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Preface 

Mathematical models can be used to analyse business problems in 
order to heighten managements ' understanding of the issues. This 
approach can result in bet ter decisions and more robust long-term 
strategy. The process has become known as Operat ions Research 
( O R ) and micros are commonly used for the numerical aspects of 
the work. 

The purpose of this book is to introduce the reader to the 
application of the computer language called B A S I C to a selection 
of material from the core curriculum of O R mathematical models . 
It fills the gap which has been left between the texts on the 
'Management application of computers ' and the texts on 
O p e r a t i o n s research techniques ' . It is both a reader , showing how 
the micro can solve computat ional problems effectively and 
efficiently, and a workbook which provides a graded series of 
programming tasks. The reader should therefore have easy access 
to a computer . A primary aim is to build competence and 
confidence in a reader ' s ability to design well-structured programs 
for computat ional problems in a management context. A t the 
same time the underlying theory has been presented as fully as 
space allows. The writer has kept constantly in mind the needs of 
the independent learner, and on average each chapter ends with a 
dozen programming exercises. 

This book is intended primarily for introductory use by 
undergraduate management , computer , technology and science 
students. The elementary sections are suitable for business studies 
and school students who wish to see just how useful modern 
approaches can be to the analysis of business operat ions. But 
science and technology graduates will also find it a useful 
introduction to ' O R on the micro ' . 

The qualities of the computer language B B C BASIC have 
something in common with the qualities of the spoken English 
language which characterize B B C broadcasts. The Ustener to B B C 
English will appreciate the clear enunciation and clear grammatic­
al construction. It is easy to follow. The reader will also find it easy 



to take in the sense of a B B C B A S I C program. But there is no 
more compulsion to employ the B B C BASIC dialect in one 's 
programming tasks than there is to adopt B B C English for all 
everyday communicat ion. The choice of B B C BASIC for this 
book is in the reader ' s interests, whatever the dialect of B A S I C 
supported by his or her computer . 

The choice of material from the O R core curriculum is made in 
the context of the But terworths ' B A S I C series as a whole, because 
it is desirable to avoid unnecessary overlap with the material of 
companion volumes. The choice is also constrained by the 
available space. Companion volumes cover contiguous material: 

BASIC business simulation by Ρ J Stratfold, (forthcoming) 
BASIC forecasting by D G Johnson and Μ King, (forthcoming) 
BASIC investment appraisal by R Η Mole , Butterworths , 1985 
BASIC matrix methods by J C Mason, Butterworths , 1984 
BASIC numerical mathematics by J C Mason, But terworths , 

1983 
BASIC statistics by J Tennant-Smith, Butterworths. 1985 

Chapters 1 and 2 are brief introductions to the BASIC language 
and to the field of Business Operat ions Research. Chapter 3 deals 
with Index Numbers , which are conceptually fairly straightforward 
and of immediate importance to any businessman. It provides a 
gentle introduction to programming in structured BASIC . A 
number of programs for Da ta Fitting are developed in Chapter 4. 
These are described in the context of cost-volume relationships, an 
essential tool for financial analysis and control. 

Critical Path Network Analysis is the topic of Chapter 5, which 
illustrates how a simple program can be developed to include 
progressive complexity. The fully developed program utilizes the 
graphics facilities of modern micros to display a critical path 
planning network. In Chapter 6 on Linear Programming, several 
programs are given for a range of computational tasks, from a 
complete enumerat ion of the vertices of the feasible region to an 
implementat ion of the two-phase simplex method for mixed hnear 
inequalities. A final chapter considers Markov chains in the 
context of policies for preventative maintenance. 

The writer would like to record his gratitude to all those who 
contributed to this book, and especially to D o n Goodsell of 
Butterworths who guided the project to completion, to Rodger 
Mustoe who did his best to find the bugs in the programs, to R Η 
Mole Senior for dropping everything to read the manuscript for 
grammatical errors and lack of clarity, to Geof Gregory and John 
Wilson for their comments on Chapter 6, to colleagues, especially 



David Johnson, for being there in the background and ready to 
Hsten and help when needed , to Felicity Nash for secretarial 
assistance, to Joyce Savage for keeping the computing equipment 
in excellent order , and to my family for putting up with it all! 

I acknowledge the permission of the Chartered Association of 
Certified Accountants to reproduce a few past examination 
questions. 

R H Mole 



C h a p t e r 1 

Introduction to BASIC 

1.1 Dialects of the BASIC language 

BASIC is a powerful and flexible computer language. It is easy to 
learn and it is supported on all modern micros. BASIC is also easy 
to apply to most mathematical models of operat ions research. The 
use of the microcomputer removes the tedium from repetitive 
calculations, so allowing concentration on the ideas which 
underpin the calculations. The inevitable price for these consider­
able advantages is that scrupulous attention has to be paid to 
detail , both in design and in implementat ion of BASIC computer 
programs. 

BASIC was devised in the 1960s at Dar tmouth College, U S A , to 
provide a Beginners All-purpose Symbolic Instruction Code . Over 
the years it has evolved into many closely related dialects, as 
computer manufacturers have sought to give their products a 
competitive edge. This is particularly true of the last few years with 
the mass availability of small but highly efficient microcomputers. 
As a result the B A S I C dialect of a modern micro is almost always 
an advance on the dialect available on the large mainframe 
machine. The best Β ASICs encourage the user to write 
's tructured' programs which are relatively easy to read and debug. 

Three excellent instructional manuals on BASIC are cited at the 
end of this chapter for the reader who needs a general 
introduction. This short chapter assumes that the reader has 
already some acquaintance or familiarity with BASIC. Its purpose 
is to emphasize the main points, paying special attention to 
particular aspects which in my experience students find difficult to 
appreciate. 

The adoption by the British Broadcasting Corporat ion of the 
Acorn micro for a series of popular computer education 
programmes has resulted in the label ' B B C attaching both to the 
Acorn micro itself and to the Acorn BASIC dialect. In this book 
the B B C BASIC dialect has been preferred for several reasons. 
First, the great majority of British school children who learn 
computing languages will have been introduced to BBC BASIC 
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through use of the Acorn B B C Model Β Micro or the B B C Master 
series of micros. Second, it is possibly the best implementation of 
BASIC in its own right, and so is widely used in further and higher 
education. Third, it is easy to make minor alterations to the 
programs in this book to allow them to run on any modern 
microcomputer . This chapter describes how a few extra statements 
can ensure compatibiHty with even the most primitive BASIC 
dialect. 

1.2 Assignment and non-executable statements 

The instructions which are held within a BASIC program are 
known as s ta tements , and they may be entered into the machine in 
any sequence. Each statement is begun by a unique line number 
and the computer will sort the statements on entry according to 
numerical order. When a program is R U N the computer will 
slavishly 'execute ' these s ta tements , stopping prematurely only if a 
syntax error is discovered. Errors may be edited out in three ways: 
an existing s tatement is overwritten if a new statement is typed in 
with the same line number ; typing the line number followed 
immediately by pressing the R E T U R N key will remove a 
s tatement entirely; it is easy to make small amendments within a 
s tatement by the use of a C O P Y key and the 'cursor control ' in 
conjunction with normal keyboard entry. 

Most s tatements ' do ' something or other , with the exception of 
the E N D statement which signals the end of the program, R E M 
statements which contain R E M a r k s by the programmer that are 
not executed by the machine, and blank statements which break 
up segments of s tatements . This last cosmetic device can 
contribute greatly to the clarity of a program, but it is only 
available in some BASICs (by typing a space after the line number 
before pressing the R E T U R N key). 

A n assignment s tatement is used for carrying out arithmetic 
operat ions, as in 

7 0 1 0 X = (X + 2*X''3 ) / 4 - 2 

Statement 7010 looks superficially like an equation, but it is an 
instruction to replace the current numerical value of the variable X 
by the expression on the right-hand side. Primitive BASIC dialects 
will require the insertion of the word L E T after the line number . 
Notice that blank spaces may be introduced at will to aid legibihty, 
and also that there is little value in 'simplifying' the expression by 
standard algebraic procedures . If the value of X were zero prior to 
the execution of s tatement 7010 then the new value after execution 
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would be - 2 . This is because an assignment s tatement containing 
arithmetic operators is evaluated according to a hierarchical 
system of priorities, working from left to right within the following 
priorities: 

( ) parentheses First priority 
exponentiat ion Second priority 

X and / multiplication and division Third priority 
+ and - addition and subtraction Fourth priority 

B B C B A S I C automatically initializes numeric variables at zero 
prior to RUNning a program, but primitive dialects may not, and 
they can therefore produce bizarre output unless the user explicitly 
initializes all numeric variables prior to use, as in 

1 0 X = 0 : Y = 0 : Z = 0 

The programs in this book will generally, but not invariably, 
initialize variables in this way. Notice that line 10 is an instance of 
a multiple s tatement line, ie the colons indicate the presence of 
three independent s tatements . Some muhiple statement lines are 
employed when it helps to achieve clarity of expression. Since 
s tatements are normally numbered here in muhiples of 10, the 
reader who is restricted to a BASIC which cannot accept muhiple 
statement lines will always be able to proceed by inserting a series 
of additional single s tatements on successive lines. 

1.3 Variables, arrays and standard functions 

The names of numeric variables in B B C BASIC may be long, 
subject to certain restrictions which can be found in the 
appropriate manuals . For instance Variable X5 could be 
substituted for X in statement 7010, and long names can on 
occasion make an important contribution to program clarity. If 
your B A S I C will not support long names then you should 
improvise short ones , keeping a detailed list in a R E M statement 
as a reminder and to guard against the risk of using the same 
variable for two parallel purposes. The choice of variable name 
depends upon some relatively close association in the mind of the 
programmer , e.g. verbal as in the variable named Interest , or 
algebraic as in the variable X. 

String variables are not restricted to numeric quantities. They 
are automatically initialized to the 'null ' string in B B C BASIC and 
they may be assigned text composed of alphanumeric quantities. 
String variables are identified to the computer by the dollar 
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character $ postfixed to the string variable name, and the string 
value must be enclosed in quotat ion marks in any assignment, as in 

7 0 2 0 inonth3$ « "March 

The statement in line 20 below is a DIM statement which 
reserves storage for a string array Month$ , which could store not 
only the months of the year in Month$( l ) to Month$(12), say, but 
also further information in the 'first' e lement , such as 
Month$(0)="1986 - Industry Year" . Primitive BASICs may not 
support a zero argument for an array, however, and readers may 
have to improvise an ordinary string variable in substitution. 
Statement 7030 below assigns 'March ' to the element Month$(3) 
as a consequence of the preceding statement 7020. 

A variable array is a natural choice when representing 
subscripted algebraic variables and matrices. For instance, the 
coefficient in the Ith row and the J th column of matrix A could be 
stored in the element A(I , J ) of a two-dimensional array A . 
Statement 20 also has the effect of reserving memory for a 
two-dimensional numeric array A . This can cater for the elements 
of a matrix with 12 rows and 31 columns (or 13 and 32 if one 
includes zero arguments) . It could be used, for example, to record 
the daily turnover in a D I Y retail store which opens every day of 
the month . 

2 0 DIM A ( 1 2 , 3 1 ) , M o n t h $ ( 1 2 ) 
7 0 3 0 M o n t h $ ( 3 ) = m o n t h 3 $ 

The computer has a range of built-in standard functions which 
share a superficial resemblance to arrays, but they have a different 
purpose and do not involve D I M statements. Thus 

SQR(X) finds X\5 
L O G ( X ) finds the logarithm of X to base 10 
LN(X) finds the natural logarithm of X 
STR$(X)finds the string equivalent of X , i.e. " X " 
etc 

These are also instances of reserved words which cannot be used as 
variable names , or even to start off longer variable names , due to 
the ambiguity which would result. For instance, the variable 
named L O G I S T I C is invalid, though Logistic is valid. 

1.4 Input and output 
Data can be read using R E A D and D A T A statements, or from a 
data file. The programs in this book utilize neither method, but the 
exercises call for the reader to develop the programs to work in 
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either way (the appropriate manuals should be consulted). Da ta 
can be entered via assignment s tatements or through the keyboard 
during a R U N whenever an I N P U T statement is executed. This 
'conversational ' form of data entry is one of the real strengths of 
the B A S I C language. The reader may care to type in and R U N the 
following program, which is self explanatory (a 2 9 % basic rate tax 
is assumed). 

1 0 INPUT "Book p r i c e P r i c e 
20 R o y a l t y = 0 . 0 7 5 
3 0 P o s t _ t a x = 0 . 7 1 
40 PRINT "The A u t h o r ' s p o s t t a x y i e l d = £ " ; P r i c e * R o y a l t y * P o s t _ t a x 
50 END 

Notice the texts in lines 10 and 40. They are printed out exactly as 
they appear between their quotat ion marks , e.g. the space before 
the end quotes in line 10 is reproduced. This is an example of 
something included only to help legibility. The syntax of the 
I N P U T statement in Hne 10 causes the computer to print a 
question mark when it encounters the comma! The semicolon in 
Hne 40 causes the computer to print the numeric value of the 
ari thmetic expression immediately after the text (all the blank 
spaces in this algebraic expression are ignored). The 31 textual 
characters occupy columns 0 to 30, which explains why the 
requisite nine columns for the numerical solution fit onto the end 
of a standard 40 column screen display (i.e. columns 0 to 39 for the 
B B C Micro in Mode 7) . 

If the semicolon is replaced by a comma there will be nine empty 
character spaces on the text line, and the numerical solution is 
printed on a new line. This is a consequence of the combination of 
the following points: the s tandard number of 10 columns per print 
field; the allocation to successive print fields of items separated by 
commas in the P R I N T list; and the automatic 'right justification' 
of numerical amounts within print fields. So the semicolon 
suppresses the normal separation of print i tems, and if a P R I N T 
statement ends with a semicolon then this suppresses the normal 
hne feed when the next P R I N T or I N P U T statement is 
encountered. Text is always 'left justified' and numerical output is 
'right justified' within a print field. 

I N P U T and P R I N T statements contain many traps. Distinguish 
carefully between zero and the letters o and O , and between 1 and 
the letters 1, i and I. Also be careful with your response to I N P U T 
statements; the number 2500, say, must not be entered as 2,500 
which imphes two separate data items of 2 and 500 respectively. 
However , the positioning of printed output can be controlled quite 
easily and precisely with the T A B function, where TAB(N) 
moves the print cursor to column N. This is often used in the 
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programs which follow. It is also easy to control the scrolling 
action of the screen so that the user does not miss the early part of 
the printout—refer to your manuals for details. Some output is 
best viewed in an 80 column format, which can be obtained in 
B B C B A S I C in Mode 3. B B C BASIC also allows easy control of 
the width of the print field and the number of decimal places. For 
instance, line 5 below rounds the quantities shown on the printout 
to the nearest penny: 

5 @% = &02020Ά 

Please consult your manuals for the details of these facilities. 

1.5 Loops, conditional statements and user defíned functions 

A ' R E P E A T U N T I L ' loop is used to repeat a given action as often 
as necessary to satisfy a stated condition, whereas a ' F O R N E X T ' 
loop is repeated a predetermined number of times. These loop 
constructions are contrasted below in equivalent programs for 
forming the partial sums of the roots of the integers from 1 to 10 

' F O R N E X T ' ' R E P E A T U N T I L ' 
5 §% = &02020A 5 @% = S02O20A 

1 0 SUM = 0 1 0 I = 0 : SUM = 0 
20 FOR I = 1 TO 1 0 20 REPEAT 
30 SUM = SUM + SQR(I ) 3 0 I = I + 1 
40 PRINT I , SUM 40 SUM = SUM + SQR(I) 
50 NEXT I 50 PRINT I , SUM 
60 END 60 UNTIL I = 1 0 

7 0 END 

The ' F O R N E X T ' version is preferable here as the programmer 
has decided in advance that the loop will be performed 10 times. 
Now suppose that we wanted the partial sums, not of the roots but 
of complicated functions of the integers. This can be handled 
easily and elegantly with user defined functions. The following 
amendments and additions are required. 

' F O R N E X T ' ' R E P E A T U N T I L ' 
3 0 SUM = SUM + F N m o l e d ) 40 SUM = SUM + F N m o l e { I ) 
80 80 
90 F N m o l e i X ) 90 FNmole{X) 

1 0 0 = (X + 2*X''3) / 4 - 2 1 0 0 = (X + 2 * X ' 3 ) / 4 - 2 

The function called mole(X) is defined in statements 90 and 100, 
as in s tatement 7010 given earlier. Lines 30 and 40 accumulate the 
requisite partial sums. The program structure is crystal clear, and 
the partial sums of any other function of the integers can be 
obtained simply by changing the line 100. The reader can check 
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this by substituting the s tatement 100 = SQR(X) which will 
reproduce the earher results. 

Now suppose that the partial sums are to be performed only 
until a target sum of 20 is achieved or exceeded for the first t ime. It 
is only necessary to change Une 60, m the ' R E P E A T U N T I L ' 
version, to achieve an efficient result. The T O R N E X T ' version 
requires the use of TF T H E N ' in lines 25 and 40, and modifications 
to lines 10 and 20. This is inefficient as the programmer has to 
guess the value of the loop delimiter. 

T O R N E X T ' ' R E P E A T U N T I L ' 
1 0 SUM = 0 : TEST$ = "OK" 6 0 UNTIL SUM >= 20 
20 FOR I = 1 TO 40 0 
25 IF SUM >= 20 THEN TEST$ = "" 
40 IF TEST$ = "OK" THEN PRINT I , SUM 

If your B A S I C does not support ' R E P E A T U N T I L ' you should 
simulate such loops by the simple technique which is explained in 
the appendix to this chapter . Some BASIC dialects do not provide 
' IF T H E N ' statements as in line 25, or in the developed form ' IF 
T H E N E L S E ' . The appendix shows how the effect of these 
statements can be improvised using the ' IF T H E N G O T O ' 
statement which is always available in BASIC. 

1.6 Structured BASIC 

The ' IF T H E N ' s tatement is used a great deal in this book, but 
never in the form ' IF T H E N G O T O ' . In fact the G O T O statement 
may be conditional or unconditional and it directs the execution of 
the program to a specified line number . Either form can wreck the 
presentation of a clear and logical program structure. The 
resulting mess, colloquially termed 'spaghetti programming' , is 
very difficult for the programmer , let alone a third party, to read 
or debug. G O T O statements have been banned from this book, 
and the reader should seriously consider a similar resolution! 

It is simpler to think of a complicated programming task in 
terms of its constituent parts . Arrange the detail of each part 
separately, and control the execution and sequencing of the parts 
with a 'main ' program. The principle is exactly similar to that of 
managerial delegation of tasks to subordinates. The manager 
allocates and coordinates the work of subordinates, who in an 
ideal world would be able to work on their own tasks without 
interference from, but with cognizance of, the work of others. 
When the allocation of work is ill-considered the outcome is 
inefficiency and confusion; 'spaghetti management ' in fact! 

In structured BASIC a main program organizes a number of 
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E N D P R O C R E T U R N 

1.7 The approach of this book to BASIC programs 

This is a short book, and yet even so those sections and exercises 
marked with an asterisk may be omitted on a first reading. Most 
readers should be able to key the programs into their computers 
direct from the text. Write or te lephone me at Loughborough 
University, Ashby Road , Loughborough, Leics. about the 
availability of disk software. 

My primary aim is that the reader learns how to use BASIC for 
the computat ions of O R models. To this end the programs are as 
short and clear as I can make them. Thus they cannot be 
'user-proof e.g. the programs will crash if users enter unaccept­
able data. It is very easy for anyone to make an error when keying 
in data, and the preliminary exercise in each chapter asks the user 
to write an edit P R O C E D U R E , PROCedi t say, which is called 

separate tasks called P R O C E D U R E S . For example, almost every 
program in this book has an input P R O C E D U R E , often called 
PROCinpu t , and an output P R O C E D U R E , called PROCpr in t . 
Notice the abbreviated description and the different use of upper 
and lower cases. P R O C E D U R E S begin with a D E F P R O C 
statement , as in D E F PROCinpu t . These may be very short, and 
average a dozen or so statements in this book. All P R O C E ­
D U R E S end with an E N D P R O C statement which instructs the 
computer to execute the statement after the original call of the 
P R O C E D U R E . A blank statement line is used at the start and 
end of each P R O C E D U R E to emphasize the structure of the 
program. 

The reader who is new to structured programming will soon find 
the approach natural and convenient. Readers without B B C 
BASIC can substitute S U B R O U T I N E S for P R O C E D U R E S 
throughout the programs of this book. No extra lines are required. 
A descriptive R E M can substitute for a D E F P R O C , a R E T U R N 
for an E N D P R O C , and a G O S U B for a P R O C E D U R E call. This 
is summarized below, for P R O C a b c . 

B B C BASIC Others 
P R O C a b c G O S U B L 

L D E F P R O C a b c L R E M abc 
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1 1 5 UNTIL Ν = 0 
1 1 3 IF Ν <> 0 THEN 1 = 0 
1 1 5 NEXT I 

The converse of the condition following the U N T I L can always 
be used in the line preceding N E X T I in order to return the loop 
counter I to its initial value. If the Other B A S I C does not support 
' IF T H E N ' in the form of line 113 then this must be amended and 
an extra s tatement is required on line 114 as follows: 

1 1 3 IF N=0 THEN GOTO 1 1 5 

1 1 4 I = 0 

You can simulate ' IF T H E N E L S E ' with similar techniques. 

immediately after PROCinpu t to allow the user to make any 
corrections to the data . 

Professional computer software is generally 'packaged' in a 
sophisticated way. But limited space and my educational 
objectives disallow such refinements as menu driven options, file 
handling, e laborate colour graphics, use of sound, error trapping, 
etc. If the book succeeds in its primary aim then the readers should 
not have too much difficulty with doing such development 
themselves! 

1.8 References 

1. Alcock, D., Illustrating BASIC, Cambridge University Press (1977). 
2. Freeman, R., Step by Step BASIC. Lifelong Learning Ltd, Cambridge (1983). 
3. Freeman, R., Structured BASIC, BBC Publications, London (1984). 

1.9 Appendix 

This appendix shows how to simulate ' R E P E A T U N T I L ' loops 
and ' IF T H E N ' structures using primitive BASIC dialects (after 
F reeman , ref. 3). 

B B C B A S I C Some other BASICs 
45 REPEAT 45 FOR I = 0 TO 1 

46 I = 1 



C h a p t e r 2 

Introduction to business operations 
research 

2.1 Introduction 

Formal definitions are often cumbersome, pedantic and verbose. 
For example, the Operat ions Research Society of America states 
that 

Operations Research is concerned with scientifically deciding how to 
best design and operate man-machine systems, usually requiring the 
allocation of scarce resources. 

This is not much improved by the longer definition given by the 
Operat ional Research Society of Great Britain: 

Operational Research is the application of the methods of science to 
complex problems arising in the direction and management of large 
systems of men, machines, materials and money in industry, business, 
government and defence. The distinctive approach is to develop a 
scientific model of the system, incorporating measurements of factors 
such as chance and risk, with which to predict and compare the 
outcomes of alternative decisions, strategies and controls. The purpose 
is to help management determine its policy and actions scientifically. 

The terms 'Business Operat ions Research ' (Operational Re­
search) and 'Management Science' have come to mean essentially 
the same thing: the systematic study of management issues 
emphasizing quantitative analysis of interrelating factors. Quan­
titative studies typically suggest directions for the improved 
allocation of resources. Any facet of business may be involved, 
and it is not unusual for a project team to act as 'honest brokers ' 
when thinking through the benefits to the organization as a whole 
of changes in the functions and status of separate departments or 
divisions. 

The basis of operat ions research (OR) is the belief that , in the 
long run, the use of formal quantitative analyses will lead to 
decisions which are significantly bet ter than those based solely on 
experience and intuition. How far this is so in a given situation will 
depend upon very many factors. If the outcomes are fairly obvious 

10 
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then there may be no need to use formal analysis to decide on the 
best decision. O R is least likely to be appropriate in a fast-moving, 
creative environment where immediate decisions are required to 
constantly changing problems. But O R may be essential when a 
key decision is to be made in a measured and deUber ate way, 
especially if considerable capital sums are involved or the decision 
seems likely to affect the work of a substantial part of an 
organization. On the other hand, the fruits of an O R study can 
also lead to efficient ways of dealing with repetitive decisions 
which might have consumed a disproportionate share of a 
manager ' s t ime. 

A n O R study is commonly initiated by a manager who calls 
upon the services of an O R group. O R personnel may be included 
within a management services depar tment or contracted for the 
durat ion of the project from an external management consultancy. 
It is normal practice to form a project team including members of 
the company with a wide range of skills and experience. These 
may be mathematicians, computer and data processing profession­
als, financial and line managers , etc. 

Qui te apart from the competence of the members of the project 
team in their own fields, there are the dominant influences of the 
poUtical environment , and the culture of the organization. The 
technical analysis could be first ra te , but it would be naive to look 
forward to the successful implementat ion of well-founded 
recommendat ions if a study does not come at a propitious t ime, or 
it is not actively supported by senior management . 

The organizational culture will have an important effect upon 
the Observat ion ' of the system under study, which is the very first 
stage of any scientific investigation. If each depar tment of a 
company, say, is permit ted or encouraged by the Board to take an 
insular at t i tude, then it will not be reaHstic to expect the easy 
identification of opportunit ies covering more than a single 
depar tment . 

The ideal context for O R to show its full value is when a 
numera te and skilful manager has identified an endemic problem 
as suitable for quantitative analysis, and has then won support for 
a systemic appraisal from colleagues as well as senior manage­
ment . Confidence is then engendered at the start of the O R work 
that if a sound set of recommendat ions is presented then they will 
be implemented. 

The project team has to decide on the scope of the study. Scope 
must be wide enough to allow the organization to make a 
substantial step forward and to satisfy the commissioning 
manager , but not so wide as to prejudice the successful 
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2.2 Mathematical modelling 

A mathematical model is used to formalize the 'causal mechan­
isms' which link outcomes to the factors under the control of the 
sponsor. What , for example, are the consequences for the sales of 
established products in the years to come if the current pat tern of 
dispersed distribution warehouses is replaced by a few strategically 
located distribution centres? Changes in the physical distribution 
resources employed by the company can be costed by a suitable 
quantitative analysis, and a change is likely to have an influence on 
the pricing strategy. Suppose that the sales force adopts a system 
of taking customers ' orders against delivery on a 'nominated day' , 
which depends upon the location of the customer within a large 
delivery region. What effect will this have on customers who have 
been used to placing orders for delivery at their own convenience? 
Would a computer system for scheduling delivery vehicles save 
money and improve service levels? What are the sales implications 
of a schedule of price discounts, based on quantity delivered, and 
in particular the imposition for the first time of a minimum order 
quantity? Should the opportunity be taken to reorganize the sales 
force to acknowledge the range of differing customers? How 
'elastic' are sales levels to the perception by customers of 'service', 
and indeed, what are the determinants of 'service'? 

Causal mechanisms must be researched to the point where 
quantified relationships can be used to describe the interplay of 
'decision variables ' such as the shape of the new distribution 
network, the largely uncontrollable variables such as maximum 
vehicle speeds and general environmental factors such as the likely 
response of competi tors . 

A mathematical model entails a coherent set of (usually 
algebraic) relationships suitable for the purpose on hand. It is an 
abstraction of reality which puts the complexities of the real 
situation into a logical and structured form which is amenable to 
analysis. A good model is as simple as possible, partly for reasons 
of economy in construction, and partly because simple models are 
usually easier to solve. 

implementat ion of the recommendat ions . For instance, it might be 
unwise to extend the boundaries of the study beyond the sphere of 
control , o r influence, of the 'sponsoring' decision maker . The 
conclusion of this stage will be an agreement on the detailed terms 
of reference. Considerable diplomacy may be required if the 
preliminary study by the project team provides a view of the 
problem too far removed from the initial view of the sponsor. 
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If a solution of the model at first defies the analytical prowess of 
those involved then a number of technical simplifications can be 
introduced. Variables can be aggregated into broader classes, so 
that differentiation is between classes of product rather than 
individual product lines. Non-linear numerical relationships may 
be replaced by piece wise linear relationships, in which prop­
ortionality at a given rate is assumed over a restricted range of 
activity. O n e could decompose a complex model of a large system 
into a number of separate models of particular aspects. For 
instance, the deUvery cost relationships for a decision about the 
number and location of distribution centres may be much less 
detailed than is required in a model to relate delivery costs to the 
imposition of minimum delivery quantit ies. Again, a model which 
looked at the next ten years ' business can be separated into models 
for the immediate prospect and the long-term outlook. The 
construction of models calls for experience just as much as 
technical proficiency. Successful modelling is the art of the 
possible. 

It may be natural to doubt whether a given model represents the 
real situation in an adequate way. Shortcomings cannot always be 
removed by elaborat ion. There may be problems with collecting 
basic data in the form and volume required. Indeed, some data 
may be unavailable or too costly to obtain. There will also be 
computat ional restrictions. The more comprehensive the model 
the more difficult it may be to obtain a forecast of outcomes to 
changes in decision variables. Fur thermore , elaboration of a 
model can be very costly and take valuable t ime. 

The validation of the model is very important , and yet it may be 
difficult. Fresh data will be required to test the performance of 
parts of the model , but , if the model is being used to project the 
consequences of future decisions, then there may be no wholly 
satisfactory way of validating the performance of the model as a 
whole in the absence of information which can be obtained only 
after a proposed change has been implemented. If the model is to 
be used purely to describe the status quo then validation should be 
much less problematic. 

Once a model has been validated to the satisfaction of the 
project team it may be employed for its designed purpose. It is 
important to realize that the computational results must be 
interpreted in the context of the problem, and it is rarely if ever 
the case that the recommendat ions of the project team conform 
exactly to the 'op t imum' solution from the model . There may be a 
multi tude of qualitative factors which will be used to assess the 
outputs . But this is no criticism, rather an understanding of the 
need to balance quantitative and qualitative approaches. 
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The project team will experiment with the model to learn about 
the significance of variations in some of the key decision variables. 
How sensitive is the proposed solution to minor errors or changes 
in the data? Does an examination of the results suggest that 
further conceptual developments should be fed back into the 
initial assessment? Have there been important changes in the 
team's outlook as a result of learning more about the problem on 
the basis of the experimental results? The team will also want to 
explore the robustness of any supposedly Opt imum' solution from 
the model to changing circumstances. Does the minimum cost 
solution, for example , suggest a highly unconventional form of 
distribution network which would be quite incapable of handling 
different classes of product or unsuitable for alternative marketing 
arrangements? Is there a fundamental difference between the 
shape of the distribution network which would reduce the 
operating costs over ten years to a minimum, as opposed to the 
distribution network which would maximize the rate of return on 
investment? What if the planned changes from current practice 
came to a halt before complete implementation of the plan? 

The potential benefits of modelling can be so important that in 
some of the larger companies the management trainees are 
encouraged to work for O R teams in order to absorb the process 
of O R and the company culture, before taking up management 
positions. 

2.3 Microcomputers and business operations research 
Microcomputers have had a major 'enabling' influence on the 
pursuit of O R . In the first place O R professionals can have the 
smaller scale computat ional work under their own direct control, 
and are no longer dependent upon large machines operated either 
by data processing depar tments or expensive computer bureaux. 
There is some evidence that the use of micros has reduced the time 
required for model development and validation. 

Micros are also cheap enough and simple enough for them to be 
used by the sponsors on a routine basis when the model is 
completed. For example, the personnel depar tment might have a 
need for a manpower planning model which projects staffing levels 
into the future, given reasonable assumptions about the levels of 
resignations and promotions. Such a model could be run as a 
routine on a micro located in the personnel depar tment in order to 
assist with recruitment decisions. 

The advanced graphics facilities of micros can be utilized to 
improve the standard of communication between the project team 
and the sponsors of the project. This is not only true of the use of 
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charts , graphs and figures for descriptive statistics. It is particularly 
t rue of the use of animated graphics employed in simulation 
studies. These techiques help the less numerate and more 
apprehensive individuals come to appreciate the modelling effort 
and contribute to the experimental phase of 'what if modelling. 

There are many user-friendly software packages for micros, 
such as ' spreadsheets ' , which enable some forms of numerical 
analysis to be conducted relatively effortlessly. This has been 
warmly welcomed by O R groups. It is also noted that accountants, 
for example , are using spreadsheets for financial modelHng 
problems such as cash flow forecasts, and engineers are conducting 
their own capital investment appraisals. However , the use of 
software packages is outside the scope of this volume. 

Networked micros also offer considerably enlarged potential for 
O R work. For example, a micro can be used to log data at remote 
locations for transmission to another micro at a later date . Micros 
can also be used to interrogate and update the data held on a 
central database . The term 'Management Information System' 
(MIS) is in vogue for describing a computer system in which an 
'intelligent terminal ' provides a manager with the information 
which he or she requires in order to plan ahead. To do this, raw 
data must be processed in some way and presented in a suitable 
form, providing further scope for mathematical modelling. The 
next chapter , for example , describes the manipulation of sales data 
to provide a set of indices of sales volumes and prices. 

2.4 The approach of this book to business operations research 

This book is designed to fill the gap between texts on ' the 
management appHcation of computers ' and texts on Operat ional 
research techniques ' . It cannot hope to present balanced accounts 
either of the art of mathematical modelUng or of O R techniques in 
the space available. Instead I have made a selection from the core 
curriculum of standardized models and have unavoidably neg­
lected the creative side of modelling. 

The content is graded so that the numerate reader who is new to 
O R should be able to follow all of the material on index numbers 
in Chapter 3 , and most of the material on data fitting in Chapter 4. 
Chapter 5 should be accessible to most readers and demonstrates 
the potential of combining the graphics facilities of modern micros 
with mathematical modelling in the context of project manage­
ment networks. Chapter 6 and 7 would be harder going for the 
reader who is new to Unear programming and Markov chains. 

There are a growing number of micro software packages for 
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Standardized modelling in the fields of investment appraisal, 
critical path networks , and linear programming; etc. These are 
mainly marketed for the professional O R analyst to use in a 
commercial setting, but they may be poorly documented and 
difficult to tailor for specific purposes. The programs of this book 
have an educational purpose , but they may be useful in small scale 
O R work. 

Four references to excellent books are given below for the 
interested reader . 
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C h a p t e r 3 

Index numbers 

Essential theory 

Index numbers are widely used by government agencies, t rade 
organizations, public bodies and companies of all sizes. The 
elementary material on index numbers is developed here in the 
context of sales turnover , and then employees ' reports . The 
elementary material on composite indices is developed in the 
context of company sales figures. The reader should bear in mind 
the applicability of the ideas across the spectra of activities which 
are amenable to quantitative measurement , in commerce, industry 
and the public sector. 

3.1 Indices based on simple relatives'^ 

The significance of a percentage change in sales turnover may be 
readily assimilated. A repor ted sales increase of 12 per cent has 
immediate impact. The value of a 'year end ' sales index of 112 
based on an index of 100 at the start of the year conveys the same 
information just as readily. 

Suppose that management is interested in monitoring sales 
turnover in the face of the launch of a product by competitors. It 
would be sensible to 'base ' a sales index of 100 upon the sales in 
the period immediately preceding the launch. This choice would 
clearly show up any sales t rends that might develop. The first row 
of Table 3.1 provides a series of actual monthly sales figures, 
where month 0 is the base month . It is seen that within three or 
Table 3.1 Sales turnover 

Month i 0 1 2 3 4 5 6 7 8 
Sales (£000's) Si 300 305 306 282 258 190 310 329 350 

Sales index Ii (1) 100 102 102 94 86 63 103 110 117 
% increase (2) 2 0 -8 -9 -26 63 6 6 
Chain index Γ (3) 1.02 1.00 0.92 0.91 0.74 1.63 1,06 1.06 

Notes: (1) From / = 5//5o x 100. 
(2) Month on month percentage increases in sales 5 to the nearest integer. 
(3)From/' , - , , = 5A-i. 

* Relatives are ratios in this context. 

17 



18 Index numbers 

four months the rival product starts to make serious inroads into 
sales turnover , which is then restored and eventually enhanced 
(possibly by a vigorous promotional campaign). 

The sales index // for month /, as shown in the third line of the 
table , is calculated from 

Sales turnover in month / 
/ / = ^ - r Γ X 100 = Si/So X 100 

Sales turnover m base month 
where 5/ denotes the sales turnover in month /. 

The ratio SI/SQ is an example of a simple (i.e. unweighted) 
'relative' . The numerical value of the sales index /, shows how 
sales turnover in month / compares to 'base turnover ' in the base 
month (i .e. month 0) . This sales index is given in Hne three of the 
table rounded to the nearest integer. There was a substantial drop 
in sales in months 4 and 5 prior to a strong recovery from month 6 
onwards. 

The table also shows the month-on-month percentage changes 
in sales levels: these figures can be important , as when the 
remunerat ion of the sales force is tied to the monthly changes in 
sales turnover! The same information can be expressed in index 
form: the so-called chain index / ' is given by 

_ Sales turnover in month / - 5 / 5 
Sales turnover in m o n t h / - I ' 

Notice that the chain index / ' is the ratio of sales in successive 
months . It is not difficult to see that the product of chain indices is 
closely related to the sales index / . Thus 

'̂0,1 ^ '̂1,2 X '̂2,3 X . . · X i'i-ij 
= 5i/5o X 52/5i X 53/̂ 2 X . . . X 5¿/5¿_i = 5AJ = ¡¿¡100 

This identity should be employed with caution. For example 

/ 'ο , ι X ^'u2 X I'2,3 X I'sA = 1.02 X 1.00 X 0.92 x 0.91 = 0.85 

There is a disparity in the second decimal place between this and 
the value of /4/IOO = 0.86 shown in the table. Chain indices are not 
in common use in industry partly because of this sort of problem; 
on the other hand, many government indices are based around 
similar, but further e laborated, ideas. 

Program S I M P R E L , below, calculates an index based on a 
simple relative and it also calculates a period-on-period chain 
index. The simple main program sequences the following 
P R O C E D U R E S : 
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Program 3.1 SIMPREL: Index of simple relatives 

1 0 REN SIMPREL 
2 0 REM INDEX OF SIMPLE RELATIVES 
3 0 REM ALSO PROVIDES CHAIN INDICES 
40 DIM D A T ( 1 0 0 ) , I N D E X ( 1 0 0 ) , C H I N D E X ( 1 0 0 ) 
50 
6 0 PROCinput 
7 0 P R O C s i m p l e _ r e l a t i v e 
80 PROCchain 
90 END 

1 0 0 
1 0 0 0 DEF PROCinput 
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY" 
1 0 2 0 INPUT "BASE PERIOD " , B 
1 0 3 0 INPUT "FINAL PERIOD ", Ν 
1 0 4 0 PRINT : PRINT "PERIOD DATA" 
1 0 5 0 FOR 1= Β TO Ν 
1 0 6 0 PRINT T A B ( 0 ) ; I ; : INPUT TAB(10) D A T ( I ) 
107 0 NEXT I 
1 0 8 0 ENDPROC 
1091) 
2 0 0 0 DEF P R O C s i i n p l e _ r e l a t i v e 
2 0 1 0 PRINT : PRINT 
2 0 2 0 PRINT "PERIOD INDEX OF" 
2 0 3 0 PRINT TAB(10) "SIMPLE RELATIVES" 
2040 FOR I=B TO Ν 
2 0 5 0 I N D E X ( I ) = D A T ( I ) / D A T ( B ) * 1 0 0 
2 0 6 0 I N D E X ( I ) = I N T ( I N D E X ( I ) + . 5 ) 
207M PRINT T A B ( 0 ) ; I , I N D E X ( I ) 
2 0 8 0 NEXT I 
2 0 9 0 ENDPROC 
2 1 0 0 
3 0 0 0 DEF PROCchain 
3 0 1 0 PRINT : PRINT 
3 0 2 0 PRINT "PERIOD CHAIN INDEX" 
3 0 3 0 FOR I=B+1 TO Ν 
3 0 4 0 C H I N D E X ( I ) = D A T ( I ) / D A T ( I - 1 ) 
3050 C H I N D E X ( I ) = I N T ( C H I N D E X ( I ) * 1 0 0 + . 5 ) 
3 0 6 0 PRINT T A B ( 0 ) ; I , C H I N D E X ( I ) / 1 0 0 
3 0 7 0 NEXT I 
3 0 8 0 ENDPROC 

PROCinpu t : allows the user to input the base period 
B , and the final period Ν together with 
the data D A T ( I ) for periods I = B , 
N . 

P R O C s i m p l e _ r e l a t i v e : calculates the index INDEX(I ) for the 
simple relative D A T ( I ) / D A T ( B ) * 100 
and tabulates these values for I = B , 
Ν to the nearest integer. 

PROCcha in : calculates the chain index C H I N D E X ( I ) 
from D A T ( I ) / D A T ( I - 1 ) for each I = 
B + 1 , . . . ,N and tabulates these values 
rounded to the second decimal place. 

Type in this program from the listing below. 
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R U N this program with the data from the first two Unes of Table 
3 .1 . You should find that your output corresponds to the third and 
final row of Table 3 .1 . R e R U N with data of your own choice, but 
notice that because the arrays have been dimensioned to 100 in 
hne 40 you should enter 1985, for example, as 85. 

RUN 
ENTER ALL DATA NUMERICALLY 
BASE PERIOD ?0 
FINAL PERIOD ?8 

PERIOD DATA 
0 3 0 0 
1 3 0 5 
2 306 
3 2 8 2 
4 2 5 8 
5 1 9 0 
6 310 
7 3 2 9 
8 350 

PERIOD INDEX OF 
SIMPLE RELATIVES 

0 1 0 0 
1 1 0 2 
2 1 0 2 
3 94 
4 86 
5 6 3 
6 1 0 3 
7 1 1 0 
8 117 

PERIOD CHAIN INDEX 
1 1 . 0 2 
2 1 
3 0 . 9 2 
4 0 . 9 1 
5 0 . 7 4 
6 1 . 6 3 
7 1 . 0 6 
8 1 . 0 6 

Now do Problems 3.1 to 3.3 at the end of this chapter. 

3.2 Deflators 

Suppose that annual sales data is available for a span of several 
years, as in Table 3.2. O n e could use program S I M P R E L to find 
the sales indices in monetary terms. However , the expression of 
sales turnover in real terms, which allowed for inflationary effects, 
might have much greater importance. 

National statistics include many 'deflator' series for use in a 
variety of circumstances, from the most general to the highly 
specific. The reader is almost certainly famihar with the 
announcements of movements in the General Index of Retail 
Prices (RPI) in the media: at the time of writing, the RPI is 
projected to reach an average value of 282 for 1986 from a base of 
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100 in 1975. This is an instance of a composite index which is 
designed to summarize changes in the overall price of a 'package ' 
of retail goods as experienced by an 'average ' consumer. It has 
achieved a measure of general (often unquestioning) acceptance 
on both sides of industry for a variety of purposes, including wage 
bargaining. 

If the sales data of Table 3.2 relate to part-t ime earnings, say of 
a t radesman in his spare t ime, then the RPI could well be 
appropriate for adjusting these earnings to real rather than 
monetary values. The RPI is shown in line 4 of Table 3.2. 

Ano the r very important national statistic is that known as the 
' Implied Deflator of the Gross Domest ic Product at Market Prices' 
( G D P ) ; this roughly doubled over the five years from 1975 to 
1980. This index is imputed from the ratio of G D P at current 
va lues /GDP in real values. The reader is referred elsewhere (see 
The National Accounts - a short guide, by H . Copeman, 1981, 
H M S O ) for a technical definition and an authoritative statement 
of the interpretat ion and use of this series. But in so far as a 
company contributes in a general way to the gross domestic 
product then the G D P series does provide a reasonable basis for 
adjustment of sales turnover to real ra ther than monetary values. 
This index is shown in line 3 of Table 3.2. 
Table 3.2 Sales turnover and deflator series 

Year/ 1975 1976 1977 1978 1979 1980 1981 1982 1983 
Sales 5, 498 563 658 781 933 1203 1381 1572 1790 
GDPdeflator^'^ 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7 
RPI deflator '̂> 100 116.5 135.0 146.2 165.8 195.6 218.9 237.7 248.6 

Sales index '̂'̂  100 113 132 157 187 242 277 316 359 
Real sales index̂ -'̂  100 99 101 108 113 121 125 132 144 
Real sales index̂ -'̂  100 97 98 107 113 124 127 133 145 

Notes: (1) From Table 1.16. UK National Accounts 1984. HMSO. 
(2) From Table 114. Economic Trends Annual Supplement 1984. HMSO. 
(3) Based on a simple relative 5,/5i) x 100. 
(4) Based on (3) deflated bv the GDP deflator (1). 
(5) Based on (3) deflated by the RPI deflator (2). 

If we denote by Dj a deflator index in year / then the sales 
turnover 5/ in that year can be deflated to real terms RSi in year 0 
values as follows 

RSi = Si X D^Di 

Consequently the index of real sales turnover Rli is given by 

Rli = RSi/RSo X 100 = / , DQ/DÍ 

It is not difficult to modify program S I M P R E L in order to 
produce indices in real ra ther than monetary terms, as follows. 
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A m e n d the following lines (but note that s tatement 50 is a specific 
B B C print control s ta tement , which in this instance rounds all 
printed values to the nearest integer. Users of other micros should 
use the technique in lines 2060 and 3050 of Program S I M P R E L ) : 

1 0 REM DEFLATR 
20 REM INDEX OF SIMPLE RELATIVES 
3 0 REM WITH AND WITHOUT DEFLATOR 
40 DIM D A T ( 1 0 0 ) , I N D E X ( 1 0 0 ) , D ( 1 0 0 ) 
50 @%=&0002000A 

80 P R O C d e f l a t e 

D E L E T E 2060 
D E L E T E 3000 to 3080 

Now type in PROCdef la te which allows the user to input a deflator 
series, and then prints the deflated index of simple relatives. 

Program 3.2 DEFLATR: Indices with and without deflator series 
1 0 REM DEFLATR 
20 REM INDEX OF SIMPLE RELATIVES 
3 0 REM WITH AND WITHOUT DEFLATOR 
40 DIM D A T ( 1 0 0 ) , I N D E X ( 1 0 0 ) , D ( 1 0 0 ) 
50 @%=&0002000A 
60 PROCinput 
7 0 P R O C s i m p l e _ r e l a t i v e 
80 P R O C d e f l a t e 
90 END 

1 0 0 
1 0 0 0 DEF PROCinput 
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY" 
1 0 2 0 INPUT "BASE PERIOD " , B 
1 0 3 0 INPUT "FINAL PERIOD " , Ν 
1 0 4 0 PRINT : PRINT "PERIOD DATA" 
1 0 5 0 FOR 1= Β TO Ν 
1 0 6 0 PRINT T A B ( 0 ) ; I ; : INPUT TAB(10) D A T ( I ) 
1 0 7 0 NEXT I 
1 0 8 0 ENDPROC 
1 0 9 0 
2 0 0 0 DEF P R O C s i m p l e _ r e l a t i v e 
2 0 1 0 PRINT : PRINT 
2 0 2 0 PRINT "PERIOD INDEX OF" 
2 0 3 0 PRINT TAB(10) "SIMPLE RELATIVES" 
2 0 4 0 FOR I=B TO Ν 
2 0 5 0 I N D E X ( I ) = D A T { I ) / D A T ( B ) * 1 0 0 
2 0 7 0 PRINT T A B ( 0 ) ; I , I N D E X ( I ) 
2 0 8 0 NEXT I 
2 0 9 0 ENDPROC 
2 1 0 0 
4 0 0 0 DEF P R O C d e f l a t e 
4 0 1 0 PRINT : PRINT : PRINT "NOW ENTER THE DEFLATOR SERIES " 
4 0 2 0 PRINT "PERIOD DEFLATOR" 
4 0 3 0 FOR 1= Β TO Ν 
4 0 4 0 PRINT T A B { 0 ) ; I ; : INPUT TAB(10) D ( I ) 
4 0 5 0 IF I>B THEN D ( I ) = D ( I ) / D ( B ) 
4 0 6 0 NEXT I : D ( B ) = 1 
4 0 7 0 PRINT : PRINT : PRINT "SERIES IN REAL TERMS" 
4 0 8 0 PRINT "PERIOD BASE " ; B ; T A B ( 2 0 ) "BASE ";N 
4 0 9 » PRINT TAB(10) " = 1 0 0 " ; T A B ( 2 0 ) " = 1 0 0 " 
4 1 0 0 PRINT 
4 1 1 0 FOR I=B TO Ν 
4 1 2 0 I N D E X b = I N D E X ( I ) / D ( I ) 
4 1 3 0 INDEXn=INDEXb/ lNDEX(N)*D(N)*100 
4 1 4 0 PRINT T A B ( 0 ) ; I ; T A B ( 1 0 ) INDEXb;TAB(20) INDEXn 
4 1 5 0 NEXT I 
4 1 6 0 ENDPROC 
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RUN 
ENTER ALL DATA NUMERICALLY 
BASE PERIOD ?7 5 
FINAL PERIOD ? 8 3 

RUN 
ENTER ALL DATA NUMERICALLY 
BASE PERIOD ?7 5 
FINAL PERIOD ? 8 3 

PERIOD DATA PERIOD DATA 
7 5 . 4 9 8 7 5 . 4 9 8 
7 6 . 5 6 3 7 6 . 5 6 3 
7 7 . 6 5 8 7 7 . 6 5 8 
7 8 . 7 8 1 7 8 . 7 8 1 
7 9 . 9 3 3 7 9 . 9 3 3 
8 0 . 1 2 0 3 8 0 . 1 2 0 3 
8 1 . 1 3 8 1 8 1 . 1 3 8 1 
8 2 . 1 5 7 2 8 2 . 1 5 7 2 
8 3 . 1 7 9 0 8 3 . 1 7 9 0 

PERIOD INDEX OF PERIOD INDEX OF 
SIMPLE RELATIVES SIMPLE RELATIVES 

7 5 . 1 0 0 . 7 5 . 1 0 0 . 
7 6 . 1 1 3 . 7 6 . 1 1 3 . 
7 7 . 1 3 2 . 7 7 . 1 3 2 . 
7 8 . 1 5 7 . 7 8 . 1 5 7 . 
7 9 . 1 8 7 . 7 9 . 1 8 7 . 
8 0 . 2 4 2 . 8 0 . 2 4 2 . 
8 1 . 2 7 7 . 8 1 . 2 7 7 . 
8 2 . 3 1 6 . 8 2 . 3 1 6 . 
8 3 . 3 5 9 . 8 3 . 3 5 9 . 

NOW ENTER THE DEFLATOR SERIES NOW ENTER THE DEFLATOR SERIES 
PERIOD DEFLATOR PERIOD DEFLATOR 
7 5 . 5 0 . 2 7 5 . 1 0 0 
7 6 . 5 7 . 6 7 6 . 1 1 6 . 5 
7 7 . 6 5 . 6 7 7 . 1 3 5 . 0 
7 8 . 7 2 . 9 7 8 . 1 4 6 . 2 
7 9 . 8 3 . 5 7 9 . 1 6 5 . 8 
8 0 . 1 0 0 8 0 . 1 9 5 . 6 
8 1 . 1 1 1 . 7 8 1 . 2 1 8 . 9 
8 2 . 1 1 9 . 6 8 2 . 2 3 7 . 7 
8 3 . 1 2 5 . 7 8 3 . 2 4 8 . 6 

SERIES IN REAL TERMS SERIES IN REAL TERMS 
PERIOD BASE 7 5 . BASE 8 3 . PERIOD BASE 7 5 . BASE 8 3 . 

= 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 

7 5 . 1 0 0 . 7 0 . 7 5 . 1 0 0 . 6 9 . 
7 6 . 9 9 . 6 9 . 7 6 . 9 7 . 6 7 . 
7 7 . 1 0 1 . 7 0 . 7 7 . 9 8 . 6 8 . 
7 8 . 1 0 8 . 7 5 . 7 8 . 1 0 7 . 7 4 . 
7 9 . 1 1 3 . 7 8 . 7 9 . 1 1 3 . 7 8 . 
8 0 . 1 2 1 . 8 4 . 8 0 . 1 2 4 . 8 5 . 
8 1 . 1 2 5 . 8 7 . 8 1 . 1 2 7 . 8 8 . 
8 2 . 1 3 2 . 9 2 . 8 2 . 1 3 3 . 9 2 . 
8 3 . 1 4 4 . 1 0 0 . 8 3 . 1 4 5 . 1 0 0 . 

Now check your Usting against that for Program D E F L A T R 
above. When satisfied with the accuracy of your Hsting you should 
R U N with the data of Table 3.2 above. Note that the years should 
be entered as double digits, so enter 1975 as 75. The output of a 
R U N with the G D P deflator should resemble the series in the 
penult imate row of Table 3.2, and the output of a second R U N 
using the RPI deflator in the final row. 
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3.3 Employees' reports 

It is now standard practice for many of the larger companies to 
circulate annual 'Employees ' Repor t s ' . This is done partly to 
foster an interest in the trajectory of the business, and partly to 
engender positive att i tudes to profitable operat ion. Figures are 
usually quoted , on a per capita basis, under the heads shown in 
Figure 3.1 (although the use of the possibly emotive head 
Operat ing profit ' is often avoided). 

Sales turnover 

Cost of bought- in 
items and services 

Wages and 
salaries 

Taxation Retained earnings 
for investment 

Dividends 

Figure 3,1 Accounting structure of a conventional employees' report 

The style of reporting is chosen to emphasize the importance of 
value added concepts, so that wage bargaining is less likely to be 
based on crude operat ing profitability. The figures are usually 
expressed in real terms if comparisons are made with previous 
years. 

Suppose then that we have the same sales turnover figures from 
Table 3.2, but that in addition the data on the number of 
employees Ν i is available (in some appropriate units). O n e could 
'deflate ' the monetary sales turnover figures 5/ by the number of 
employees Ni before deflating once more by the G D P deflator. 
But it seems easier here to modify program D E F L A T R to form 
the rat io SJNi on data input. Make the following alterations: 

1 0 6 0 PRINT T A B ( 0 ) ; 
1 0 6 5 DAT(I) = s / n 

I ; : INPUT TAB(10) s . 

There is a marked similarity between the indices deflated both 
by the RPI and the G D P deflators. The overall conclusion must be 
that the apparent 250 per cent increase in monetary sales turnover 
shrinks to much less than a 50 per cent increase in real terms. It 
seems highly questionable whether the majority of U K firms even 
today routinely interpret their sales figures in this way, despite the 
crucial need to have done so during the period under investigation 
here . 
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Year 1975 1976 1977 1978 1979 1980 1981 1982 1983 
Sales turnover 498 563 658 781 933 1203 1381 1572 1790 
Employees 25 28 34 35 35 35 35 34 34 
GDP deflator(l) 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7 

Sales per 100 101 97 112 134 173 198 232 264 
employee(2) 
Real sales per 100 88 74 77 80 87 89 97 106 
employee(3) 

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO. 
(2) Index of sales turnover per employee. 
(3) Index of real sales turnover per employee deflated by (1). 

RUN 
ENTER ALL DATA NUMERICALLY 
BASE PERIOD ?7 5 
FINAL PERIOD ?83 

PERIOD DATA 
7 5 . 4 9 8 , 2 5 
7 6 . 5 6 3 , 2 8 
7 7 . 6 5 8 , 3 4 
7 8 . 7 8 1 , 3 5 
7 9 . 9 3 3 , 3 5 
8 0 . 1 2 0 3 , 3 5 
8 1 . 1 3 8 1 , 3 5 
8 2 . 1 5 7 2 , 3 4 
8 3 . 1 7 9 0 , 3 4 

PERIOD INDEX OF 
SIMPLE RELATIVES 

7 5 . 1 0 0 . 
7 6 . 1 0 1 . 
7 7 . 9 7 . 
7 8 . 1 1 2 . 
7 9 . 1 3 4 . 
8 0 . 1 7 3 . 
8 1 . 1 9 8 . 
8 2 . 2 3 2 . 
8 3 . 2 6 4 . 

NOW ENTER THE DEFLATOR SERIES 
PERIOD DEFLATOR 
7 5 . 5 0 . 2 
7 6 . 5 7 . 6 
7 7 . 6 5 . 6 
7 8 . 7 2 . 9 
7 9 . 8 3 . 5 
8 0 . 1 0 0 . 
8 1 . 1 1 1 . 7 
8 2 . 1 1 9 . 6 
8 3 . 1 2 5 . 7 

Now R U N this amended program for the data in rows two to four 
of Table 3.3 as shown below. Notice that you must enter the sales 
turnover value, a comma, and the number of employees for the 
data input in each period. This R U N is given after Table 3.3. 

Table 3.3 Sales turnover per employee 
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SERIES IN REAL TERMS 
PERIOD BASE 7 5 . BASE 8 3 . 

= 1 0 0 = 1 0 0 

7 5 . 1 0 0 . 9 5 . 
7 6 . 8 8 . 8 3 . 
7 7 . 7 4 . 7 0 . 
7 8 . 7 7 . 7 3 . 
7 9 . 8 0 . 7 6 . 
8 0 . 8 7 . 8 2 . 
8 1 . 8 9 . 8 4 . 
8 2 . 97 . 9 2 . 
8 3 . 1 0 6 . 1 0 0 . 

Quite obviously the company has suffered very badly from 
over-recruiting; the number of employees increased in rough 
proport ion to the monetary sales turnover from 1975 to 1977. Sales 
per employee in real terms had slumped by 1977 to around 
three-quarters of the 1975 value, therafter creeping upward and 
only passing the 1975 value for the first time by 1983. This example 
illustrates the importance of manpower planning based on 
quantitative data. 

Value added is the difference between sales turnover 5, and the 
cost C/ of bought-in materials and services: it is sometimes used as 
a proxy for productivity in the service sector. High levels of value 
added per capita in real terms is directly in the interests of both the 
company shareholders and employees, providing both the 
operating profit and the wages and salaries bill as shown in Figure 
3 .1 . Since the wages and salaries Wi cannot be significantly altered 
in the short te rm, without the appalling social costs of 
unemployment , the containment and reduction of costs Q attracts 
top priority. A R U N of modified D E F L A T R with the Q , and 
G D P deflator data from Table 3.4 would give an index of real 
costs. Likewise, a R U N of modified D E F L A T R with Wi, Ni and 
the G D P deflator from Table 3.4 would give an index of real wages 
per employee, as shown. 

Table 3.4 Added value, wages and salaries, and operating profit 

YÜi? 1975 1976 1977 1978 1979 1980 1981 1982 1983 
Sales turnover 5, 498 563 658 781 933 1203 1381 1572 1790 
Costs C, 415 456 493 588 718 942 1040 1217 1404 
Wages and salaries 73 101 160 189 213 259 287 282 292 
Employees 25 28 34 35 35 35 35 34 34 
GDPdeflator(l) 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7 
Real indices per employee deflated by the GDP deflatór: 
Costs 
Value added 
Wages 
Operating profit 

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO. 

100 86 67 70 74 81 80 91 99 
100 100 112 114 111 113 132 132 137 
100 108 123 127 125 127 126 119 117 
100 47 28 20 9 7 173 225 276 
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The company was most successful in reducing the real costs of 
bought-in materials and services just when this was most needed. 
The effect on the real value added per employee can be seen by 
modifying D E F L A T R as follows 

1 0 6 0 PRINT T A B ( 0 ) ; I ; : INPUT TAB(10) s , c , η 
1 0 6 5 DAT(I) = ( s - c ) / n 

A R U N of this program gives the required output , as shown in 
Table 3.4, provided that the data is input as sales, costs, employees 
(i .e. Si, Ci, Ni separated by commas for each period) . The reader 
may care to take this on trust to avoid the tedium of data entry. 
Similar comments apply to the modification below, designed to 
produce the index of real operating profit per employee on input 
of sales, costs, wages and employee numbers (i.e. 5,, C/, W,, Ni): 

1 0 6 0 PRINT T A B ( 0 ) ; I I N P U T TAB{10) s , c , w, η 
1 0 6 5 DAT(I) = ( s - c ) / n - w / n 

The company remained profitable, if only just, because real value 
added increased steadily and the index of real wages followed a 
typical pat tern for the period. Real recovery in operating profits 
was finally obtained, but it should not be assumed that this was 
distributed in toto to the shareholders! Figure 3.1 shows that 
operat ing profit must also provide for taxation, interest on loans, 
and for reinvestment. It would seem likely that dividends 
continued to fall in real terms and that the company has survived 
to mount a long overdue programme of investment - but that is 
another story. 

3.4 Composite indices 
Annual sales turnover is an aggregate of figures for sales volume 
across the range of a company's marketable output . It is often 
important for top management not only to assimilate summary 
statistics of total sales values but also to appreciate whether any 
changes are due to pricing or volume variations. Several composite 
'price' and 'quanti ty ' indices are in use for this purpose. This 
section describes the construction of two common types of 
composite indices which are based on the following idea: 

Price index = ILpiq^^fl^Lpoq^^f x 100 
Quanti ty index = ^qip^^fl^^qop^^f x 100 

where Pi is the price in period / of a 'product ' 
qi is the quantity sold in period / of a 'product ' 
the summation is over all the products involved 
the index o indicates the base period 
the index ref indicates the reference period. 
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Note that the roles of the price and quantity variables 
interchange as between the price and quantity indices. Conse­
quently it will suffice to describe only one of them in detail. It must 
be assumed that price and quantity data exist for each separately 
identifiable 'product ' (or class of products) which together make 
up the marketable output to which a chosen index relates. 

Take the composite price index for the purpose of further 
discussion. Such indices at tempt to measure price changes by 
holding the quantity data numerically equal to that experienced in 
a reference period. The numerator is the numerical value of the 
sales of all products in period / if reference period quantities were 
to be sold at period / prices. The demoninator is the numerical 
value of the sales of all products in reference period quantities but 
at base period prices. 

There are two well-known extreme cases for the choice of 
reference period. A Laspeyres price index Lp is obtained where 
the reference period is the base period per se. A Paasche price 
index is obtained where the reference period is the current 
period. 

Laspeyres price index Lpi = Σρ,^^ο/Σρο^ο x 100 
Paasche price index Ppi = Σρ,^/Σροή', x 100 

The corresponding quantity indices L^ and P^ are obtained by 
interchanging the ρ and ^ in these expressions. 

The Laspeyres price index has the great advantage of producing 
the longest comparable series, always provided that quantity 
variables are more or less static. It is the simplest and least 
demanding of data , but the assumption of base period reference 
becomes untenable if the quantity variables evolve rapidly. For 
instance, price changes may partially determine the quantities 
sold: a Laspeyres price index could lead to an overestimate of 
price inflation if less is sold as prices rise. 

A t the other ext reme, the use of current period quantities in the 
Paasche index involves the collection of price and quantity data in 
each period. The use of the current period quantities also means 
that one cannot , strictly speaking, relate movements in this index 
exclusively to price changes. Fur thermore , the introduction of new 
products creates problems. In practice one might choose to update 
a reference period somewhat infrequently so that the series 
resembles a Laspeyres rather than a Paasche index. 

The geometric mean of the Laspeyres and Paasche price indices, 
known as the Ideal Price Index IDp, has some attractive 
theoretical propert ies although it is not in common use. 

lOpi = {Lpi X PpiY/i 
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Product 0 1 2 3 4 5 6 7 8 

1 Unit price 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7 
Quantity 100 110 100 105 115 110 115 125 111 

2 Unit price 25 25 25 25 25 25 25 25 25 
Quantity 2.0 2.3 2.7 2.9 3.1 3.2 3.1 3.0 2.9 

3 Unit price 12 12 11 11 10 10 10 9 9 
Quantity 6.1 6.0 6.0 5.7 5.8 5.5 5.6 5.7 5.8 

4 Unit price 3 3.2 3.6 3.8 4.0 4.0 4.0 4.0 4.0 
Quantity 30 32 33 34 34 36 37 38 39 

Price indices 
Laspeyres Lp 100 105 101 106 109 103 106 107 101 
Paasche Pp 100 106 101 107 110 104 107 109 103 
Ideal ΙΌρ 100 106 101 106 110 103 107 108 102 

Quantity indices 
Laspeyres Lq 100 107 109 111 116 117 119 122 119 
Paasche ?q 100 107 109 112 117 118 120 124 122 
Ideal ID^ 100 107 109 112 117 117 119 123 120 

Value index 
ILpiqiPLpoq^ 100 113 110 119 128 121 127 133 122 

It is not easy to say what overall movements have occurred in 
prices, quantities or sales values by inspection of the data , and it is 
impossible for more than, say, a dozen products. A computer 
program I N D I C E S follows for the calculation of the composite 
indices described in this section and shown in Table 3.5. A short 
main program is dimensioned for up to 10 products but this is 
easily enlarged as required. 

PROCinpu t : allows the user to enter the base period Β and the 
final period N , and the number of products PR 
for which a composite index is required. The user 

The product of price and quanti ty indices correctly provides the 
sales index = Σν^/Σν^ = Σρ/ή^,/Σρο^ο only in the case of the Ideal 
indices. If an ideal index based on 100 in the base year reaches 200 
in the current year, then an alternative choice of base year in the 
current year would lead to 50 in the base year. Neither Laspeyres 
nor Paasche indices have the same desirable propert ies. The use of 
the microcomputer obviously alleviates the computational burden, 
which has been one objection to the use of the Ideal index in the 
past . But the heavy cost of data collection remains, as does the 
problem of deahng with a changing product mix. 

Da ta on four classes of product are provided in Table 3.5 below. 
Price and quantity sold are given for each of nine periods. 

Table 3.5 Monthly sales data for four products 
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PROCindices : 

FNp(ref): 
FNq(ref) : 
PROCpr in t : 

supplies price and quantity data DATp(pr , I ) and 
D A T q ( p r , I ) for each product pr = 1, 2, . . . ,PR 
and period I = B , . . . , N . 
calculates Laspeyres, Paasche and Ideal price 
indices Lp( I ) , Pq( I ) , IDp(I ) and quantity indices 
Lq( I ) , Pq( I ) , IDq(I ) for periods I = B , , . . , N . 
defines a price function ^Piq^J^Lp^q^^f 
defines a quantity function Iqip^ci/^qoPr^f 
organizes a tabular print of price and quantity 
indices. 

Type in Program I N D I C E S from the following listing and R U N 
with the data of Table 3.5 when you are satisfied with the accuracy 
of your listing. You should get the indices shown in the lower half 
of the table. 

Inspection of the output indices suggests that any one of the 
three composite indices tells the same story. In particular, one can 
see that quantity sold moved ahead up until month 8 whereas 
prices fluctuated up and down. The value index, numerically equal 
to one-hundredth of the product of I D p and IDq (unrounded 
values), appears to fluctuate either side of an increasing trend. 
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Program 3.4 INDICES.Calculates Laspeyres, Paasche and Ideal 
indices 

1 0 REN INDICES 
2 0 REM ACCEPTS PRICE & QUANTITY DATA FOR DIFFERENT PRODUCTS 
3 0 REM CALCULATES COMPOSITE INDEX NUMBERS 
40 DIM D A T p ( 1 0 , 1 0 0 ) , D A T q ( 1 0 , 1 0 0 ) , L p ( 1 0 0 ) 
50 DIM L q ( 1 0 0 ) , P p ( 1 0 0 ) , P q ( 1 0 0 ) , I D p ( 1 0 0 ) , I D q ( 1 0 0 ) 
60 @%«&0002000A 
70 PROCinput 
8 0 P R O C i n d i c e s 
90 PROCprint 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY" 
1 0 2 0 INPUT "BASE PERIOD " , Β 
1 0 3 0 INPUT "FINAL PERIOD " , N 
1 0 4 0 INPUT "NUMBER OF PRODUCTS ",PR 
1 0 5 0 FOR pr = 1 TO PR 
1 0 6 0 PRINT : PRINT "PRODUCT No " ; p r 
1 0 / 0 PRINT : PRINT "PERIOD PRICE QUANTITY" 
1 0 8 0 FOR I = Β TO Ν 
1 0 9 0 PRINT T A B ( 0 ) ; I ; 
1 1 0 0 INPUT TAB(10) D A T p ( p r , I ) , T A B ( 2 0 ) D A T q ( p r , I ) 
1 1 1 0 NEXT I 
1 1 2 0 NEXT p r 
1 1 3 0 ENDPROC 
1 1 4 0 
2 0 0 0 DEF P R O C i n d i c e s 
2 0 1 0 FOR 1= Β TO Ν 
2 0 2 0 L p ( I ) = F N p ( B ) 
2 0 3 0 P p ( I ) = F N p ( I ) 
2 0 4 0 I D p ( I ) = S Q R ( L p ( I ) * P p ( I ) ) 
2 0 5 0 L q ( I ) = F N q { B ) 
2 0 6 0 P q ( I ) = F N q ( I ) 
2 0 7 0 I D q ( I ) = S Q R ( L q ( I ) * P q ( I ) ) 
2 0 8 0 NEXT I 
2 0 9 » ENDPROC 
2 1 0 0 
3 0 0 0 DEF F N p ( r e f ) 
3 0 1 0 NUM=0 : DENOM=0 
3 0 2 0 FOR p r = l TO PR 
3 0 3 0 NUM=NUM + D A T p ( p r , I ) * D A T q ( p r , r e f ) 
3040 DENOM=DENOM + D A T p i p r , B ) * D A T q ( p r , r e f ) 
3050 NEXT pr 
3 0 6 0 = NUM/DENOM*100 
3 0 7 0 
4 0 0 0 DEF F N q ( r e f ) 
4 0 1 0 NUM=0 : DENOM=0 
4 0 2 0 FOR p r = l TO PR 
4 0 3 0 NUM=NUM + D A T q ( p r , I ) * D A T p ( p r , r e f ) 
4 0 4 0 DENOM=DENOM + D A T q ( p r , B ) * D A T p ( p r , r e f ) 
4 0 5 0 NEXT pr 
4 0 6 0 = NUM/DENOM*100 
4 0 7 0 
5 0 0 0 DEF PROCprint 
5 0 1 0 PRINT : PRINT : PRINT "PRICE INDICES" 
5 0 2 0 PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT 
5 0 3 0 FOR 1= Β TO Ν 
5 0 4 0 PRINT T A B ( 0 ) ; I ; T A B ( 1 0 ) ; L p ( I ) ; T A B ( 2 0 ) ; P p ( I ) ; T A B ( 3 0 ) ; I D p ( I ) 
5 0 5 0 NEXT I 
5 0 6 0 PRINT I PRINT : PRINT "QUANTITY INDICES" 
507W PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT 
5 0 8 0 FOR 1= Β TO Ν 
5 0 9 0 PRINT T A B ( 0 ) ; I ; T A B ( 1 0 ) ; L q ( 1 ) ; T A B ( 2 0 ) ; P q ( I ) ; T A B ( 3 0 ) ; I D q ( I ) 
5 1 0 0 NEXT I 
5 1 1 0 ENDPROC 
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PROBLEMS 

(3.1) Devise a P R O C d a t a to read data into Program 3.1 
S I M P R E L from D A T A statements as an alternative, which can be 
exercised at the user 's discretion, to conversational data input in 
PROCinpu t . 

3.5 Index numbers in perspective 

The indices described above are very simple examples of the 
genre. In practice there are a number of comphcations which have 
to be considered. The pr ime consideration must be the purpose for 
which an index is required, in the context of the availability and 
reUability of the basic data . Any summary is bound to be overtly 
selective in its data sources, and covertly limiting by its very 
summarizing nature - the scope of the index should not be so wide 
as to yield a meaningless series. 

Problems of i n t eφre t a t i on arise if too long a series is presented. 
Some products will have been phased out and new ones phased in. 
Technical and qualititive improvements can be made in an 
incremental manner over a protracted term so that like is not 
always compared to like, i .e. value for money is explicitly excluded 
from the information summary. 

Problems of scale arise when there are numerous commodities. 
It is more convenient to construct price indices, say, from 'weighed 
means ' of relatives (WMR) of individual prices where the weights 
Wref are tied to some reference period. Such an index, WM/?/, is 

WMRi = Σρί/ρΒ X W^ref/SH^ref X 100 

where the summation is taken over all the products. 
When the weights W^et are taken as the values VQ of 

expenditures in the base year (i .e. P o i o ) then this index of 
weighted price relatives is identical to the Laspeyres price index, 
as the reader may confirm algebraically. 

In fact, the Index of Retail Prices (RPI) is closely based on a 
Laspeyres quantity index. Naturally, the details of the construc­
tion of this or any other government index, such as the Index of 
Industrial Production, lies outside the present scope. Suffice it to 
say that the R P I is obtained as a weighted mean of other 
sub-indices, themselves defined as weighted means of relatives. 
The way in which the annual Family Expendi ture Surveys are 
utilized to derive and update the weights can be somewhat 
complicated, and the calculations of the sub-indices are often in 
chain index form. 
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(3.2) Devise a P R O C e d i t to be called at line 65. This procedure 
should allow the user to alter any part of the input data. 

(3.3) Modify PROCinpu t of S I M P R E L to accept any textual 
identifier for the period I, such as 12/1985, in addition to the data 
value for period I. Modify lines 2070 and 3060 to print out the 
textual identifier in place of I. 

(3.4) Modify D E F L A T R to accept the data from the top half of 
Table 3.1 and to print out the real indices in the bot tom half of 
Table 3.1 (you should introduce arrays to store sales, costs, wages, 
employees and deflator data) . 

(3.5) Modify Program I N D I C E S to produce the additional indices 
as defined below, and r e R U N with the data of Table 3.5: 

Dribisch index = (L + P)/2 x 100 
Price index = 2/?/^ref/2po?ref x 100 
Quanti ty index = ¿^¿Pref/^^OPref x 100 
Price index (Edgeworth) = Σpi{qQ + ^/)/Σρο((7ο + q,) x 100 
Quanti ty index (Edgeworth) = Σqi{po + pi)/Xqo{po + P/) x 100 

(3.6) Write a program which forms the weighted mean of price 
relatives to check numerically that the index defined in Section 3.5 
conforms to the Laspeyres price index when the weights W^d are 
taken as V o . 
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Data fítting 

Essential theory 

This chapter is designed to give an introduction to data 
fitting.Simple linear regression on a controlled variable is first 
described in the context of production costs. Next, a simple 
logarithmic transformation of a non-linear relationship into a 
linear form is developed in the context of the so-called 'learning 
curve' . Piecewise linear regression is developed in the third section 
and may be omitted on a first reading. Cost-volume-profit analysis 
is developed for piecewise linear relationships in the final section. 

4.1 A straight line fít to data 

A straight line relationship is the simplest form of relationship 
between two quantit ies, such as production cost C and the 
production batch size N. Costs are not Ukely to be incurred in 
absolutely direct proport ion to the size of a production batch, but 
a linear relationship may be a satisfactory approximation for some 
purposes. 

Such approximations may be required when it is too expensive, 
or simply not practicable, to work out the costs of a specified batch 
from first principles. If a company submits priced tenders for 
customers on a repetitive basis, then such a costing would be based 
almost certainly on accumulated costing experience, rather than 
the detail of an individual case. 

Suppose that the data in Table 4.1 below, has been derived from 
a close examination of the costs of producing different batch sizes 
of some product . 

Table 4.1 Costs and batch size data 

Observation 1 2 3 4 5 6 7 
Batch size 12 18 24 30 36 42 48 
Cost 5.27 5.68 6.25 7.21 8.02 8.71 8.42 

34 
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Batch size 

Figure 4.1 A plot of the data of Table 4.1 

A search for a best linear relationship between costs and 
production levels makes sense only if there is a prior supposition of 
linearity. There are many other possibiUties, and two of the major 
ones are considered later in this chapter . The interested reader is 
referred to a companion volume {BASIC matrix methods by J. 
Mason, But terworths , 1984) for a more comprehensive t reatment . 

A linear relationship between costs C and batch size may be 
stated as 

C = F-^Vx Ν 

where F is a fixed cost 
y is a constant marginal cost. 

If the cost of production Cj has been established for each of 
several trial values of the batch size Nj then one can write 

Cj = F-l· V X Njej 

where e/ is a residual or error term. 
The problem is to establish values for the fixed cost F and the 

marginal (or variable) cost Vpei unit of production which best 'fit' 
the data. There are several criteria depending upon what is meant 
by a best fit. The simplest and perhaps the most commonly 
employed criterion is to fit a linear relationship to data in the 'least 
squares sense ' ; that is, a fit which minimizes the sum of the 
squared residuals. This is correctly described here by the term 
'linear regression (of costs) upon a controlled variable (the batch 
size)' . Now 

Σej = Z ( C / - F-Vx Njf 

where the summation extends over the number of data pairs of C 
and V which are available. 

Differential calculus is used to establish conditions which lead to 

This data has been graphed in Figure 4 . 1 , which suggests that 
there may indeed be a Unear relationship. 
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a minimum Σε], and on equating to zero the partial derivatives 
with respect to V and F one finds 

where is the average of Nj and C is the average of C¡. 
A simple computer program L I N E F I T for the determination of 

F and V is based upon a main program which calls four 
P R O C E D U R E S : 

PROCinpu t : allows the user to input the control and 
dependent variable values N(I) and C(I) , for 
I = 1,2, . . . ,NN. 

PROCparame te r s : evaluates the arithmetic means C B A R and 
N E A R on a first pass of the data, and the 
values of F and V on a second pass. 

PROCpr in t : tabulates N(I ) , C(I ) , F -f V x N(I ) , and 
residuals e/ for I = 1,2, . . . ,NN, and prints out 
the best fit equation together with the coeffi­
cient of determinat ion. 

PROCes t imate : enables the user to make an estimate of costs 
C = F + 7 X for any iV. 
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1 0 REM LINEFIT 
2 0 REM LINEAR REGRESSION OF C ON CONTROLLED VARIABLE Ν 
30 DIM C ( 1 0 0 ) , N ( 1 0 0 ) 
40 @%=&02040A 
50 
6 0 PROCinput 
7 0 P R O C p a r a m e t e r s 
80 PROCprint 
90 P R O C e s t i m a t e 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 PRINT : INPUT "No OF DATA PAIRS ";NN 
1 0 2 0 PRINT "CONTROL DEPENDENT" 
1 0 3 0 PRINT "VARIABLE VARIABLE" :PRINT " N " ; T A B ( 1 1 ) ; " C " 
1 0 4 0 FOR 1= 1 TO NN 
1 0 5 0 INPUT N ( I ) ; T A B ( 1 0 ) ; C { I ) 
106 0 NEXT I 
107 0 ENDPROC 
1 0 8 0 
2 0 0 0 DEF P R O C p a r a m e t e r s 
2 0 1 0 SIGMAC=0 : SIGMAN=0 
2 0 2 0 FOR 1= 1 TO NN 
2 0 3 0 SIGMAC=SIGMAC+C(I) 
2 0 4 0 SIGMAN=SIGMAN+N(I) 
2 0 5 0 NEXT I 
2 0 6 0 CBAR=SIGMAC/NN : NBAR=SIGMAN/NN 
207 0 NUM=0 : DENOM=0 : CD=0 
2 0 8 0 FOR 1= 1 TO NN 
2 0 9 0 NUM=NUM+{ N(I ) -NBAR ) * ( C ( I ) - C B A R ) 
2 1 0 0 DENOM=DENOM+( N{I) -NBAR ) * ( N ( I ) - N B A R ) 
2 1 1 0 CD=CD+( C ( I ) - C B A R ) * { C ( I ) - C B A R ) 
2 1 2 0 NEXT I 
2 1 3 0 V= NUM/DENOM 
2 1 4 0 F =CBAR-V*NBAR 
2 1 5 0 CD=NUM*V/CD 
2 1 6 0 ENDPROC 
2 1 7 0 
3 0 0 0 DEF PROCprint 
3 0 1 0 PRINT : PRINT "STRAIGHT LINE OF BEST FIT F+V*N = " 
3 0 2 0 PRINT F ; " + " ; V ; " * N" 
3 0 3 0 PRINT : PRINT T A B ( 9 ) ; " N " ; T A B ( 1 9 ) "C";TAB(25) "F+V*N"; 
3040 PRINT TAB(32) "RESIDUAL" 
3 0 5 0 FOR 1=1 TO NN 
3 0 6 0 PRINT N ( I ) , C { I ) , F + V * N ( I ) , C ( I ) - F - V * N ( I ) 
3 0 / 0 NEXT I 
3 0 8 0 PRINT : PRINT "COEFF OF DETERMINATION =";CD*100;"%" 
3090 ENDPROC 
3 1 0 0 
4 0 0 0 DEF P R O C e s t i m a t e 
4 0 1 0 REPEAT 
40 20 PRINT 
4 0 3 0 INPUT "DO YOU WANT AN ESTIMATE (Y o r N) " , Z $ 
4040 IF Z$="N" THEN ENDPROC 
4 0 5 0 INPUT "CONTROLLED VARIABLE VALUE = " , N 
4 0 6 0 C=F+V*N 
40/k) IF N<N(1) THEN PRINT "WARNING:CONTROL I S < DATA MIN." 
4 0 8 0 IF N>N(NN) THEN PRINT "WARNING:CONTROL I S > DATA MAX." 
40 90 PRINT "DEPENDENT VARIABLE VALUE = ";C 
4 1 0 0 UNTIL FALSE 
4 1 1 0 ENDPROC 

Program 4.1 LINEFIT: Linear regression on a controlled variable 
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? 5 . 2 7 

? 5 . 6 8 

? 6 . 2 5 

? 7 . 2 1 

? 8 . 0 2 

? 8 . 7 1 

? 8 . 4 2 

STRAIGHT LINE OF BEST FIT F+V*N = 
3 . 9 9 4 3 + 0 . 1 0 2 9 * Ν 

Ν C F+V*N RESIDUAL 
1 2 . 0 0 0 0 5 . 2 7 0 0 5 . 2 2 8 6 0 . 0 4 1 4 
1 8 . 0 0 0 0 5 . 6 8 0 0 5 . 8 4 5 7 - 0 . 1 6 5 7 
2 4 . 0 0 0 0 6 . 2 5 0 0 6 . 4 6 2 9 - 0 . 2 1 2 9 
3 0 . 0 0 0 0 7 . 2 1 0 0 7 . 0 8 0 0 0 . 1 3 0 0 
3 6 . 0 0 0 0 8 . 0 2 0 0 7 . 6 9 7 1 0 . 3 2 2 9 
4 2 . 0 0 0 0 8 . 7 1 0 0 8 . 3 1 4 3 0 . 3 9 5 7 
4 8 . 0 0 0 0 8 . 4 2 0 0 8 . 9 3 1 4 - 0 . 5 1 1 4 

COEFF OF DETERMINATION = 9 4 . 5 5 7 8 % 

DO YOU VÍANT AN ESTIMATE (Y o r N) ?Y 
CONTROLLED VARIABLE VALUE = ? 1 0 
WARNING:CONTROL IS < DATA MIN. 
DEPENDENT VARIABLE VALUE = 5 . 0 2 2 9 

DO YOU WANT AN ESTIMATE (Y o r N) ?Y 
CONTROLLED VARIABLE VALUE = ? 5 4 
WARNING:CONTROL I S > DATA MAX. 
DEPENDENT VARIABLE VALUE = 9 . 5 4 8 6 

DO YOU WANT AN ESTIMATE (Y o r N) ?N 

Type in L I N E F I T and replicate the given R U N when you are 
satisfied with your listing. The output includes the residuals and it 
is always important to look at them very carefully. The assumption 
of linearity must be held with reserve, and it becomes clearly 
untenable when the residuals have a strongly pronounced pat tern 
- such as large positive values for small batches and large negative 
values for large batches. In the present case the absolute values of 
the residuals tend to become numerically larger as the batch size 
increases, but their signs do not otherwise give rise for concern. So 
there is little evidence here of systematic departure from linearity. 

Fur thermore , the coefficient of determination is about 95 per 
cent, which can be interpreted as follows: some 95 per cent of the 

RUN 

No OF DATA PAIRS ?7 
CONTROL DEPENDENT 
VARIABLE VARIABLE 

Ν C 
? 1 2 

? 1 8 

? 2 4 

? 3 0 

? 3 6 

? 4 2 

? 4 8 
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variation in the cost data has been explained on the basis of the 
linear relationship, which expressed to four decimal places is 

Cost = 3,9943 + 0.1029 x TV 

95 per cent is a reassuringly high percentage. A coefficient of 100 
per cent resuhs when a line of best fit passes directly through all 
the data points. It would have been much smaller had the costs not 
varied substantially^ in proport ion to batch size. The total 'sum of 
squares ' 1 ( C / - Cf can be regarded as having an 'explained' 
component , and an 'unexplained' component Σ^/ . The explained 
component is obtained by differencing, and the coefficient of 
determinat ion is the percentage ratio of this component to the 
total sum of squares. This can be expressed as 

Coefficient of determinat ion = 1̂ ^̂  1 ^ ! . — x 100 

The reader may have wondered why two passes of the data were 
employed in PROCparame te r s of L INEFIT . The first pass was 
used to evaluate t h e j n e a n s Ν and C__and the second to evaluate 
Σ(Λ^/ - Ν ) , Σ ( 0 - C) , and Σ(Λ^/ - Nf prior to substitution into 
the expressions for Y and Έ. There is an alternative expression for 
V which entails the quantities ΣΛ^/1//, Σ ^ / , ΣΛ^/ and ΣΑ^/, all of 
which can be evaluated on a single pass of the data. But rounding 
and truncation errors are more likely to occur, because the 
denominator of V is then determined from the difference between 
two large numbers ΝΝΣΝ] and (ΣΝ/γ. However , the reader is 
referred elsewhere {BASIC statistics, by J. Tennant-Smith, 
But terworths , 1985) for a discussion of a better method. 

Recall that the purpose was to obtain assistance in making cost 
estimates. This amounts to using the equation of the line of best fit 
with a stipulated value of the controlled variable. Notice that the 
output produces a warning if the value of the controlled variable 
hes outside the range of the original data which was used to obtain 
the line of best fit. This class of estimate is known as extrapolation, 
and it has much less reliability than an interpolated estimate, since 
there can be no assurance that the linear relationship holds for 
arbitrarily small or large volumes. 

The reader should next R U N the program for the data given in 
Table 4.2. He re the controlled variable is the time period and so 
a convenient choice is a quarterly variable with values from 1 to 
14, The dependent variable C is not cost, but sales. The output is a 
Une of best fit of the form 

Sales = 211,9780 + 0.7363*Λ^ 
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1 2 
Quarter 

3 4 

1983 200 225 227 202 
1984 204 228 230 207 
1985 210 231 233 207 
1986 209 232 

However , the coefficient of determination is only 6 per cent, which 
signals loud and clear that linear regression on this data is quite 
inappropriate . The reader should graph the data to confirm this 
observation. H e or she should also note that the residuals have a 
consistent periodicity, those for quarters 1 and 4 being negative 
while those in quarters 2 and 3 are positive. This is fully consistent 
with a cyclical sales pat tern over an underlying shallow trend, and 
this possibility must be explored in a quite different way, through 
time series analysis (see BASIC forecasting, by D . G. Johnson and 
M. King, But terworths) . You should do Problems 4.1 and 4.4 
here . 

4.2 The learning curve 

Particular forms of non-linear relationships can be transformed 
into linear relationships. Suppose that t = al^ -¥ τ where t is the 
average assembly t ime for the first / assemblies; a and b are 
parameters and τ is the long run average t ime. 

Taking logarithms gives 

log (i - τ) = log -h ft log / 

This is the linear relationship 

C = F Ν X V 

where 

C = log (i - τ) Ν = log / F = log V b 

The first assembly takes the time a -\- τ and a negative value of b 
gives rise to a geometrically decreasing average assembly t ime, 
tending to τ in the limit. This phenomenon was first noticed in the 
US aircraft industry and has become known as a learning curve. 

Assembly times for the first eight of a production run of aircraft 
components are given in Table 4 .3 . Figure 4.2 shows actual 
average assembly times i/ from the third hne of Table 4 .3 . 

Table 4.2 Sales for 14 quarters 
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Figure 4.2 A plot of the data of Table 4.3 

The method of the previous section could be used to fit a 
straight line in the least squares sense through the logarithmically 
transformed data, always provided that a value of τ was supphed. 
Indeed, one could repeat the process for each of a series of trial 
values for τ. If the 'best' value was associated with the largest 
coefficient of determination, then one would have a best fit 
equation 

C = F + X F and so Ö = 10^ and 6 = y 

This approach would be clearly impractical by hand calculation, 
but it can be carried out effectively and efficiently on a 
microcomputer. Program L C U R V E consists of a short main 
program which calls the following PROCEDURES: 

PROCinput: allows the user to input the observed assembly 
time T(I) of assemblies I = 1,2,. . . ,NN and calls 
FNavtime to calculate t(I), the average time to 
assemble each of the first I assemblies. 

PROCiterate: calls PROCparameters (see LINEFIT) for 50 trial 
values of τ in the range 0 =̂  τ ^ T ( N N ) , with C(I) 
= LOG(t(I) - τ) and N(I) = LOG(I) for I = 
1,2, . . . ,NN. The best value tau of T A U , the 
highest coefficient of determination cd, and the 
best values of a and b are available on comple­
tion. 

Table 4.3 Assembly times for the fírst eight airframe components 

Component/ 1 2 3 4 5 6 7 8 
Actual times 946 593 572 589 525 555 516 549 
Actual av. time 946 769.5 704 675 645 630 614 606 
Predicted av. time 943 773 707 669 645 628 615 606 
Learning curve of best fit: 438.35 x r"̂^ + 505.8 
Coefficient of determination: 99.88% 
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Program 4.2 LCURVE: Learning curve regression 

1 0 REM LCURVE 
20 REM LEARNING CURVE REGRESSION 
3 0 REM LOG-LOG TRANSFORMATION ON 
40 REM AVERAGE TIME AND COMPONENT NUMBER 
50 REM REQUIRES ACTUAL TIME FOR 
6 0 REM COMPONENTS Nos 1 TO NN 
7 0 DIM C ( 1 0 0 ) , T ( 1 0 0 ) , N ( 1 0 0 ) , t ( 1 0 0 ) 
80 @%=&02020A 
90 

1 0 0 PROCinput 
1 1 0 P R O C i t e r a t e 
1 2 0 PROCprint 
1 3 0 P R O C e s t i m a t e 
1 4 0 END 
150 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "MAX N O COMPONENTS";NN 
1 0 2 0 PRINT 
1 0 3 0 PRINT "COMPONENT ACTUAL" 
1040 PRINT "NUMBER TIME" 
1 0 5 0 FOR 1= 1 TO NN 
106 0 PRINT T A B ( 4 ) ; I ; T A B ( 1 4 ) ; r I N P U T Τ ( I ) 
1 0 7 0 t ( I ) = F N a v t i m e ( I ) 
1 0 8 0 NEXT I 
1 0 9 0 ENDPROC 
1 1 0 0 
2 0 0 0 DEF P R O C p a r a m e t e r s 
2 0 1 0 SIGMAC=0 : SIGMAN=0 
2 0 2 0 FOR 1= 1 TO NN 
2 0 3 0 SIGMAC=SIGMAC+C(I) 
2 0 4 0 SIGMAN=SIGMAN+N(I) 
2 0 5 0 NEXT I 
2 0 6 0 CBAR=SIGMAC/NN : NBAR=SIGMAN/NN 
207Ifl NUM=0 : DENOM=0 : CD=0 
2 0 8 0 FOR 1= 1 TO NN 
2 0 9 0 NUM=NUM+( N(I ) -NBAR ) * { C ( I ) - C B A R ) 
2 1 0 0 DENOM=DENOM+( N(I ) -NBAR ) * { N(I ) -NBAR ) 
2 1 1 0 CD=CD+( C ( I ) - C B A R ) * ( C ( I ) - C B A R ) 
2 1 2 0 NEXT I 
2 1 3 0 V= NUM/DENOM 
2 1 4 0 F =CBAR-V*NBAR 
2 1 5 0 CD=NUM*V/CD 
2 1 6 0 ENDPROC 
2 1 7 0 

PROCpr in t : tabulates the actual average assembly times t ( I ) , 
the predicted average times al^ + tau, and the 
residuals for I = 1,2,. . . , NN; prints the equation 
t = al^ + tau, together with the coefficient of 
determinat ion cd. 

PROCes t imate : allows the user to estimate the assembly time for 
the Ith assembly. 

FNavtime(i) : generates the average assembly time of the first i 
assemblies t(i) = 1/1ΣΤ(Ι) from the actual 
assembly times T(I) for I = 1,2,. . . , i . 
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3 0 0 0 DEF P R O C i t e r a t e 
3 0 1 0 c d = 0 
3 0 2 0 S = T ( N N ) / 5 0 
3 0 3 0 FOR TAU=0 TO Τ(NN) STEP S 
3 0 4 0 FOR 1= 1 TO NN 
3 0 5 0 C(I )=LOG( t ( I ) - T A ü ) : N ( I ) = L O G ( I ) 
3 0 6 0 NEXT I 
307 0 P R O C p a r a m e t e r s 
3080 IF CD>ccl THEN cd=CD :tau=TAU : a=10 ' 'F : b=V 
3 0 9 0 NEXT TAÜ 
3 1 0 0 ENDPROC 
3 1 1 0 
4 0 0 0 DEF PROCprint 
4 0 1 0 PRINT 
40 20 PRINT " COMPONENT AVERAGE ESTIMATED RESIDUAL" 
4 0 3 0 PRINT " NUMBER TIME TIME" 
4 0 4 0 FOR 1= 1 TO NN 
4 0 5 0 PRINT l , t ( l ) , a * l ' ' b + t a u , t ( I ) - a * I ' ' b - t a u 
406 0 NEXT I 
407Μ PRINT :PRINT "COEFF OF DETERMINATION " ; c d * 1 0 0 
4 0 8 0 PRINT : PRINT "BEST FIT LEARNING CURVE " 
4090 PRINT a ; " * I ' ' " ? T A B ( 1 4 ) b ;TAB { 2 2 ) "+" ;TAB ( 2 4 ) t a u 
4 1 0 0 ENDPROC 
4 1 1 0 
5 0 0 0 DEF P R O C e s t i m a t e 
5 0 1 0 REPEAT 
5 0 2 0 INPUT "DO YOU WANT AN ASSEMBLY TIME ESTIMATE (Y/N) " , Z $ 
5 0 3 0 IF Z$="N" THEN ENDPROC 
5 0 4 0 INPUT "INPUT AN ASSEMBLY NUMBER >1 " , I 
5 0 5 0 t = a * ( I ^ i b + D - d - l ) " ( b + 1 ) ) + t a u 
506 0 PRINT "ACTUAL ASSEMBLY TIME PREDICTION IS " ; t 
507 Ii UNTIL FALSE 
5 0 8 0 ENDPROC 
5 0 9 » 
6 0 0 0 DEF F N a v t i m e ( i ) 
6 0 1 0 TC=0 
6 0 2 0 FOR j = 1 TO i 
6 0 3 0 TC=TC+T(j) 
6 0 4 0 NEXT j 
6 050 = T C / i 

RUN 
MAX No COMPONENTS?8 

COMPONENT ACTUAL 
NUMBER TIME 

1 . 0 0 ? 9 4 6 
2 . 0 0 ? 5 9 3 
3 . 0 0 ? 5 7 2 
4 . 0 0 ? 5 8 9 
5 . 0 0 ? 5 2 5 
6 . 0 0 ? 5 5 5 
7 . 0 0 ? 5 1 6 
8 . 0 0 ? 5 4 9 

COMPONENT AVERAGE E S T I M A T E D R E S I D U A L 
NUMBER TIME TIME 

1 . 0 0 9 4 6 . 0 0 9 4 3 . 4 3 2 . 5 7 
2 . 0 0 7 6 9 . 5 0 7 7 3 . 5 0 - 4 . 0 0 
3 . 0 0 7 0 3 . 6 7 7 0 6 . 5 5 - 2 . 8 8 
4 . 0 0 6 7 5 . 0 0 6 6 9 . 4 4 5 . 5 6 
5 . 0 0 6 4 5 . 0 0 6 4 5 . 4 4 - 0 . 4 4 
6 . 0 0 6 3 0 . 0 0 6 2 8 . 4 5 1 . 5 5 
7 . 0 0 6 1 3 . 7 1 6 1 5 . 7 0 - 1 . 9 8 
8 . 0 0 6 0 5 . 6 2 6 0 5 . 7 3 - 0 . 1 0 

COEFF OF D E T E R M I N A T I O N 9 9 . 8 8 

B E S T F I T L E A R N I N G CURVE 
4 3 8 . 3 5 * 1 ' ^ - 0 . 7 1 + 5 0 5 . 0 8 

DO YOU WANT AN ASSEMBLY T I M E E S T I M A T E ( Y / N ) ?Y 
I N P U T AN ASSEMBLY NUMBER >1 ? 2 0 
ACTUAL A S S E M B L Y T I M E P R E D I C T I O N I S 5 2 0 . 7 5 
DO YOU WANT AN ASSEMBLY T I M E E S T I M A T E ( Y / N ) ? N 
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Type in L C U R V E from the Usting above (first load L IN E F IT 
and D E L E T E 10,1080, and D E L E T E 3000,4110 to avoid the 
tedium of entering PROCparamete r s ) and R U N with the data of 
the first two rows of Table 4.3 (the machine may require a minute 
or so to carry out the 50 regressions). Your output should agree 
with the rest of the table , and a prediction for the assembly time of 
the twentieth airframe is 521. 

Such models can be applied to a wide variety of circumstances, 
such as plant maintenance costs which decrease with experience, 
or the costs associated with obtaining repeat orders . However , 
caution should be exercised when using the model for extrapola­
tion beyond the immediate future: it is a useful model for 
short-term decision making, such as budgeting, but it is doubtful 
whether it is sensible to employ it for medium or long term 
forecasts. Methods for the determination of confidence Umits are 
omitted here . 

You should do Problems 4.5 and 4.6 at this juncture. 

^ 4̂.3 Fitting a piecewise linear function by least squares 

A linear relationship (or a transformation of a Unear relationship) 
may be quite inadequate for fitting the data to hand. Thus a R U N 
of L I N E F I T on the data of Table 4.4 yields a very low coefficient 
of determination of 3 6 % · 

Table 4.4 Further cost and batch size data 

Observation 1 2 3 4 5 6 7 8 9 10 
Batch size 10 20 30 40 50 60 70 80 90 100 
Cost 220 252 273 281 298 211 240 273 299 403 

This data is graphed in Figure 4 .3 , showing that the costs 
increase more or less Unearly up to mid-range batch sizes: Then 
there is a sudden decrease in costs followed by a second and 
continuing rise. This pat tern of costs could be due to a change in 
technology, which only becomes feasible in the light of 
opportunity costs for production of the larger batches. The costs 
for new technology production once again advance with batch size 
in a more or less linear fashion. 

Although it is obviously possible in this simple example to R U N 
L I N E F I T twice, for lower and higher levels of output , this would 
be tiresome with a large number of Unear segments. The practical 
utility of piecewise linear data fitting should be self-evident, as the 
next section on cost-volume-profit analysis will convincingly 
demonstra te in one particular case.The L linear segments are said 
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Figure 4.3 A piecewise linear function: data from Table 4.4 

to join at 'knots ' «χ, «2» · · Thus one can relate the cost C 
to output iV by a piecewise linear function which includes a fixed 
cost e lement / , and marginal costs V/ for outputs in the range 
ni-i<N^ni as follows: 

C = / + n i ( V i - V2) + A22(V2 - V 3 ) + . . . + « / _ i ( V / _ i - V/) + NVi 

or 

C = Co + c,(N - no) + C2ÍN - n,) -l· , . . c,(7V -
where no = 0 

These alternatives are shown in Figure 4.4 for the case of a 2-piece 
linear relationship (i .e. L = 2) . 

^ n = 0 Π] Volume Volume 

Figure 4.4 Two alternative formulations of 2-piece linearity 

The correspondence between the two alternatives is given by 

/ = Co 

/ 
Vj = Σ Ck 

k=l 

Co=f 
or 
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Now the second formulation can be written even more compactly 
as 

i 

where 

{N - nj-i)^ = Ν - nj.y if > o 
= 0 otherwise 

It is now convenient to use this equation to express the sum of 
squared residuals, S.S., as follows: 

NN L 
S.S. = Σ 

7=1 j 

where the first summation extends over the Λ̂ Λ̂  observations. 
On equating to zero the partial derivatives of S.S. with respect 

to C(), Ci , C 2 , . . . , C/̂  one finds the following L + 1 Unear equations 
in Co, c , , C 2 , . . . ,Cl: 

NN L NN 
Σ {Co + Σ Cj{Nj - nj.,)^) = Σ C/ 

7=1 y=l 7=1 

NN L NN 
Σ {[Co + Σ Cj{Nj - nj.^U](Nj-nj.,U}= Σ Cj{Nj- n^.^U 

7=1 7=1 7=1 

for / = 1, 2, . . . , L . 
Writ ten in matrix form, these equations become A c.= ¿ w h e r e 

c = ( c o , c i , C 2 , . . ., and = IC/(iV/ -

for / = 1, 2, . . . , L 
7 = 1, 2, . . . , L . 

Thus A is symmetric and this fact allows the use of a simplified 
method of solution (Gaussian elimination for a symmetric matrix 
of coefficients). The equations are Unearly independent if there is 
at least one data point for each segment / for / = 2, 3 , . . . , L and at 
least two data points for the initial segment. The equations could 
well be ill-conditioned, however, with a likelihood that increases 
with increasing L. These equations can be seen to reduce to the 
familiar equations for simple linear regression when L = 1 upon 
substitution for the Cj. 
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A Structured program P I E C E L N has a short main program 
which calls the following procedures: 

PROCinpu t : allows the user to input the observations C(I) 
and N(I) for I = 1, 2, . . . , NN, and the 
ordinates of knots Uj for i = 1, 2, . . . , L. 

PROCmat r ix : generates the elements of A and b.. 
PROCgauss : solves for c. by a standard Gaussian elimination 

(after Program 5.5 from BASIC matrix methods, 
by J. Mason, But terworths , 1984). 

PROCtransform: finds f and v(i) for i = 1, 2, . . . , L. 
PROCpr in t : prints out the best L-piece linear relationship in 

the least squared sense: also prints the residuals 
and the coefficient of determination. 

FNC(X) : returns the value of the dependent variable C for 
a value of the controlled variable X. 

A listing of Program P I E C E L N is given below. The program is 
rudimentary and no particular efforts have been made to avoid 
truncation or rounding errors , or to recognize the possible 
existence of ill-conditioning. A R U N with the data of Table 4.4 
follows the listing. For the (subjective) choice of knots as shown, 
the coefficient of determinat ion is a modest 91 per cent. 
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1 0 REM PIECELN 
2 0 REN PIECEWISE LINEAR REGRESSION 
3 0 REN FOR DETAILS OP PROCgauss REFER BASIC m a t r i x m e t h o d s 
4 0 REN BY J.NASON, BUTTERWORTHS 1 9 8 4 
50 DIN C ( 1 0 0 ) , N ( 1 0 0 ) , n ( 1 0 ) , A ( l l , l l ) , B ( l l ) , c ( l l ) , v ( l l ) 
60 e%»&02040A 
70 
80 PROCinput 
90 PROCmatrix 

1 0 0 PROCgauss 
1 1 0 PROCtrans form 
1 2 0 PROCprint 
1 3 0 END 
140 

1 0 0 0 DEF PROCinput 
1 0 1 0 CBAR»0 : PRINT : INPUT "NO DATA PAIRS "jNN 
1 0 2 0 PRINT "CONTROL DEPENDENT" 
1 0 3 0 PRINT "VARIABLE VARIABLE" :PRINT " N " ; T A B ( 1 1 ) ; " C " 
1 0 4 0 FOR 1= 1 TO NN 
1 0 5 0 INPUT N ( I ) ; T A B ( 1 0 ) ; C ( I ) : CBAR=^CBAR+C ( I ) 
1 0 6 0 NEXT I : CBAR=CBAR/NN 
107 0 PRINT:INPUT "No OF LINE SEGS. ";L 
1 0 8 0 PRINT : I F L>1 THEN PRINT "KNOT ORDINATE" 
1 0 9 0 1=1 
1 1 0 0 REPEAT 
1 1 1 0 IF K L THEN PRINT S T R $ ( 1 ) TAB(10) ; : INPUT n ( l ) 
1 1 2 0 1 = 1+1 
1 1 3 0 UNTIL 1>=L 
1 1 4 0 ENDPROC 
1 1 5 0 
2 0 0 0 DEF PROCmatrix 
2 0 1 0 A ( 0 , 0 ) = N N 
2 0 2 0 FOR 1= 1 TO NN 
2 0 3 0 B ( 0 ) = B ( 0 ) + C ( I ) 
2 0 4 0 NEXT I 
2 0 5 0 FOR j = 1 TO L 
2 0 6 0 FOR 1= 1 TO NN 
207IÖ T E R M = N ( I ) - n { j - 1 ) 
2 0 8 0 IF TERM <0 THEN TERM =0 
2 0 9 0 A ( 0 , j ) = A ( 0 , j ) + T E R M 
2 1 0 0 NEXT I 
2 1 1 0 A ( j , 0 ) = A ( 0 , j ) 
2 1 2 0 NEXT j 
2 1 3 0 FOR i = 1 TO L 
2 1 4 0 FOR 1= 1 TO NN 
2 1 5 0 P R O D = N ( I ) - n ( i - l ) 
2 1 6 0 IF PROD <0 THEN PROD*0 
2 1 7 0 B ( i ) = B ( i ) + P R O D * C ( I ) 
2 1 8 0 NEXT I 
219k) FOR j = 1 TO L 
2 2 0 0 FOR 1= 1 TO NN 
2 2 1 0 PROD = N ( I ) - n ( j - l ) : IF PROD<0 THEN PROD=0 
2 2 2 0 P R O D = P R O D * ( N ( I ) - n ( i - l ) ) : I F PROD<0 THEN PROD=0 
2 2 3 0 A ( i , j ) = A ( i , j)+PROD 
2240 NEXT I 
2 2 5 0 NEXT j 
2 2 b 0 NEXT i 
2 2 7 B ENDPROC 
2 2 8 0 

Program 4.3 PIECELN: Piecewise linear regression 
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3 0 0 0 DEF PROCgauss 
3 0 1 0 FOR K=0 TO L - 1 
3 0 2 0 FOR I=K+1 TO L 
3 0 3 0 M = - A ( K , I ) / A ( K , K ) 
3040 FOR J= I TO L 
3 0 5 0 A ( I , J ) = A ( I , J)+M*A(K, J) 
3 0 6 0 NEXT J 
3 0 7 0 B ( I ) = B ( I ) + M * B ( K ) 
3 0 8 0 NEXT I 
3 0 9 0 NEXT Κ 
3 1 0 0 C ( L ) = B ( L ) / A ( L , I . ) 
3 1 1 0 FOR I = L - 1 TO 0 STEP - 1 
3 1 2 0 D = B ( I ) 
3 1 3 0 FOR J = I + 1 TO L 
3 1 4 0 D = D - C ( J ) * A ( I , J) 
3 1 5 0 NEXT J 
3 1 6 0 c ( I ) = D / A ( I , I ) 
317 0 NEXT I 
3 1 8 0 
4 0 0 0 DEF PROCtrans form 
4 0 1 0 f = c ( 0 ) 
4 0 2 0 v ( l ) = c ( l ) 
4 0 3 0 FOR 1 = 2 TO L 
4 0 4 0 v ( l ) = v ( l - l ) + c ( l ) 
40 50 NEXT 1 
4 0 6 0 ENDPROC 
40710 
5 0 0 0 DEF PROCprint 
5 0 1 0 PRINT : SS=0 : T=0 : PRINT "PIECEWISE LINEAR FIT = " 
5 0 2 0 PRINT c ( 0 ) 
5 0 3 0 FOR 1= 1 TO L 
5 0 4 0 PRINT "+ ( N - " ; n ( l - l ) ; " ) + * " ; c ( l ) 
5 0 5 0 NEXT 1 
5 0 6 0 PRINT : PRINT "OR ALTERNATIVELY" 
5 0 7 0 PRINT "FIXED ELEMENT = " ; f rPRINT "MARG. RATE <=KNOT" 
5 0 8 0 FOR 1 = 1 TO L 
5 0 9 0 PRINT v ( l ) , n ( l ) 
5 1 0 0 NEXT 1 
5 1 1 0 PRINT : PRINT T A B ( 9 ) ; " N C FITTED RESIDUAL" 
5 1 2 0 FOR 1= 1 TO NN 
5 1 3 0 PRINT N ( I ) , C ( I ) , F N C ( N ( I ) ) , C ( I ) - F N C ( N ( I ) ) 
5 1 4 0 S S = S S + ( C ( I ) - F N C ( N ( I ) ) ) ' ^ 2 : T=T+(CBAR-C ( I ) )'^2 
5 1 5 0 NEXT I 
5 1 6 0 C D = ( T - S S ) / T * 1 0 0 
517 0 PRINT : PRINT "COEFF OF DETERMINATION =";CD 
5 1 8 0 ENDPROC 
5 1 9 0 
6 0 0 0 DEF FNC(X) 
6 0 1 0 TERM=0 : C = c ( 0 ) 
6 0 2 0 FOR 1= 1 TO L 
6 0 3 0 T E R M = X - n ( l - l ) 
6 0 4 0 IF TERM<0 THEN TERM=0 
6 0 5 0 C=C+TERM*C(1) 
6 0 6 0 NEXT 1 
6 0 7 0 =C 
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RUN 

No DATA PAIRS ?10 
CONTROL DEPENDENT 
VARIABLE VARIABLE 

Ν C 
? 1 0 

? 2 2 0 
? 2 0 

? 2 5 2 
? 3 0 

? 2 7 3 
? 4 0 

? 2 8 1 
? 5 0 

? 2 9 8 
? 6 0 

? 2 1 1 
? 7 0 

? 2 4 0 
? 8 0 

? 2 7 3 
? 9 0 

? 2 9 9 
? 1 0 0 

? 4 0 3 

No OF LINE SEGS. ?3 

KNOT ORDINATE 
1 ?50 
2 ? 6 0 

PIECEWISE LINEAR FIT = 
2 0 9 . 3 0 0 0 

+ ( N - 0 . 0 0 0 0 ) + * 1 . 8 5 0 0 
+ { N - 5 0 . 0 0 0 0 ) + * - 1 2 . 3 7 0 0 
+ ( N - 6 0 . 0 0 0 0 ) + * 1 4 . 9 5 0 0 

OR ALTERNATIVELY 
FIXED ELEMENT = 2 0 9 . 3 0 0 0 
MARG. PATE <=KNOT 

1 . 8 5 0 0 
- 1 0 . 5 2 0 0 

4 . 4 3 0 0 

5 0 . 0 0 0 0 
6 0 . 0 0 0 0 

Ν C FITTED RESIDUAL 
1 0 . 0 0 C 10 2 2 0 . 0 0 0 0 2 2 7 . 8 0 0 0 - 7 . 8 0 0 0 
2 0 . 0 0 ( )0 2 5 2 . 0 0 0 0 2 4 6 . 3 0 0 0 5 . 7 0 0 0 
3 0 . 0 0 C )0 2 7 3 . 0 0 0 0 2 6 4 . 8 0 0 0 8 . 2 0 0 0 
40 .00C )0 2 8 1 . 0 0 0 0 2 8 3 . 3 0 0 0 - 2 . 3 0 0 0 
5 0 . 0 0 t )0 2 9 8 . 0 0 0 0 3 0 1 . 8 0 0 0 - 3 . 8 0 0 0 
6 0 . 0 0 { Ϊ0 2 1 1 . 0 0 0 0 1 9 6 . 6 0 0 0 1 4 . 4 0 0 0 
7 0 . 0 0 Í )0 2 4 0 . 0 0 0 0 2 4 0 . 9 0 0 0 - 0 . 9 0 0 0 
8 0 . 0 0 ( Ϊ0 2 7 3 . 0 0 0 0 2 8 5 . 2 0 0 0 - 1 2 . 2 0 0 0 
9 0 . 0 0 ( 30 2 9 9 . 0 0 0 0 3 2 9 . 5 0 0 0 - 3 0 . 5 0 0 0 

1 0 0 . 0 0 ( 90 4 0 3 . 0 0 0 0 3 7 3 . 8 0 0 0 2 9 . 2 0 0 0 

COEFF OF DETERMINATION = 9 1 . 2 1 4 0 

P I E C E L N requires the user to input the number of Unear 
segments L. It would obviously be advisable to start any at tempt at 
data fitting with the simplest case of a Unear fit, and the reader 
may care to confirm that a R U N on the data from Table 4.1 with L 
= 1 does indeed reproduce the best linear fit. A similar run with 
the data of Table 4.4 returns a coefficient of determination of 36 
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per cent, and a further R U N with L = 5 and knots at 3 0 , 5 5 , 5 6 and 
95, say, naturally returns an excellent fit of 99.82 per cent. 
Presumably one would use the minimum L consistent with 
achieving a desired degree of fit. P I E C E L N also requires the user 
to select the ordinates of the knot , and it may be far from obvious 
precisely what the best values should be . 

R U N the program on the data from Table 4.4 with knots at 49 
and 61 . You should find a fit with a coefficient of determination of 
92.6 per cent. The reader may have wondered throughout this 
section whether it is reasonable to ignore the likelihood of a 
dramatic discontinuity in mid-range in the data of Table 4.4, and 
much depends on the detailed circumstances. The purpose here 
has been to use as simple an example as possible to demonstrate 
the main analytical points. The reader may care to repeat the task 
of fitting a piecewise linear function to the data of Table 4.4 on the 
supposition of an abrupt change in manufacturing technology once 
55 or more units are produced. Now do Problem* 4.7. 

4.4 Cost-volume-profít (CVP) analysis 

The general objective in cost-volume-profit (CVP) analysis is to 
identify the level of commercial activity which maximizes the 
contribution to profits in absolute terms, i.e. maximizes the 
revenue less the operating costs. Both costs and revenue functions 
are assumed to be piecewise Unear functions. 

Piecewise Unear functions can arise quite naturally. The 
piecewise Unear production cost C in the foUowing numerical 
example arises from the aggregation of linear energy costs C^, and 
piecewise linear labour costs C^, machining costs and raw 
material costs C^. 

The energy cost is a directly variable cost. The labour cost 
results from an initial training and famiUarization cost, and a 

marginal cost rate which increases once overtime working 
becomes necessary to produce large batches. The machining cost 

consists of a constant marginal cost per unit of output plus 
periodic set-up costs incurred every so many units. The first unit 
produced after a second (or subsequent) set-up has a marginal cost 
given by the sum of the set-up cost plus the machining cost per se. 

A bulk discount applies to the variable raw material costs 
beyond a threshold delivery volume, and there is a fixed delivery 
cost. The marginal cost of the first unit at the threshold volume 
could be negative as in case 1 of Figure 4.5: this occurs if the saving 
which foUows the introduction of the discount to the whole 
delivery is numericaUy larger than the discounted marginal cost. 
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0 20 40 60 80 100 120 UO 160 
Act iv i ty 

Figure 4.5 Two cases for piecewise linear raw material costs 

A piecewise linear cost-volume relationship is shown in Figure 
4.6. Here we find three linear segments, with gradients V^, V2, V2 
and knots at Πι and «2. 

The cost C of Ν units of activity is then 

C = F + K , 7 V for N^n^ 
F + + V2ÍN - Ni) η^<Ν^η2 
F + 1/, TV, + V^2(A^2-A^i) + ν^3(Λ^-Α^2) n2<N 

Cost Γ 

Act iv i ty Ν 

Figure 4.6 A piecewise linear cost-volume relationship 

Table 4.5 summarizes the numerical values for parameters F , V 
and of the piecewise linear costs for the numerical example and 
also gives the marginal rates of revenue r. 

The parameters for the production costs C are obtained from 
the following: 

/ = F ^ + F ^ + F ^ + F ^ and V = + 4- + V^. 

Case 2 of Figure 4.5 would apply if the threshold volume were 
ordered wherever the actual raw material requirements lay 
between this volume and the break-even volume: there is then a 
zero marginal cost in this volume range. It is assumed that the 
second case applies here . 
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Table 4.5 Piecewise linear parameters 

Element Fixed cost Marginal rates for Λ̂ < = 
knots 

Energy = 0 V,^ = 12 150 
Labour =50 V^^= 8 120 

= 10 150 
Machining F^ = 20 V,^= 7 90 

= 27 91 
= 7 150 

Raw 
Materials / ^ = 8 Vi^ = 10 90 

= 0 100 
= 9 150 

Revenue — = 4 5 90 
Γ2 = 37 150 

It is clear that the marginal costs V have to be selected from the 
appropriate range of activity levels. These aggregate production 
cost parameters are given in Table 4.6 (the convention is that 
lower case symbols are employed for aggregate cost parameters) . 

Table 4.6 Parameters for aggregate production cost: data from Table 4.5 

Fixed cost Marginal rate for Λ^<= knots 

/ = 7 8 v, = 37 90 
V2 = 47 91 
V3 = 27 100 
V4 = 36 120 
V5 = 38 150 

It is not immediately obvious how one could accomplish this 
sorting process in an effective and efficient manner on a large 
scale. But the aggregation of cost parameters can be achieved in 
stages. We could first choose to aggregate the parameters for the 
energy costs {C^} with those of the labour costs C^. The resulting 
parameters for {C^ + C^} could be aggregated to those of the 
machining costs C ^ . Finally, the parameters for {C^ -f + C^} 
could be aggregated to those of the raw materials costs C^. The 
first four stages in Table 4.7 illustrate this sequence for the 
numerical data of Table 4.5. 

It is easy to extend this algorithmic approach to the case of 
profitabiUty analysis. The marginal profit rate ρ is given by 
ρ = r -l· (-c) where the marginal parameters have to be selected 
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Element of cost or revenue aggregate 
Stage Fixed Marginal Knots category 

rates 

fixed marginal knots 
rates 

1 / ^ = 50 8 120 / = 0 v i = 12 150 
150 

/ = 0 

2 F^ = 20 V,^= 1 90 /=50 v , = 2 120 
V-^ = 27 91 

/=50 
V 2 = 22 150 

150 
3 8 = 10 90 /=70 v i = 27 90 

^ 2 " " = 0 100 V 2 = 47 91 
^ 3 ^ = 9 150 V 3 = 27 120 

V 4 = 29 150 
4 = 4 5 90 /= -78 V, =-37 90 

Γ2 = 37 150 V2 =-47 91 
V3 =-27 100 
V4 =-36 120 
V5 =-38 150 

5 PROFIT /=-78 v , = 8 90 /=-78 
V2 =-10 91 
V 3 = 10 100 
V 4 = 1 120 
V 5 = -1 150 

from the appropriate range of activity levels. Consequently we 
take the parameters for the aggregate costs, and reverse the sign of 
the marginal and fixed cost parameters prior to the final stage of 
aggregation. 

This final aggregation results in the profit parameters at the foot 
of Table 4.7, from which Figure 4.7 has been constructed. 
Contribution to profits are maximized at an activity level of 120. It 
is evident from the algorithmic basis of the whole approach that 
the profitability relationship is piecewise linear if the cost and 
revenue relationships are likewise piecewise Hnear. 

Activity 

Figure 4.7 A piecewise linear profit-volume relationship 

Table 4.7 Sequential aggregation for stages 1 to 5 
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A formal algorithm follows for merging the Ith Une, say, from 
the left side of Table 4.7 into the list on the right side, after line 
/ - I . 

Step 1. If ni_i < Nj < n¿ then introduce an extra line into the 
right-hand list after line i-1 with a knot at Nj. 

Step 2. A d d Vj to Vy, Vy + 1 , . . . , v¿ in lines / to / respectively where 

A computer program can carry out these recursive calculations 
very quickly. A short main program dimensions a marginal 
parameter array v, and a knot array n, which jointly define a 
piecewise linear function with up to 100 linear segments (easily 
increased if required) . The main program calls the following 
P R O C E D U R E S . 

PROCinput_costs : enables the user to input the fixed, and 
marginal cost parameters and the knots for 
an arbitrarily large number of cost ele­
ments E M A X ( = 4 in the above example) . 
PROCs tep2 is called after each I N P U T of a 
complete set of cost data for the next stage 
in the aggregation of parameters . 

PROCinput_revenue: reverses the signs of the aggregate cost 
parameters and allows the user to input the 
marginal revenue data. 

PROCstep2 : calls P R O C s t e p l if necessary, and subse­
quently carries out step 2 of the algorithm. 

P R O C s t e p l : carries out step 1 of the algorithm. 
PROCprin t_ table : prints out aggregate fixed, marginal and 

total costs and revenues. 

Type in Program C V P from the listing and R U N with the data of 
Table 4.5. The output is easy to assimilate and is seen to conform 
to earlier results. The program requires very little memory and 
executes extremely quickly. 
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Program 4.4 CVP: Cost-volume-profit analysis. 
1 0 REM CVP 
2 0 REM COST VOLME PROFIT ANALYSIS FOR PIECEWISE LINEAR FNS. 
3 0 DIM v ( 1 0 0 ) , n ( 1 0 0 ) 
40 
50 P R O C i n p u t _ c o s t s 
60 P R O C p r i n t . t a b l e 
7 0 P R O C i n p u t _ r e v e n u e 
80 P R O C p r i n t _ t a b l e 
90 END 

1 0 0 
1 0 0 0 D E F P R O C i n p u t _ c o s t s 
1 0 1 0 INPUT "MAXIMUM VOLUME ",NN 
1 0 2 0 INPUT "MAX NO OF COST ELEMENTS",EMAX :Z$="C" 
1 0 3 0 REPEAT 
1 0 4 0 E=E+1 
1 0 5 0 PRINT "COST ELEMENT ";E 
1 0 6 0 INPUT "NO OF LINEAR SEGMENTS " , L 
1 0 7 0 INPUT "FIXED COST " , F 
1 0 8 0 PRINT "MARG. KNOTS" 
1 0 9 0 PRINT "COST" 
1 1 0 0 PRINT "V","N" 
1 1 1 0 FOR 1=1 TO L 
1 1 2 0 INPUT V 
1 1 3 0 IF K L INPUT T A B ( 1 0 ) , N ELSE N=NN 
1 1 4 0 IF E = l THEN ν ( I ) = V : n ( I ) = N 
1 1 5 0 IF E>1 THEN P R 0 C s t e p 2 
1 1 6 0 NEXT I 
1 1 7 0 IF E = l THEN 1=L : f=F 
1 1 8 0 UNTIL E=EMAX 
1 1 9 0 PRINT 
1 2 0 0 ENDPROC 
1 2 1 0 
2 0 0 0 DEF P R 0 C s t e p 2 
2 0 1 0 IF 1=1 THEN f = f + F : j = l 
2 0 2 0 n ( 0 ) = 0 
2 0 3 0 i = 0 
2 0 5 0 REPEAT 
2 0 6 0 i = i + l 
2 0 7 0 UNTIL N > = n ( I - l ) + l AND N < = n ( i ) 
2 0 8 0 IF N < n ( i ) THEN P R O C s t e p l 
2 0 9 0 REPEAT 
2 1 0 0 v ( j ) = v ( j ) + V 
2 1 1 0 j = j + l 
2 1 2 0 UNTIL j = i + l 
2 1 3 0 ENDPROC 
2 1 4 0 
3 0 0 0 DEF P R O C s t e p l 
3 0 1 0 FOR k = l + l TO i + 1 STEP - 1 
3 0 2 0 v ( k ) = v ( k - l ) 
3 0 3 0 n ( k ) = n ( k - l ) 
3040 NEXT k 
3 0 5 0 n ( i ) = N 
3 0 6 0 1=1+1 
307 0 ENDPROC 
3 0 8 0 
4 0 0 0 DEF P R O C p r i n t . t a b l e 
4 0 1 0 IF Z$="C" PRINT "COST-VOLUME PARAMETER TABLE" 
4 0 2 0 IF Z$="P" PRINT "PROFITABILITY-VOLUME PARAMETER TABLE" 
4 0 3 0 PRINT : PRINT "FIXED COMPONENT " ; f : PRINT 
4 0 4 0 PRINT TAB(2) "SEGMENT MARGINAL KNOT TOTAL" 
4 0 5 0 PRINT T A B ( 1 4 ) ; : I F Z$="C" PRINT " COST" TAB(35) "COST" 
4 0 6 0 IF Z$="P" PRINT "PROFIT" TAB(33) "PROFIT" 
407 Μ C = f I PRINT 
4 0 8 0 FOR i = l TO 1 
409fc) c = c + v ( i ) * ( n ( i ) - n ( i - l ) ) 
4 1 0 0 PRINT i , v ( i ) , n ( i ) , c 
4 1 1 0 NEXT i 
4 1 2 0 PRINT 
4 1 3 0 ENDPROC 
4 1 4 0 
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6 0 0 0 DEF P R O C i n p u t _ r e v e n u e 
6 0 1 0 PRINT "ENTER REVENUE DATA" :Z$="P" 
6 0 2 0 FOR i = l TO 1 
6 0 3 0 v ( i ) = - v ( i ) 
6 0 4 0 NEXT i 
6 0 5 0 f = - f 
6 0 6 0 INPUT "No OF LINEAR SEGMENTS " , L 
6 0 / 0 F=0 
6 0 8 0 PRINT "MARG. KNOTS" 
6 0 9 0 PRINT "REVENUE" 
6 1 0 0 PRINT " S " , " N " 
6 1 1 0 FOR 1= 1 TO L 
6 1 2 0 INPUT V 
6 1 3 0 IF K L INPUT T A B ( 1 0 ) , N ELSE N=NN 
6 1 4 0 P R 0 C s t e p 2 
6 1 5 0 NEXT I 
6 1 6 0 PRINT 
617 0 ENDPROC 

RUN 
MAXIMUM VOLUME ? 1 5 0 
MAX NO OF COST ELEMENTS?4 
COST ELEMENT 1 
NO OF LINEAR SEGMENTS ?1 
FIXED COST ?0 
MARG. KNOTS 
COST 
V Ν 
? 1 2 
COST ELEMENT 2 
NO OF LINEAR SEGMENTS ?2 
FIXED COST ?50 
MARG. KNOTS 
COST 
V Ν 
?8 

? 1 2 0 
? 1 0 
COST ELEMENT 3 
NO OF LINEAR SEGMENTS ?3 
FIXED COST ?20 
MARG. KNOTS 
COST 
V Ν 
?7 

?27 
? 9 0 

? 9 1 
?7 
COST ELEMENT 4 
NO OF LINEAR SEGMENTS ?3 
FIXED COST ?8 
MARG. KNOTS 
COST 
V Ν 
?10 

? 9 0 
?0 

? 1 0 0 
?9 

COST-VOLUME PARAMETER TABLE 

FIXED COMPONENT 7 8 

SEGMENT MARGINAL KNOT TOTAL 
COST COST 

1 37 90 3 4 0 8 
2 47 91 3 4 5 5 
3 27 1 0 0 3 6 9 8 
4 36 1 2 0 4 4 1 8 
5 3 8 1 5 0 5 5 5 8 
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ENTER REVENUE DATA 
No OF LINEAR SEGMENTS ?2 
MARG. KNOTS 
REVENUE 
S Ν 
? 4 5 

?90 
?37 

PROFITABILITY-VOLUME PARAMETER TABLE 

FIXED COMPONENT - 7 8 

SEGMENT MARGINAL KNOT TOTAL 
PROFIT PROFIT 

1 8 90 6 4 2 
2 - 1 0 91 6 3 2 
3 10 1 0 0 7 2 2 
4 1 1 2 0 7 4 2 
5 - 1 1 5 0 7 1 2 

Problems 

(4.1) Amend L I N E F I T to include a PROCread_da ta which reads 
from D A T A statements as an alternative to conversational data 
input in PROCinpu t : 

50 INPUT "ENTER Y FOR CONVERSATIONAL INPUT, Ν FOR DATA READ", Q$ 
60 IF Q$ = "Y" THEN PROCinput ELSE PROCread_data 

You should devise PROCread_da ta to read NN, and then N(I) 
and C(I) for I = 1, 2, . . . , NN from D A T A statements starting at 
line 9500. PROCread_da ta should then call PROCdata_pr int 
which should tabulate N(I) and C(I) prior to returning to the main 
program. 

(4.2) A m e n d L I N E F I T to include a PROCedi t which allows the 
user to edit the data: 

6 5 INPUT "ENTER Ε FOR EDIT OPTION", E$ 

66 IF E$ = "E" THEN PROCedi t 

You should devise PROCedi t so that the user can conveniently 
edit any item(s) of data . 

(4.3) There are occasions when the value of F is known in 
advance, the so-called *forced intercept ' case. This gives rise to the 
following expression for V which minimizes the sum of squared 
residuals: 

^{Cj-F)Nj 

This result is contained in standard works on regression theory. 
A m e n d PROCparame te r s of L I N E F I T to work in this way, and 
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r e R U N using F = 4 and the data of Table 4 .1 . PROCinpu t should 
allow the user to specify F, Note that the concept of a coefficient of 
determination is not valid here , since a very poor choice of F c o u l d 
easily lead to a sum of squared residuals in excess of 2 ( C / - Cf. 
So make the following amendments to PROCpr in t . 

3 0 0 5 SS = 0 
3 0 6 5 SS = SS + ( C ( I ) - F - V * N ( I ) )'^2 
3 0 8 0 PRINT : PRINT " R . M . S . ERROR = SQR(SS/NN) 

(4.4) Develop the program from Problem 4.3 to allow the user to 
input a value for a false origin NO for the controlled variable N . 
Then make the changes 

1 0 5 5 N ( I ) = N ( I ) - N0 
3 0 2 0 PRINT F; " + " , - ν ; " * ( N - N 0 ) ' ' 
3 0 6 0 PRINT N ( I ) + N0 , C ( I ) , F + V * N ( I ) , C ( I ) - F - V * N ( I ) 
40 55 Ν = N=N0 

A R U N with F = 8.9314 and NO = 48 and six data pairs (i .e. 
exclude the case Ν = 48) will force the regression through the 
point 48, 9.9314 and the results should therefore tally exactly with 
the R U N of L I N E F I T in the text. 

(4.5) The non-linear relationship >̂  = ß*/?"" can be transformed into 
a linear relationship between the log y and variable x. 

analogous to log y= log α -h log ft * Λ: 
C = F + V* Ν 

Modify the program from Problem 4.4 to take the LOG(C( I ) ) and 
L O G ( F ) in the lines following their INPUTs . 

Wri te b = (1 -h R/lOO) where R is an average percentage rate 
given by R = 100*(b - 1) or R = 100*(10^ - 1). Print out R and 
amend line 4090 to print 10"". Now use this program to find an 
average annual rate of inflation R % and to estimate the RPI for 
1985 and 1986 from the following data. 

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 
RPI 157.1 182.0 197.1 223.5 263.5 295.0 320.4 335.1 351.8 

(Average annual index values from table 18.3, Monthly Digest of 
Statistics, H M S O . ) 

Force an intercept of 351.8 in 1984 and R U N with the data from 
preceding years, and then R U N with 1980 to 1983 data. What 
qualifications attach to these forecasts? (The actual average RPI 
was 373.2 in 1985.) 

(4.6) The works accountant needs to budget for maintenance costs 
on chemical plant for the coming year. Plant is shut down for 
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maintenance every three months , and the following costs were 
incurred last year: 

Quar te r 1 2 3 4 
Shut-down cost (£Ό00) 8.0 6.4 6.0 5.6 

Modify L C U R V E to print-out the ' rate of learning' 2"^ and the 
sum of predicted costs for quarters 5 to 8. What qualifying 
observations attach to this forecast? 

*(4.7) Develop P I E C E L N to allow the user to select provisional 
knot ordinates, and then, for each knot in turn, to specify a 
number of trial evaluations for knot ordinates over a stated range. 
A knot must be contained within the range given by its adjacent 
knots and there must be at least one data point between each knot. 
Find the best fitting Hues with L = 1, 2, 3 , 4, 5 for the data of Table 
4.4. 

*(4.8) A particular product has the following price structure: 

Quantity ordered q 1-99 100-249 250-499 500-999 1000+ 
Unit price p(q) 10.20 9.95 9.65 9.30 8.80 

The total annual cost of stockholding C is the sum of the annual 
purchase costs and the interest costs on the capital tied up in 
stocks. If the rate of interest is / % per annum, and the average 
weekly demand is for 10 stock items then it can be shown that 

C = 520 p{q) -^O.Sql p(q) 

Use CVP to derive the piecewise linear cost function C, and show 
that the opt imum stock policy is to order 250 items when / = 20% 
at an annual cost of £5066. 

*(4.9) Develop C V P to identify the opt imum solution automati­
cally for Problem 4.8, and to step through the values of / from 8% 
to 2 6 % . Use the results to plot the opt imum batch size against / . 

*(4.10) A particular product has the following piecewise linear 
revenue-volume relationship, and incremental fixed costs. Show, 
using C V P , that the opt imum output is 8000 units if all of it can be 
sold. 

Quantity sold < = 1 0 0 0 < = 4 0 0 0 < = 9 0 0 0 < = 1 1 0 0 0 < = 1 5 0 0 0 
Unit revenue £ 1.75 2.00 2.30 1.80 0.50 
Incremental fixed costs 5000 at 0 units 8000 at 8000 units 
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*(4.11) In addition to the product from Problem 4.10 the company 
can produce a second with the following piecewise linear 
parameters : 

Quanti ty sold ^ = 6 0 0 0 ^ = 1 1 0 0 0 ^ = 1 8 0 0 0 
Unit revenue £ 2.25 2.0 1.0 
Inc. fixed costs £ 4000 at 0 units 5000 at 10000 units 

If each unit takes 0.5 machine hours and 0.42 machine hours for 
products one and two respectively, find the opt imum product mix 
if machine time is limited to 10000 hours . 

Hint: Transform the volume parameters to the machine-time 
domain and R U N CVP for each product individually. Graph the 
profit-time relationship for each product on the same graph. Work 
towards the constrained opt imum from the unconstrained 
opt imum being guided by the marginal profit rates. 

*(4.12) Restructure step 2 of the algorithm for cost-volume-profit 
analysis to work on the basis of the following formulation of 
piecewise linearity (from Section 4.3): 

C = Co + Σ Cj {N - ny_i)+ where {N - nj.i)+ = Ν - nj.i if > 0 
j = 0 otherwise 

Amend CVP to work on this basis. 
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Critical path network analysis 

Essential theory 

5.1 Introduction 

The launch of a new product , an increase in manufacturing 
capacity, or perhaps the commissioning of a computerized 
accounts system are examples of major projects. In every case a 
major project management team will find it necessary to plan the 
project , and then control its execution. 

These can be formidable tasks if the project is capital intensive, 
involves a complex set of interrelating factors, and if the success of 
the project is vital to long-term development. Further difficulties 
arise when it is necessary to coordinate a range of activities, each 
with its own demands upon managements ' time and resources. 

Network analysis has been developed specifically to assist the 
project manager to understand the ramifications for the project as 
a whole of the detailed arrangements of individual aspects. It is 
applied as a routine in large civil engineering projects. But there is 
hardly an area of industry or commerce which has not had 
recourse to network analysis at some time to assist the rational 
management of projects of every conceivable description. 

A small-scale project has been chosen here as a vehicle for 
describing the methodology. Even so the reader may well come to 
a favourable judgement on the utility of the approach. We suppose 
that a company has decided to introduce a modern system of 
networked micros for automating the routine clerical tasks of an 
existing accounts office. This project clearly involves a range of 
preparatory activities. A t the very least, these will include: the 
collection of information about suitable systems; the recruitment 
of systems analysts; the development of new accounting systems 
and procedures ; training existing staff in the new methods; making 
arrangements to phase out the old and phase in the new; and 
organizing maintenance contracts for the new equipment . 

These major project activities are listed in Table 5 .1 , where each 
activity is associated with an identifying index from 1 to 10. The 

62 
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Index I Activity ΙΡΛ Duration Τ 
(weeks) 

1 Draw up a short list of suitable systems — 4 
2 Appraise selected systems 1 8 
3 Make a final choice of system 2 3 
4 Order and obtain selected system 3 12 
5 Develop new systems and procedures 3,8 24 
6 Train staff in new procedures 4,5 8 
7 Phase in the new procedures 6,9,10 4 
8 Recruit systems analysts — 6 
9 Document the new procedures 5 12 

10 Arrange maintenance contracts 3 5 

The development of a dependency table like this is a major 
organizational challenge in itself. Success in a complex project, 
automating the routine procedures in the accounts office in this 
example, requires that the organization be capable both of 
generating the information on which to plan ahead, and of 
encouraging its people into new pat terns of work. 

The office automation project has been described in terms of 
'activities' each of which require ' resources ' (only time in this 
example) , and which interrelate through a set of stated IPA. But 
the interrelation of activities Usted in Table 5.1 can be more 
readily assimilated from a network diagram, as in Figure 5 .1 . Each 
node of this network diagram is a specified activity, and the arcs 
convey the sense in which the start of one activity depends upon 
the prior completion of all those in the IPA list. 

Notice that the network diagram includes a 'start ' and a 'finish' 
node. The start node is impUcitly the preceding 'activity' to nodes 
1 and 8 respectively, since these activities have no entry in their 
IPA lists and may be started without delay. Fur thermore , aU other 
activities have to be finished before activity 7 can commence, so it 
must foUow that node 7 is the only IPA to the finish 'activity'. The 
arcs show the logical (dependency) relationships between the 
activities. The convention followed in Figure 5.1 is defined in 
Figure 5.2. The convention adopted here is to label with the 

table also records whether the start of any activity is dependent 
upon the prior completion of other activities. These Immedia te ly 
Preceding Activities' ( IPA) represent managements ' considered 
opinion on how the activities interlock and interrelate with one 
another . Notice that some activities have no IP A , some have only 
one , and yet others have several. A final column gives the 
expected durat ion of each activity (in weeks) . 

Table 5.1 A dependency table for accounts office automation project 
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6 

Start n i s h 

Figure 5.1 An activity on node network diagram: data from Table 5.1 

duration of the activity any arc incident from the node associated 
with the activity. Thus the arcs inc ident / rom node 3 to nodes 4, 5, 
and 10 are labelled with the duration of activity 3 which is T3 = 3 
(weeks). The initial arcs are labelled with zero since activities 1 
and 8 may commence immediately. 

The completion of activity X precedes the start of Y 
Activity X has durat ion Τχ 
Activity Y has durat ion Ty 

Figure 5.2 Labelling the arcs of an activity on node network diagram 

The reader has probably noticed that the network of nodes is 
highly structured. That is to say that the network is progressive, 
that all the arcs are oriented from left to right; none is oriented 
vertically or from right to left. Therefore the general progression of 
the activities runs from start to finish. For an example, activity 8 
must be completed before activity 5 is started, which awaits the 
completions in turn of activities 3, 2 and 1. But the relative timings 
of the start of the activities, cannot be inferred solely from the 
dispositions of the nodes on the network. The relative timings 
depend on the activity durations. 

The network of Figure 5.1 displays sufficient information to 
calculate the Earliest Start Time (EST) and the Latest Start Time 
(LST) of every activity on the supposition that the project must be 
begun immediately and completed as soon as possible. The 
progressive character of the network ensures that simple 
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start 

Nodes labelled Crit ical path 

Figure 5.3 Activity on node network diagram, showing the EST, LST, 
and the critical path: data from Table 5.1 

The project can be finished in a minimum period of 55 weeks. 
Activity 2 must start after 4 weeks, for example, whereas activity 8 
can start at any t ime before the end of the ninth week. 

When an activity has an earliest start time which coincides with 
its latest start t ime then any delay in its start will delay the earliest 
completion of the entire project. Such activities are described as 
'critical', since management has no leeway in arranging the 
starting times. A 'critical path ' from start to finish nodes through 
critical activities is shown in Figure 5.3 above. But note that in 
other examples there may be more than one critical path. 

Activities not on the critical path(s) will have an EST which is 
earlier than the LST. The difference between the two is called 
' total float' since management has , at a very maximum, this 
measure of discretion in varying the starting time. In fact there are 
several types of float (and the details are described later in 
Problem 5.7). 

5.2 The construction of a progressive network 

The calculation of EST and LST is a straightforward matter when 
the network is progressive. The network may be displayed on a 
monitor without ambiguity even when the arcs are shown as 
undirected edges. The method described below for the generation 
of a progressive network will also signal any contradictory logic 
which may be obscure but none the less present in the lists of 
IPA. 

arithmetic is all that is required (details are provided later) . Note 
the convention for wanting the calculated values of the EST and the 
LST above and below the activity nodes , as illustrated in Figure 
5.3. 
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O n e can envisage a rectilinear grid of horizontal and vertical 
rulings with activities positioned only at the nodes, i.e. intersec­
tions. The idea is to locate the activities at the nodes on this grid, 
starting from the left-hand vertical ruling and working to the 
right. A s many activities as possible are located on each vertical 
ruling while maintaining the convention of a progressive network, 
that the arcs which show the IPA logic must be oriented to the 
right. 

The method is i terative, and successive iterations correspond to 
the allocation of activities to the nodes of successive vertical grid 
rulings. The iterations end when all the activities have been 
allocated. The algorithm can be described as follows: 

Carry out the following two steps at each iteration: 

Step 1: Locate activities at nodes of the current vertical ruling if 
and only if they have empty IPA lists (as reduced by step 2 
in earlier i terations). 

Step 2. Dele te from all the IPA lists all those activities which have 
been located in step 1. 

This algorithm (due to Fulkerson) is easy to carry out on the data 
of Table 5 .1 . A note is made of the activities which have been 
located in step 1 at each iteration, and deletions in step 2 can be 
shown by crossings out . A failure to locate any activity in step 1, 

Table 5.2 The allocation of activities to the nodes of a progressive network, using 
the algorithm in the text and the data of Table 5.1 

Activity Iteration {vertical ruling}^''^ 
0^-'^ 1 2 3 4 5 6 7 

2 V Τ z z z z z z 
3 2 2 t _ _ _ _ _ 
4 3 3 3 Í _ _ _ _ 
5 3,8 3,0 3 ^ _ _ _ _ 
6 4,5 4,5 4,5 4,5 _ _ _ 
7 6,9,10 6,9,10 6,9,10 6,9,10 6,9,/0 — — 

9 5 5 5 5 f — — — 
10 3 3 3 Í _ _ _ _ 
Finish 7 7 7 7 7 7 / — 

Activities 
located in 
stepl^''^ start 1,8 2 3 4,5,10 6,9 7 finish 
Notes: (a) The start node is trivially located at iteration 0, and is omitted from ail the IPA to preserve clarity of 

presentation. 
(b) Assigned in index order to horizontal rulings about the horizontal axis of the network (one ruling 

above and then one below, two rulings above and then two below, etc.). 
(c) Deletions in step 2 indicated by crossings out. 
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1 2 1 2 2 
2 3 2 3 3 
3 1 3 1 1 

Locate start 

Program P R O G N E T is designed to carry out the algorithm 
described above. It consists of a short main program which 
dimensions arrays in order to accept up to 100 activities and up to 
10 IPA per activity. It sequences PROCinpu t , PROCterminal and 
P R O C r e o r d e r as follows: 

PROCinpu t : allows the user to input the dependency table for 
activity Y, for Y = 1, 2, . . . , N. Each activity Y 
has an IPA list which is stored in an array 
P R E C ( Y , I ) and the element P R E C ( Y , 0 ) stores 
the number of preceding activities. I M A X is set 
equal to the maximum of the P R E C ( Y , 0 ) over 
all Y. Elements of an array T E R M I N A L ( X ) are 
set to - 1 for any activity X which is contained in 
the union of activities in the separate IPA lists. 

PROCtermina l : accumulates the set of IPA for the Finished node 
Ν + 1 in P R E C ( N + 1,1), where 1 = 1 , 2 , . . . , 
P R E C ( N + 1, O ) . 

PROCreorde r : controls the iterative nature of the algorithm 
via the variable IT, which corresponds to the 
index of the vert ical grid rul ing. Calls 
P R O C s t e p l at each iteration, and locates the 
Finished node Ν + 1 on completion. Calls 
PROCres to re . 

when some one or more activities remain to be located, will 
indicate a contradictory dependency logic. Table 5.2 should be 
self-explanatory. 

The reader can check that the bot tom row of the table 
corresponds to the disposition of the nodes on Figures 5.1 and 5.3. 
The arcs can then be drawn from each activity in accordance with 
the original I P A Hst. 

If you try to construct a progressive network for the data in 
Table 5.3 it soon becomes apparent that the lists of I P A are 
mutually contradictory. 

Table 5.3 Demonstration of the algorithm on a set of inconsistent data 

Data Algorithm 
Iteration 

Activity IPA Activity 0 1 
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P R O C s t e p l : corresponds to the description of step 1 in the 
text above, using the test P R E C ( Y , 0 ) = O 
whereupon an activity Y, say, is assigned to an 
array N O D E ( I T , K ) , where the index Κ corres­
ponds to a horizontal grid ruling. Further arrays 
IT(Y) and K(Y) store ' the χ and y coordinates ' 
IT and Κ of the node for activity Y. Updates 
K M A X the maximum value of Κ found to date . 
Prints unfeasible network ' as appropriate or 
calls PROCstep2 for every unassigned activity. 

PROCstep2 : corresponds to the description of step 2 in the 
text above; deletion of the activity Y from the 
I P A list of activity X is achieved by reversing the 
sign of the element storing Y in the array 
P R E C ( X , I ) , and the value of P R E C ( X , 0 ) is 
reduced accordingly. 

PROCres to re : restores the array PREC(Y, I ) to its earlier 
condition following PROCinput . 

Type in P R O G N E T from the listing below. 

Program 5.1 PROGNET: Assigns activities to nodes of a 
progressive network 

1 0 REM PROGNET 
2 0 REM SEQUENCES ACTIVITIES BY FULKERSON'S APPROACH 
3 0 REM FOR AN ACTIVITY ON NODE PLANNING NETWORK 
40 REM IN ORDER TO CONSTRUCT A PROGRESSIVE NETWORK 
50 DIM P R E C ( 1 0 0 , 1 0 ) , N O D E ( 1 0 , 1 0 ) , I T ( 1 0 0 ) , K ( 1 0 0 ) , T E R M I N A L ( 1 0 0 ) 
60 
7 0 PROCinput 
80 P R O C t e r m i n a l 
90 PROCreorder 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "HOW MANY ACTIVITIES Ν 
1 0 2 0 PRINT "NOW INPUT THE PRECEDENCE RELATIONSHIPS" 
1 0 3 0 PRINT "ON EACH PROMPT ENTER A PRECEDING ACTIVITY" 
1 0 4 0 PRINT "ENTER ZERO WHEN NONE REMAIN" 
1 0 5 0 PRINT : PRINT " ACTIVITY PREDECESSOR" 
1 0 5 5 IMAX=0 : KMAX=0 
106 0 FOR Y= 1 TO Ν 
1 0 7 0 1=0 : PRINT 
1 0 8 0 PRINT Y; 
1 0 9 0 REPEAT 
1 1 0 0 1=1+1 
1 1 1 0 INPUT TAB(25) X 
1 1 2 0 IF X>0 THEN P R E C ( Y , 0 ) = P R E C ( Y , 0 ) + 1 
1 1 3 0 IF X>0 THEN PREC(Y, I )=X : TERMINAL(X)=-1 
1 1 4 0 UNTIL X=0 
1 1 5 0 IF I>IMAX THEN IMAX=I 
117 0 NEXT Y 
1 1 8 0 PRINT 
1 1 9 0 ENDPROC 
1 2 0 0 
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1 5 0 0 DEF P R O C t e r m i n a l 
1 5 1 0 1=0 
1 5 2 0 FOR X= 1 TO Ν 
1 5 J 0 IF TERMINAL(X)=0 THEN 1=1+1 : P R E C ( N + 1 , I ) = X 
1 5 4 0 NEXT X 
1 5 5 0 P R E C ( N + 1 , 0 ) = 1 
1 5 6 0 ENDPROC 
1 5 7 0 
2 0 0 0 DEF PROCreorder 
2 0 1 0 Z=0 : IT=0 : I T ( 0 ) = 0 : K { 0 ) = 1 
2 0 2 0 REPEAT 
2 0 3 0 PRINT : I T = I T + 1 
2 0 4 0 P R O C s t e p l 
2 0 5 0 UNTIL Z=N 
2 0 6 0 N 0 D E ( I T + 1 , 1 ) = N + 1 
207 kJ NODE ( I T + 1 , 0 ) =1 
2 0 8 0 P R O C r e s t o r e 
2 0 9 0 ENDPROC 
2 1 0 0 
2 5 0 0 DEF P R O C r e s t o r e 
2 5 1 0 FOR Y= 1 TO Ν 
2 5 2 0 J=0 
2 5 3 0 FOR 1= 1 TO IMAX 
2540 IF P R E C ( Y , I ) < 0 THEN J = J + 1 
2 5 5 0 IF P R E C ( Y , I ) < 0 THEN P R E C ( Y , I ) = - P R E C ( Y , I ) 
256 0 NEXT I 
2 57 0 P R E C ( Y , 0 ) = J 
2 5 8 0 NEXT Y 
2 5 9 0 ENDPROC 
2 6 0 0 
3 0 0 0 DEF P R O C s t e p l 
3 0 1 0 K=0 : PRINT "REORDERING ITERATION " ; I T 
3 0 2 0 FOR Y= 1 TO Ν 
3 0 3 0 IF P R E C ( Y , 0 ) = 0 THEN K=K+1 : PRINT Y;" AT NODE " ; I T ; " , " ; K 
3040 IF P R E C ( Y , 0 ) = 0 THEN Z=Z+1 :NODE(IT,K)=Y : I T ( Y ) = I T :K(Y)=K 
3 0 5 0 IF P R E C ( Y , 0 ) = 0 THEN P R E C ( Y , 0 ) = - 1 
306 0 NEXT Y 
307 0 NODE{IT,0)=K 
3 0 8 0 IF K>KMAX THEN KMAX=K 
3 0 9 0 IF K=0 THEN PRINT "INFEASIBLE NETWORK" : END 
3 1 0 0 FOR X= 1 TO Ν 
3 1 1 0 IF PREC(X,0) > 0 THEN P R 0 C s t e p 2 
3 1 2 0 NEXT X 
3 1 3 0 ENDPROC 
3140 
4 0 0 0 DEF P R 0 C s t e p 2 
4 0 1 0 FOR k= 1 TO Κ 
40 20 FOR 1= 1 TO IMAX 
4 0 3 0 IF P R E C ( X , I ) = N O D E ( I T , k ) THEN P R E C ( X , 0 ) = P R E C ( X , 0 ) - 1 
4 0 4 0 IF P R E C ( X , I ) = N O D E ( I T , k ) THEN P R E C ( X , I ) = - P R E C ( X , I ) 
40 50 NEXT I 
4 0 6 0 NEXT k 
407 k) ENDPROC 
4 0 8 0 

When satisfied with the accuracy of your Usting you should R U N 
with the data of Table 5 .1 . Note that a zero is entered to indicate 
the end of each Ust of IPA (pressing the R E T U R N key enters a 
zero on the B B C Micro) . The output corresponds to the results in 
the lower half of Table 5.2, and the grid is displayed in Figure 5.4. 
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K r 2 

Κ=1 start -Finish 

K = 3 

I I "'|- I I I 
ITrO IT=1 1T=2 IT=3 IT=4 IT=5 IT=6 IT=7 

Figure 5.4 Assignment of activities to nodes of a progressive network: 
data from Table 5.1 

RUN 
HOW MANY ACTIVITIES ? 1 0 
NOW INPUT THE PRECEDENCE RELATIONSHIPS 
ON EACH PROMPT ENTER A PRECEDING ACTIVITY 
ENTER ZERO WHEN NONE REMAIN 

ACTIVITY 

1 

2 

PREDECESSOR 

6 
9 
1 0 

8 

9 

10 

REORDERING ITERATION 1 
1 AT NODE 1 , 1 
8 AT NODE 1 , 2 

REORDERING ITERATION 2 

2 AT NODE 2 , 1 

REORDERING ITERATION 3 

3 AT NODE 3 , 1 
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REORDERING ITERATION 4 
4 AT NODE 4 , 1 
5 AT NODE 4 , 2 

1 0 AT NODE 4 , 3 

REORDERING ITERATION 5 
6 AT NODE 5 , 1 
9 AT NODE 5 , 2 

REORDERING ITERATION 6 

7 AT NODE 6 , 1 

The reader should now do Problem 5 .1 . 

5.3 Earliest and latest start analyses 

It is a simple mat ter to calculate the EarUest Start Time (EST) for 
each activity. The start of activity Y, say, must be preceded by the 
completion of each immediately preceding activity. It follows that 

E S T Y = MAXxeiPA of Y { E S T X + Τχ} where E S T Q = 0 
= ESTp (Y) + Tp (Y) 

where P(Y) is written for the 'maximizing' X. (Note that P(Y) 
need not be unique.) 

Since the activities are assigned to the nodes of a progressive 
network, the EST could be calculated recursively, from the 
left-hand vertical ruling to the right-hand vertical ruling. 
Alternatively, the EST calculation can be made immediately an 
activity is assigned to a node of the progressive network. Taking 
either approach one would find for the data in Figure 5.1 that 

ESTo = 0 
ESTi = ESTo + 0 = 0 Pi = 0 
EST« = ESTo + 0 = 0 Ps = 0 
EST2 = ESTi + Ti = 4 P2 = 1 
EST3 = EST2 + T2 = 12 P3 = 2 
EST4 = EST3 + T3 = 15 P4 = 3 
EST5 = MAX{EST3 + T3; ESTg + Tg} = 15 P5 = 3 
ESTio = EST3 + T3 = 15 Pio = 3 
ESTe = MAX{EST4 + T4; EST5 + T5} = 39 Pe = 5 
EST9 = EST5 + T5 = 39 P9 = 5 
EST7 = MAX{EST6 + Te; EST9 + T9; ESTjo + Τ^} = 51 P7 = 9 
ESTi i = E S T , + T7 = 55 Pl l = 7 

It is now easy to trace the critical path back from node (N -h 1). In 
the present example this gives the unique sequence. 

Pll = 7 P7 = 9 P9 = 5 P5 = 3 ?3 = 2 P2 = 1 
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LSTi , — 55 
LST7 _ L S T „ - T7 = 51 
LSTe _ LST7 - T e = 43 
LST9 _ LST7 _ T 9 = 39 
LST4 LST6 - T 4 = 31 
LST5 _ MIN{LST6 - T5; LST9 
LSTio = LST7 - T i o = 46 
LST3 _ MIN{LST4 - T3; LST5 
LST2 _ LST3 - T 2 = 4 
LSTi _ LST2 - T i = 0 
LSTg = LST5 - T g = 9 

T5} = 15 

T3; LSTio - T3} = 12 

Make the following changes and additions to P R O G N E T . The 
resulting program, called C R I T P A T , allows the user to input the 
activity duration into array Τ prior to inputting the list of IPA. 
Three new P R O C E D U R E S , PROCearliest_start , PROClates t_ 
start and PROCpr in t are called at the end of the main 
program.PROCearl ies t_star t and PROClatest_start are based 
very closely upon the description of the calculations of EST and 
LST. PROCpr in t is an output procedure which tabulates the 
activities which have been assigned to each node of the progressive 
network. It also prints a list of EST, LST and total float. 

Suppose that activity Ζ is an Immediately Succeeding Activity 
( ISA) to activity Y. Then the Latest Start Time, L S T Y , of activity 
Y is given by 

L S T Y = M I N {LSTz - Τ γ } where L S T N + I = E S T N + I 
Ζ ε ISA of Y 

This follows the recognition that L S T Y must be the smallest sum 
LSTz ~ Τ γ . These calculations proceed recursively across the 
progressive network from the right to the left. In the present 
example based on Figure 5.1 one finds 
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1 0 REM CRITPAT 
2 0 REM CONDUCTS EARLIEST AND LATEST START TIME ANALYSIS 
3 0 REM FOR AN ACTIVITY ON NODE PLANNING NETWORK 
40 REM AND FINDS A CRITICAL PATH 
6 0 DIM P { 1 0 0 ) , E S T ( 1 0 0 ) , Τ ( 1 0 0 ) , L S T ( 1 0 0 ) 

1 0 0 P R O C e a r l i e s t _ s t a r t 
1 1 0 P R O C l a t e s t ^ s t a r t 
1 2 0 PROCprint 
1 3 0 END 
140 

1 0 5 0 PRINT : PRINT " ACTIVITY DURATION PREDECESSOR" 

1 0 7 0 1=0 : LST(Y)=10'^10 
1 0 8 0 PRINT Y; : INPUT TAB(19) T(Y) 

1 1 1 0 INPUT TAB(31) X 

5 0 0 0 DEF P R O C e a r l i e s t _ s t a r t 
5 0 1 0 VDU 5 
5 0 2 0 FOR i t - 1 TO IT+1 
5 0 3 0 FOR k = 1 TO N O D E ( i t , 0 ) 
5 0 4 0 y = N O D E ( i t , k ) 
5 0 5 0 FOR 1= 1 TO PREC(Y,0) 
5 0 6 0 X=PREC(Y,I ) 
5 0 7 0 IF X O 0 THEN IF E S T ( y ) < E S T ( X ) + T ( X ) THEN P(Y)=X 
5 0 8 0 IF X O 0 THEN IF EST (Y)<EST (X)+T (X) THEN EST (Y) =EST (X)+T (X) 
50910 NEXT I 
5 1 0 0 NEXT k 
5 1 1 0 NEXT i t 
5 1 2 0 ENDPROC 
5 1 3 0 
6 0 0 0 DEF P R O C l a t e s t _ s t a r t 
6 0 1 0 LST(N+1)=EST(N+1) 
6 0 2 0 FOR i t = IT+1 TO 2 STEP - 1 
6 0 3 0 FOR k = 1 TO N O D E ( i t , 0 ) 
6 0 4 0 y = N O D E ( i t , k ) 
6 0 5 0 FOR 1= 1 TO PREC(Y,0) 
6 0 6 0 X = P R E C ( y , I ) 
6 0 / » IF X O 0 THEN IF LST{X) > L S T ( Y ) - T ( X ) THEN L S T ( X ) = L S T ( Y ) - T { X ) 
6 0 8 0 NEXT I 
6 0 9 0 NEXT k 
6 1 0 0 NEXT i t 
6 1 1 0 ENDPROC 
6 1 2 0 
6 5 0 0 DEF PROCprint 
6 5 1 0 PRINT : PRINT "ITERATION INDEX ACTIVITY" 
6 5 2 0 PRINT TAB(3) " i t " ; T A B ( 1 7 ) "k" 
6 5 J 0 FOR i t « l TO IT 
6 5 4 0 FOR k = l TO N O D E ( i t , 0 ) 
6 5 5 0 PRINT T A B ( 4 ) ; i t ; T A B ( 1 7 ) ; k ; T A B ( 2 5 ) ; N O D E ( i t , k ) 
6 5 6 0 NEXT k 
6 5 7 0 NEXT i t 
6 5 8 0 PRINT : PRINT 
6 5 9 0 PRINT "ACTIVITY EARLIEST LATEST FLOAT" 
6 6 0 0 PRINT " START START" 
6 6 1 0 PRINT " y EST(Y) LST(Y) LST-EST" 
6 6 2 0 FOR Y « l TO Ν 
6 6 3 0 PRINT T A B ( 3 ) ; Y ; T A B ( 1 5 ) E S T ( Y ) ; T A B ( 2 6 ) L S T ( Y ) ; T A B ( 3 6 ) L S T ( Y ) - E S T ( Y ) 
6 6 4 0 NEXT Y 
6 6 5 0 PRINT "FINISH";TAB(15) E S T ( N + 1 ) ; T A B ( 2 6 ) L S T ( N + 1 ) ; T A B ( 3 6 ) " 0 " 
6 6 6 0 PRINT : PRINT 
6 6 7 0 PRINT "CRITICAL PATH" 
6 6 8 0 y « P ( N + l ) 
6 6 9 0 REPEAT 
6 7 0 0 PRINT Y, 
6 7 1 0 Y = P ( y ) 
6 7 2 0 UNTIL Y=0 
6 7 3 0 ENDPROC 
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R U N this program, called ' C R I T P A T ' , with the data of Table 
5 .1 , noting that the activity duration is requested prior to the list of 
IPA. The final part of the output , which is shown below, 
corresponds to the results obtained earlier in this section. You 
should note that this program ignores the possibility of multiple 
critical paths , and this aspect is left as an exercise. D o Problems 
5.3 to 5.7 now. 

ITERATION INDEX ACTIVITY 
i t k 

1 1 1 
1 2 8 
2 1 2 
3 1 3 
4 1 4 
4 2 5 
4 3 1 0 
5 1 6 
5 2 9 
6 1 7 

ACTIVITY EARLIEST LATEST FLOAT 
START START 

Y EST{Y) LST(Y) LST-EST 
1 0 0 0 
2 4 4 0 
3 12 1 2 0 
4 15 3 1 16 
5 1 5 1 5 0 
6 39 43 4 
7 51 51 0 
8 0 9 9 
9 39 39 0 
1 0 15 46 31 

FINISH 55 55 0 

CRITICAL PATH 

5.4 Graphics output 

It is obviously desirable to have a network displayed on the 
monitor , at least for small illustrative examples. The following 
procedures produce a graphics output which resembles the 
network diagram of Figure 5.3. The general approach is to offer 
the user the option of a graphics output ; flag G$ = 'Y ' if graphics 
are required. If it transpires that more than five horizontal or eight 
vertical grid rulings are necessary, then the graphics option is 
withdrawn automatically, and flag G$ = 'N ' . 

The activity indices are placed on the network grid in 
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1 0 REM NETWORK 
20 REM DRAWS ACTIVITIES AND NETWORK LOGIC 
30 REM FOR AN ACTIVITY ON NODE NETWORK 
40 REM DISPLAYS TIME ANALYSIS AND A CRITICAL PATH 

1 0 0 MODE 4 : P R O C e a r l i e s t _ s t a r t 
1 1 0 P R O C l a t e s t _ s t a r t 
1 2 0 IF G$<>"N" THEN P R O C s c r e e n _ d r i v e r 
1 3 0 IF G$<>"N" THEN PROCdraw_t imes 
1 4 0 IF G$<>"N" THEN P R O C s c r e e n _ d r i v e r 
1 5 0 IF G$<>"N" THEN P R O C d r a w _ c r i t _ p a t h 
1 6 0 IF G$<>''N" THEN P R O C s c r e e n _ d r i v e r 
17 0 MODE 7 : PROCprint 
1 8 0 END 
190 

1 1 8 0 PRINT : INPUT "GRAPHICAL OUTPUT? (Y OR N) " , G $ 
1 1 9 0 ENDPROC 
1 2 0 0 

2 0 9 0 IF IT>8 THEN G$="N" 
2 1 0 0 ENDPROC 

2 1 1 0 

3 080 IF K>KMAX THEN KMAX=K : I F K>7 THEN G$="N" 

5 0 4 5 IF G$<>"N" THEN P R O C d r a w _ a c t i v i t y 

5 0 6 5 IF i t = l AND G$<>"N" THEN P R O C d r a w _ l o g i c 

5 0 6 6 IF X O 0 AND G$<>"N" THEN P R O C d r a w _ l o g i c 
7 0 0 0 DEF P R O C d r a w _ a c t i v i t y 
7 0 1 0 MOVE F N x ( i t ) , F N y ( k ) : PRINT STR$(Y) 
7 0 2 0 ENDPROC 
7 0 3 0 
7 500 DEF P R O C d r a w _ l o g i c 
7 5 1 0 MOVE F N x ( i t ) - 1 6 , F N y ( k ) - 1 6 
7 5 2 0 PLOT 2 9 , F N x ( I T ( X ) ) + 6 4 , F N y ( K { X ) ) - 1 6 
7 5 3 0 ENDPROC 
7 5 4 0 
7 8 0 0 DEF P R O C s c r e e n _ d r i v e r 
7 8 1 0 MOVE 0 , 2 4 : PRINT "PRESS SPACE BAR TO CONTINUE" 
7 8 2 0 REPEAT : UNTIL GET$=" " 
7 8 3 0 ENDPROC 
7 8 4 0 

PROCdraw_activi t ies , and the network logic is plotted in 
P R O C d r a w J o g i c . Both these procedures are called from P R O C -
earliest_start. PROCscreen_dr iver halts the graphics display and 
the user can proceed at his leisure by a tap on the space bar. This 
activates PROCdraw_t imes which displays the EST and LST 
alongside the nodes , and a further tap of the space bar activates 
PROCdraw_cri t_path . A final tap of the space bar yields the 
tabular print summary of PROCpr in t . 

Make the following changes and additions to Program 
C R I T P A T 



76 Critical path network analysis 

8 0 0 0 DEF PROCdraw_t imes 
8 0 1 0 FOR i t = 1 TO IT+1 
8 0 2 0 FOR k= 1 TO N O D E ( i t , 0 ) 
8 0 3 0 MOVE F N x ( i t ) , F N y ( k ) + 3 2 
8 0 4 0 T = E S T ( N O D E ( i t , k ) ) 
8 0 5 0 PRINT STR$(T) 
8 0 6 0 MOVE F N x ( i t ) , F N y ( k ) - 3 2 
80/k) T = L S T ( N O D E ( i t , k ) ) 
8 0 8 0 PRINT STR$(T) 
8 0 9 0 NEXT k 
8 1 0 0 NEXT i t 
8 1 1 0 ENDPROC 
8 1 2 0 
8 5 0 0 DEF P R O C d r a w _ c r i t _ p a t h 
8 5 1 0 X=N+1 : I T ( N + 1 ) = I T + 1 : k = l 
8 5 2 0 REPEAT 
8 5 3 0 Y=X 
8540 i t = I T ( Y ) : k=K(Y) 
8 5 5 0 MOVE F N x ( i t ) - 1 2 , F N y ( k ) - 1 2 
8 5 6 0 X=P(Y) 
8 5 7 0 PLOT 1 3 , F N x ( I T ( X ) ) + 6 8 , F N y ( K ( X ) ) - 1 2 
8 5 8 0 UNTIL I T ( X ) = 1 
8 5 9 0 ENDPROC 
8 6 0 0 
9 0 0 0 DEF F N x ( i t ) 
9 0 1 0 X A X I S = 5 2 8 + ( - l ) '^ i t*INT ( i t / 2 ) *16 
9 0 2 0 = I N T ( 1 2 1 6 / ( I T + 1 ) ) * i t 
9 0 3 0 
9 5 0 0 DEF F N y ( k ) 
9 5 1 0 IF KMAX=1 THEN KMAX=3 
9 5 2 0 IF INT(KMAX/2)=KMAX/2 THEN KMAX=KMAX+1 
9 5 3 0 DELTAY=INT(854/(KMAX-1)) 
9 5 4 0 IF I N T ( k / 2 ) = k / 2 THEN =XAXIS+DELTAY*k/2 
9 5 5 0 IF INT ( k / 2 ) O k / 2 THEN =XAXIS+DELTAY* ( . 5 - k / 2 ) 

A R U N of this program, called N E T W O R K , should give the 
screen display of Figure 5.5. It is reasonably clear, but r eRUNs 
with other data may perhaps lead to some of the arcs passing very 
close by some of the nodes. The 'x-axis' has been perturbed so that 
nodes which would have lain on the same horizontal grid ruling 
have some vertical separation. This is a necessary if not sufficient 
condition if the network logic is to be displayed in an unambiguous 
manner . You should do the rest of the Problems at this point. 

5.5 Discussion 

The type of network which has been described here is called 
'activity on node ' , for fairly obvious reasons. An alternative form 
is called 'activity on arrow' but although it is popular it has one 
major disadvantage: it is sometimes necessary to introduce dummy 
activities (arrows) in order to preserve the network logic. This can 
make it difficult to write a clear BASIC program in a reasonable 
amount of code. Otherwise the choice between the two methods is 
largely made on the grounds of individual preference, rather than 
fundamental differences in capability. 
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PRESS SPRCE BRR TO CONTINUE 
Figure 5.5 A sequence of screen displays 
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Problems 

(5.1) Devise a P R O C d a t a which can be exercised at the user 's 
discretion to read data from D A T A statements as an alternative to 
conversational data input in PROCinput . 

(5.2) Devise a PROCsensitivity to be called at Hne 180 of 
N E T W O R K . This should allow the user to alter any part of the 
input data for subsequent re-processing, as part of a R E P E A T -
U N T I L loop between lines 65 and 190. 

(5.3) Use your amended program from Problem 5.1 to conduct a 
network analysis when the minimum activity times are revised 
downward from the maximum shown in Table 1 as follows: 

Activity 1 2 3 4 5 6 7 8 9 10 
Minimum duration 2 4 1 4 10 4 2 4 9 3 

(5.4) Consider the ways in which one could develop N E T W O R K 
to print out and display multiple critical paths. 

(5.5) Classify each stage in the office automation project into one 
of the following categories: 

Definitely not critical: Possibly critical: Definitely critical 

(5.6) Now suppose that the 'most likely' duration is available for 
the activities. The data is now: 

Activity 1 2 3 4 5 6 7 8 9 10 

Minimum time 2 4 1 4 10 4 2 4 9 3 
Most likely time 3 5 2 10 19 7 3 5 10 4 
Maximum time 4 8 3 12 24 8 4 6 12 5 

It can be shown, subject to the possibly realistic assumption that 
the activity durations are drawn from a set of independent random 

T h e question of the resource impHcations of any schedule of 
activities is very important in the business context.But algorithms 
for resource levelling and smoothing are outside the scope of this 
chapter . Nevertheless, this chapter should have served to 
introduce the reader to network analysis by computer . A large 
number of fairly sophisticated software packages are now 
available, but perhaps few packages offer such convenient 
graphics as the small program described above. 
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variables which follow a beta distribution, that the project 
duration has an expected value μ and variance o^ 

where μ = Σ ί γ 

where the Σ is taken over all the critical activities Y 

and ίγ = (4 M L y + Μ Ι Ν γ 4- Μ Α Χ γ ) / 6 
= ( Μ Α Χ γ - ΜΙΝγ )2 / 36 

where M L is the most likely duration of an activity 
M I N is the minimum duration of an activity 
M A X is the maximum durat ion of an activity. 

Devise a P R O C p e r t which evaluates the standard normal 
deviate 

z = {x - μ)/σ 
for a user input value of x. The reader can then determine the 
associated probability that the project is completed on t ime. 

N.B. This est imated probability is an upper bound, since any 
activity with a highly variable duration which is off the critical 
pa th , on average, could well become critical in a particular 
instance. 

(5.7) The EarHest Finish Time (ΕΕΤγ) and the Latest Finish Time 
( L F T Y ) of activity Y are given by 

E F T Y = E S T Y + Τ γ 
L F T Y = L S T Y + Τ γ 

The management has discretion to delay the starting time of an 
activity Y, without affecting the total float of subsequent activities 
Z , by an amount called the Free Float F F Y , where 

F F Y = MIN{ESTz} - E F T Y 
Ζ ε I S A Y 

and the minimization is taken over all immediately succeeding 
activities Z . 

The management may have discretion to vary the start of an 
activity Y, without affecting the activities X which precede Y or 
activities Ζ which succeed Y, by an amount called the Independent 
Float I F Y , where 

I F Y = MIN{ESTz} - M A X { L F T x } - Τ γ 
Ζ ε I S A Y Χ ε Ι Ρ Α γ 

and the minimization is over all immediately succeeding activities 
Z , and the maximization is over all immediately preceding X. 
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Duration Cost List of 
(weeks) (£'000) IPA 

3 6 3,10 
4 8 3,9 

10 3 
4 2 7,10 
1 0.5 4 
3 6 8,10 
2 0.2 8 
5 4.5 — 
5 3 — 
8 12 9 

Devise a PROCfloats which tabulates the E F T and LFT times 
alongside the E S T and LST, and tabulates the three types of float. 

(5.8) Devise a PROCresources which tabulates the growth in 
cumulative cashflows week by week, on the assumption that all 
activities commence at their EST. Use your program to analyse 
the following project. 

A company is preparing to launch a new product at a forthcoming 
t rade show. The product manager has drawn up the following 
dependency table, which also includes cost and duration data: 

Activity 

1 Train salesmen 
2 Train service engineers 
3 Prepare automation manuals 
4 Organize t rade show 
5 Train staff for t rade show 
6 Pre-release publicity 
7 Recruit staff for show 
8 Set up sales office 
9 Prepare service contract 
10 Produce promotional materials 

(5.9) Devise a PROCswop to interchange the indices of a pair of 
activities which have been assigned to the same vertical grid ruling, 
as a PROCsensit ivity faciUty. Then r e R U N Problem 5.8 with a 
swop of activity indices 4 and 6. Notice that this is ideal for 
improving the appearance of the network. 
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Linear programming 

Essential theory 

The term l i nea r programme' is given to a particular type of 
constrained optimization problem. It is assumed explicitly that 
there is a linear form of objective; say minimize the raw material 
costs of product ion, or maximize the contribution of some activity 
to overheads and profit. It is also explicitly assumed that the 
optimization of the objective function is subject to linear 
constraints. Constraints result from a multi tude of factors. A 
constraint may be due to scarce resources such as a restriction 
upon working capital, or a contractual obUgation to supply a 
certain quantity of product . 

The simplest linear p rogramme has the form. 

Maximize ζ = hxx + ¿?2-̂2 + . . · + 
Subject to a i j J C i + «1,2^2 + . · . + < = Ci 

forxi> = 0 X2>= 0 . . . Xn>= 0 

There are η main variables, sometimes called decision variables. 
There are m linear inequality constraints which are written such 
that the left-hand sides are less than or equal to the non-negative 
right-hand side values (c i in the ith inequality). The main variables 
Xj for y = 1,2, . . . ,Λ are subject to explicit non-negativity 
restrictions, but it is important to appreciate the convention that 
these are excluded from the count of m linear constraints per se. 
O n occasion the constraints are mixed, i.e. include hnear equality 
constraints, and hnear inequality constraints where the left-hand 
side exceeds the non-negative right. These features are discussed 
later. 

Consider the following numerical example, which is deliberately 
chosen for simpUcity rather than reaUsm. A division of a company 
manufactures two main products , type 1 and 2. The number of 

81 
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500 

Figure 6.1 Constraints of PI 

items produced per period is Χχ and X2 respectively. If it is assumed 
that all the output can be sold and that the contribution to profit 
and overhead is 3 and 1 monetary unit (mu) per item of type 1 and 
2 respectively, then the objective, to maximize the total 
contribution, z , can be written 

Maximize ζ = 3xi + 1x2 
However , there is a limit on working capital of 500 mu in the 

period in question. The manufacture of each item requires 2 and 1 
mu of working capital respectively, and so there is an inequality 
constraint of the form 

2xi + X2 <= 500 
Fur thermore , the second product incorporates proprietary 

bought-in items with an extended reorder lead t ime. The current 
stockholding is sufficient for the production of a maximum of 200 
items of the second product . Thus there is a second constraint of 
the form 

X2<= 200 

To summarize, the linear programme can be written 

Maximize ζ =3xi -\- X2 Objective function 
subject to 2JCI + JC2 < = 500 Working capital 

JC2 < = 200 Bought-in items 
Xi and X2>= 0 Non-negativity 

This problem, which will be referred to as P I for brevity, can be 
portrayed graphically as follows. The two main variables are each 
allocated to an axis of Figure 6.1 The non-negativity restrictions 
are shown by the hatching on the 'forbidden' sides of the axes (i .e. 
the hatching below the Χχ axis corresponds to the stipulation that 
X2> = 0 ) . 
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^2 \ 

ζ =750 

^ \ 
7 = 5 0 0 - ^ \ ^ 

Figure 6.2 Superimposing the objective 

Take the case of the bought-in item constraint: this is 
represented by the horizontal line which intersects the vertical axis 
at X2 = 200, i .e. whatever the Xi value may be the value of X2 must 
not exceed 200. To see how the * working capital ' constraint is 
represented it is sufficient to appreciate that the boundary 
between production plans which cost more or less than 500 mu is 
represented by the equation 

2Λ:Ι -f Jt:2 = 500 

This Hnear equation can be represented by a straight Une. The X2 
intercept can be found from the equation with jci = 0 and the Xi 
intercept can be found from the equation with X2 = 0. The line in 
Figure 6.1 joining these two points is hatched from above. The 
origin, the point representing a failure to manufacture any 
products at all, obviously satisfies the restriction upon working 
capital. So it can be argued that all points *below' the line satisfy 
the restriction. 

Any point lying within or upon the boundary of the hatched 
region represents a combination of xi and X2 which is feasible with 
respect to the non-negativity restrictions, the availability of 
working capital, and the availability of bought-in i tems. The area 
fcad so defined is called the feasible region. 

It can be shown that one (or more) of the vertices formed by an 
intersection of the constraint boundaries will always optimize a 
linear objective function. To see this, note that a profit 
contribution of, say, 500 mu can be represented by 

3JCI + JC2 = 500 

This Une can be added to Figure 6.2, where it is seen to cross the 
feasible region. It is clear that any point which lies both on the Une 
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Vertex 1̂ ζ 

a 150 200 650 
c 250 0 750 
d 0 200 200 
f 0 0 0 

N.B. Vertices are indexed lexicographically, as later explained. 

Problem P I was amenable to graphical analysis only because 
there were just two main variables, Χχ and JC2. When there are large 
numbers of main variables Xj for / = 1,2, . . .AÍ it is clearly impossible 
to envisage the feasible region physically modelled in any way. But 
the algebraic concept of a 'basis' is always equivalent to the 
geometric concept of a vertex. To illustrate this idea for problem 
P I it is necessary only to restate the inequality constraints as 
equat ions. 'Slack' variables x^ and X4 are introduced into the 
left-hand side of the working capital and bought-in item 
inequalities. 

2JCI +JC2 + JC3 = 500 Working capital 
X 2 + X4 = 200 Bought-in items 

and within the feasible region corresponds to a possible production 
plan not exceeding available resources. But other lines with 
different right-hand side values will be parallel. When the 
right-hand side is 750 the objective line intersects vertex c as 
shown in the figure. So it is possible to realize a contribution of 750 
only if the unique production plan jci = 250 and JC2 = 0 is adhered 
to . It is also clear that this is the opt imum contribution since the 
objective Hne with a right-hand side of 751 or more must lie whoUy 
outside the feasible region. 

The coefficients of the objective function merely determine the 
orientation of the family of objective function lines over the 
feasible region. The sense of optimization (i.e. maximization or 
minimization) determines which is the preferred Hne. In all cases 
however a vertex will provide an opt imum solution. The case of 
multiple opt ima is considered later. 

6.1 A solution by complete enumeration of the vertices 

In principle, the coordinates of each vertex and the correspond­
ing value of the objective function could be calculated in turn, as 
shown in Table 6 .1 , and the vertex c is once again selected as the 
opt imum solution. 

Table 6.1 Vertex enumeration for problem PI 



A solution by complete enumeration of the vertices 85 

Xi = 0 

2̂=0 
Figure 6.3 Labelling the boundaries and vertices of problem PI 

Consequently the vertices in Figure 6.3 correspond to certain 
pairs of zero-valued variables, as indicated in the second column of 
Table 6.2. A t vertex c, for instance, X2 = X3 = 0. Fur thermore , Χχ 
and X4 are positive since vertex c is distant ifrom the boundaries at 
which these variables are zero. There are altogether Ĉ2 
combinations of two positive and two zero-valued variables and 
these are enumerated in Table 6.2. 

Table 6.2 Lexicographic vertex enumeration 

Variables which are non-zero (basis) Vertex Variables = 0 

jt, = 150 

X, = 250 
X2 = 200 
X2 = 500 
x^ = 500 

j»:2 = 200 

JC4 = 200 
jc, = 300 
JC4 = -300 
λ : 4 = 200 

a 
none 
c 
d 
e 
f 

^ 3 

X2 X4 
Χ2 X3 
Xi X4 
Xl x^ 
Xl X2 

The slack variables are explicitly taken to be non-negative. The 
numerical value of a slack variable is the amount by which the 
actual resources usage, as expressed by the left-hand side of the 
constraint, falls short of the resource availability, given by the 
right-hand side value. If jci = JC2 = 0 then the slack variables are 
numerically = 500 and X4 = 200. But as the main variables Xi 
and X2 are increased so the value of each slack variable reduces to 
maintain the equaUty. Further increases in a main variable are 
prevented when a slack variable reaches zero, either because all 
the working capital has been employed or the bought-in items 
have been used up . 

Figure 6.3 shows how each boundary of the feasible region is 
associated with an individual zero-valued variable. Away from a 
boundary and within the feasible region the corresponding slack or 
main variable will be positive. 
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Maximize 3x, + X2 Obj . function 
subject to + X2 < = 500 Working capital 

X2< = 200 Bought-in items 
Xi + 2X2> = 400 Normal time working 
Xi >= 100 Process constraint 
xi and X2> = 0 Non-negativity 

This problem, which will be referred to as P2, is represented in 
Figure 6.4. The feasible region of problem PI is now further 
constrained. It seems from Figure 6.4 that the vertices again 
correspond, with one exception, to the idea of two intersecting 
boundaries of the feasible region, and thus to two zero-valued 
variables. Notice, however, that the vertices labelled 3 , 12 and 13 
are in fact coincident. This is a consequence of the intersection of 

Two important observations can be made here . First, the Ust 
contains all vertices, even obviously infeasible ones, such as vertex 
e which lies outside the feasible region (see Figure 6.3). Second, 
not all the expected vertices even exist. There is no vertex h since 
the constraint boundaries along which X2 and JC4 are zero do not 
intersect, and it is clear that the corresponding equations could 
never be satisfied: 

2JCI + JC3 = 500 
OJCI + 0JC3 = 200 

i .e. the matrix of coefficients is singular. 
The two zero-valued variables, at each feasible vertex, are 

te rmed non-basic variables. Since there are four variables 
al together there are also two non-zero variables, termed basic 
variables. Basic variables are known collectively as the basis. Each 
feasible vertex has a feasible basis. In summary, when there are 
two variables and two constraints there are no more than "^€2 
feasible vertices, each with an associated basis. 

Now suppose that two additional constraints are added to 
problem P I . Products 1 and 2 require 1 and 2 units of assembly 
time respectively, and to ensure 'normal t ime' working of 400 or 
more units of assembly time we find a third constraint 

jci 4- 2x2 >= 400 Normal t ime 

Fur thermore , the first product is made on a continuous process 
and management are reluctant to slow the process down below an 
output of 100 units over the planning period. Thus 

Xi >= 100 Process constraint 

The enlarged problem can then be written 
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Figure 6.4 Graphical representation of problem P2 

In order to investigate the problem further subtract non-zero 
'surplus' variables Xs and Xe from the left-hand sides of the new 
constraints. The constraint set then becomes 

2xi + X2 +JC3 = 500 
X2 + X4 = 200 

jci +2JC2 - X5 = 400 
Xl - X6 = 100 

Since there are now six variables altogether and two must be 
zero at a vertex we search for bases with 6 - 2 = 4 non-zero, or 
basic variables. There are ^€4 = 15 ways of selecting 4 variables 
from 6. The figure clearly shows only four vertices in the feasible 
region and so we expect four feasible bases altogether. In general , 
with η main variables and m constraints we have a maximum of 
' "^"C^ vertices and it is usual for only a small proport ion of these 
to be feasible; as always, each feasible vertex gives rise to a 
feasible basis. 

Program V E R T E X is designed to list the '"^"C,^ combinations 
of variables which are basis candidates. The list is in lexicographic 
order of the variables (a standard dictionary contains words in 
lexicographic order ) . The main program calls the following 
P R O C E D U R E S : 

PROCinpu t : allows the user to enter the total number of variables 

three ra ther than two constraint boundaries . Consideration of this 
feature, te rmed degeneracy, will be postponed. But it can be seen 
that an opt imum solution can be sought either through a complete 
enumerat ion of the vertices, or by superimposing the family of 
objective function lines: vertex 5 is the opt imum vertex here . 
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including the main, slack, and surplus variables, 
together with the number of constraints. 

PROCbas is : selects the first Μ variables as an initial basis 
candidate set and generates successive candidates in 
lexicographic order. 

PROCpr in t : prints the candidate basis. 

A R U N of this program yields the 15 candidates bases for 
problem P2, which has 6 variables and 4 constraints. The index 
numbers of the candidate bases correspond to the indexing of the 
vertices in Figure 6.4. 

Program 6.1 VERTEX: Generates basic variable sets for all bases 

5 REM VERTEX 
10 REN CANDIDATE BASIC VARIABLE SETS IN LEXICOGRAPHIC ORDER 
2 0 V»0 
3 0 §%»&020210 
40 DIM K ( 1 0 ) 
50 PROCinput 
6 0 PROCbas i s 
70 END 
80 

5 0 0 DEF PROCinput 
5 1 0 INPUT "NUMBER OF MAIN +SLACK +SÜRPLÜS VARIABLES ";N 
5 2 0 INPUT "NUMBER OF CONSTRAINTS ";M 
5 3 0 ENDPROC 
540 

1 0 0 0 DEF P R O C b a s i s 
1 0 1 0 FOR j = 1 TO Μ 
1 0 2 0 K ( j ) = j 
1 0 3 0 NEXT j 
1 0 4 0 PROCprint 
1 0 5 0 REPEAT 
1 0 6 0 j=M+l 
1 0 7 » REPEAT 
1 0 8 0 j = j - l 
1 0 9 0 UNTIL K ( j ) < N-M+j 
1 1 0 0 K ( j ) = K ( j ) + 1 
1 1 1 0 FOR L = j + 1 TO Μ 
1 1 2 0 K(L) ^ K ( L - 1 ) + 1 
1 1 3 0 NEXT L 
1 1 4 0 PROCprint 
1 1 5 0 UNTIL K(1)=N-M+1 
1 1 6 0 ENDPROC 
1 1 7 0 
1 5 0 0 DEF PROCprint 
1 5 1 0 V = V+1 
1 5 2 0 PRINT "VERTEX " ; S T R $ ( V ) ; 
1 5 3 0 FOR J = 1 TO Μ 
1 5 4 0 PRINT " x " ; S T R § ( K ( J ) ) ; 
1 5 5 0 NEXT J 
1 5 6 0 PRINT 
157 0 ENDPROC 

Of course, it is desirable to develop the program to evaluate the 
values of the variables and objective function for each candidate 
basis. This can be achieved by ignoring the non-basic variables and 
solving the resulting constraint equations. Program E N U M E R 
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below uses Gaussian elimination for this purpose but the details 
need not detain the reader (see BASIC matrix methods by J. 
Mason, But terworths , 1984). A m e n d V E R T E X as follows: 

20 REM OBTAINS VARIABLE VALUES BY GAUSSIAN ELIMINATION 

40 DIM K ( 1 0 ) , a ( 1 0 , 1 0 ) , b ( 1 0 ) , c ( 1 0 ) , A ( 1 0 , 1 0 ) , B ( 1 0 ) , C ( 1 0 ) , X ( 1 0 ) 

1 0 4 0 PROCgauss 

1 1 4 0 PROCgauss 

Now type in Unes 530-650, D E L E T E lines 1500-1570, and type 
in lines 2000 et seq. from the Usting of E N U M E R below. The 
p u φ o s e of these P R O C E D U R E S is described below. 

PROCgauss : 

P R O C d a t a : 

PROCfind_pivot: 

PROCinterchange_rows: 

PROCel iminat ion: 

PROCback_subst : 

PROCmat_pr in t : 

controls Gaussian elimination in stages 
Κ = 1, 2, . . ., M - 1 , and calls the 
foUowing Procedures, 
sets up the Μ constraint equations 
without the non-basic variables in the 
form Ax = C where A is the matrix of 
coefficients and C is the R H S vector, 
finds the largest entry in the Kth 
column A ( R , K ) = M A X (A(I ,K)) . 
interchanges rows R and Κ when 
R > K , i.e. the largest entry in Kth col. 
is below the diagonal. 
A( I ,K) is made zero by additions of the 
new Kth row for I = Κ 4- 1, . . ., M. 
if A ( M , M ) = 0 the matrix is singular 
otherwise the Xy are determined succes­
sively for j = M, Μ - 1, . . ., 2,1 and 
then ζ is evaluated, 
prints out the current A and C. 
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5 REM ENUMER 
1 0 REM CANDIDATE BASIC VARIABLE SETS IN LEXICOGRAPHIC ORDER 
20 REM OBTAINS VARIABLE VALUES BY GAUSSIAN ELIMINATION 
3 0 @%»&020210 
40 DIM K ( 1 0 ) , a ( 1 0 , 1 0 ) , b ( 1 0 ) , c ( 1 0 ) , A ( 1 0 , 1 0 ) , B ( 1 0 ) , C ( 1 0 ) , X ( 1 0 ) 
50 PROCinput 
6 0 PROCbas i s 
7 0 END 
80 

5 0 0 DEF PROCinput 
5 1 0 INPUT "NUMBER OF MAIN +SLACK +SURPLUS VARIABLES ";N 
5 2 0 INPUT "NUMBER OF CONSTRAINTS ";M 
5 3 0 FOR I « 1 TO Μ 
5 4 0 PRINT "INPUT a ( i , j ) & c ( i ) f o r c o n s t r a i n t i = " ; S T R $ ( I ) 
550 FOR J = l TO Ν 
5 6 0 PRINT " a ( " ; S T R $ ( I ) ; " , " ; S T R $ ( J ) ; " ) = "; :INPUT a ( I , J ) ; 
5 7 0 NEXT J 
5 8 0 PRINT " C ( " ; S T R $ ( I ) ; " ) = " ; : I N P U T c ( I ) 
590 NEXT I 
6 0 0 PRINT "Now i n p u t t h e o b j . f n . c o e f f s . b ( j ) " 
6 1 0 FOR J= 1 TO N-M 
620 PRINT " b ( " ; S T R $ ( J ) ; " ) = " ; : I N P U T b ( J ) ; 
6 3 0 NEXT J 
6 40 ENDPROC 
6 5 0 

1 0 0 0 DEF P R O C b a s i s 
1 0 1 0 FOR j = 1 TO Μ 
1 0 2 0 K ( j ) = j 
1 0 3 0 NEXT j 
1 0 4 0 PROCgauss 
1 0 5 0 REPEAT 
1 0 6 0 j=M+l 
10713 REPEAT 
1 0 8 0 j = j - l 
1 0 9 0 UNTIL K ( j ) < N-M+j 
1 1 0 0 K ( j ) = K ( j ) + 1 
1 1 1 0 FOR L = j + 1 TO Μ 
1 1 2 0 K(L) = K ( L - 1 ) + 1 
1 1 3 0 NEXT L 
1 1 4 0 PROCgauss 
1 1 5 0 UNTIL K(1)=N-M+1 
1 1 6 0 ENDPROC 
117 0 
2 0 0 0 DEF PROCgauss 
2 0 1 0 PROCdata 
2 0 2 0 FOR K= 1 TO M-1 
2 0 3 0 P R O C f i n d _ p i v o t 
2 0 4 0 IF R>K THEN P R O C i n t e r c h a n g e _ r o w s 
2 0 5 0 P R O C e l i m i n a t i o n 
206 0 NEXT Κ 
207 0 PROCback^subs t 
2 0 8 0 P R O C p r i n t ^ b a s i s 
2 0 9 0 ENDPROC 
2 1 0 0 
3 0 0 0 DEF PROCdata 
3 0 1 0 M$="NS" 
3 0 2 0 FOR I « 1 TO Μ 
3 0 3 0 C d ) « c ( I ) 
3 0 4 0 FOR J = 1 TO Μ 
3 0 5 0 A ( I , J ) = a ( I , K ( J ) ) 
3 0 6 0 NEXT J 
307 0 NEXT I 
3 0 8 0 ENDPROC 
3090 

Program 6.2 ENUMER: Obtains values of basic variables for all 
bases 
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3 5 0 0 DEF P R O C f i n d _ p i v o t 
3 5 1 0 D«0 : R=K 
3 5 2 0 FOR I = Κ TO Μ 
3 5 3 0 C = A B S ( A ( I , K ) ) 
3540 IF D < C THEN D=C : R^I 
3 5 5 0 NEXT I 
3 5 6 0 ENDPROC 
3 5 / B 
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s 
4 0 1 0 FOR J = Κ TO Μ 
4 0 2 0 D = A { K , J ) 
4 0 3 0 A ( K , J ) = A { R , J ) 
4 0 4 0 A ( R , J ) = D 
40 50 NEXT J 
4 0 6 0 D =̂  C(K) 
4 0 7 0 C(K) = C{R) 
4 0 8 0 C(R) = D 
4 0 9 0 PROCmat_pr in t 
4 1 0 0 ENDPROC 
4 1 1 0 
4 5 0 0 DEF P R O C e l i m i n a t i o n 
4 5 1 0 FOR I = K+1 TO Μ 
4 5 2 0 D = - A ( I , K ) / A ( K , K ) 
4 5 3 0 FOR J = 1 TO Μ 
4 5 4 0 A { I , J ) == A ( I , J ) + D * A ( K , J ) 
4 5 5 0 NEXT J 
4 5 6 0 C { I ) = C ( I ) + D*C(K) 
4 5 7 0 NEXT I 
4 5 8 0 PROCmat_pr in t 
4 5 9 0 ENDPROC 
4 6 0 0 
5 0 0 0 DEF P R O C b a c k _ s u b s t 
5 0 1 0 IF A B S ( A ( M , M ) ) > 0 THEN X(M)=C(M)/A(M,M) ELSE M$="S":ENDPROC 
5 0 2 0 Ζ = X ( M ) * b ( K ( M ) ) 
5 0 3 0 FOR I = M-1 TO 1 STEP - 1 
5040 D = C ( I ) 
5 0 5 0 FOR J= I + l TO Μ 
5 0 6 0 D=D--A(I, J ) * X ( J ) 
507 0 NEXT J 
5 0 8 0 X ( I ) = D / A ( I , I ) 
5 0 9 0 Ζ = Ζ + X ( I ) * b ( K { I ) ) 
5 1 0 0 NEXT I 
5 1 1 0 ENDPROC 
5 1 2 0 
5 5 0 0 DEF P R O C p r i n t _ b a s i s 
5 5 1 0 V=V+1 : PRINT "VERTEX " ; S T R $ ( V ) ; " "; 
5 5 2 0 FOR J = 1 TO Μ 
5 5 3 0 PRINT " x " ; S T R $ ( K ( J ) ) ; 
5 5 4 0 IF M$<>"S" THEN PRINT " = " ; X ( J ) ; 
5 5 5 0 NEXT J 
5 5 6 0 IF M$<>"S" THEN PRINT " O B J . F N . = " ; Z 
5 5 7 0 IF M$="S" THEN PRINT " SINGULAR MATRIX" 
5 5 8 0 PRINT 
5 5 9 0 ENDPROC 
5 6 0 0 
6 0 0 0 DEF PROCmat_p r in t 
6 0 1 0 FOR 1= 1 TO Μ 
6 0 2 0 FOR J= 1 TO Μ 
6 0 3 0 PRINT " " ; A ( I , J ) ; 
6 0 4 0 NEXT J 
6 0 5 0 PRINT " " ; C ( I ) 
6 0 6 0 NEXT I 
607 0 PRINT 
6 0 8 0 ENDPROC 
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RUN 
NUMBER OF MAIN +BLACK ŜURPLUS VARIABLES U 
NUHBER OF CONSTRAINTS ''4 
INPUT ad.j) i cd) for constraint i=l 
a(l,l) = 2̂ 
ad,2) = '̂1 
ad,3/ = "̂ l 
ad,4) = 0̂ 
ad,5) = 
ad,i>) = 
cd) = 5̂Ββ 
INPUT a(i,j) k c(i) for constraint i=2 
a(2,l) = ''B 
a(2,2) = ''I 
a(2,3) = η 
a(2,4) = 1̂ 
a(2,5) = :>e 
a(2,6) = '^i 
c(2) = ''288 
INPUT a(i,j) ti c(i) for constraint i=3 
a(3,l) = ?1 
a(3,2) = •'2 
a^3,3) = η 
a(3,4) = ?B 
a(3,5) = ?-l 
a(3,6) = •'β 
c(3) = ''488 
INPUT a(i, j) ii cii) for constraint i=4 
a(4,l) = ?1 
a(4,2) = 8̂ 
a<4,3) = -̂B 
a(4,4) = ?B 
a(4,5) = B̂ 
a(4,6) = ?-l 
c(4) = ?188 
NoM input the obj. fn. coeffs. b(j) 
bd)=''3 
b(2)=?l 
VERTEX I X 1^88.88 χ2Μ58.β8 χ3=15β.Β8 xÂ ŜB.BB 0BJ.FN.M5e.88 
VERTEX 2 xl̂ lBB.BB x2=288.88 χ3=188.β8 xŜ l̂BB.SB OBJ.FN.̂ 588.88 
VERTEX 3 xl=B.88 χ2=2ββ.8Β χ3=38β.88 χ6=-1βΒ.8β OBJ.FN.=288.88 

R U N this program in Mode 3 for the data of problem P2, noting 
that it is again necessary to input the matrix of constraint 
coefficients after the addition of slack and surplus variables. The 
printout gives the matrix of coefficients of the constraints 
following each stage of Gaussian eUmination. When you 
understand how this works you can D E L E T E Hues numbered 
4090, 4580 and 5580. The vertex numbering conforms to that in 
Figure 6.4. You should note in particular that vertices 3 ,12 and 13 
are coincident, which is because three rather than two constraint 
boundaries define this (infeasible) vertex. A basis corresponding 
to a vertex of this kind is said to be degenerate , since one of the 
basic variables would actually be zero. D o Problem 6.1 at this 
stage. 

http://0BJ.FN.M5e.88
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VERTEX 4 χ1=1ββ.ββ χ2=3Ββ.80 x4=-188.0fl χ5=30β.0Β 0BJ.FN.=6ee.Be 
VERTEX 5 Μΐ=20β.Ββ χ2̂ 1ββ.ΒΒ χ4=10Β.Ββ χ6ΜΒΒ.Ββ OBJ.FN.̂ TBB.BB 
VERTEX 6 χ1=15Β.β0 χ2=2ΒΒ.Ββ χ5=15Β.Ββ x¿=5B.BB 0BJ.FM.=65B.BB 
VERTEX 7 ^=1βΒ.βΒ x3=3BB.BB χ4=2Ββ.ΒΒ χ5=-3ΒΒ.βΒ 0BJ.FN.=3BB.BB 
VERTEX Β xl=4B0.B0 χ3=-3ΒΒ.Ββ x4=2BB.BB χ6=3ΒΒ.Ββ OBJ.FN.=12BB.0B 
VERTEX 9 xl x3 x5 x6 SINGULAR HATRIX 
VERTEX IB χ1=25Β.βΒ x4=2BB.BB χ5=-15Β.ββ x6=l5B.BB 0BJ.FN.=75B.BB 
VERTEX 11 x2 x3 x4 x5 SINGULAR MATRIX 
VERTEX 12 χ2=2βΒ.ββ x3=3BB.BB x4=B.BB x6=-lBB.BB 0Β3.ΕΝ.=2ΒΒ.βΒ 
VERTEX 13 x2=2BB.BB x3̂ 3BB.0B xŜ B̂.BB χ6=-1βΒ.ΒΒ 0BJ.FN.=2BB.BB 
VERTEX 14 χ2=5ββ.ΒΒ x4=-3BB.BB xŜ ôBB.BB χ6=-1ΒΒ.βΒ OBJ.FN.=SBB.BB 
VERTEX 15 χ3=5βΒ.Ββ χ4=2βΒ.βΒ x5=-4Bfl.BB χ6=-1βΒ.ΒΒ OBJ.FN.=e.BB 

6.2 The simplex method of linear programming 

The reader will have been struck by the very considerable amount 
of calculation involved in the process of enumerat ing the objective 
function at each vertex. The situation would be improved 
somewhat if some way could be found of concentrating on the 
enumerat ion of feasible vertices. Indeed, it is fairly obvious that in 
principle a 'Cook 's Tour ' could be made of the vertices which 
define the extreme points of the feasible region. Pairs of feasible 
vertices are adjacent in the sense that a Une segment of the 
constraint boundary connects them. So the corresponding 
non-basic variable is held in common, and indeed adjacent feasible 
vertices have bases which differ in respect of a single variable. This 
observation provides both the means to carry out a 'Cook 's Tour ' 
and a method for deriving one adjacent basis from another with 
comparatively little computat ion. 

It is vital to appreciate that if a feasible vertex can be found with 
a bet ter objective function value than any of the adjacent feasible 
vertices, then it provides an opt imum solution. A local opt imum in 
Unear programming is a global opt imum. This desirable property 
has been established by mathematicians whatever the number of 
variables and constraints may be. This property provides the key 
to a scheme of partial vertex enumerat ion which terminates with 
the opt imum solution, just as soon as adjacent vertices fail to yield 
an improvement upon the current objective function value. Thus 
the idea underlying the simplex method is to start from an initial 
feasible vertex and to move along a constraint boundary to an 
adjacent vertex, terminating with a local opt imum. This is a 
process of partial enumerat ion of feasible vertices, which can be 
implemented via basic feasible solutions. 

Take the former problem P I which was restated as 

Maximise ζ = 3xi + X2 
2xi + X2 + X3 = 500 

X2 -f X4 = 200 
X l , X2 ^ 0 
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A n obvious initial basis for problem PI is at the origin where the 
slacks take the right-hand side values of the constraints, i.e. the 
enumerat ion begins with vertex / of Figure 6.3. The objective 
function can now be rewritten in the same format as the 
constraints, as shown below in a simplex tableau. Notice that the 
non-basic variables (numerically zero) at this stage are easily 
distinguishable from the basic variables. Each basic variable has an 
empty column of coefficients save for the unit entry in the basic 
variable row, i.e. a unit column vector. 

Basic ζ Χι X2 X3 X4 R H S Ratio 

~z 1 ^3 ^1 0 Ö Ö ÑJA 
0 2* 1 1 O 500 250 

X4 O O 1 O 1 200 Infinite 

Consequently an increase in either Χχ or X2 increases the 
numerical value of ζ because of the negative ζ row coefficients in 
the Xi and X2 columns. If Xi increases on its own then the boundary 
of the feasible region is traversed from the initial vertex / toward 
vertex c. An increase in X2 begins a traversal of the boundary from 
vertex / toward vertex d. This can be seen from Figure 6.3 (page 
85). 

The ζ row coefficients represent the negative rates of change of 
ζ with increases in the non-basic variables Xi and X2. A rule of 
thumb is to choose to increase that non-basic variable which 
confers the fastest rate of improvement in z, Χχ in this case. 
Bringing Χχ into the basis in this way is recorded by the asterisk at 
the foot of the Χχ column of the tableau, which is now referred to 
as the pivot column. 

There is a Hmitation upon possible increases in the value of Χχ, 
however, since traversal of the constraint boundary from v e r t e x / 
must halt at vertex c if feasibility is to be retained. This vertex is 
defined by the constraint boundary JC3 = 0, and so the variable X3 
which was a basic variable at vertex / becomes a non-basic 
variable at vertex c. All this can be directly inferred from the 
simplex tableau, by forming the ratio of the R H S value to the pivot 
column entry for each constraint. The ratio gives the increase in 
the new basic variable which results from driving the old basic 
variable to zero, and therefore out of the new basis. In the case of 
the tableau above the value of the ratio in the x^ row shows that Χχ 
reaches 250 as x^ becomes zero. Since the ratio is infinitely large in 
the case of the final constraint Χχ can approach infinity without 
driving X4 to zero. The permissible increase in Χχ is then the 
minimum of the ratios, and the corresponding row is indicated by 
an asterisk and referred to as the pivot row. 
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Basic ζ Xl Xl Xi X4 R H S 

ζ 1 0 0.5 1.5 0 750 
Xl 0 1 0.5 0.5 0 250 
X4 0 0 1 0 1 200 

T h e values of the new variables are seen to be Xi = 250 and X4 = 
200, with X2 and X3 zero-valued, or non-basic variables. The 
objective function has the value 750. This is impUcitly a maximum 
value, since the fact that all the ζ row coefficients of the non-basic 
variables are positive removes any scope for further improvement . 
This basis is associated with vertex c. 

For problem P I , therefore, the simplex method has expUcitly 
considered only the vertices / and c of the four vertices at the 
extreme points of the feasible region.. Fur thermore , the 
computat ional burden in the iteration which transformed the 
initial tableau to the final tableau was broadly equivalent to just 
the computations involved in the first stage of Gaussian 
elimination (i .e . when Κ = 1). So in this instance the partial 
enumerat ion of the feasible vertices was both effectively and 
efficiently conducted. 

A listing of Program S I M P L E X follows. A main program calls 

PROCinpu t : allows the user to input the matrix of 
coefficients A ( I , J) of the main variables jcj 
and the non-negative R H S values C(I) in 

It is important to realize that a negative pivot column entry 
means that the existing basic variable increases with the incoming 
basic variable in order to maintain an equaUty. This obviously 
places no restriction whatsoever upon the value of the new basic 
variable, and so an infinitely large ratio can be associated with a 
negative pivot column entry and Ukewise for a zero entry. 

The pivot lies at the intersection of the pivot row and pivot 
column and is indicated by an asterisk. If the pivot row is divided 
by the pivot then a new row appears as follows, with the basic label 
changed to Χχ. 

Basic ζ Xl X2 X3 X4 R H S 

ζ 
Xl 0 1 0.5 0.5 0 250 
X4 

This row can now be used to ehminate Xi from the remaining 
rows. Thus adding thrice the new row to the ζ row and zero times 
the new row to the χ4 row gives the next simplex tableau. 
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constraints I = 1,2,. . .Μ. The objective 
function coefficients C(J) are input and 
copied into A(0 , J ) . 
initially prints out the data as input when 
E D I T = 1 , then prints the entire simplex 
tableau less the ζ column. The signature of 
ζ is - for minimization, 
slacks with indices N + I are added to the 
constraints for I = 1,2,. . . ,M, and are then 
made basic, which is recorded by setting 
S T A T U S ( N + I ) = 1 and A ( I , 0) = N + I . 
controls iterations via the following: 
seeks most negative A(0 , J) to identify the 
pivot column j , ignoring spurious A(0 , J ) 
> - E - 0 8 . Sets STATUS(j) = 1. 
seeks row i with smallest non-negative ratio 
of RHS/pivot column entry, and sets 
STATUS(A( i , 0)) = 0. 
records A( i , 0) = j and uses the pivot row 
to eliminate Xj from all o ther rows. 

Now type in the program SIMPLEX from the following Hsting. 

PROCpr in t : 

PROCslacks: 

PROCi te ra t e : 
PROCpivot^column: 

PROCpivot_.row: 

PROCpivot : 
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Program 6.3 SIMPLEX: LP for < = constraints with non-negative 
RHS 

5 REM SIMPLEX 
10 REM Μ <= INEQUALITIES WITH NON-NEGATIVE R . H . S . 
2 0 REM Ν DECISION VARIABLES AND Μ INEQUALITIES s . t . N+M<21 
3 0 REM USES SLACK VARIABLES FOR IFS 
40 @%e&020310 
50 DIM A ( 1 1 , 2 1 ) , B ( 2 1 ) , C ( 1 1 ) , S T A T U S ( 2 1 ) 
60 ITERATION=0 
7 0 PROCinput 
80 PROCprint 
90 EDIT=0 

1 0 0 P R O C s l a c k s 
1 1 0 N=N4-M 
1 2 0 PRINT : PRINT "PRIMAL FEASIBLE TABLEAU" : PROCpr in t 
1 3 0 P R O C i t e r a t e 
1 4 0 END 
1 5 0 
5 0 0 DEF PROCinput 
5 1 0 INPUT "number o f m a i n v a r i a b l e s " , N 
5 2 0 INPUT "number o f <= c o n s t r a i n t s ",M 
5 3 0 PRINT 
5 4 0 FOR 1= 1 TO Μ 
5 5 0 PRINT " i n p u t a ( i , j ) & c ( i ) f o r c o n s t r a i n t i « " ; S T R $ ( I ) 
5 6 0 FOR J= 1 TO Ν 
5 7 0 PRINT " a ( " ; S T R $ ( I ) ; " , " ; S T R $ ( J ) ; " ) = " ; : I N P U T A ( I , J ) 
580 NEXT J 
5 9 0 PRINT " c ( " ; S T R $ ( I ) ; " ) = " ; : I N P U T C ( I ) 
6 0 0 NEXT I 
6 1 0 INPUT " t y p e o f o b j e c t i v e f u n c t i o n ( e n t e r MAX o r M I N ) " , Z $ 
6 2 0 PRINT "Now i n p u t t h e o b j e c t i v e f u n c t i o n c o e f f s b ( j ) " 
6 3 0 FOR J = l TO Ν 
6 4 0 PRINT " b ( " ; S T R $ ( J ) ; " ) = " ; : I N P Ü T B ( J ) ; 
6 5 0 IF Z$ = "MIN" THEN A ( 0 , J ) = B ( J ) 
6 6 0 IF Z$ = "MAX" THEN A ( 0 , J ) = - B ( J ) 
6 7 0 NEXT J 
6 8 0 EDIT =1 
6 9 0 PRINT : PRINT "ROWS AS INPUT" 
7 0 0 ENDPROC 
7 1 0 

1 0 0 0 DEF PROCprint 
1 0 1 0 PRINT : I F EDIT=0 THEN PRINT "BASIC";ELSE PRINT "TYPE"; 
1 0 2 0 FOR J = 1 TO Ν 
1 0 3 0 PRINT T A B { 1 0 * J ) ; " X " ; S T R $ ( J ) ; 
1 0 4 0 NEXT J 
1 0 5 0 PRINT T A B ( 1 0 * ( N + 1 ) ) ; " R . H . S . " 
1 0 6 0 PRINT 
107 0 FOR 1= 0 TO Μ 
1 0 8 0 FOR J= 0 TO Ν 
1 0 9 0 IF Z$«"MAX" AND 1=0 AND J = 0 THEN PRINT "Z"; 
1 1 0 0 IF Z$="MIN" AND 1=0 AND J = 0 THEN PRINT " - Z " ; 
1 1 1 0 IF EDIT=0 AND I > 0 AND J = 0 THEN PRINT " X " ; S T R $ ( A ( I , 0 ) ) ; 
1 1 2 0 IF EDIT=1 AND I > 0 AND J = 0 THEN PRINT "L"; 
1 1 3 0 IF J > 0 THEN PRINT T A B ( 1 0 * J ) ; A ( I , J ) ; 
1 1 4 0 NEXT J 
1 1 5 0 PRINT T A B ( ( N + 1 ) * 1 0 ) ; C { I ) 
1 1 6 0 NEXT I 
1 1 7 0 PRINT 
1 1 8 0 ENDPROC 
1 1 9 0 
2 5 0 0 DEF P R O C s l a c k s 
2 5 1 0 FOR 1= 1 TO Μ 
2 5 2 0 A ( I , 0 ) = N+I 
2 5 3 0 A ( I , N + I ) = 1 
2 5 4 0 STATUS(N+I) = 1 
2 5 5 0 NEXT I 
2 5 6 0 ENDPROC 
2 5 7 0 
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4 5 0 0 DEF P R O C i t e r a t e 
4 5 1 0 REPEAT 
4 5 2 0 P R O C p i v o t _ c o l u m n 
4 5 3 0 IF 3=0 THEN ENDPROC 
4 5 5 0 PROCpivot_row 
4 5 6 0 IF i = 0 THEN PRINT "UNBOUNDED SOLN":END 
4 5 7 0 ρ = A ( i , j ) 
4 5 8 0 PRINT "PIVOT = " ; p ; " NEW BASIC VAR. X " ; S T R $ ( j ) ; 
4 5 9 0 PRINT " IN PLACE OF X " ; S T R $ ( A ( i , 0 ) ) 
4 6 0 0 PROCpivot 
4 6 2 0 PRINT : PRINT "ITERATION No ";STR$(ITERATION) 
4 6 3 0 PROCprint 
4 6 4 0 UNTIL FALSE 
4 6 5 0 ENDPROC 
4 6 6 0 
5 0 0 0 DEF P R O C p i v o t _ c o l u i n n 
5 0 1 0 BEST = 0 : COEFF = 0 : j = 0 
5 0 2 0 FOR J= 1 TO Ν 
5 0 3 0 IF A ( 0 , J ) < - l E - 0 8 THEN COEFF = - A ( 0 , J ) 
5 0 5 0 IF COEFF > BEST THEN BEST = COEFF : j = J 
5 0 6 0 NEXT J 
507 0 STATUS(j) = 1 
5 0 8 0 ENDPROC 
5 0 9 0 
5 5 0 0 DEF P R O C p i v o t _ r o w 
5 5 1 0 RATIO = 1 0 E 1 0 : TEST = 1 0 E 1 0 : i = 0 
5 5 2 0 FOR 1= 1 TO Μ 
5 5 3 0 IF A ( I , j ) > l E - 0 8 THEN TEST = C ( I ) / A ( I , j ) 
5540 IF TEST < RATIO THEN RATIO = TEST : i = I 
5 5 5 0 NEXT I 
5 5 6 0 S T A T U S ( A ( i , 0 ) ) = 0 
5 5 7 0 ENDPROC 
5 5 8 0 
6 0 0 0 DEF PROCpivot 
6 0 1 0 A ( i , 0 ) = j 
6 0 2 0 REM DIVIDE PIVOT ROW BY PIVOT 
6 0 3 0 FOR J = 1 TO Ν 
6 0 4 0 A ( i , J ) = A ( i , J ) / p 
6 0 5 0 NEXT J 
6 0 6 0 C ( i ) = C ( i ) / p :REM STORE OLD PIVOT COLUMN ENTRY IN COL 
6 0 / 0 FOR I = 0 TO Μ 
6 0 8 0 COL = A ( I , j ) 
6 0 9 0 FOR J= 1 TO Ν 
6 1 0 0 IF I <>i THEN A ( I , J ) = A ( I , J ) - C O L * A ( i , J ) 
6 1 1 0 NEXT J 
6 1 2 0 IF I <> i THEN C ( I ) = C ( I ) - C O L * C ( i ) 
6 1 3 0 NEXT I 
6 1 4 0 ITERATION = ITERATION + 1 
6 1 5 0 ENDPROC 
6 1 6 0 

>RUN 
nuiber o f win variables ?2 
nuiber o f <= constraints ?2 

input a(i,j) i cli) for constraint i=l 
a(l,ll=''2 
3(1,2)=·Ί 
c(l)=^5ee 
input a(i, j) li cli) for constraint i=2 
a(2,l)=?e 
3(2,2)=·Ί 
c(2)=?2Be 
type of objective function (enter HAX or Ι1ΙΝ)?ΗήΧ 
NoM input the objective function coeffs b(jl 
b(l)='3 
b(2l=''l 
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TYPE Π 112 R.H.S. 

Ζ -3.βββ -1.088 0.088 
L 2.BB0 1.080 588.000 
L 1.080 200.000 

PR 1 HAL FEASIBLE TABLEAU 

BASIC Kl U U U R.H.S. 

7 -3.808 -1.088 0.000 0.000 0.000 
X3 2.080 1.008 1.008 0.000 508.880 
A 4 0.080 1.088 0.000 1.000 200.000 

PIVOT =2.000 NE« BASIC VAR. U IN PLACE OF Vj 

ITERATION No 1 

BASIC η η η U R.H.S. 

0.000 0.500 1.500 0.000 750.000 
1.000 0.580 0.500 0.080 250.000 

¡(4 0.000 1.000 0.000 1.000 200.000 

When satisfied with the accuracy of your usting you should 
R U N with the data of problem P I , noting that it is only necessary 
to input the matrix of coefficients of main variables, as the slack 
variables are entered automatically by the program. Your printout 
should agree with the sequence of tableaux described earlier, 
except that the ζ column is omitted as it does not change. You 
should do Problems 6.2 to 6.5 now. 

It is computationally convenient to transform minimization 
objective functions into equivalent maximization functions with 

MIN ζ = - M A X -ζ 
or MIN bi Χι -\- 02 X2 • ' ' ^ b„ x„ 

= - M A X - b i Xl - b2X2 - ' · ' - Xn 

For instance, you should check that this transformation holds for 
P I by RUNning S I M P L E X with the minimization objective 

- M I N -3xi - X2 

If the search for the pivot row is frustrated by a pivot column of 
negative elements then there is no restriction upon the value of the 
incoming basic variable. In short, the solution is unbounded due to 
a shortcoming in the formulation of the problem (see line 4560). 

The simplex method implicitly assumes an improvement in the 
value of the objective function at each iteration, since only then 

ROWS AS INPUT 
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can one be sure of termination with the optimun solution in a finite 
number of iterations. A degenerate basis is one in which one or 
more basic variables happens to be zero, and this can occur if more 
than η constraints intersect at a vertex. But if the pivot row 
happens to have the zero right-hand side value in a degenerate 
basis then the value of ζ remains unchanged in the next tableau. 
This opens up the possibility of an endless 'cycling' of iterations 
around a subset of the vertices, without ever reaching an opt imum. 
This is unlikely to occur in practice, but one of the problems is to 
R U N a specially constructed problem with several degenerate 
bases which does , in fact, cycle. 

Program S I M P L E X will fail to recognize the existence of an 
alternative opt imum, which arises when a non-basic variable / has 
a zero-valued ζ coefficient A(0 , j ) . Amendments to the program 
are left to the interested reader , who should do Problems 6.6 to 6.7 
at this juncture . 

6.3 Mixed inequality and equality constraints 
The slack variables were used as an initial basis in S IMPLEX. But 
this approach cannot be employed for s u φ l u s variables which are 
subtracted from the left-hand side of > = constraints with 
non-negative R H S , since a feasible basis must have non-negative 
variables throughout . Take problem P2 as an illustration; one 
could not have Xs = - 4 0 0 and x^ = - 1 0 0 here 

M A X z =3JCI + X2 
2xi + X2 -\-X3 = 500 

X2 + X4 = 200 
Xi-^2x2 -X5 = 4 0 0 
jci -xe = 1 0 0 

Another transformation can be used to overcome this difficulty 
with the > = constraints. First identify the > = constraint, 10 say, 
with the largest right-hand side. Next substitute for the other > = 
constraints, in turn, the results of subtracting them from the 10 
constraint. In this case 10=3 and so row 4 is replaced by row 3 
minus row 4. 

Μ Α Χ Ζ = 3 Λ : Ι + X2 
2xi + X2 +X3 = 500 

X2 X4 = 200 
X i - h 2 j C 2 -X5 = 4 0 0 

2X2 - J C 5 + J C 6 = 3 0 0 

This transformation reverses the sign of the surplus variable in 
each > = constraint, save the 10 constraint, whilst preserving a 
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non-negative right-hand side. As a result these surplus variables 
are now obvious basis candidates, and Λ:6=300 is a basic variable in 
this example. But the 10 constraint still poses a real problem, and 
so an artifical variable Χη is introduced into the left-hand side. 

Χχ + 2Χ2 - JC5 + JC7 = 400 

The artificial is made basic, thus Χη = 400 here . This completes 
an initial basis to the wrong problem! If we chose to minimize Χη as 
a first objective, then immediately Χη was driven to zero we would 
have an initial basis to the original problem P2. The original 
objective could then be taken up and the iterations pursued to 
optimality. 

In summary, an artifical variable Χη is introduced into the 10 
constraint and made basic; the objective is to minimize Χη in Phase 
1, and when this is achieved the original objective is reinstated in 
Phase 0. The following details are implicit. The ζ row is 
transformed during Phase 1 as if it were a constraint row, in order 
to express it in terms of the current non-basic variables, and at the 
start of Phase 1 the objective function XQ, say, must also be written 
in terms of non-basic variables. 

M I N jco = JC7 = -xi - 2JC2 + JC5 + 400 

The same broad approach can be developed to cater for equality 
constraints as well. A n artificial variable is assigned to each 
equality constraint, and the phase 1 objective is the minimization 
of the sum of artificals. 

If there are Ε equality constraints, L < = constraints, G > = 
constraints then there will be A = E + 1 artificial variables (or A = E 
if G = 0 ) . It is convenient to have PROCinpu t sort the input data so 
as to place the equaUty constraints in the last Ε rows. Each row I 
then has an extra variable X N + I which is either a slack added to < = 
constraints, a surplus subtracted from > = constraints, or an 
artificial added to = constraints. If G > 0 there will also be an 
artificial X N + M + I associated with row 10. 

Program S IMPLEX can be developed to work in this way and 
Program 2 P H A S E , as it is called, involves the following changes 
and additions: 

PROCinpu t : now allows the user to input the type of 
constraint, and counts L , G, E . Identifies 10 
when G > 0 and sorts the equahties into rows M, 
M - 1 , M - 2 , etc 

PROCmat r ix : sets up the matrix of coefficients A( I , J ) . Calls 
P R O C s l a c k s if L > 0 , PROCart i f ic ia l and 
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PROCtransform if G > 0 , PROCequal i t ies if 
E > 0 . Lists the artificials when A > 0 . 

PROCartificial: adds an artificial to the 10 row and makes it 
basic, increments the Xo coeffs by the 10 row 
coefficients. 

PROCtransform: carries out the transformations on the > = 
inequalities, making surpluses basic. 

PROCequal i t ies : increments the Xo coeffs by the Ε row coeffi­
cients, making artificials basic. 

P R O C p h a s e : sets P H A S E = 1 for first phase , P H A S E = 0 for 
second phase when all artificials have been 
driven from the basis. 

Load S IMPLEX and make the following alterations and 
additions, as found in the Hsting of 2 P H A S E below. 

A m e n d lines: 5 520 541-547 570-572 590-595 
1070 1120 4530-4540 4610 5030-5040 
6070 

Dele te lines: 2510 2550 
Type in: Main program PROCmatr ix PROCartificial 

PROCtransform PROCequal i t ies PROCphase 

Now check your hsting against the listing for 2 P H A S E below. 
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Program 6.4 2PHASE: LP for mixed inequality and equality 
constraints with non-negative RHS 

5 REM 2PHASE 
1 0 REM M<11 INEQUALITIES PLUS EQUATIONS WITH NON-NEG RHS 
2 0 REM WITH Ν DECISION VARIABLES LIMITS ARE N+M<21 
3 0 REM USES 2-PHASE METHOD WITH ARTIFICIAL VARIABLES 
40 @%»&020310 
50 DIM A ( l l , 2 1 ) , B ( 2 1 ) , C ( 1 1 ) , S T A T U S ( 2 1 ) , T Y P E $ ( 1 1 ) 
60 ITERATION»0 :L=0 :E=0 :G»0 :PHASE=0 :A=0 :CMAX=0 : I 0 = 0 
7 0 PROCinput 
8 0 PROCprint 
90 EDIT»0 

1 0 0 PROCmatrix 
1 1 0 PROCprint 
1 2 0 P R O C i t e r a t e 
1 3 0 END 
140 
5 0 0 DEF PROCinput 
5 1 0 INPUT "number o f m a i n v a r i a b l e s " , N 
5 2 0 INPUT "number o f c o n s t r a i n t s ",M 
5 3 0 PRINT 
5 4 0 FOR 1= 1 TO Μ 
5 4 1 PRINT 
5 4 2 PRINT " i n p u t t y p e o f c o n s t r a i n t i = " ; S T R $ ( I ) 
5 4 3 PRINT " i . e . i n p u t L , Ε ,G f o r < = , = , > = " ; 
5 4 4 INPUT TYPE$ 
5 4 5 IF TYPE$="L" THEN L=L+1 : T Y P E $ ( I - E ) = " L " 
546 I F TYPE$="G" THEN G=G+1 : T Y P E $ ( I - E ) = " G " 
547 IF TYPE$="E" THEN E=E+1 : TYPE$(M-E+1)="E" 
5 5 0 PRINT " i n p u t a ( i , j ) & c ( i ) f o r c o n s t r a i n t i = " ; S T R $ ( I ) 
5 6 0 FOR J= 1 TO Ν 
5 7 0 PRINT " a ( " ; S T R $ ( I ) ; " , " ; S T R $ ( J ) ; " ) = " ; 
5 7 1 IF TYPE$= "E" THEN INPUT TAB(10) A ( M - E + 1 , J ) 
5 7 2 IF TYPE$<>"E" THEN INPUT TAB ( 1 0 ) A ( I - E , J ) 
580 NEXT J 
5 9 0 PRINT " c ( " ; S T R $ ( I ) ; " ) = " ; 
5 9 1 IF TYPE$= "E" THEN INPUT TAB(10) C(M-E+1) 
592 IF TYPE$<>"E" THEN INPUT TAB(10) C ( I - E ) 
595 IF TYPE$="G" AND C(I-E)>=CMAX THEN CMAX=C(I-E) : I 0 = I - E 
6 0 0 NEXT I 
6 1 0 INPUT " t y p e o f o b j e c t i v e f u n c t i o n ( e n t e r MAX o r M I N ) " , Z $ 
6 2 0 PRINT "Now i n p u t t h e o b j e c t i v e f u n c t i o n c o e f f s b ( j ) " 
6 3 0 FOR J = l TO Ν 
6 4 0 PRINT " b ( " ; S T R $ ( J ) ; " ) = " ; t I N P U T B ( J ) ; 
650 IF Z$ = "MIN" THEN A ( 0 , J ) = B ( J ) 
6 6 0 IF Z$ = "MAX" THEN A ( 0 , J ) = - B ( J ) 
6 7 0 NEXT J 
6 80 EDIT =1 
6 9 0 PRINT : PRINT "ROWS AS INPUT" 
7 0 0 ENDPROC 
7 1 0 

1 0 0 0 DEF PROCprint 
1 0 1 0 PRINT : I F EDIT=0 THEN PRINT "BASIC";ELSE PRINT "TYPE"; 
1 0 2 0 FOR J = 1 TO Ν 
1 0 3 0 PRINT T A B ( 1 0 * J ) ; " X " ; S T R $ ( J ) ; 
1 0 4 0 NEXT J 
1 0 5 0 PRINT TAB ( 1 0 * ( N + D ) ; " R . H . S . " 
1 0 6 0 PRINT 
107 0 FOR 1= 0 TO M+PHASE 
1 0 8 0 FOR J = 0 TO Ν 
1 0 9 0 IF Z$="MAX" AND 1=0 AND J = 0 THEN PRINT "Z"; 
1 1 0 0 IF Z$="MIN" AND 1=0 AND J = 0 THEN PRINT " - Z " ; 
1 1 1 0 IF EDIT=0 AND I > 0 AND J = 0 THEN PRINT " X " ; S T R $ ( A ( I , 0 ) ) ; 
1 1 2 0 IF EDIT=1 AND I > 0 AND J = 0 THEN PRINT T Y P E $ ( I ) ; 
1 1 3 0 IF J > 0 THEN PRINT T A B ( 1 0 * J ) ; A ( I , J ) ; 
1 1 4 0 NEXT J 
1 1 5 0 PRINT T A B ( ( N + 1 ) * 1 0 ) ; C ( I ) 
1 1 6 0 NEXT I 
1 1 7 0 PRINT 
1 1 8 0 ENDPROC 
119U 
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2 0 0 0 DEF PROCmatrix 
2 0 1 0 IF G>0 THEN P R O C a r t i f i c i a l 
2 0 2 0 FOR 1*1 TO M-E 
2 0 3 0 IF T Y P E $ ( I ) « "L" THEN P R O C s l a c k s 
2 0 4 0 IF T Y P E $ { I ) * "G" AND I O I 0 THEN PROCtrans f o r m 
20 50 NEXT I 
2 0 6 0 IF E>0 THEN P R O C e q u a l i t i e s 
207 0 IF E+G > 0 THEN PHASE « 1 
2 0 8 0 IF G>0 THEN A^l 
2 0 9 0 A = A+E : PRINT 
2 1 0 0 IF A>0 THEN PRINT "ARTIFICIAL VARIABLES REQUIRED" 
2 1 1 0 IF E>0 THEN FOR I«M-E+1 TO M:PRINT "X";STR$(N+I) :NEXT I 
2 1 2 0 IF G>0 THEN PRINT •X";STR$(N+M+1) 
2 1 3 0 IF G>0 THEN N-N+M+1 ELSE N-N+M 
2 1 4 0 PRINT : PRINT "PRIMAL FEASIBLE TABLEAU" 
2 1 5 0 ENDPROC 
2 1 6 0 
2 5 0 0 DEF P R O C s l a c k s 
2 5 2 0 A ( I , 0 ) « N+I 
2 5 3 0 Α ( Ι , Ν + Ι ) « 1 
2 5 4 0 STATUS(N+I)»1 
2 5 6 0 ENDPROC 
2 5 7 0 
3 0 0 0 DEF P R O C a r t i f i c i a l 
3 0 1 0 A ( I 0 , N + I 0 ) = - 1 
3 0 2 0 A ( I 0 , 0 ) = N+M+1 
3 0 3 0 A ( I 0 , N + M + 1 ) « 1 
3 0 4 0 STATUS(N+M+1) « 1 
3 0 5 0 FOR J = 1 TO N+M 
3 0 6 0 A ( M + 1 , J ) «= A ( M + 1 , J ) + A ( I 0 , J ) 
307 0 NEXT J 
3 0 8 0 C(M+1) = C(M+1) + C ( I 0 ) 
3090 ENDPROC 
3 1 0 0 
3 5 0 0 DEF P R O C t r a n s f o r m 
3 5 1 0 FOR J = 1 TO N+M-E 
3 5 2 0 A ( I , J ) * A ( I 0 , J ) - A ( I , J) 
3 5 3 0 NEXT J 
3 5 4 0 C ( I ) = C ( I 0 ) - C ( I ) 
3 5 5 0 A ( I , 0 ) « N + I 
3 5 6 0 A ( I , N + I ) = 1 
3 5 7 0 STATUS(N+I)«1 
3 5 8 0 ENDPROC 
3590 
4 0 0 0 DEF P R O C e q u a l i t i e s 
4 0 1 0 FOR I = M-E+1 TO Μ 
4 0 2 0 FOR J = 1 TO Ν 
4 0 3 0 A ( M + 1 , J ) = A ( M + 1 , J ) + A ( I , J ) 
40 40 NEXT J 
4 0 5 0 C(M+1) = C(M+1) + C ( I ) 
4 0 6 0 A ( I , N + I ) = 1 
4 0 7 0 A ( I , 0 ) = N + I 
4 0 8 0 STATUS(N+I)=1 
4 0 9 0 NEXT I 
4 1 0 0 ENDPROC 
4 1 1 0 
4 5 0 0 DEF P R O C i t e r a t e 
4 5 1 0 REPEAT 
4 5 2 0 P R O C p i v o t _ c o l u m n 
4 5 3 0 IF j = 0 AND PHASE=1 THEN PRINT "NO FEASIBLE BASIS" : END 
4 5 4 0 IF j « 0 AND PHASE*0 THEN ENDPROC 
4 5 5 0 P R O C p i v o t . r o w 
4 5 6 0 IF i * 0 THEN PRINT "UNBOUNDED SOLN":END 
4 5 7 0 ρ = A ( i , j ) 
4 5 8 0 PRINT "PIVOT = " ; p ; " NEW BASIC VAR. X " ; S T R $ ( j ) ; 
4 5 9 0 PRINT " IN PLACE OF X " ; S T R $ ( A ( i , 0 ) ) 
4 6 0 0 PROCpivot 
4 6 1 0 IF PHASE*1 THEN PROCphase 
4 6 2 0 PRINT : PRINT "ITERATION No ";STR$(ITERATION) 
4 6 3 0 PROCprint 
4 6 4 0 UNTIL FALSE 
4 6 5 0 ENDPROC 
4 6 6 0 
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input type ol constraint i=l 
i.e. input L ,E ,6 for <s ,= ,>= ?L 
input a(i , j) Ir cli) for constraint i=l 
ad,!): ' 2 
a(l,2)= 1 
C(I)» sai 

input type of constraint i-2 
i.e. input L ,E ,6 for <= ,= ?L 
input a(i, j) It c(i) for constraint i=2 
a(2,ll» I 
a(2,2)s 1 
c(2)= 2βΙ 

5 0 0 0 DEF P R O C p i v o t _ c o l u m n 
5 0 1 0 BEST = 0 : COEFF = 0 : j = 0 
5 0 2 0 FOR J « 1 TO Ν 
5 0 3 0 IF PHASE=0 AND A ( 0 , J ) < - l E - 0 8 THEN COEFF = - A ( 0 , J ) 
5040 IF PHASE=1 AND A ( M + 1 , J ) > l E - 0 8 THEN COEFF = A ( M + 1 , J ) 
5 0 5 0 IF COEFF > BEST THEN BEST « COEFF : j = J 
5 0 6 0 NEXT J 
5 0 7 0 STATUS!j) = 1 
5 0 8 0 ENDPROC 
5 0 9 0 
5 5 0 0 DEF P R O C p i v o t _ r o w 
5 5 1 0 RATIO = 1 0 E 1 0 : TEST = 1 0 E 1 0 : i = 0 
5 5 2 0 FOR 1= 1 TO Μ 
5 5 3 0 IF A ( I , j ) > l E - 0 8 THEN TEST = C ( I ) / A ( I , j ) 
5 5 4 0 IF TEST < RATIO THEN RATIO = TEST : i = I 
5 5 5 0 NEXT I 
5 5 6 0 S T A T U S ( A ( i , 0 ) ) = 0 
5 5 7 0 ENDPROC 
5 5 8 0 
6 0 0 0 DEF PROCpivot 
6 0 1 0 A ( i , 0 ) = j 
6 0 2 0 REM DIVIDE PIVOT ROW BY PIVOT 
6 0 3 0 FOR J = 1 TO Ν 
6 0 4 0 A ( i , J ) « A ( i , J ) / p 
6 0 5 0 NEXT J 
6 0 6 0 C ( i ) = C ( i ) / p :REM STORE OLD PIVOT COLUMN ENTRY IN COL 
6 0 7 0 FOR I « 0 TO M+PHASE 
6 0 8 0 COL = A ( I , j ) 
6 0 9 0 FOR J * 1 TO Ν 
6 1 0 0 IF I <> i THEN A ( I , J ) = A ( I , J ) - C O L * A ( i , J ) 
6 1 1 0 NEXT J 
6 1 2 0 I F I <> i THEN C { I ) = C ( I ) - C O L * C ( i ) 
6 1 3 0 NEXT I 
6 1 4 0 ITERATION = ITERATION + 1 
6 1 5 0 ENDPROC 
6 1 6 0 
6 5 0 0 DEF PROCphase 
6 5 1 0 PHASE»0 
6 5 2 0 FOR I « N - A + 1 TO Ν 
6 5 3 0 IF S T A T U S ( I ) « 1 THEN PHASE=1 
6 5 4 0 NEXT I 
6 5 5 0 IF PHASE=0 THEN N=N-A 
6 5 6 0 ENDPROC 
6 5 7 0 

Now R U N 2 P H A S E in Mode 3 for the data of problem P2, as 
overleaf. The output is readable , but not as clearly organized on a 
monitor as it is on a wide-carriage printer running in condensed 
font. Try Problems 6.8 to 6.11 here . 

>RUN 
nuiber of Nin variables ?2 
nuiber of constraints ?4 
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input type of constraint i=3 
i.e. input L ,E ,B for <= ,= ,>= ?6 
input a(i , j) tt cli) for constraint i=3 
al3,l)= 1 
a(3,2)= 2 
c(3)= 4M 

input type of constraint i-4 
i.e. input L ,E ,B for <= ,= ,>= ?B 
input a(i , j ) k cli) for constraint i M 
a(4,l)= 1 
a{4,2)= Β 
c(4)= m 
type of objective function (enter HAX or m)mt 
NoN input the objective function coeffs b(j) 
b(l)=?3 
b(2)=?l 

RONS AS INPUT 

TYPE XI X2 R.H.S. 

Ζ -3. I N -l.BBB B.BBB 
L 2.Βββ l.BBB 5BB.BBB 
L Β.βββ l.BBB 2BB.BBB 
G Ι.ΒβΒ 2.BBB 4BB.BBB 
6 l.BBB B.BBB IBB.BBB 

ARTIFICIAL VARIABLES REQUIRED 
X7 

PRIMAL FEASIBLE TABLEAU 

BASIC XI X2 X3 X4 X5 Χό X7 R.H.S. 

Ζ -3.BBB B.BBB B.BBB B.BBB B.BBB B.BBB 
X3 2.BBB l.BBB l.BBB B.BBB B.BBB B.BBB B.BBB SBB.BBB 
X4 B.BBB l.BBB B.BBB l.BBB B.BBB B.BBB B.BBB 2BB.BBB 
X7 l.BBB 2.BBB B.BBB B.BBB -l.BBB B.BBB l.BBB 4BB.BBB 
X6 B.BBB 2.BBB B.BBB B.BBB -l.BBB l.BBB B.BBB 3BB.BBB 
XB l.BBB 2.BBB B.BBB B.BBB -l.BBB B.BBB B.BBB 4BB.BBB 

PIVOT =2.BBB NEN BASIC VAR. X2 IN PLACE OF X& 

ITERATION No 1 

BASIC XI X2 X3 X4 X5 X6 X7 R.H.S. 

Ζ -3.ΒΒβ B.BiB -B.5BB B.SBB B.BBB ISB.NB 
X3 2.BBB B.BBB l.BBB B.BBB B.SBB -B.SBB B.BBB 3SB.BBB 
X4 B.BBB B.BBB B.BBB l.BBB B.5BB -B.SBB B.BIB 5B.BBB 
X7 l.BBB B.BBB B.BBB B.BBB B.BBB -l.BN l.BBB IBB.BBB 
X2 B.BBB l.BBB B.BBB B.BBB -B.SBB B.SBB B.BBB ISB.BBB 
XB l.BBB B.BBB 

PIVOT =1.B NEM BASIC VAR. XI IN PLACE OF X7 
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BASIC XI X2 X3 X4 X5 X6 R.H.S. 

Ζ a . B N B.aee B.BBB B.BBB -B.SB8 -2.5Ββ 45B.BBB 
X3 %.m B.BM l.BBB B.BBB B.5BB 1.5BB 15B.BBB 
114 i.iei B.BBB B.BBB l.BBB B.5BB -B.5BB 5B.BBB 
XI i . i a e B.BBB B.BBB B.BBB B.BBB -l.BBB IBB.BBB 
X2 8. MB l.BBB B.NB B.BBB -B.5BB B.SBB ISB.BBB 

PIVOT M.5BB NEN BASIC VAR. X6 IN PLACE OF X3 

ITERATION No 3 

BASIC XI X2 X3 X4 X5 X6 R.H.S. 

2 B.BBB B.BN 1.667 B.BBB B.333 B.BN 7 N . N B 
X& B.BBB B .NB B.667 B.BBB B.333 l . N B IBB.NB 
X4 B.BN B .NB B.333 l . N B B.667 B .NB IBB.NB 
XI l.BBB B.BN B.667 B .NB B.333 B .NB 2 N . N B 
X2 B.BBB l . B N -B.333 B .NB -B.667 B . N B I N . N B 

6.4 Post-optimal analysis 

So far we have used only the information in the 'Basic' column and 
the ' R H S ' column of the final tableau. The rest of the tableau 
contains information of considerable value in post-optimal 
analysis. The details are somewhat involved, and the reader may 
consult references 2 and 4 in Chapter 2 for authoritative accounts. 
A brief description of the main points of post-optimal analysis is 
provided here for those interested. Others may go straight on to 
the hsting of the extra Procedures below. 

Consider the inequality constraints. If a particular 'slack' 
( 'surplus') variable χ is basic then the constraint is loose, and the 
R H S value can be reduced (increased) by the value of the variable, 
and increased (reduced) without bound. A non-basic 'slack' 
( 'surplus') variable χ results from a binding constraint. A unit 
relaxation in the R H S value will result in a change in the values of 
the basic variables, and an improved objective function value. The 
correspondence works as follows. The coefficients in the χ column 
in the final tableau must have been a result of elementary row 
operat ions on the constraint in question. Thus a unit relaxation in 
the original R H S would change the R H S column in the final 
tableau by the absolute magnitude of the χ column coefficients. 
This must mean that the objective function value changes by the 
entry in the ζ row of the χ column. Economists call this the 
'shadow price ' of a scarce unit of resource. The same rationale 
allows the calculation of the extent of permissible changes to the 
original R H S values which would leave the current basic variables 
non-negative, and this is known as RHS ranging. 
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Program 6.5 SENSITY: LP as 2PHASE with ranging of RHS and 
Ζ coefficients 

5 REM SENSIT 

3 5 REM RANGING OF RHS AND OBJECTIVE FUNCTION COEFFICIENTS 

1 3 0 P R O C r h s _ r a n g i n g 
1 4 0 P R O C o b j _ r a n g i n g 
1 5 0 END 
1 6 0 

Consider next the main variables. If a main variable χ is 
non-basic then a sufficiently favourable change in the original 
objective function coefficient would lead to a zero χ coefficient in 
the ζ row of the final tableau. The maximum change allowable, if JC 
is to remain non-basic, is given by the χ coefficient in the ζ row of 
the opt imum tableau. On the other hand, there is no restriction 
upon unfavourable change in the original objective function 
coefficient of JC. If a main variable is basic, then there are likely to 
be restrictions on increases and decreases in the original objective 
function coefficient of x, given that the final basis is to remain 
optimal. The effect on ζ of a unit increase (decrease) in the 
coefficient of χ is simply to add (subtract) the χ row to (from) the ζ 
row in the final tableau. The resulting ζ coefficients must remain 
non-negative if the final tableau is to remain optimal. O n e can thus 
determine maximal decreases and increases in the original χ 
coefficient which preserve optimality; this is known as ranging of 
the objective function coefficients. 

SENSITY is a development of 2 P H A S E which involves two 
P R O C E D U R E S as follows. 

PROCrhs_ranging: considers each 'slack' and 'surplus' in turn, 
differentiating between binding and loose 
constraints. Prints maximum change in R H S , 
and the shadow price of binding constraints. 

PROCobj_ranging: considers each main variable χ in turn , 
differentiating between basic and non-basic 
cases. Prints maximum changes in objective 
function coefficients. 

Now type in the following alterations to the main program, and 
these two Procedures . 
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7 0 0 0 D E F P R O C r h Q _ r a n g i n g 
7 0 1 0 I R I N T : P R I N T " B H S R A N G E W H I C H I R E S E R V E S B A S I S " 
7 0 2 0 £ R I N T : P R I N T T ^ ( l l ) " S H A D O W MOC R H S l A X B H S " 
7 0 3 0 I R I N T "IN5)lBLirY P R I C E E E O I E A S E I N C R E A S E " 
7 0 4 0 I R I N T : J = N - D - G 
7 0 5 0 R E P E A T 
7 0 6 0 R E P E A T 
7 0 7 0 « + l 
7 0 8 0 I F J>N mtH WJPROC 
7 0 9 0 I P STftJTOSiJ)«! TBW I « 0 : R E P E A T : I « I + 1 l U N T I L A ( I , 0 ) = J 
7 1 0 0 II=J-IHL-fG 
7 1 1 0 IF STKrüS(J)«l Ί Η Ε ί I R I N T S I R $ ( I I ) ; " L O O S E " ; T Ä B ( 1 6 ) ; "-"; 
7 1 2 0 I F STimjS(J)«l ¿ W D T Y P E $ ( I I ) » " L " T H Q I I R I N T TftB(20) ; C ( I ) ; 
7 1 3 0 I F STftTüS ( J)«l / W D T Y P E $ ( I I ) » " L " T H E N I R I N T T » ( 3 0 ) ; " I N F -
7 1 4 0 I F STft!roS(J)«l M J D T Y P E $ ( I I ) » " G " T H E N P R I N T T B E ( 2 0 ) ; " I N F " ; 
7 1 5 0 I F STATOS(J)«1 A N D T Y P E $ ( I I ) « " G " T H Q I I R I N T T ñ B ( 3 0 ) ; C ( I ) 
7 1 6 0 I M T I L SiAaXJS(J)H3 
7 1 7 0 I N C « 1 0 E 8 : D E C = 1 0 E 8 : ·Ι>=ΐΕ-08 
7 1 8 0 F O R I « l TO L-KJfE 
7 1 9 0 I F A B S ( A ( I , J ) ) > T T H E N L I M n X ( I ) / A ( I , J ) E L S E L I M r P » 1 0 E 8 
7 2 0 0 I F A ( I , J X-T A N D (-LIMrP)<INC TSW INO-LIMIT 
7 2 1 0 I F A ( I , J) > Τ A N D L M T < D E C T H E N D E O ^ L D U T 
7 2 2 0 N E X T I 
7 2 3 0 P R I N T S T R $ ( I I ) ; " B I N D I N G " ; T Ä B ( 1 2 ) ; A ( 0 , J) f 
7 2 4 0 I F TyPE$(II )="L" A N D E E C < 1 0 E 8 T H E N I R I N T T B B ( 2 0 ) ; D E C ; 
7 2 5 0 I F Τ Ϊ Ρ Ε $ ( Ι Ι ) » Ί : . " A N D E E O 1 0 E 8 TBW P R I N T T ñ B ( 2 0 ) ; " I N F " ; 
7 2 6 0 I F TyPE$(II ) « " L " A N D I N C a 0 E 8 T H Q I I R I N T TfiB(30);INC 
7 2 7 0 I P T Y P E $ ( I I ) « " L " A N D I N O 1 0 E 8 T H Q < I R I N T T f t B ( 3 0 ) ; " I N F " 
7 2 8 0 I P T Y P E $ ( I I ) ' « " G " A N D I N C < 1 0 E 8 T H E N P R I N T TftB(20);INC; 
7 2 9 0 I F T Y P E $ ( I I ) « " G " A N D I N O 1 0 E 8 T H Q l I R I N T T ñ B ( 2 0 ) ; " I N F " ; 
7 3 0 0 I P T Y P E $ ( I I ) « " G " A N D E E C < 1 0 E 8 O H E N P R I N T Tffi(30);DEC 
7 3 1 0 I F T Y P E $ ( I I ) « " G " A N D E E O 1 0 E 8 Tñm P R I N T TftB(30) ; " I N F " 
7 3 2 0 U N T I L F A L S E 
7 3 3 0 Q i E P R O C 
7 3 4 0 
7 5 0 0 D E F P R O 0 o b j _ r a n g i n g 
7 5 1 0 I R I N T : P R I N T t B E N ωΕΡΡ R A N G E W H I C H I R E S E S V E S B A S I S " 
7 5 2 0 I R I N T : I R I N T " M A I N O R I G I N A L M A X M A X " 
7 5 3 0 I R I N T " V A R I A B L E ωΕΡΡ D E C R E A S E I N C R E A S E " 
7 5 4 0 JJ=9 
7 5 5 0 R E P E A T 
7 5 6 0 R E P E A T 
7 5 7 0 JJ=JJ+1 
7 5 8 0 I F JJ > N - L - G Τ Η Β Ϊ E N E P R O C 
7 5 9 0 I F STATÜS ( J J)=0 T H Q I I R I N T "X";STR$(JJ) | T Ä B ( 9 ) ?B(JJ) ,· 
7 5 0 0 I F STATOS (JJ)=fl A N D Z $ « " M A X " T H E N I R I N T T A B ( 2 0 ) ; " I N F " ; 
7 6 1 0 I F STA!roS(JJ)=fl A N D Z $ « " M A X " T H E N P R I N T T A B ( 3 0 ) ; A ( 0 , JJ) 
7 6 2 0 I F STA!njS(JJ)=0 A N D Z $ = " M I N " T H E M I R I N T T A B ( 2 0 ) ;A(0,JJ) ; 
7 6 3 0 I F STimJS(JJ)=0 i W D Z $ = " M I N " T H Q I P R I N T T A B ( 3 0 ) ; " I N F " 
7 6 4 0 U N T I L Sa3mJS(JJ)-l 
7 6 5 0 I = 0 
7 6 6 0 R E E G A T 
7 6 7 0 1 = 1 + 1 
7 6 8 0 U N T I L A ( I , 0 ) = JJ 
7 6 9 0 I N O 1 0 E 8 : D E O 1 0 E 8 : T>=lB-08 
7 7 0 0 F O R J=l T O Ν 
7 7 1 0 I F S T A a U S ( J ) = 0 A N D A B S ( A ( I , J) ) > T I H Q J L I M r P = A ( 0 , J ) / A ( I , J) 

E L S E L I N n > » 1 0 E 8 
7 7 2 0 I F A ( I , J) < - T A N D (-iilMTT) < I N C T H Q < I N O = - L I M I T 
7 7 3 0 I F A ( I , J) > Τ A N D L I M I T < D E C T H E N D E O L I M I T 
7 7 4 0 N E X T J 
7 7 5 0 I R I N T " X - ; S T R $ ( A ( I , 0 ) ) ; T A B ( 9 ) ; B ( A ( I , 0 ) ) ; 
7 7 6 0 I F Z $ = " M A X " A N D E E C < 1 0 E 8 TEm I R I N T T 2 ß ( 2 0 ) ; M : C ; 
7 7 7 0 I F Z $ = " M A X " A N D E E O 1 0 E 8 T H Q i I R I N T T A B ( 2 0 ) ; " I N F " ; 
7 7 8 0 I F Z $ = " M A X - A N D I N C < 1 0 E 8 T H E N I R I N T T ! » ( 3 0 ) ; I N C 
7 7 9 0 I F Z$»"MAX'' A N D I N O 1 0 E 8 TäW I R I N T T W ( 3 0 ) ; " I N F " 
7 8 0 0 I F Z $ = " M I N " A N D I N C < 1 0 E 8 Τ Η ΐ Μ I R I N T T A B ( 2 0 ) ; I N C ; 
7 8 1 0 I F Z $ = " M I N " A N D I N C ^ 1 0 E 8 T H Q J I R I N T T A B ( 2 0 ) ; " I N F " ; 
7 8 2 0 I F Z $ « " M I N " A N D E E C < 1 0 E 8 T H Q I I R I N T T A B ( 3 0 ) ; D E C 
7 8 3 0 I F Z $ « " M I N " A N D E E O 1 0 E 8 Τ Η Ο < I R I N T T A B (30) ; " I N F " 
7 8 4 0 U N T I L J J«N-L-G 
7 8 5 0 Q I E P R O C 
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RHS RANGE MHICH PRESERVES BASIS 

SHADON MAX RHS NAX RHS 
INEQUALITY PRICE DECREASE INCREASE 

1 BINDING 1.667 15β.βββ 3Ββ.0Ιβ 
2 LOOSE - IIB.BIB INF 
3 BINDING B.333 ISB.BBB ISB.BBB 
4 LOOSE - INF IBB.BBB 

OB FN COEFF RANGE WHICH PRESERVES BASIS 

HAIN ORIGINAL HAX NAX 
VARIABLE COEFF DECREASE INCREASE 
XI 3.ΒΒβ l.BBB INF 
X2 l.BBB INF B.SBB 

The post-optimal analysis contains some very important 
management information. The R H S ranging analysis was apphed 
to the four constraints, Working capital (constraint 1), Bought-in 
items (constraint 2) , Normal time working (constraint 3) , and the 
Process constraint (constraint 4). The printout tells us firstly that 
for every additional monetary unit of working capital up to a 
maximum of 300 additional mu, an extra contribution of 1.667 mu 
is possible. Conversely, a reduction of up to 150mu will reduce the 
contribution in the same proport ion. Secondly, there are sufficient 
bought-in items for the production of a further 100 units of product 
2. Thirdly, for each hour reduction (increase) in normal time 
working there is an increase (decrease) in the contribution of 0.333 
mu for changes of up to 150 hours over the planning period. 
Finally, the minimum process rate of product 1 production is 
comfortably exceeded. 

The ranging of the objective function coefficients shows that the 
current basis stays optimal if the profit contribution of product 1 is 
in excess of 2 mu; it is also optimal if the profit contribution of the 
second product is less than 1.5 mu. 

You should do the remaining Problems now. 

Problems 

(6.1) Modify Program E N U M E R to pick out the opt imum basis 
and objective function value for Maximize and Minimize 
problems. Test your program on the data for problems P I and P2. 

When satisfied with the accuracy of your hsting you should 
R U N with the data of problem P2. The final part of the printout is 
given below. 



Problems 111 

Minimize Ζ = 4xi -\-5x2 +7JC3 +6;C4 
Subject to JCi + ;ií2 + .^3 + -̂ 4 = 1 

5x2 +3^:3 +5JC4 > = 2 
X2 +2x3 +2JC4 > = 1 

ΙΟΛΤΙ + 4JC3 +2Λ:4 = 5 
4x2 + JC3 + ;C4 < = 2 

(6.9) R U N SENSITY with numerical examples drawn from 
standard textbooks. You can redimension the program to cater for 
larger problems. Using Μ-hi rows and N-hM-hl columns a 

(6.2) Devise a P R O C r e a d which reads data from D A T A 
sta tements , as an alternative which can be exercised at the user 's 
discretion to conversational data input in PROCinput . 

(6.3) Devise a PROCedi t to be called from the main program of 
S I M P L E X which enables the user to change any of the input data , 
until the user is satisfied, whereupon set Q $ = ' N ' . 

84 R E P E A T 
85 PROCedi t 
86 U N T I L Q$ = " N " 
N.B. PROCedi t must call PROCpr in t . 

(6.4) Devise a PROCsoln for S IMPLEX which prints out the 
value of ζ and the values of the basic variables in the opt imum 
solution. 

(6.5) Devise an improvement which allows the user to give names 
to main variables and to constraint rows. Incorporate the naming 
of variables into PROCsoln of Problem 6.4, and extend PROCsoln 
to provide the values of the slack variables for named rows. 

(6.6) R U N SIMPLEX to observe cycling with E .M.L . Beale 's 
example: 

MIN ζ = - .75λΊ + 20x2 - .5Λ:3 + 6x4 
Subject to .25JCI - 8x2 - Λ:3 4- 9JC4 < = 0 

.5xi - 12x2 - '5x3 + < = 0 
JC3 < = 1 

(6.7) Devise a PROCal ternat ive which is called in line 129 of 
S I M P L E X when there exist one or more non-basic variables j at 
the opt imum solution such that A(0, j ) is near zero. The user 
should be given the option of entering j into the basis. 

(6.8) Use 2 P H A S E to solve the following L.P. problem, which is 
an example of the so-called 'diet ' problem described by E . M . L . 
Beale in Mathematical Programming in Practice, Pi tman, 1968. 

file://-/-5x2
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Standard B B C Β micro can cope with a problem with, say, 20 rows 
and 20 main variables in, say, 5 minutes, but you should beware 
problems due to rounding errors and ill-conditioning, 

(6.10) R U N SENSITY for problem P2 with the additional 
equality constraint Χχ - X2 = 0. Superimpose this equality 
constraint upon Figure 6.4 to check your output . 

(6.11) Write a PROCknown^bas is which generates a first simplex 
tableau from a set of user input basic variable indices. (Hint: draw 
upon E N U M E R for the Gaussian elimination procedures.) 

(6.12) Re-draw the eight feasible regions for each of the eight 
changes in the constraints indicated by the R H S ranging analysis in 
the text. Then re-draw the original feasible region and superim­
pose the four instances of objective function hues, which apply at 
the extremes of the ranging of the objective function coefficients. 

(6.13) Write a management report upon your interpretation of the 
results of the post-optimal analysis of the R U N to problem P2 
which was given in the text. 

(6.14) Readers who understand the definition of a linear 
programming problem of ' t ransportation type ' should write the 
following procedures: P R O C t l p J n p u t and PROCtlp^matr ix . The 
former should allow the user to input the number of origins and 
destinations, the availabilities and requirements , and the trans­
portat ion cost coefficients. The latter generates the matrix of 
constraint coefficients automatically. 
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Markov chains 

Essential theory 

7.1 Introduction to Markov chains 

A Markov chain model may be usefully employed for the analysis 
of a system with both dynamic and probabiUstic features. Suppose 
that a system can be in one of a finite number of states, and its 
behaviour can be modelled as a probabiHstic trajectory through 
intermediate states at some suitably chosen instances, which may 
be regular or irregular points in t ime. A discrete valued state 
variable Si is associated with the ith system state for / = 0 , 1 , 2 , . . . , / . 
This state variable is distinguished from a discrete valued stage 
variable n. Variable η is used to convey the idea that the state of 
the system is examined at successive discrete instances n = 0 , l , 2 , . . 
. ,N where the initial examination occurs at stage η = 0. 

A Markov chain has the property that the random change from 
state s¿ at stage η to Sj at stage n + 1 does not depend in any way 
upon the state trajectory which developed prior to stage n. So this 
random change of state accords with the conditional probability 
distribution 

ProbabiHty (state Sj at stage n + l / s t a t e Si at stage n) = Pij 
for all stages η = 0,1,2, . . N-1 

Thus Markov chains are said to have a 'stationary set of 
transition probabilit ies ' ; i .e. independent of the stage variable. 
Transitions between each pair of states may occur in principle and 
so a square conditional probability transition matrix Ρ can be 
defined with non-negative conditional transition probabihties. The 
matrix Ρ has order 7 + 1 , where the rows correspond to the state at 
stage η and the columns to the state at stage n-l·l, Conditional 
transition probabihties for certain or impossible transitions are 1 
and 0 respectively and since a transition must occur between 
successive stages, if only to the same state, the entries in the rows 
of the matrix Ρ sum to unity. 

113 
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So 

P = s, 

So S, S3 
/ 0.9 0.1 \ 

0.75 0.25 
\ 1 / 

Notice that there is a probability Po,i = 0.1 that a 'properly 
adjusted' machine at the start of a shift is 'poorly adjusted' at the 
start of the next shift. There is an even larger probability Pi 2 = 
0.25 that a machine which is 'poorly adjusted' at the start of a shift 
is ' inoperable ' at the start of the next. The element ^ 2 , 0 = 1 in the 
third row follows from the definitions of state and stage, i.e. it is 
certain that a machine which is ' inoperative' at the start of a shift is 
'properly adjusted' at the start of the next. 

A comprehensive set of system trajectories over the first three 
shifts is provided in Figure 7 .1 . There are 2, 4 and 7 trajectories 
from state SQ to the system states at stages 1, 2 and 3. The reader 
can extend the figure to check that there are 12 trajectories to the 
system states at stage 4. All the non-zero transition probabilities 
are shown, and the trajectories have probabilities which are 
calculated from the product of the appropriate transition 
probabilities. 

The n-stage probability ""Pij of achieving state Sj at stage η by a 
trajectory from state s¿ at stage 0 is given by the sum of the 

7.2 An illustrative example 

Suppose, for illustration, that a machine has a random tendency to 
deter iorate instantaneously from a state SQ 'properly adjusted' at 
the start of a period of operation to 'poorly adjusted' just prior 
to the end of the period. If the periods are the duration of a 
working shift, say, then the stages correspond to the intervals 
between shifts. The machine is assumed to be 'properly adjusted' 
before the start of the first shift, i .e. at stage 0. A machine which is 
'properly adjusted' at the start of a shift produces 100 items of 
acceptable quahty in that shift. A machine which is 'poorly 
adjusted' at the start of a shift produces 90 acceptable items in that 
shift. Management needs to know what level of acceptable output 
to expect from a shift. A machine which is in state Si 'poorly 
adjusted' at the start of a shift may deteriorate instantaneously to 
the state S2 ' inoperable ' just prior to the end of the shift. A n 
' inoperable ' machine always receives attention for the duration of 
the next shift and it is returned to the state SQ 'properly adjusted' 
by the end. The matrix of stationary transition probabilities is 
given in Table 7 .1 . 

Table 7.1 A matrix of transHion probabilities 
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P r o b a b i l i t y 
of t r a j e c t o r y 

• 1 » -25« 1 •025 

• 1 * -75« - 2 5 = 0 1 8 7 5 

• 1 * - 7 5 * -75 = 

• 9 * 1 * -25 = 

•05625 

•0225 

•9M -1» -75 = 0 6 7 5 

9 * ·9» ·1 

• 9 * -9« 9 = 

•081 

•729 

Figure 7.1 The system state trajectories over three transitions 

appropria te trajectory probabilities. For example, it is evident 
from Figure 7.1 that the machine is in state 'poorly adjusted' at 
stage 3 with probability. 

^Po,i = .05625 + .0675 + .081 = .20475 

But it is much easier to calculate "P¿,y recursively. The 
probability associated with an n-stage trajectory to state Sj from 
state Si at stage 0 can be obtained from the sum of products , over 
all k, of the probabilities of the / i - l stage trajectory to state Si^ and 
the single-stage transition from s^ to Sj. Thus 

"Λν = Σ " - ' Η ) ^ * ^ . , ; Ί Θ Γ Η = 2 ,3 , . . . , Ν 

k 

where ^P/y = Pij 

s t a g e 0 

= 1 

S h i f t 

E x p e c t e d 
o u t p u t Ε 

- Λ 
ζ · 9 

1 

1 0 0 

ζ 0 2 5 
ζ - 1 6 5 
= · 81 

2 

9 9 

= 0 4 1 2 5 

^ Ρ Ο , , = 2 0 Α 7 5 

9 5 85 93 83 

Figure 7.2 State diagram over three transitions, , and Ε 
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This idea is synonymous with redrawing Figure 7.1 so that each 
state is uniquely represented at each stage, with the result that 
individual trajectories are no longer discernible. This is done in 
Figure 7.2, which also gives the probabilities "P/ j for η = 1,2,3 
from recursive calculations. Now the expected output in the nth 
shift, £ , can be written as follows, and this expression was used for 
the calculations of Ε for η = 2,3,4 also shown in Figure 7.2: 

= 100 * "-^Ρο,ο + 90 * "-^Po.i + 0 * " -^Po ,2 

It is not necessary to assume that the machine is in state 0 at 
stage 0. Its initial state could be taken as a vector ^p' of 
probabilit ies, and in general we can think of the state of the 
machine at stage η as the vector y where 

"p' = (Prob, of So, Prob, of Si, . . . ,Prob. of Sj) 

A recursion can then be written compactly using matrix algebra 

torn = 1,2, , . . ,N. 
If an output vector is denoted by e where e = (100, 90, 0) then 

the output E„ in the nth shift is given by 

= ""-y e 

In the present example, one finds that 

V = ( 1, 0, 0)and£i = 100 
y = ( .9, . 1 , 0) E2= 99 
y = ( .81 , .165, .025) £ 3 = 95.85 
Y = ( .754, .20475, .04125) £ 4 = 93.83 

The elements of the vectors and the values of Ε accord with 
the n-stage probabilities and expected outputs from Figure 7.2 
above. Now a solution to the recursion is obviously 

ψ = y Ρ " 

for η = 1,2, . . , ,Ν, 
The first row of Ρ " corresponds to " p ' when the initial state 

vector y = Α ,Ο,Ο), the second row of P " to y = (0,1,0), and the 
third row to y = (0,0,1). Thus the rows of P " contain in vector 
form the n-stage probabilities "P¿,y for all / = 0,1,2, . . . ,/. If the 
rows of P " are similar then the vector y is not closely dependent 
upon the initial state. If the difference between the individual rows 
of P" , and the difference between each row of P " and the 
corresponding row of P""*"̂  both reduce as η increases then there is 
a priori evidence of a 'steady s ta te ' , i.e. that the state vector of 
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probabilities settles into a form for large η which is independent of 
the stage and the initial state. This is discussed more fully later on. 

The program M A R K O V consists of the following P R O C E ­
D U R E S : 

PROCinpu t : 

PROCstate_vector : 

PROCnstage_matr ix : 

allows the user to enter the total number of 
system states IH-I, the maximum number 
of stages N , the elements of the array 
v(0,i) which is used to store the initial state 
vector ^p' and the elements of the array 
P ( i J ) which is used to store the matrix of 
transition probabilities P. 
uses the equation 
vectors recursively f o r n = 1,2, . . . ,N 
and stores them as rows of a two-
dimensional array v(n,i) . 
finds and prints the nth power P" of Ρ for η 
= 1,2, . . . ,iV which is stored as a 
three-dimensional array n_stage(i, j ,n). 

y=^-^p'P to find the 

Type in M A R K O V from the listing below. 
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Program 7.2A MARKOV: Markov chain analysis for first Ν stages 

1 0 REM MARKOV 
20 REM FINDS FIRST Ν VECTORS OF STATE PROBABILITIES 
3 0 REM FINDS FIRST Ν POWERS OF TRANSITION MATRIX Ρ**!! 
40 DIM v ( 1 0 , 9 ) , P ( 9 , 9 ) , n _ s t a g e ( 9 , 9 , 1 0 ) 
50 @%=&0002060A 
6 0 
7 0 PROCinput 
80 P R O C s t a t e _ v e c t o r 
90 P R O C n s t a g e _ m a t r i x 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I 
1 0 2 0 I = I - l 
1 0 3 0 INPUT "ENTER THE MAXIMUM NUMBER OF STAGES " , Ν 
1 0 4 0 PRINT "ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR" 
1 0 5 0 FOR i = 0 TO I 
1 0 6 0 PRINT " p ( " ; S T R $ ( i ) ; " ) = " ; : INPUT v ( 0 , i ) 
107 0 NEXT i 
1 0 8 0 PRINT 
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX" 
1 1 0 0 FOR i = 0 TO I 
1 1 1 0 FOR j = 0 TO I 
1 1 2 0 PRINT " P ( " ; S T R $ ( i ) ; " , " ; S T R $ ( j ) ; " ) = " ; : INPUT P ( i , j ) 
1 1 3 0 n _ s t a g e ( i , j , l ) = P ( i , j ) 
1 1 4 0 NEXT j 
1 1 5 0 NEXT i 
1 1 6 0 ENDPROC 
1 1 7 0 
1 5 0 0 DEF P R O C s t a t e _ v e c t o r 
1 5 1 0 PRINT : PRINT "STAGE STATE PROBABILITY VECTOR" 
1 5 2 0 FOR η = 1 TO Ν 
1 5 3 0 FOR j = 0 TO I 
1 5 4 0 FOR i = 0 TO I 
1 5 5 0 v ( n , j ) = v ( n , j ) + v ( n - l , i ) * P ( i , j ) 
1 5 6 0 NEXT i 
1 5 7 0 NEXT j 
1 5 8 0 PRINT STR$(n) TAB(7) " ( " ; 
1 5 9 0 FOR j = 0 TO I 
1 6 0 0 PRINT v ( n , j ) ; 
1 6 1 0 NEXT j 
1 6 2 0 PRINT " ) -
1 6 3 0 NEXT η 
1 6 4 0 ENDPROC 
1 6 5 0 
2 0 0 0 DEF P R O C n s t a g e _ m a t r i x 
2 0 1 0 FOR η = 2 TO Ν 
2 0 2 0 PRINT:PRINT STR$(n)"-STAGE TRANSITION MATRIX P " " ; S T R $ ( n ) 
2 0 3 0 FOR i = 0 TO I 
2 0 4 0 FOR j = 0 TO I 
2 0 5 0 FOR k = 0 TO I 
2 0 6 0 n _ s t a g e ( i , j , n ) = r u s t a g e ( i , j , n ) + P ( i , k ) * n _ s t a g e ( k , j , n - 1 ) 
2 0 7 0 NEXT k 
2 0 8 0 PRINT n _ s t a g e ( i , j , n ) ; 
2090 NEXT j 
2 1 0 0 PRINT "" 
2 1 1 0 NEXT i 
2 1 2 0 NEXT η 
2 1 3 0 ENDPROC 
2 1 4 0 

RUN 
ENTER THE TOTAL NUMBER OF SYSTEM STATES ?3 
ENTER THE MAXIMUM NUMBER OF STAGES 77 
ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR 
P ( 0 ) = ?1 
P ( l ) = ?0 
P ( 2 ) = ? 0 
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ENTER THE ELEMENTS OF THE TRANSITION MATRIX 
P ( 0 , 0 ) = ? . 9 
P ( 0 , 1 ) = ? . l 
P ( 0 , 2 ) = ? 0 
P ( 1 , 0 ) = ?0 
P ( l , l ) = ? . 7 5 
P ( l , 2 ) = ? . 2 5 
P { 2 , 0 ) = ? 1 
P ( 2 , l ) = ? 0 
P ( 2 , 2 ) = ? 0 

STAGE STATE PROBABILITY VECTOR 
1 ( 0 . 9 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 0 0 0 0 0 0 ) 
2 ( 0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0 ) 
3 ( 0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0 ) 
4 ( 0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7 ) 
5 ( 0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1 ) 
6 ( 0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7 ) 
7 ( 0 . 6 7 8 6 7 6 0 . 2 5 8 1 5 3 0 . 0 6 3 1 7 1 ) 

2-STAGE TRANSITION MATRIX P*2 
0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0 
0 . 2 5 0 0 0 0 0 . 5 6 2 5 0 0 0 . 1 8 7 5 0 0 
0 . 9 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 0 0 0 0 0 0 

3-STAGE TRANSITION MATRIX P'^3 
0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0 
0 . 4 1 2 5 0 0 0 . 4 4 6 8 7 5 0 . 1 4 0 6 2 5 
0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0 

4-STAGE TRANSITION MATRIX P"4 
0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7 
0 . 5 1 1 8 7 5 0 . 3 7 6 4 0 6 0 . 1 1 1 7 1 9 
0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0 

5-STAGE TRANSITION MATRIX P"5 
0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1 
0 . 5 7 2 4 0 6 0 . 3 3 3 4 9 2 0 . 0 9 4 1 0 2 
0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7 

6-STAGE TRANSITION MATRIX P''6 
0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7 
0 . 6 0 9 2 6 7 0 . 3 0 7 3 6 0 0 . 0 8 3 3 7 3 
0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1 

7-STAGE TRANSITION MATRIX P''7 
0 . 6 7 8 6 7 6 0 . 2 5 8 1 5 3 0 . 0 6 3 1 7 1 
0 . 6 3 1 7 1 4 0 . 2 9 1 4 4 7 0 . 0 7 6 8 4 0 
0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7 

You should duphcate the R U N when you are satisfied with the 
accuracy of your Hsting. If you should try other R U N s with more 
than 10 stages or 10 states you should first redimension the arrays 
in line 40. D o Problems 7.1 and 7.2 here . 

There is strong a priori evidence of the gradual approach of 
steady state conditions. The idea of a steady state is synonymous 
with redrawing Figure 7.2 as in Figure 7.3. The transition 
probabilities are written alongside the arrows, which convey the 
sense of progression from one stage to the next. 

If steady state conditions do occur then the superscript can be 
dropped from the state vector to yield an equation in the steady 
state vector of probabilities p'\ 
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. S o ; 

.0 ' >«0 •25 

Figure 7.3 State transitions under steady state conditions 

p'=pT 
or p' {P-I) = 0 ' where 0 ' is a null vector 

These equations are written out in full for the numerical 
example of this section, using the notation p' - {po, Pu Pi) 

-.lpo+ 0 pi + lp2 = 0 
Λρο ~ . 2 5 p i + 0p2 = 0 
0 po + .25 p i - 1 /72 = 0 

These steady state equations can be given a 'flow' interpreta­
tion. Figure 7.4 is similar to Figure 7.3 but the elements of the 
matrix P - I are written alongside the arrows. In the steady state 
there is a zero rate of change in stage dependent probability. So in 
the case of state SQ, say the 'flow rate into state SQ of 1 p2 must 
equal the 'flow rate out of state SQ of .1 po. The equality between 
these flow rates yields the first steady state equation. A similar 
analogy for and S2 yields the second and third steady state 
equations respectively. 

Ü0 ^ ^ J 2 

Figure 7.4 Flow analogy for steady state equations 

Notice that these three equations are not linearly independent 
(e.g. the third is the negative sum of the first two). This will be the 
case in general , and the following 'normalizing condition' can be 
substituted for any one of them 

Po + P i + P2 = 1 
These steady state equations are very easy to solve here . The 
second and third yield 

P i = 2/5 Po and p2 = 1/10 po 
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The appHcation of the 'normahzing condition' gives 

po = 2/3, p i = 4/15, p2 = 1/15 

The long run output of parts of acceptable quality is 90.67 per 
shift, from substituting the steady state probabiHties into the 
former expression for E. 

In general , the steady state equations may be solved by 
Gaussian elimination. The approach here is to borrow the 
appropriate P R O C E D U R E S from Program E N U M E R of the 
preceding chapter . 

PROCsteady^s ta te : sets up the matrix of coefficients A and the 
right-hand side vector C for the steady state 
equations A p ' = C, having substituted the 
normalizing equation for the final steady state 
equation. Calls other procedures from line 
3000 et seq. 

Make the foHowing amendments to Program M A R K O V . 

10 REM LONG RUN 

3 5 REM FINDS STEADY STATE PROBABILITIES 
40 DIM v ( 1 0 , 9 ) , P ( 9 , 9 ) , n _ s t a g e ( 9 , 9 , 1 0 ) , p ( 9 ) , A ( 9 , 9 ) , C ( 9 ) 

85 P R O C s t e a d y _ s t a t e 

Now type in lines 2500 etseq from the listing below. 
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Program 7.2Β LONGRUN: Finds steady state probability vector 

1 0 REM LONGRUN 
20 REM FINDS FIRST Ν VECTORS OF STATE PROBABILITIES 
3 0 REM FINDS FIRST Ν POWERS OF TRANSITION MATRIX P'^n 
3 5 REM FINDS STEADY STATE PROBABILITIES 
40 DIM v ( 1 0 , 9 ) , P ( 9 , 9 ) , i u s t a g e ( 9 , 9 , 1 0 ) , p ( 9 ) , A ( 9 , 9 ) , C ( 9 ) 
50 @%«&0002060A 
6 0 
7 0 PROCinput 
80 P R O C s t a t e _ v e c t o r 
85 P R O C s t e a d y _ s t a t e 
90 P R O C n s t a g e _ m a t r i x 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES I 
1 0 2 0 I - I - l 
1 0 3 0 INPUT "ENTER THE MAXIMUM NUMBER OF STAGES " , Ν 
1 0 4 0 PRINT "ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR" 
1 0 5 0 FOR i = 0 TO I 
1 0 6 0 PRINT " p ( " ; S T R $ { i ) ; " ) = " ; : INPUT v ( 0 , i ) 
107 0 NEXT i 
1 0 8 0 PRINT 
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX" 
1 1 0 0 FOR i = 0 TO I 
1 1 1 0 FOR j = 0 TO I 
1 1 2 0 PRINT " P ( " ; S T R $ ( i ) ; " , " ; S T R $ ( j ) ; " ) = " ; : INPUT P ( i , j ) 
1 1 3 0 n _ s t a g e ( i , j , l ) = P ( i , j ) 
1140 NEXT j 
1 1 5 0 NEXT i 
1 1 6 0 ENDPROC 
117 0 
1 5 0 0 DEF P R O C s t a t e _ v e c t o r 
1 5 1 0 PRINT : PRINT "STAGE STATE PROBABILITY VECTOR" 
1 5 2 0 FOR η = 1 TO Ν 
1 5 3 0 FOR j = 0 TO I 
1 5 4 0 FOR i = 0 TO I 
1 5 5 0 v ( n , j ) = v ( n , j ) + v ( n - l , i ) * P ( i , j ) 
1 5 6 0 NEXT i 
1 5 7 0 NEXT j 
1 5 8 0 PRINT STR$(n) TAB(7) " ( " ? 
1 5 9 0 FOR j = 0 TO I 
1 6 0 0 PRINT v ( n , j ) ; 
1 6 1 0 NEXT j 
1 6 2 0 PRINT " ) " 
1 6 3 0 NEXT π 
1 6 4 0 ENDPROC 
1 6 5 0 
2 0 0 0 DEF P R O C n s t a g e ^ m a t r i x 
2 0 1 0 FOR η = 2 TO Ν 
2 0 2 0 PRINT:PRINT STR$(n)"-STAGE TRANSITION MATRIX P ~ " ; S T R $ ( n ) 
2 0 3 0 FOR i = 0 TO I 
2 0 4 0 FOR j = 0 TO I 
2 0 5 0 FOR k = 0 TO I 
2 0 6 0 n _ s t a g e ( i , j , n ) = n _ s t a g e ( i , j , n ) + P ( i , k ) * n _ s t a g e ( k , j , n - 1 ) 
207 0 NEXT k 
2 0 8 0 PRINT n _ s t a g e ( i , j , n ) ; 
2 0 9 0 NEXT j 
2 1 0 0 PRINT "" 
2 1 1 0 NEXT i 
2 1 2 0 NEXT η 
2 1 3 0 ENDPROC 
2 1 4 0 
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2 5 0 0 DEF P R O C s t e a d y _ s t a t e 
2 5 1 0 FOR i = 0 TO I - l 
2 5 2 0 FOR j = 0 TO I 
2 5 3 0 A ( i , j ) = P ( j , i ) 
2 5 4 0 NEXT j 
2 5 5 0 A ( i , i ) = A ( i , i ) - 1 
2 5 6 0 C ( i ) = 0 
257 0 NEXT i 
2 5 8 0 FOR j = 0 TO I 
2 5 9 0 A ( I , j ) = 1 
2 6 0 0 NEXT j 
2 6 1 0 C ( I ) = 1 
2 6 2 0 PROCgauss 
2 6 3 0 ENDPROC 
2 6 4 0 
3 0 0 0 DEF PROCgauss 
3 0 1 0 FOR k= 0 TO I - l 
3 0 2 0 P R O C f i n d _ p i v o t 
3 0 3 0 IF r>k THEN P R O C i n t e r c h a n g e _ r o w s 
3040 P R O C e l i m i n a t i o n 
3 0 5 0 NEXT k 
3 0 6 0 P R O C b a c k _ s u b s t 
307 0 ENDPROC 
3 0 8 0 
3 5 0 0 DEF P R O C f i n d _ p i v o t 
3 5 1 0 d=0 : r=k 
3 5 2 0 FOR i = k TO I 
3 5 3 0 c = A B S ( A ( i , k ) ) 
3540 IF d < c THEN d = c : r = i 
3 5 5 0 NEXT i 
356 0 ENDPROC 
3 5 7 0 
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s 
4 0 1 0 FOR j = k TO I 
4 0 2 0 d = A ( k , j ) 
4 0 3 0 A ( k , j ) = A ( r , j ) 
4 0 4 0 A ( r , j ) = d 
40 50 NEXT j 
4 0 6 0 d = C{k) 
4 0 7 0 C ( k ) = C ( r ) 
4 0 8 0 C ( r ) = d 
4 0 9 0 ENDPROC 
4 1 0 0 
4 5 0 0 DEF P R O C e l i m i n a t i o n 
4 5 1 0 FOR i = k+1 TO I 
4 5 2 0 d = - A ( i , k ) / A ( k , k ) 
4 5 3 0 FOR j = 1 TO I 
4 5 4 0 A ( i , j ) = A ( i , j ) + d * A ( k , j ) 
4 5 5 0 NEXT j 
4 5 6 0 C { i ) = C ( i ) + d*C{k) 
457 0 NEXT i 
4 5 8 0 ENDPROC 
4 5 9 0 
5 0 0 0 DEF P R O C b a c k _ s u b s t 
5 0 1 0 IF A ( I , I ) = 0 THEN PRINT "SINGULAR P - I " : ENDPROC 
5 0 2 0 p ( I ) = C { I ) / A ( I , I ) 
5 0 3 0 FOR i = I - l TO 0 STEP - 1 
5040 d = C ( i ) 
5 0 5 0 FOR j = i + 1 TO I 
5 0 6 0 d = d - A ( i , j ) * p ( j ) 
507 0 NEXT j 
5 0 8 0 p ( i ) = d / A ( i , i ) 
5 0 9 0 NEXT i 
5 1 0 0 PRINT : PRINT TAB(12) "STEADY STATE VECTOR" 
5 1 1 0 PRINT TAB(7) " ("; 
5 1 2 0 FOR i = 0 TO I 
5 1 3 0 PRINT p ( i ) ; 
5 1 4 0 NEXT i 
5 1 5 0 PRINT " ) " 
5 1 6 0 ENDPROC 
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A R U N with the data for the numerical example of this section 
should corroborate the earlier calculations of the steady state 
probability vector. Now do Problems 7.3 to 7.7. 

7.3 Maintenance policies 

It is often cheaper to schedule preventative maintenance, rather 
than incur the costs of unexpected breakdown. Suppose that the 
data of Table 7.2 has been obtained for the 'number of periods 
completed prior to failure' from a trial of 100 identical machines 

Table 7.2 Failure data 

Number of 
completed 
periods before 
failure 

Number of 
machines 

Failure 
probability 

Conditional failure 
probability 

0 20 .2 20/100= .2 
1 20 .2 20/80 = .25 
2 24 .24 24/60 = .4 
3 18 .18 18/36 = .5 
4 9 .09 9/18 = .5 
5 9 .09 9/9 = 1.0 

If it is assumed that failures occur just prior to the end of a 
period then the average service Hfe is given by the quantity 

l x . 2 4- 2X.2 + 3X.24 + 4X.18 + 5 x . 0 9 + 6 x . 0 9 = 3.03 
periods 

If it is further assumed that a repair can be completed prior to the 
start of the next period and that the subsequent failure probability 
distribution reverts to that of a new machine, then in the absence 
of preventative maintenance one would find a long-run failure 
probability = 3.03"^ = .33 per period. This gives rise to an 
expected cost of .33 x 350 = £115.51 per period for the cost data 
of Table 7.3. 

Table 7.3 Cost data 

Cost of repair per failure 
Cost of scheduled maintenance 

£350 
£ 25 

O n e might expect that preventative maintenance policies could 
be devised to reduce this expected long-run cost. Such policies fall 
into two classes: 

C I Maintain η periods after the machine last received attention 
C2 Maintain the machine after η calendar periods 
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0 

Periods completed without attention 
at stage A:+l 

1 2 3 4 5 

Periods 0 .2 .8 
completed 1 .25 .75 
without 2 .4 .6 
attention 3 .5 .5 
at stage 4 .5 .5 
k 5 1.0 

The steady state vector p ' = (po, PuPi, Ps, PA, PS) can be found 
from program L O N G R U N . The first element is po = .33 which is 
interpreted as the long-run probability that a machine commences 
a period of operation having just been repaired. Note that no 
preventative maintenance is possible if machines are allowed to 
commence a sixth period of operation as in the matrix of Table 
7.4. The value of po gives confirmation of the long-run probability 
of failure per period given in the last section. 

For an example of the first class of policy one could cite the 
maintenance schedules for an aircraft engine, say, which is 
overhauled after a prescribed number of flying hours have been 
completed either since the previous overhaul or since a repair was 
effected. The second class of poUcy is much easier to administer 
because it is not necessary to keep detailed service histories for 
individual machines. O n e may choose for example to service 
equipment on an annual basis. 

These two classes of poHcy are considered separately in the 
following sections. 

7.4 Maintain η periods after the machine last received attention 

The steady state behaviour of Markov chains can be employed to 
model the long-run performance of this first class of preventative 
maintenance pohcy. The stages correspond to the t ime between 
periods. The states are defined as the number of periods of 
consecutive use without attention. Table 7.4 shows the non-zero 
elements of the conditional probability matrix using the data from 
the final column of Table 7.2. It is explicitly assumed that any 
failures occur at the end of a period of operation and that repairs 
are effected in t ime for the start of the next period. Fur thermore , 
the repair or maintenance of a machine provides a future failure 
distribution which is the same as that of a new machine. 

Table 7.4 Transition matrix P: no scheduled maintenance 
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0 

Periods completed without attention 
at stage A:+l 

1 2 3 4 

Periods 0 .2 .8 
completed 1 .25 .75 
without 2 .4 .6 
attention 3 .5 .5 
at stage k 4 1.0 

Another R U N of L O N G R U N with the data of Table 7.5 yields 
a value of po = .34. But this cannot be interpreted simply as the 
failure probability here . State SQ is achieved whenever the machine 
has just received attention, either because it has failed or because 
it has been maintained. Instead, an expression for the failure 
p robab i l i t y / can be written as follows, using the vector notation *p 
for the conditional probabilities *pi of the final column of Table 
7.2: 

= ( . 3 4 0 1 3 6 , . 2 7 2 1 0 9 , . 2 0 4 0 8 2 , . 1 2 2 4 4 9 , . 0 6 1 2 2 4 ) ' * 
(.2,.25,.4,.5..5) 

= .309524 

This expression sums the products of the steady state probabilities 
with the conditional probabilities of failure in these states during 
the forthcoming period. Notice t h a t / i s smaller than was the case 
without preventative maintenance. 

Now the probability of maintenance m is given by 

m = p 4 X (1 - */74) = .061224 X .5 = .030612 

The expected cost per period C5 of scheduled maintenance after 
5 periods in use is given by 

C5 = 3 5 0 / + 25 m = £109 .10 

Thus it is marginally cheaper to maintain after 5 periods in use 
than not to maintain the machine at all. But the best policy will 
have the lowest value of C„ for η = 1,2,3,4,5,6. Program 
S C H E D C l below carries out these calculations. Make the 
following alterations to L O N G R U N . 

If, however , preventative maintenance is scheduled after 5 
periods of machine operat ion without failure then the associated 
transition matrix Ρ is given in Table 7.5. 

Table 7.5 Transition matrix P: Maintenance scheduled after n = 5 consecutive 
periods of operation 
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1 0 REM SCHEDCl 
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED 
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS CI 
35 REM EVERY η PERIODS OF UNINTERUPTED USE 
40 DIM P ( 9 , 9 ) , p ( 9 ) , A ( 9 , 9 ) , C ( 9 ) 
7 5 η = I 
80 FOR I = 1 TO η 
85 P R O C s t e a d y _ s t a t e 
90 NEXT I 

1 0 3 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F 
1 0 4 0 INPUT "ENTER THE COST OF MAINTENANCE ",M 

DELETE 1 0 5 0 t o 1 0 7 0 DELETE 1 1 3 0 DELETE 1 5 0 0 t o 2 1 4 0 

2 5 7 5 A ( 0 , I ) = 1 
5 1 0 0 c o s t = F * P ( 0 , 0 ) + M*( 1 - P ( 0 , 0 ) ) 
5 1 1 0 IF 1=1 THEN PRINT " M a i n t a i n a f t e r 1 p e r i o d c o s t s f " ; c o s t 
5 1 2 0 f = 0 
5 1 3 0 FOR i = 0 TO I 
5 1 4 0 f = f + p ( i ) * P ( i , 0 ) 
5 1 5 0 NEXT i 
5 1 6 0 m = p ( I ) * { 1 - P ( I , 0 ) ) 
517 0 c o s t = F * f + M * m 
5 1 8 0 PRINT " M a i n t a i n a f t e r " ; S T R $ ( I + l ) ; " p e r i o d s c o s t s ' " ; c o s t 
5 1 9 0 ENDPROC 

Now check your program against the hsting of S C H E D C l below, 
and a R U N with the data of Tables 7.3 and 7.4 should confirm the 
results in Table 7.6, which follows the listing. 

Program 7.4 SCHEDCl: preventative maintenance class CI 

1 0 REM SCHEDCl 
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED 
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS CI 
35 REM EVERY η PERIODS OF UNINTERUPTED USE 
40 DIM P ( 9 , 9 ) , p ( 9 ) , A ( 9 , 9 ) , C ( 9 ) 
50 @%=&0002060A 
6 0 
7 0 PROCinput 
7 5 η = I 
80 FOR I = 1 TO η 
85 P R O C s t e a d y _ s t a t e 
90 NEXT I 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I 
1 0 2 0 I = I - l 
1 0 3 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F 
1 0 4 0 INPUT "ENTER THE COST OF MAINTENANCE ",M 
1 0 8 0 PRINT 
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX" 
1 1 0 0 FOR i = 0 TO I 
1 1 1 0 FOR j = 0 TO I 
1 1 2 0 PRINT " P ( " ? S T R $ ( i ) ; " , " ; S T R $ ( j ) ; " ) = " ; : INPUT P ( i , j ) 
1 1 4 0 NEXT j 
1 1 5 0 NEXT i 
1 1 6 0 ENDPROC 
1 1 7 0 
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2 5 0 0 DEF P R C X : s t e a d y _ s t a t e 
2 5 1 0 FOR i « 0 TO I - l 
2 5 2 0 FOR j » 0 TO I 
2 5 3 0 A ( i , j ) = P ( j , i ) 
2540 NEXT j 
2 5 5 0 A ( i , i ) = A ( i , i ) - 1 
2 5 6 0 C ( i ) = 0 
2 5 7 0 NEXT i 
2 5 7 5 A ( 0 , I ) = 1 
2 5 8 0 FOR j = 0 TO I 
2 5 9 0 A ( I , j ) = 1 
2 6 0 0 NEXT j 
2 6 1 0 C ( I ) = 1 
2 6 2 0 PROCgauss 
2 6 3 0 ENDPROC 
2 6 4 0 
3 0 0 0 DEF PROCgauss 
3 0 1 0 FOR k= 0 TO I - l 
3 0 2 0 P R O C f i n d . p i v o t 
3 0 3 0 IF r>k THEN P R O C i n t e r c h a n g e _ r o w s 
3040 P R O C e l i m i n a t i o n 
3 0 5 0 NEXT k 
3 0 6 0 P R O C b a c k _ s u b s t 
307 0 ENDPROC 
3080 
3 5 0 0 DEF P R O C f i n d _ p i v o t 
3 5 1 0 d = 0 : r=k 
3 5 2 0 FOR i = k TO I 
3 5 3 0 c β A B S { A ( i , k ) ) 
3540 IF d < c THEN d = c : r = i 
3 5 5 0 NEXT i 
3 5 6 0 ENDPROC 
3 5 7 0 
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s 
4 0 1 0 FOR j = k TO I 
4 0 2 0 d = A ( k , j ) 
4 0 3 0 A ( k , j ) = A ( r , j ) 
4040 A ( r , j ) = d 
4 0 5 0 NEXT j 
4 0 6 0 d = C ( k ) 
4 0 7 0 C ( k ) = C ( r ) 
4 0 8 0 C ( r ) = d 
4 0 9 0 ENDPROC 
4 1 0 0 
4 5 0 0 DEF P R O C e l i m i n a t i o n 
4 5 1 0 FOR i = k+1 TO I 
4 5 2 0 d = - A ( i , k ) / A ( k , k ) 
4 5 3 0 FOR j = 1 TO I 
4 5 4 0 A ( i , j ) = A ( i , j ) + d * A ( k , j ) 
4 5 5 0 NEXT j 
4 5 6 0 C ( i ) = C ( i ) + d * C ( k ) 
4 5 7 0 NEXT i 
4 5 8 0 ENDPROC 
4 5 9 0 
5 0 0 0 DEF P R O C b a c k _ s u b s t 
5 0 1 0 IF A ( I , I ) = 0 THEN PRINT "SINGULAR P - I " : ENDPROC 
5 0 2 0 p ( I ) = C ( I ) / A ( I , I ) 
5 0 3 0 FOR i » I - l TO 0 STEP - 1 
5040 d = C ( i ) 
5 0 5 0 FOR j « i + 1 TO I 
5 0 6 0 d « d - A ( i , j ) * p ( j ) 
507 0 NEXT j 
5 0 8 0 p ( i ) « d / A ( i , i ) 
5 0 9 0 NEXT i 
5 1 0 0 c o s t « F * P ( 0 , 0 ) + M*( 1 - P ( 0 , 0 ) ) 
5 1 1 0 IF I « l THEN PRINT " M a i n t a i n a f t e r 1 p e r i o d c o s t s " j c o s t 
5 1 2 0 f - 0 
5 1 3 0 FOR i = 0 TO I 
5 1 4 0 f - f + p ( i ) * P ( i , 0 ) 
5 1 5 0 NEXT i 
5 1 6 0 m - p ( I ) * ( 1 - P ( I , 0 ) ) 
5 1 7 0 c o s t « F * f + M * m 
5 1 8 0 PRINT " M a i n t a i n a f t e r " ; S T R $ ( I + 1 ) ; " p e r i o d s c o s t s £ " ; c o s t 
5 1 9 0 ENDPROC 
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7.5 Maintain the machine after η calendar periods 

If a machine is maintained every η calendar periods whatever the 
service history may be then the expected number of machine 
failures f„ in the η periods can be obtained as a sum of ^-stage 
transition probabiUties as follows 

Thus the expected cost per period C„ is given by 

C„ = ( 3 5 0 / , + 25)/« 

If η = 4 then a R U N of M A R K O V with the data of Table 7.4 (with 
states now defined as 'calendar periods since last maintenance ') 
gives 

/ 4 = .2 4- .24 + .328 + .3416 = 1.1096 

and so 

C4 = (1.1096 X 350 + 25)/4 = £103.34 

The best value of η can be determined from a comparison of the 
C„ for η = 1,2,...,6. Program S C H E D C 2 below carries out these 
calculations. Make the following alterations to M A R K O V . 

10 REM SCHEDC2 
2 0 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED 
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS C2 
3 5 REM EVERY η CALENDAR PERIODS 
40 DIM v ( 1 0 , 9 ) , P ( 9 , 9 ) 

90 PROCcost 

Table 7.6 Cost of preventative maintenance policies class C1 from a RUN of 
SCHEDCl with data of Tables 7.3 and 7.4 

Maintain after η consecutive periods in operation Expected cost 

£ 90.00 
2 £ 86.11 
3 £ 97.08 
4 £105.62 
5 £109.10 
6^2) £115.51 

Notes 
( ' ^ e machine always starts a period 'as new', thus/ = .2 m = .8. 
^^^e case of 'no maintenance'. 

It is seen from this table that the best policy is to maintain after 
two consecutive periods of machine operat ion. Now do Problem 
7.8. 
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1 0 3 0 v ( 0 , 0 ) = 1 
1 0 4 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F 
1 0 5 0 INPUT "ENTER THE COST OF MAINTENANCE ",M 
1 0 6 0 PRINT "ENTER THE MAXIMUM LENGTH OF THE MAINTENANCE" 
1 0 7 0 INPUT "CYCLE IN PERIODS ", Ν 

DELETE 1 1 3 0 DELETE 1 5 1 0 DELETE 1 5 8 0 DELETE 1 6 0 0 DELETE 1 6 2 0 

2 0 0 0 DEF PROCcost 
2 0 1 0 FOR η = 1 TO Ν 
2 0 2 0 f a i l u r e s = f a i l u r e s + v ( n , 0 ) 
2 0 3 0 c o s t = ( f a i l u r e s * F + Μ ) / η 
2 0 4 0 PRINT " M a i n t a i n e v e r y " ; S T R $ ( n ) ; " p e r i o d s c o s t s / " ; c o s t 
20 50 NEXT η 
206 0 ENDPROC 

DELETE 207 0 e t s e q 

Now check your listing against Program S C H E D C 2 below. 

Program 7.5 SCHEDC2: preventative maintenance class C2 
1 0 REM SCHEDC2 
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED 
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS C2 
35 REM EVERY η CALENDAR PERIODS 
40 DIM v ( 1 0 , 9 ) , P ( 9 , 9 ) 
50 @%=&0002060A 
60 
7 0 PROCinput 
80 P R O C s t a t e _ v e c t o r 
90 PROCcost 

1 0 0 END 
1 1 0 

1 0 0 0 DEF PROCinput 
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I 
1 0 2 0 I = I - l 
1 0 3 0 v ( 0 , 0 ) = 1 
1 0 4 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F 
1 0 5 0 INPUT "ENTER THE COST OF MAINTENANCE ",Μ 
1 0 6 0 PRINT "ENTER THE MAXIMUM LENGTH OF THE MAINTENANCE" 
1 0 7 0 INPUT "CYCLE IN PERIODS " , Ν 
1 0 8 0 PRINT 
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX" 
1 1 0 0 FOR i = 0 TO I 
1 1 1 0 FOR j = 0 TO I 
1 1 2 0 PRINT " P ( " ; S T R $ ( i ) ; " , " ; S T R $ ( j ) ; " ) = " ; : INPUT P ( i , j ) 
1 1 4 0 NEXT j 
1 1 5 0 NEXT i 
1 1 6 0 ENDPROC 
117 0 
1 5 0 0 DEF P R O C s t a t e _ v e c t o r 
1 5 2 0 FOR η = 1 TO Ν 
1 5 3 0 FOR j = 0 TO I 
1 5 4 0 FOR i = 0 TO I 
1 5 5 0 v ( n , j ) = v ( n , j ) + v ( n - l , i ) * P ( i , j ) 
1 5 6 0 NEXT i 
1 5 7 0 NEXT j 
1 5 9 0 FOR j = 0 TO I 
1 6 1 0 NEXT j 
1 6 3 0 NEXT η 
1 6 4 0 ENDPROC 
1 6 5 0 
2 0 0 0 DEF PROCcost 
2 0 1 0 FOR η = 1 TO Ν 
2 0 2 0 f a i l u r e s = f a i l u r e s + v ( n , 0 ) 
2 0 3 0 c o s t = { f a i l u r e s * F + Μ ) / η 
2 0 4 0 PRINT " M a i n t a i n e v e r y " ; S T R $ ( n ) ; " p e r i o d s c o s t s ¿ " ; c o s t 
2 0 5 0 NEXT η 
2 0 6 0 ENDPROC 
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The opt imum policy here is to maintain every two calendar 
periods at a cost which is slightly more expensive than that of the 
opt imum policy of class C I (see Table 7.6). However , the cost 
penalty for increasing the cycle length is less severe than before. 
The reader should now complete the Problems. 

Problems 

(7.1) Devise a P R O C d a t a to read data into Program 7.2B 
L O N G R U N from data statements as an alternative, which can 
exercised at the user 's discretion, to conversational data input in 
PROCinpu t . 

(7.2) Devise a PROCed i t to allow the user to alter any part of the 
input to M A R K O V . 

(7.3) Develop L O N G R U N to print out the value of £ , the 
expected number of acceptable items produced by the machine in 
the example of Section 7.2. 

(7.4) R U N L O N G R U N for the transition matrix below and plot 
t h e Az-stage t r a n s i t i o n p r o b a b i l i t i e s "Pi ,o " P i , i P\,2 
for η = 1,2, . . . ,8 on the same graph. 

.1 .8 .1 
P = . l .1 .8 

.8 .1 .1 

You should find that the probabilities ""Pi^j exhibit damped 
oscillations which decay as η increases, leavingp' = (1/3,1/3,1/3) in 

A R U N of S C H E D C 2 with the data of Table 7.3 and 7.4 should 
eonfirm the results in Table 7.7. 

Table 7.7 Cost of preventative maintenance policies class C2 from a RUN of 
SCHEDC2 with data of Tables 7.3 and 7.4 

Maintain every η calendar periods Expected cost 

1 £ 95.00 
2 £ 89.50 
3 £ 97.93 
4 £103.34 
5 £104.90 
6 £108.52 
7 £108.84 
8 £109.42 
9 £110.20 

10 £110.79 
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0 .5 .5 0 
.5 0 0 .5 
.5 0 0 .5 
0 .5 .5 0 

You should find that the program prints a message ' S I N G U L A R 
Ρ-Γ and it cannot therefore find a steady state vector. You should 
also find that even powers of Ρ are identical but different from odd 
powers of P. Can you account for this behaviour, and think of a 
necessary and sufficient condition for the existence of a steady 
state vector? (P is an example of a non-ergodic chain.) 

(7.6) Rework the example of Section 7.2 under the new 
assumption that the repair of a failed machine takes two periods. 

(7.7) A warehouse manager must decide whether or not to stock a 
'slow moving' product . The weekly probability distribution of 
demand is .8 , . 1 , .1 for 0,1,2 items respectively. What is the 
expected weekly long-run contribution to profits for the following 
cases if the storage cost is £5 per item per week, each sale 
contributes a gross profit of £25, demands which cannot be met 
ex-stock are lost and items which are ordered at the end of one 
week arrive at the beginning of the next? 

(a) Order one item when stock on hand is zero. 
(b) Order two items when stock on hand is zero. 

Can you devise a better ordering rule? 

(7.8) Suppose that the following data substitutes for that of Table 
7.3 

Cost of failure (disruption, etc.) £300 
Cost of repair £ 50 
Cost of maintenance £ 25 

Fur ther suppose that a machine which has failed at the end of the 
nth period of continuous operation under a class CI policy is not 
repaired per se at a cost of £50 but restored to working order at a 
cost of £25 as part of the scheduled maintenance. Modify 
S C H E D C l to calculate the costs of this new poHcy. 

the steady state. Ρ is an example of a 'doubly stochastic' matrix, 
since both rows and columns sum to unity, and the steady state 
probabilities are therefore equal. 

(7.5) R U N Program L O N G R U N for the following transition 
matrix Ρ 
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(7.9) Use the data of Problem 7.8 to modify S C H E D C 2 to 
calculate the costs of a modified class C2 policy of leaving the 
repair of a failed machine at the end of the nth period to scheduled 
maintenance. 

*(7.10) The *first-passage t ime' Tij is the number of stages which 
are required to make a transition from state / to state ; for the first 
t ime. Tij is a random variable if / can be reached from / at all and it 
has a probability distribution "g¿y which satisfies the recursive 
relationship 

ί=1 

Develop M A R K O V to print out "g,,y for η = 1,2,... ,Λ^ for a given / 
and j . 

*(7.11) The expected value of T¿j is denoted t^j and satisfies 

tu = (Pi)-' 

tij = 1 + Σ Pi,k tkj 
k o j 

Develop L O N G R U N to solve this set of simultaneous linear 
equations for a user input state j . 

(7.12) Reformulate the model of Section 7.4 so that the original 
state So is split into two distinct states s^f and 'newly repaired' 
and 'newly maintained ' respectively. Modify S C H E D C l to work 
in this way, and in addition to print out the expected number of 
periods between overhaul given by (/?o,m)~^-

(7.13) Find the opt imum level to restore stocks for the data of 
Problem 7.7 if in addition the items have a limited shelf life of two 
weeks and are fresh on delivery. Outda ted stock is liquidated and 
the oldest stock items are sold first. 

Hint: Be sure to enumera te all the system states. 

(7.14) Redesign statements 1090 etseq in PROCinput for programs 
S C H E D C l and S C H E D C 2 to allow the user to input just the 
probability distribution for failure from the second column of 
Table 7.2. The array element P(/,0) should be assigned the 
conditional probability of failure *p/ from a calculation as shown in 
the final column of Table 7.2 and P ( / , / + l ) is assigned the value 
l - P ( / , 0 ) . 
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