a little maths you discover it. The term in brackets following 
the multiplier is just the constraint that the proportions add up to 1. The idea of 
Lagrange is to minimise this new function, L, which builds in the constraint (the 
condition that the proportions pi must add up to 1) that you want to hold. You 
minimise in exactly the same way as before – by differentiating with respect to 
the proportions, pi. The result is

L
p

p
i

i i2 2 02 .

LAGRANGE AND HIS FUNCTIONS
Joseph-Louis Lagrange was an 18th century Italian mathematician who made important 
contributions to many areas of maths and physics. He spent most of his time working 
in Berlin in what is now Germany and later moved to Paris where he worked on the 
decimal system.

His most famous work is on calculus and how to use it to minimise and maximise 
functions and even functions of functions. Physicists use his methods all the time 
because many laws of nature are principles about minimising or maximising something. 
Economists and quants have followed their lead when they saw that they could mini-
mise risk using Lagrange’s method .
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You can solve this equation easily to find that

p i
i2 2 .

But, λ is still unknown. No worries, though. You can substitute this equation for pi 
back into the constraint equation to get the following:

2
12

1 ii

N

.

To simplify the subsequent algebra I introduce a new quantity, Z, which is defined 
by the equation:

Z
ii

i N 1 2
2

1

.

Using Z, which you can calculate from the volatilities of your assets, you can find 
λ and also each of the pi. They’re given by the equation:

p
Zi

i

1
2 .

A portfolio’s asset proportions depend inversely on the square of the volatility of 
the assets. Highly volatile assets need significantly smaller weight in a portfolio 
even if, like in this example, they’re uncorrelated with the other assets.

Using the formula for the value for pi, the total variance of the minimum variance 
portfolio comes out as 1/Z. However, if all the variances of the assets are around 
the same value, say σ, then Z N / 2. The variance of the optimal portfolio is then 
approximately 2 / N . A portfolio of N assets with no correlation and similar vola-
tility has a total variance N times smaller than for any of the individual assets.

Doing the maths for returns  
and correlations
A theory about portfolios has to go beyond just looking at the variance of the 
returns of the portfolio and the assets of the portfolio. In the previous section,  
I show the benefits of diversification if the stocks are uncorrelated. However, most 
often stocks are correlated, meaning that if one stock rises in value then it’s very 
likely (but not certain) that the other stocks will rise in value. And likewise, if one 
stock falls, the others are likely to fall. In addition, investors are concerned about 
the returns from their portfolios. You can try to maximise your returns while also 
benefiting from the risk reduction from diversification. Good has just got better. 
So, you need to include returns and correlations and not just variances.



CHAPTER 14  Comprehending Portfolio Theory      263

Just like patting your head and rubbing your tummy at the same time, it can be 
tricky to maximise returns while minimising risk. Different people have different 
ways of doing it but I choose a straightforward method.

The idea is to use a utility function that incorporates the risk and return of an 
investment. Using an exponential utility function, which I talk about in Chapter 13, 
the certainty equivalent Cp (subscript p is for portfolio) for an investment portfolio 
with mean return, rp , and return variance, p

2, is

C rp p p2
2.

λ is a parameter that expresses your aversion to risk.

The exponential utility function for an amount of wealth, W, has the formula:

U W e W.

By making an assumption that the wealth, W, is a Gaussian random variable with 
mean rp and variance, p

2 you can work out that the certainty equivalent of such a 
portfolio is given by the preceding formula for Cp. Remember that you define the 
certainty equivalent C (Chapter 13 has more detail) using the expectation, E, for 
the portfolio with wealth, W, by the equation:

U C E U W .

The proof now involves calculating the expected value of the exponential of a ran-
dom variable so I’ll skip it here. The constant λ in the exponential utility function 
is the coefficient of absolute risk aversion. If you choose a high value of λ, then the 
optimal portfolio will have a low variance.

The utility function assigns a value to any investment amount. However, this value 
depends on the probabilities of the investment ending up with a specific value at 
the end of the investment period. The certainty equivalent of an investment is the 
amount of money that has the same utility as the expected value at the end of the 
investment period. It’s the cash equivalent of an investment.

If the portfolio variance, p
2 is large, then any increase in it significantly reduces 

the utility Cp because of the negative sign in front of the λ. So a high value of 
λ means less chance of risky, high-variance stocks in the portfolio. With a small 
value of λ, risky stocks will not be penalised much. The parameter λ, therefore, 
controls the trade-off between risk and return.

To demonstrate how to use the formula for Cp, imagine a portfolio with only a 
single stock but also invested in cash, a risk-free asset. The proportion of the 
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portfolio in the risky stock is p. The risk-free return on cash is r and the return on 
the stock is d. The portfolio return is rp:

r pd p rp 1 .

If the volatility of the stock is σ, then the portfolio volatility is

p p .

The portfolio volatility is solely due to the risky asset but depends on its propor-
tion p in the portfolio. You can now build the certainty equivalent utility Cp:

C pd p r pp 1 1
2

2 2.

To maximise Cp, just differentiate with respect to p and set the result equal to 
zero:

d r p 2 0

so that:

p
d r

2 .

This formula shows several things:

»» The numerator is the risk premium, which is the yield of the risky asset in 
excess of the risk-free return, r. The higher the risk premium, the higher the 
proportion of the portfolio you should invest in the risky asset.

»» High volatility assets have a low weighting in the portfolio.

»» If you’re risk averse with a high value of λ, then you put a lower amount into 
the risky asset.

This example shows how to use the certainty equivalent, Cp, for a risky asset and 
cash. Now I use the same method for a portfolio of N correlated assets. I call the 
correlation matrix for the assets Ci,j. (Chapter 9 explains correlation matrices.) 
The portfolio variance is now:

V p p Cp p i j i j
i j

N
2

1
,

,
.

Using the portfolio proportions, pi, the expected return for the portfolio, rp, is

r p rp i i
i

i N

1
.
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The constraint equation in which the portfolio proportions add up to one is

pi
i

i N

1
1

.

Because this analysis includes both the mean portfolio return and variance, you 
often hear it called mean-variance analysis.

The next step is to work out what to maximise so as to find the best portfolio to 
balance risk with reward. Unlike the previous example with a single risky asset 
and cash, you now have a number of risky assets, N, whose proportions must add 
up to one. You can do this with Lagrange multipliers as in the previous section 
‘Using portfolio budget constraints’. So, in fact, what you need is a Lagrange mul-
tiplier that’s the certainty equivalent with the budget constraint term added. The 
certainty equivalent formula for Cp is taken from the previous section, but now 
you need sums over all of the N assets in the portfolio to work out the risk and the 
return terms. You also need to include the correlation matrix to work out the port-
folio variance, and don’t forget the budget constraint term beginning with γ! Put-
ting all of that together you get

L p r p p C pi i i j i j ii

i N

i j

N

i

i N

2
1

1
11

,
,

.

The Lagrange multiplier for the budget constraint (to keep the sum of asset pro-
portions equal to one) is γ and, again, the risk aversion parameter is λ.

You can now maximise this intimidating looking equation by taking derivatives 
with respect to the portfolio proportions, pi, just as in the ‘Minimising Portfolio 
Variance’ section earlier in the chapter:

L
p

r C p
j

j i j ii

i N
,1

.

This set of N equations has N + 1 unknowns: the N portfolio proportions and the 
Lagrange multiplier γ.

By including the budget equation for the proportions, you get one more equation 
so you now have N + 1 equations and N + 1 unknowns. You can find the portfolio 
proportions from the equation:

p C ri i j j
j

j N
1 1

1
, .

Substituting this into the budget constraint for the proportions, you can then find 
the Lagrange multiplier, γ:

C r

C

i j ji j

N

i ji j

N

,,

,,

1
1

1
1

.
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The first of these equations gives you the asset proportions, pi, for the portfolio 
that best balances risk and return. The second equation gives you the value for γ to 
ensure that you satisfy the budget constraint. Both equations depend on a given 
level of risk aversion determined by the parameter λ.

Remember that Ci,j is a matrix. So, to solve the equations, you need to use special-
ist software, although many spreadsheets include functions to invert matrices 
such as the correlation matrix Ci,j.

Although I used a Lagrange multiplier, γ, to enforce the budget constraint that the 
proportions of the assets must add up to one, the solution I’ve given is sometimes 
called the unconstrained solution because there’s no constraint to ensure that the 
proportions are less than one and greater than zero. If you’re able to sell assets 
short though, you won’t need these constraints because – in effect – you can then 
have negative amounts of an asset. Also, if you can borrow money, then you can 
also have more than 100 per cent of an asset! More complex maths is needed to 
impose constraints – be happy that I’m not going there!

Building an efficient frontier
The equations for determining the proportion of each financial asset in a portfolio 
are best solved numerically. The process goes as follows:

1.	 Calculate your expected returns, ri, and the covariance of returns, Ci,j.

2.	 Decide on your value for risk aversion, λ.

3.	 Calculate the inverse of the covariance matrix.

You can find functions for this inverse in most spreadsheets.

4.	 Calculate gamma from the formula:

C r

C

i j ji j

N

i ji j

N

,
1

, 1

,
1

, 1

.

5.	 Calculate the portfolio proportions using the solution for p:

p C ri i j j
j

j N
1

,
1

1
.
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6.	 Calculate the return and risk (portfolio standard deviation) using the 
equations:

r p rp i i
i

i N

1

V p p Cp p i j i j
i j

N
2

,
1,

.

Figure 14-2 shows the result of a few calculations like this. It shows a curve called 
the efficient frontier. Portfolios that are optimal in the sense that they maximise the 
expected utility lie on the frontier. Other, less efficient, portfolios lie beneath the 
frontier with lower returns. Alternatively, you can stay to the right of the frontier 
with the same return but higher risk. Figure 14-2 shows that for high values of the 
risk aversion parameter, λ, the variance, p

2, of the optimal portfolio has low vari-
ance or risk and the returns are low. On the other hand, if the risk aversion param-
eter λ is low then the optimal portfolio has high variance and high returns.

Dealing with poor estimates
Now’s the time to own up: Mean-variance analysis often doesn’t work well. This 
kind of analysis is the mathematical foundation of portfolio theory but when it 
meets the real world problems happen. Sound familiar? The concepts in the theory 
such as diversification are important, but some of the actual predictions are dodgy. 
The reason is that the parameters you need for the model, the correlation matrix 
and the expected returns especially are difficult to estimate.

FIGURE 14-2:  
An efficient 

frontier curve 
using the 

parameter for 
risk aversion. 

© John Wiley & Sons, Ltd.
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You can find ways of dealing with the problem:

»» Don’t use historical data to make estimates. These data is likely to be 
unreliable especially if you’ve calculated it from short time series.

»» Use shrinkage. Doing so is probably essential. The covariance is notoriously 
difficult to estimate, so if you try to optimise a portfolio using poor values, the 
predicted proportions may be way out. Best to be conservative and shrink the 
covariance matrix towards a diagonal matrix.

»» Use a different utility function. I’ve used an exponential utility function but 
you don’t have to do that. You can use a utility function that includes both 
risk-averting and risk-loving behaviour. The problem is that other utility 
functions lead to much more complicated maths so maybe leave this problem 
to experts.

»» Use constraints. Sometimes the analysis can give poor answers perhaps with 
excessive weight in one stock. A solution to this problem is to use constraints 
in the optimisation. Solver software in some spreadsheets allows you to do 
this.

I talk more about estimating the covariance matrix in Chapter 13.

Capital Asset Pricing Model
There’s no doubt that the mean-variance analysis in the previous section ‘Build-
ing an efficient frontier’ is a bit head spinning. However, it shows that you can 
calculate a balance between risk and return. Diversification works. But even after 
balancing portfolio risk, you still face market risk, the risk that the overall market 
will go against you. The capital asset pricing model, or CAPM for short, asserts 
that this risk is the only one left after the idiosyncratic risk of the individual stocks 
has been diversified away. This view is quite an extreme one that has been shown 
to be incorrect (it doesn’t fit the data) but remains influential because of its sim-
plicity. CAPM achieves maximum simplicity by treating the overall market as the 
only significant factor in the performance of investments. There can be some 
subtleties in using it, for example in deciding what the market portfolio is.

In ‘Building an efficient frontier’, I show what happens when you invest a portfo-
lio of stocks. Now I turn to the slightly more complicated case when you can also 
invest in cash or some other risk-free asset such as a treasury bill (short-term 
loan to the government). I show the results of these calculations in Figure 14-3. 
The dashed line goes through the return axis at the value of the risk-free rate and 
touches the efficient frontier tangentially. This line is called the capital market line. 
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The point where this line touches the efficient frontier is called the market portfolio. 
Mixtures of the market portfolio and cash lie on the capital market line. Portfolios 
to the left of the market portfolio are in the region of high risk aversion (refer to 
Figure  14-2) and so are combinations of lending at the risk-free rate and the 
market portfolio. Portfolios on the capital market line to the right of the market 
portfolio are in the region of low risk aversion and are combinations of borrowing 
at the risk-free rate and the market portfolio.

Because in CAPM the only risk is assumed to be due to the market, you can write 
the returns, Rt, for a given stock in a portfolio as a linear function of the market 
returns Xt:

R Xt t t .

This equation has two parameters:

»» α is the mispricing of the stock relative to the market. α should be 0 if the 
market is efficient.

In an efficient market, you can’t do better than the market itself. If α is greater 
than 0, returns will clearly exceed that for the market.

»» β is the sensitivity of the stock to the market. If β is greater than 1, then the 
stock is high risk and its returns (positive and negative) are higher than that 
for the market. If β is less than 1, the stock is low risk and its returns are lower 
than that for the market.

»» In addition, ε is the residual risk for the specific stock. It’s assumed that this 
risk can be diversified away by investing in many stocks.

FIGURE 14-3:  
Efficient frontier 

and the capital 
market line. 

© John Wiley & Sons, Ltd.
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α and β have become iconic parameters in the vocabulary of hedge fund managers. 
If the returns, Rt, are for an investment or trading strategy, then α represents the 
extra return that the manager is generating from his activity. β measures the risk 
that can’t be diversified away.

You can calculate β for a stock from the covariance, cov(R,X), between the returns 
of the stock and the returns of the market and the variance, X

2 , of the market:

cov , /R X X
2 .

Using the βi for the ith stock in a portfolio of N stocks, you can calculate the port-
folio’s β using the formula:

p i i
i

i N

p
1

.

The β of a portfolio is useful for understanding overall risk. A 1 per cent rise in the 
market should result in a β rise in your portfolio; likewise, a 1 per cent fall in the 
market should result in a β fall in your portfolio.

An alternative form of the CAPM relates the expected return of a stock, μ, to the 
expected return for the market (indicated by the subscript m). The risk-free rate, 
rf, comes into this formula as does β:

r rf m f .

Assessing Portfolio Performance
Figuring out which investments to make and comparing the performance of 
investment funds is no simple task. However, investment managers need infor-
mative performance indicators to make good decisions. In this section, I show you 
how to do this task with some simple indicators of risk-adjusted return.

Sharpe ratio
The first and probably most important measure of portfolio performance is the 
Sharpe ratio. This ratio is an example of a risk-adjusted performance measure 
because both portfolio returns and volatility are used in the calculation. If the 
risk-free interest rate is rf and the portfolio return rp, then the Sharpe ratio, S, is 
defined as:

S
r rp f

p
.
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The denominator is the annualised portfolio volatility and the returns are annual 
returns.

If the returns and volatility are both calculated from daily data, then you need to 
make a correction to annualise the Sharpe ratio. The returns should be multiplied 
by T, the number of trading days in the year, and the volatility must be multiplied 
by T . This is, yet again, the square root of time rule. So, doing a little bit of alge-
bra in your head (don’t worry I won’t ask you to do this again), you need to mul-
tiply the daily Sharpe ratio by the T  to get the normal annual Sharpe ratio.

Referring to Figure 14-3, the slope of the capital market line is the Sharpe ratio of 
the market portfolio. Remember that the y-axis on the chart is returns and the 
x-axis is risk or σ. Also, because the line drawn is the steepest possible line start-
ing at the risk-free interest rate and intersecting the efficient frontier, the market 
portfolio is the point on the efficient frontier with the highest Sharpe ratio. In 
risk-adjusted returns terms, the market portfolio is the best portfolio.

An investment with a Sharpe ratio of 1 is considered to be excellent, and you need 
a good trading strategy to achieve this. Let me know if you work out how to do this 
task, please!

The stock market has a Sharpe ratio of around 0.3. However, Sharpe ratios are 
numbers calculated from the historical performance of a fund. They’re actually 
estimates of the Sharpe ratio calculated from a sample and so have a margin of 
error. You can get an idea of this error by using formulae from Chapter 13. The 
error on an average calculated from N data points is

N
.

It turns out (although I’m not going to prove it here) that this is the main error – 
not the error from the estimate of the standard deviation of the returns – for small 
Sharpe ratios. So the error in the estimate of the Sharpe ratio, S , is

S
N

1 .

The σ has cancelled from the formula. Thinking now of the annual Sharpe ratio 
where there are n years of trading data so that N = 250 × n, the error in the annual 
Sharpe ratio is

S N n
annual

250 1 .

This means that for an equity strategy with a low Sharpe ratio of around 0.3, the 
error in the annual Sharpe ratio is almost as large as the Sharpe ratio itself even 
with ten years of data.
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Be sceptical of claims about the performance of hedge funds and mutual funds!

Drawdowns
You may be wondering about volatility-adjusted returns, thinking that surely only 
the average returns matter. In practice, the volatility affects investors greatly. 
Figure 14-1 shows the portfolio rises steadily, almost like a bank account. A vola-
tile investment has significant drawdowns. A drawdown is a decline in the price of 
an asset or portfolio of assets from its current value. If the probability of a large 
drawdown is high, that’s bad news for the portfolio. Nobody wants an investment 
worth substantially less than what it was or indeed what he paid for it. After time, 
T, the price of an asset that follows the geometric Brownian motion described in 
Chapter 3 is P(T). I denote the average return by r and the volatility by σ as usual. 
ε is a Gaussian noise with a mean of 0 and standard deviation of 1:

P T P erT T0 .

In this formula, I use the square root of time rule again (see Chapter 7). For the 
expected returns to be more important than the Gaussian fluctuations, the first 
term in the exponent must exceed the second term so that:

rT T .

You can rewrite this formula as:

T
r

2

2

which shows that, for times longer than this, the probability that P(T) is less than 
P(0) is small. That’s because, for longer times, the growth from the expected 
returns overcomes the fluctuations. I write this characteristic time scale as T. The 
typical decline, D, in the asset price that occurs in this timescale is yet another 
application of the square root of time rule. The volatility gets multiplied by the 
square root of the typical time scale:

D T r r2 4 2 2 .

(Please don’t yawn; you’re just getting good at this!)

This calculation is based on general principles so as to show how the typical draw-
down depends on the volatility and mean return. A more accurate calculation 
shows that:

D r
2

2 .
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An excellent investment fund with a Sharpe ratio of 1 with, say, σ = 0.2 and r = 0.2 
has T = 1 year. A drawdown lasting much longer than a year would be unusual. So, 
even for an excellent fund, drawdowns can be unpleasant and unnerving. Also, a 
more typical investment such as an equity fund with σ = 0.2 and r = 0.1 has  
T = four years. You may have a long wait before your fund gets back above water.

Going for risk parity
Risk parity is a way of constructing investment portfolios that emphasises balance 
between different investment classes such as equities, bonds and commodities. It 
recognises that correlations can be unstable and so a more fundamental and less 
mathematical approach to portfolio construction can work.

The correlation measures the strength of the statistical relationship between two 
assets. Its value is between –1 and 1. If the assets tend to move together, the cor-
relation is close to 1, whilst if one moves up whilst the other moves down, then the 
correlation will be close to –1. You need a correlation matrix if you have many 
assets because you can then calculate the correlation between each of the assets in 
the portfolio.

That’s despite the fact that Harry Markowitz, who invented it, won a Nobel prize 
for his work. Portfolio optimisation is probably more craft than science. Estimat-
ing correlations is fraught with difficulty because they’re unstable.

During most periods of time, government bonds are anti-correlated with equities. 
This situation happens when economic growth and inflation pick up, which is 
good for equities but bad for bonds. If investors like what they see, they buy equi-
ties to increase the growth potential of their portfolio and fund that purchase by 
selling bonds. Note that the reverse is true as well – investors sell equities and buy 
bonds if they see the promised growth stalling for some reason.

However, the market doesn’t stay in the same condition forever. If a situation 
arises when the market expects inflation to start falling, then both equities and 
bonds tend to do well. That’s because the present value of their dividends or cou-
pons suddenly becomes more valuable because the interest rate tends to be low if 
inflation is low. In this new situation, bonds and equities can become correlated. 
That’s the opposite of the situation with rising growth and inflation. Worse is that 
the market can flip quickly from a correlated to an anti-correlated state. Creating 
a portfolio that is robust to these changes isn’t easy but makes a lot of sense.

Another way of building a portfolio is to ignore the correlations (which may 
change soon anyway) but pay attention to the risk. In fact, I do that earlier in the 
chapter in the section ‘Using portfolio budget constraints’. The result shows how 
to weight portfolio assets depending upon their volatility. The risk parity approach 
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to portfolio construction takes this weighting further and ensures that different 
asset classes (equities, commodities, stocks or even property) all have the same 
risk allocated to them. In other words, the fluctuations in the asset value of the 
portfolio can be equally attributed to all the asset classes.

The concept of risk parity can be taken a stage further. By placing equal amounts 
of risk into different asset classes, your portfolio is more likely to achieve a con-
sistent performance. However, potentially it can be made more robust still by 
considering that inflation and economic growth are the main influence on portfo-
lio performance. More accurately, it is unexpected changes in inflation and growth 
that can influence your portfolio because expected changes are already reflected in 
current prices.

Split your portfolio into four quarters, with each quarter designed to do well in a 
specific market condition – rising inflation, falling inflation and rising growth 
and falling growth. This split means that the portfolio can do well consistently 
over time irrespective of market conditions and not fall dramatically if an unex-
pected event occurs.
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IN THIS CHAPTER

Managing risk in your portfolio

Comparing risk measures

Using alternatives to calculate VaR

Checking your model

Expecting extremes

Measuring Potential 
Losses: Value 
at Risk (VaR)

Just how bad can things get? That is the question that the value at risk (VaR) 
measure attempts to answer. Losing money is never fun so getting a heads-
up on the scale of potential losses is a great idea. However, doing so is never 

going to be easy.

Getting down to the maths, VaR (value at risk) is defined as the maximum loss a 
portfolio will experience at a specified confidence level over a specified time hori-
zon. Sometimes VaR is written VaRα and the confidence level is indicated as a 
superscript, α.

The chief executive of JPMorgan Chase & Co, one of the largest investment banks 
in the United States, once said, ‘I don’t pay that much attention to VaR’. So why 
should you? Well, VaR is used extensively for internal risk management by many 
financial institutions and has been part of financial regulation for many years. 
Although it has defects, VaR is still a useful statistic. The scepticism of JPMorgan’s 
chief executive is probably based more on an understanding of the measure’s 

Chapter 15
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weaknesses than on recklessness. This type of scepticism is healthy as it leads 
you to question the assumptions used in risk models and to devise better ways to 
test them.

The Basel Committee of the Bank for International Settlements (often called the 
central bankers’ bank) makes specific recommendations for the use of VaR and 
other similar methodologies, such as stress VaR and expected shortfall. Remem-
ber, though, that before the ink is dry on any new regulation someone, some-
where, will be working out ways to circumvent it, and new forms of risk will be 
being created. The hunt for profits drives this.

In this chapter, I explain VaR and touch on its strengths and weaknesses. It’s a 
ubiquitous tool in finance used for managing risk by financial managers working 
at trading desks or for large portfolios with a diverse range of instruments. It’s 
also used for calculating regulatory capital – the amount of capital banks are 
required to hold to cover for unexpected losses.

Controlling Risk in Your Portfolio
Risk can be controlled by a financial institution, such as a bank, in a number of 
ways. The most important is by hedging. Chapter 5 gives you the lowdown on 
hedging, which is simply trading designed to protect against adverse price 
movements.

You can quantify the effect of changes of market prices or volatility on your port-
folio. That’s helpful, but most large institutions hold many different financial 
instruments that can’t all be characterised by the same parameters. One of the big 
benefits of VaR is that it simplifies risk monitoring by providing a single number 
irrespective of what the asset is. So VaR can calculate risk in an interest-rate 
derivative, a bond or a futures contract.

In addition, VaR can be aggregated (a fancy word for adding up everything that 
affects what you’re interested in, which, in this case, is risk) across products and 
currencies to give an overall measure of the riskiness of an institution’s positions. 
This measure is especially important as diversification is one of the key ways to 
reduce risk. By holding a large portfolio of instruments, you can reduce risk. (See 
Chapter 14 for more about diversification.) VaR gives you a good way of monitor-
ing a large diverse portfolio of financial instruments.

A key application of VaR is by banking regulators to determine how much capital 
banks must hold for the risks they’re taking. This subject is constantly evolving. 
You can check in at www.bis.org, the website for the Bank for International 
Settlements, to get the latest update.

http://www.bis.org
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Defining Volatility and the VaR Measure
Financial risk is often quantified by volatility. Chapter 7 tells all about volatility, 
which is the standard deviation of the returns of a financial instrument and is easy 
to calculate. But volatility does have a few drawbacks:

»» Volatility is calculated by summing the square of the returns of an asset, 
irrespective of whether they’re positive or negative, and then taking the 
average. This calculation gives equal consideration to both gains and losses, 
which doesn’t correspond with what most financial professionals think of as 
risk: financial people consider losses as risk; they don’t think of gains as risk.

»» Volatility is a parameter closely associated with the normal, or Gaussian, 
distribution of returns. In fact, the volatility gives an indication of the width of 
the distribution and so tells you mostly about small values for returns around 
the centre of the distribution. However, what’s important for risk managers 
are large losses, which are shown in the tails of the return distribution.

»» Extreme events can lead to bad estimates of the volatility. If you calculate 
volatility with a simple moving average and miss out some recent large losses 
then you can badly underestimate risk.

Value at risk is about the probability of losing an amount, X, over a period of 
N days in which the portfolio isn’t managed. Your VaR is X if the probability of 
losing an amount X or more over the next N days is α per cent. To correctly specify 
VaR, you need to give both the holding period, N (usually in days), and the signifi-
cance level, α.

»» The holding period (N) depends on why you’re calculating VaR. If you’re 
managing a desk trading government bonds, N may be just one day; if you’re 
managing a less frequently traded instrument or corporate loans, N may be 
as long as a year.

»» The significance level, α, is also determined by the purpose of calculating VaR. 
Bank regulators want to be sure that their banks don’t run into problems so 
they often specify α = 0.01. If you’re running a trading desk, then α = 0.05 may 
be more appropriate.

Normally α is a small number such as 1 per cent or 5 per cent. VaR is usually 
quoted as a positive number even though it refers to losses.

A good alternative to using α is to use 1 – α. 1 – α is the confidence level that your 
loss will be no worse than VaR. For example, if α = 0.01, then you have a 99 per 
cent confidence that your loss would be less than VaR.
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If the probability density function for returns over a period of N days is PN(x), you 
can express this definition for VaR using an equation. Chapter 2 has the full expla-
nation probability density functions. In summary, though, if P(x) is a probability 
density function then P(x)dx is the probability that the random variable x lies in a 
range of width, dx, around the value x:

P x dxN

X

.

This equation means that if you integrate the probability density function from 
the far left (–∞) up to a loss of X, the area (= probability) is α. The shaded area of 
the probability distribution function in Figure 15-1 indicates the fraction of the 
returns that are greater than the loss X.

As an example, if α = 0.01 (or 1 per cent), then you’d only expect a loss greater than 
X once every 100 days. As the holding period in the definition of VaR increases, 
then VaR increases. It does so because with more time available losses are more 
likely. But, as the significance increases, the VaR must decrease because more 
frequently occurring smaller losses must be included.

It’s worth knowing that in the next time period of N days you also have the pos-
sibility of a loss of X. So losses can potentially pile up.

Also worth noticing is that the definition of VaR refers only to the end point of the 
time period of N days. It doesn’t take into account the maximal loss during the 
time period.

FIGURE 15-1:  
A probability 

density function. 
© John Wiley & Sons, Ltd.
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Another way of showing VaR is by using a cumulative distribution function, as 
shown in Figure  15-2, which shows VaR(X) at α level of significance. Here, 
α appears on the y axis rather than as the area of a shaded region.

Constructing VaR using  
the Covariance Matrix

In a world where you assume that financial returns are governed by the normal 
distribution, you can calculate the VaR directly from the variances and covariances 
of the assets in a portfolio. You also need to know how much of each asset is in the 
portfolio.

The variance is the square of the standard deviation. It’s the average of the squared 
deviations from the average value. The covariance is a statistical relationship 
between two variables and is a measure of how much they move together.

The value of a portfolio now at time, t, is Pt and the value at the end of the N day 
period is Pt+N. Then your profit and loss (P&L) is Pt+N – Pt. The assumption in this 
method of calculating VaR is that this P&L is normally distributed with an average 
of μ and volatility σ.

FIGURE 15-2:  
A cumulative 

probability 
distribution 

function. 
© John Wiley & Sons, Ltd.
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Profit and loss (P&L) is slightly confusing terminology because you make a profit 
or a loss – not both. But the expression comes from accounting where a number 
of figures are presented. For example, making a profit before taxation but a loss 
after taxation is perfectly possible and is set out in a P&L statement.

Mostly VaR is used to measure risk over short timescales when the average return 
is just zero. That simplifies the calculations a bit without affecting their accuracy 
too much.

If you draw a number from a standard normal distribution, you have a probability, 
α, of getting a number less than –Zα. –Zα is a quantile of the standard normal 
distribution because it’s the point beneath which you’ll find a particular quantity 
of the returns data – in this case a fraction, α. You can look these numbers up in 
the back of a statistics textbook or use spreadsheet functions for the normal dis-
tribution. For example, if α = 0.01 you have a 1 per cent chance that you’ll draw a 
number less than –2.33 from a standard normal distribution. Equally, if α = 0.05, 
you have a 5 per cent chance that you’ll draw a number less than –1.645.

You can standardise the P&L by dividing it by the volatility. Then you can apply 
results from the statistics of standard normal distributions to calculate the prob-
ability of the P&L being less than a significance level – α. In other words, VaR is a 
percentile of a P&L distribution:

VaR ,N Z .

In this formula, the values of α and N are in brackets to remind you that VaR is 
always specified by the level of significance and the time period.

Calculating a simple cash portfolio
To calculate VaR for a single asset such as a stock, start with the N = 1 day VaR. You 
can then use the square root of time rule to calculate the N day VaR.

Say you have €5 million in BMW shares. The daily volatility is 1.8 per cent. The 
standard deviation in the daily value of this position is 1.8 per cent of €5 million 
or €90,000. Using the formula for VaR from the previous section, the one-day VaR 
at a significance level of 1 per cent is 2.33 × 90,000 = €209,700. If you now want 
to calculate the N-day VaR for this position, you just have to multiply by √N. For 
example, 10-day VaR for BMW is:

VaR 0 01 10 10 2 33 90 000 663 130. , . , ,N .
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Using the covariance matrix
You can also use the statistics of normal distributions to calculate the VaR of port-
folios with more than one asset. To do this, you need the covariance matrix Ci,j. 
This matrix is introduced in Chapter 9. You calculate the standard deviation of a 
portfolio with N stocks from the formula:

p i j i j
i j

N

p p C2

1
,

,
.

This formula is for the standard deviation of the portfolio price changes Pt+N – Pt 
and the pi are the nominal amounts (amounts expressed in currency units such as 
dollars) of each stock. For a portfolio with only two stocks, you can use the defini-
tion of the correlation ρ (see Chapter 9):

C1 2 1 2,

to write the formula for the portfolio standard deviation (squared) as:

p p C p C p p p p p p2
1
2

1 1 2
2

2 2 1 2 1 2 1
2

1
2

2
2

2
2

1 2 1 22 2, , .

The covariance, C1,1, is the square of the volatility of the first share while C2,2 is the 
square of the volatility for the second share. I use that after the second equality sign.

As an example of using this formula, I expand on the example used in the previous 
section. So, in addition to 5 million € in BMW shares, your portfolio has 10 million 
€ in Daimler Benz shares. The correlation between the shares is 0.87. That’s a 
high number because both BMW and Daimler make cars. Their share prices 
respond to the same risk factors, such as the unemployment rate and oil price, so 
they both tend to rise and fall together.

You can now use the formula for the portfolio standard deviation. I abbreviate 
numbers – 5 million as 5m, for example – so as to keep the arithmetic on a 
single line:

p m m m m2 2 2
15 0 018 10 0 017 2 0 87 5 0 018 10 0 017. . . . . .

If you do the arithmetic, it comes out at 252,234€. To get the one-day VaR, you 
now just multiply this value by 2.33 to get:

One day VaR at 1% significance 252,234 2.33 euros 587,705.
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Estimating Volatilities and Correlations
In Chapter 7 on volatility, I show how you can estimate the volatility using an 
exponentially weighted moving average. To remind you, I show the equation 
below so that you can compare with the equation for the covariance:

i t i ti t
r, ,,1

2 2 21 .

The index, i, indicates that the equation is for the ith asset in the portfolio and the 
t indicates the day. The parameter λ is a smoothing parameter. You can also use 
this technique to calculate the covariance matrix and the correlations. I write the 
covariance between asset i and asset j at time, t, as Cij,t. The return for asset i at 
time t is ri,t. Now you can write the formula for the covariance in terms of the 
covariance for the previous day:

C C r rij t ij t i t j t, , , ,1 1 .

This formula for the covariance is of the same form as the formula for the volatil-
ity and with the same value for the smoothing parameter λ. In fact, in the equation 
for the covariance, if you set i = j, then it’s the same as the equation for the vola-
tility provided that:

Cii t i t, ,
2 .

The volatility is just a special case of the covariance, the diagonal elements of the 
covariance matrix as shown in Figure 15-3.

To calculate the correlation, ρ, between two assets, all you have to do is divide the 
covariance by the volatilities for both asset i and asset j. In this formula, I dropped 
the subscript t as it is the same for all terms in the equation:

ij
ij

i j

C
.

FIGURE 15-3:  
A covariance 

matrix has 
diagonal 

elements equal to 
squared volatility. 
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Simulating the VaR
In the section ‘Constructing VaR Using the Covariance Matrix’ earlier in this 
chapter, I show how you can work out VaR if you know the covariance matrix of 
assets in your portfolio. This relies on the assumption that the distribution of 
returns is normal. You can, however, break free of this assumption by making use 
of historical returns data. Doing so has the additional benefit of using data that 
directly reflects the correlations between the returns of the assets.

Using historical data
The historical simulation of VaR does what it says on the can and uses historical 
data to simulate the empirical probability density for the portfolio P&L. To get 
reliable results, you need at least a year’s worth of daily data, but more is better 
and five years of data would be safer.

For a portfolio with N stocks and (M+1) days of data, the following is what you 
need to do to calculate VaR:

1.	 For each of the N stocks, calculate the M values for the returns starting 
from the second day in your data set.

Call these ri,j. That’s the return on the ith stock on the jth day.

2.	 Using the portfolio amounts, calculate the portfolio value on the last day  
of the data set.

Assume that this is the current day, and you want to know the one-day VaR so 
that you can figure out what your losses may be tomorrow. If you have ni 
shares in the ith stock and its price is pi,j on the jth day, then the portfolio value, 
P, on the last day M+1 of the data set is:

P ni M i
i

N

M p1 1
1

, .

3.	 Using the returns calculated in Step 1, starting from day j = 2, calculate the 
price for each stock on day M+2:

p r pi M i j i M, , ,2 11 .

In doing this, you’re assuming that the returns process for tomorrow will be 
similar to the historical returns process from the data set.
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4.	 From these calculated prices for the stocks on day M + 2 from Step 3, you can 
now calculate the portfolio value on day M + 2 using exactly the same 
numbers, ni, as you used to calculate the original portfolio value:

P M p ni M i
i

N

2 2
1

, .

5.	 Repeat Step 4 for the remaining M − 1 values for the returns for each stock 
so that you now have M values for the portfolio on day M + 2.

6.	 Put these portfolio values into ascending order, starting from the worst loss.

If you want to calculate the VaR at a significance level of α, then find the 
number in this sequence of portfolio values.

This number is the VaR for this level of significance because, given this data set, 
there is a probability of α of getting a loss less than this number.

The nice thing about this method is that you’re using real data, so it exactly 
reflects the correlations between the asset returns.

Some potential pitfalls come with this method of calculating VaR. In particular, 
the data set you choose may represent a period when the market was in a definite 
trend not representative of how it will be in the future. Going further back in time 
can help as can selecting a specific period in the past when the market was 
stressed.

Spinning a Monte Carlo simulation
The Monte Carlo simulation method of calculating VaR is, in a way, a hybrid 
between using historical data and the method described in ‘Using the covariance 
matrix’ earlier in the chapter. You can find out more about this technique in 
Chapter 10.

This method also requires a covariance matrix calculated from historical data. 
However, after you calculate the covariance matrix, you use it to generate simu-
lated price series for all of the assets in your portfolio assuming that the returns 
follow a Gaussian process.

The Monte Carlo simulation must use random numbers that have the same cova-
riance as the historical data. To do this, you need to use the Cholesky decomposi-
tion of the covariance matrix. This decomposition needs to be done using maths 
software such as Matlab, R or the SciPy module for the Python programming 
language.
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If you have a covariance matrix, V, the Cholesky decomposition of V is the matrix 
C such that V = CCT. Remember that both V and C are matrices, so in the formula 
you use matrix multiplication and not ordinary multiplication. Also, the T super-
script indicates that you have to calculate the transpose of that Cholesky decom-
position matrix. Now, to use the Cholesky decomposition:

1.	 Generate N random numbers from a standard normal distribution.

A standard normal distribution has a mean of zero and a standard deviation of 
one. I’ll call the N random numbers that I generate from the standard distribu-
tion X. X is a vector because there are N numbers.

2.	 Multiply X by C to get N numbers that reflect the covariance of your data.

In other words – and this is the clever bit – you calculate y = CX. Remember this 
formula involves matrix multiplication because there are N random numbers.

The advantage of using a Monte Carlo simulation is that it generates a price time 
series for each asset. If your portfolio contains assets such as options that depend 
upon the path the price takes, you can value these assets with this method.

The disadvantage of using Monte Carlo simulation is that it assumes that the 
returns distribution is normal. It can also be time consuming to generate the large 
volume of random numbers needed.

Validating Your Model
The Bank for International Settlements (BIS) sets out an approach for banks to 
calculate their minimum regulatory capital, defined as the amount of capital a bank 
needs to be considered a viable concern by its creditors and counterparties. Nor-
mally, these capital requirements are calculated using measures such as VaR, so 
banks need to check these calculations thoroughly.

So what is a bank’s capital? Usually the capital is a mixture of equity, debt and 
retained profits that banks hold in reserve to support their business. The regulator 
distinguishes between Tier 1 and Tier 2 capital: The main difference is that Tier 1 
is a more sure and certain form of capital such as retained earnings and largely 
excludes innovative forms of capital constructed from risky loans.

Backtesting
Backtesting is a form of reality check on VaR calculations. You can check out how 
well your VaR predictions would have worked in the past. The loss given by VaR 
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should be exceeded only α per cent of the time. So, if you go back in time with your 
data, work out how many times the actual loss exceeded the VaR from your model. 
When this situation occurs, it’s called an exception.

If your VaR significance is five per cent but you have exceptions ten per cent of the 
time, then you probably have a problem with your model.

Stress testing and the Basel Accord
The Bank for International Settlements has introduced a new form of VaR called 
stress VaR, or simply SVaR. In concept, SVaR is simple: Calculate VaR using data 
from a period of extreme volatility – for example, the credit crisis during 2007 
and 2008.

The point is to avoid pro-cyclical estimates of VaR. Sometimes markets can enter a 
phase of overconfidence. Participants believe that things are going well but they’ve 
only forgotten how bad things can get. Volatility is low and VaR estimates are low. 
This situation encourages even greater risk-taking just before a crash happens.

SVaR is a good reality check to make. The Basel committee recommends using a 
significance of one per cent and a time horizon of ten days. To ensure that your 
volatility does indeed reflect the stressed days during the period of the data set, 
you’re best calculating it using a simple standard deviation of the returns and not 
an exponentially weighted moving average (EWMA). The EWMA may inadver-
tently give low weights to the stressful days.

Including the Average VaR
The definition of VaR I use in the previous sections of this chapter is widely used, 
but it has defects. VaR refers to losses that occur with a probability of α but doesn’t 
say anything about losses with a smaller probability, which means that there may 
be the possibility of a rare event with particularly high losses that wouldn’t affect 
the VaR number.

Say you have a portfolio of £100 million and the one-day 5 per cent VaR is £1 million. 
Every 20 days you stand to lose £1 million or more. Don’t despair though; remem-
ber that markets go up as well as down! However, now you have a new possibility of 
losing £5 million or more with a probability of 1 per cent. Sadly, the 5 per cent VaR 
figure didn’t say anything about the magnitude of the losses you may experience 
except that they’re bigger than £1 million. If you knew they could be £5 million 
every 100 days, you’d reconsider this investment.
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To illustrate this problem with the definition of VaR, take a look at Figure 15-4. It 
shows two statistical distributions of returns with an equal value of VaR, which 
you can tell because the shaded areas are of equal size. The VaR is 2 for both cases 
as the shaded regions both extend to –2. (Remember that VaR is quoted as a posi-
tive number.) However, a big difference exists between the distributions. The 
graph in Figure 15-4 b has a blip at the large value of –4 and so potential losses 
are much larger. VaR tells you nothing about this blip, so it can be misleading.

If I’d chosen a smaller value of α in Figure 15-4 – about half the value in fact – the 
value for VaR would have turned out differently. That’s because of the different 
shape of the probability distributions in the left tail associated with large losses. 
I show this different shape in Figure 15-5, which shows that for the same value of 
the significance (equal shaded areas), the VaR for the blip distribution is 4 while 
for the fat-tailed distribution the VaR is only 3. The VaR figure can be a bit mis-
leading depending on the shape of the probability distribution.

A proposed solution for this problem with VaR is to use another risk measure 
called expected shortfall. As if to confuse the unwary, this shortfall is sometimes 
called conditional VaR or just Average VaR (abbreviated to AVaR normally). This 
measure answers the question, ‘If things get bad, how much can we expect to 
lose?’ It does this by taking an average value of the VaR.

FIGURE 15-4:  
Equal values 

of VaR. 
© John Wiley & Sons, Ltd.
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Denote the VaR value associated with a significance level, β, with a superscript and 
then calculate the average VaR using the formula:

AVaR X VaR X d1
0

.

The definition of AVaR at a given level of significance, α, takes an average of the 
VaR values for lower levels of significance, β. Calculating AVaR is more reflective 
of the whole distribution at loss values greater than X.

An advantage of using expected shortfall, or AVaR, is that it satisfies the condition 
of subadditivity, or the advantage of diversification you get when you combine 
investments. In other words, diversifying lowers your risk. Mathematically this 
condition states, for a risk measure, ρ, that:

X Y X Y .

Surprisingly, the simple VaR risk measure doesn’t satisfy subadditivity. Intui-
tively, it’s a condition you’d like a risk measure to satisfy because only then is the 
risk of two combined investments less than the sum of the individual risks of each 
investment. You want your risk measure to reflect this reality. The Basel commit-
tee of the BIS introduced the use of expected shortfall after the credit crisis of 
2007/2008. Better late than never!

FIGURE 15-5:  
Unequal  

values of VaR. 
© John Wiley & Sons, Ltd.
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Estimating Tail Risk with Extreme 
Value Theory

It somehow makes sense to focus on exceptional or extreme losses rather than 
common or garden losses. Most market participants are used to their portfolio 
moving up and down in value by small amounts and take that in stride. What they 
really want to know, however, is what the big loss might be like. A special form of 
statistics looks at the frequency of these large losses (and gains) and is called 
extreme value statistics.

The normal probability distribution predicts that large market moves are much 
less frequent than they actually are. The world’s a more exciting and dangerous 
place than statistics textbooks would have you believe.

A way of looking at this situation is to work out the probability distribution of the 
maximum value of N independent and identically distributed (sometimes abbre-
viated iid) random numbers. These independent distributions don’t have to be 
normal, and so the results of extreme value theory are quite general. I define

X X X XNmax , ,...,1 2 .

THE RARITY OF BLACK MONDAY
On Monday, 19 October 1987, stock markets across the world suffered one of their 
worst days ever. In the United Kingdom, the FTSE 100 index declined by 10.8 per cent 
from 2301.9 to 2052.3. No wonder that day’s now called Black Monday. Even worse was 
that on the following day, the FTSE 100 fell by another 12.2 per cent.

In the previous year, the standard deviation of daily returns (here I’m defining return as 
price today minus price yesterday, not taking a ratio with the previous day’s price) on 
the FTSE 100 index had been approximately 15. So, the fall of almost 250 points on 19 
October was more than a 10 standard deviation event.

According to the normal distribution, these events should be so rare you’d have to wait 
for longer than the age of the universe (14 billion years) before one comes along. So the 
stock market crash on Black Monday was a bit more than bad luck. It shows that the 
normal distribution does not apply to these kinds of extreme events and that a better 
form of statistics is required to understand tail events.
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Then, if X is standardised by subtracting a location parameter, α, and dividing by 
scale parameter, β, so that:

Y X / ,

then the approximate distribution function of extreme values y is

F Y y Y yProbability exp
/

1
1 .

The parameter ξ is typically positive for distributions that occur in finance and is 
called the tail index.

Using a distribution of this kind is probably best left to experts. It can be difficult 
to fit and apply this distribution to a diversified portfolio, but it’s good to know 
that someone’s thought about measuring what’s happening in the tail of returns 
distributions.
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Build models for returns to help try to forecast markets.

Keep your market models simple – one of the secrets 
to the art.

Understand auction mechanisms as a way to price 
financial assets.

Look backwards at prices to check your current strategy.

Recognise that trading has an impact on the market and 
that prices adjust.
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IN THIS CHAPTER

Using technical analysis

Following trends

Predicting the future from the past

Forecasting Markets

Is it possible to forecast markets? If markets are efficient and correctly reflect 
current information, it should be impossible to accurately predict their move-
ments. In an efficient market, each price change is independent of earlier price 

changes. Prices should be like random numbers, not capable of being forecast.

However, many market participants definitely don’t see things that way. For a 
start, many hedge funds and active fund managers charge their customers a lot of 
money to anticipate market movements. Some fail but others are systematically 
successful. High frequency traders attempt to exploit market inefficiencies on 
particularly short timescales down to microseconds. Some of their successes may 
be due to having better hardware (faster computers and communication links) 
than their competitors but they also rely on good predictive models of markets.

In this chapter, I look at well-established ways of trying to forecast markets. 
Some involve using charts, others use maths and statistics. In both cases, you 
need lots of data.

A commonly used mathematical method is to try to detect patterns in the histori-
cal price movements of an asset and see whether those patterns persist into the 
future. Another method is to try to discover a leading indicator, an economic factor 
used to predict a market price before it changes. This indicator defies the efficient 
market hypothesis (EMH) but doesn’t stop people from trying methods like these.

The efficient market hypothesis (EMH) says that financial asset prices fully reflect 
available information. In principle this makes gathering information such as 
leading indicators futile because the information should already be incorporated 
into prices.

Chapter 16
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The efficiency of markets means that your model needs to predict just a small 
fraction of the market movements for it to be useful. Indeed, that’s all you’re ever 
likely to achieve. With just this small advantage though, you can be ahead of other 
participants and able to show them the star that you are. Financial trading is both 
art and science and requires experience to be successful. This chapter is intended 
to give you a start. Don’t expect to find the Holy Grail here, but I hope you find 
some useful tools.

Measuring with Technical Analysis
Technical analysis involves analysing price and trading volume data with the pur-
pose of forecasting prices and establishing good (profitable!) times to buy or sell 
an asset. It has a strong visual element and often relies on the use of price charts.

Technical analysis is often criticised as a form of voodoo science because most of 
the analyses don’t have a firm grounding in statistics. That’s to miss the point, 
though, of some of these techniques. A lot of science started with empirical obser-
vations and only later was rationalised by the use of statistics and mathematics. 
You can get inspiration from some of the ideas and take on some of the clever 
ways of presenting market data.

Constructing candlesticks
No, that section heading wasn’t caused by a rogue spellchecker. Candlestick is the 
name given to a special diagram first used by Japanese rice traders.

Candlestick charts are useful because they show more information than a regular 
line chart or bar chart. The chart is made up of a candle for each trading day or 
time period. The body of the candle is shaded white if the stock’s closing price is 
higher than its opening price and black if the closing price is lower than the open-
ing price. The lines above and below the body are called shadows and indicate the 
high and the low prices. Figure 16-1 shows examples of two candlesticks.

Experienced traders use candlestick charts to identify configurations that are 
either bullish or bearish.

An event or signal is said to be bullish if it suggests that the market will subse-
quently rise. A bull market is a rising market. An event or signal is said to be bear-
ish if it suggests that the market will subsequently fall. A bear market is a falling 
market.



CHAPTER 16  Forecasting Markets      295

Figure  16-2 shows two commonly identified candlestick patterns. The hammer 
pattern can occur at the bottom of a bear market while the shooting star is associ-
ated with the top of a bull market.

The hammer pattern has a closing price which is the high for the day indicating 
the possible end of a bearish trend. The shooting star pattern has a closing price 
that’s the low for the day indicating the possible end of a bullish trend.

They may have exciting names, but candlestick patterns are likely to be insuffi-
cient in themselves to detect useful trading opportunities. Traders use many dif-
ferent patterns and lots of experience.

Relying on relative strength
Examining charts of prices is helpful if you’re trying to figure out how they might 
go in future or how the price might be related to another quantity or price. How-
ever, you can get a real boost of insight by calculating an indicator. An indicator is 
calculated from historical prices (and sometimes trading volume as well) and is 
designed to tell you something about how the price is trending.

FIGURE 16-1:  
Candlesticks for  

a rising and a 
falling market. 

© John Wiley & Sons, Ltd.

FIGURE 16-2:  
Simple candle-
stick patterns. 

© John Wiley & Sons, Ltd.



296      PART 6  Market Trading and Strategy

A popular indicator available in many charting packages and software is the rela-
tive strength. You calculate this strength from the total of the upward price changes, 
U, in the past n days and the total of the downward price changes, D, in the past n 
days. Typically, n = 10 (a fortnight), but you can use any time period that suits you. 
If you choose a smaller number for n, then your indicator may fluctuate too much 
and encourage you to buy and sell too frequently so that your trading costs are 
high. If n is much higher than 10, then your indicator may not be responsive to the 
changes that take place in markets.

Relative strength is then defined by the equation RS = U/D. When you calculate D, 
the downward price moves are taken as positive numbers so that relative strength 
is always a positive number.

A more convenient number to use than the RS is the relative strength index, or RSI. 
The RSI is a number that lies between 0 and 100. If RS is large because there have 
been few downward price moves, then RSI is almost equal to 100. By contrast, if 
RS is small because there have been few upward price moves, then RSI is going to 
approach 0. This fact makes RSI a good indicator of the momentum behind price 
changes with 0 indicating weakness and 100 indicating strength. If RSI is high, 
say over 80, this level is referred to as overbought and the price is considered likely 
to fall; if RSI is low, say beneath 20, you refer to it as oversold and the price is 
considered likely to rise. You calculate RSI using the formula:

RSI RS
RS

100
1

.

Figure 16-3 shows a chart of both the DAX index and RSI. The left-hand vertical 
axis gives the values for RSI while the right-hand axis gives the values for the DAX 
Index.

FIGURE 16-3:  
RSI overlaid on 

a chart of the 
DAX Index. 

© John Wiley & Sons, Ltd.
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You can certainly see that at the low point of the index, around 6 March, RSI is at 
a low point beneath 20, so is probably oversold. In other words, RSI appears to be 
signalling a profitable buying opportunity here. However, to determine whether 
RSI really systematically signals good buying and selling opportunities, you need 
to do a detailed statistical analysis using a lot of historical data.

This chapter gives you a short introduction to technical analysis, mainly to show 
you the ingenious, and to some extent alternative, ways some traders examine 
market behaviour. Technical Analysis For Dummies by Barbara Rockefeller (Wiley), 
gives the lowdown on these techniques for those who want to do it for real. If you 
decide to use these signals, you need to carry out extensive checks before trading 
with real money. These checks should include backtesting with historical data and 
then paper trading the system for some time. By paper trading, I mean that you 
follow how successful trades would have been without actually making the trades. 
This activity allows you to check whether the trading signals work on data that 
was not used, and indeed not seen, when you developed the system. The next 
chapter, Chapter 17, gives you more detail about backtesting.

RSI is an example of what’s called an oscillator because the signal moves up and 
down around a midpoint value. In the case of RSI, that value is 50. Figure 16-4 
shows a plot of the oscillations in the RSI value for the DAX index for the past five 
years.

FIGURE 16-4:  
RSI for the S&P 

500 Stock Index. 
© John Wiley & Sons, Ltd.
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For values over 70 the stock is overbought and due for a fall, so you should sell. For 
values of RSI less than 30, the stock is oversold and is due to bounce back up so 
you should buy. As shown in the chart, frequently the value of RSI is around 50 
and in these situations keeping out of the market could be a good idea.

Checking momentum indicators
Traders have constructed many different indicators from historical price data. 
Some of these indicators don’t use just the closing price for a time period but also 
the high and low prices. Others use the trading volume as well.

Stock markets across the world commonly provide open, high, low, close and 
volume data for every trading day. This data set is a rich one in that it provides 
much more information than just the closing price for the day. The trading volume 
tells you how many shares were traded in a day and is potentially indicative of the 
significance of a price change. If a price starts rising with particularly high volume, 
the reason is because some traders have strong convictions and are buying a lot. 
This rise can be a good indicator that the price will rise even further.

The high (H) and low (L) prices for the day can tell you something about the vola-
tility. In fact, the range, R = H – L, is a good substitute for the volatility. If the 
high for the day is well above the low, the price has been moving round and must 
have been volatile. And range is, by its definition, positive. Because it includes 
intraday information, you can use range to calculate estimators for volatility that 
are more efficient than those calculated from the closing price alone. An efficient 
estimator is one with low variance so is more likely to be close to the true value, 
which is good.

One of the main types of indicator is momentum, which you can think of as an 
indicator of the trend of the market. Momentum isn’t precisely defined; many 
momentum indicators exist but they all attempt to tell you whether the market is 
moving up or down. This attempt is not so easy when day by day or even hour by 
hour the market makes both up and down moves.

The simplest momentum indicator is a price change over a period of time. For 
example, the price today minus the price 20 days ago is a momentum indicator. If 
the price is trending upward, then this number is positive and even if the price 
drops tomorrow is still likely to be positive. Only if a big drop in price occurs does 
the trend reverse. Likewise, if the price is trending downward, this indicator is 
negative and only turns positive if significant price rises happen.

A snag with this simple momentum indicator based on just two prices is just 
that – the indicator is based on only two prices. So, its value is quite strongly 
dependent on the two prices you choose. Much better to use an indicator 
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calculated from many prices. In Chapter 8 I explain how to use the exponentially 
weighted moving average (EWMA) to create an average of historical prices in 
which greater weight is given to more recent prices.

To calculate an exponentially weighted moving average, or EWMA, from prices pn, 
you can use the formula

P P pn n n1 1 1/ / .

In this formula, the capital P indicates the EWMA of the prices. The constant 
lambda, λ, determines how responsive the EWMA is to recent changes in price. If 
lambda is large, say 128, then the EWMA isn’t responsive to recent prices and 
prices from over 128 days ago are contributing. On the other hand, for a small 
value of λ, such as 4, then only recent prices are contributing.

You can create a momentum indicator from these averages by taking the differ-
ence between two of them. You do this calculation by subtracting an EWMA with 
a large value of λ from an EWMA with a small value of λ. By using EWMAs, the 
indicator becomes more efficient, or less susceptible to the random noise that 
comes naturally with market prices.

Momentum indicators created by subtracting two EWMAs are often called oscilla-
tors because they switch between positive and negative values depending on 
whether the price trend is going up or down.

If trends in prices are indeed evident, then momentum oscillators such as the one 
calculated by subtracting two EWMAs can be predictive to some extent of future 
prices. These oscillators are also known by the name MACD indicator – moving 
average convergence/divergence.

Just to keep you on your toes, remember that if a financial market is efficient, then 
it doesn’t have any price trends. In this theory, each new day is a fresh start with 
no memory of the past, and each price change is like a random number. Active 
traders, by what they’re doing, don’t believe in this theory. Theories are not writ-
ten in stone.

Blending the stochastic indicator
The popular stochastic indicator is similar to both the relative strength oscillator 
that I talk about in ‘Relying on relative strength’ earlier in the chapter and the 
momentum oscillator from the preceding section. But the stochastic indicator 
uses the high and low values of daily prices, which can be helpful in assessing 
whether the most recent price has broken new ground and moved beyond the 
highest high or the lowest low of recent times.
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I use C to denote today’s closing price and L(n) to denote the lowest low price in 
the past n days. R(n) is the range of prices in the past n days and is the difference 
between the highest high and the lowest low of the past n days. If H(n) is the 
highest high from the past n days, then R(n) = H(n) – L(n). The stochastics indi-
cator is denoted by K and is normally expressed as a percentage so you must mul-
tiply by 100. To calculate it:

K
C L n
R n

100 .

The numerator is positive (any price is higher than the lowest low!) and never 
higher than the denominator (no price is higher than the highest high), so K is a 
percentage figure between 0 and 100. K approaches 100 when the price is shooting 
up and approaches 0 when the price is plunging down.

Traders use the stochastic indicator in different ways. For example, if the stochas-
tic indicator reaches a high value near 100, a trader may enter a short position 
anticipating that the price will move down. Contrariwise, if the stochastic indica-
tor falls near 0, a trader may enter a long position.

Stochastic indicators are frequently calculated smoother than the one I calculated 
here. The indicator jumps around less than the raw value K and can be a better 
signal to use for trading. For example, if I now call this Kt, then I can calculate a 
smoothed version D of the stochastic indicator with this formula:

D K K Kt t t1 2

3
.

Breaking out of channels
In this section, I explain a chart that’s useful when a market is moving in a narrow 
range and then manages to break out to higher or lower values. I define a trend, 
Mt, using a simple moving average calculated from the high, H, low, L, and closing 
price, C, on day t. I also define a simple moving average of the range Rt of the daily 
price. You calculate these moving averages from the prices from the previous n 
days using the equations:

M
n

H L Ct n i n i n ii

n1
3 1 1 11

R
n

H Lt n i n ii

n1
1 11

.

You can use these quantities by plotting them on a chart with the closing price and 
channel boundaries, which are defined by adding and subtracting the range from 
the trend. Figure 16-5 shows an example in which I label M as the mid-band. The 
upper band is indicated using a long dashed line and the lower band with a shorter 
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dashed line. Together they define a channel through which the stock price moves 
until it breaks out.

If the price breaks out beneath the lower band, then it can be a good idea to sell 
the stock. Alternatively, if it breaks out above the upper band it can be a good idea 
to buy the stock.

Before embarking on any such strategy, you really need to thoroughly backtest it. 
I cover backtesting in Chapter 17.

Making Predictions Using  
Market Variables

Market prices are subject to many different influences so it’s unlikely (but not 
impossible) that you can find one variable that can predict them. Even if you can, 
it might not be too helpful. For example, a collapse in the price of oil almost cer-
tainly leads to a fall in the share price of oil companies, but the price of oil is as 
unpredictable as a share price. However, knowing how sensitive the share price of 
an oil company is to the price of oil might be interesting and useful. In these sec-
tions, I investigate relationships like this.

If you’re ambitious, you can try to find leading indicators yourself. Bond yields are 
often considered a leading indicator of the stock market, so that might be a place 
to start. Good luck!

FIGURE 16-5:  
A sell signal  

from a channel 
breakout. 

© John Wiley & Sons, Ltd.
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Understanding regression models
Linear regression models are among the most commonly used models in finance. 
You can use them to try to predict prices or values from another variable such as 
a commodity price (for example, oil) or an economic indicator such as the unem-
ployment rate. A regression model shows the relationship between a dependent 
variable and an explanatory variable. A change in the explanatory variable, X, is 
used to explain a change in the dependent variable, Y. Y is said to depend upon X.

You can see two coefficients in the equation relating X to Y – α and β. In addition, 
a term I call epsilon, ε is the noise term. Epsilon is there because an exact relation-
ship never exists between X and Y (in the real world at least). The equation is then

Y X .

The purpose of the coefficients α and β is to allow you to create as good a relation-
ship as possible between X and Y with low values of ε so that the model is effective 
at predicting Y from a new value of X.

Both X and Y represent lots of data. I could have used little subscripts on X, Y and 
ε to indicate this but doing so can be distracting. You can build models from any 
amount of data, so X and Y might just have 10 data points or 10,000 or even 
10 million. Statistical methods are applicable in diverse circumstances.

The equation is linear because on a graph the relationship between X and Y is like 
a straight line. It’s an assumption that the relationship between X and Y is linear 
and quite a big one. Statisticians argue big time whether this is the best way of 
modelling data. They call it parametric statistics because it starts with parameters 
such as alpha and beta and a choice of equation.

Another method is to use non-parametric statistics, which is much more open 
about the form of the equation. You use the data to guide you. The snag with non-
parametric statistics is that you may need more data; the good news is that you 
can end up with a better model.

Figure 16-6 shows scatterplots of data used to build models like this. Scatterplots 
are useful to visually investigate the relationship between two variables. The X 
values are the daily price return values for the DAX index whilst the Y values are 
the daily price return values for the stocks Fresenius Medical and BASF. In Fig-
ure 16-6a, the data just looks like a blob with no discernible structure while Fig-
ure  16-6b shows a fairly clear pattern with most of the data lying near a line 
running from the bottom left to the top right of the picture. If you look a little bit 
more carefully at Figure 16-6a, however, you can see that, in fact, the data clus-
ters around a line just like in Figure  16-6b, but is much more dispersed. This 
degree of dispersion around the line is called R-squared. It’s the epsilon term in 
the equation at the top of this section that represents this dispersion. If there was 
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no epsilon term, then the equation would produce a nice straight line. But that’s 
not the way the data is: there’s no exact relationship between the returns of either 
of the stock with the returns of the DAX. But there’s a statistical relationship and 
the strength of it is measured by R-squared. The plots show clearly that BASF has 
a much stronger connection with the DAX index than Fresenius Medical.

For the stock in Figure  16-6a, Fresenius Medical, R squared is 0.09 whilst for 
BASF in Figure 16-6b, it is 0.71. Both of these stocks are components of the DAX 
index so that X represents price returns of this index for both charts.

Books such as Statistics II For Dummies by Deborah Rumsey-Johnson and Analysis of 
Financial Data by Gary Koop (both published by Wiley) give lots of detail on the 
maths of regression. Here, I give you a heads-up on just some key details.

I rewrite the equation for linear regressions slightly, adding the subscript i now to 
indicate that there are many data points X and Y:

i i iY X .

You may be wondering how to calculate the parameters alpha and beta in this 
equation. The classic way is to use the method of least squares, in which you take 
the errors, ε, for each value of i, square them and add them all up. This is the 
residual sum of squared errors and is often called delta because it is a measure of 
the difference between the data values Yi and the predicted values for Y using alpha 
and beta. The big sigma sign, Σ in the formula, indicates a summation starting 
from the first data point i = 1 up to the last data point i = N. In the previous example 
this would mean that you have data for N days for both stocks and the DAX index:

Y Xi i
i

N

1

2

.

FIGURE 16-6:  
Scatterplots of 

data for two 
regression 

models. 
Source: Deutsche Borse



304      PART 6  Market Trading and Strategy

You now do some heavy maths and figure out the values of alpha and beta that 
make the value of delta as small as possible. I’m going to spare you the heavy 
maths, though you can find the equations in the books I mention earlier.

All spreadsheets have functions to calculate regression coefficients, so you can 
easily run these regressions on your computer with your own data.

Another important quantity when running a regression analysis is the total sum 
of squares that I call S. To calculate this, first of all you need to find the average of 
the Y values of your data, which I call Yavg. Using this, you can then calculate S 
from the equation:

S Y Yi avg
i

N 2

1
.

You now calculate the coefficient of determination or R-squared from the formula

R S2 1 / .

If your regression line goes exactly through all the data points, then delta is 0 and 
R-squared is 1. This result sounds great but is really a bit of a warning: it’s likely 
that you’ve used far too little data. Alternatively, if your data is a big blob like 
Figure 16-6a, then both alpha and beta are close to 0 and so both S and delta are 
the sum of the squared values of the data points Yi.

For a big data blob as in Figure 16-6a, the average value of Y, Yavg, is particularly 
close to 0. The equation for the sum of squares, S, then shows that S is the sum of 
the squared values of Yi.

Now S and Δ are approximately the same value, so R-squared becomes equal to 0. 
When R-squared is close to zero, you have a poor fit to data. Don’t despair, most 
of the time in finance the fit of data to models is poor because financial markets 
are almost completely random. Certainly if you have a model to try to predict how 
prices will change in future, then expect a low R-squared near zero. For a model 
like the one in this section where you’re trying to find how prices for one asset are 
related to another at the same time, you can expect a higher R-squared such as the 
value of 0.71 for the model relating BASF to the DAX index.

Forecasting with regression models
When you’ve built a regression model, you’d like to use it to make predictions on 
new data values. To make a prediction, Ypred, for Y given a new explanatory value 
x, you just plug this value into the regression equation but set epsilon to equal 
zero so that

Y xpred .
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However, now you need to know how good this prediction is. The first thing is to 
calculate an estimate for the standard deviation, σ, of the measurements of the 
dependent variable, Y. You can calculate this variable from the residual sum of 
squares, Δ:

N .

This value of σ isn’t the standard deviation of the Y values but of their deviation 
away from the regression line. If the model to predict stock returns from index 
returns is good, then this value of σ is low. Another thing you need to know is the 
variance of the X data, which is called V(X). (I talk about variance in Chapter 2.) 
Finally, you need to calculate the average of the X values, Xavg. The variance of the 
predicted value for Y is

V Y
N

x X

V X
avg2

2

1 .

This formula looks complicated but the following explanations should help:

»» The variance of Y gets smaller as the amount of data gets bigger. This makes 
sense and is a good reason to work with a lot of data.

»» If your regression model is poor with a high value of σ, then your extrapola-
tions are going to be poor.

»» The further your new data point x is from the centre of your data cloud, Xavg, 
the worse your predictions become.

Again, this makes sense. If you have to extrapolate to points far from where 
you had any data, you probably won’t get good predictions. However, what 
really matters is how this deviation from the centre of your data cloud com-
pares with the dispersion of your data along the x axis. That’s why the squared 
deviation away from Xavg is divided by the variance of the X data. If your pre-
diction point, x, is well within the data cloud, then x – Xavg will be small com-
pared with √V(X), and your predictions should be good. If not, then you may 
have a problem with large prediction errors.

To be able to extrapolate well and use your regression formula over a wide range 
of values of x, you want V(Y) to be small.



306      PART 6  Market Trading and Strategy

Predicting from Past Values
The idea of predicting the future from the past is an appealing one. The sense that 
history repeats itself is a common one. In this section, I show you a few ways to 
attempt to predict the future using mathematics – not just by looking at charts. 
These methods focus on how the recent past might affect future price changes.

The efficient market hypothesis (EMH) suggests that using past price values to 
predict the future is impossible. Remember, though, that the efficient market 
hypothesis is just that – a hypothesis that may not be true.

Some financial assets, such as the shares of multinational companies, are traded 
frequently, which makes it unlikely that you can predict even a small fraction of 
the next day’s price change since almost all available information is incorporated 
into the price. However, for less frequently traded assets, or during turbulent times 
when strong trends can develop because market participants become governed by 
fear or greed, it’s sometimes possible to predict some of next day’s price change.

Defining and calculating autocorrelation
The autocorrelation of a price time series is a quantity that tells you the degree to 
which past values are related to current values. That makes it different from the 
more common cross-correlation, or simply correlation, which shows how much one 
price series is related to another price series.

If you have a time series of price data, pn, then the first thing to do is to calculate 
the returns rn = (pn − pn−1)/pn−1 because the returns are almost completely random, 
so you should definitely check just how random they are. Also, generally, profit-
hunting traders and investors are interested in returns. Alternatively, you can use 
the natural logarithm ln and the definition rn = ln(pn/pn−1).

I first calculate the auto covariance, which is the same as the covariance between 
the price returns of two assets (see Chapter  9) excepting that it relates price 
returns of an asset with earlier price returns of itself. It is then a simple step to 
calculate the autocorrelation. You calculate the auto covariance, γ, using the 
expected value, E, for the product of the return on day k with the return on the 
previous day k − 1. As a formula, this is

E r rk k 1 .

I’m assuming here that the average returns are 0. Otherwise, you must subtract 
the average of the returns from rn before using this formula. If you have N 
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historical data values on the price returns, then you can estimate the expected 
value E using the formula:

1
11N

r rn k n kk

N .

The formula for γ looks complicated, but it finds the average value for the product 
of return values with a one-day time lag between them. If a high value of return 
tends to be followed by another high value, then γ is positive. On the other hand, 
if a high value of the return tends to be followed by a loss (negative return), then 
γ is negative. Finally, (you thought I’d never get to the point) you calculate the 
autocorrelation by dividing the auto covariance by the variance of the historical 
returns you used to calculate the auto covariance. So, the autocorrelation, ρ, is

/V rn .

Downloading price data from Yahoo Finance, I calculated the autocorrelation for 
the jet engine manufacturer Rolls Royce using this formula and it comes out 
as −0.003. The data I used starts in 1988 and goes up to August 2015. This autocor-
relation does indeed seem small. Is it possible that it may be 0 just as the EMH 
says? If I’d used another set of 7,000 data points, I might have gotten a slightly 
different answer (and with another set yet another answer).

The autocorrelation is a statistic. You cannot be certain of its value. In fact, the 
autocorrelation is distributed like the normal distribution. This fact means that if 
you calculate the autocorrelation to be −0.003 based on some real data, then the 
true value of the autocorrelation lies in a range around −0.003. The width of this 
range is given by the standard deviation of the distribution for the autocorrelation. 
You can find out about the normal distribution in in Chapter 2.

Clever statisticians have worked out what the variance (the square of the standard 
deviation) is of statistics such as the autocorrelation. They tell us that if you calcu-
late an autocorrelation with N data points, the variance is 1/N. In the example, 
I  used 7,000 data points to calculate the autocorrelation and so the variance is 
1/7,000 = 0.000143. Remember that this figure is the variance of the autocorrela-
tion and not the variance of the data used to calculate an autocorrelation from data! 
If I now take the square root of this figure, I get the standard deviation to be 0.012.

With a measured autocorrelation of −0.003 and a standard deviation, σ, of 0.012, it 
becomes clear that a likely true figure for the autocorrelation is 0.

For a normal distribution, 95 per cent of measured values lie within ± 2 σ of the 
true value. An autocorrelation of −0.003 is consistent with a true value of zero as 
the efficient market hypothesis suggests.
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Getting to know autocorrelation models
In this section I show you a model that you can use if your data is autocorrelated. 
Autocorrelation is what happens if a price, an interest rate – or any other market 
variable for that matter – has values now that show some statistical relationship 
with earlier values. Normally, this situation doesn’t happen because markets are 
efficient. They’re supposed to react immediately to fresh information. Each day is 
a new day and regret and memory are assumed not to play a role. You’ve probably 
guessed I’m a bit sceptical about this, and you’re right. Price returns, especially on 
a daily frequency, have low autocorrelation but at intraday frequency are often 
autocorrelated. That’s a reason for the popularity of high frequency trading in 
banks and hedge funds.

The model I use is for the financial return, rn, on day n and with the autocorrela-
tion a. The equation for this model is

r arn n n1 .

In this equation, the mysterious-looking εn represents a number drawn from a 
normal distribution. The equation is therefore saying that the return on day n is 
related to the return on the previous day but some random noise is given by the ε 
term, which means that the returns on successive days are never precisely related 
by the constant a. If the constant a is 0, the equation just says that the return rn is 
given by a random number drawn from a normal distribution. That’s exactly what 
I found in the previous section ‘Defining and calculating autocorrelation’ for the 
Rolls Royce share price and is consistent with an efficient market.

A consequence of this simple equation for the returns. rn, is that they become 
autocorrelated not just from day to day but over many days (or over many seconds 
or milliseconds if you’re using intraday data). You calculate the autocorrelation 
with a time lag of n days by a little change to the definition introduced in the pre-
ceding section. Now the definition is

n E r r V rk k n k/ .

Again, the auto covariance is divided by the variance of the returns to generate the 
autocorrelation. In fact, you now have an autocorrelation function because it depends 
on n, the time lag between the two return days that you want to see whether 
they’re related. Figure  16-7 is a picture of the autocorrelation function for the 
simple model in this section. Even if the value of a is large (I used the value 0.7 for 
this chart), the autocorrelation function declines exponentially so that no rela-
tionship exists between the returns of days separated by a time lag of more than 
about 15 days.
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Moving average models
In the preceding section, I introduce a model that relates the returns of a financial 
instrument from one day to another. The random term ε means that you can never 
know today’s return exactly from yesterday’s return. In fact, because the relation-
ships between the returns on different days are usually so weak, they’re normally 
swamped by the random term. However, another way of building models in this 
way can, in some situations, work better than the autocorrelation model. This 
model is the moving average model in which the modelled variable is influenced 
both by the random term ε and the random error from earlier days or hours. In 
other words, the moving average model has a memory of previous random 
impulses. It only has one parameter, which I call β. I call the variable being mod-
elled x as often this model is applied to variables other than returns. The equation 
then is as follows:

xn n n1 1.

Now, the variable x is equal to a random number, ε, at time n but with the addition 
of another random noise from the previous time period. If you take xn to be a 
return at time n then, according to the efficient market hypothesis, β should be 
zero because the market should have no memory of the past. The term with β 
means that what happened in the previous time period affects changes in the 
current time period.

You can check this property by calculating the autocorrelation function for the 
process xn. To do this, you make use of the fact that the random numbers are taken 
from identical independent distributions, or iid for short. Random variables are iid if 
each random variable has the same probability distribution and they are mutually 
independent (have no correlation). The distributions are independent because, for 
a lag k:

E n n k 0.

FIGURE 16-7:  
Autocorrelation 

function for a 
simple model of 

correlated 
returns. 

© John Wiley & Sons, Ltd.
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No relationship is evident between the noise at different time steps. The distribu-
tions are identical because they all have the same variance V and standard devia-
tion, σ:

V En n
2 2.

Now you can apply these formulae for iid to xn:

E x En n n n n
2

1 1
2 21 .

This is the variance for the process for x and is higher than the iid process by an 
amount that depends upon β.

You can also apply the iid formulae to calculate the auto covariance with a time lag 
of 1:

E x x En n n n n n1 1 1 2
2.

This result comes out because only one product term is not zero and it’s the one 
where both ε terms have the subscript n − 1. You can then use the formula for the 
variance of ε to get the result.

As a brain teaser, try to calculate the auto covariance: E(xnxn-2). Don’t be afraid to 
use pencil and paper. You can do the calculation in exactly the same way as for a 
time lag of one and you should find that the answer is zero because there is no 
product term where the ε noise terms have the same subscript. Because the noise 
is independently distributed, in this model the auto covariance has a short range. 
The autocorrelation with a time lag of one is the auto covariance divided by the 
variance of xn

2 and is

2

2 2 21 1
.

The autocorrelation can be positive or negative depending on whether β is positive 
or negative.

As an example of a moving average model, I use some data on trading volume. 
Trading volume Vn is a measure of how many contracts (futures or stock or bonds) 
are traded in a time period such as a day. When major events happen, volume can 
be high as market participants adjust to news. The data I use is for the DAX stock 
index. Similar to using price returns, I calculate the change in trading volume 
from one day to the next so that xn = Vn − Vn−1. Now using the formula for ρ(n) 
shown earlier in this section, I can calculate the autocorrelation function. The 
result is shown in Figure 16-8.
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The two horizontal dashed lines indicate approximately how well you can estimate 
the autocorrelation function. The values of the autocorrelation function for time 
lags of two and higher are within the band defined by the dashed lines, so there’s 
no reason to believe the autocorrelation function is other than zero. However, for 
a time lag of one the autocorrelation is quite negative. The autocorrelation func-
tion is consistent with the moving average model with a value of β around −0.7.

Mentioning kernel regression
A final way to build a model describing the relationship between an explanatory 
variable X and a dependent variable Y is to use kernel regression. This regression is 
similar to a technique I use in Chapter 8 in explaining smoothing with kernels, so 
I just give a summary here. Just as in the earlier section ‘Understanding regres-
sion models’ you have data Xi and Yi . Now, however, the idea is to avoid assuming 
that the relationship between X and Y is linear. It’s okay to assume a quite general 
form, which I call f, so that

Y f Xi i i .

A way to build this function f is to use a weighted average over the data points Yi. 
The formula for this is:

f x
K x X Y

K x X

h i ii

N

h ii

N
1

1

.

The function Kh is the kernel, and the subscript indicates the bandwidth, h. The 
bandwidth is the width of the region over which the kernel function k is different 
from zero.

FIGURE 16-8:  
Autocorrelation 

function 
for volume 

difference for 
the DAX index. 

© John Wiley & Sons, Ltd.
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For example, a common choice for Kh is the Gaussian distribution function where 
the role of the bandwidth is taken by the standard deviation. This equation aver-
ages over the Yi values in the vicinity of the point x where you want to predict the 
function f. However, it does it in a way where only the points in a region within a 
distance h play a significant role.

TRADING VOLUMES
Market prices are close to being random, but market variables such as trading volume 
often have fairly predictable patterns to them. The chart in the figure here shows the 
trading volume for the DAX index.

Source: Deutsche Borse

The spikes in the trading volume at fairly regular intervals are due to the expiry of 
futures contracts for the DAX. (See Chapter 6 if you’re not familiar with futures con-
tracts.) Index futures are cash settled based on the value of the index at a specific time 
of the last trading day of the futures contract. Normally, that’s on the third Friday of the 
contract month. This situation gives rise to arbitrage opportunities to sell the index 
future and buy the underlying cash equities if the futures contract is more expensive 
than the cash equities, which traders happily take up and generate high volume.

Other predictable patterns are evident such as higher volume on Mondays but are not 
so easy to see on this chart.
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IN THIS CHAPTER

Making your models fit data

Detecting dodgy data

Keeping it simple with equations

Fitting Models 
to Data

Quantitative finance deals in models – hopefully, good models. Complicated 
equations may look good in a thesis, but do they stack up when they’re 
faced with real-life data? And if you do find a model that you think fits the 

data, are you just fooling yourself? In this chapter, I talk more about how to fit 
your data to models and how to decide whether the model you’re using is a good 
one. Models are ubiquitous in quantitative finance. In Chapter 10, I look at some 
specialised but important models for pricing options. In Chapter 7, I introduce 
several models for calculating the volatility of prices. However, many other exam-
ples of models are available in quantitative finance. For example, banks find it 
important to have a good model for the yield curve of bonds.

This chapter is quite mathematical and general but the results can be applied to 
trading models. These are models that (hopefully!) have some predictive power 
for the future return of an asset. Because financial markets are almost efficient, 
it’s a big ask to develop a model like this. That’s why careful testing is essential.

Modelling has certain darker arts as well, such as calibrating option pricing models 
so that they fit market price data. Calibrating an option model can involve adjusting 
parameters, such as volatility, assumed to be constant when the model equations 
were derived. Calibration is an example when quantitative finance practitioners 
prefer to use simple, familiar models over more complex ones, even if using them 

Chapter 17
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involves a slight inconsistency of assumptions. So this chapter is very much about 
the practical application of mathematical theory to financial data.

Another word for calibration is estimation. It’s exactly the same process but esti-
mation is the word preferred by statisticians. Saying estimation emphasises that 
any parameters that you calculate are just that – estimates. The value of the 
parameters depends on which data you use and so there is always some dispersion 
in the values of the parameters.

Maximising the Likelihood
I use the method of maximum likelihood a couple of times already in this book (for 
example, in Chapter 8), but here I take you through it a bit more slowly as you’ll 
benefit from knowing it in some detail. The value of having an estimation of a 
quantity (such as a volatility) that is more likely rather than less likely is clear.

The starting point is the probability density function for your data, Xi. Start by 
estimating a parameter such as the volatility, which I call a as it could be anything. 
For a dataset with N points in it, the likelihood, L, is defined as:

L X X X P XN i

i N

1 2
1

, ,..., ; ,a a
i

.

The symbol Π is a Greek P and stands for product. It indicates that you must 
multiply together all the terms to the right of the symbol starting from i = 1 and 
continuing until i = N.

The likelihood is the product of the probabilities of all the data points Xi. I’m mak-
ing the assumption that the data is independent and identically distributed, or iid, so 
that the probability of the data set (that is, of the values being X1, X2 and so on) is 
the product of probabilities of the individual data points.

The idea now is to maximise likelihood. That’s a bit strange to maximise the 
probability of the data, but using Bayes’ theorem shows that it’s linked to finding 
the most probable value of the parameter a, which seems more intuitively 
sensible.

You’ll often find it more convenient to maximise the logarithm of the likelihood 
rather than just the likelihood itself. The reason is because the logarithm of a 
product is equal to the sum of the logarithms and so:

ln ln ,L P X i
i

i=N

a
1

.
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APPLYING JUST ONE PARAMETER
You can use maximum likelihood for a probability function with only one parameter. 
As an example I look at the probability, P, of a loan not defaulting before a time, t, given 
that it’s not defaulted now. The formula for this is given by an exponential function 
(indicated by the usual letter e) and with a constant, τ, the mean time to default:

P t e t; / /1 .

This formula makes some assumptions, such as that there is a constant in time proba-
bility of default, but the model is still a reasonable one. To estimate what τ is using maxi-
mum likelihood I use some data on N defaulting loans. Records indicate the default 
time, tj, of the N loans so that the log likelihood is:

ln / ln/L e tt

j

j N

j
j

j N
j1

1 1
.

To maximise ln L, you need to use a bit of calculus. Don’t panic! Ln L reaches a maxi-
mum when its slope is equal to zero, which means that you have to differentiate it with 
respect to τ. The derivative of ln τ is just 1/τ. So:

d L
d

t j
j

j Nln
2

1

1 0.

Note: When you differentiate a function and set it to zero as I did here, you don’t always 
get the maximum value. In fact, you may get a minimum value! To check whether you’ve 
found a maximum, you really need to find the second derivative of the function and 
check to see that it’s negative.

Now, by doing a little bit of algebra – multiply the equation by τ squared and remember 
that the summation of N τs is just Nτ – you get that:



1
1N
t j

j

j N

.

The hat on top of τ is to show that this is an estimate of τ. You may be underwhelmed 
by this formula because the result shows that the maximum likelihood estimate for τ is 
just the average of the observed default times. However, this example shows how to 
make the connection between maximum likelihood and common estimators such as 
the average.

Figure 17-1 shows a chart of the logarithm function. This function is a continu-
ously increasing one as the probability increases from zero to one so that the 
maximum value of ln L corresponds to the maximum value of L. The peculiar 
placement of the x-axis is because the logarithm of a number between zero and 
one is always negative.
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Minimising least squares
In the previous section, I discuss the likelihood function for finding a parameter, 
τ, to describe a data set. I now take another very common case and assume that 
the probability distribution function for the data points is given by the Gaussian 
(normal) distribution, which means that the probability function is given by:

P X ei i
i

x i; , /1
2

2 22 .

This example is made a little bit complicated because I use two parameters – μ, 
the mean, and σ, the standard deviation – instead of just one. If you look a little 
bit closer, you see that the σ has a subscript, i. This subscript is because I’m allow-
ing the standard deviation to vary from one data point to the next.

Financial markets are inherently unstable. The volatility (the standard deviation of 
the returns) is constantly changing as the market becomes more or less jittery. 
This change can be due to the arrival (or non-arrival) of important news or simply 
a change in mood of market participants.

For now, though, I’m going to maximise the likelihood by varying just the mean, μ.

Using the formula for the log likelihood from the previous section, ‘Maximising 
the Likelihood’, you can write it as:

ln lnL
X

i
i

ii

i N

i

i N

2
2

2

2
11

.

The first term in the equation for ln L depends on the standard deviations, which 
are fixed constants and so play no role when you try to maximise ln L with respect 

FIGURE 17-1:  
The logarithm 

function. 
© John Wiley & Sons, Ltd.
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to the mean. The second term is the squared difference between the data and the 
mean, μ. However, it comes with a negative sign in front, and so to maximise ln L, 
you need to minimise the term with the squared differences.

Maximising a function, f, is the same as minimising the function –f.

To minimise the squared term, you differentiate it with respect to μ and set the 
result to zero. This gives you the following equation for the value of μ:

Xi

ii

i N

2
1

0.

A little algebra gives the result:



Xi i
i

i N

i
i
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2
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2
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1

.

I put a hat on μ to show that it’s an estimate from the data.

This formula shows that to estimate the mean, the data values, Xi, can usefully be 
weighted by the square of the standard deviations, σ. The most uncertain data 
points with high values of σ are given the least weight. That makes sense and 
reflects the importance of σ when you’re fitting models.

So far I’ve looked at a data set Xi and used maximum likelihood to estimate the 
mean value. Now the time is right to do something a bit more complicated. I’m 
going to assume that Y can be quite a general function, f(Xi). The log likelihood 
now becomes

ln ln
;

L
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The σ are constants again, and so maximising ln L is equivalent to minimising:

2

1

2
Y f Xi i

ii

i N ;
.

The sum of squared differences is given the special name of chi-squared. Because 
chi-squared needs to be minimised so as to maximise the log likelihood, using 
this frequently used method to fit a function to data is often called the method of 
least squares.

After you minimise chi-squared by finding the best values for the parameters, α, 
the values of f(;) won’t be exactly equal to the data values, Yi. You have a small 
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mismatch called the residual. You can write an equation for the data values show-
ing this. I call the residuals ε and put a hat on the data values because these 
parameters have been adjusted to minimise chi-squared:

Y f Xi i i; .

To be a good model for your data, you want the residuals, ε, to be small. But that 
isn’t quite sufficient. Ideally, they should be normally distributed and have no 
autocorrelation. If the residuals are autocorrelated, then it suggests that the choice 
of the function, f, is not quite right.

Autocorrelation, γ, is the relationship between the values of a time series now and 
the values in the past. If you have N data points it’s defined by the equation:

i ii

i N

ii

i N
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2

1

.

It’s just like the correlation that you may have encountered in Chapter 9 except 
now it’s the correlation between a time series and earlier values of the same time 
series. Chapter 16 explains more about the autocorrelation.

Anti-correlated means that an increase in a time series value is more likely to be 
followed by a decrease than another increase.

Using chi-squared
If you minimise chi-squared with N data points and m parameters in the model, 
there are n degrees of freedom where n = N – m. The chi-squared distribution has 
a mean of n and a variance of 2n. So if chi-squared differs markedly from n, 
something is probably awry with your fitting process. The book Numerical Recipes 
in C: The Art of Scientific Computing by William H. Press et al (Cambridge University 
Press) is a great resource on data fitting. The author includes more detail on the 
chi-squared distribution and also includes computer code that you can use.

Comparing models with Akaike
You may have two competing models that you’d like to compare. There’s always 
someone who says she has something better . . . . In this situation, you can use the 
Akaike information criterion, or simply AIC for short.

If Lmax is the maximum value of the log likelihood that you got from your fitting 
process, and m is the number of parameters in your model, then AIC is defined as:
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AIC L m2 2max .

Select the model with the smaller value of AIC. This means that models with few 
parameters are favoured as are models with large values of the log likelihood.

To directly compare two competing models, always use the same sample so that 
the playing field is level.

AIC is not the only criterion that you can use for selecting models. Another popu-
lar criterion is the Bayesian information criterion or BIC for short. BIC is defined 
by the equation:

BIC L m N2 max ln .

BIC penalises the number of parameters more strongly than AIC and so there is 
less chance of overfitting (which is discussed in the next section) a model if you 
use BIC.

Fitting and Overfitting
When statisticians talk about goodness of fit, they’re not referring to their jeans but 
to their data and models. (Thank you, by the way, to Deborah Rumsey-Johnson for 
her humour in Statistics For Dummies; It’s good to share jokes.) To be serious 
though, fitting data to models can be tricky, and in this section, I show you some 
of the pitfalls.

If you have data Xi and Yi, and you want to fit a model so that Y is a function, f, of 
X (which I’ll write later as Y = f(X)), then you need to know how many parameters 
to use in your model. For example, if you choose to use a linear model, then  
Y = mX + c, and two parameters exist – m and c. No model, however, is perfect. 
When you fit a model, you have a mismatch between the actual Y value and the 
predicted Y value. You try to improve the fit by adjusting some parameters. I call 
these parameters α in the following equation. There may just be two of them, as 
for the linear model with a single variable, or there may be many more for a com-
plex model. Calling the function used to model the data as f, the equation is

Y f Xi i i; .

The numbers ε represents are the residuals of the model. In the earlier section 
‘Minimising least squares’, I show that you can fit a model by minimising the sum 
of the squares of the residuals. However, if you add more and more parameters to 
your model, you can potentially achieve a close match between X and Y, especially 
if you use a complicated function for f. But doing so may not be a good idea.
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Goodness of fit can look impressive (like those well-fitting jeans), but it can cause 
problems because, even if the model fits the data well, when you use the model on 
new data it can fail badly. This is the problem of overfitting. Overfitting is serious 
because the main point of developing models is to tell you something you didn’t 
know about new data.

I created a simple data set with just seven points in it. The X values are the inte-
gers from one to seven. The Y values are also the integers from one to seven but 
with a little bit of random noise added. You can see a chart of this data set in 
Figure 17-2.

Without the added noise, the data can be fitted exactly by the simple model Y = X 
because the X values are identical to the Y values. The random noise changes that 

a bit. Figure 17-2a shows that a straight line is still a good-looking fit to the data. 
In Figure 17-2b, though, I fitted the data exactly to a polynomial. The equation for 
the curve is given at the bottom of the plot.

Now, use the fitted equations to calculate the value of the function for X = 0. For 
the straight line, the answer is 0.4545, which is close to the expected value of zero, 
which you can see either by setting X = 0 in the equation for the straight line next 
to the axis or by running your eye along the fitted (dotted) line to see where it 
intersects the y axis. However, for the polynomial fit, you can see that the curve 
will intersect the y axis at –42.922, again by substituting X = 0 into the equation. 
This answer is way off and highly misleading. The polynomial curve is 
overfitted.

FIGURE 17-2:  
Fitting data to a 

straight line and a 
polynomial. 

© John Wiley & Sons, Ltd.
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A good technical term for new data is out of sample. The data you use to build a 
model is the sample, so any new data is out of sample. Also good to know is that 
the process of fitting a model and determining the parameters, α, is sometimes 
referred to as calibration, although statisticians prefer to use the word estimation.

The most persuasive solution to overfitting is cross-validation. It may sound 
complicated, but in fact you’ve already seen how it works in the previous example. 
In steps, the cross-validation procedure goes like this:

1.	 Split your data sample into two parts.

The first is the calibration sample and the second is the test sample.

2.	 Build your model using the calibration sample.

You know what your parameters, α, are from using least squares minimisation. 
(See the section ‘Minimising least squares’ earlier in the chapter.)

3.	 Apply your model to the test data samples.

In other words, predict the Y values from the X values for the test samples.

4.	 Compare the residuals from the calibration samples with the residuals from 
the test samples.

If you find a significant difference, then your model is likely overfitted (or 
perhaps underfitted if the model you used is too simple). The performance on 
the test samples is likely to be worse than that on the calibration samples but 
should still be satisfactory.

Cross-validation gives you an idea of whether your model will work well in prac-
tice. You have to decide how much of your data set to place with the calibration 
samples and how much in the test samples. As a rough guide, 50:50 is a good 
balance. That’s quite conservative, so extending the calibration set to 70 per cent 
of your data is okay, too.

Popular too is miss-one-out cross-validation when you leave out a single data 
sample and then use the resulting model to predict the Y value for this sample. 
The advantage of this technique is that you can repeat the process for every sam-
ple in the data set. The amount of calculations required can be rather large (and 
time-consuming), but it can give you a very good idea of the quality of your model.

You need to resist a temptation when using cross-validation. If you choose a 
function, f, to model your data and it turns out to be poor when you do cross-
validation, then you may go on to try another function, g. This function can lead 
to iterative attempts at fitting your model, which can be a source of overfitting on 
its own. In other words, you may just stumble on a function that happens to work 
with the test samples but is not, in fact, a good model for your data. This situation 
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is inevitable when building models to try out several ideas, but you reach a point 
when doing so becomes dangerous. If the model you’ve built is a time-series 
model in which the data starts in the past and goes up to the present, then a sure 
way of testing it is to apply your model to new data as it becomes available. This 
process may be time-consuming if you’re trying to predict quarterly gross domes-
tic product (GDP), but is great for, say, intraday stock prices.

Gross domestic product (GDP) is the total output of an economy. If successive 
drops in GDP occur, an economy is said to be in recession so is watched closely by 
the media and politicians.

Applying Occam’s Razor
Fitting a model to data is tricky and often leads to the problem of overfitting. Cross-
validation is a good way of checking for this problem. In addition, you can use the 
principle of Occam’s razor, which states that if you have two competing models that 
make similar predictions, then you should choose the simpler one. In the dismal 
style of economists, Occam’s razor is also called the principle of parsimony.

William Occam (or Ockham) was a 14th-century Franciscan friar more interested 
in theology than quantitative finance, but he had a nice insight on how to acquire 
useful knowledge.

You can relate Occam’s razor to the Akaike information criterion (AIC) from the 
previous section ‘Comparing models with Akaike’ (or indeed the Bayesian infor-
mation criterion BIC). AIC is a way of fitting models, similar to least squares, but 
with a penalty for selecting a model with more parameters. AIC, therefore, natu-
rally selects simpler models according to the principle of Occam’s razor.

Occam’s razor is well worth keeping in mind when you’re developing a trading 
model. Simplicity is an asset. If you use a complex model to try to forecast finan-
cial returns, then you’re likely to be just fitting equations to noise, so that when 
you use it to make forecasts, they can go badly wrong. With a simple model, you 
can be much surer whether it works or not and avoid some painful losses.

Detecting Outliers
An outlier is an observation in your data set that’s markedly different from the other 
observations. It’s the oddball data point that’s out of whack with the rest. An outlier 
can raise tricky issues and lead to lots of debate. You’ll see recommendations in 
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statistics books to find outliers. Others recommend you include them but to use 
robust methods that can cope with them. A robust method is one that gives you the 
same answer even if you add a bit of dodgy data.

Here are a few straightforward tips for dealing with outliers:

»» Many outliers are the result of crass mistakes in data collection or processing. 
Are the units correct? Perhaps dollars were confused with cents. Is the data 
for the correct asset? Perhaps you confused Man Group plc (hedge funds) 
with Man SE (trucks). This level of data checking is crucial and can avoid many 
problems down the line.

»» Subtle errors can lead to big problems, even after carefully checking the origin 
of the data. If you’re already using some models for, say, option prices, you 
may be confusing market prices with model prices. So you have the asset and 
units correct, but the nature of the data is different. Equally, you can find 
many different definitions of interest rate (maturity of loan, secured or 
unsecured), and you need to check that you’ve got that right.

»» Other details in financial data are worth paying close attention to, especially 
the time stamp. Sounds obvious but is easy to get wrong, especially if you’re 
using data from different time zones.

This process of checking your data is often called data cleaning. Often, you spend a 
large fraction of time on a modelling project cleaning data, so you’re well advised 
to establish some steps in the process. The result should be clean, usable data. 
Hopefully, if you detected and replaced bad data, your clean dataset is no smaller 
than your original dataset. Deleting data should be a last resort.

Even with reliable, carefully checked sources of data, there can be problems. Getting 
data from multiple sources is a good way of thoroughly cross-checking data.

You can use standard statistical tests to decide whether a data point is an outlier 
or not. However, these methods often rely on the assumption that the distribution 
of the returns is normal, or Gaussian. That isn’t the case for financial markets. 
Major market events, such as the stock market crash in 1987, shouldn’t have hap-
pened according to normal statistics. However, as we know, it did happen. Events 
like this crash look like outliers in many models.

From January 1987 until October 1987, the standard deviation of the simple returns 
(closing price today/closing price yesterday) on the FTSE100 index (Financial 
Times Stock Exchange 100 Index) was approximately equal to 20. However, on 
19th October 1987, the FTSE 100 index dropped almost 250 points, which is over 
12 standard deviations. Even a 5-standard deviation event is exceptionally 
unlikely, so a 12-standard deviation event is essentially impossible according to 
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normal statistics. The 1987 crash is stark and frightening evidence that financial 
markets are not normal – in both the statistical and usual sense of the word!

The Curse of Dimensionality
When you build a model, you’re trying to find a relationship between a variable, 
X, and something you’d like to predict, often called Y. But what happens if you 
think that Y depends on much more than just X? That’s a common situation as the 
financial markets are complex with many different assets, currencies and interest 
rates. In one dimension (with just one variable X), you’d like the data to be uni-
formly spread along a line of length, say, ten. If variable X is dollars, that means 
you have data for prices from zero up to $10. For data that is well spread out, you 
can then reliably build a model and detect the shape of the function even if it is 
curved. With two variables, you can think of the data as lying on a square with a 
side length of ten. The area of the square is 102 = 100. So you need much more data 
in two dimensions (with two variables) to build a good model. I show this process 
in Figure 17-3.

For more dimensions (variables), the problem gets even worse. In three dimen-
sions, you need to use 103 = 1,000 data bins. This problem of the exponentially 
increasing amount of data you need to build good models with more than one 
variable is the curse of dimensionality.

When you’re building models, you can always scale your data. In other words, you 
can multiply your data by a constant factor so that the numbers lie in a convenient 
range. This process is just like changing the units in which the data was measured. 
For example, changing from cents to dollars is like dividing prices by 100. You can 
also shift the origin of the data axis for your variables by adding or subtracting a 
constant number from the data.

If you scale data, you need to undo the scale change after you finish building your 
model so that you get back to the original data scale. If you multiplied your data 
by C, then you need to undo it by dividing by C.

If you try to build a model with three variables, you need even more data if you 
want a good model that you’re confident with. In three dimensions, the cube-
shaped grid should consist of 1,000 little cubes. In general, if your model has 
predictor variables, D, then you need a grid with 10D D dimensional cubes for 
your data.
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Thankfully, a few get-arounds are available for the curse of dimensionality:

»» Assume that the variables in the model are continuous to make life easier for 
yourself. If Y is large when X = 5, then you’re reasonable to assume that it’ll be 
quite large when X = 4 or 6.

»» Assume that the variables are all linear. It’s potentially dangerous to do this, 
especially if you have many variables, but it is effective.

»» Reduce the dimensionality of your data by using techniques such as Principal 
Components Analysis. This technique is a powerful one explained fully in 
Chapter 9.

Seeing into the Future
If I could have seen into the future, I wouldn’t have sold that flat in London I 
owned 25 years ago. Trading and investment are the two branches of finance in 
which you’d most like to have a crystal ball. You’d like to show that your strategy 
or portfolio will do well in the future and persuade investors to put their money 
into it. Given the random nature of financial markets, persuading investors of the 
soundness of your plan isn’t easy, but you can attempt it in two main ways: back-
testing and out-of-sample validation. They can both be misleading so the next 
sections give you a guide.

Backtesting
Backtesting is a technique widely used to test trading and investment strategies 
for profitability. The idea is simple: You start with a database of historical prices 

FIGURE 17-3:  
Data grids for 

one- and 
two-dimensional 

models. 
© John Wiley & Sons, Ltd.
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for the assets you plan to trade. You then apply your trading or investment rules 
to this data exactly as you would have done at the time the data was first released. 
From this, you build up the history of the profit and loss account. Apply your trad-
ing rule to the data, p1, to obtain trading position, q1. Table 17-1 shows the first 
four days of the data schematically. Normally you’d use much more data, prefer-
ably at least three years. The profit/loss is calculated from the trading position 
multiplied by the daily price change.

Backtesting works only for strategies that are completely rule-based, so that 
given historical price and fundamental data, the trades are exactly specified. By 
exactly specified, I mean that the trade is a buy or sell and the trade quantity is 
known.

Financial traders often distinguish between fundamental and technical strategies. 
Technical strategies use only historical price data and perhaps trading volume data. 
They stem from the idea that past price patterns can tell you something about 
future price patterns. Fundamental strategies, by contrast, use information on 
events that are understood to cause price changes. For example, employment data 
is a closely observed piece of fundamental data as are profit announcements of 
companies. Fundamental strategies trade using underlying causes while technical 
strategies are more about market reaction to these causes.

Backtesting is useful to test out whether an investment or trading idea would have 
worked in the past. Yet, this test is no guarantee that it will work in the future.

Some important dangers come with the technique: Software is available that 
allows you to automate backtesting. That’s great, but if you end up testing a large 
number of potential systems and selecting the one with the best performance, 
you’re probably guilty of overfitting. The best system possibly worked on your 
data set just by random chance.

Make sure when doing a backtest that you include a sufficient number of different 
market regimes. These regimes should include bear markets when prices are 

TABLE 17-1	 Backtesting Example
Date Historic Data Trading Position Profit/Loss

Day 1 p1 q1

Day 2 p2 q2 q1*(p2–p1)

Day 3 p3 q3 q2*(p3–p2)

Day 4 p4 q4 q3*(p4–p3)
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trending down and bull markets when they’re going up. Ideally, there should also 
be a period when prices are range bound. Realistically, this means having a lot of 
data to do an adequate backtest.

Out-of-sample validation
Out-of-sample validation is the most powerful way of checking whether a model 
is any good. You check the predictions of the model using data that wasn’t used to 
build it. In effect, you use the model for real and see whether it works well.

Out-of-sample validation is different from cross-validation. In cross-validation, 
you split the data set into two parts: a calibration set and a test set. The earlier sec-
tion ‘Fitting and Overfitting’ explains this process in detail. A lot of potential 
exists, though, for iteratively modifying your model in a cycle from the calibration 
set to the test set. If the test results aren’t good, you change the model and try 
again. This modification can lead to overfitting, especially if you iteratively try to 
select predictor variables.

You absolutely must, therefore, test a model with genuinely unseen data. This test 
can be done as some form of acceptance test, but for a trading model, you nor-
mally use a period of paper trading in which you follow the predictions of the 
model in time and see if they’re profitable.
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distributions

Markets in Practice

When you start in quantitative finance, you may easily get the impression 
that it’s just some fancy mathematics to do with random walks. But you 
need to understand a little bit more about what goes on behind the 

scenes when a market comes up with a price.

All markets have unique features and the regulations governing them are 
constantly changing, often in response to dramatic events such as the flash crash 
of 6 May 2010 when some prices on the New York stock exchange plunged down 
almost to zero and then mysteriously jumped back up to where they were all 
within 36 minutes. This kind of thing isn’t how things are supposed to go, and it 
certainly isn’t possible to model them using the random walks conventionally 
used in quantitative finance. Trying to understand events like this one isn’t for the 
faint hearted but these events show that the details of trading rules are important 
for the behaviour of markets.

In this chapter, I take you through the mechanisms by which market participants 
come to an agreement about price and how, sometimes, these mechanisms go 
wrong. I also talk about bid and ask prices and the market impact of trades. This 
chapter shows you that quantitative finance and market modelling has a wild 
frontier with some unanswered questions that many participants struggle with.

Chapter 18
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Auctioning Assets
In the supermarket, prices are clearly labelled and you have no scope to haggle 
over prices. That’s handy when you’re buying a tin of tomatoes as it saves time. 
Also, if you don’t like the price, you can go to a competitor. But financial markets 
don’t work that way.

Financial markets are auctions; they work more like flea markets than supermar-
kets. You may be familiar with auctions if you’ve ever purchased something via an 
Internet auction. In most cases, auctions are effective at finding a fair price 
because of the presence of competitive bidding. Because the final price depends on 
demand from buyers, you can get a bargain if too few buyers turn up or make bids. 
But these attractive prices then attract other buyers. Therefore, auctions have a 
natural dynamic that has made them a permanent feature in many markets across 
the world.

Auctions work in many different ways. Some of the basic forms they take include:

»» Dutch auction: The price of the items start at a level higher than anyone is 
prepared to pay. This judgement is made by the auctioneer. The price is then 
reduced in steps until someone decides he wants to buy. He indicates this 
decision to the auctioneer and the auction then finishes. The most famous 
example of this kind of auction is the Aalsmeer flower market in Holland.

A Dutch auction is a successful mechanism for quickly selling large amounts of 
goods. When the auction stops, the winner states how much of the consign-
ment he wishes to take. The remaining part of the consignment is then put up 
for auction. Presumably buyers who wish to buy large quantities wait until 
they see an indication of (higher) prices from smaller volume buyers to make 
their bids.

»» English auction: The auctioneer starts at a minimum reserve price and 
solicits bids at higher increments. Buyers indicate their willingness to buy by 
waving a numbered paddle or nodding their heads. The auction ends when 
there are no further bids at the next price offered by the auctioneer. The item 
then goes to the highest bidder. Art auctions are the classic example.

A slight variation of this auction is the open outcry auction in which bidders are 
allowed to shout out their bids and don’t have to obey the fixed increments 
offered by an auctioneer.

»» Double-sided auction: Financial markets, such as stock exchanges, operate 
this way: Traders post bids to buy stock at a specified price and for a given 
quantity; other traders post offers to sell stock at a specified price and for a 
given quantity. At any moment in time, this combination of bids to buy and 
offers to sell is called the order book.
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The bid price is the price at which you can sell shares on a stock exchange (or 
any other kind of exchange for that matter). The ask price is the price at which 
you can buy shares on a stock exchange.

Prices change rapidly from millisecond to millisecond as orders are matched 
by algorithms run by the exchange.

Two major forms of double-sided auctions exist:

•	 Quote driven: In this system, market specialist traders called market 
makers post bid and ask prices before orders are submitted.

•	 Order driven: Orders are placed and only then are prices determined by a 
matching algorithm. Most of these orders are limit orders – requests to buy 
or sell at a stated price and in a stated amount. No guarantee exists that 
limit orders will be executed because bids may be at too low a price and 
offers at too high a price. You also have no guarantee that there’ll be 
sufficient volume of orders at the stated price.

»» Sealed bid auction: Popular before the advent of the Internet, in these 
auctions, bidders submit their bids by mail. At the close of the auction, the 
envelopes containing the bids are opened and the highest bid declared the 
winner.

An interesting variant of this kind of auction is the second price sealed bid 
auction. The winner (highest bidder) doesn’t pay the high winning bid, but 
the next highest bid. The advantage of this system is that it encourages 
truthful bidding in which bidders place bids they believe reflect the value 
of the item for sale. Normally, bidders tend to reduce their bids for fear of 
overpaying for the item – a practice called bid shading. This practice makes 
bidding tricky and can potentially discourage participants. Second price 
auctions are more economically efficient in that prices reflect the beliefs of 
the bidders more closely.

Selling on eBay
eBay is probably the most familiar of all auctions. It works much like a second 
priced sealed bid auction in which the winning bidder pays the price of the next 
highest bidder plus a small bid increment. This small increment by which prices 
increase in the auction is the equivalent of the tick size in financial markets. In 
addition, an automatic bidding system bids on behalf of the buyer by the mini-
mum amount to outbid other buyers up to a secret maximum bid specified by the 
buyer.
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An interesting feature of eBay is that there tends to be an avalanche of bids at the 
end of auctions. Bidders probably don’t like to reveal their interest early so as to 
try and avoid a bidding war, in which competing buyers successively outbid each 
other and rapidly force up the price. Most stock markets experience a large 
increase in trading volume towards closing time possibly for similar reasons.

Auctioning debt by the US Treasury
Perhaps the most significant auctions are for sovereign debt. The participants in 
these auctions are mostly banks or specialist dealers in government bonds. The 
scale of these auctions can be awesome with many billions of dollars’ worth of 
bonds offered in a single auction. They do, however, work in comparatively 
straightforward ways.

In the US, bids can be competitive or non-competitive. With a non-competitive bid, 
the bidder is guaranteed to receive the amount he specified but accepts the yield 
determined by the competitive auction bids. Non-competitive bidding is intended 
for individuals, and the amount available for issue in this way is strictly limited so 
as not to interfere with price formation by competitive bidding.

The yield of a bond is the annual return taking into account both the coupons and 
the redemption value. Chapter 4 has more on this.

Competitive bids are ranked by the yield specified by the bidder. They’re then 
accepted in full, starting from the lowest yield until the total value of awarded bids 
equals the offered amount of security (for example, a Treasury Note). Impor-
tantly, the yield on all the issued securities is exactly the same and equal to the 
highest accepted bid. Each bidder is allowed to bid on only up to 35 per cent of the 
offered amount. The reasoning is to prevent a situation in which a single bidder 
can determine the outcome of an auction in his favour.

The key result from debt auctions such as for US Treasury Notes is the yield. But 
investors also follow the cover, which is the ratio of the total amount of bids to the 
offered amount. The cover is used as a measure of the amount of investor interest 
in an auction.

On the 26th January 2016, the US Treasury auctioned $26 billion in two-year 
Treasury Notes. They were issued on February 1st 2016 and will be redeemed  
on January 31st 2018. $75.3  billion was tendered, and so the cover ratio was 
$75.3/$26 = 2.9 which shows the popularity of US Treasuries despite an auction 
yield of 0.75%.
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Balancing supply and demand 
with double-sided auctions
In this section, I give you more detail of how double-sided auctions work. 
Figure 18-1 shows a snapshot of the order book for the Chi-X Europe exchange. On 
the left side, the orders are split into Asks and Bids. The asks are orders to sell the 
asset that, in this instance, is shares in the oil company BP. The bids are orders to 
buy shares in BP. From the centre line, the asks are listed in ascending order while 
the bids are listed in descending order. The centre line is where the lowest ask 
meets the highest bid and is where trades can take place. The list of the last ten 
trades on the right shows that the latest trade took place at the lowest ask price.

MAKING SURE THAT YOU DON’T NEED 
TO CALL SAUL – OR ANY LAWYER
Financial transactions are subject to many types of deception, some with interesting 
names. Making a shill bid or being a front runner aren’t things you want to do.

Auctions are open events so as to encourage wide participation and accurate price for-
mation. But this openness can also potentially encourage abuse. Most abuses centre 
around bids that aren’t genuine in some way, often for the purpose of artificially 
increasing a price.

On eBay you can place a bid on your own auction so as to give the illusion of interest in 
the auction. This type of shill bid is illegal as the objective is to deceive other participants. 
Similar behaviour is possible on financial markets and especially in high frequency trad-
ing (HFT). In HFT you can place and then cancel limit orders with the purpose of mis-
leading others. This is called spoofing and has sometimes been raised as the cause of 
the 2010 flash crash. Regulations now forbid it.

At a major theatre in London at the moment, they advertise a front runner membership 
that gives preferential access to tickets. However, in finance, front running is something 
quite different and quite illegal. Many financial markets operate with intermediate deal-
ers who buy and sell on behalf of their clients. If a dealer receives instructions from a 
client knowing that a buy order will increase the price of the asset, the dealer could buy 
the same asset for his own account in advance of buying for his client. After the pur-
chase for his client has moved the price up, he could then sell his own position for a nice 
profit. Brokers have a duty to put client interests ahead of their own.
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The majority of the orders in an order book are limit orders. However, you can also 
place a market order, which is an order to trade straight away at the best price. 
A market buy order is executed at the best ask price while each market sell order 
is executed at the best bid price. Because market orders are executed immediately, 
the transaction price is recorded as the last trade price.

Limit orders are placed at a range of distances from the last trade price in the 
order book – some close and some far. Aggregate information on all of these 
orders is referred to as the market depth. Market depth gives an indication of the 
size of an order needed to move the market price by a given amount. If a market 
is deep, it needs especially large orders to move the price.

Stock markets operate in a continuous fashion during the day with limit orders 
arriving all the time and market orders being executed as soon as possible. In 
addition, most stock markets operate discrete opening and closing auctions that 
establish the opening and closing prices separately from the normal continuous 
auction. Various reasons can be given for this practice but one of the main reasons 
for the closing auction is to establish as fair a price as possible given the linkage 
with other products, such as futures and options, that are settled using closing 
stock market prices.

FIGURE 18-1:  
View of an 
exchange 

trading book. 
Source: www.BatsTrading.co.uk
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PICTURING THE ORDER BOOK
Limit orders and market orders are constantly being added to the order book. Market 
orders are executed by being matched with a limit order at the market price at the 
centre of the order book. That’s where the highest bid meets the lowest ask as shown in 
Figure 18-1. You’ll find it useful to know the shape of the order book or, in other words, 
how many shares are in the queue to be executed. Knowing the shape can tell you 
something about the future movement of prices because the shape is related to order 
imbalances.

The shape is influenced by a couple of factors:

•	Most orders are received around the current price

•	Orders near the market price are most likely to be executed and disappear from 
the order book

The result of these two factors is that the order book is typically hump-shaped with the 
peak a short distance away from the market price. The humps on the buy and sell sides 
are symmetrically positioned, as shown here:

© John Wiley & Sons, Ltd.
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Settlement is when cash payment is finally made for a financial asset.

The aim of the closing auction is to match up as many of the outstanding buy and 
sell orders as possible. Each stock market has its own rules, but most of these auc-
tions terminate at a random time at a price that maximises the number of trades. 
The random timing minimises the possibility of the price being manipulated by a 
trader for his advantage.

Looking at the Price Impact of a Trade
The price impact of a trade is the relationship between that trade and the subse-
quent price change. If you’re trading frequently or splitting up a large order into 
many smaller orders, then price impact is important for you. Although you can 
think of price impact as a form of friction when you’re trading, it’s really the basic 
mechanism by which markets adjust to new information.

Price impact is quite different from direct costs such as commission and fees. Those 
transaction costs are easily calculated and quite predictable. The indirect costs 
caused by market impact are always larger than the direct costs for a large invest-
ment fund. Minimising these costs by careful trade management is therefore 
important.

One way to think about price impact is in relation to the balance of supply and 
demand for shares in the market. Assume that the total volume of buyers in the 
market depends on how far the market price, p, is from the fundamental price, p0, 
for the share. (The idea of a fundamental price is slightly nebulous, but is meant 
to mean the value of the stock taking into account the company’s profitability.) If 
the market price strays a long way from the fundamental price, then you can 
expect bargain hunters to appear if p is less than p0 and profit-takers to appear if 
p is greater than p0. The same concept works for sellers.

So, a linear formula such as the next one should work, where V(p) is the volume 
of orders at the price p. The ± sign is there so that the volume is always a positive 
number.

V p b p p0 .

To execute a volume, Q , of buy orders, the price must rise by an amount, Δ. You 
can calculate Δ by summing all the orders between the price p0 and p0+Δ using an 
integral:

Q V p dp b p p dp b
p

p

p

p

0

0

0

0

0
2

2
.
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Rearranging this formula to solve for Δ, shows that the price impact depends on 
the square root of the order size, Q:

2Q b .

In practice, this formula works well. You can check it using detailed trade data 
from a broker. The results of that analysis show the square root rule for the 
dependence of the price impacts on order size, and also show an additional depen-
dence on the volatility, σ, of the market and V, the average traded volume. Average 
traded volume is exactly what it sounds like: the number of shares traded in a day 
for any stock varies, sometimes depending on whether there is any significant 
news for it; V is the average of this number. The constant, C, in the formula varies 
from stock to stock but is approximately equal to 1:

C Q
V .

This formula tells you that if the volatility of the market rises, then the price 
impact will rise. It also says that if the average traded volume of a stock rises, then 
the price impact declines. Both are intuitively sensible. If volatility is high and the 
market is fluctuating a lot, then you expect an extra trade to have a bigger than 
normal influence. Equally, if you typically find a large amount of trading in the 
stock you’d like to buy or sell, then the impact of your additional trade doesn’t 
affect the price much.

As an example of this formula, assume that you have a trade, Q, with one-
hundredth of the daily volume, V, so Q = V/100. Also assume that the constant  
C = 1. Now you can calculate Δ:

V

V
100

10.

A trade with one-hundredth of the average daily volume will move the market by 
a tenth of the daily volatility. This amplification is huge and shows the need for 
careful trade management to avoid high cost from price impact.

Being a Market Maker and Coping 
with Bid-Ask Spreads

A market maker stands in the middle between trades. He’s there to facilitate the 
buying and selling of financial assets such as stocks. The market maker offers to 
sell stock at the ask (or offer) price and to buy at the bid price. His plan is to make 
money by charging a higher price to sell than to buy. So quoted ask prices are 
always higher than the bid prices, which sounds simple.
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In the jargon of finance, a market maker is a liquidity provider. I talk about liquidity 
in the upcoming section ‘Exploring the meaning of liquidity’.

Electronic market making is different than old-fashioned market making by 
humans with obligations to provide quotes both ways. Now traders can buy in one 
venue and sell in another, so the traditional model doesn’t work. Most markets are 
order driven. Anyone placing limit orders is a market maker rather than a market 
taker (who uses market orders).

The bid-ask spread is the difference between the bid price and the ask price. The 
spread can vary in time and according to the stock involved. During the noughties, 
bid-ask spreads declined significantly, a move often attributed to the growth of 
high-frequency trading, or HFT. The presence of automated or algorithmic deal-
ers increased the competition in the markets between market makers and forced 
a reduction in asking prices and an increase in bid prices.

You’d think that the difference between an asking and a bid price would just reflect 
transaction costs in the market or some form of commission, but more subtle 
ideas have emerged to explain how dealers operate. These ideas centre around the 
idea of informed and uninformed traders. Informed traders know valuable informa-
tion. If the information is good news for the stock, they buy; if it’s bad news, they 
sell. An uninformed trader trades by necessity, not in response to useful informa-
tion. For example, the manager of a mutual fund may need to make a trade because 
a client sold his holding and the manager has to sell the corresponding shares.

For a market maker posting both buy and sell orders in the market, informed 
traders are a danger. They know more than he does and so his posted prices may 
prove to be incorrect. The market maker then pays too much to buy or receives too 
little when selling and loses money. This situation is sometimes called the adverse 
selection.

Adverse selection – buying too high or selling too low – happens in many differ-
ent markets where an asymmetry of information is evident. That’s when one per-
son knows more than another person. Customers who buy insurance products are 
probably those with the greatest need of them and so present an above-average 
risk to the seller. This has to be factored into the price offered.

Because of the presence of large numbers of informed traders in the market, the 
bid-ask spread can change throughout the day as market makers protect them-
selves against adverse moves in prices.

Exploring the meaning of liquidity
Mostly, liquidity is considered to be a good thing for a market. Liquidity is defined 
as the ability to execute large trades rapidly at low cost and with limited impact 
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on  prices. Liquidity exists because speculators are prepared to absorb excess 
demand for a financial instrument in exchange for compensation given by a price 
change in their favour.

Liquidity can also refer to the volume of orders placed in a market. This is an 
expression of a willingness by market participants to trade in the market and is 
indicated by the presence of large numbers of limit orders. Limit orders can be 
cancelled, so liquidity can disappear quickly. High trading volume isn’t necessar-
ily a good indicator of market liquidity.

It’s also possible to measure liquidity by the bid-ask spread. A market that’s par-
ticularly liquid has a narrow bid-ask spread. But the spread is dependent on the 
trade size. The bid-ask spread for large trades is higher than for small trades. 
Market makers can also increase the bid-ask spread to large values if they believe 
that traders are much more informed than they are. This increase can have the 
undesired effect of stopping trading altogether and leading to a market collapse.

Liquidity is a double-edged sword: While it’s great for most investors most of the 
time to have rapid and cheap access to the stock or bond market, those investors 
can take flight quickly and cause rapid downward (or, indeed, upward) spirals in 
prices. So, liquidity can vanish just when you need it most. The credit crisis of 
2008 is an example of that outcome. An even worse outcome was the flash crash 
of 2010 when liquidity vanished in a matter of moments as the algorithms of 
high-frequency traders switched off in response to already sharp falls on the New 
York Stock Exchange.

Because of the potential for liquidity drying up and prices plunging, many stock 
exchanges have what they call circuit breakers – rules that prevent percentage moves 
of stock prices lying outside of specified bands. These bands are placed above and 
below the average price for the previous five minutes of trading. If the stock price 
doesn’t move back into its band, trading is stopped for a period of five minutes or 
more. Rules of this kind are referred to as limit up-limit down mechanisms.

Making use of information
In this section, I show you how a market maker adjusts his asking and bid prices 
using the Bayes theorem. Imagine that you’re a market maker. Your job is to con-
tinuously quote prices to buy and sell shares. To do this, you have to update your 
bid and ask prices to reflect new information and changing market prices given by 
actual trades. Your plan is, of course, to make a profit. If you ask too much, though, 
nobody will buy from you, and if you ask too little, you won’t cover the cost of 
buying the stock in the first place. So you need some maths to tell you how to set 
your bid and ask quotes that reflect your current knowledge of the market price 
and anticipate informed participants who may know more than you do.
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To start, you’re not a 100 per cent sure of the value of the stock you’re trading. The 
value is fluctuating, so it may be at a high price, η, of $101 or a low price, λ, of $99. 
Now a sale comes through. That tells you that someone thinks the stock may be 
worth less than it was. To quantify this, you can use Bayes’ theorem. You want to 
know price, P, P(λ|Sale) and P(λ|Buy). Assume that initially you have a 50 per cent 
chance the price is η and 50 per cent that the price is λ.

The process uses the Bayes theorem, which uses the formula:

P A B
P B A P A

P B A P A P B A P A1
.

In this first part, A is the conjecture that the stock’s value is λ. B represents the 
information you’ve received on the market – whether the last transaction was a 
sale or a purchase.

Using the Bayes theorem I can write the following formula for the probability that 
the price of the stock is λ = $99 given that you’ve just observed a sale in the mar-
ket. In the formula η = $101.

P Sale
P Sale P

P Sale P P Sale P
.

You already know that P(λ) = P(η) = 0.5, but the conditional probabilities are a 
little bit trickier to calculate.

BAYES HELPS BREAK CODES 
AFTER HIS DEATH
During his lifetime, Thomas Bayes never presented his work on probability. It was post-
humously presented by a friend of his to the Royal Society of London, but largely 
ignored, although the French mathematician Laplace used it a lot in his work.

In the 20th century, running battles developed between statisticians who used Bayes’ 
ideas and those who did not.

Perhaps it was the application of Bayes’ theorem by Alan Turing to decrypt the German 
enigma code during World War II that really got people’s attention. That project also 
began the modern use of computers for mathematical calculations. Now, in the 21st 
century with a profusion of electronic data sources, and especially financial data and the 
Internet, Bayes’ theorem is widely used to make inferences from data.
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Assume that half of the traders in the market are informed and half are unin-
formed. An uninformed trader is as likely to sell as he is to buy. However, an 
informed trader who knows that the stock is at the low value of $99 (you don’t) 
will sell for sure. Contrariwise, an informed trader who knows that the stock is at 
the high value of $101 will not sell. To use these results, you need another formula 
from probability theory. The symbol ♦ indicates an informed trade and the same 
symbol with a bar on top indicates an uninformed trade:

P Sale P P Sale P P Sale( ) .

The arithmetic is

P Sale 1
2

1 1
2

1
2

3
4

.

Now you just need to calculate P(Sale|η):

P Sale 1
2

0 1
2

1
2

1
4

.

Putting all of these results together, you can now calculate the posterior probability 
(the probability after relevant evidence is taken into account) that the true share 
price is λ given that a share sale has just happened.

P Sale
1

2
3

4
1

2
3

4
1

2
1

4

3
4

.

It makes sense that seeing a share sale in the market strengthens your belief that 
the true value of the stock is at the low value of $99. Given that, in this model 
where I’m assuming the price can only be $99 or $101, then P(η|Sale) = 1/4. The 
sale reduces your belief that the true value of the share is at the high end.

The next part of the calculation is to figure out what happens if you first observe 
a buy trade in the market. These calculations mirror the previous ones starting 
with the Bayes theorem again:

P
Buy

Buy Buy
Buy

P P

P P P P
.

In addition, splitting up the probability of buying given that the price is low into 
the two possibilities of an informed or an uninformed buyer gives you this 
equation:

.

Using the same 50 per cent probability of an informed buyer, you get that

P Buy 1
2

0 1
2

1
2

1
4

.
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The zero is there because an informed buyer recognises that a low true value for 
the stock implies bad news, so he refuses to buy. However, for a high value, an 
informed trader will certainly buy because it must reflect good news and so:

P Buy 1
2

1 1
2

1
2

3
4

.

Putting these values into Bayes’ theorem, you get

P Buy
1

4
1

2
1

4
1

2
3

4
1

2

1
4

.

Putting all of these results together, you can now use Bayes’ theorem to calculate 
the probability of the high price, η, given that you’ve observed a buy trade:

P
Buy

Buy Buy
Buy

P P

P P P P

3
4

1
2

1
4

1
2

3
4

1
22

3
4

.

A buy trade indicates that the higher price is the one more likely to be correct.

Calculating the bid-ask spread
After you modify your view about the price of the stock based on observing the 
order flow, you now need to do something about it. You can set the ask price for 
the stock by calculating your expectation, E, from the probabilities of the high and 
low prices – η and λ – given that you’ve just observed a buy order. Do this using 
the formula:

ask E V Buy P Buy P Buy .

Using the values for the conditional probabilities from the preceding section, 
you get

ask $ $ $ .99 1
4

101 3
4

100 5.

Likewise, the bid price is given by:

bid E V Sell P Sell P Sell .

And the arithmetic goes like this:

bid $ $ $ .99 3
4

101 1
4

99 5.

As you’d expect, the market maker is asking a higher price if you want to buy from 
him than if you want to sell to him.

These prices are consistent with the market maker’s prior belief about the value 
of the stock and the information from the market implied by the arrival of buy or 
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sell orders. As further orders arrive, a market maker continuously modifies his bid 
and ask prices in an effort to not lose any money.

Trading Factors and Distributions
In this book, I show you that the distribution of the returns of a financial market 
aren’t consistent with a simple Gaussian (or normal) distribution.

The Gaussian distribution often comes up in science when many factors are influ-
encing the outcome of an experiment. If you ask all the students in your class to 
measure the length of a piece of string, they’ll all give different answers. And 
that’s not just an urban legend or something to do with perfidious students. If you 
take all of these measurements and count how many you have for each length, the 
distribution looks like a Gaussian distribution. However, financial returns aren’t 
distributed like that.

Financial returns are influenced by the behaviour of traders and investors who are 
knowing participants in the market. This influence leads to two key features of 
real markets:

»» The distribution of returns in financial returns have fat tails. Far more large 
rises and large falls in the market exist than you’d expect from a normal 
Gaussian process. In Chapter 2, I show that the distribution of the returns for 
a stock index has far more large positive and negative values than you’d 
expect from a Gaussian distribution.

»» There’s a significant autocorrelation in the volatility. The market is often in a 
quiet state with low volatility and few large price changes – either positive or 
negative. However, it can switch fairly quickly to a state with high volatility. 
These correlations in volatility are not what you’d expect from a market 
following Gaussian returns. If the returns of a financial market are Gaussian, 
then you’d expect the volatility to be constant and with no correlation.

Several explanations are possible for these behaviours; the most likely ones are

»» Feedback with past price changes: Just as you can use feedback to create 
strange distortions with an electric guitar, feedback in financial markets can 
potentially create strange effects. For example, if the market falls for some 
reason, the fall may trigger algorithms to sell. These sales reduce the price 
further and lead to an avalanche of sell orders, and ultimately, the market 
crashes. I illustrate this in Figure 18-2.
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An algorithm is a computer program that can send orders to an exchange to 
buy or sell stocks. Many algorithms use historical price data at intraday fre-
quencies as input. Other data feeds such as prices from related markets and 
news in computer-readable format can be used as well.

»» Traders directly influence one another: Traders sharing information 
through chat rooms or other forms of interchange can lead to herding 
behaviour. An opinion or view can propagate rapidly and lead to an imbalance 
in the market. If each trader in the market wants to buy or sell an amount, ϕ, 
of a financial asset where ϕ can be +1, 0 or –1 depending upon whether the 
trader wants to buy, hold or sell the asset, then the price impact, δp, is related 
to the net order imbalance by the following equation where k is a constant 
that depends on the liquidity of the market:

p i
i

N

1
.

If a net order imbalance caused by a herding of opinions exists, then there’ll 
be a price impact. Moreover, if some traders are influenced by the market 
impact itself and change their view based on this, a feedback effect can accen-
tuate the market impact.

»» Large orders split into many small orders so as to reduce market impact: 
The section ‘Looking at the Price Impact of a Trade’ in this chapter gives more 
detail on this. The impact of even a small order on prices can be large, so large 
investment funds split their trades into smaller trades to lessen this impact. 
This generates correlation in market activity and so in the correlation of 
volatility.

FIGURE 18-2:  
Schematic of 

a market 
feedback loop. 

© John Wiley & Sons, Ltd.
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IN THIS PART . . .

Find an executive summary of the book’s key points.

Recognise the basic unpredictability of markets.

Put some important concepts to use to avoid losing 
money.

Get hot tips on what to do if you’re keen to develop a 
career in quantitative finance.
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IN THIS CHAPTER

Stressing essential points

Looking at less obvious aspects

Ten Key Ideas of 
Quantitative Finance

In the ten short summaries in this chapter, I explain some key ideas of quantita-
tive finance. I made some hard choices about what to include: some of the 
points are obvious and useful but easy to ignore; others are subtle ideas that 

take time to absorb. All are designed to give you some quick insight into quantita-
tive finance. This isn’t a substitute for reading the book, but if you only have time 
for one chapter, make it this one.

If Markets Were Truly Efficient 
Nobody Would Research Them

The efficient market hypothesis that the market knows best has become widely 
accepted and is the basis behind passive investing strategies such as index 
tracking.

An index-tracking fund aims to closely follow a public index such as the S&P 500 or 
the Hang Seng Index. The fund manager’s only aim is to achieve a market-average 
investment performance. The fund manager offers investors low costs in exchange 
for the modest performance promise.

Chapter 19
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If the market were truly efficient, and all publicly available information was incor-
porated in prices, there would be no incentive for anyone to acquire information. 
Funny then that major companies that sell just that information are thriving. If 
everyone is uninformed and acts passively like the manager of an index-tracking 
fund, it pays for someone to become informed. There cannot be an equilibrium in 
the market, and information seeking will always be a key feature of markets.

One way of putting this is that markets are almost efficient. Assuming efficient 
markets works well for index trackers because the low cost for the clients is 
attractive and can be achieved by low expenditure on information and research. 
And the lack of false promises is also popular with clients. Acting as though the 
market is efficient works if you’re happy with being no better than average.

But there are pockets of inefficiency in the market; they’re not easy to find, but 
they do exist. The existence of consistently profitable trading and investing firms 
provides some evidence for this. Academic research also shows up inefficiencies in 
markets. For example, evidence shows that value stocks, outperform the market. 
Value stocks are those in which the assets (for example buildings and machinery) 
of the company exceed the value of all of the shares in the company. Many com-
panies like this aren’t very glamorous and so are overlooked and under priced by 
investors.

There’s also good evidence of a momentum effect in markets. Financial assets tend 
to follow their recent history. Of course, there are turning points in markets, but all 
trading strategies realise losses sometimes. Betting on the continuation of a trend 
works for many investment firms despite some losses due to changes in trend.

The Gaussian Distribution is Very 
Helpful but Doesn’t Always Apply

Many calculations in quantitative finance rely on the assumption of a Gaussian 
(normal) distribution, which I discuss in Chapter 2. This assumption is a good 
one, but many studies show that it’s not the whole story. The returns of most 
financial assets are influenced by many factors, so the Gaussian assumption 
should be a good one. However, knowing participants can influence markets 
through their actions. So the returns distribution isn’t as simple as what you get 
from the distribution of measurements of the length of a piece of string, for 
example. Financial returns typically have far more small returns near zero and 
also far more large returns – both negative and positive – than a normal distribu-
tion. You can correct for a lack of normality in most models, so the Gaussian 
viewpoint is still a good one to maintain but be aware of its limitations!
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Don’t Ignore Trading Costs
You can easily get carried away by the beauty of some of the models in quantita-
tive finance, but don’t stray too far from reality! Automation has greatly reduced 
trading costs but has not entirely eliminated them. If you ignore trading costs, you 
can end up taking substantial losses. After all, many market participants still earn 
their living by being intermediaries between trades.

There will always be friction in markets. The price to buy a financial asset (the ask 
price) will always be higher than the price to sell it (the bid price). So if you do a 
round trip, in which you buy and sell an asset very quickly, you’ll lose out unless 
the market is quicker than you and you’re lucky. Be aware of it and try to come to 
good estimates of its magnitude. The model presented in Chapter 18 for the bid-
ask spread is a good start. It shows clearly that the bid-ask spread is not constant, 
so it’s costly to trade sometimes and cheap at other times.

And if you work for a large investment company or bank, the market impact of 
your trading is important. In a way, this is the point of capitalism. Prices respond 
to supply and demand and act as signals to others. If you start buying (selling) a 
financial asset, the price will start to rise (fall) as other participants respond to 
what’s happening.

Know Your Contract
This seemingly obvious advice doesn’t apply only to quantitative finance, but is 
especially important for quantitative finance because there are so many complex 
contracts to get your head around. After all, quants invented the term plain vanilla 
to describe the simplest form of option.

You need to keep an eye on many details in the underlying equity, bond and 
foreign exchange (FX) markets. For example:

»» Equity market: Most equities pay out dividends. When the stock goes 
ex-dividend and the buyer is no longer entitled to the dividend, the share 
price drops sharply. Published share prices are often adjusted accordingly, 
so that’s something to watch for.

»» Bond market: The maturity and coupon dates are key, as are the coupon 
amounts. For callable bonds, know what premium is paid if your bond is 
called.
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»» Futures market: With its diversity of contracts, you do well to pay attention to 
the details of the futures market. Some are cash settled, others are physically 
settled. Delivery terms vary from exchange to exchange and need to be 
examined carefully – especially for timing and quality. You need to know the 
contract size. For example, crude oil contracts (Brent or WTI) are for 1,000 
barrels. Also, check out carefully which months are traded. This affects any 
strategy for rolling the contracts.

»» Options market: This market has the most complexity. Some options depend 
on multiple underlying assets. Know what they are. So-called knock-out 
barrier options pay out only if a specific level is not reached. If the barrier is 
reached, then the option becomes worthless. You need to know these 
contract terms exactly.

Understanding Volatility is Key
Volatility is arguably the most important quantity in quantitative finance. Volatil-
ity is important for pricing options, sizing positions in trading strategies and in 
monitoring risk of investments. Randomness is the key property of financial price 
series, and volatility is the measure of randomness.

Many academics have devoted their careers to the study of volatility, so many 
models are available. Chapter 7 gives a summary of the most robust and popular 
models. If you haven’t read that chapter already, read it now. Get to know  
some models of volatility and how to use them. Don’t be seduced by complex 
models that are hard to fit.

You Can Price Options by Building 
Them from Cash and Stock

An equity call option, which is a contract giving the holder the right but not the 
obligation to buy stock at a certain price at a certain future date, can be synthe-
sised from a position in both stock and cash (see Chapter 5 for more detail on 
options). To see this, imagine holding a position of one call option and a short 
position in the underlying stock. A short position in a stock is like holding a nega-
tive amount of stock: if the price rises, the short position value declines; if the 
price falls, the short position value rises. A short stock position is, then, like bet-
ting that the stock will fall. But the call option is like a bet that the stock will rise. 
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By combining call options and short stock positions in the correct ratio – called 
delta (Δ) – you can come up with a risk-free position. In other words, the value of 
the combined position is independent of the stock price for the length of the posi-
tion. Because this combined position is risk free, it can be valued using the risk-
free interest rate.

This way of arriving at pricing formulae is called arbitrage pricing because it uses 
the principle that there should be no arbitrage opportunities left. (Chapter 10 on 
pricing options gives more details.) Arbitrage pricing is a generally powerful tool 
because riskless ways of making profits in financial markets are rare.

Finance Isn’t Like Physics
In physics, you have immutable laws (do you remember action = reaction from 
your school days?) that are the same this year and next. In finance, you find few 
such laws . . . although the formula for compound interest may count. Finance is 
about human constructs, contracts such as bonds or options and human behav-
iour, so you can’t pin it down with universally true laws.

Innovation in finance is much easier than in other industries (no need to build big 
factories), so change can be rapid. So rapid in fact that regulators can find it hard 
to keep pace. Darwin’s theory of evolution is probably more relevant to the finan-
cial marketplace than Newton’s laws of motion.

Many very detailed studies have been carried out on the statistics of financial 
assets, and you do indeed find many common features such as fat tails and vola-
tility clustering, but so far no universal laws and certainly no causative laws like 
those of Newton. The adaptive human behaviour that drives markets seems to 
preclude that. Treat all market models with healthy scepticism.

Diversification is the One True Free Lunch
Holding individual financial assets, whether they’re stocks or bonds, is risky. 
There’s a good chance that on selling the asset you will receive less than you paid 
for it. In the worst case, the company goes bust or defaults on its debt and you get 
nothing or close to nothing. However much you research the assets you purchase, 
you always face risk because the future is unknowable. Careful analysis can help 
you avoid risky stocks or bonds but only ever reduces the risk fractionally.
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The one big thing that can help you to reduce risk is to diversify – to buy many 
assets and to buy assets as unlike each other as possible. Doing two unrelated 
things reduces the chance of both of them going wrong compared to either one of 
them considered separately. What it says is that markets are efficient and that the 
price of risk has already been included in the price of the assets you buy. It also 
asks you not to think that you know more than you really do – overconfidence in 
your views is dangerous when the reality is that most market price changes are 
random. Because the returns from a diversified portfolio generally aren’t corre-
lated the value of one asset often drops when another asset rises in value.

The risk adjusted return of a diversified portfolio isn’t just the same as the risk of 
a single asset. The return from a portfolio of N assets increases as N increases. 
However, the risk of a diversified portfolio will increase with N . This means that 
the return per unit of risk from a diversified portfolio increases as N divided by N  
which is N . In other words, the risk-adjusted return from a diversified portfolio 
can be N  larger than for a single asset.

Be aware that you have many choices in building a diversified portfolio. An index-
tracker fund invests its capital according to the size or capitalisation of the con-
stituent companies. This may reduce the diversification of the portfolio if the 
index is dominated by very large companies. Better, in the long run, to allocate 
with equal weights, so that the variance attributed to each asset in the portfolio is 
the same, and to avoid concentrating risk.

A diversified portfolio isn’t a get-rich-quick strategy (I wouldn’t be writing this 
book if I knew how to do that!) but it should give you good steady performance 
and enable you to sleep at night.

Find Tools to Help Manage All the Data
Finance is one of the industries in which data and computing take centre stage. 
Money and financial instruments are traded constantly throughout the day with 
prices quoted every millisecond or even more frequently. With the proliferation in 
the number of financial assets such as bonds, options and stocks, the amount of 
data available is enormous. Not just price data: news agencies now provide 
computer-readable feeds so that you can attempt to analyse the impact of almost 
any factor of a financial asset.

Mastering the tools that help you assimilate as much of this data as possible gives 
you a big advantage. These tools are not necessarily complex or difficult. A simple 
scatterplot is a powerful and underestimated tool for investigating the relation-
ship between two variables and also for checking the integrity of the data.
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A scatterplot is a graph in which the values of two variables are plotted on two axes, 
often called the X and Y axes. A scatter chart is visual, can be used on large datasets 
and can guide you in building a good model. Refer to Chapter 9 for a good example 
of a scatterplot.

Another powerful tool for big data sets is Principal Components Analysis (PCA). It 
lets you see what is important in your data and allows you to reduce the dimen-
sionality of your models. Moreover, it has its own sets of scatterplots, the score 
and loadings plots, that let you build intuition about your dataset. Find out about 
PCA and use it in your analysis.

Don’t Get Fooled by Complex Models
Data is abundant, as is computing power, so it’s natural to combine them and try 
to build complex predictive models.

You can’t avoid some complexity. For example, to analyse the risk of a large port-
folio of stocks, you need to know the correct prices of the constituent stocks. That 
may sound simple, but to carry out historical simulations you need historical data 
going back many years. So for each stock (and there may be hundreds of them), 
you need to account for price events such as dividends, stock splits and special 
dividends. You need to incorporate this level of complexity into models if they’re 
to be credible.

However, you may introduce other forms of complexity during your analysis 
because the complex model is hard to implement and requires time-consuming 
calculations, and that can be potentially quite dangerous. For example, in a large 
dataset with data for hundreds of assets going back many years, introducing a 
GARCH volatility model (see Chapter 7), which requires an optimisation to fit it, 
may greatly extend the runtime for any portfolio calculations. Sticking to a robust 
exponentially weighted moving average model, which I also talk about in Chapter 7, 
may be the better choice.

A dangerous form of complexity occurs when you use many variables to try to 
predict financial returns. The snag here is that you’ll end up fitting your model to 
random noise (price fluctuations with no trend) rather than uncovering a mean-
ingful relationship. This is called overfitting. The model will appear to be excellent 
for the data points you’re using to build the model. However, for out-of-sample 
data, your model will probably be worse than useless and make very poor predic-
tions. Improved statistical tests for goodness of fit are helpful, but you still need 
to be aware of the danger of using them in a selective way that invalidates the 
conclusions.
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An important technique for avoiding overfitting is cross-validation. In this tech-
nique, you split the data set into a training set you use to build your model and a 
validation set you use to evaluate your model. As you increase the complexity of 
your model the measure of lack of fit (such as a sum of squared errors) will 
decrease for both the training and validation sets. At some point however, the lack 
of fit for the validation set will start to increase even as the fit continues to improve 
for the training set. This is because your model has begun to fit to the noise  
(random fluctuations) in the training set. It’s at this point that you need to stop 
adding variables or parameters to your model.
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IN THIS CHAPTER

Immersing yourself in books, courses 
and meetings

Expanding your knowledge base

Ten Ways to 
Ace Your Career in 
Quantitative Finance

Asking questions and building your own models is the best way to find out 
what to do next in your quest to become a quantitative finance guru. The 
tips in this chapter offer additional suggestions.

Follow Financial Markets
Being good at maths and computing is great, but following what’s happening in 
the real world is also a big help.

It can seem weird picking up a pink newspaper, but that’s a price you have to pay 
for being in finance. The tables of numbers in these journals can tell a story and 
some of the articles are interesting.

Only when you start following some data and the story do you begin to get a 
deeper understanding of what’s going on. If something is of special interest to 

Chapter 20
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you, you can always investigate further with a few of the many publicly available 
data sources, including the following:

»» Yahoo Finance (www.finance.yahoo.com) has extensive stock market data to 
download. The Python computing language also has software tools to 
automate this.

»» The Federal Reserve Economic Database (FRED) at www.research. 
stlouisfed.org has excellent data on US bonds and interest rates.

»» The US Energy Information Administration (www.eia.gov) has good data on 
the oil and gas markets.

Read Some Classic Technical Textbooks
If you’re keen to get into more detail on some of the topics of this book, then the 
best places to go are classic textbooks such as Options, Futures and Other Derivatives 
by John C Hull (Pearson Education). This book has stood the test of time and is 
used as a course book by many universities. The book is now into its eighth edition 
and has a global edition for non-US readers. The focus of the book is on deriva-
tives pricing but it also has good coverage of risk management.

Market Models: A Guide to Financial Data Analysis by Carol Alexander (Wiley Finance) 
is also an excellent book and with much more focus on data analysis techniques 
rather than derivatives pricing. The author has excellent chapters on volatility 
models and principal components analysis.

If you’re feeling feisty, you can try the more up-to-date four-volume series 
Market Risk Analysis also by Carol Alexander (Wiley Finance). It covers most of the 
topics of her earlier book but in much greater depth.

Read Some Non-technical Books
You may not want to start working on a derivatives pricing desk at a bank or do 
any quantitative trading yourself, but you’d like to know more about the quantita-
tive way of seeing the world. You can find great books on the subject. My Life as a 
Quant by Emmanuel Derman (Wiley Finance) is the autobiographical story of how 
the author went from researching esoteric physics to working in bulge bracket 

http://www.finance.yahoo.com
http://www.research.stlouisfed.org
http://www.research.stlouisfed.org
http://www.eia.gov
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banks on Wall Street. Along the way he met Fischer Black, one of the authors of 
the famous Black-Scholes equation. The personal reminiscences are insightful.

Another good read is The Black Swan: The Impact of the Highly Improbable by Nassim 
Nicholas Taleb (Penguin). Taleb also wrote the bestseller Fooled by Randomness, a 
primer on problems of luck and uncertainty. The Black Swan is more philosophical 
as it includes the author pondering the dysfunction of markets and human nature.

Take a Professional Course
Courses are available in quantitative finance so that you can become accredited 
and hopefully use your expertise to get a job. The best known is the Certificate in 
Quantitative Finance provided by Fitch Learning. Head to www.cqf.com. The 
course is delivered online and requires six months of study. The team of lecturers 
is led by Paul Wilmott, who is also the author of several textbooks on quantitative 
finance.

If your interest is more in investment management than derivatives pricing, 
then the Chartered Financial Analyst qualification from the CFA Institute  
(www.cfainstitute.org) is worth considering. The Professional Risk Managers 
International Association (PRMIA) at www.prmia.org offers a variety of graduate-
level courses in risk management.

Attend Networking Meetings and 
Conferences

Getting to know other quants is sure to give you inspiration and maybe even help 
with a career move. A good way to do this is to attend conferences and networking 
meetings including:

»» The two-day MathFinance Conference (www.mathfinance.com) is held every 
year in Frankfurt, Germany. Renowned academics give keynote lectures while 
practitioners share their insights in roundtable discussions. The conference 
even includes a conference dinner when you can have more extended 
conversations and enjoy local hospitality.

»» In the United States, the Advanced Risk Management and Portfolio 
Management one-week boot camp is a way to learn lots in a week. See  
www.symmys.com for details.

http://www.cqf.com
http://www.cfainstitute.org
http://www.prmia.org
http://www.mathfinance.com
http://www.symmys.com
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»» The Thalesians (www.thalesians.com) organise Meetup talks with respected 
speakers in financial centres around the world on a regular basis. They also 
publish quantitative strategy notes.

Participate in Online Communities
If you’re studying on your own and need some help or just want to find out what 
others are thinking, then participating in an online community is an idea. The 
Wilmott Forum at www.wilmott.com and Quantnet at www.quantnet.com are ded-
icated to quantitative finance and have many deep experts contributing as well as 
newbies.

If you’re looking for a job, then try using LinkedIn at www.linkedin.com, if you’re 
not doing so already. Make sure to join groups such as Algorithmic Trading to 
keep you better connected.

Use resources such as Stack Overflow (www.stackoverflow.com) if you’re 
struggling with some programming. The chances are that your question has 
already been asked and answered. If not, you can always ask your own.

Study a Programming Language
Reading a book (especially this one) is a great start, but to really get stuck into 
quantitative finance you have to become good at computer programming.

Spreadsheets are a good place to start, especially if you make use of the macro 
languages available behind them. You can easily generate random numbers to 
carry out the simulations you need to price even quite complex options. In addi-
tion, any spreadsheet has enough mathematical functions to calculate the formu-
lae from the solution of the Black-Scholes equation. Even with a megabyte of 
data, spreadsheets are still manageable and that’s enough for decades of daily 
price data.

However, spreadsheets are not the best tool for quantitative finance. Handling big 
data sets with spreadsheets is hard, and if you use formulae in the spreadsheets 
themselves rather than in macro code, you may easily get confused. Specialist 
programming languages such as Python and R have much better provision for 
mathematical projects and have extensive packages with mathematical, statistical 
and graphical routines. Python modules such as pandas were designed with 

http://www.thalesians.com
http://www.wilmott.com
http://www.quantnet.com
http://www.linkedin.com
http://www.stackoverflow.com
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financial time series in mind and have solutions to common problems in dealing 
with this data such as missing data.

For programs that need to run in real time, such as for trading, or if you just need 
to do lots of calculations fast, then C++ is still the most commonly used language. 
Python and R offer greater flexibility during development, but it’s also possible to 
run C++ from within Python and R if you need to.

Go Back to School
Many universities across the world offer a masters program in finance, but you 
can also do courses such as a masters in mathematical and computational finance 
that offers in-depth training in all the subjects covered by this book. They also 
come under the description of financial engineering or just computational finance. 
The website www.quantnet.com gives some rankings for US universities.

Many of the courses are expensive and are a major time commitment but should 
significantly boost your chances of landing a good job.

Apply for that Hedge Fund or Bank Job
If you feel that you’ve really mastered quantitative finance, then it’s time to apply 
for a job. Many, many, recruiters exist in the field so take your time to find one 
that you feel can help you. Make sure that you use LinkedIn and create a good 
profile.

Specialist websites such as www.efinancialcareers.co.uk are helpful. The book 
Frequently Asked Questions in Quantitative Finance by Paul Wilmott (Wiley) gives 
detailed advice on preparing for an interview at a bank.

Take Time to Rest Up and Give Back
Don’t forget that with all this hard work studying mathematics and finance, you 
need a rest sometime. Take a break. Chill. And don’t forget – if you make a pile 
with that job on Wall Street, be generous with the loot. It’s good for you, and good 
for others – and you don’t need a complicated math model to prove that!

http://www.quantnet.com
http://www.efinancialcareers.co.uk
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Glossary
algorithm: A term from computer science meaning a set of rules followed in a calculation. 
In finance, it has come to mean a set of rules used to execute trades automatically, and 
normally, at minimum cost.

arbitrage: Exploiting price anomalies to make a risk-free profit. In classical financial 
theory there aren’t supposed to be any arbitrage opportunities. It’s assumed someone 
else always got there first. Example: buy stock in one trading venue at a low price; sell it in 
another venue at a high price. Unlikely but possible.

autocorrelation: The correlation of a time series with itself at different time steps. Day to 
day, price returns are almost independent of each other because of the efficiency of 
markets, so the autocorrelation is almost always equal to 0. However, at shorter time 
intervals, intraday autocorrelation may not be 0.

autocovariance: A measure that gives an indication of the connection between a random 
variable at a given moment in time with itself at a specified earlier moment in time.

backtesting: Testing a trading strategy by applying it to historical data.

backwardation: A condition in the futures market in which near futures, close to expiry, 
are more expensive than far futures. Backwardation is normally associated with high 
demand for a commodity such as crude oil. The opposite of backwardation is contango.

bid-ask spread: The difference between the price quoted for an immediate sale (bid) of a 
financial asset and the price (ask) for an immediate purchase of a financial asset.

Black-Scholes equation: A partial differential equation for the price of an option in terms 
of the underlying asset price, the risk-free interest rate and the volatility of the underlying 
asset.

big data: Data that can’t be captured and manipulated by standard tools such as 
spreadsheets because there’s so much of it.

Brownian motion: See geometric Brownian motion.

carry trade: A trading strategy that involves borrowing money in one currency at a low 
interest rate to invest it in another at a high interest rate.
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calendar spread: A position in the futures or options market consisting of two contracts, 
one long and the other short, with different expiries. Example: if the crude oil market is in 
backwardation but you think supply will be released from storage, then you can sell the 
front month future and buy the second month future.

call option: An option to buy an underlying asset such as a bond or a stock.

close out: To place a trade opposite in sign to your existing position so that your resulting 
net position is zero. For example, if you’re long ten oil futures contracts, then you can 
close out this position by going short ten oil futures. The short positions must have the 
same expiry as the long position to close out the overall position. If not, you have a spread 
position.

contango: A condition in the futures market in which the near futures, close to expiry, are 
cheaper than the far futures. Contango is normally associated with weak demand and 
high levels of storage of a physical commodity such as crude oil.

correlation: A statistical relationship between two variables. Correlation is a number 
between –1 and 1. If it’s –1, then the first variable rises when the other falls. If it’s +1, then 
the first variable rises when the other variable rises. They also fall together.

coupon: Interest payment from a bond.

covariance: A statistical relationship between two variables similar to correlation. The 
covariance gives an indication of how closely connected the variables are. You calculate 
the correlation between two variables from the covariance by dividing by the standard 
deviation of each of the variables. The correlation is a kind of normalised covariance.

data: A set of measured values.

default: A situation in which a country or company that’s issued bonds goes bankrupt and 
can no longer make regular coupon payments.

delta (Δ): The rate of change of the price of an option with the price of the underlying 
asset.

derivative: A financial instrument whose price is derived from the price of another 
financial instrument.

Dow Jones Industrial Average (DJIA): A stock market index which indicates the price 
performance of 30 of the largest companies listed on the New York Stock Exchange. It 
includes a wide range of companies representative of the US economy.

drawdown: The peak-to-trough decline in the value of an investment.

efficient market hypothesis (EMH): The theory that financial asset prices reflect all 
available information. According to this theory it should not be possible to beat the 
market and manage a portfolio of stocks that performs better than an index.

eigenvalue: A characteristic value for a matrix and in finance especially the covariance 
matrix. The covariance matrix for N assets has N eigenvalues when N is an integer.
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exponentially weighted moving average (EWMA): A method of smoothing (averaging) a 
time series by weighting the most recent values more highly than the later values. The 
weighting is done in a particular way with weight values that decline by a constant factor 
with each time step into the past.

expiry: The time by which an option must be exercised. For a futures contract, expiry is 
the date when the holder must make or take delivery.

exotic option: An option more complex than the usual plain vanilla option. An exotic 
option may depend on multiple underlying assets or have a payoff that depends on a 
more complex condition than just the underlying asset price at expiry.

fat tail: A large positive value for the kurtosis meaning that the probability of extreme 
events is far more likely than expected from a Gaussian distribution. Sometimes referred 
to as a heavy tail.

financial asset: An asset whose value comes from a contractual claim such as a bond or a 
stock.

financial instrument: A tradable financial asset.

fitting: The process of adjusting the parameters in an equation so that the calculated 
values of the equation are as close as possible to some measured data. Fitting is an 
important step in creating a working mathematical model.

forward curve: The curve drawn using futures (or forward) market prices for contracts 
with different expiry.

front month: The futures contract closest to expiry.

FTSE 100 Index (the Financial Times Stock Exchange 100 Index): A stock index 
consisting of the 100 largest stocks by market capitalisation on the London stock 
exchange.

futures contract: A contract to buy or sell a commodity, or financial asset, such as a bond, 
at a specified time in the future and at a specified price.

gamma (Γ): The second derivative of an option’s price with respect to the price of the 
underlying asset.

GARCH (generalised autoregressive conditional heteroskedastic): A model for 
volatility that can capture the effect in financial markets when tranquil periods of small 
returns are interspersed with volatile periods of large returns.

Gaussian distribution: The standard bell-shaped curve from statistics.

geometric Brownian motion: A model for stock prices that assumes that each price 
change is random and independent of all previous price changes.

hedge: A trade designed to protect against adverse price movements.
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high frequency trading (HFT): Trading using mathematical algorithms running on 
computers. High frequency can mean holding periods of less than a second and often 
much less.

implied volatility: Volatility calculated from the market price of options.

interest-rate swap: A financial instrument that permits the holder to exchange a fixed 
rate of interest for a floating rate of interest on the same notional amount of principal.

in-the-money option: An option that has intrinsic value.

in sample: A term used in statistics to mean the data used to build a model. Contrast this 
term with out of sample, which is data used to test a model.

intrinsic value: The value an option would have if it were exercised immediately. With 
stock price S and strike price X, the intrinsic value of a call option is S – X if S is larger than 
X. Otherwise, the option has no intrinsic value. For a put option, the intrinsic value is X – S 
if S is less than X and is 0 otherwise.

kernel: A function that enters a statistical calculation to smooth out noise from data. 
Kernel smoothing is a technique that can be used to build non-linear relationships 
between random variables. See also noise.

kurtosis: A measure of the fatness of the tails of a statistical returns distribution. In maths 
language, kurtosis is the fourth central (calculated from the mean) moment of the distribu-
tion divided by the square of the second central moment. You then subtract 3 so that the 
kurtosis of the normal distribution is 0. See also fat tail.

limit order: An order placed in a market to be executed at a specified price or better.

liquidity: The extent to which a financial asset can be quickly bought and sold without 
affecting the price.

LIBOR (London Interbank Offer Rate): An indication of the interest rate at which a bank 
can obtain funding for a specified maturity and in a specified currency. LIBOR is calculated 
for seven maturities and five currencies.

long position: A holding in a financial asset that will profit when the asset rises in price.

maturity: The end of the life of a contract. This term is used especially for bonds.

mean: Mathematical average.

mean reversion: The tendency of an asset price or interest rate to move back to its 
average price over time. Mean reversion models are often used for interest rates and 
commodity prices. The geometric Brownian motion used to model stock prices does not 
mean revert.

model: A mathematical representation of the real world.

moving average: An average calculated only from the most up-to-date points in a time 
series and not from all of the data available. Thus, the average moves as more data 
becomes available. A moving average is calculated from N data points in a time series that 
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has many more than N points. The average can then be recalculated by adding one point 
at the front and dropping a point at the end. The moving average is then indicative of the 
average of the time series at a particular point in time and not of the whole time series.

noise: Unexplained variation or randomness in a time series.

normal distribution: See Gaussian distribution.

option: A contract that gives the holder the right but not the obligation to buy (or sell) an 
underlying asset at a time in the future at a price agreed now.

order: An instruction to buy or sell in a trading venue such as a stock market.

out of sample: Data not used while building a model that can be used to reliably test the 
model.

out-of-the-money option: An option that has no intrinsic value.

overfitted: A model that has too many parameters or is too complex and so tends to 
describe noise rather than signal. An overfitted model makes poor out-of-sample 
predictions.

PCA (Principal components analysis): A mathematical method of finding the most 
important sources of correlated information in a multivariate model. You can use PCA as a 
way to reduce the number of variables in a multivariate model.

plain vanilla option: A standard option contract.

Poisson distribution: A statistical distribution commonly used to describe discrete 
events, such as the number of trading orders, within a period of time.

portfolio optimisation: Adjusting the proportions of the assets in a portfolio so as to 
improve the returns and reduce the risk of the portfolio.

present value: The current worth of a future sum of money, such as a coupon payment. 
The relationship between the two quantities is defined by the interest rate for the period 
of time until payment.

principal component: A constrained linear combination of variables in a large data set 
with the maximum variance.

put option: An option to sell an underlying asset.

random walk: A mathematical construction based on a sequence of steps each of which 
is in a completely random direction independent of the preceding step.

redemption: The repayment of the principal value of a bond at or before maturity.

regression: A statistical relationship between two or more variables. Especially common 
is the linear regression in which the parameters in the model occur only to the first power; 
in other words, there are no squared or higher terms in the parameters.
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return: The change in the price of a financial asset. The simple return is the price now less 
the price in the previous time period. The relative return is the simple return divided by the 
price in the previous time period.

risk: The standard deviation of the returns of a portfolio of financial assets; more 
generally, risk is to do with the potential of losing something of value. Often risk is broken 
down into components such as market risk, legal risk, operational risk and credit risk.

risk-free rate: The interest rate for an investment considered to have no risk. Often this 
rate is taken to be the yield on a three-month US Treasury Bill.

risk parity: A method of building an investment portfolio based on the allocation of risk 
rather than capital and creating a balance between different asset classes such as bonds 
and equities.

Standard and Poor 500 (S&P 500): A stock market index that indicates the price perfor-
mance of 500 of the largest companies listed on either the New York Stock Exchange or 
the Nasdaq Exchange. It has a very diverse range of constituents and because of that is 
considered an accurate marker of the performance of US equities. It’s used as the 
underlying asset for some of the most popular derivatives contracts, such as the S&P 500 
Futures.

skew: A measure of the asymmetry of a statistical distribution. In maths terms, skew is 
the standardised third central moment of the distribution (calculated from the mean). An 
asset with positive skew has more chance of a large up move while an asset with negative 
skew has a higher chance of a large down move. A trading strategy with negative skew 
may be profitable but consists of lots of small gains interspersed with occasional large 
losses.

short position: A holding in a financial asset that will profit when the asset falls in price.

Sharpe ratio: A measure of the performance of an investment fund. Sharpe ratio is the 
average daily return divided by the standard deviation of the daily returns. Multiply by the 
square root of 250 (the number of trading days in a year) to get the annual Sharpe ratio. A 
stock index typically has an annual Sharpe ratio of around 0.3 while a particularly good 
investment fund may have a ratio of 1.

sigma (Σ): The standard deviation of the returns of a financial asset and the symbol used 
for volatility.

spoofing: Placing orders not intending to execute them. The orders are intended to give 
other participants a false indication of supply and demand.

spot price: The cash price for a commodity or currency for delivery now.

spread position: Holding equal and opposite positions in the futures or options markets. 
A calendar spread is when the opposing positions have different expiries.

standard deviation: A measure of the dispersion of a data set around its average value. 
Standard deviation is the square root of the average of the squared deviations from the 
average value.
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stochastic: Randomly determined, especially in time.

strike price: The price at which the holder of an option can buy or sell.

time series: A set of data points consisting of measurements taken at successive times.

time value: The value an option has by virtue of the time left until expiry. Time value is the 
options market price less its intrinsic value.

trend following: A trading strategy that emphasises past price movements and bets that 
the price will continue to move in that direction.

value at risk (VaR): The loss in a portfolio that will not be exceeded at some specified 
confidence level and over a specified time horizon.

variance: The square of the standard deviation. Variance is the average of the squared 
deviations from the average value.

volatility: The standard deviation of returns.

yield curve: A curve that shows the interest rate for bonds of different maturity.
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Index
Symbols and Numerics
* symbol, 2
Δ (delta), 213–216, 362
Γ (gamma), 216–217, 363
∞ (infinity), 36
Λ (lambda), 172
Π (product), 314
Σ (sigma), 30, 141, 366
Θ (theta), 22, 218
3M Corp. (MMM), 163
321 crack spread, 117
2008 banking crisis, 20

A
ABCD, 101
absolute risk aversion, 252, 263
accrued interest, 78–79
Advanced Risk Management and Portfolio 

Management boot camp, 357
adverse selection, 338
aggregated, 276
Akaike information criteria (AIC), 318–319, 322
Alexander, Carol (author)

Market Models: A Guide to Financial Data Analysis, 
356

Market Risk Analysis, 356
algorithm, 154, 344, 361
American Express Co. (AXP), 163
American options, 92, 95, 194–195
analysing

data. See data analysis
data matrices, principal components analysis (PCA)
market behaviour, 20–22

Analysis of Financial Data (Koop), 303
annualised volatility, 127–128, 162
applying

Occam’s razor, 322
one parameter, 315

principal components analysis (PCA)  
to yield curves, 177–179

arbitrage
defined, 114, 361
portfolio with no, 186–187

arbitrage free models, 237
arbitrage pricing, 351
arbitrage trades, 109
ask, 89
ask price, 331, 349
assessing

outcomes with utility functions, 249–253
portfolio performance, 270–274

assets, auctioning, 330–336
AT&T Inc. (T), 163
attitudes, to risk, 251–253
auctioning assets, 330–336
autocorrelation

about, 318
calculating, 306–307
defined, 361

autocorrelation function, 308
autocorrelation models, 308–309
autocovariance, 306, 361
autoregressive, 133
average, 42
average traded volume, 337
average VaR (AVaR), 286–288
averaging, with central limit theorem, 50–52
AXP (American Express Co.), 163

B
BA (Boeing), 163
back-adjustment, 113–114
backtesting, 285–286, 325–327, 361
backwardation, 112, 361
balancing supply and demand, 333–336
bandwidth, 311–312
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Bank for International Settlements (BIS), 276, 285
barrier options, 87, 207
Basel Accord, 286
Basel Committee of the Bank for International 

Settlements, 276
basis point (bp), 81
basis risk, 115
Bayes’ theorem, 340–342
Bayesian information criteria (BIC), 319, 322
bearish, 294
Bermuda option, 95
bets, placing on markets, 93–94
BIC (Bayesian information criteria), 319, 322
bid, 89, 333
bid price, 331, 349
bid shading, 331
bid-ask spreads, 337–343, 361
bidding war, 332
big data, 361
binary options, 87, 205
binomial distribution

about, 38
working with, 39

binomial model
about, 187–188
calculating parameters, 191–192
pricing with, 187–192
risk-neutral probability, 188–191

binomial tree model, 192–195
bins, 52, 140–143
BIS (Bank for International Settlements), 276, 285
bisecting, 78
bitcoin, 16
Black, Fischer (economist), 197, 230, 357
Black 76 model, 230–231
Black Monday, 289
Black-Scholes equation

about, 21–22, 129, 130, 135, 196–199, 209
defined, 361
Greek maths symbols, 213–220
hedging, 211–212
properties of solutions of, 202–203

rebalancing portfolios, 220–221
solving, 199–202
troubleshooting model risk, 221–222
using, 61–62
using formulae, 210–211

The Black Swan: The Impact of the Highly Improbable 
(Taleb), 357

Bobls, 75
Boeing (BA), 163
bond market, 349
bonds. See also interest; shares

about, 17, 67, 74–75
accrued interest, 78–79
coupon-bearing, 75–76
London Interbank Offer Rate (LIBOR), 79–80
pricing equations, 232–234
yield curve, 80–81
zeroes, 76–77

Brown, Robert (botanist), 47
Brownian motion. See geometric Brownian motion
bubble, 14
budget constraints, 260–262
Buffett, Warren (investor), 19
building

distributions with random variables, 35–38
income, 23
models with principal components analysis 

(PCA), 180–182
portfolios, 23–24
random numbers on computers, 54–58
VaR using covariance matrix, 279–281

bullish, 294
Bund, 75

C
C++, 359
calculating

autocorrelation, 306–307
bid-ask spread, 342–343
correlations, 262–266
exponentially weighted moving average  

(EWMA), 299
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integrals, 202
market risk with covariance matrix, 253–255
parameters, 191–192
potential losses. See value at risk (VaR)
principal components, 173–174
proportion of assets in portfolio, 266–267
returns, 262–266
simple cash portfolios, 280
with technical analysis, 294–301
volatility, 128–132

Calculus For Dummies (Ryan), 9
calendar spreads, 116, 362, 366
calibration, 313–314, 321
calibration set, 327
call option, 86, 186, 362
callable bond, 86
calls, 96–98
candlestick charts, 294–295
cap, 228, 229
capital asset pricing model, 268–270
capital market line, 268–269
caplet, 228
careers, in quantitative finance, 355–359
carry trade, 17, 361
cash portfolios, calculating, 280
cash price. See spot price
Caterpillar Inc. (CAT), 163
central banks, interest rates and, 71
central limit theorem

about, 40
averaging with, 50–52
using, 58

certainty equivalence, 250–251, 263
CFA Institute (website), 357
channel boundaries, 300–301
Chartered Financial Analyst qualification, 357
Cheat Sheet (website), 2–3, 4, 109, 122, 154
checking

model with cross-validation, 174–176
momentum indicators, 298–299
trading volume, 110

Chevron (CVX), 163

Chicago Mercantile Exchange (CME), 18, 96,  
100, 106

chi-squared, 318
Cholesky decomposition, 284–285
circuit breakers, 339
Cisco Systems (CSCO), 163
close out, 362
closing your position, 100
clusters, of data, 180–181
CME (Chicago Mercantile Exchange), 18, 96,  

100, 106
Coca-Cola Co. (KO), 163
coefficient of determination, 304
coin flipping, 31–32, 32–33
collinearity, 163–166
commodity futures, 102–104
commodity spreads, 116–117
comparing models, 318–319
competitive bids, 332
completeness of markets, 187
complexity, of models, 353–354
compounding

continuously, 69–71
interest, 68–71

computers, generating random numbers on, 
54–58

conditional, 133
conditional VaR, 287
conferences, networking, 357–358
consistent position, 113
constraints, 257, 268
constructing

distributions with random variables, 35–38
income, 23
models with principal components analysis 

(PCA), 180–182
portfolios, 23–24
random numbers on computers, 54–58
VaR using covariance matrix, 279–281

contango, 112, 362
continuing education, 359
continuous compounding, 69–71
continuous random variable, 34
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contracts, 18–19, 349–350
controlling

about, 9
data, 352–353
risk, 22–24
risk in portfolios, 276

convenience yield, 110
converges, 32
convertible bond, 86
converting

percentages to fractions, 194
volatility, 210

convex function, 251
convexity, 178
correlated, 257
correlations

about, 243, 306
calculating, 262–266
defined, 362
estimating, 282

coupon, 17, 76, 362
coupon-bearing bonds, 75–76
covariance, 246, 253, 279, 362
covariance matrix

constructing VaR using, 279–281
measuring market risk with, 253–255
using, 281

cover, 332
covered positions, 211
covered-call writing, 94
creating

distributions with random variables, 35–38
income, 23
models with principal components analysis 

(PCA), 180–182
portfolios, 23–24
random numbers on computers, 54–58
VaR using covariance matrix, 279–281

credit risk, 241
credit-default swap, 19
cross-correlation, 306
cross-validation, 174–176, 321, 327, 354

cryptocurrency, 16
CSCO (Cisco Systems), 163
cumulative distribution, 152
curse of dimensionality, 324–325
CVX (Chevron), 163

D
data

big, 361
defined, 362
identifying clusters of, 180–181
managing, 352–353
one-dimensional, 140, 150–151
putting into bins, 140–143
reducing amount of, 160–176
standardising, 166–167
weighting equally, 124–125

data analysis
about, 139
data smoothing, 139–149
estimating distributions, 149–151
modelling non-normal returns, 151–158

data cleaning, 323
data frames, 160
data matrices, analysing

see principal components analysis (PCA)
data matrix, 160–161
data smoothing

about, 139–140
with kernels, 143–146
putting data in bins, 140–143
using moving averages as filters,  

147–149
DAX, 73, 105
day vol (daily volume), 89
DD (DuPont), 163
debt, auctioning by the US Treasury, 332
decomposition, 170–172
‘deep out of the money,’ 91–92
default, 18, 74, 242, 362
defensive stocks, 181
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degrees of freedom, 318
delivery date

about, 107
futures contracts and, 103
spot price, 108, 109–110

delivery location, futures contracts and, 103
delivery month, 99–100
delta (Δ), 213–216, 362
delta hedging, 23, 188
delta neutral, 216
demand, balancing supply and, 333–336
dependent variable, 302
derivatives, 362. See also options
Derman, Emmanuel (author)

My Life as a Quant, 356–357
detecting outliers, 322–324
diagonal matrix, 169
digital options, 87
dimensionality, curse of, 324–325
direct costs, 336
dirty price, 78–79
DIS (Walt Disney Co.), 163
discontinuous payoff, 87
discounting, 71
discrete random variable, 34
disjoint events, 30
distributions

about, 343–344
binomial, 38, 39
building with random variables, 35–38
estimating, 149–151
real, 41–44

diversification, 23, 242, 258–259, 351–352
dividend payments, 18, 72
dividend yield, 72
dividend-paying stocks, 204–205
dividends, 110, 196
DJIA (Dow Jones Industrial Average) Index, 73, 

160–161, 163, 362
dot product, 168
double-sided auction, 330, 333–336
Dow Jones Industrial Average (DJIA) Index, 73, 

160–161, 163, 362

drawdowns, 272–273, 362
drift, 48–49
DuPont (DD), 163
Dutch auction, 330
dynamic hedging, 216–217

E
earning income from options, 94–95
eBay, selling on, 331–332
education, 359
efficient frontier, 266–267
efficient market hypothesis (EMH), 11–13, 

293–294, 306, 347, 362
efinancialcareers (website), 359
eigenvalue, 170, 362
eigenvalue equation, 169–170, 171–172
eigenvector, 170, 172
Einstein, Albert (physicist), 68
electronic market making, 338
EM (expectation-maximisation), 151, 154, 157
EMH (efficient market hypothesis), 11–13, 

293–294, 306, 347, 362
employment numbers, 13
English auction, 330
Epanechnikov kernel, 145–146
equations, solving, 77–78
equity call option, 350–351
equity market, 349
estimates, poor, 267–268
estimating

correlations, 282
distributions, 149–151
future volatility with term structures, 137–138
parameters, 254
tail risk with extreme value theory, 289–290
volatilities, 282
volatility by statistical means, 132–134

Eurodollar, 106–107
European options, 92, 95, 200
evaluating

outcomes with utility functions, 249–253
portfolio performance, 270–274
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EWMA (exponentially weighted moving average), 
125–127, 132–134, 147, 286, 299, 363

exactly specified, 326
Excel (Microsoft), 174

generating random numbers in, 55–56
exception, 286
exchanges, trading options on/off, 96
exercise price, 88–89
exotic options, 87–88, 363
expectation-maximisation (EM), 151, 154, 157
expectations, maximising, 153–158
expected shortfall, 287
expiration date, 88–89
expiry, 88–89, 99–100, 363
explanatory variable, 302
exponential function, 202
exponential smoothing, 125–127
exponentially weighted moving average (EWMA), 

125–127, 132–134, 147, 286, 299, 363
extreme value theory, estimating tail risk with, 

289–290
Exxon Mobil Corp (XOM), 163

F
face value, 75
factors specific to companies, effect on stock/

investment commodity price of, 46
fat tail, 130, 149, 363
Federal Reserve Economic Database (FRED) 

(website), 356
filters, using moving averages as, 147–149
final conditions, 199
finance, quantitative. See quantitative finance
financial asset, 363
financial data, reading, 88–90
financial instability, 241
financial instrument, 363
financial markets, following, 355–356
first-order terms, 62
Fitch Learning (website), 357
fitting, 319–322, 363
fixed leg, 84

fixed-income security, 74, 76
fixed-interest rates, compared with floating-

interest rates, 81–84
fixed-rate loan, 16
floating leg, 84
floating-interest rates, compared with fixed-

interest rates, 81–84
floating-rate loan, 16
floor, 229
Fooled by Randomness (Taleb), 357
forecasting markets

about, 293–294
with technical anlaysis, 294–301
using market variables, 301–305
using past values, 306–312

foreign exchange (FX), 17
forward contract, 227
forward curve, 110–111, 363
forward interest-rate, 224
forward rate agreement (FRA), 227–228
forward rates, 224–227
FRA (forward rate agreement), 227–228
fractions, converting percentages to, 194
FRED (Federal Reserve Economic Database) 

(website), 356
free of charge, 100
Frequently Asked Questions in Quantitative Finance 

(WiIlmott), 359
front month, 363
front runner membership, 333
fundamental strategies, 326
futures

about, 18, 99
calendar spreads, 116
cash price, 108
checking trading volume, 110
commodity spreads, 116–117
connecting, 109–110
converging, 114–115
forward curve, 110–112
futures contract, 99–107
rolling positions, 112–114
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seasonality in prices of, 117–118
spot prices, 109–110, 114–115
using, 115–117

futures contracts
about, 99–101, 349–350
commodity futures, 102–104
defined, 363
index futures, 105–106
interest rate futures, 106–107
margin accounts, 101–102
marking to market, 101–102
trading futures markets, 101

futures markets, 101, 350

G
gambler’s fallacy, 32
gamma (Γ), 216–217, 363
GARCH (generalised autoregressive conditional 

heteroskedastic) mode, 132–134, 133, 
137–138, 363

Gaussian (normal) distribution
about, 38, 202, 343, 348
defined, 363, 365
mixing, 149–150
recognising, 40–41

Gaussian mixture, 149–150, 155, 156
Gaussian noise, 25
Gaussian statistics, 14
GB (gigabyte), 161
GDP (gross domestic product), 322
General Electric Co. (GE), 163
generalised autoregressive conditional 

heteroscedastic (GARCH) model, 132–134, 
133, 137–138, 363

generating
distributions with random variables,  

35–38
income, 23
models with principal components analysis 

(PCA), 180–182
portfolios, 23–24
random numbers on computers, 54–58

geometric Brownian motion, 46, 135, 195, 
206–207, 272, 363

gigabyte (GB), 161
gilts, 75
global economic news, effect on stock/investment 

commodity price of, 46
gold, 16
Goldman Sachs Group Inc. (GS), 163
Greenspan, Alan (chairman), 14
gross domestic product (GDP), 322
Grossman, Sanford (economist), 12
Grossman-Stiglitz paradox, 12
GS (Goldman Sachs Group Inc.), 163

H
Hang Seng, 73, 125
HD (Home Depot Inc.), 163
Heaviside function, 205
hedge fund, 9–10, 92, 116
hedgers, 10
hedging

about, 22, 101, 102, 363
defined, 276
dynamic, 216–217
market risk and, 245–247
risk, 92–93
using, 211–212

Heston model, 135
heteroscedastic, 132
HFT (high frequency trading), 26, 333, 364
hidden variable, 155
high frequency trading (HFT), 26, 333, 364
histogram, 25, 141–143
historical data

about, 268
simulating VaR using, 283–284
using, 124–127

Ho Lee model, 234–235
Home Depot Inc. (HD), 163
Hull, John C. (author)

Options, Futures and other Derivatives, 88, 356
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I
IBM (International Business Machines Corp.), 163
ICE (Intercontinental Exchange), 96, 100
icons, explained, 3
identical independent distribution (iid), 309–311, 

314
identifying clusters of data, 180–181
identity matrix, 169
iid (identical independent distribution), 309–311, 314
implied volatility, 364
in sample, 364
‘in the money,’ 91
income

earning from options, 94–95
generating, 23

index arbitrage, 108
index futures, 105–106
index-tracking fund, 347
indicators, 295–298, 299–300
indirect costs, 336
infinity (∞), 36
informed traders, 338
instantaneous forward rate, 227
INTC (Intel Corp.), 163
integrals, calculating, 202
Intel Corp. (INTC), 163
Intercontinental Exchange (ICE), 96, 100
interest. See also bonds; shares

about, 16, 67, 68
accrued, 78–79
compounding, 68–71
fixed rates compared with floating rates, 81–84
London Interbank Offer Rate (LIBOR), 79–80

interest rate futures, 106–107
interest rates

central banks and, 71
constancy of, 196

interest-rate derivatives
about, 223–224
forward rates, 224–234
models, 234–237
yield curve, 224–234

interest-rate swap, 17, 81, 364

International Business Machines Corp. (IBM), 163
International Swaps and Derivatives Association 

(ISDA), 81, 96
Internet resources

Advanced Risk Management and Portfolio 
Management boot camp, 357

Bank for International Settlements, 276
CFA Institute, 357
Cheat Sheet, 2–3, 4, 109, 122, 154
efinancialcareers, 359
Federal Reserve Economic Database  

(FRED), 356
Fitch Learning, 357
International Swaps and Derivatives Association, 

81
LinkedIn, 358
MathFinance Conference, 357
Professional Risk Managers International 

Association (PRMIA), 357
Python, 170
Quantnet, 358, 359
Stack Overflow, 358
Thalesians, 358
US Bureau of Labor Statistics, 13
US Energy Information Administration, 356
Wilmott Forum, 358
Yahoo Finance, 356

in-the-money option, 364
intrinsic value, 91, 364
inverse-transformation method, 56
inverted, 225
investing, in risky assets, 241–244
investment grade, 74
investment trusts, 72
irrational exuberance, 14–15
ISDA (International Swaps and Derivatives 

Association), 81, 96
iterating, 126

J
Johnson & Johnson (JNJ), 163
JPMorgan Chase & Co. (JPM), 163
junk grade, 74
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K
kB (kilobyte), 161
kernel regression, 311–312, 364
kernels, data smoothing with, 143–146
kilobyte (kB), 161
knock-in options, 87
knock-out options, 87
KO (Coca-Cola Co.), 163
Koop, Gary (author)

Analysis of Financial Data, 303
kurtosis, 14, 42–44, 130, 149, 152, 364

L
Lagrange, Joseph-Louis (mathematician), 261
Lagrange multiplier, 261, 265, 266
lambda (Λ), 172
large companies, bonds issued by, 75
last trade price, 334
latent variable, 155
Law of Large Numbers, 32
leading indicator, 293
least squares, 303, 316–318
Lehman Brothers, 20
leverage effect, 134
LIBOR (London Interbank Offer Rate), 79–80, 

106–107, 186, 364
likelihood, maximising, 314–319
lim (limit), 70
limit order, 331, 364
limit up-limit down, 339
line plot, 24
linear equation, 302
LinkedIn (website), 358
liquidity, 10, 338–339, 364
liquidity provider, 338
local governments, bonds issued by, 75
log likelihood, 154–155, 158
London Financial Times stock exchange 100  

(FTSE 100), 73, 363
London Interbank Offer Rate (LIBOR), 79–80, 

106–107, 186, 364
long position, 99, 364
lookback options, 87

M
managing

about, 9
data, 352–353
risk, 22–24
risk in portfolios, 276

margin accounts, 101–102
margin called, 101
marginal utility, 251
market behaviour, analysing and describing, 20–22
market depth, 334
market impact, 25
market maker, being a, 337–343
Market Models: A Guide to Financial Data Analysis 

(Alexander), 356
market order, 334
market participants, 9–10
market portfolio, 269
market price, of risk, 234
market risk

about, 241, 268
evaluating outcomes with utility functions, 

249–253
hedging, 245–247
investing in risky assets, 241–244
measuring with covariance matrix, 253–255
stop loss, 244
usefulness of probability, 247–249

Market Risk Analysis (Alexander), 356
market variables, forecasting markets using, 

301–305
markets

about, 25–26, 329
auctioning assets, 330–336
being a market maker, 337–343
bid-ask spreads, 337–343
distributions, 343–344
efficiency of, 347–348
forecasting. See forecasting markets
marking to, 101–102
placing bets on, 93–94
price impact of trade, 336–337
trading factors, 343–344
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marking to market, 101–102
Markowitz, Harry (inventor), 273
mathematics, of quantitative finance, 8–9
MathFinance Conference, 357
maturity, 75, 364
max function, 229
maximising

expectations, 153–158
likelihood, 314–319

MB (megabyte), 161
McDonald’s Corp. (MCD), 163
mean, 41, 44, 364
mean reversion, 62–64, 138, 235, 364
means of exchange, as a function of money, 15–16
measuring

autocorrelation, 306–307
bid-ask spread, 342–343
correlations, 262–266
exponentially weighted moving average (EWMA), 

299
integrals, 202
market risk with covariance matrix, 253–255
parameters, 191–192
potential losses. See value at risk (VaR)
principal components, 173–174
proportion of assets in portfolio, 266–267
returns, 262–266
simple cash portfolios, 280
with technical analysis, 294–301
volatility, 128–132

meetings, networking, 357–358
megabyte (MB), 161
Merck & Co. Inc. (MRK), 163
method of least squares, 317
Microsoft Corp. (MSFT), 163
Microsoft Excel, 55–56, 174
minimising

least squares, 316–318
portfolio variance, 259–268

minimum regulatory capital, 285
miss-one-out cross-validation, 321
mixing Gaussian distributions, 149–150

MMM (3M Corp.), 163
models

about, 313–314
autocorrelation, 308–309
backtesting, 325–327
binomial, 187–192
binomial tree, 192–195
Black 76, 230–231
building with principal components analysis 

(PCA), 180–182
capital asset pricing, 268–270
comparing, 318–319
complexity of, 353–354
defined, 364
detecting outliers, 322–324
dimensionality, 324–325
fitting, 319–322
interest-rate, 234–237
interest-rate derivatives, 234–237
maximizing likelihood, 314–319
moving average, 309–311
non-normal returns, 151–158
Occam’s razor, 322
out-of-sample validation, 327
overfitting, 319–322
regression, 302–304, 302–305
validating, 285–286
Vasicek, 235–237

modern portfolio theory (MPT), 23
momentum, 12
momentum effect, 348
momentum indicators, checking, 298–299
money, functions of, 15–16
Monte Carlo methods, 54–58, 200, 206–207, 

284–285
mortgage-backed securities, 20
moving average crossover, 148–149
moving average models, 309–311
moving averages

defined, 364–365
using as filters, 147–149

MPT (modern portfolio theory), 23
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MRK (Merck & Co. Inc.), 163
MSFT (Microsoft Corp.), 163
mutual funds (unit trusts), 72
My Life as a Quant (Derman), 356–357

N
naked positions, 94, 211
Nasdaq 100, 73
national governments, bonds issued by, 75
netting, 100
networking meetings/conferences, 357–358
New York Stock Exchange (NYSE), 71
Nike Inc. (NKE), 163
Nikkei 225, 73
NKE (Nike Inc.), 163
noise, 148, 174, 365
non-linear iterative partial least squares, 173
non-normal returns, modelling, 151–158
non-normality, testing and visualising, 151–153
non-parametric statistics, 302
non-technical books, 356–357
normal (Gaussian) distribution

about, 38, 202, 343, 348
defined, 363, 365
mixing, 149–150
recognising, 40–41

normalised, 168, 171
Norm.Dist function, 211
NormInv function (Excel), 55
Numerical Recipes in C: The Art of Scientific 

Computing (Press), 318
NYSE (New York Stock Exchange), 71

O
Occam’s razor, 322
O.I. (open interest), 89, 103
one-dimensional data, 140, 150–151
one-factor Vasicek model, 235–237
online communities, 358
open interest (O.I.), 89, 103
open outcry auction, 330

operational risk, 241
optimisation, 257
options

about, 15, 18, 19, 21–22, 85
American, 92, 95, 194–195
barrier, 87, 207
Bermuda, 95
binary, 87, 205
calls, 96–98
defined, 185, 365
digital, 87
earning income from, 94–95
European, 92, 95, 200
exotic, 87–88, 363
hedging, 22
knock-in, 87
knock-out, 87
lookback, 87
out-of-the-money, 365
over-the-counter (OTC), 96
path-dependent, 87
payoffs, 90–92
plain vanilla, 86–87
pricing, 192–196, 350–351
puts, 96–98
reading financial data, 88–90
trading on/off exchanges, 96
types of, 86–88
using, 92–95
valuing using simulations, 206–207
writing, 94

Options, Futures and other Derivatives (Hull), 88, 356
options market, 350
order book, 330, 335, 365
order driven double-sided auction, 331
orthogonal, 168, 171
oscillator, 297
OTC (over-the-counter) options, 96
out of sample, 321, 365
‘out of the money,’ 91
outliers, 80, 322–324
out-of-sample testing, 175
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out-of-sample validation, 327
out-of-the-money option, 365
overfitting, 319–322, 353, 365
over-the-counter (OTC) options, 96

P
paper trading, 297
par swap, 82
parameters

applying one, 315
calculating, 191–192
defined, 151
estimating, 254

parametric statistics, 151, 302
past values, forecasting markets using, 306–312
path-dependent options, 87
payoff, 19, 90–92
payoff function, 193, 202, 205
PCA (principal components analysis)

about, 21, 159
applying to yield curves, 177–179
building models with, 180–182
defined, 365
reducing amount of data, 160–176
using, 353

percentages, converting to fractions, 194
Pfizer Inc. (PFE), 163
PG (Proctor & Gamble Co.), 163
P(H)P(H), 2
P&L (profit and loss), 280
placing bets on markets, 93–94
plain vanilla contracts, 19, 365
plain vanilla options, 86–87
plots, types of, 24–25
Poisson distribution

about, 38, 40
defined, 365
using, 57

portfolio optimisation, 365
portfolio performance

assessing, 270–274
budget constraints, 260–262

portfolio theory
about, 257–258
assessing portfolio performance, 270–274
capital asset pricing model, 268–270
diversifying portfolios, 258–259
minimising portfolio variance, 259–268

portfolio variance, minimising, 259–268
portfolios

building, 23–24
controlling risk in, 276
diversifying, 258–259
with no arbitrage, 186–187
rebalancing, 220–221

positions
covered, 211
naked, 211
rolling, 112–114

positive kurtosis, 42
premium, 90
pre-processing, 167
present value, 365
Press, William H. (author)

Numerical Recipes in C: The Art of Scientific 
Computing, 318

price impact, of trade, 336–337
pricing

about, 9
American options, 194–195
with binomial model, 187–192
bonds, 232–234
options, 192–196, 350–351

primary market, 75
principal, 74
principal components

calculating, 173–174
defined, 159, 365

principal components analysis (PCA)
about, 21, 159
applying to yield curves, 177–179
building models with, 180–182
defined, 365
reducing amount of data, 160–176
using, 353
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principal components regression, 181–182
principal components representation, 171
principal value, 75
principle of parsimony, 322
prior probability, 155
PRMIA (Professional Risk Managers International 

Association) (website), 357
probability and statistics

about, 27–28, 31
calculating statistics, 255
coin flipping, 28–31, 32–33
distributions, 38–44
playing a game, 31–32
prior probability, 155
random variables, 33–38
risk-neutral probability, 188–191
usefulness of probability, 247–249

probability theory, 28
Proctor & Gamble Co. (PG), 163
pro-cyclical, 286
product (Π), 314
product form, futures contracts and, 103
product quality, futures contracts and, 103
professional courses, 357
Professional Risk Managers International 

Association (PRMIA) (website), 357
profit and loss (P&L), 280
programming languages, 358–359
properties, of Black-Scholes equation solutions, 

202–203
prospect theory, 252–253
put option, 22, 86, 186, 365
puts, 96–98
Python, 58, 170, 174, 358–359

Q
QQ plot, 153
quantiles, 153
quantitative analysts (quants)

about, 9, 197
efficient market hypothesis (EMH), 11–13
irrational exuberance, 14–15
random walk, 10–11

quantitative finance. See also specific topics
about, 7–8
careers in, 355–359
key ideas of, 347–354
managing, 9
market participants, 9–10
mathematics of, 8–9
pricing, 9
trading, 9

quantitive easing, 8
Quantnet (website), 358, 359
quote driven double-sided auction, 331

R
R, 174, 358–359
R2 value, 179
random behaviours

about, 45
Black-Scholes equation, 61–62
central limit theorem, 50–52
generating random numbers on computers, 

54–58
mean-reversion, 62–64
random walk for stock market, 53–54
random walks, 45–50
simulating random walks, 58–59
stochastic differential equation, 60–61

random events, 28
random noise, 353
random numbers, generating on computers, 

54–58
random variables

about, 33–34
building distributions with, 35–38
using, 34

random walks
about, 10–11, 32, 45–47
defined, 365
drift, 48–49
reducing step size, 49–50
stepping in two directions, 47–48

reading financial data, 88–90



382      Quantitative Finance For Dummies

real distributions, 41–44
rebalancing, 216, 220–221
recognising Gaussian (normal) distribution, 40–41
redemption, 75, 365
redemption yield, 76
reducing

amount of data, 160–176
covariance matrix, 254
risk, 23–24

regime switching, 136
regression

defined, 365
kernel, 311–312

regression models, 302–305
regulatory capital, 276
relative strength index (RSI), 295–298
Remember icon, 3
resources, Internet

Advanced Risk Management and Portfolio 
Management boot camp, 357

Bank for International Settlements, 276
CFA Institute, 357
Cheat Sheet, 2–3, 4, 109, 122, 154
efinancialcareers, 359
Federal Reserve Economic Database (FRED), 356
Fitch Learning, 357
International Swaps and Derivatives  

Association, 81
LinkedIn, 358
MathFinance Conference, 357
Professional Risk Managers International 

Association (PRMIA), 357
Python, 170
Quantnet, 358, 359
Stack Overflow, 358
Thalesians, 358
US Bureau of Labor Statistics, 13
US Energy Information Administration, 356
Wilmott Forum, 358
Yahoo Finance, 356

returns
about, 20–21
calculating, 262–266

defined, 47, 366
weighting, 125–127

rho (P), 219
risk. See also market risk

attitudes to, 251–253
controlling portfolios, 276
defined, 92, 366
hedging, 92–93
managing, 22–24
market price of, 234
reducing, 23–24
troubleshooting for models, 221–222

risk averse, 251
risk loving, 251
risk parity, 273–274, 366
risk-adjusted performance measure, 270
risk-free rate, 16, 97, 186, 366
risk-neutral probability, 188–191
robust method, 323
Rockefeller, Barbara (author)

Technical Analysis For Dummies, 297
rolling positions, 112–114
RSI (relative strength index), 295–298
Rumsey-Johnson, Deborah (author)

Statistics For Dummies, 319
Statistics II For Dummies, 303

running calculations, 126
Ryan, Mark (author)

Calculus For Dummies, 9

S
sales of stocks/commodities, effect on stock/

investment commodity price of, 46
scatterplot, 24, 353
Schatz, 75
Scholes, Myron (economist), 197
sealed bid auction, 331
seasonality, in futures prices, 117–118
second price sealed bid auction, 331
secondary market, 75
securities, 74
selling, on eBay, 331–332
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settl. (settlement), 89, 101, 336
shadows, 294
shares. See also bonds; interest

about, 18, 67, 71–72
defined, 71
stock indices, 72–74

Sharpe ratio, 270–272, 366
shill bid, 333
short position, 186, 350–351, 366
short position in a call option, 94
short put position, 94
short rate, 232
short selling stocks, 196
shorting, 186
short-term interest-rate, 232
shrinkage, 254, 268
sigma (Σ), 30, 141, 366
signal, 148
simple moving average (SMA), 147–149
simulating

random walks, 58–59
valuing options using, 206–207
VaR, 283–285

skew, 42–44, 152, 366
SMA (simple moving average), 147–149
smoothing parameter, 126
solving

Black-Scholes equation, 199–202
equations, 77–78

Soros, George (hedge fund manager), 15
sovereign bonds, 75
speculating, 22
speculators, 9–10, 101
spoofing, 333, 366
spot interest-rate, 224, 232
spot price

about, 108, 109–110
converging futures to, 114–115
defined, 366

spread position, 366
spreadsheets, 160, 358
square root, 62, 127–128

Stack Overflow (website), 358
Standard and Poor 500 (S&P 500), 366
standard deviation (σ)

about, 41, 42, 44, 51, 123
calculating, 129
defined, 366
over M days of returns, 124–125

standard normal distribution, 51
Standard & Poor’s 500 (S&P 500), 73
standardising data, 166–167
static hedging, 211–212
stationarity, 162
statistical means, estimating volatility by, 132–134
statistics and probability

about, 27–28, 31
calculating statistics, 255
coin flipping, 28–31, 32–33
distributions, 38–44
playing a game, 31–32
prior probability, 155
random variables, 33–38
risk-neutral probability, 188–191
usefulness of probability, 247–249

Statistics For Dummies (Rumsey-Johnson), 319
Statistics II For Dummies (Rumsey-Johnson), 303
Stiglitz, Joseph (economist), 12
stochastic, 234, 367
stochastic differential equations, 60–61
stochastic indicator, 299–300
stochastic volatility model, 135
stock index, 72–73
stock index futures, 105–106, 108
stock markets

defined, 71
random walk for, 53–54

stocks
about, 18
defensive, 181
defined, 71
dividend-paying, 204–205
short selling, 196

stop loss, 244
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storage costs, 110
store of value, as a function of money, 15–16
stress testing, 286
strike price, 19, 88–89, 128, 188, 367
subadditivity, 288
subscripts, 167
summary statistics, 161
supply, balancing demand and, 333–336
swap dealer, 81
swap rate, 82
swaption, 229
symbols, maths, 213–220
symmetric, 169

T
T (AT&T Inc.), 163
tail index, 290
tail risk, estimating with extreme value theory, 

289–290
tails, of distributions, 149
Taleb, Nassim Nicholas (author)

The Black Swan: The Impact of the Highly 
Improbable, 357

Fooled by Randomness, 357
Taylor expansion, 62, 123, 233
technical analysis, measuring with, 294–301
Technical Analysis For Dummies (Rockefeller), 297
technical strategies, 326
Technical Stuff icon, 3
term structures, estimating future volatility with, 

137–138
test set, 327
testing

non-normality, 151–153
out-of-sample, 175

textbooks, 356
Thalesians, 358
The Travelers Companies Inc. (TRV), 163
theta (Θ), 22, 218
321 crack spread, 117
tick size, 331
ticker codes, 163

tilt, 178
time series, 147, 161, 367
time to expiry, calculating, 129
time value, 89–90, 367
Tip icon, 3
tracker funds, 11
traded

defined, 88
price impact of, 336–337

trading
about, 9
factors of, 343–344
futures markets, 101
ignoring costs of, 349
options on/off exchanges, 96
unit of, 90

trading days, 128
trading volume, 110, 312
transaction costs, 196
transpose, 169
treasury notes, 75
Treasury Stock, 71
trend, 178
trend following strategy, 12, 367
troubleshooting model risk, 221–222
TRV (The Travelers Companies Inc.), 163
t-statistics, 182
Turing, Alan (mathematician), 340
2008 banking crisis, 20

U
unconstrained solution, 266
UNH (United Health Group Inc.), 163
uninformed traders, 338
unit of account, as a function of money, 15–16
unit of trading, 90
unit trusts (mutual funds), 72
United Health Group Inc. (UNH), 163
United Kingdom Gilt Treasury Stock 2032 4.25% 

(TR32), 76
United Technologies Corp. (UTX), 163
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US Bureau of Labor Statistics (website), 13
US Energy Information Administration (website), 

356
US Treasury, 332
US Treasury yield curves, 226
utility functions, 249–253, 263, 268
UTX (United Technologies Corp.), 163

V
V (VISA Inc.), 163
validating models, 285–286
value at risk (VaR)

about, 22, 275–276
average, 286–288
constructing using covariance matrix, 279–281
controlling risk in portfolios, 276
defined, 367
estimating tail risk with extreme value theory, 

289–290
estimating volatilities and correlations, 282
simulating, 283–285
validating models, 285–286
volatility and, 277–279

value stocks, 348
valuing

options using simulations, 206–207
time, 89–90

variable, 151
variance, 137, 259, 279, 367
Vasicek model, 235–237
vectors, 167–168
vega (v), 213, 219
Verizon Communications Inc. (VZ), 163
VISA Inc. (V), 163
visualising non-normality, 151–153
volatility

about, 20–21, 87, 121–124
annualised, 127–128, 162
calculations for, 128–132, 276
constancy of, 196
converting, 210

defined, 162, 316, 367
estimating, 282
estimating by statistical means, 132–134
estimating future volatility with term structures, 

137–138
importance of, 350
regime switching, 136
square root, 127–128
stochastic, 135
using historical data, 124–127
VaR and, 277–279

volatility smile, 129
Volcker, Paul (chairman), 18–19
VZ (Verizon Communications Inc.), 163

W
Walmart (WMT), 163
Walt Disney Co. (DIS), 163
Warning icon, 3
websites

Advanced Risk Management and Portfolio 
Management boot camp, 357

Bank for International Settlements, 276
CFA Institute, 357
Cheat Sheet, 2–3, 4, 109, 122, 154
efinancialcareers, 359
Federal Reserve Economic Database (FRED), 356
Fitch Learning, 357
International Swaps and Derivatives Association, 

81
LinkedIn, 358
MathFinance Conference, 357
Professional Risk Managers International 

Association (PRMIA), 357
Python, 170
Quantnet, 358, 359
Stack Overflow, 358
Thalesians, 358
US Bureau of Labor Statistics, 13
US Energy Information Administration, 356
Wilmott Forum, 358
Yahoo Finance, 356
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weighting
data equally, 124–125
returns, 125–127

Wilmott, Paul (author)
Frequently Asked Questions in Quantitative  

Finance, 359
Wilmott Forum (website), 358
WMT (Walmart), 163
world markets, 72–74
writing a call, 94
writing an option, 94, 211

X
x variable, 2
XOM (Exxon Mobil Corp), 163

Y
Yahoo Finance (website), 356
yield curves

about, 80–81, 224–227
applying principal components analysis  

(PCA), 177–179
defined, 367

yield to maturity, 76

Z
zero-coupon bonds, 76–77
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