Butterworths BASIC Series includes the following titles:

BASIC aerodynamics

BASIC artificial intelligence

BASIC business analysis and operations research
BASIC economics

BASIC hydraulics

BASIC hydrodynamics

BASIC hydrology

BASIC interactive graphics

BASIC investment appraisal

BASIC materials studies

BASIC matrix methods

BASIC mechanical vibrations

BASIC molecular spectroscopy

BASIC numerical mathematics

BASIC operational amplifiers

BASIC soil mechanics

BASIC statistics

BASIC stress analysis

BASIC theory of structures

BASIC thermodynamics and heat transfer

BASIC business analysis and
operations research

R H Mole BSc, MSc, PhD, AFIMA
Lecturer, Department of Management Studies,
Loughborough University of Technology, Loughborough, England

Butterworths
London . Boston . Durban . Singapore . Sydney . Toronto . Wellington

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
including photocopying and recording, without the written
permission of the copyright holder, application for which
should be addressed to the Publishers. Such written
permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net
price given by the Publishers in their current price list.

First published 1987

© Butterworth & Co. (Publishers) Ltd, 1987

British Library Cataloguing in Publication Data

Mole, R.H.
BASIC business analysis and operations research. —
(Butterworths BASIC series)
1. Operations research — Data processing
2. BASIC (Computer program language)
I. Title
658.4'034'02855133 HD30.25

ISBN 0-408-01590-X

Library of Congress Cataloging-in-Publication Data

Mole, R.H. (Richard H.)
BASIC business analysis and operations research.

(Butterworths BASIC series)

Includes index.

1. Industrial management—Mathematical models.
2. Operations research—Data processing. 3. BASIC
(Computer program language) I. Title. II. Series.
HD30.25.M66 1987 658.4'034'0285526 86-26398
ISBN 0-408-01590-X

Phototypeset by Scribe Design, Gillingham, Kent
Printed and bound in England by Page Bros (Norwich) Ltd, Norfolk

Preface

Mathematical models can be used to analyse business problems in
order to heighten managements’ understanding of the issues. This
approach can result in better decisions and more robust long-term
strategy. The process has become known as Operations Research
(OR) and micros are commonly used for the numerical aspects of
the work.

The purpose of this book is to introduce the reader to the
application of the computer language called BASIC to a selection
of material from the core curriculum of OR mathematical models.
It fills the gap which has been left between the texts on the
‘Management application of computers’ and the texts on
‘Operations research techniques’. It is both a reader, showing how
the micro can solve computational problems effectively and
efficiently, and a workbook which provides a graded series of
programming tasks. The reader should therefore have easy access
to a computer. A primary aim is to build competence and
confidence in a reader’s ability to design well-structured programs
for computational problems in a management context. At the
same time the underlying theory has been presented as fully as
space allows. The writer has kept constantly in mind the needs of
the independent learner, and on average each chapter ends with a
dozen programming exercises.

This book is intended primarily for introductory use by
undergraduate management, computer, technology and science
students. The elementary sections are suitable for business studies
and school students who wish to see just how useful modern
approaches can be to the analysis of business operations. But
science and technology graduates will also find it a useful
introduction to ‘OR on the micro’.

The qualities of the computer language BBC BASIC have
something in common with the qualities of the spoken English
language which characterize BBC broadcasts. The listener to BBC
English will appreciate the clear enunciation and clear grammatic-
al construction. It is easy to follow. The reader will also find it easy

to take in the sense of a BBC BASIC program. But there is no
more compulsion to employ the BBC BASIC dialect in one’s
programming tasks than there is to adopt BBC English for all
everyday communication. The choice of BBC BASIC for this
book is in the reader’s interests, whatever the dialect of BASIC
supported by his or her computer.

The choice of material from the OR core curriculum is made in
the context of the Butterworths’ BASIC series as a whole, because
it is desirable to avoid unnecessary overlap with the material of
companion volumes. The choice is also constrained by the
available space. Companion volumes cover contiguous material:

BASIC business simulation by P J Stratfold, (forthcoming)

BASIC forecasting by D G Johnson and M King, (forthcoming)

BASIC investment appraisal by R H Mole, Butterworths, 1985

BASIC matrix methods by J C Mason, Butterworths, 1984

BASIC numerical mathematics by J C Mason, Butterworths,
1983

BASIC statistics by J Tennant-Smith, Butterworths. 1985

Chapters 1 and 2 are brief introductions to the BASIC language
and to the field of Business Operations Research. Chapter 3 deals
with Index Numbers, which are conceptually fairly straightforward
and of immediate importance to any businessman. It provides a
gentle introduction to programming in structured BASIC. A
number of programs for Data Fitting are developed in Chapter 4.
These are described in the context of cost-volume relationships, an
essential tool for financial analysis and control.

Critical Path Network Analysis is the topic of Chapter 5, which
illustrates how a simple program can be developed to include
progressive complexity. The fully developed program utilizes the
graphics facilities of modern micros to display a critical path
planning network. In Chapter 6 on Linear Programming, several
programs are given for a range of computational tasks, from a
complete enumeration of the vertices of the feasible region to an
implementation of the two-phase simplex method for mixed linear
inequalities. A final chapter considers Markov chains in the
context of policies for preventative maintenance.

The writer would like to reeord his gratitude to all those who
contributed to this book, and especially to Don Goodsell of
Butterworths who guided the project to completion, to Rodger
Mustoe who did his best to find the bugs in the programs, to R H
Mole Senior for dropping everything to read the manuscript for
grammatical errors and lack of clarity, to Geof Gregory and John
Wilson for their comments on Chapter 6, to colleagues, especially

David Johnson, for being there in the background and ready to
listen and help when needed, to Felicity Nash for secretarial
assistance, to Joyce Savage for keeping the computing equipment
in excellent order, and to my family for putting up with it all!

I acknowledge the permission of the Chartered Association of
Certified Accountants to reproduce a few past examination
questions.

R H Mole

Chapter 1
Introduction to BASIC

1.1 Dialects of the BASIC language

BASIC is a powerful and flexible computer language. It is easy to
learn and it is supported on all modern micros. BASIC is also easy
to apply to most mathematical models of operations research. The
use of the microcomputer removes the tedium from repetitive
calculations, so allowing concentration on the ideas which
underpin the calculations. The inevitable price for these consider-
able advantages is that scrupulous attention has to be paid to
detail, both in design and in implementation of BASIC computer
programs.

BASIC was devised in the 1960s at Dartmouth College, USA, to
provide a Beginners All-purpose Symbolic Instruction Code. Over
the years it has evolved into many closely related dialects, as
computer manufacturers have sought to give their products a
competitive edge. This is particularly true of the last few years with
the mass availability of small but highly efficient microcomputers.
As a result the BASIC dialect of a modern micro is almost always
an advance on the dialect available on the large mainframe
machine. The best BASICs encourage the user to write
‘structured’ programs which are relatively easy to read and debug.

Three excellent instructional manuals on BASIC are cited at the
end of this chapter for the reader who needs a general
introduction. This short chapter assumes that the reader has
already some acquaintance or familiarity with BASIC. Its purpose
is to emphasize the main points, paying special attention to
particular aspects which in my experience students find difficult to
appreciate.

The adoption by the British Broadcasting Corporation of the
Acorn micro for a series of popular computer education
programmes has resulted in the label ‘BBC’ attaching both to the
Acorn micro itself and to the Acorn BASIC dialect. In this book
the BBC BASIC dialect has been preferred for several reasons.
First, the great majority of British school children who learn
computing languages will have been introduced to BBC BASIC

1

2 Introduction to BASIC

through use of the Acorn BBC Model B Micro or the BBC Master
series of micros. Second, it is possibly the best implementation of
BASIC in its own right, and so is widely used in further and higher
education. Third, it is easy to make minor alterations to the
programs in this book to allow them to run on any modern
microcomputer. This chapter describes how a few extra statements
can ensure compatibility with even the most primitive BASIC
dialect.

1.2 Assignment and non-executable statements

The instructions which are held within a BASIC program are
known as statements, and they may be entered into the machine in
any sequence. Each statement is begun by a unique line number
and the computer will sort the statements on entry according to
numerical order. When a program is RUN the computer will
slavishly ‘execute’ these statements, stopping prematurely only if a
syntax error is discovered. Errors may be edited out in three ways:
an existing statement is overwritten if a new statement is typed in
with the same line number; typing the line number followed
immediately by pressing the RETURN key will remove a
statement entirely; it is easy to make small amendments within a
statement by the use of a COPY key and the ‘cursor control’ in
conjunction with normal keyboard entry.

Most statements ‘do’ something or other, with the exception of
the END statement which signals the end of the program, REM
statements which contain REMarks by the programmer that are
not executed by the machine, and blank statements which break
up segments of statements. This last cosmetic device can
contribute greatly to the clarity of a program, but it is only
available in some BASICs (by typing a space after the line number
before pressing the RETURN key).

An assignment statement is used for carrying out arithmetic
operations, as in

7Bl X = (X + 2*X"3) / 4 - 2

Statement 7010 looks superficially like an equation, but it is an
instruction to replace the current numerical value of the variable X
by the expression on the right-hand side. Primitive BASIC dialects
will require the insertion of the word LET after the line number.
Notice that blank spaces may be introduced at will to aid legibility,
and also that there is little value in ‘simplifying’ the expression by
standard algebraic procedures. If the value of X were zero prior to
the execution of statement 7010 then the new value after execution

Variables, arrays and standard functions 3

would be —2. This is because an assignment statement containing
arithmetic operators is evaluated according to a hierarchical
system of priorities, working from left to right within the following
priorities:

() parentheses First priority

) exponentiation Second priority
X and/ multiplication and division Third priority
+ and — addition and subtraction Fourth priority

BBC BASIC automatically initializes numeric variables at zero
prior to RUNning a program, but primitive dialects may not, and
they can therefore produce bizarre output unless the user explicitly
initializes all numeric variables prior to use, as in

19 X=0:Y=0:2=29

The programs in this book will generally, but not invariably,
initialize variables in this way. Notice that line 10 is an instance of
a multiple statement line, ie the colons indicate the presence of
three independent statements. Some multiple statement lines are
employed when it helps to achieve clarity of expression. Since
statements are normally numbered here in multiples of 10, the
reader who is restricted to a BASIC which cannot accept multiple
statement lines will always be able to proceed by inserting a series
of additional single statements on successive lines.

1.3 Variables, arrays and standard functions

The names of numeric variables in BBC BASIC may be long,
subject to certain restrictions which can be found in the
appropriate manuals. For instance Variable_X5 could be
substituted for X in statement 7010, and long names can on
occasion make an important contribution to program clarity. If
your BASIC will not support long names then you should
improvise short ones, keeping a detailed list in a REM statement
as a reminder and to guard against the risk of using the same
variable for two parallel purposes. The choice of variable name
depends upon some relatively close association in the mind of the
programmer, e.g. verbal as in the variable named Interest, or
algebraic as in the variable X.

String variables are not restricted to numeric quantities. They
are automatically initialized to the ‘null’ string in BBC BASIC and
they may be assigned text composed of alphanumeric quantities.
String variables are identified to the computer by the dollar

4 Introduction to BASIC

character $ postfixed to the string variable name, and the string
value must be enclosed in quotation marks in any assignment, as in

7020 month3$ = "March

The statement in line 20 below is a DIM statement which
reserves storage for a string array Month$, which could store not
only the months of the year in Month$(1) to Month$(12), say, but
also further information in the ‘first’ element, such as
Month$(0)=1986 — Industry Year”. Primitive BASICs may not
support a zero argument for an array, however, and readers may
have to improvise an ordinary string variable in substitution.
Statement 7030 below assigns ‘March’ to the element Month$(3)
as a consequence of the preceding statement 7020.

A variable array is a natural choice when representing
subscripted algebraic variables and matrices. For instance, the
coefficient in the Ith row and the Jth column of matrix A could be
stored in the element A(I,J) of a two-dimensional array A.
Statement 20 also has the effect of reserving memory for a
two-dimensional numeric array A. This can cater for the elements
of a matrix with 12 rows and 31 columns (or 13 and 32 if one
includes zero arguments). It could be used, for example, to record
the daily turnover in a DIY retail store which opens every day of
the month.

20 DIM A(12,31) , Month$(12)
7838 Month$(3) = month3s
The computer has a range of built-in standard functions which
share a superficial resemblance to arrays, but they have a different
purpose and do not involve DIM statements. Thus

SQR(X) finds X".5

LOG(X) finds the logarithm of X to base 10
LN(X) finds the natural logarithm of X
STR$(X)finds the string equivalent of X, i.e. “X”
etc

These are also instances of reserved words which cannot be used as
variable names, or even to start off longer variable names, due to
the ambiguity which would result. For instance, the variable
named LOGISTIC is invalid, though Logistic is valid.

1.4 Input and output

Data can be read using READ and DATA statements, or from a
data file. The programs in this book utilize neither method, but the
exercises call for the reader to develop the programs to work in

Input and output 5

either way (the appropriate manuals should be consulted). Data
can be entered via assignment statements or through the keyboard
during a RUN whenever an INPUT statement is executed. This
‘conversational’ form of data entry is one of the real strengths of
the BASIC language. The reader may care to type in and RUN the
following program, which is self explanatory (a 29% basic rate tax
is assumed).

1@ INPUT "Book price ",Price

20 Royalty = 0.975

30 post_tax = 0.71

40 PRINT "The Author's post tax yield = £"; Price*Royalty*Post_tax

59 END
Notice the texts in lines 10 and 40. They are printed out exactly as
they appear between their quotation marks, e.g. the space before
the end quotes in line 10 is reproduced. This is an example of
something included only to help legibility. The syntax of the
INPUT statement in line 10 causes the computer to print a
question mark when it encounters the comma! The semicolon in
line 40 causes the computer to print the numeric value of the
arithmetic expression immediately after the text (all the blank
spaces in this algebraic expression are ignored). The 31 textual
characters occupy columns 0 to 30, which explains why the
requisite nine columns for the numerical solution fit onto the end
of a standard 40 column screen display (i.e. columns 0 to 39 for the
BBC Micro in Mode 7).

If the semicolon is replaced by a comma there will be nine empty
character spaces on the text line, and the numerical solution is
printed on a new line. This is a consequence of the combination of
the following points: the standard number of 10 columns per print
field; the allocation to successive print fields of items separated by
commas in the PRINT list; and the automatic ‘right justification’
of numerical amounts within print fields. So the semicolon
suppresses the normal separation of print items, and if a PRINT
statement ends with a semicolon then this suppresses the normal
line feed when the next PRINT or INPUT statement is
encountered. Text is always ‘left justified’ and numerical output is
‘right justified’ within a print field.

INPUT and PRINT statements contain many traps. Distinguish
carefully between zero and the letters o and O, and between 1 and
the letters 1, i and I. Also be careful with your response to INPUT
statements; the number 2500, say, must not be entered as 2,500
which implies two separate data items of 2 and 500 respectively.
However, the positioning of printed output can be controlled quite
easily and precisely with the TAB function, where TAB(N)
moves the print cursor to column N. This is often used in the

6 Introduction to BASIC

programs which follow. It is also easy to control the scrolling
action of the screen so that the user does not miss the early part of
the printout—refer to your manuals for details. Some output is
best viewed in an 80 column format, which can be obtained in
BBC BASIC in Mode 3. BBC BASIC also allows easy control of
the width of the print field and the number of decimal places. For
instance, line 5 below rounds the quantities shown on the printout
to the nearest penny:

5 @% = 5020207

Please consult your manuals for the details of these facilities.

1.5 Loops, conditional statements and user defined functions

A ‘REPEAT UNTIL’ loop is used to repeat a given action as often
as necessary to satisfy a stated condition, whereas a ‘FOR NEXT’
loop is repeated a predetermined number of times. These loop
constructions are contrasted below in equivalent programs for
forming the partial sums of the roots of the integers from 1 to 10

‘FOR NEXT’ ‘REPEAT UNTIL’
5 @% = &02020A 5 @% = 402020
10 SUM = @ 16 I =0 : SUM= 8
20 FORI =1 T0 10 20 REPEAT
3@ SUM = SUM + SQR(I) 39 I =1+1
49 PRINT I, SUM 40 SUM = SUM + SQR(I)
50 NEXT I 58 PRINT I, SUM
6@ END 60 UNTIL I = 140
78 END

The ‘FOR NEXT’ version is preferable here as the programmer
has decided in advance that the loop will be performed 10 times.
Now suppose that we wanted the partial sums, not of the roots but
of complicated functions of the integers. This can be handled
easily and elegantly with user defined functions. The following
amendments and additions are required.

‘FOR NEXT’ ‘REPEAT UNTIL’

39 SUM = SUM + FNmole(I) 4@ SUM = SUM + FNmole(I)
89 80

98 FNmole (X) 98 FNmole(X)

108 = (X + 2*X"3) / 4 - 2 180 = (X + 2*X"3) / 4 - 2

The function called mole(X) is defined in statements 90 and 100,
as in statement 7010 given earlier. Lines 30 and 40 accumulate the
requisite partial sums. The program structure is crystal clear, and
the partial sums of any other function of the integers can be
obtained simply by changing the line 100. The reader can check

Structured BASIC 7

this by substituting the statement 100 = SQR(X) which will
reproduce the earlier results.

Now suppose that the partial sums are to be performed only
until a target sum of 20 is achieved or exceeded for the first time. It
is only necessary to change line 60, in the ‘REPEAT UNTIL’
version, to achieve an efficient result. The ‘FOR NEXT’ version
requires the use of ‘IF THEN’ in lines 25 and 40, and modifications
to lines 10 and 20. This is inefficient as the programmer has to
guess the value of the loop delimiter.

‘FOR NEXT’ ‘REPEAT UNTIL’

16 SUM = 0 : TESTS = "OK" 60 UNTIL SsuM >= 280
20 FOR I = 1 TO 400

25 IF SUM >= 20 THEN TESTS$ = “®

40 IF TEST$ = "OK" THEN PRINT I, SUM

If your BASIC does not support ‘REPEAT UNTIL’ you should
simulate such loops by the simple technique which is explained in
the appendix to this chapter. Some BASIC dialects do not provide
‘IF THEN’ statements as in line 25, or in the developed form ‘IF
THEN ELSE’. The appendix shows how the effect of these
statements can be improvised using the ‘IF THEN GOTO’
statement which is always available in BASIC.

1.6 Structured BASIC

The ‘IF THEN’ statement is used a great deal in this book, but
never in the form ‘IF THEN GOTOQ’. In fact the GOTO statement
may be conditional or unconditional and it directs the execution of
the program to a specified line number. Either form can wreck the
presentation of a clear and logical program structure. The
resulting mess, colloquially termed ‘spaghetti programming’, is
very difficult for the programmer, let alone a third party, to read
or debug. GOTO statements have been banned from this book,
and the reader should seriously consider a similar resolution!

It is simpler to think of a complicated programming task in
terms of its constituent parts. Arrange the detail of each part
separately, and control the execution and sequencing of the parts
with a ‘main’ program. The principle is exactly similar to that of
managerial delegation of tasks to subordinates. The manager
allocates and coordinates the work of subordinates, who in an
ideal world would be able to work on their own tasks without
interference from, but with cognizance of, the work of others.
When the allocation of work is ill-considered the outcome is
inefficiency and confusion; ‘spaghetti management’ in fact!

In structured BASIC a main program organizes a number of

8 Introduction to BASIC

separate tasks called PROCEDURES. For example, almost every
program in this book has an input PROCEDURE, often called
PROCinput, and an output PROCEDURE, called PROCprint.
Notice the abbreviated description and the different use of upper
and lower cases. PROCEDURES begin with a DEF PROC
statement, as in DEF PROCinput. These may be very short, and
average a dozen or so statements in this book. All PROCE-
DURES end with an ENDPROC statement which instructs the
computer to execute the statement after the original call of the
PROCEDURE. A blank statement line is used at the start and
end of each PROCEDURE to emphasize the structure of the
program.

The reader who is new to structured programming will soon find
the approach natural and convenient. Readers without BBC
BASIC can substitute SUBROUTINES for PROCEDURES
throughout the programs of this book. No extra lines are required.
A descriptive REM can substitute for a DEF PROC, a RETURN
for an ENDPROC, and a GOSUB for a PROCEDURE call. This
is summarized below, for PROCabc.

BBC BASIC Others

PROCabc GOSUB L
L DEF PROCabc L REM abc

ENDPROC RETURN

1.7 The approach of this book to BASIC programs

This is a short book, and yet even so those sections and exercises
marked with an asterisk may be omitted on a first reading. Most
readers should be able to key the programs into their computers
direct from the text. Write or telephone me at Loughborough
University, Ashby Road, Loughborough, Leics. about the
availability of disk software.

My primary aim is that the reader learns how to use BASIC for
the computations of OR models. To this end the programs are as
short and clear as I can make them. Thus they cannot be
‘user-proof’ e.g. the programs will crash if users enter unaccept-
able data. It is very easy for anyone to make an error when keying
in data, and the preliminary exercise in each chapter asks the user
to write an edit PROCEDURE , PROCedit say, which is called

Appendix 9

immediately after PROCinput to allow the user to make any
corrections to the data.

Professional computer software is generally ‘packaged’ in a
sophisticated way. But limited space and my educational
objectives disallow such refinements as menu driven options, file
handling, elaborate colour graphics, use of sound, error trapping,
etc. If the book succeeds in its primary aim then the readers should
not have too much difficulty with doing such development
themselves!

1.8 References

1. Alcock, D., Hlustrating BASIC, Cambridge University Press (1977).
2. Freeman, R., Step by Step BASIC, Lifelong Learning Ltd, Cambridge (1983).
3. Freeman, R., Structured BASIC, BBC Publications, London (1984).

1.9 Appendix

This appendix shows how to simulate ‘REPEAT UNTIL’ loops
and ‘IF THEN’ structures using primitive BASIC dialects (after
Freeman, ref. 3).

BBCBASIC Some other BASICs
45 REPEAT 45 FOR I =0 70 1

115 UNTIL N = @
113 IF N <> @ THEN I = @
115 NEXT 1
The converse of the condition following the UNTIL can always

be used in the line preceding NEXT I in order to return the loop
counter I to its initial value. If the ‘other BASIC’ does not support
‘IF THEN’ in the form of line 113 then this must be amended and
an extra statement is required on line 114 as follows:

113 IF N=@ THEN GOTO 115
114 1 = ¢

You can simulate ‘IF THEN ELSE’ with similar techniques.

Chapter 2

Introduction to business operations
research

2.1 Introduction

Formal definitions are often cumbersome, pedantic and verbose.
For example, the Operations Research Society of America states
that

Operations Research is concerned with scientifically deciding how to
best design and operate man—machine systems, usually requiring the
allocation of scarce resources.

This is not much improved by the longer definition given by the
Operational Research Society of Great Britain:

Operational Research is the application of the methods of science to
complex problems arising in the direction and management of large
systems of men, machines, materials and money in industry, business,
government and defence. The distinctive approach is to develop a
scientific model of the system, incorporating measurements of factors
such as chance and risk, with which to predict and compare the
outcomes of alternative decisions, strategies and controls. The purpose
is to help management determine its policy and actions scientifically.

The terms ‘Business Operations Research’ (Operational Re-
search) and ‘Management Science’ have come to mean essentially
the same thing: the systematic study of management issues
emphasizing quantitative analysis of interrelating factors. Quan-
titative studies typically suggest directions for the improved
allocation of resources. Any facet of business may be involved,
and it is not unusual for a project team to act as ‘honest brokers’
when thinking through the benefits to the organization as a whole
of changes in the functions and status of separate departments or
divisions.

The basis of operations research (OR) is the belief that, in the
long run, the use of formal quantitative analyses will lead to
decisions which are significantly better than those based solely on
experience and intuition. How far this is so in a given situation will
depend upon very many factors. If the outcomes are fairly obvious

10

Introduction 11

then there may be no need to use formal analysis to decide on the
best decision. OR is least likely to be appropriate in a fast-moving,
creative environment where immediate decisions are required to
constantly changing problems. But OR may be essential when a
key decision is to be made in a measured and deliberate way,
especially if considerable capital sums are involved or the decision
seems likely to affect the work of a substantial part of an
organization. On the other hand, the fruits of an OR study can
also lead to efficient ways of dealing with repetitive decisions
which might have consumed a disproportionate share of a
manager’s time.

An OR study is commonly initiated by a manager who calls
upon the services of an OR group. OR personnel may be included
within a management services department or contracted for the
duration of the project from an external management consultancy.
It is normal practice to form a project team including members of
the company with a wide range of skills and experience. These
may be mathematicians, computer and data processing profession-
als, financial and line managers, etc.

Quite apart from the competence of the members of the project
team in their own fields, there are the dominant influences of the
political environment, and the culture of the organization. The
technical analysis could be first rate, but it would be naive to look
forward to the successful implementation of well-founded
recommendations if a study does not come at a propitious time, or
it is not actively supported by senior management.

The organizational culture will have an important effect upon
the ‘observation’ of the system under study, which is the very first
stage of any scientific investigation. If each department of a
company, say, is permitted or encouraged by the Board to take an
insular attitude, then it will not be realistic to expect the easy
identification of opportunities covering more than a single
department.

The ideal context for OR to show its full value is when a
numerate and skilful manager has identified an endemic problem
as suitable for quantitative analysis, and has then won support for
a systemic appraisal from colleagues as well as senior manage-
ment. Confidence is then engendered at the start of the OR work
that if a sound set of recommendations is presented then they will
be implemented.

The project team has to decide on the scope of the study. Scope
must be wide enough to allow the organization to make a
substantial step forward and to satisfy the commissioning
manager, but not so wide as to prejudice the successful

12 Introduction to business operations research

implementation of the recommendations. For instance, it might be
unwise to extend the boundaries of the study beyond the sphere of
control, or influence, of the ‘sponsoring’ decision maker. The
conclusion of this stage will be an agreement on the detailed terms
of reference. Considerable diplomacy may be required if the
preliminary study by the project team provides a view of the
problem too far removed from the initial view of the sponsor.

2.2 Mathematical modelling

A mathematical model is used to formalize the ‘causal mechan-
isms’ which link outcomes to the factors under the control of the
sponsor. What, for example, are the consequences for the sales of
established products in the years to come if the current pattern of
dispersed distribution warehouses is replaced by a few strategically
located distribution centres? Changes in the physical distribution
resources employed by the company can be costed by a suitable
quantitative analysis, and a change is likely to have an influence on
the pricing strategy. Suppose that the sales force adopts a system
of taking customers’ orders against delivery on a ‘nominated day’,
which depends upon the location of the customer within a large
delivery region. What effect will this have on customers who have
been used to placing orders for delivery at their own convenience?
Would a computer system for scheduling delivery vehicles save
money and improve service levels? What are the sales implications
of a schedule of price discounts, based on quantity delivered, and
in particular the imposition for the first time of a minimum order
quantity? Should the opportunity be taken to reorganize the sales
force to acknowledge the range of differing customers? How
‘elastic’ are sales levels to the perception by customers of ‘service’,
and indeed, what are the determinants of ‘service’?

Causal mechanisms must be researched to the point where
quantified relationships can be used to describe the interplay of
‘decision variables’ such as the shape of the new distribution
network, the largely uncontrollable variables such as maximum
vehicle speeds and general environmental factors such as the likely
response of competitors.

A mathematical model entails a coherent set of (usually
algebraic) relationships suitable for the purpose on hand. It is an
abstraction of reality which puts the complexities of the real
situation into a logical and structured form which is amenable to
analysis. A good model is as simple as possible, partly for reasons
of economy in construction, and partly because simple models are
usually easier to solve.

Mathematical modelling 13

If a solution of the model at first defies the analytical prowess of
those involved then a number of technical simplifications can be
introduced. Variables can be aggregated into broader classes, so
that differentiation is between classes of product rather than
individual product lines. Non-linear numerical relationships may
be replaced by piecewise linear relationships, in which prop-
ortionality at a given rate is assumed over a restricted range of
activity. One could decompose a complex model of a large system
into a number of separate models of particular aspects. For
instance, the delivery cost relationships for a decision about the
number and location of distribution centres may be much less
detailed than is required in a model to relate delivery costs to the
imposition of minimum delivery quantities. Again, a model which
looked at the next ten years’ business can be separated into models
for the immediate prospect and the long-term outlook. The
construction of models calls for experience just as much as
technical proficiency. Successful modelling is the art of the
possible.

It may be natural to doubt whether a given model represents the
real situation in an adequate way. Shortcomings cannot always be
removed by elaboration. There may be problems with collecting
basic data in the form and volume required. Indeed, some data
may be unavailable or too costly to obtain. There will also be
computational restrictions. The more comprehensive the model
the more difficult it may be to obtain a forecast of outcomes to
changes in decision variables. Furthermore, elaboration of a
model can be very costly and take valuable time.

The validation of the model is very important, and yet it may be
difficult. Fresh data will be required to test the performance of
parts of the model, but, if the model is being used to project the
consequences of future decisions, then there may be no wholly
satisfactory way of validating the performance of the model as a
whole in the absence of information which can be obtained only
after a proposed change has been implemented. If the model is to
be used purely to describe the status quo then validation should be
much less problematic.

Once a model has been validated to the satisfaction of the
project team it may be employed for its designed purpose. It is
important to realize that the computational results must be
interpreted in the context of the problem, and it is rarely if ever
the case that the recommendations of the project team conform
exactly to the ‘optimum’ solution from the model. There may be a
multitude of qualitative factors which will be used to assess the
outputs. But this is no criticism, rather an understanding of the
need to balance quantitative and qualitative approaches.

14 Introduction to business operations research

The project team will experiment with the model to learn about
the significance of variations in some of the key decision variables.
How sensitive is the proposed solution to minor errors or changes
in the data? Does an examination of the results suggest that
further conceptual developments should be fed back into the
initial assessment? Have there been important changes in the
team’s outlook as a result of learning more about the problem on
the basis of the experimental results? The team will also want to
explore the robustness of any supposedly ‘optimum’ solution from
the model to changing circumstances. Does the minimum cost
solution, for example, suggest a highly unconventional form of
distribution network which would be quite incapable of handling
different classes of product or unsuitable for alternative marketing
arrangements? Is there a fundamental difference between the
shape of the distribution network which would reduce the
operating costs over ten years to a minimum, as opposed to the
distribution network which would maximize the rate of return on
investment? What if the planned changes from current practice
came to a halt before complete implementation of the plan?

The potential benefits of modelling can be so important that in
some of the larger companies the management trainees are
encouraged to work for OR teams in order to absorb the process
of OR and the company culture, before taking up management
positions.

2.3 Microcomputers and business operations research

Microcomputers have had a major ‘enabling’ influence on the
pursuit of OR. In the first place OR professionals can have the
smaller scale computational work under their own direct control,
and are no longer dependent upon large machines operated either
by data processing departments or expensive computer bureaux.
There is some evidence that the use of micros has reduced the time
required for model development and validation.

Micros are also cheap enough and simple enough for them to be
used by the sponsors on a routine basis when the model is
completed. For example, the personnel department might have a
need for a manpower planning model which projects staffing levels
into the future, given reasonable assumptions about the levels of
resignations and promotions. Such a model could be run as a
routine on a micro located in the personnel department in order to
assist with recruitment decisions.

The advanced graphics facilities of micros can be utilized to
improve the standard of communication between the project team
and the sponsors of the project. This is not only true of the use of

The approach of this book to business operations research 15

charts, graphs and figures for descriptive statistics. It is particularly
true of the use of animated graphics employed in simulation
studies. These techiques help the less numerate and more
apprehensive individuals come to appreciate the modelling effort
and contribute to the experimental phase of ‘what if’ modelling.

There are many user-friendly software packages for micros,
such as ‘spreadsheets’, which enable some forms of numerical
analysis to be conducted relatively effortlessly. This has been
warmly welcomed by OR groups. It is also noted that accountants,
for example, are using spreadsheets for financial modelling
problems such as cash flow forecasts, and engineers are conducting
their own capital investment appraisals. However, the use of
software packages is outside the scope of this volume.

Networked micros also offer considerably enlarged potential for
OR work. For example, a micro can be used to log data at remote
locations for transmission to another micro at a later date. Micros
can also be used to interrogate and update the data held on a
central database. The term ‘Management Information System’
(MIS) is in vogue for describing a computer system in which an
‘intelligent terminal’ provides a manager with the information
which he or she requires in order to plan ahead. To do this, raw
data must be processed in some way and presented in a suitable
form, providing further scope for mathematical modelling. The
next chapter, for example, describes the manipulation of sales data
to provide a set of indices of sales volumes and prices.

2.4 The approach of this book to business operations research

This book is designed to fill the gap between texts on ‘the
management application of computers’ and texts on ‘operational
research techniques’. It cannot hope to present balanced accounts
either of the art of mathematical modelling or of OR techniques in
the space available. Instead I have made a selection from the core
curriculum of standardized models and have unavoidably neg-
lected the creative side of modelling.

The content is graded so that the numerate reader who is new to
OR should be able to follow all of the material on index numbers
in Chapter 3, and most of the material on data fitting in Chapter 4.
Chapter 5 should be accessible to most readers and demonstrates
the potential of combining the graphics facilities of modern micros
with mathematical modelling in the context of project manage-
ment networks. Chapter 6 and 7 would be harder going for the
reader who is new to linear programming and Markov chains.

There are a growing number of micro software packages for

16 Introduction to business operations research

standardized modelling in the fields of investment appraisal,
critical path networks, and linear programming; etc. These are
mainly marketed for the professional OR analyst to use in a
commercial setting, but they may be poorly documented and
difficult to tailor for specific purposes. The programs of this book
have an educational purpose, but they may be useful in small scale
OR work.

Four references to excellent books are given below for the
interested reader.

2.5 References

1. Anderson, D. R., Sweeney, D. J. and Williams, T. A., An Introduction to
Management Science (4th ed.), West Publishing Co. (1985).

2. Daellenbach, H. G. and George, J. A., Introduction to Operations Research
Techniques, Allyn and Bacon (1978)

3. White, D. J., Operational Research, Wiley (1985)

4. Williams, H. P., Model Building in Mathematical Programming (2nd ed.), Wiley
(1985)

Chapter 3
Index numbers

Essential theory

Index numbers are widely used by government agencies, trade
organizations, public bodies and companies of all sizes. The
elementary material on index numbers is developed here in the
context of sales turnover, and then employees’ reports. The
elementary material on composite indices is developed in the
context of company sales figures. The reader should bear in mind
the applicability of the ideas across the spectra of activities which
are amenable to quantitative measurement, in commerce, industry
and the public sector.

3.1 Indices based on simple relatives*

The significance of a percentage change in sales turnover may be
readily assimilated. A reported sales increase of 12 per cent has
immediate impact. The value of a ‘year end’ sales index of 112
based on an index of 100 at the start of the year conveys the same
information just as readily.

Suppose that management is interested in monitoring sales
turnover in the face of the launch of a product by competitors. It
would be sensible to ‘base’ a sales index of 100 upon the sales in
the period immediately preceding the launch. This choice would
clearly show up any sales trends that might develop. The first row
of Table 3.1 provides a series of actual monthly sales figures,
where month 0 is the base month. It is seen that within three or

Table 3.1 Sales turnover

Month i 0 1 2 3 4 5 6 7 8
Sales (£000’s) S; 300 305 306 282 258 190 310 329 350
Sales index I, (1) 100 102 102 94 8 63 103 110 117
% increase (2) 2 0 -8 -9 -26 63 6 6
Chain index r @ 1.02 1.00 0.92 091 0.74 1.63 1.06 1.06

Notes: (1) From I = §48p x 100.
(2) Month on month percentage increases in sales S to the nearest integer.
(3)From I'i—1; = §¢/Si-1.

*Relatives are ratios in this context.

17

18 Index numbers

four months the rival product starts to make serious inroads into
sales turnover, which is then restored and eventually enhanced
(possibly by a vigorous promotional campaign).
The sales index I; for month {, as shown in the third line of the
table, is calculated from
Sales turnover in month i

- Sales turnover in base month X 100 = 5/So x 100

i

where S, denotes the sales turnover in month i.

The ratio Si/S, is an example of a simple (i.e. unweighted)
‘relative’. The numerical value of the sales index I, shows how
sales turnover in month { compares to ‘base turnover’ in the base
month (i.e. month (). This sales index is given in line three of the
table rounded to the nearest integer. There was a substantial drop
in sales in months 4 and 5 prior to a strong recovery from month 6
onwards.

The table also shows the month-on-month percentage changes
in sales levels: these figures can be important, as when the
remuneration of the sales force is tied to the monthly changes in
sales turnover! The same information can be expressed in index
form: the so-called chain index I' is given by

r _ Sales turnover in month i _ S/S
=157 Sales turnover in month i—1 fot

Notice that the chain index I’ is the ratio of sales in successive
months. It is not difficult to see that the product of chain indices is
closely related to the sales index I. Thus

1,0,1 x 1'1’2 x 1,2’3 x . e x 1,’._.1”
= S]/SO X S2/S] X S3/S2 X ... X S,‘/S,'_] = S,'/S() = 1,/100

This identity should be employed with caution. For example

oy X'y X 'y3xXT'3,=1.02x1.00x0.92 x 0.91=0.85

There is a disparity in the second decimal place between this and
the value of 1,/100 = 0.86 shown in the table. Chain indices are not
in common use in industry partly because of this sort of problem;
on the other hand, many government indices are based around
similar, but further elaborated, ideas.

Program SIMPREL, below, calculates an index based on a
simple relative and it also calculates a period-on-period chain
index. The simple main program sequences the following
PROCEDURES:

PROCinput:

Indices based on simple relatives 19

allows the user to input the base period
B, and the final period N together with
the data DAT(I) for periods I = B, ...,
N

PROCsimple__relative: calculates the index INDEX(I) for the

PROCchain:

simple relative DAT(I)/DAT(B) * 100
and tabulates these values for I = B, ...,
N to the nearest integer.

calculates the chain index CHINDEX(I)
from DAT(I)/DAT(I-1) for each I =
B+1, . . . ,N and tabulates these values
rounded to the second decimal place.

Type in this program from the listing below.

Program 3.1 SIMPREL: Index of simple relatives

10 REM SIMPREL

2@ REM INDEX OF SIMPLE RELATIVES
38 REM ALSO PROVIDES CHAIN INDICES
48 DIM DAT (188), INDEX(188),CHINDEX (108)

68 PROCinput
78 PROCsimple_relative
88 PROCchain

9@ END

1888 DEF PROCinput

1019 PRINT "ENTER ALL DATA NUMERICALLY"

1828 INPUT "BASE PERIOD

"B

1838 INPUT "FINAL PERIOD ",N

1048 PRINT : PRINT
1858 FOR I= B TO N
1068 PRINT TAB(@);I:

1878 NEXT I
1088 ENDPROC

"PERIOD DATA"

: INPUT TAB(10) DAT(I)

2088 DEF PROCsimple_relative

2818 PRINT : PRINT
2828 PRINT "PERIOD

INDEX OF"

2830 PRINT TAB(18) "SIMPLE RELATIVES"

2848 FOR I=B TO N

2850 INDEX(I)=DAT (I)/DAT (B)*100
2@68 INDEX(I)=INT(INDEX(I)+.5)
2879 PRINT TAB(@);I, INDEX(I)

2880 NEXT I
2898 ENDPROC

3080 DEF PROCchain
3818 PRINT : PRINT
3828 PRINT "PERIOD
3838 FOR I=B+l TO N

CHAIN INDEX"

3848 CHINDEX(I)=DAT (I)/DAT(I-1)
30850 CHINDEX(I)=INT(CHINDEX (I)*108+.5)
3868 PRINT TAB(@);I, CHINDEX(I)/180

3078 NEXT I
3088 ENDPROC

20 Index numbers

RUN this program with the data from the first two lines of Table
3.1. You should find that your output corresponds to the third and
final row of Table 3.1. ReRUN with data of your own choice, but
notice that because the arrays have been dimensioned to 100 in
line 40 you should enter 1985, for example, as 85.

RUN
ENTER ALL DATA NUMERICALLY

BASE PERIOD 20
FINAL PERIOD ?8

PERIOD DATA

[’} 300

1 305

2 306

3 282

4 258

5 199

3 310

7 329

8 350

PERIOD INDEX OF
SIMPLE RELATIVES

[’} 100

1 102

2 102

3 94

4 86

5 63

3 103

7 110

8 117

PERIOD CHAIN INDEX

1 1.02

2 1

3 8.92

4 0.91

5 0.74

6 1.63

7 1.06

8 1.06

Now do Problems 3.1 to 3.3 at the end of this chapter.

3.2 Deflators

Suppose that annual sales data is available for a span of several
years, as in Table 3.2. One could use program SIMPREL to find
the sales indices in monetary terms. However, the expression of
sales turnover in real terms, which allowed for inflationary effects,
might have much greater importance.

National statistics include many ‘deflator’ series for use in a
variety of circumstances, from the most .general to the highly
specific. The reader is almost certainly familiar with the
announcements of movements in the General Index of Retail
Prices (RPI) in the media: at the time of writing, the RPI is
projected to reach an average value of 282 for 1986 from a base of

Deflators 21

100 in 1975. This is an instance of a composite index which is
designed to summarize changes in the overall price of a ‘package’
of retail goods as experienced by an ‘average’ consumer. It has
achieved a measure of general (often unquestioning) acceptance
on both sides of industry for a variety of purposes, including wage
bargaining.

If the sales data of Table 3.2 relate to part-time earnings, say of
a tradesman in his spare time, then the RPI could well be
appropriate for adjusting these earnings to real rather than
monetary values. The RPI is shown in line 4 of Table 3.2.

Another very important national statistic is that known as the
‘Implied Deflator of the Gross Domestic Product at Market Prices’
(GDP); this roughly doubled over the five years from 1975 to
1980. This index is imputed from the ratio of GDP at current
values/GDP in real values. The reader is referred elsewhere (see
The National Accounts — a short guide, by H. Copeman, 1981,
HMSO) for a technical definition and an authoritative statement
of the interpretation and use of this series. But in so far as a
company contributes in a general way to the gross domestic
product then the GDP series does provide a reasonable basis for
adjustment of sales turnover to real rather than monetary values.
This index is shown in line 3 of Table 3.2.

Table 3.2 Sales turnover and deflator series

Year i 1975 1976 1977 1978 1979 1980 1981 1982 1983
Sales S; 498 563 658 781 933 1203 1381 1572 1790
GDP deflator'V 502 576 65.6 729 835 100 111.7 119.6 125.7
RPI deflator'? 100 116.5 135.0 146.2 165.8 195.6 218.9 237.7 248.6
Sales index'® 100 113 132 157 187 242 277 316 359

Real sales index™” 100 99 101 108 113 121 125 132 144
Realsalesindex'™ 100 97 98 107 113 124 127 133 145

Notes: (1) From Table 1.16. UK National Accounts 1984. HMSO.
(2) From Table 114. Economic Trends Annual Supplement 1984. HMSO.
(3) Based on a simple relative $7Sp x 100.
(4) Based on (3) deflated by the GDP deflator (1).
(5) Based on (3) deflated by the RPI deflator (2).
If we denote by D; a deflator index in year i then the sales
turnover §; in that year can be deflated to real terms RS; in year 0

values as follows
RS; = 8; X Dy/D;

Consequently the index of real sales turnover RI; is given by
RI; = RS/RSy x 100 = I; DyD;

It is not difficult to modify program SIMPREL in order to
produce indices in real rather than monetary terms, as follows.

22 Index numbers

Amend the following lines (but note that statement 50 is a specific
BBC print control statement, which in this instance rounds all
printed values to the nearest integer. Users of other micros should
use the technique in lines 2060 and 3050 of Program SIMPREL):

10 REM DEFLATR

20 REM INDEX OF SIMPLE RELATIVES
30 REM WITH AND WITHOUT DEFLATOR
40 DIM DAT(100), INDEX(100),D(100)
50 €3=40002000A

88 PROCdeflate

DELETE 2060
DELETE 3000 to 3080

Now type in PROCdeflate which allows the user to input a deflator
series, and then prints the deflated index of simple relatives.

Program 3.2 DEFLATR: Indices with and without deflator series

190 REM DEFLATR

20 REM INDEX OF SIMPLE RELATIVES
30 REM WITH AND WITHOUT DEFLATOR
40 DIM DAT(100), INDEX(108),D(108)
50 @y=50002000A

68 PROCinput

79 PROCsimple_relative

80 PROCdeflate

9@ END

1900 DEF PROCinput

191@ PRINT "ENTER ALL DATA NUMERICALLY"
1920 INPUT "BASE PERIOD ",B

1830 INPUT "FINAL PERIOD ", N

1040 PRINT : PRINT "PERIOD DATA"

1856 FOR I= B TO N

1060 PRINT TAB(@);I; : INPUT TAB(1l@) DAT(I)
1678 NEXT I

1888 ENDPROC

2000 DEF PROCsimple_relative

2018 PRINT : PRINT

2020 PRINT "“PERIOD INDEX OF"

2030 PRINT TAB(19) "SIMPLE RELATIVES”
2040 FOR I=B TO N

2050 INDEX(I)=DAT (I)/DAT(B)*100

2079 PRINT TAB(P);I, INDEX(I)

2080 NEXT I

2099 ENDPROC

4600 DEF PROCdeflate

4018 PRINT : PRINT : PRINT "NOW ENTER THE DEFLATOR SERIES "
40206 PRINT "PERIOD DEFLATOR"

4030 FOR I= B TO N

4040 PRINT TAB(@);I; : INPUT TAB(l@) D(I)

4050 IF I>B THEN D(I)=D(I)/D(B)

4060 NEXT I : D(B)=1

4070 PRINT : PRINT : PRINT "SERIES IN REAL TERMS"
4888 PRINT "PERIOD BASE ";B;TAB(20) "BASE ";N
4069y PRINT TAB(19d) "=168";TAB(20) "=198"

4160 PRINT

4110 FOR I=B TO N

4120 INDEXb=INDEX(I)/D(I)

4130 INDEXn=INDEXb/INDEX(N)*D (N) *16@

4140 PRINT TAB(0);I;TAB(18) INDEXb;TAB(20) INDEXn
4158 NEXT I

4168 ENDPROC

RUN
ENTER ALL

DATA NUMERICALLY

BASE PERIOD ?75
FINAL PERIOD 283

PERIOD
75.
76.
77.
78.
79.
88.
81,
82,
83.

PERIOD

75.
76.
77.
78.
79.
8e.
8l.
82,
83.

NOW ENTER
PERIOD
75.
76.
77.
78.
79.
80.
8l.
82,
83.

SERIES IN
PERIOD

75.
76.
77.
78.
79.
8@.
81.
82,
83.

DATA
498
563
658
781
933
12083
1381
1572
1790

INDEX OF

SIMPLE RELATIVES
100.
113.
132,
157,
187.
242,
277.
316.
359.

THE DEFLATOR SERIES
DEFLATOR

50.2

57.6

65.6

72.9

83.5

100

111.7

119.6

125.7

REAL TERMS
BASE 75. BASE 83.
=100 =109
199. 78.
99. 69.
191, 70.
198, 75.
113, 78.
121, 84,
125, 87.
132, 92,
144, 100,

RUN
ENTER ALL

Deflators

DATA NUMERICALLY

BASE PERIOD 2?75
FINAL PERIOD 283

PERIOD
75.
76.
77.
78.
79.
89,
81,
82,
83.

PERIOD

75.
76.
77.
78.
79.
8e.
81,
82,
83.

NOW ENTER
PERIOD
75.
76.
77.
78.
79.
80.
8l1.
82,
83.

SERIES IN
PERIOD

75.
76.
77.
78.
79.
89.
8l.
82.
83.

DATA

498

563

658

781

933

12083

1381

1572

1790

INDEX OF

SIMPLE RELATIVES
113,
132,
157.
187.
242,
277.
316.
359.

THE DEFLATOR SERIES
DEFLATOR

199

116.5

135.9

146.2

165.8

195.6

218.9

237.7

248.6

REAL TERMS
BASE 75. BASE 83.
=100 =190
199, 69.
97. 67.
98. 68,
107. 74.
113. 78.
124, 85.
127, 88.
133. 92,
145, 109.

23

Now check your listing against that for Program DEFLLATR
above. When satisfied with the accuracy of your listing you should
RUN with the data of Table 3.2 above. Note that the years should
be entered as double digits, so enter 1975 as 75. The output of a
RUN with the GDP deflator should resemble the series in the
penultimate row of Table 3.2, and the output of a second RUN
using the RPI deflator in the final row.

24 Index numbers

There is a marked similarity between the indices deflated both
by the RPI and the GDP deflators. The overall conclusion must be
that the apparent 250 per cent increase in monetary sales turnover
shrinks to much less than a 50 per cent increase in real terms. It
seems highly questionable whether the majority of UK firms even
today routinely interpret their sales figures in this way, despite the
crucial need to have done so during the period under investigation
here.

3.3 Employees’ reports

It is now standard practice for many of the larger companies to
circulate annual ‘Employees’ Reports’. This is done partly to
foster an interest in the trajectory of the business, and partly to
engender positive attitudes to profitable operation. Figures are
usually quoted, on a per capita basis, under the heads shown in
Figure 3.1 (although the use of the possibly emotive head
‘operating profit’ is often avoided).

Sales turnover

Cost of bought-in

items and services Value added
(Operating protit) Wages and
salaries
Taxation Retained earnings Interest on Dividends
for investment loans

Figure 3.1 Accounting structure of a conventional employees’ report

The style of reporting is chosen to emphasize the importance of
value added concepts, so that wage bargaining is less likely to be
based on crude operating profitability. The figures are usually
expressed in real terms if comparisons are made with previous
years.

Suppose then that we have the same sales turnover figures from
Table 3.2, but that in addition the data on the number of
employees N; is available (in some appropriate units). One could
‘deflate’ the monetary sales turnover figures S; by the number of
employees N; before deflating once more by the GDP deflator.
But it seems easier here to modify program DEFLATR to form
the ratio S/N; on data input. Make the following alterations:

1060 PRINT TAB(@); I; : INPUT TAB(l8) s, n
1865 DAT(I} = s/n

Employees’ reports

25

Now RUN this amended program for the data in rows two to four
of Table 3.3 as shown below. Notice that you must enter the sales
turnover value, a comma, and the number of employees for the
data input in each period. This RUN is given after Table 3.3.

Table 3.3 Sales turnover per employee

Year 1975 1976 1977 1978 1979 1980
Sales turnover 498 563 658 781 933 1203
Employees 25 28 34 35 35 35
GDP deflator(1) 50.2 576 656 729 83.5 100
Sales per 100 101 97 112 134 173
employee(2)

Real sales per 100 88 74 77 80 87

employee(3)

1981 1982 1983

1381 1572 1790
35 34 34
111.7 119.6 125.7
198 232 264
89 97 106

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO.

(2) Index of sales turnover per employee.

(3) Index of real sales turnover per employee deflated by (1).

RUN
ENTER ALL

DATA NUMERICALLY

BASE PERIOD 2?75
FINAL PERIOD ?83

PERIOD
75.
76.
7.
78.
79.
80.
8l1.
82,
83.

PERIOD

PERIOD

DATA

498,25
563,28
658,34
781,35
933,35
1203,35
1381,35
1572,34
1790, 34

INDEX OF
SIMPLE RELATIVES
100.

101.

97.
112,
134.
173.
198.
232.
264.

THE DEFLATOR SERIES
DEFLATOR
50.2
57.6
65.6
72,9
83.5
100,
111.7
119.6
125.7

26 Index numbers

SERIES IN REAL TERMS
PERIOD BASE 75. BASE 83.

=109 =100
75 140 95
76 88, 83
77 74. 70
78 77. 73
79 80, 76
80 87. 82
8l. 89, 84
82, 97. 92.
83. 106. 100.

Quite obviously the company has suffered very badly from
over-recruiting; the number of employees increased in rough
proportion to the monetary sales turnover from 1975 to 1977. Sales
per employee in real terms had slumped by 1977 to around
three-quarters of the 1975 value, therafter creeping upward and
only passing the 1975 value for the first time by 1983. This example
illustrates the importance of manpower planning based on
quantitative data.

Value added is the difference between sales turnover §; and the
cost C; of bought-in materials and services: it is sometimes used as
a proxy for productivity in the service sector. High levels of value
added per capita in real terms is directly in the interests of both the
company shareholders and employees, providing both the
operating profit and the wages and salaries bill as shown in Figure
3.1. Since the wages and salaries W; cannot be significantly altered
in the short term, without the appalling social costs of
unemployment, the containment and reduction of costs C; attracts
top priority. A RUN of modified DEFLATR with the C;, N; and
GDP deflator data from Table 3.4 would give an index of real
costs. Likewise, a RUN of modified DEFLATR with W;, N; and
the GDP deflator from Table 3.4 would give an index of real wages
per employee, as shown.

Table 3.4 Added value, wages and salaries, and operating profit

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Sales turnover S; 498 563 658 781 933 1203 1381 1572 1790
Costs C; 415 456 493 588 718 942 1040 1217 1404
Wages and salaries W; 73 101 160 189 213 259 287 282 292
Employees N; 25 28 34 35 35 35 35 34 34
GDP deflator(1) 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7
Real indices per employee deflated by the GDP deflator:

Costs 100 86 67 70 74 81 80 n 99
Value added 100 100 112 114 111 113 132 132 137
Wages 100 108 123 127 125 127 126 119 117
Operating profit 100 47 28 20 9 7 173 225 276

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO.

Composite indices 27

The company was most successful in reducing the real costs of
bought-in materials and services just when this was most needed.
The effect on the real value added per employee can be seen by
modifying DEFLATR as follows

1869 BRINT TAB(D);1; ; INPUT TAB(10) s, ¢, »

865 DAT(I) = (s c)/n

A RUN of this program gives the required output, as shown in
Table 3.4, provided that the data is input as sales, costs, employees
(i.e. S;, C;, N; separated by commas for each period). The reader
may care to take this on trust to avoid the tedium of data entry.
Similar comments apply to the modification below, designed to
produce the index of real operating profit per employee on input
of sales, costs, wages and employee numbers (i.e. S;, C;, W;, N)):

1668 PRINT TAB(@); I;: INPUT TAB(18) s, €, W, n

1865 DAT(I) = (s - c}/n - w/n
The company remained profitable, if only just, because real value
added increased steadily and the index of real wages followed a
typical pattern for the period. Real recovery in operating profits
was finally obtained, but it should not be assumed that this was
distributed in toto to the shareholders! Figure 3.1 shows that
operating profit must also provide for taxation, interest on loans,
and for reinvestment. It would seem likely that dividends
continued to fall in real terms and that the company has survived
to mount a long overdue programme of investment — but that is
another story.

3.4 Composite indices

Annual sales turnover is an aggregate of figures for sales volume
across the range of a company’s marketable output. It is often
important for top management not only to assimilate summary
statistics of total sales values but also to appreciate whether any
changes are due to pricing or volume variations. Several composite
‘price’ and ‘quantity’ indices are in use for this purpose. This
section describes the construction of two common types of
composite indices which are based on the following idea:

Price index = Zp;gre/Zpogres X 100
Quantity index = 2gpref/ZGoPrer X 100

where p; is the price in period i of a ‘product’
g; is the quantity sold in period i of a ‘product’
the summation is over all the products involved
the index o indicates the base period
the index .. indicates the reference period.

28 Index numbers

Note that the roles of the price and quantity variables
interchange as between the price and quantity indices. Conse-
quently it will suffice to describe only one of them in detail. It must
be assumed that price and quantity data exist for each separately
identifiable ‘product’ (or class of products) which together make
up the marketable output to which a chosen index relates.

Take the composite price index for the purpose of further
discussion. Such indices attempt to measure price changes by
holding the quantity data numerically equal to that experienced in
a reference period. The numerator is the numerical value of the
sales of all products in period i if reference period quantities were
to be sold at period i prices. The demoninator is the numerical
value of the sales of all products in reference period quantities but
at base period prices.

There are two well-known extreme cases for the choice of
reference period. A Laspeyres price index L, is obtained where
the reference period is the base period per se. A Paasche price
index P, is obtained where the reference period is the current
period.

Laspeyres price index Lp; = Zp,go/Zpoqo X 100
Paasche price index Pp; = Zp;q/Zpoq; X 100

The corresponding quantity indices L, and P, are obtained by
interchanging the , and , in these expressions.

The Laspeyres price index has the great advantage of producing
the longest comparable series, always provided that quantity
variables are more or less static. It is the simplest and least
demanding of data, but the assumption of base period reference
becomes untenable if the quantity variables evolve rapidly. For
instance, price changes may partially determine the quantities
sold: a Laspeyres price index could lead to an overestimate of
price inflation if less is sold as prices rise.

At the other extreme, the use of current period quantities in the
Paasche index involves the collection of price and quantity data in
each period. The use of the current period quantities also means
that one cannot, strictly speaking, relate movements in this index
exclusively to price changes. Furthermore, the introduction of new
products creates problems. In practice one might choose to update
a reference period somewhat infrequently so that the series
resembles a Laspeyres rather than a Paasche index.

The geometric mean of the Laspeyres and Paasche price indices,
known as the Ideal Price Index ID,, has some attractive
theoretical properties although it is not in common use.

IDp; = (Lp; X Pp)'2

Composite indices 29

The product of price and quantity indices correctly provides the
sales index = Zv/Zv, = Zp,q/Zpeqo only in the case of the Ideal
indices. If an ideal index based on 100 in the base year reaches 200
in the current year, then an alternative choice of base year in the
current year would lead to 50 in the base year. Neither Laspeyres
nor Paasche indices have the same desirable properties. The use of
the microcomputer obviously alleviates the computational burden,
which has been one objection to the use of the Ideal index in the
past. But the heavy cost of data collection remains, as does the
problem of dealing with a changing product mix.

Data on four classes of product are provided in Table 3.5 below.
Price and quantity sold are given for each of nine periods.

Table 3.5 Monthly sales data for four products

Product 0 1 2 3 4 5 6 7 8
1 Unitpricc 08 09 07 08 09 07 08 09 07
Quantity 100 110 100 105 115 110 115 125 111
2 Unitprice 25 25 25 25 25 25 25 25 25
Quantity 20 23 27 29 31 32 31 30 29
3 Unit price 12 12 11 1 10 10 10 9 9
Quantity 61 60 60 57 58 55 56 57 358
4 Unit price 3 32 36 38 40 40 40 40 40

Quantity 30 32 33 34 34 36 37 38 39

Price indices

Laspeyres Lp 100 105 101 106 109 103 106 107 101
Paasche Pp 100 106 101 107 110 104 107 109 103
Ideal IDp 100 106 101 106 110 103 107 108 102
Quantity indices

Laspeyres Lg 100 107 109 111 116 117 119 122 119
Paasche Pg 100 107 109 112 117 118 120 124 122
Ideal IDg 100 107 109 112 117 117 119 123 120
Value index

Zpg/Zpugo 100 113 110 119 128 121 127 133 122

It is not easy to say what overall movements have occurred in
prices, quantities or sales values by inspection of the data, and it is
impossible for more than, say, a dozen products. A computer
program INDICES follows for the calculation of the composite
indices described in this section and shown in Table 3.5. A short
main program is dimensioned for up to 10 products but this is
easily enlarged as required.

PROCinput: allows the user to enter the base period B and the
final period N, and the number of products PR
for which a composite index is required. The user

30 Index numbers

PROCindices:

FNp(ref):
FNq(ref):
PROCprint:

supplies price and quantity data DATp(pr,I) and
DATq(pr,I) for each product pr = 1, 2, . . . ,PR
and period I =B, . . ., N.

calculates Laspeyres, Paasche and Ideal price
indices Lp(I), Pq(I), IDp(I) and quantity indices
Lq(I), Pq(I), IDq(I) for periods I = B, . . . , N.
defines a price function 2p,g.cf/ZpoGret

defines a quantity function 2qp;e¢/ZqoPret
organizes a tabular print of price and quantity
indices.

Type in Program INDICES from the following listing and RUN
with the data of Table 3.5 when you are satisfied with the accuracy
of your listing. You should get the indices shown in the lower half

of the table.

Inspection of the output indices suggests that any one of the
three composite indices tells the same story. In particular, one can
see that quantity sold moved ahead up until month 8§ whereas
prices fluctuated up and down. The value index, numerically equal
to one-hundredth of the product of IDp and IDq (unrounded
values), appears to fluctuate either side of an increasing trend.

31

Program 3.4 INDICES:Calculates Laspeyres, Paasche and Ideal
indices

19

REM INDICES

REM ACCEPTS PRICE & QUANTITY DATA FOR DIFFERENT PRODUCTS
REM CALCULATES COMPOSITE INDEX NUMBERS

DIM DATp(10,108) ,DATq(10,100),Lp(180)

DIM Lq(l98),Pp(l@a@),Pg(l@p8),IDp(108),IDg(108)
@%=50002000A

PROCinput

PROCindices

PROCprint

END

DEF PROCinput

PRINT "ENTER ALL DATA NUMERICALLY"

INPUT "BASE PERIOD ",B

INPUT "FINAL PERIOD ", N

INPUT "NUMBER OF PRODUCTS ", PR

FOR pr = 1 TO PR

PRINT : PRINT "PRODUCT No ";pr

PRINT : PRINT "PERIOD PRICE QUANTITY"
FOR I = B TO N
PRINT TAB(D);I;
INPUT TAB(18) DATp(pr,I),TAB(208) DATq(pr,I)
NEXT I

NEXT pr

ENDPROC

DEF PROCindices

FOR I= B TO N
Lp(I)=FNp(B)}

Pp(I)=FNp(I)

IDp (I)=5QR(Lp(I)}*Pp(I})
Lq(I)=FNq(B)

Pq(I)=FNq(I)

IDG(I)=SQR(Lq(I)*Pq(I))
NEXT I

ENDPROC

DEF FNp(ref)

NUM=8 : DENOM=0@

FOR pr=l TO PR

NUM=NUM + DATp(pr,I)*DATq(pr,ref)
DENOM=DENOM + DATp{pr, B} *DATq(pr, ref)
NEXT pr

= NUM/DENOM*1@0

DEF FNg(ref)

NUM=@ : DENOM=0

FOR pr=1 TO PR

NUM=NUM + DATq(pr, I)*DATp(pr, ref)
DENOM=DENOM + DATq({pr, B) *DATp(pr, ref)
NEXT pr

= NUM/DENOM*188

DEF PROCprint

PRINT : PRINT : PRINT "PRICE INDICES"

PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT

FOR I= B TO N

PRINT TAB(0@);I;TAB(10);Lp(I);TAB(20);Pp(I);TAB(30);IDp(I)
NEXT I

PRINT : PRINT : PRINT "QUANTITY INDICES"

PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT

FOR I= B TO N

PRINT TAB(P);I;TAB(1P);Lq(1);TAB(20);Pq(I);TAB(30);IDq(I)
NEXT I

ENDPROC

32 Index numbers

3.5 Index numbers in perspective

The indices described above are very simple examples of the
genre. In practice there are a number of complications which have
to be considered. The prime consideration must be the purpose for
which an index is required, in the context of the availability and
reliability of the basic data. Any summary is bound to be overtly
selective in its data sources, and covertly limiting by its very
summarizing nature — the scope of the index should not be so wide
as to yield a meaningless series.

Problems of interpretation arise if too long a series is presented.
Some products will have been phased out and new ones phased in.
Technical and qualititive improvements can be made in an
incremental manner over a protracted term so that like is not
always compared to like, i.e. value for money is explicitly excluded
from the information summary.

Problems of scale arise when there are numerous commodities.
It is more convenient to construct price indices, say, from ‘weighed
means’ of relatives (WMR) of individual prices where the weights
W, are tied to some reference period. Such an index, WMR,, is

WMR, = Zp,/pB X W,ef/ZW,ef X 100

where the summation is taken over all the products.

When the weights W, are taken as the values v, of
expenditures in the base year (i.e. p,q,) then this index of
weighted price relatives is identical to the Laspeyres price index,
as the reader may confirm algebraically.

In fact, the Index of Retail Prices (RPI) is closely based on a
Laspeyres quantity index. Naturally, the details of the construc-
tion of this or any other government index, such as the Index of
Industrial Production, lies outside the present scope. Suffice it to
say that the RPI is obtained as a weighted mean of other
sub-indices, themselves defined as weighted means of relatives.
The way in which the annual Family Expenditure Surveys are
utilized to derive and update the weights can be somewhat
complicated, and the calculations of the sub-indices are often in
chain index form.

PROBLEMS

(3.1 Devise a PROCdata to read data into Program 3.1
SIMPREL from DATA statements as an alternative,, which can be
exercised at the user’s discretion, to conversational data input in
PROCinput.

Problems 33

(3.2) Devise a PROCedit to be called at line 65. This procedure
should allow the user to alter any part of the input data.

(3.3) Modify PROCinput of SIMPREL to accept any textual
identifier for the period I, such as 12/1985, in addition to the data
value for period I. Modify lines 2070 and 3060 to print out the
textual identifier in place of I.

(3.4) Modify DEFLATR to accept the data from the top half of
Table 3.1 and to print out the real indices in the bottom half of
Table 3.1 (you should introduce arrays to store sales, costs, wages,
employees and deflator data).

(3.5) Modify Program INDICES to produce the additional indices
as defined below, and reRUN with the data of Table 3.5:

Dribisch index = (L + P)/2 x 100

Price index = Zpiqref/Zpogret X 100

Quantity index = ZqPre/EqoPres X 100

Price index (Edgeworth) = Zpi(qo + 9:)/Zpo(qe + q;) X 100
Quantity index (Edgeworth) = Zq:{(pe + p:)/Zq0(po + p;) X 100

(3.6) Write a program which forms the weighted mean of price
relatives to check numerically that the index defined in Section 3.5
conforms to the Laspeyres price index when the weights W ¢ are
taken as v,.

Chapter 4
Data fitting

Essential theory

This chapter is designed to give an introduction to data
fitting.Simple linear regression on a controlled variable is first
described in the context of production costs. Next, a simple
logarithmic transformation of a non-linear relationship into a
linear form is developed in the context of the so-called ‘learning
curve’. Piecewise linear regression is developed in the third section
and may be omitted on a first reading. Cost-volume-profit analysis
is developed for piecewise linear relationships in the final section.

4.1 A straight line fit to data

A straight line relationship is the simplest form of relationship
between two quantities, such as production cost C and the
production batch size N. Costs are not likely to be incurred in
absolutely direct proportion to the size of a production batch, but
a linear relationship may be a satisfactory approximation for some
purposes.

Such approximations may be required when it is too expensive,
or simply not practicable, to work out the costs of a specified batch
from first principles. If a company submits priced tenders for
customers on a repetitive basis, then such a costing would be based
almost certainly on accumulated costing experience, rather than
the detail of an individual case.

Suppose that the data in Table 4.1 below, has been derived from
a close examination of the costs of producing different batch sizes
of some product.

Table 4.1 Costs and batch size data

Observation 1 2 3 4 5 6 7
Batch size 12 18 24 30 36 42 48
Cost 5.27 5.68 6.25 7.21 8.02 8.71 8.42

34

A straight line fit to date 35

This data has been graphed in Figure 4.1, which suggests that
there may indeed be a linear relationship.

A

Cost

S N- JENE
—

0 6 12 18 2% 30 36 42 48
Batch size

Figure 4.1 A plot of the data of Table 4.1

A search for a best linear relationship between costs and
production levels makes sense only if there is a prior supposition of
linearity. There are many other possibilities, and two of the major
ones are considered later in this chapter. The interested reader is
referred to a companion volume (BASIC matrix methods by I.
Mason, Butterworths, 1984) for a more comprehensive treatment.

A linear relationship between costs C and batch size N may be
stated as

C=F+ VXN

where Fis a fixed cost
V is a constant marginal cost.
If the cost of production C; has been established for each of
several trial values of the batch size N; then one can write

C1=F+VXN1+CI

where ¢; is a residual or error term.

The problem is to establish values for the fixed cost F and the
marginal (or variable) cost V per unit of production which best fit’
the data. There are several criteria depending upon what is meant
by a best fit. The simplest and perhaps the most commonly
employed criterion is to fit a linear relationship to data in the ‘least
squares sense’; that is, a fit which minimizes the sum of the
squared residuals. This is correctly described here by the term
‘linear regression (of costs) upon a controlled variable (the batch
size)’. Now

e} =32(C;— F—V X Nj)?

where the summation extends over the number of data pairs of C
and V which are available.
Differential calculus is used to establish conditions which lead to

36 Datafitting

a minimum e}, and on equating to zero the partial derivatives
with respect to V and F one finds

V=

(N, - N) (¢, - ©)

andF=C-VxN

(N - Ny

where N is the average of N; and C is the average of C,.
A simple computer program LINEFIT for the determination of
F and V is based upon a main program which calls four

PROCEDURES:
PROCinput:

PROCparameters:

PROCoprint:

PROCestimate:

allows the user to input the control and
dependent variable values N(I) and C(I), for
I=12,...,NN.

evaluates the arithmetic means CBAR and
NBAR on a first pass of the data, and the
values of F and V on a second pass.

tabulates N(I), C(I), F + V x N(I), and
residuals ¢; forI = 1,2, . . . NN, and prints out
the best fit equation together with the coeffi-
cient of determination.

enables the user to make an estimate of costs
C=F+ V x N for any N.

37

Program 4.1 LINEFIT: Linear regression on a controlled variable

REM LINEFIT

REM LINEAR REGRESSION OF C ON CONTROLLED VARIABLE N
DIM C(198),N(180)

@%=502040A

PROCi nput
PROCparameters
PROCprint
PROCestimate
END

DEF PROCinput

PRINT : INPUT "No OF DATA PAIRS ";NN

PRINT "CONTROL DEPENDENT"

PRINT "VARIABLE VARIABLE" :PRINT " N";TAB(11);"C"
FOR I= 1 TO NN

INPUT N(I);TAB(10);C(I)

NEXT I

ENDPROC

DEF PROCparameters

SIGMAC=8 : SIGMAN=@

FOR I= 1 TO NN

SIGMAC=SIGMAC+C(I)
SIGMAN=SIGMAN+N(I)

NEXT I

CBAR=SIGMAC/NN : NBAR=SIGMAN/NN
NUM=8 : DENOM=@# : CD=0

FOR I= 1 TO NN

NUM=NUM+(N{I)~NBAR)})*{(C(I)-CBAR)}
DENOM=DENOM+ (N(I)-NBAR)*(N(I)-NBAR)
CD=CD+(C(I)-CBAR)*{(C(I)-CBAR)}
NEXT I

V= NUM/DENOM

F =CBAR-V*NBAR

CD=NUM*V/CD

ENDPROC

DEF PROCprint

PRINT : PRINT "STRAIGHT LINE OF BEST FIT F+V*N = "
PRINT F;" + ";V;™ * N"

PRINT : PRINT TAB(9);"N";TAB(19) "C";TAB(25) "F+V*N";
PRINT TAB(32) "RESIDUAL"

FOR I=1 TO NN

PRINT N(I),C{I),F+V*N(I)},C(I)-F~V*N(I)

NEXT I

PRINT : PRINT "COEFF OF DETERMINATION =";CD*1@@;"3"
ENDPROC

DEF PROCestimate

REPEAT

PRINT

INPUT "DO YOU WANT AN ESTIMATE (Y or N) ",z$

IF z$="N" THEN ENDPROC

INPUT "CONTROLLED VARIABLE VALUE = ",N

C=F+V*N

IF N<N(1) THEN PRINT "WARNING:CONTROL IS < DATA MIN."
IF N>N(NN) THEN PRINT "WARNING:CONTROL IS > DATA MAX."
PRINT "DEPENDENT VARIABLE VALUE = ";C

UNTIL FALSE

ENDPROC

38 Datafitting

RUN

No OF DATA PAIRS ?7
CONTROL DEPENDENT
VARIABLE VARIABLE

N C
?12

?5.27
218

?5.68
224

?6.25
230

?7.21
236

?28.02
242

?28.71
248

?8.42

STRAIGHT LINE OF BEST FIT F+V*N =
3.9943 + 0.1829 * N

N C F+V*N RESIDUAL
12.0000 5.2700 5.2286 0.0414
18,0000 5.6800 5.8457 -8.1657
24.0000 6.2500 6.4629 -0.2129
30.0000 7.2100 7.0800 6.1300
36.0000 8.0200 7.6971 0.3229
42.0000 8.7100 8.3143 0.3957
48.0000 8.4200 8.9314 -8.5114

COEFF OF DETERMINATION =94.5578%

DO YOU WANT AN ESTIMATE (Y or N} ?Y
CONTROLLED VARIABLE VALUE = ?16
WARNING:CONTROL IS < DATA MIN.
DEPENDENT VARIABLE VALUE = 5.0229

DO YOU WANT AN ESTIMATE (Y or N) ?Y
CONTROLLED VARIABLE VALUE = 2?54
WARNING:CONTROL IS > DATA MAX.
DEPENDENT VARIABLE VALUE = 9.5486

DO YOU WANT AN ESTIMATE (Y or N} ?N

Type in LINEFIT and replicate the given RUN when you are
satisfied with your listing. The output includes the residuals and it
is always important to look at them very carefully. The assumption
of linearity must be held with reserve, and it becomes clearly
untenable when the residuals have a strongly pronounced pattern
— such as large positive values for small batches and large negative
values for large batches. In the present case the absolute values of
the residuals tend to become numerically larger as the batch size
increases, but their signs do not otherwise give rise for concern. So
there is little evidence here of systematic departure from linearity.

Furthermore, the coefficient of determination is about 95 per
cent, which can be interpreted as follows: some 95 per cent of the

A straight line fitto date 39

variation in the cost data has been explained on the basis of the
linear relationship, which expressed to four decimal places is

Cost = 3.9943 + 0.1029 X N

95 per cent is a reassuringly high percentage. A coefficient of 100
per cent results when a line of best fit passes directly through all
the data points. It would have been much smaller had the costs not
varied substantially in proportion to batch size. The total ‘sum of
squares’ Z(C; — C)* can be regarded as having an ‘explained’
component, and an ‘unexplained’ component Xe,”. The explained
component is obtained by differencing, and the coefficient of
determination is the percentage ratio of this component to the
total sum of squares. This can be expressed as

EWN, - N) (& - OF
(N, - N 2(C, - O

Coefficient of determination = x 100

The reader may have wondered why two passes of the data were
employed in PROCparameters of LINEFIT. The first pass was
used to evaluate the_means N and C and the second to evaluate
S(N; = N), Z(C, — ©), and Z(N, — N)? prior to substitution into
the expressions for V and F. There is an alternative expression for
V which entails the quantities =N,V,, £V, =N, and N/, all of
which can be evaluated on a single pass of the data. But rounding
and truncation errors are more likely to occur, because the
denominator of V is then determined from the difference between
two large numbers NNZN? and (ZN,)>. However, the reader is
referred elsewhere (BASIC statistics, by J. Tennant-Smith,
Butterworths, 1985) for a discussion of a better method.

Recall that the purpose was to obtain assistance in making cost
estimates. This amounts to using the equation of the line of best fit
with a stipulated value of the controlled variable. Notice that the
output produces a warning if the value of the controlled variable
lies outside the range of the original data which was used to obtain
the line of best fit. This class of estimate is known as extrapolation,
and it has much less reliability than an interpolated estimate, since
there can be no assurance that the linear relationship holds for
arbitrarily small or large volumes.

The reader should next RUN the program for the data given in
Table 4.2. Here the controlled variable N is the time period and so
a convenient choice is a quarterly variable with values from 1 to
14. The dependent variable C is not cost, but sales. The output is a
line of best fit of the form

Sales = 211.9780 + 0.7363*N

40 Data fitting

Table 4.2 Sales for 14 quarters

Quarter
1 2 3 4
1983 200 225 227 202
1984 204 228 230 207
1985 210 231 233 207

1986 209 232

However, the coefficient of determination is only 6 per cent, which
signals loud and clear that linear regression on this data is quite
inappropriate. The reader should graph the data to confirm this
observation. He or she should also note that the residuals have a
consistent periodicity, those for quarters 1 and 4 being negative
while those in quarters 2 and 3 are positive. This is fully consistent
with a cyclical sales pattern over an underlying shallow trend, and
this possibility must be explored in a quite different way, through
time series analysis (see BASIC forecasting, by D. G. Johnson and
M. King, Butterworths). You should do Problems 4.1 and 4.4
here.

4.2 The learning curve

Particular forms of non-linear relationships can be transformed
into linear relationships. Suppose that ¢t = a/® + t where ¢ is the
average assembly time for the first / assemblies; a and b are
parameters and t is the long run average time.

Taking logarithms gives

log(t —t)=loga+blogl
This is the linear relationship
C=F+NXxYV
where
C=log(t—r1) N=logl F=loga V=>

The first assembly takes the time a + T and a negative value of b
gives rise to a geometrically decreasing average assembly time,
tending to T in the limit. This phenomenon was first noticed in the
US aircraft industry and has become known as a learning curve.
Assembly times for the first eight of a production run of aircraft
components are given in Table 4.3. Figure 4.2 shows actual
average assembly times ¢; from the third line of Table 4.3.

The learning curve 41

Table 4.3 Assembly times for the first eight airframe components

Component i 1 2 3 4 5 6 7 8
Actual times T; 946 593 572 589 525 555 516 549
Actual av. time ¢; 946 769.5 704 675 645 630 614 606
Predicted av. time 943 773 707 669 645 628 615 606

Learning curve of best fit: 438.35 x I7%7! + 505.8
Coefficient of determination: 99.88%

900
800 °
700 ° o
o o
600 2 °
1 2 3 4 5 3 7 8

Figure 4.2 A plot of the data of Table 4.3

The method of the previous section could be used to fit a
straight line in the least squares sense through the logarithmically
transformed data, always provided that a value of T was supplied.
Indeed, one could repeat the process for each of a series of trial
values for v. If the ‘best’ value was associated with the largest
coefficient of determination, then one would have a best fit
equation

C=F+NxVandsoa=10Fand b=V

This approach would be clearly impractical by hand calculation,
but it can be carried out effectively and efficiently on a
microcomputer. Program LCURVE consists of a short main
program which calls the following PROCEDURES:

PROCinput: allows the user to input the observed assembly
time T(I) of assemblies I = 1,2,. . . ,NN and calls
FNavtime to calculate t(I), the average time to
assemble each of the first I assemblies.

PROCiterate: calls PROCparameters (see LINEFIT) for 50 trial
values of T in the range 0 < v <T(NN), with C(I)
= LOG(t(I) — t) and N(I) = LOG(I) for I =
1,2, . . .,NN. The best value tau of TAU, the
highest coefficient of determination cd, and the
best values of a and b are available on comple-
tion.

42 Datafitting

PROCprint: tabulates the actual average assembly times t(I),
the predicted average times al® + tau, and the
residuals for I = 1,2,. . . , NN; prints the equation
t = al® + tau, together with the coefficient of
determination cd.

PROCestimate: allows the user to estimate the assembly time for
the Ith assembly.

FNavtime(i): generates the average assembly time of the first i

assemblies t(i) = 14AZT(I) from the actual
assembly times T(I) for I = 1,2,. . ..i.

Program 4.2 LCURVE: Learning curve regression

REM LCURVE

REM LEARNING CURVE REGRESSION

REM LOG-LOG TRANSFORMATION ON

REM AVERAGE TIME AND COMPONENT NUMBER
REM REQUIRES ACTUAL TIME FOR

REM COMPONENTS Nos 1 TO NN

DIM C(100),T(100) ,N(100),t(108)
@3=502020A

PROCinput
PROCiterate
PROCprint
PROCestimate
END

DEF PROCinput

INPUT "MAX No COMPONENTS";NN
PRINT

PRINT "COMPONENT ACTUAL"

PRINT "NUMBER TIME"

FOR I= 1 TO NN

PRINT TAB(4);I;TAB(14);:INPUT T(I)
t(I)=FNavtime(I)

NEXT I

ENDPROC

DEF PROCparameters

SIGMAC=P : SIGMAN=@

FOR I= 1 TO NN

SIGMAC=SIGMAC+C(I)
SIGMAN=SIGMAN+N(I)

NEXT I

CBAR=SIGMAC/NN : NBAR=SIGMAN/NN
NUM=@ : DENOM=@ : CD=0

FOR I= 1 TO NN

NUM=NUM+(N(I)-NBAR)*(C(I)-CBAR)
DENOM=DENOM+(N(I)~NBAR)*(N(I)-NBAR)
CD=CD+(C(I)-CBAR)*(C(I)-CBAR)
NEXT I

V= NUM/DENOM

F =CBAR-V*NBAR

CD=NUM*V/CD

ENDPROC

3808 DEF PROCiterate

3018 cd=0

3820 S=T(NN)/S8@

3038 FOR TAU=0 TO T(NN) STEP S

3648 FOR I= 1 TO NN

3@580 C(I)=LOG(t(I)-TAU } :N(I)=LOG(I)
3060 NEXT I

397y PROCparameters

3988 IF CD>cd THEN cd=CD :tau=TAU : a=18"F : b=V
3899 NEXT TAU

3188 ENDPROC

3118

40060 DEF PROCprint

4318 PRINT

402¢ PRINT " COMPONENT AVERAGE ESTIMATED RESIDUAL"
4030 PRINT " NUMBER TIME TIME"

4849 FOR I= 1 TO NN

4858 PRINT I,t{I),a*I b+tau,t(I)-a*I"b-tau

4860 NEXT I

4079 PRINT :PRINT "COEFF OF DETERMINATION ";cd*100
4980 PRINT : PRINT "BEST FIT LEARNING CURVE "

4099 PRINT a;"*I"";TAB(14) b;TAB(22)"+";TAB(24) tau
4188 ENDPROC

4118

58P0 DEF PROCestimate

5018 REPEAT

5¢28 INPUT "pO YOU WANT AN ASSEMBLY TIME ESTIMATE (Y/N)
5030 IF z$="N" THEN ENDPROC

5048 INPUT "INPUT AN ASSEMBLY NUMBER >1 ", I

5058 t=a*(I (b+1)-(I-1) (b+l))+tau

5060 PRINT "ACTUAL ASSEMBLY TIME PREDICTION IS ";t
5879 UNTIL FALSE

5888 ENDPROC

5099

6088 DEF FNavtime(i)

6018 TC=8

6620 FOR j= 1 TO i

6838 TC=TC+T(j)

6048 NEXT j
6850 =TC/i
RUN

MAX No COMPONENTS?8

COMPONENT ACTUAL

NUMBER TIME
1.60 2946
2.00 2593
3.00 2572
4.00 2589
5.00 2525
6.00 2555
7.88 2516
8.006 2549
COMPONENT AVERAGE ESTIMATED RESIDUAL
NUMBER TIME TIME
1.80 946 .00 943.43 2.57
2.00 769.50 773.58 -4.00
3.00 7083.67 786 .55 -2.88
4.00 675.00 669.44 5.56
5.60 645.00 645.44 -0.44
6.00 630.60 628.45 1.55
7.00 613.71 615.76 -1.98
8.00 605.62 6685.73 -0.18@

COEFF OF DETERMINATION 99.88

BEST FIT LEARNING CURVE
438.35*1" -0.71 + 505.88
DO YOU WANT AN ASSEMBLY TIME ESTIMATE (Y/N) ?Yy
INPUT AN ASSEMBLY NUMBER >1 220
ACTUAL ASSEMBLY TIME PREDICTION IS 528.75
DO YOU WANT AN ASSEMBLY TIME ESTIMATE (Y/N) 2N

", 28

43

44 Data fitting

Type in LCURVE from the listing above (first load LINEFIT
and DELETE 10,1080, and DELETE 3000,4110 to avoid the
tedium of entering PROCparameters) and RUN with the data of
the first two rows of Table 4.3 (the machine may require a minute
or so to carry out the 50 regressions). Your output should agree
with the rest of the table, and a prediction for the assembly time of
the twentieth airframe is 521.

Such models can be applied to a wide variety of circumstances,
such as plant maintenance costs which decrease with experience,
or the costs associated with obtaining repeat orders. However,
caution should be exercised when using the model for extrapola-
tion beyond the immediate future: it is a useful model for
short-term decision making, such as budgeting, but it is doubtful
whether it is sensible to employ it for medium or long term
forecasts. Methods for the determination of confidence limits are
omitted here.

You should do Problems 4.5 and 4.6 at this juncture.

*4.3 Fitting a piecewise linear function by least squares

A linear relationship (or a transformation of a linear relationship)
may be quite inadequate for fitting the data to hand. Thus a RUN
of LINEFIT on the data of Table 4.4 yields a very low coefficient
of determination of 36%.

Table 4.4 Further cost and batch size data

Observation 1 2 3 4 5 6 7 8 9 10
Batch size 10 20 30 40 50 60 70 80 90 100
Cost 220 252 273 281 298 211 240 273 299 403

This data is graphed in Figure 4.3, showing that the costs
increase more or less linearly up to mid-range batch sizes: Then
there is a sudden decrease in costs followed by a second and
continuing rise. This pattern of costs could be due to a change in
technology, which only becomes feasible in the light of
opportunity costs for production of the larger batches. The costs
for new technology production once again advance with batch size
in a more or less linear fashion.

Although it is obviously possible in this simple example to RUN
LINEFIT twice, for lower and higher levels of output, this would
be tiresome with a large number of linear segments. The practical
utility of piecewise linear data fitting should be self-evident, as the
next section on cost-volume-profit analysis will convincingly
demonstrate in one particular case.The L linear segments are said

Fitting a piecewise linear function by least squares 45
A
400 [°
g300 o © o
S o o
o
o
o
200 + °
1 o L L P S—
0 20 40 60 80 100

Batch size

Figure 4.3 A piecewise linear function: data from Table 4.4

to join at ‘knots’ ny, ns, . . .

,nr (. Thus one can relate the cost C

to output N by a piecewise linear function which includes a fixed
cost element f, and marginal costs v; for outputs in the range
n;_1<N=n; as follows:

C=f+n(vi—vy) +m(va—v3)+...+n_(viii —v;) + Ny,

or

C= Co + CI(N - n()) + C2(N - nl) + ...+ C,'(N - n,~_1)
where ny = 0

These alternatives are shown in Figure 4.4 for the case of a 2-piece
linear relationship (i.e. L = 2).

Cost |
c

l7|(V|- Vz)

{

Cost
=

Cq |

no:O

» N
Volume

! Yol
ngy=0 n\ume
2

Figure 4.4 Two alternative formulations of 2-piece linearity

The correspondence between the two alternatives is given by

f=

]
Vi = 2 Ck
k=1

Co

or

co=Ff

Cj = Vj - vj—l

46 Data fitting

Now the second formulation can be written even more compactly
as
C=cy+2c¢(N—nj_1)+
i
where

(N—nj_|)+ =N - i—1 lf>0
= 0 otherwise

It is now convenient to use this equation to express the sum of
squared residuals, S.S., as follows:

NN L
SS. =3 [co + (N — 1)+ — CJF
=1 j

where the first summation extends over the NN observations.
On equating to zero the partial derivatives of S.S. with respect

to ¢y, €1, €2, . . ., ¢, one finds the following L + 1 linear equations
in ¢y, €1, €3, « . . Cp:

NN L NN

2 {cot+ 2 ¢(Ni—ni_y)e} = 2 C

I=1 j=1 I=1

NN L NN

2 {lco + Z ci(Nr = ni_) J(Nt—nj—1)+}= 2 CAN;— ni_1).

=1 j=1 =1
fori=1,2,...,L.

Written in matrix form, these equations become A ¢ = b where
€= (co, €1, €25 - - -, ¢) and |b;| = ZCAN; — n;y)+

laco| = NN laoj' = Iajol = Z(N; = nj—1)+

'ai/‘l = Iaji' = Z[(N; = mi—1)+ (N1 — nj_1)+]
fori=1,2,...,L

ji=12,...,L.

Thus A is symmetric and this fact allows the use of a simplified
method of solution (Gaussian elimination for a symmetric matrix
of coefficients). The equations are linearly independent if there is
at least one data point for each segment /for/=2,3,..., L and at
least two data points for the initial segment. The equations could
well be ill-conditioned, however, with a likelihood that increases
with increasing L. These equations can be seen to reduce to the
familiar equations for simple linear regression when L = 1 upon
substitution for the c;.

Fitting a piecewise linear function by least squares 47

A structured program PIECELN has a short main program
which calls the following procedures:

PROCinput:

PROCmatrix:
PROCgauss:

PROCtransform:
PROCprint:

FNC(X):

allows the user to input the observations C(I)
and N(I) for I = 1, 2, . . . , NN, and the
ordinates of knots n; fori = 1,2, ..., L.
generates the elements of A and b.

solves for ¢ by a standard Gaussian elimination
(after Program 5.5 from BASIC matrix methods,
by J. Mason, Butterworths, 1984).

finds f and v(i) fori=1,2, ..., L.

prints out the best L-piece linear relationship in
the least squared sense: also prints the residuals
and the coefficient of determination.

returns the value of the dependent variable C for
a value of the controlled variable X.

A listing of Program PIECELN is given below. The program is

rudimentary and

no particular efforts have been made to avoid

truncation or rounding errors, or to recognize the possible
existence of ill-conditioning. A RUN with the data of Table 4.4
follows the listing. For the (subjective) choice of knots as shown,
the coefficient of determination is a modest 91 per cent.

48
Program 4.3 PIECELN: Piecewise linear regression

18 REM PIECELN

20 REM PIECEWISE LINEAR REGRESSION

30 REM FOR DETAILS OF PROCgauss REFER BASIC matrix methods
40 REM BY J.MASON, BUTTERWORTHS 1984

58 DIM C(108),N(1806),n(10),A(11,11),B(11),c(11),v(11)

60 €3=502040A

88 PROCinput

98 PROCmatrix
100 PROCgauss
110 PROCtransform
120 PROCprint
138 END

1008 DEF PROCinput

1818 CBAR=@ : PRINT : INPUT "No DATA PAIRS ";NN

1826 PRINT "CONTROL DEPENDENT"

1830 PRINT "VARIABLE VARIABLE" :PRINT " N";TAB(1l1);"C"
1840 FOR I= 1 TO NN

1858 INPUT N(I);TAB(18);C(I) : CBAR=CBAR+C(I)

18060 NEXT I : CBAR=CBAR/NN

1078 PRINT:INPUT "No OF LINE SEGS. ";L

1880 PRINT : IF L>1 THEN PRINT "KNOT ORDINATE"

1999 1=1

1180 REPEAT

1116 IF 1<L THEN PRINT STR$(1l) TAB(1@) ; : INPUT n(l)
1120 1 = 1+1

1138 UNTIL 1>=L

1149 ENDPROC

2009 DEF PROCmatrix

2010 A(@,0)=NN

28280 FOR I= 1 TO NN

2830 B(B8)=B(8)+C(I)

2040 NEXT I

2@56 FOR j= 1 TO L

2069 FOR I= 1 TO NN

207v TERM=N(I)-n(j-1)

2080 IF TERM <@ THEN TERM =0
2090 A(@,3j)=A(0,j) +TERM

2188 NEXT I

2118 A(j,0)=Aa(0,3)

2120 NEXT j

2130 FORi =1 TO L

2146 FOR I= 1 TO NN

21580 PROD=N(I)-n(i-1)

2168 IF PROD <@ THEN PROD=0
2170 B(i)=B(i)+PROD*C(I)
2188 NEXT I

2199 FOR j= 1 TO L

2200 FOR I= 1 TO NN

2216 PROD =N(I)-n(j-1) : IF PROD<@ THEN PROD=0
2220 PROD=PROD*(N(I)-n(i-1)) : IF PROD<@ THEN PROD=0@
2230 A(i, j)=A(i, j) +PROD

2240 NEXT I

2250 NEXT j

2260 NEXT i

227v ENDPROC

3000
3019
3029
3030
3040
3858
3060
3079
3080
3099
3100
31180
3128
3139
3140
3158
3160
3170
3180
40090
4010
4029
4030
4049
40 50
4060
407v
5009
5010
5620
5030
50490
5050
5060
5870
5080
509¢
5100
51180
5120
5138
5140
51508
5160
5170
5186
519
6000
6010
6020
6030
6040
6058
6060
6870

49

DEF PROCgauss

FOR K= TO L-1

FOR I=K+l TO L

M=-A(K, I)/A(K,K)

FOR J= I TO L
A(I,J)=A(I,J)+M*A(K,J)
NEXT J
B(I)=B(I)+M*B(K)

NEXT I

NEXT K

¢ (L)=B(L) /A (L, 1)

FOR I=L-1 TO @ STEP -1
D=B(I)

FOR J=I+1 TO L
D=D-c (J) *A(I,J)

NEXT J

c(I)=D/A(I, I)

NEXT I

DEF PROCtransform
f=c (9)

v(l)=c(l)

FOR1 =2 TOL
v(1l)=v(1-1)+c (1)
NEXT 1

ENDPROC

DEF PROCprint

PRINT : SS=@ : T=0 : PRINT "PIECEWISE LINEAR FIT = "
PRINT c(0)

FOR 1= 1 TO L

PRINT "+ (N-";n(1-1);")+ *";c (1)

NEXT 1
PRINT : PRINT "OR ALTERNATIVELY"
PRINT "FIXED ELEMENT =";f :PRINT "MARG. RATE <=KNOT"

FOR 1=1 TO L

PRINT v(1),n(1)

NEXT 1

PRINT : PRINT TAB(9);"N c FITTED RESIDUAL"
FOR I= 1 TO NN

PRINT N(I),C(I),FNC(N(I)
S5=5S+(C(I)-FNC(N(I))) 2
NEXT I

CD=(T-S8) /T*188

PRINT : PRINT *COEFF OF DETERMINATION =";CD
ENDPROC

}+,C(I)-FNC(N(I))
+ T=T+(CBAR-C(I)) "2

DEF FNC(X)

TERM=8 : C=c(0)

FOR 1=1 TO L
TERM=X-n(1-1)

IF TERM<@ THEN TERM=0
C=C+TERM*c (1)

NEXT 1

=C

50 Data fitting

RUN

No DATA PAIRS 218
CONTROL DEPENDENT
VARIABLE VARIABLE

N C
210

2220
220

2252
230

2273
240

2281
250

2298
260

2211
278

2249
280

2273
298

2299
21080

2403

No OF LINE SEGS. ?23
KNOT ORDINATE

1 250

2 260

PIECEWISE LINEAR FIT =
209.3000

+ (N-D.000B)+ *1.8580

+ (N-50.0000)+ *-12.3700

+ (N-60.0000)+ *14.9500

OR ALTERNATIVELY
FIXED ELEMENT =209.3000
MARG. RATE <=KNOT
1.8500 50.0000
~19.5200 60.0000
4.4300 g.pp00

N C FITTED RESIDUAL
10.9000 220.0000 227 .8080 ~7.80880
20.0000 252.p000 246.3000 5.7000
30.0000 273.0000 264.8000 8.2000
40.9000 281.P000 283.3000 ~2.3000
50.0000 298.9P00 301.8000 -3.8000
60.0000 211.0000 196.6000 14.4000
70.9000 240 .0000 24P9.9000 -0.9000
80.0000 273.800P 285.2000 -12.2000
90.0000 299.900P 329.5080 -3P.5000

190.0000 493.00090 373.8000 29.2000

COEFF OF DETERMINATION =91.2148

PIECELN requires the user to input the number of linear
segments L. It would obviously be advisable to start any attempt at
data fitting with the simplest case of a linear fit, and the reader
may care to confirm that a RUN on the data from Table 4.1 with L
= 1 does indeed reproduce the best linear fit. A similar run with
the data of Table 4.4 returns a coefficient of determination of 36

Cost-volume-profit (CVP) analysis 51

per cent, and a further RUN with L. = 5 and knots at 30, 55, 56 and
95, say, naturally returns an excellent fit of 99.82 per cent.
Presumably one would use the minimum L consistent with
achieving a desired degree of fit. PIECELN also requires the user
to select the ordinates of the knot, and it may be far from obvious
precisely what the best values should be.

RUN the program on the data from Table 4.4 with knots at 49
and 61. You should find a fit with a coefficient of determination of
92.6 per cent. The reader may have wondered throughout this
section whether it is reasonable to ignore the likelihood of a
dramatic discontinuity in mid-range in the data of Table 4.4, and
much depends on the detailed circumstances. The purpose here
has been to use as simple an example as possible to demonstrate
the main analytical points. The reader may care to repeat the task
of fitting a piecewise linear function to the data of Table 4.4 on the
supposition of an abrupt change in manufacturing technology once
55 or more units are produced. Now do Problem™ 4.7.

4.4 Cost-volume-profit (CVP) analysis

The general objective in cost-volume-profit (CVP) analysis is to
identify the level of commercial activity which maximizes the
contribution to profits in absolute terms, i.e. maximizes the
revenue less the operating costs. Both costs and revenue functions
are assumed to be piecewise linear functions.

Piecewise linear functions can arise quite naturally. The
piecewise linear production cost C in the following numerical
example arises from the aggregation of linear energy costs CF, and
piecewise linear labour costs C, machining costs CM and raw
material costs CX.

The energy cost CE is a directly variable cost. The labour cost
C" results from an initial training and familiarization cost, and a
marginal cost rate which increases once overtime working
becomes necessary to produce large batches. The machining cost
CM consists of a constant marginal cost per unit of output plus
periodic set-up costs incurred every so many units. The first unit
produced after a second (or subsequent) set-up has a marginal cost
given by the sum of the set-up cost plus the machining cost per se.

A bulk discount applies to the variable raw material costs CR
beyond a threshold delivery volume, and there is a fixed delivery
cost. The marginal cost of the first unit at the threshold volume
could be negative as in case 1 of Figure 4.5: this occurs if the saving
which follows the introduction of the discount to the whole
delivery is numerically larger than the discounted marginal cost.

52 Data fitting

Case 2 of Figure 4.5 would apply if the threshold volume were
ordered wherever the actual raw material requirements lay
between this volume and the break-even volume: there is then a
zero marginal cost in this volume range. It is assumed that the
second case applies here.

y
1200 |
Case 1
//\
800 | Case 2
>
[=
(&)
400 |
) 20 40 60 80 100 120 140 160
Activity

Figure 4.5 Two cases for piecewise linear raw material costs CR

A piecewise linear cost-volume relationship is shown in Figure
4.6. Here we find three linear segments, with gradients V,, V,, V;
and knots at n; and #n,.

The cost C of N units of activity is then

C=F+ VN for N=n,
F + V] N] + Vz(N - N]) n1<N$n2
F+ Vl N[+ Vz(Nz—N]) + V3(N“N2) n2<N

Cost {

V2

I
L
vy |
(i
Al l .
0 ny na Activity N
Figure 4.6 A piecewise linear cost-volume relationship

Table 4.5 summarizes the numerical values for parameters F, V
and N of the piecewise linear costs for the numerical example and
also gives the marginal rates of revenue r.

The parameters for the production costs C are obtained from
the following:

f=FE+F-+ FM+ FRandv = VE + VL + VM + VR

Cost-volume-profit (CVP) analysis 53

Table 4.5 Piecewise linear parameters

Element Fixed cost Marginal rates for N< =
knots
Energy CF FE =0 ViE=12 150
Labour C* FF =30 vii= 8 120
=10 150
Machining CM M=20 VM= 7 90
=27 91
=7 150
Raw
Materials CR FR=38 ViR =10 90
=0 100
=9 150
Revenue — ry = 45 90
r, =37 150

It is clear that the marginal costs V have to be selected from the
appropriate range of activity levels. These aggregate production
cost parameters are given in Table 4.6 (the convention is that
lower case symbols are employed for aggregate cost parameters).

Table 4.6 Parameters for aggregate production cost: data from Table 4.5

Fixed cost Marginal rate for N<= knots
f=18 vy =37 90

V= 47 91

V3 = 27 100

vy =36 120

vs = 38 150

It is not immediately obvious how one could accomplish this
sorting process in an effective and efficient manner on a large
scale. But the aggregation of cost parameters can be achieved in
stages. We could first choose to aggregate the parameters for the
energy costs { CE} with those of the labour costs C-. The resulting
parameters for {C= + C'} could be aggregated to those of the
machining costs CM. Finally, the parameters for {CF + C- + CM}
could be aggregated to those of the raw materials costs CX. The
first four stages in Table 4.7 illustrate this sequence for the
numerical data of Table 4.5.

It is easy to extend this algorithmic approach to the case of
profitability analysis. The marginal profit rate p is given by
p = r + (—c) where the marginal parameters have to be selected

54 Data fitting

Table 4.7 Sequential aggregation for stages 1 to 5

Element of cost or revenue aggregate fixed marginal knots
Stage Fixed Marginal Knots category rates
rates
1 F=5 Vvit= 8 120 {CE} =0 v;=12 150
Vb =10 150
2 M=20VM=7 90 {CE + Ct} f=50 v;= 2 120
v,M=27 91 v, = 22 150
vM= 7 150
3 R=8 V;fR=10 9 {CE+CL+CM} =70 v,= 27 90
V,R= 0 100 v, = 47 91
VisR= 9 150 vy= 27 120
ve= 29 150
4 rn=45 90 —{CE+C +CM+CR} f=-78 v;=-37 90
r,=37 150 v, =-47 91
v3=-27 100
vy=-36 120
vs=-38 150
5 PROFIT f=-78 vi= 8 90
v, =-10 91
vs= 10 100
va= 1 120
vs= -1 150

from the appropriate range of activity levels. Consequently we
take the parameters for the aggregate costs, and reverse the sign of
the marginal and fixed cost parameters prior to the final stage of
aggregation.

This final aggregation results in the profit parameters at the foot
of Table 4.7, from which Figure 4.7 has been constructed.
Contribution to profits are maximized at an activity level of 120. It
is evident from the algorithmic basis of the whole approach that
the profitability relationship is piecewise linear if the cost and
revenue relationships are likewise piecewise linear.

800
600

400

Profit

200

¢}

-100 20 40 60 80 100 120 140 160
Activity

Figure 4.7 A piecewise linear profit-volume relationship

Cost-volume-profit (CVP) analysis 55

A formal algorithm follows for merging the Ith line, say, from
the left side of Table 4.7 into the list on the right side, after line
i—1.

Step 1. If niy < N; < n; then introduce an extra line into the
right-hand list after line i~1 with a knot at N,.

Step2. Add V;tov;,v;+ 1,...,v;inlines toi respectively where
ni1 = Npi.

A computer program can carry out these recursive calculations
very quickly. A short main program dimensions a marginal
parameter array v, and a knot array n, which jointly define a
piecewise linear function with up to 100 linear segments (easily
increased if required). The main program calls the following
PROCEDURES.

PROCinput_costs: enables the user to input the fixed, and
marginal cost parameters and the knots for
an arbitrarily large number of cost ele-
ments EMAX (= 4 in the above example).
PROCstep2 is called after each INPUT of a
complete set of cost data for the next stage
in the aggregation of parameters.

PROCinput_revenue: reverses the signs of the aggregate cost
parameters and allows the user to input the
marginal revenue data.

PROCstep2: calls PROCstepl if necessary, and subse-
quently carries out step 2 of the algorithm.
PROCstepl: carries out step 1 of the algorithm.

PROCprint_table: prints out aggregate fixed, marginal and
total costs and revenues.

Type in Program CVP from the listing and RUN with the data of
Table 4.5. The output is easy to assimilate and is seen to conform
to earlier results. The program requires very little memory and
executes extremely quickly.

56

Program 4.4 CVP: Cost-volume-profit analysis.

18 REM CVP
28 REM COST VOLME PROFIT ANALYSIS FOR PIECEWISE LINEAR FNS.
3P DIM v(1€8),n(100)

58 PROCinput_costs
60 PROCprint_table
70 PROCinput_revenue
80 PROCprint_table
98 END

1989 DEFPROCinput_costs

1810 INPUT "MAXIMUM VOLUME ", NN

1920 INPUT "MAX NO OF COST ELEMENTS", EMAX :2§="C"
1830 REPEAT

104P E=E+l

1850 PRINT "COST ELEMENT ";E

1068 INPUT "NO OF LINEAR SEGMENTS ", L
107¢ INPUT "FIXED COST *,F

1880 PRINT "MARG. KNOTS"

1099 PRINT "COST"

1188 PRINT "V","N"

1110 FOR I=1 TO L

1120 INPUT V

1130 IF IKL INPUT TAB(10) ,N ELSE N=NN
1148 IF E=1 THEN v(I)=V:n(I)=N

1150 IF E>1 THEN PROCstep2

1160 NEXT I

1179 IF E=1 THEN 1=L : f£=F

1180 UNTIL E=EMAX

119¥ PRINT

12890 ENDPROC

2000 DEF PROCstep?2

2810 IF I=1 THEN f=f+F : j=1
2020 n(g)=@

2030 i=0

2085@ REPEAT

2060 =i+l

2070 UNTIL N>=n(I-1)+l AND N<=n(i)
2080 IF N<n(i) THEN PROCstepl
2099 REPEAT

2188 v(j)=v(j)+V

2110 j=j+1

2120 UNTIL j=i+l

2130 ENDPROC

3000 DEF PROCstepl

3010 FOR k=1+1 TO i+l STEP -1
3020 v(k)=v(k~1)

30390 n(k)=n(k-1)

3040 NEXT k

3050 n{i)=N

3060 1=1+1

3079 ENDPROC

4000 DEF PROCprint_table

4018 IF 2$="C" PRINT "COST-VOLUME PARAMETER TABLE"

4020 IF 2$="P" PRINT "PROFITABILITY-VOLUME PARAMETER TABLE"
4030 PRINT : PRINT "FIXED COMPONENT ";f : PRINT

4049 PRINT TAB(2) "SEGMENT MARG INAL RNOT TOTAL"
4050 PRINT TAB(14);:IF Z§="C" PRINT " COST" TAB(35) "COST"
4060 IF 2$="P" PRINT "PROFIT" TAB(33) "PROFIT"

4078 ¢ = £ : PRINT

4080 FOR i=1 TO 1

4099 ¢ = ¢ + v(i)*(n(i)-n(i-1))
4108 PRINT i , v(i)} , n(i) , ¢
4116 NEXT i

4120 PRINT

4139 ENDPROC

6008 DEF PROCinput_revenue

6010 PRINT "ENTER REVENUE DATA"

6020 FOR i=1 TO 1
60838 v(i)=-v(i)

$Z28="p"

6048 NEXT i

6050 f=-f

6668 INPUT "No OF LINEAR SEGMENTS ",L
60/v F=0

6080 PRINT "MARG. KNOTS"

609y PRINT "REVENUE"
6109 PRINT "s*,"N"
6119 FOR I= 1 TO L
6120 INPUT V

6130 IF I<L INPUT TAB(1@),N ELSE N=NN

6140 PROCstep2
6150 NEXT I
6160 PRINT
6178 ENDPROC

RUN

MAXIHMUFM VOLUME 2159

MAX NO OF COST ELEMENTS?4
COST ELEMENT 1

NO OF LINEAR SEGMENTS ?1
FIXED COST 28

MARG. KNOTS
cosT

v N

212

COST ELEMENT 2
NO OF LINEAR SEGMENTS 7?2
FIXED COST 258

MARG. KNOTS
cosT
v N
28

2129
210

COST ELEMENT 3
NO OF LINEAR SEGMENTS ?3
FIXED COST 220

MARG. KNOTS
CosT
v N
27

290
227

291
27

COST ELEMENT 4
NO OF LINEAR SEGMENTS 23
FIXED COST 28

MARG. KNOTS
COST
v N
2?19

299
20

2100

29

COST-VOLUME PARAMETER TABLE

FIXED COMPONENT 78

SEGMENT MARGINAL
CosT

Db W N
N
~J

KNOT

99

100
120
158

TOTAL
CosT

3408
3455
3698
4418
5558

58 Datafitting

ENTER REVENUE DATA
No OF LINEAR SEGMENTS 7?2

MARG. KNOTS
REVENUE
S N
245

298
237

PROFITABILITY-VOLUME PARAMETER TABLE

FIXED COMPONENT -78

SEGMENT MARGINAL KNOT TOTAL
PROFIT PROFIT

1 8 98 642

2 -18 91 632

3 19 160 722

4 1 128 742

5 -1 158 712

Problems

(4.1) Amend LINEFIT to include a PROCread_data which reads
from DATA statements as an alternative to conversational data
input in PROCinput:

5@ INPUT "ENTER Y FOR CONVERSATIONAL INPUT, N FOR DATA READ", Q$
68 IF Q$ = "Y" THEN PROCinput ELSE PROCread_data

You should devise PROCread_data to read NN, and then N(I)
and C(I)forI =1, 2, ..., NN from DATA statements starting at
line 9500. PROCread_data should then call PROCdata_print
which should tabulate N(I) and C(I) prior to returning to the main
program.

(4.2) Amend LINEFIT to include a PROCedit which allows the
user to edit the data:

65 INPUT "ENTER E FOR EDIT OPTION", E$

66 IF E$ = "E" THEN PROCedit
You should devise PROCedit so that the user can conveniently
edit any item(s) of data.

(4.3) There are occasions when the value of F is known in
advance, the so-called ‘forced intercept’ case. This gives rise to the
following expression for V which minimizes the sum of squared
residuals:
v =G~ BN
N7

This result is contained in standard works on regression theory.
Amend PROCparameters of LINEFIT to work in this way, and

Problems 59

reRUN using F = 4 and the data of Table 4.1. PROCinput should
allow the user to specify F. Note that the concept of a coefficient of
determination is not valid here, since a very poor choice of F could
easily lead to a sum of squared residuals in excess of =(C; — C)2.
So make the following amendments to PROCprint.

3885 SS = @
3065 S5 = SS + (C(I) - F - V*N(I))2
3882 PRINT : PRINT "R.M.S. ERROR = "; SQR(SS/NN)

(4.4) Develop the program from Problem 4.3 to allow the user to
input a value for a false origin NO for the controlled variable N.
Then make the changes

1855 N(I) = N(I) - N8

3028 PRINT F; " + ";V;" *(N-NO)"

3068 PRINT N(I) + NB, C(I), F+V*N(I), C(I)-F-V*N(I)
4855 N = N=N@

A RUN with F = 8.9314 and NO = 48 and six data pairs (i.e.
exclude the case N = 48) will force the regression through the
point 48, 9.9314 and the results should therefore tally exactly with
the RUN of LINEFIT in the text.

(4.5) The non-linear relationship y = a*b* can be transformed into
a linear relationship between the log y and variable x.

analogous to log y = loga + log b * x
C=F+V*N

Modify the program from Problem 4.4 to take the LOG(C(I)) and
LOG(F) in the lines following their INPUTs.

Write b = (1 + R/100) where R is an average percentage rate
given by R = 100*(b — 1) or R = 100*(10Y — 1). Print out R and
amend line 4090 to print 10°. Now use this program to find an
average annual rate of inflation R% and to estimate the RPI for
1985 and 1986 from the following data.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984
RPI 157.1 182.0 197.1 223.5 263.5 295.0 320.4 335.1 351.8

(Average annual index values from table 18.3, Monthly Digest of
Statistics, HMSO.)

Force an intercept of 351.8 in 1984 and RUN with the data from
preceding years, and then RUN with 1980 to 1983 data. What
qualifications attach to these forecasts? (The actual average RPI
was 373.2 in 1985.)

(4.6) The works accountant needs to budget for maintenance costs
on chemical plant for the coming year. Plant is shut down for

60 Data fitting

maintenance every three months, and the following costs were
incurred last year:

Quarter 1 2 3 4
Shut-down cost (£000) 8.0 6.4 6.0 5.6

Modify LCURVE to print-out the ‘rate of learning’ 2™ and the
sum of predicted costs for quarters 5 to 8. What qualifying
observations attach to this forecast?

*(4.7) Develop PIECELN to allow the user to select provisional
knot ordinates, and then, for each knot in turn, to specify a
number of trial evaluations for knot ordinates over a stated range.
A knot must be contained within the range given by its adjacent
knots and there must be at least one data point between each knot.
Find the best fitting lines with L =1, 2, 3, 4, 5 for the data of Table
4.4.

¥(4.8) A particular product has the following price structure:

Quantity ordered g 1-99 100-249 250-499 500-999 1000+
Unit price p(q) 10.20 9.95 9.65 9.30 8.80

The total annual cost of stockholding C is the sum of the annual
purchase costs and the interest costs on the capital tied up in
stocks. If the rate of interest is /% per annum, and the average
weekly demand is for 10 stock items then it can be shown that

C =520p(q) + 0.5 9 I p(q)

Use CVP to derive the piecewise linear cost function C, and show
that the optimum stock policy is to order 250 items when I = 20%
at an annual cost of £5066.

¥(4.9) Develop CVP to identify the optimum solution automati-
cally for Problem 4.8, and to step through the values of I from 8%
to 26%. Use the results to plot the optimum batch size against /.

¥(4.10) A particular product has the following piecewise linear
revenue-volume relationship, and incremental fixed costs. Show,
using CVP, that the optimum output is 8000 units if all of it can be
sold.

Quantity sold <=1000 <=4000 <=9000 <=11000<=15000
Unit revenue £ 1.75 2.00 2.30 1.80 0.50
Incremental fixed costs 5000 at O units 8000 at 8000 units

Problems 61

*(4.11) In addition to the product from Problem 4.10 the company
can produce a second with the following piecewise linear
parameters:

Quantity sold <=6000 ==11000 <=18000
Unit revenue £ 2.25 2.0 1.0
Inc. fixed costs £ 4000 at 0 units 5000 at 10000 units

If each unit takes 0.5 machine hours and 0.42 machine hours for
products one and two respectively, find the optimum product mix
if machine time is limited to 10000 hours.

Hint: Transform the volume parameters to the machine-time
domain and RUN CVP for each product individually. Graph the
profit-time relationship for each product on the same graph. Work
towards the constrained optimum from the unconstrained
optimum being guided by the marginal profit rates.

*(4.12) Restructure step 2 of the algorithm for cost-volume-profit
analysis to work on the basis of the following formulation of
piecewise linearity (from Section 4.3):

C=cy+2¢(N~—nj_y). where (N—n;_),=N—n;_,if >0
j = 0 otherwise
Amend CVP to work on this basis.

Chapter 5
Critical path network analysis

Essential theory
5.1 Introduction

The launch of a new product, an increase in manufacturing
capacity, or perhaps the commissioning of a computerized
accounts system are examples of major projects. In every case a
major project management team will find it necessary to plan the
project, and then control its execution.

These can be formidable tasks if the project is capital intensive,
involves a complex set of interrelating factors, and if the success of
the project is vital to long-term development. Further difficulties
arise when it is necessary to coordinate a range of activities, each
with its own demands upon managements’ time and resources.

Network analysis has been developed specifically to assist the
project manager to understand the ramifications for the project as
a whole of the detailed arrangements of individual aspects. It is
applied as a routine in large civil engineering projects. But there is
hardly an area of industry or commerce which has not had
recourse to network analysis at some time to assist the rational
management of projects of every conceivable description.

A small-scale project has been chosen here as a vehicle for
describing the methodology. Even so the reader may well come to
a favourable judgement on the utility of the approach. We suppose
that a company has decided to introduce a modern system of
networked micros for automating the routine clerical tasks of an
existing accounts office. This project clearly involves a range of
preparatory activities. At the very least, these will include: the
collection of information about suitable systems; the recruitment
of systems analysts; the development of new accounting systems
and procedures; training existing staff in the new methods; making
arrangements to phase out the old and phase in the new; and
organizing maintenance contracts for the new equipment.

These major project activities are listed in Table 5.1, where each
activity is associated with an identifying index from 1 to 10. The

62

Introduction 63

table also records whether the start of any activity is dependent
upon the prior completion of other activities. These ‘Immediately
Preceding Activities’ (IPA) represent managements’ considered
opinion on how the activities interlock and interrelate with one
another. Notice that some activities have no IPA, some have only
one, and yet others have several. A final column gives the
expected duration of each activity (in weeks).

Table 5.1 A dependency table for accounts office automation project

Index 1 Activity IPA Duration T
(weeks)
1 Draw up a short list of suitable systems — 4
2 Appraise selected systems 1 8
3 Make a final choice of system 2 3
4 Order and obtain selected system 3 12
5 Develop new systems and procedures 3.8 24
6 Train staff in new procedures 4.5 8
7 Phase in the new procedures 6.9.10 4
8 Recruit systems analysts — 6
9 Document the new procedures 5 12
10 Arrange maintenance contracts 3 5

The development of a dependency table like this is a major
organizational challenge in itself. Success in a complex project,
automating the routine procedures in the accounts office in this
example, requires that the organization be capable both of
generating the information on which to plan ahead, and of
encouraging its people into new patterns of work.

The office automation project has been described in terms of
‘activities’ each of which require ‘resources’ (only time in this
example), and which interrelate through a set of stated IPA. But
the interrelation of activities listed in Table 5.1 can be more
readily assimilated from a network diagram, as in Figure 5.1. Each
node of this network diagram is a specified activity, and the arcs
convey the sense in which the start of one activity depends upon
the prior completion of all those in the IPA list.

Notice that the network diagram includes a ‘start’ and a ‘finish’
node. The start node is implicitly the preceding ‘activity’ to nodes
1 and 8 respectively, since these activities have no entry in their
IPA lists and may be started without delay. Furthermore, all other
activities have to be finished before activity 7 can commence, so it
must follow that node 7 is the only IPA to the finish ‘activity’. The
arcs show the logical (dependency) relationships between the
activities. The convention followed in Figure 5.1 is defined in
Figure 5.2. The convention adopted here is to label with the

64 Critical path network analysis

O
12
8

Figure 5.1 Anactivity on node network diagram: data from Table 5.1

@—4—>Finish

duration of the activity any arc incident from the node associated
with the activity. Thus the arcs incident from node 3 to nodes 4, 5,
and 10 are labelled with the duration of activity 3 which is T; = 3
(weeks). The initial arcs are labelled with zero since activities 1
and 8 may commence immediately.

Ty,
Tx Ty
O,

\T*(Ty

The completion of activity X precedes the start of Y

Activity X has duration Ty
Activity Y has duration Ty

Figure 5.2 Labelling the arcs of an activity on node network diagram

The reader has probably noticed that the network of nodes is
highly structured. That is to say that the network is progressive,
that all the arcs are oriented from left to right; none is oriented
vertically or from right to left. Therefore the general progression of
the activities runs from start to finish. For an example, activity 8
must be completed before activity 5 is started, which awaits the
completions in turn of activities 3, 2 and 1. But the relative timings
of the start of the activities, cannot be inferred solely from the
dispositions of the nodes on the network. The relative timings
depend on the activity durations.

The network of Figure 5.1 displays sufficient information to
calculate the Earliest Start Time (EST) and the Latest Start Time
(LST) of every activity on the supposition that the project must be
begun immediately and completed as soon as possible. The
progressive character of the network ensures that simple

The construction of a progressive network 65

arithmetic is all that is required (details are provided later). Note
the convention for writing the calculated values of the EST and the
LST above and below the activity nodes, as illustrated in Figure
5.3.

EST

Nodes iabelled —p- Critical path

LST
Figure 5.3 Activity on node network diagram, showing the EST, LST,
and the critical path: data from Table 5.1

The project can be finished in a minimum period of 55 weeks.
Activity 2 must start after 4 weeks, for example, whereas activity §
can start at any time before the end of the ninth week.

When an activity has an earliest start time which coincides with
its latest start time then any delay in its start will delay the earliest
completion of the entire project. Such activities are described as
‘critical’, since management has no leeway in arranging the
starting times. A ‘critical path’ from start to finish nodes through
critical activities is shown in Figure 5.3 above. But note that in
other examples there may be more than one critical path.

Activities not on the critical path(s) will have an EST which is
earlier than the LST. The difference between the two is called
‘total float’ since management has, at a very maximum, this
measure of discretion in varying the starting time. In fact there are
several types of float (and the details are described later in
Problem 5.7).

5.2 The construction of a progressive network

The calculation of EST and LST is a straightforward matter when
the network is progressive. The network may be displayed on a
monitor without ambiguity even when the arcs are shown as
undirected edges. The method described below for the generation
of a progressive network will also signal any contradictory logic
which may be obscure but none the less present in the lists of
IPA.

66 Critical path network analysis

One can envisage a rectilinear grid of horizontal and vertical
rulings with activities positioned only at the nodes, i.e. intersec-
tions. The idea is to locate the activities at the nodes on this grid,
starting from the left-hand vertical ruling and working to the
right. As many activities as possible are located on each vertical
ruling while maintaining the convention of a progressive network,
that the arcs which show the IPA logic must be oriented to the
right.

The method is iterative, and successive iterations correspond to
the allocation of activities to the nodes of successive vertical grid
rulings. The iterations end when all the activities have been
allocated. The algorithm can be described as follows:

Carry out the following two steps at each iteration:

Step 1. Locate activities at nodes of the current vertical ruling if
and only if they have empty IPA lists (as reduced by step 2
in earlier iterations).

Step 2. Delete from all the IPA lists all those activities which have
been located in step 1.

This algorithm (due to Fulkerson) is easy to carry out on the data
of Table 5.1. A note is made of the activities which have been
located in step 1 at each iteration, and deletions in step 2 can be
shown by crossings out. A failure to locate any activity in step 1,

Table 5.2 The allocation of activities to the nodes of a progressive network, using
the algorithm in the text and the data of Table 5.1

Activity Iteration (vertical ruling)®
0 1 2 3 4 s 6 7

1 — — _ _ _ _
2 1 1 — — — - - —
3 2 2 7 — — - - -
4 3 3 3 3 — - - =
5 3,8 3.8 3 3 — - - -
6 4.5 45 45 4.5 45 — — —
7 6910 6910 69,10 6910 6916 $9 — —
8 _ _ _ —_ — _
9 5 5 5 5 3 — — —

10 3 3 3 3 - - - -

Finish 7 7 7 7 7 7 7 —

Activities

located in

step1®® start 1,8 2 3 4510 6,9 7 finish

Notes: (a) The start node is trivially located at iteration 0, and is omitted from all the IPA to preserve clarity of
presentation.
(b) Assigned in index order to horizontal rulings about the horizontal axis of the network (one ruling
above and then one below, two rulings above and then two below, etc.).
(c) Deletions in step 2 indicated by crossings out.

The construction of a progressive network 67

when some one or more activities remain to be located, will
indicate a contradictory dependency logic. Table 5.2 should be
self-explanatory.

The reader can check that the bottom row of the table
corresponds to the disposition of the nodes on Figures 5.1 and 5.3.
The arcs can then be drawn from each activity in accordance with
the original IPA list.

If you try to construct a progressive network for the data in
Table 5.3 it soon becomes apparent that the lists of IPA are
mutually contradictory.

Table 5.3 Demonstration of the algorithm on a set of inconsistent data

Data Algorithm
Iteration
Activity IPA Activity 0 1
1 2 1 2 2
2 3 2 3 3
3 1 3 1 1
Locate start ?

Program PROGNET is designed to carry out the algorithm
described above. It consists of a short main program which
dimensions arrays in order to accept up to 100 activities and up to
10 IPA per activity. It sequences PROCinput, PROCterminal and
PROCreorder as follows:

PROCinput: allows the user to input the dependency table for
activity Y, for Y = 1,2, ..., N. Each activity Y
has an IPA list which is stored in an array
PREC(Y,I) and the element PREC(Y,O) stores
the number of preceding activities. IMAX is set
equal to the maximum of the PREC(Y,0O) over
all Y. Elements of an array TERMINAL(X) are
set to —1 for any activity X which is contained in
the union of activities in the separate IPA lists.

PROCterminal: accumulates the set of IPA for the Finished node
N + 1in PREC(N + 1,I), where [= 1,2, ...,
PREC(N + 1, O).

PROCreorder: controls the iterative nature of the algorithm
via the variable IT, which corresponds to the
index of the vertical grid ruling. Calls
PROCstepl at each iteration, and locates the
Finished node N + 1 on completion. Calls
PROCrestore.

68

Critical path network analysis

PROCstepl: corresponds to the description of step 1 in the

text above, using the test PREC(Y,0) = O
whereupon an activity Y, say, is assigned to an
array NODE(IT K), where the index K corres-
ponds to a horizontal grid ruling. Further arrays
IT(Y) and K(Y) store ‘the x and y coordinates’
IT and K of the node for activity Y. Updates
KMAX the maximum value of K found to date.
Prints ‘infeasible network’ as appropriate or
calls PROCstep?2 for every unassigned activity.

PROCstep2: corresponds to the description of step 2 in the

text above; deletion of the activity Y from the
IPA list of activity X is achieved by reversing the
sign of the element storing Y in the array
PREC(X,I), and the value of PREC(X,0) is
reduced accordingly.

PROCrestore: restores the array PREC(Y,I) to its earlier

condition following PROCinput.

Type in PROGNET from the listing below.

Program 5.1 PROGNET: Assigns activities to nodes of a
progressive network

REM PROGNET

REM SEQUENCES ACTIVITIES BY FULKERSON'S APPROACH

REM FOR AN ACTIVITY ON NODE PLANNING NETWORK

REM IN ORDER TQ CONSTRUCT A PROGRESSIVE NETWORK

DIM PREC(100,10),NODE(10,16),IT(100),K(100),TERMINAL(100)

PROCinput
PROCterminal
PROCreorder
END

DEF PROCinput

INPUT "HOW MANY ACTIVITIES ", N

PRINT "NOW INPUT THE PRECEDENCE RELATIONSHIPS®
PRINT "ON EACH PROMPT ENTER A PRECEDING ACTIVITY"
PRINT "ENTER ZERO WHEN NONE REMAIN"

PRINT : PRINT " ACTIVITY PREDECESSOR"
IMAX=0 : KMAX=0

FOR Y= 1 TO N

I=@ : PRINT

PRINT Y;

REPEAT

I=I+1

INPUT TAB(25) X

IF X>0 THEN PREC(Y,B)=PREC(Y,0)+1

IF X>6 THEN PREC(Y,I)=X : TERMINAL(X)=-1

UNTIL X=8

IF I>IMAX THEN IMAX=I

NEXT Y

PRINT

ENDPROC

15p0
1510
1520
1530
1540
1550
1560
157@
2000
2010
2020
2030
2040
2050
2060
207¢
2080
2090
2100
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
3000
3910
3020
3838
3040
3050
3060
3070
3080
3090
3100
3119
3120
3130
3140
4000
4010
4029
4030
4040
40580
40680
4070
4080

The construction of a progressive network

DEF PROCterminal

1=0

FOR X= 1 TO N

IF TERMINAL(X)=8 THEN I=I+1 : PREC(N+1l,I)=X
NEXT X

PREC(N+1,0) =1

ENDPROC

DEF PROCreorder
2=0 : IT=@ : IT(B)=0 : K(B)=1

REPEAT

PRINT : IT=IT+1
PROCstepl

UNTIL 2=N

NODE (IT+1,1)=N+1

NODE(IT+1,8)=1
PROCrestore
ENDPROC

DEF PROCrestore

FOR ¥Y= 1 TO N

J=0

FOR I= 1 TO IMAX

IF PREC{Y,I)<® THEN J=J+1

IF PREC(Y,I)<® THEN PREC(Y,I)=-PREC(Y,I)
NEXT I

PREC(Y,0)=J

NEXT Y

ENDPROC

DEF PROCstepl

K=0 : PRINT "REORDERING ITERATION ";IT

FOR ¥= 1 TO N

IF PREC(Y,@)=0 THEN K=K+l : PRINT Y;" AT NODE ";IT;","iK
IF PREC(Y,@)=0 THEN 2=2+1 :NODE (IT,K)=Y :IT(Y)=IT :K(Y)=K
IF PREC(Y,@)=@ THEN PREC(Y,0)=-1

NEXT Y

NODE {IT, @) =K

IF K>KMAX THEN KMAX=K

IF K=@ THEN PRINT "INFEASIBLE NETWORK" : END

FOR X= 1 TO N

IF PREC(X,®) > @ THEN PROCstep2

NEXT X

ENDPROC

DEF PROCstep2

FOR k= 1 TO K

FOR I= 1 TO IMAX

IF PREC(X, I)=NODE (IT,k) THEN PREC(X,@)=PREC(X,0)-1
IF PREC (X, I)=NODE (IT,k) THEN PREC (X, I)=-PREC(X,I)
NEXT I

NEXT k

ENDPROC

69

When satisfied with the accuracy of your listing you should RUN
with the data of Table 5.1. Note that a zero is entered to indicate

the end of each list of IPA (pressing the RETURN key enters a
zero on the BBC Micro). The output corresponds to the results in

the lower half of Table 5.2, and the grid is displayed in Figure 5.4.

70

) am=

| |
K=2 i 8 i i T
K=1 Start 1| 2 Ci 4 i; 7 Finish
K=3 10
|| Y A T
11=0 IT=1 17=2 1T=3 1T=4 17=5 1T=6 17=7

Figure 5.4 Assignment of activities to nodes of a progressive network:

RUN

HOW MANY ACTIVITIES 2?10
NOW INPUT THE PRECEDENCE RELATIONSHIPS

data from Table 5.1

ON EACH PROMPT ENTER A PRECEDING ACTIVITY

ENTER ZERO WHEN NONE REMAIN

ACTIVITY PREDECES SOR

1 [}

2 1

4

3 2

4

4 3

4

5 3

8

4

6 4

5

4

7 6

9

1

4

8 [

9 5

[}

18 3

4
REORDERING ITERATION 1
1 AT NODE 1,1
8 AT NODE 1,2
REORDERING ITERATION 2

2 AT NODE 2,1

REORDERING

ITERATION 3

3 AT NODE 3,1

Earliest and latest start analysis 71

REQRDERING ITERATION 4
4 AT NODE 4,1
5 AT NODE 4,2
19 AT NODE 4,3

REORDERING ITERATION 5
6 AT NODE 5,1
9 AT NODE 5,2

REQRDERING ITERATION 6
7 AT NODE 6,1

The reader should now do Problem 5.1.

5.3 Earliest and latest start analyses

It is a simple matter to calculate the Earliest Start Time (EST) for
each activity. The start of activity Y, say, must be preceded by the
completion of each immediately preceding activity. It follows that

ESTY = MAXXeIPA of Y{ESTX + Tx} where ESTO =0
= ESTP(Y) + TP(Y)

where P(Y) is written for the ‘maximizing’ X. (Note that P(Y)
need not be unique.)

Since the activities are assigned to the nodes of a progressive
network, the EST could be calculated recursively, from the
left-hand vertical ruling to the right-hand vertical ruling.
Alternatively, the EST calculation can be made immediately an
activity is assigned to a node of the progressive network. Taking
either approach one would find for the data in Figure 5.1 that

EST, =

ESTI =ESTO+0=0 :P1=
ESTg =EST; + 0=20 :Pg =
EST2 =EST1 + Tl =4 . P2 =
EST3 = EST2 + T2 =12 . P3 =
EST, =EST; + T3 = 15 1Py =
ESTs = MAX{EST; + Ts; EST; + Tg} = 15 . Ps =
ESTlo = EST3 + T3 =15 : P10=
ESTs = MAX{EST, + T,; ESTs + Ts} = 39 :Pg =
ESTy, =ESTs + Ts = 39 1Py =
EST, = MAX{ESTs + T¢; ESTg + Ty; ESTg + Tyo} = 51: P; =
ESTH = EST7 + T7 = 55 . P11=

It is now easy to trace the critical path back from node (N + 1). In
the present example this gives the unique sequence.

P11=7 P7=9 P9=5 P5=3 P3=2 P2=1

~NOUumUnwwwhh =L OO

72 Critical path network analysis

Suppose that activity Z is an Immediately Succeeding Activity
(ISA) to activity Y. Then the Latest Start Time, LSTy, of activity
Y is given by

LSTy = MIN {LST; — Ty} where LSTn,1 = ESTn4q
ZelSAofY

This follows the recognition that LSTy must be the smallest sum
LSTz — Ty. These calculations proceed recursively across the
progressive network from the right to the left. In the present
example based on Figure 5.1 one finds

LST11 =55
LST7 = LST“ - T7 =51

LST6 = LST7 - T6 = 43
LSTQ = LST7 — Tg =39
LST4 = LST6 - T4 = 31

LSTs _ MIN{LSTs — Ts; LST, — Ts} = 15

LST]O = LST7 — T10 =46

LST; _ MIN{LST, — T5; LSTs — T3; LSTy, — T3} = 12
LST2 = LST3 - Tz = 4

LST] = LST2 — Tl = 0

LSTg = LST5 — Tg =9

Make the following changes and additions to PROGNET. The
resulting program, called CRITPAT, allows the user to input the
activity duration into array T prior to inputting the list of IPA.
Three new PROCEDURES, PROCearliest_start, PROClatest_
start and PROCprint are called at the end of the main
program.PROCearliest_start and PROCIatest_start are based
very closely upon the description of the calculations of EST and
LST. PROCprint is an output procedure which tabulates the
activities which have been assigned to each node of the progressive
network. It also prints a list of EST, LST and total float.

REM CRITPAT
REM CONDUCTS EARLIEST AND LATEST START TIME ANALYSIS

REM FOR AN ACTIVITY ON NODE PLANNING NETWORK
REM AND FINDS A CRITICAL PATH

DIM P(1080),EST(108) ,T(100),LST(160)

PROCearliest_start
PROClatest_start
PROCprint

END

PRINT : PRINT " ACTIVITY DURATION PREDECESSOR"

I=0 : LST(Y)=10"19
PRINT Y; : INPUT TAB(19) T(Y)

INPUT TAB(31) X

DEF PROCearliest_start

VDU 5

FOR it= 1 TO IT+1

FOR k = 1 TO NODE (it, 0)

Y=NODE (it, k)

FOR I= 1 TO PREC(Y,9)

X=PREC (Y, I)

IF X<>0 THEN IF EST(Y)<EST(X)+T(X) THEN P(Y)=X

IF X<>@ THEN IF EST(Y)<EST(X)+T(X) THEN EST(Y)=EST(X)+T(X)

NEXT I
NEXT k
NEXT it
ENDPROC

DEF PROClatest_start

LST (N+1) =EST {N+1)

FOR it = IT+l TO 2 STEP -1
FOR k = 1 TO NODE(it, @)
Y=NODE (it, k)

FOR I= 1 TO PREC(Y,9)
X=PREC (Y, I)

IF X<>@ THEN IF LST(X)>LST(Y)-T(X) THEN LST(X)=LST(Y)-T(X)

NEXT I
NEXT k
NEXT it
ENDPROC

P DEF PROCprint

PRINT : PRINT "ITERATION INDEX ACTIVITY"
PRINT TAB(3) "it";TAB(17) "k"

FOR it=1 TO IT

FOR k=1 TO NODE(it,#)

PRINT TAB(4); it;TAB(17);k;TAB(25);NODE (it,k)
NEXT k

NEXT it

PRINT : PRINT

PRINT "ACTIVITY EARLIEST LATEST FLOAT"
PRINT " START START"

PRINT " Y EST (Y) LST(Y) LST-EST"
FOR ¥=1 TO N

73

PRINT TAB(3);Y;TAB(l5) EST(Y);TAB(26) LST(Y);TAB(36) LST(Y)-EST(Y)

NEXT Y

PRINT “FINISH";TAB(l5) EST(Nt+l);TAB(26) LST(N+1);TAB(36)

PRINT : PRINT

PRINT "CRITICAL PATH"
Y=P(N+1)

REPEAT

PRINT Y,

Y=P(Y)

UNTIL Y=#0

ENDPROC

74 Ciritical path network analysis

RUN this program, called ‘CRITPAT’, with the data of Table
5.1, noting that the activity duration is requested prior to the list of
IPA. The final part of the output, which is shown below,
corresponds to the results obtained earlier in this section. You
should note that this program ignores the possibility of multiple
critical paths, and this aspect is left as an exercise. Do Problems
5.3t0 5.7 now.

ITERATION INDEX ACTIVITY
it k
1 1 1
1 2 8
2 1 2
3 1 3
4 1 4
4 2 5
4 3 190
5 1 6
5 2 9
6 1 7

ACTIVITY EARLIEST LATEST FLOAT

START START
Y EST(Y) LST(Y) LST-EST
1 [} [/ a
2 4 4 [}
3 12 12 [}
4 15 31 16
5 15 15 [}
6 39 43 4
7 51 51 [}
8 [} 9 9
9 39 39 [}
10 15 46 31
FINISH 55 55 [}

CRITICAL PATH

NWUIWw

5.4 Graphics output

It is obviously desirable to have a network displayed on the
monitor, at least for small illustrative examples. The following
procedures produce a graphics output which resembles the
network diagram of Figure 5.3. The general approach is to offer
the user the option of a graphics output; flag G$ = ‘Y’ if graphics
are required. If it transpires that more than five horizontal or eight
vertical grid rulings are necessary, then the graphics option is
withdrawn automatically, and flag G$ = ‘N’

The activity indices are placed on the network grid in

Graphics output 75

PROCdraw_activities, and the network logic is plotted in
PROCdraw_logic. Both these procedures are called from PROC-
earliest_start. PROCscreen_driver halts the graphics display and
the user can proceed at his leisure by a tap on the space bar. This
activates PROCdraw_times which displays the EST and LST
alongside the nodes, and a further tap of the space bar activates
PROCdraw_crit_path. A final tap of the space bar yields the
tabular print summary of PROCprint.

Make the following changes and additions to Program
CRITPAT

19 REM NETWORK

20 REM DRAWS ACTIVITIES AND NETWORK LOGIC

30 REM FOR AN ACTIVITY ON NODE NETWORK

490 REM DISPLAYS TIME A