
Butterworths BASIC Series includes the following titles:

BASIC aerodynamics
BASIC artificial intelligence
B A S I C business analysis and operations research
BASIC economics
BASIC hydraulics
BASIC hydrodynamics
BASIC hydrology
BASIC interactive graphics
BASIC investment appraisal
BASIC materials studies
BASIC matrix methods
BASIC mechanical vibrations
BASIC molecular spectroscopy
BASIC numerical mathematics
BASIC operational amplifiers
BASIC soil mechanics
BASIC statistics
BASIC stress analysis
BASIC theory of structures
BASIC thermodynamics and heat transfer

BASIC business analysis and
operations research
R Η M o l e BSc, MSc, PhD, AFIMA
Lecturer, Department of Management Studies,
Loughborough University of Technology, Loughborough, England

Butterworths
London . Boston . Durban . Singapore . Sydney . Toronto . Wellington

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
including photocopying and recording, without the written
permission of the copyright holder, application for which
should be addressed to the PubHshers. Such written
permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of
Net Books and may not be resold in the UK below the net
price given by the Publishers in their current price list.

First published 1987

© Butterworth & Co. (Publishers) Ltd, 1987

British Library Cataloguing in Publication Data
Mole, R.H.

BASIC business analysis and operations research. —
(Butterworths BASIC series)
1. Operations research — Data processing
2. BASIC (Computer program language)
I. Title
658.4Ό34Ό2855133 HD30.25
ISBN0-408-01590-X

Library of Congress Cataloging-in-Publication Data
Mole, R.H. (Richard H.)

BASIC business analysis and operations research.
(Butterworths BASIC series)
Includes index.
1. Industrial management—Mathematical models.

2. Operations research—Data processing. 3. BASIC
(Computer program language) I. Title. II. Series.
HD30.25.M66 1987 658.4Ό34Ό285526 86-26398
ISBN0-408-01590-X

Phototypeset by Scribe Design, Gillingham, Kent
Printed and bound in England by Page Bros (Norwich) Ltd, Norfolk

Preface

Mathematical models can be used to analyse business problems in
order to heighten managements ' understanding of the issues. This
approach can result in bet ter decisions and more robust long-term
strategy. The process has become known as Operat ions Research
(O R) and micros are commonly used for the numerical aspects of
the work.

The purpose of this book is to introduce the reader to the
application of the computer language called B A S I C to a selection
of material from the core curriculum of O R mathematical models .
It fills the gap which has been left between the texts on the
'Management application of computers ' and the texts on
O p e r a t i o n s research techniques ' . It is both a reader , showing how
the micro can solve computat ional problems effectively and
efficiently, and a workbook which provides a graded series of
programming tasks. The reader should therefore have easy access
to a computer . A primary aim is to build competence and
confidence in a reader ' s ability to design well-structured programs
for computat ional problems in a management context. A t the
same time the underlying theory has been presented as fully as
space allows. The writer has kept constantly in mind the needs of
the independent learner, and on average each chapter ends with a
dozen programming exercises.

This book is intended primarily for introductory use by
undergraduate management , computer , technology and science
students. The elementary sections are suitable for business studies
and school students who wish to see just how useful modern
approaches can be to the analysis of business operat ions. But
science and technology graduates will also find it a useful
introduction to ' O R on the micro ' .

The qualities of the computer language B B C BASIC have
something in common with the qualities of the spoken English
language which characterize B B C broadcasts. The Ustener to B B C
English will appreciate the clear enunciation and clear grammatic­
al construction. It is easy to follow. The reader will also find it easy

to take in the sense of a B B C B A S I C program. But there is no
more compulsion to employ the B B C BASIC dialect in one 's
programming tasks than there is to adopt B B C English for all
everyday communicat ion. The choice of B B C BASIC for this
book is in the reader ' s interests, whatever the dialect of B A S I C
supported by his or her computer .

The choice of material from the O R core curriculum is made in
the context of the But terworths ' B A S I C series as a whole, because
it is desirable to avoid unnecessary overlap with the material of
companion volumes. The choice is also constrained by the
available space. Companion volumes cover contiguous material:

BASIC business simulation by Ρ J Stratfold, (forthcoming)
BASIC forecasting by D G Johnson and Μ King, (forthcoming)
BASIC investment appraisal by R Η Mole , Butterworths , 1985
BASIC matrix methods by J C Mason, Butterworths , 1984
BASIC numerical mathematics by J C Mason, But terworths ,

1983
BASIC statistics by J Tennant-Smith, Butterworths. 1985

Chapters 1 and 2 are brief introductions to the BASIC language
and to the field of Business Operat ions Research. Chapter 3 deals
with Index Numbers , which are conceptually fairly straightforward
and of immediate importance to any businessman. It provides a
gentle introduction to programming in structured BASIC . A
number of programs for Da ta Fitting are developed in Chapter 4.
These are described in the context of cost-volume relationships, an
essential tool for financial analysis and control.

Critical Path Network Analysis is the topic of Chapter 5, which
illustrates how a simple program can be developed to include
progressive complexity. The fully developed program utilizes the
graphics facilities of modern micros to display a critical path
planning network. In Chapter 6 on Linear Programming, several
programs are given for a range of computational tasks, from a
complete enumerat ion of the vertices of the feasible region to an
implementat ion of the two-phase simplex method for mixed hnear
inequalities. A final chapter considers Markov chains in the
context of policies for preventative maintenance.

The writer would like to record his gratitude to all those who
contributed to this book, and especially to D o n Goodsell of
Butterworths who guided the project to completion, to Rodger
Mustoe who did his best to find the bugs in the programs, to R Η
Mole Senior for dropping everything to read the manuscript for
grammatical errors and lack of clarity, to Geof Gregory and John
Wilson for their comments on Chapter 6, to colleagues, especially

David Johnson, for being there in the background and ready to
Hsten and help when needed , to Felicity Nash for secretarial
assistance, to Joyce Savage for keeping the computing equipment
in excellent order , and to my family for putting up with it all!

I acknowledge the permission of the Chartered Association of
Certified Accountants to reproduce a few past examination
questions.

R H Mole

C h a p t e r 1

Introduction to BASIC

1.1 Dialects of the BASIC language

BASIC is a powerful and flexible computer language. It is easy to
learn and it is supported on all modern micros. BASIC is also easy
to apply to most mathematical models of operat ions research. The
use of the microcomputer removes the tedium from repetitive
calculations, so allowing concentration on the ideas which
underpin the calculations. The inevitable price for these consider­
able advantages is that scrupulous attention has to be paid to
detail , both in design and in implementat ion of BASIC computer
programs.

BASIC was devised in the 1960s at Dar tmouth College, U S A , to
provide a Beginners All-purpose Symbolic Instruction Code . Over
the years it has evolved into many closely related dialects, as
computer manufacturers have sought to give their products a
competitive edge. This is particularly true of the last few years with
the mass availability of small but highly efficient microcomputers.
As a result the B A S I C dialect of a modern micro is almost always
an advance on the dialect available on the large mainframe
machine. The best Β ASICs encourage the user to write
's tructured' programs which are relatively easy to read and debug.

Three excellent instructional manuals on BASIC are cited at the
end of this chapter for the reader who needs a general
introduction. This short chapter assumes that the reader has
already some acquaintance or familiarity with BASIC. Its purpose
is to emphasize the main points, paying special attention to
particular aspects which in my experience students find difficult to
appreciate.

The adoption by the British Broadcasting Corporat ion of the
Acorn micro for a series of popular computer education
programmes has resulted in the label ' B B C attaching both to the
Acorn micro itself and to the Acorn BASIC dialect. In this book
the B B C BASIC dialect has been preferred for several reasons.
First, the great majority of British school children who learn
computing languages will have been introduced to BBC BASIC

2 Introduction to BASIC

through use of the Acorn B B C Model Β Micro or the B B C Master
series of micros. Second, it is possibly the best implementation of
BASIC in its own right, and so is widely used in further and higher
education. Third, it is easy to make minor alterations to the
programs in this book to allow them to run on any modern
microcomputer . This chapter describes how a few extra statements
can ensure compatibiHty with even the most primitive BASIC
dialect.

1.2 Assignment and non-executable statements

The instructions which are held within a BASIC program are
known as s ta tements , and they may be entered into the machine in
any sequence. Each statement is begun by a unique line number
and the computer will sort the statements on entry according to
numerical order. When a program is R U N the computer will
slavishly 'execute ' these s ta tements , stopping prematurely only if a
syntax error is discovered. Errors may be edited out in three ways:
an existing s tatement is overwritten if a new statement is typed in
with the same line number ; typing the line number followed
immediately by pressing the R E T U R N key will remove a
s tatement entirely; it is easy to make small amendments within a
s tatement by the use of a C O P Y key and the 'cursor control ' in
conjunction with normal keyboard entry.

Most s tatements ' do ' something or other , with the exception of
the E N D statement which signals the end of the program, R E M
statements which contain R E M a r k s by the programmer that are
not executed by the machine, and blank statements which break
up segments of s tatements . This last cosmetic device can
contribute greatly to the clarity of a program, but it is only
available in some BASICs (by typing a space after the line number
before pressing the R E T U R N key).

A n assignment s tatement is used for carrying out arithmetic
operat ions, as in

7 0 1 0 X = (X + 2*X''3) / 4 - 2

Statement 7010 looks superficially like an equation, but it is an
instruction to replace the current numerical value of the variable X
by the expression on the right-hand side. Primitive BASIC dialects
will require the insertion of the word L E T after the line number .
Notice that blank spaces may be introduced at will to aid legibihty,
and also that there is little value in 'simplifying' the expression by
standard algebraic procedures . If the value of X were zero prior to
the execution of s tatement 7010 then the new value after execution

Variables, arrays and standard functions 3

would be - 2 . This is because an assignment s tatement containing
arithmetic operators is evaluated according to a hierarchical
system of priorities, working from left to right within the following
priorities:

() parentheses First priority
exponentiat ion Second priority

X and / multiplication and division Third priority
+ and - addition and subtraction Fourth priority

B B C B A S I C automatically initializes numeric variables at zero
prior to RUNning a program, but primitive dialects may not, and
they can therefore produce bizarre output unless the user explicitly
initializes all numeric variables prior to use, as in

1 0 X = 0 : Y = 0 : Z = 0

The programs in this book will generally, but not invariably,
initialize variables in this way. Notice that line 10 is an instance of
a multiple s tatement line, ie the colons indicate the presence of
three independent s tatements . Some muhiple statement lines are
employed when it helps to achieve clarity of expression. Since
s tatements are normally numbered here in muhiples of 10, the
reader who is restricted to a BASIC which cannot accept muhiple
statement lines will always be able to proceed by inserting a series
of additional single s tatements on successive lines.

1.3 Variables, arrays and standard functions

The names of numeric variables in B B C BASIC may be long,
subject to certain restrictions which can be found in the
appropriate manuals . For instance Variable X5 could be
substituted for X in statement 7010, and long names can on
occasion make an important contribution to program clarity. If
your B A S I C will not support long names then you should
improvise short ones , keeping a detailed list in a R E M statement
as a reminder and to guard against the risk of using the same
variable for two parallel purposes. The choice of variable name
depends upon some relatively close association in the mind of the
programmer , e.g. verbal as in the variable named Interest , or
algebraic as in the variable X.

String variables are not restricted to numeric quantities. They
are automatically initialized to the 'null ' string in B B C BASIC and
they may be assigned text composed of alphanumeric quantities.
String variables are identified to the computer by the dollar

4 Introduction to BASIC

character $ postfixed to the string variable name, and the string
value must be enclosed in quotat ion marks in any assignment, as in

7 0 2 0 inonth3$ « "March

The statement in line 20 below is a DIM statement which
reserves storage for a string array Month$, which could store not
only the months of the year in Month$(l) to Month$(12), say, but
also further information in the 'first' e lement , such as
Month$(0)="1986 - Industry Year" . Primitive BASICs may not
support a zero argument for an array, however, and readers may
have to improvise an ordinary string variable in substitution.
Statement 7030 below assigns 'March ' to the element Month$(3)
as a consequence of the preceding statement 7020.

A variable array is a natural choice when representing
subscripted algebraic variables and matrices. For instance, the
coefficient in the Ith row and the J th column of matrix A could be
stored in the element A(I , J) of a two-dimensional array A .
Statement 20 also has the effect of reserving memory for a
two-dimensional numeric array A . This can cater for the elements
of a matrix with 12 rows and 31 columns (or 13 and 32 if one
includes zero arguments) . It could be used, for example, to record
the daily turnover in a D I Y retail store which opens every day of
the month .

2 0 DIM A (1 2 , 3 1) , M o n t h $ (1 2)
7 0 3 0 M o n t h $ (3) = m o n t h 3 $

The computer has a range of built-in standard functions which
share a superficial resemblance to arrays, but they have a different
purpose and do not involve D I M statements. Thus

SQR(X) finds X\5
L O G (X) finds the logarithm of X to base 10
LN(X) finds the natural logarithm of X
STR$(X)finds the string equivalent of X , i.e. " X "
etc

These are also instances of reserved words which cannot be used as
variable names , or even to start off longer variable names , due to
the ambiguity which would result. For instance, the variable
named L O G I S T I C is invalid, though Logistic is valid.

1.4 Input and output
Data can be read using R E A D and D A T A statements, or from a
data file. The programs in this book utilize neither method, but the
exercises call for the reader to develop the programs to work in

Input and output 5

either way (the appropriate manuals should be consulted). Da ta
can be entered via assignment s tatements or through the keyboard
during a R U N whenever an I N P U T statement is executed. This
'conversational ' form of data entry is one of the real strengths of
the B A S I C language. The reader may care to type in and R U N the
following program, which is self explanatory (a 2 9 % basic rate tax
is assumed).

1 0 INPUT "Book p r i c e P r i c e
20 R o y a l t y = 0 . 0 7 5
3 0 P o s t _ t a x = 0 . 7 1
40 PRINT "The A u t h o r ' s p o s t t a x y i e l d = £ " ; P r i c e * R o y a l t y * P o s t _ t a x
50 END

Notice the texts in lines 10 and 40. They are printed out exactly as
they appear between their quotat ion marks , e.g. the space before
the end quotes in line 10 is reproduced. This is an example of
something included only to help legibility. The syntax of the
I N P U T statement in Hne 10 causes the computer to print a
question mark when it encounters the comma! The semicolon in
Hne 40 causes the computer to print the numeric value of the
ari thmetic expression immediately after the text (all the blank
spaces in this algebraic expression are ignored). The 31 textual
characters occupy columns 0 to 30, which explains why the
requisite nine columns for the numerical solution fit onto the end
of a standard 40 column screen display (i.e. columns 0 to 39 for the
B B C Micro in Mode 7) .

If the semicolon is replaced by a comma there will be nine empty
character spaces on the text line, and the numerical solution is
printed on a new line. This is a consequence of the combination of
the following points: the s tandard number of 10 columns per print
field; the allocation to successive print fields of items separated by
commas in the P R I N T list; and the automatic 'right justification'
of numerical amounts within print fields. So the semicolon
suppresses the normal separation of print i tems, and if a P R I N T
statement ends with a semicolon then this suppresses the normal
hne feed when the next P R I N T or I N P U T statement is
encountered. Text is always 'left justified' and numerical output is
'right justified' within a print field.

I N P U T and P R I N T statements contain many traps. Distinguish
carefully between zero and the letters o and O , and between 1 and
the letters 1, i and I. Also be careful with your response to I N P U T
statements; the number 2500, say, must not be entered as 2,500
which imphes two separate data items of 2 and 500 respectively.
However , the positioning of printed output can be controlled quite
easily and precisely with the T A B function, where TAB(N)
moves the print cursor to column N. This is often used in the

6 Introduction to BASIC

programs which follow. It is also easy to control the scrolling
action of the screen so that the user does not miss the early part of
the printout—refer to your manuals for details. Some output is
best viewed in an 80 column format, which can be obtained in
B B C B A S I C in Mode 3. B B C BASIC also allows easy control of
the width of the print field and the number of decimal places. For
instance, line 5 below rounds the quantities shown on the printout
to the nearest penny:

5 @% = &02020Ά

Please consult your manuals for the details of these facilities.

1.5 Loops, conditional statements and user defíned functions

A ' R E P E A T U N T I L ' loop is used to repeat a given action as often
as necessary to satisfy a stated condition, whereas a ' F O R N E X T '
loop is repeated a predetermined number of times. These loop
constructions are contrasted below in equivalent programs for
forming the partial sums of the roots of the integers from 1 to 10

' F O R N E X T ' ' R E P E A T U N T I L '
5 §% = &02020A 5 @% = S02O20A

1 0 SUM = 0 1 0 I = 0 : SUM = 0
20 FOR I = 1 TO 1 0 20 REPEAT
30 SUM = SUM + SQR(I) 3 0 I = I + 1
40 PRINT I , SUM 40 SUM = SUM + SQR(I)
50 NEXT I 50 PRINT I , SUM
60 END 60 UNTIL I = 1 0

7 0 END

The ' F O R N E X T ' version is preferable here as the programmer
has decided in advance that the loop will be performed 10 times.
Now suppose that we wanted the partial sums, not of the roots but
of complicated functions of the integers. This can be handled
easily and elegantly with user defined functions. The following
amendments and additions are required.

' F O R N E X T ' ' R E P E A T U N T I L '
3 0 SUM = SUM + F N m o l e d) 40 SUM = SUM + F N m o l e { I)
80 80
90 F N m o l e i X) 90 FNmole{X)

1 0 0 = (X + 2*X''3) / 4 - 2 1 0 0 = (X + 2 * X ' 3) / 4 - 2

The function called mole(X) is defined in statements 90 and 100,
as in s tatement 7010 given earlier. Lines 30 and 40 accumulate the
requisite partial sums. The program structure is crystal clear, and
the partial sums of any other function of the integers can be
obtained simply by changing the line 100. The reader can check

Structured BASIC 7

this by substituting the s tatement 100 = SQR(X) which will
reproduce the earher results.

Now suppose that the partial sums are to be performed only
until a target sum of 20 is achieved or exceeded for the first t ime. It
is only necessary to change Une 60, m the ' R E P E A T U N T I L '
version, to achieve an efficient result. The T O R N E X T ' version
requires the use of TF T H E N ' in lines 25 and 40, and modifications
to lines 10 and 20. This is inefficient as the programmer has to
guess the value of the loop delimiter.

T O R N E X T ' ' R E P E A T U N T I L '
1 0 SUM = 0 : TEST$ = "OK" 6 0 UNTIL SUM >= 20
20 FOR I = 1 TO 40 0
25 IF SUM >= 20 THEN TEST$ = ""
40 IF TEST$ = "OK" THEN PRINT I , SUM

If your B A S I C does not support ' R E P E A T U N T I L ' you should
simulate such loops by the simple technique which is explained in
the appendix to this chapter . Some BASIC dialects do not provide
' IF T H E N ' statements as in line 25, or in the developed form ' IF
T H E N E L S E ' . The appendix shows how the effect of these
statements can be improvised using the ' IF T H E N G O T O '
statement which is always available in BASIC.

1.6 Structured BASIC

The ' IF T H E N ' s tatement is used a great deal in this book, but
never in the form ' IF T H E N G O T O ' . In fact the G O T O statement
may be conditional or unconditional and it directs the execution of
the program to a specified line number . Either form can wreck the
presentation of a clear and logical program structure. The
resulting mess, colloquially termed 'spaghetti programming' , is
very difficult for the programmer , let alone a third party, to read
or debug. G O T O statements have been banned from this book,
and the reader should seriously consider a similar resolution!

It is simpler to think of a complicated programming task in
terms of its constituent parts . Arrange the detail of each part
separately, and control the execution and sequencing of the parts
with a 'main ' program. The principle is exactly similar to that of
managerial delegation of tasks to subordinates. The manager
allocates and coordinates the work of subordinates, who in an
ideal world would be able to work on their own tasks without
interference from, but with cognizance of, the work of others.
When the allocation of work is ill-considered the outcome is
inefficiency and confusion; 'spaghetti management ' in fact!

In structured BASIC a main program organizes a number of

8 Introduction to BASIC

E N D P R O C R E T U R N

1.7 The approach of this book to BASIC programs

This is a short book, and yet even so those sections and exercises
marked with an asterisk may be omitted on a first reading. Most
readers should be able to key the programs into their computers
direct from the text. Write or te lephone me at Loughborough
University, Ashby Road , Loughborough, Leics. about the
availability of disk software.

My primary aim is that the reader learns how to use BASIC for
the computat ions of O R models. To this end the programs are as
short and clear as I can make them. Thus they cannot be
'user-proof e.g. the programs will crash if users enter unaccept­
able data. It is very easy for anyone to make an error when keying
in data, and the preliminary exercise in each chapter asks the user
to write an edit P R O C E D U R E , PROCedi t say, which is called

separate tasks called P R O C E D U R E S . For example, almost every
program in this book has an input P R O C E D U R E , often called
PROCinpu t , and an output P R O C E D U R E , called PROCpr in t .
Notice the abbreviated description and the different use of upper
and lower cases. P R O C E D U R E S begin with a D E F P R O C
statement , as in D E F PROCinpu t . These may be very short, and
average a dozen or so statements in this book. All P R O C E ­
D U R E S end with an E N D P R O C statement which instructs the
computer to execute the statement after the original call of the
P R O C E D U R E . A blank statement line is used at the start and
end of each P R O C E D U R E to emphasize the structure of the
program.

The reader who is new to structured programming will soon find
the approach natural and convenient. Readers without B B C
BASIC can substitute S U B R O U T I N E S for P R O C E D U R E S
throughout the programs of this book. No extra lines are required.
A descriptive R E M can substitute for a D E F P R O C , a R E T U R N
for an E N D P R O C , and a G O S U B for a P R O C E D U R E call. This
is summarized below, for P R O C a b c .

B B C BASIC Others
P R O C a b c G O S U B L

L D E F P R O C a b c L R E M abc

Appendix 9

1 1 5 UNTIL Ν = 0
1 1 3 IF Ν <> 0 THEN 1 = 0
1 1 5 NEXT I

The converse of the condition following the U N T I L can always
be used in the line preceding N E X T I in order to return the loop
counter I to its initial value. If the Other B A S I C does not support
' IF T H E N ' in the form of line 113 then this must be amended and
an extra s tatement is required on line 114 as follows:

1 1 3 IF N=0 THEN GOTO 1 1 5

1 1 4 I = 0

You can simulate ' IF T H E N E L S E ' with similar techniques.

immediately after PROCinpu t to allow the user to make any
corrections to the data .

Professional computer software is generally 'packaged' in a
sophisticated way. But limited space and my educational
objectives disallow such refinements as menu driven options, file
handling, e laborate colour graphics, use of sound, error trapping,
etc. If the book succeeds in its primary aim then the readers should
not have too much difficulty with doing such development
themselves!

1.8 References

1. Alcock, D., Illustrating BASIC, Cambridge University Press (1977).
2. Freeman, R., Step by Step BASIC. Lifelong Learning Ltd, Cambridge (1983).
3. Freeman, R., Structured BASIC, BBC Publications, London (1984).

1.9 Appendix

This appendix shows how to simulate ' R E P E A T U N T I L ' loops
and ' IF T H E N ' structures using primitive BASIC dialects (after
F reeman , ref. 3).

B B C B A S I C Some other BASICs
45 REPEAT 45 FOR I = 0 TO 1

46 I = 1

C h a p t e r 2

Introduction to business operations
research

2.1 Introduction

Formal definitions are often cumbersome, pedantic and verbose.
For example, the Operat ions Research Society of America states
that

Operations Research is concerned with scientifically deciding how to
best design and operate man-machine systems, usually requiring the
allocation of scarce resources.

This is not much improved by the longer definition given by the
Operat ional Research Society of Great Britain:

Operational Research is the application of the methods of science to
complex problems arising in the direction and management of large
systems of men, machines, materials and money in industry, business,
government and defence. The distinctive approach is to develop a
scientific model of the system, incorporating measurements of factors
such as chance and risk, with which to predict and compare the
outcomes of alternative decisions, strategies and controls. The purpose
is to help management determine its policy and actions scientifically.

The terms 'Business Operat ions Research ' (Operational Re­
search) and 'Management Science' have come to mean essentially
the same thing: the systematic study of management issues
emphasizing quantitative analysis of interrelating factors. Quan­
titative studies typically suggest directions for the improved
allocation of resources. Any facet of business may be involved,
and it is not unusual for a project team to act as 'honest brokers '
when thinking through the benefits to the organization as a whole
of changes in the functions and status of separate departments or
divisions.

The basis of operat ions research (OR) is the belief that , in the
long run, the use of formal quantitative analyses will lead to
decisions which are significantly bet ter than those based solely on
experience and intuition. How far this is so in a given situation will
depend upon very many factors. If the outcomes are fairly obvious

10

Introduction 11

then there may be no need to use formal analysis to decide on the
best decision. O R is least likely to be appropriate in a fast-moving,
creative environment where immediate decisions are required to
constantly changing problems. But O R may be essential when a
key decision is to be made in a measured and deUber ate way,
especially if considerable capital sums are involved or the decision
seems likely to affect the work of a substantial part of an
organization. On the other hand, the fruits of an O R study can
also lead to efficient ways of dealing with repetitive decisions
which might have consumed a disproportionate share of a
manager ' s t ime.

A n O R study is commonly initiated by a manager who calls
upon the services of an O R group. O R personnel may be included
within a management services depar tment or contracted for the
durat ion of the project from an external management consultancy.
It is normal practice to form a project team including members of
the company with a wide range of skills and experience. These
may be mathematicians, computer and data processing profession­
als, financial and line managers , etc.

Qui te apart from the competence of the members of the project
team in their own fields, there are the dominant influences of the
poUtical environment , and the culture of the organization. The
technical analysis could be first ra te , but it would be naive to look
forward to the successful implementat ion of well-founded
recommendat ions if a study does not come at a propitious t ime, or
it is not actively supported by senior management .

The organizational culture will have an important effect upon
the Observat ion ' of the system under study, which is the very first
stage of any scientific investigation. If each depar tment of a
company, say, is permit ted or encouraged by the Board to take an
insular at t i tude, then it will not be reaHstic to expect the easy
identification of opportunit ies covering more than a single
depar tment .

The ideal context for O R to show its full value is when a
numera te and skilful manager has identified an endemic problem
as suitable for quantitative analysis, and has then won support for
a systemic appraisal from colleagues as well as senior manage­
ment . Confidence is then engendered at the start of the O R work
that if a sound set of recommendat ions is presented then they will
be implemented.

The project team has to decide on the scope of the study. Scope
must be wide enough to allow the organization to make a
substantial step forward and to satisfy the commissioning
manager , but not so wide as to prejudice the successful

12 Introduction to business operations research

2.2 Mathematical modelling

A mathematical model is used to formalize the 'causal mechan­
isms' which link outcomes to the factors under the control of the
sponsor. What , for example, are the consequences for the sales of
established products in the years to come if the current pat tern of
dispersed distribution warehouses is replaced by a few strategically
located distribution centres? Changes in the physical distribution
resources employed by the company can be costed by a suitable
quantitative analysis, and a change is likely to have an influence on
the pricing strategy. Suppose that the sales force adopts a system
of taking customers ' orders against delivery on a 'nominated day' ,
which depends upon the location of the customer within a large
delivery region. What effect will this have on customers who have
been used to placing orders for delivery at their own convenience?
Would a computer system for scheduling delivery vehicles save
money and improve service levels? What are the sales implications
of a schedule of price discounts, based on quantity delivered, and
in particular the imposition for the first time of a minimum order
quantity? Should the opportunity be taken to reorganize the sales
force to acknowledge the range of differing customers? How
'elastic' are sales levels to the perception by customers of 'service',
and indeed, what are the determinants of 'service'?

Causal mechanisms must be researched to the point where
quantified relationships can be used to describe the interplay of
'decision variables ' such as the shape of the new distribution
network, the largely uncontrollable variables such as maximum
vehicle speeds and general environmental factors such as the likely
response of competi tors .

A mathematical model entails a coherent set of (usually
algebraic) relationships suitable for the purpose on hand. It is an
abstraction of reality which puts the complexities of the real
situation into a logical and structured form which is amenable to
analysis. A good model is as simple as possible, partly for reasons
of economy in construction, and partly because simple models are
usually easier to solve.

implementat ion of the recommendat ions . For instance, it might be
unwise to extend the boundaries of the study beyond the sphere of
control , o r influence, of the 'sponsoring' decision maker . The
conclusion of this stage will be an agreement on the detailed terms
of reference. Considerable diplomacy may be required if the
preliminary study by the project team provides a view of the
problem too far removed from the initial view of the sponsor.

Mathematical modelling 13

If a solution of the model at first defies the analytical prowess of
those involved then a number of technical simplifications can be
introduced. Variables can be aggregated into broader classes, so
that differentiation is between classes of product rather than
individual product lines. Non-linear numerical relationships may
be replaced by piece wise linear relationships, in which prop­
ortionality at a given rate is assumed over a restricted range of
activity. O n e could decompose a complex model of a large system
into a number of separate models of particular aspects. For
instance, the deUvery cost relationships for a decision about the
number and location of distribution centres may be much less
detailed than is required in a model to relate delivery costs to the
imposition of minimum delivery quantit ies. Again, a model which
looked at the next ten years ' business can be separated into models
for the immediate prospect and the long-term outlook. The
construction of models calls for experience just as much as
technical proficiency. Successful modelling is the art of the
possible.

It may be natural to doubt whether a given model represents the
real situation in an adequate way. Shortcomings cannot always be
removed by elaborat ion. There may be problems with collecting
basic data in the form and volume required. Indeed, some data
may be unavailable or too costly to obtain. There will also be
computat ional restrictions. The more comprehensive the model
the more difficult it may be to obtain a forecast of outcomes to
changes in decision variables. Fur thermore , elaboration of a
model can be very costly and take valuable t ime.

The validation of the model is very important , and yet it may be
difficult. Fresh data will be required to test the performance of
parts of the model , but , if the model is being used to project the
consequences of future decisions, then there may be no wholly
satisfactory way of validating the performance of the model as a
whole in the absence of information which can be obtained only
after a proposed change has been implemented. If the model is to
be used purely to describe the status quo then validation should be
much less problematic.

Once a model has been validated to the satisfaction of the
project team it may be employed for its designed purpose. It is
important to realize that the computational results must be
interpreted in the context of the problem, and it is rarely if ever
the case that the recommendat ions of the project team conform
exactly to the 'op t imum' solution from the model . There may be a
multi tude of qualitative factors which will be used to assess the
outputs . But this is no criticism, rather an understanding of the
need to balance quantitative and qualitative approaches.

14 Introduction to business operations research

The project team will experiment with the model to learn about
the significance of variations in some of the key decision variables.
How sensitive is the proposed solution to minor errors or changes
in the data? Does an examination of the results suggest that
further conceptual developments should be fed back into the
initial assessment? Have there been important changes in the
team's outlook as a result of learning more about the problem on
the basis of the experimental results? The team will also want to
explore the robustness of any supposedly Opt imum' solution from
the model to changing circumstances. Does the minimum cost
solution, for example , suggest a highly unconventional form of
distribution network which would be quite incapable of handling
different classes of product or unsuitable for alternative marketing
arrangements? Is there a fundamental difference between the
shape of the distribution network which would reduce the
operating costs over ten years to a minimum, as opposed to the
distribution network which would maximize the rate of return on
investment? What if the planned changes from current practice
came to a halt before complete implementation of the plan?

The potential benefits of modelling can be so important that in
some of the larger companies the management trainees are
encouraged to work for O R teams in order to absorb the process
of O R and the company culture, before taking up management
positions.

2.3 Microcomputers and business operations research
Microcomputers have had a major 'enabling' influence on the
pursuit of O R . In the first place O R professionals can have the
smaller scale computat ional work under their own direct control,
and are no longer dependent upon large machines operated either
by data processing depar tments or expensive computer bureaux.
There is some evidence that the use of micros has reduced the time
required for model development and validation.

Micros are also cheap enough and simple enough for them to be
used by the sponsors on a routine basis when the model is
completed. For example, the personnel depar tment might have a
need for a manpower planning model which projects staffing levels
into the future, given reasonable assumptions about the levels of
resignations and promotions. Such a model could be run as a
routine on a micro located in the personnel depar tment in order to
assist with recruitment decisions.

The advanced graphics facilities of micros can be utilized to
improve the standard of communication between the project team
and the sponsors of the project. This is not only true of the use of

The approach of this book to business operations research 15

charts , graphs and figures for descriptive statistics. It is particularly
t rue of the use of animated graphics employed in simulation
studies. These techiques help the less numerate and more
apprehensive individuals come to appreciate the modelling effort
and contribute to the experimental phase of 'what if modelling.

There are many user-friendly software packages for micros,
such as ' spreadsheets ' , which enable some forms of numerical
analysis to be conducted relatively effortlessly. This has been
warmly welcomed by O R groups. It is also noted that accountants,
for example , are using spreadsheets for financial modelHng
problems such as cash flow forecasts, and engineers are conducting
their own capital investment appraisals. However , the use of
software packages is outside the scope of this volume.

Networked micros also offer considerably enlarged potential for
O R work. For example, a micro can be used to log data at remote
locations for transmission to another micro at a later date . Micros
can also be used to interrogate and update the data held on a
central database . The term 'Management Information System'
(MIS) is in vogue for describing a computer system in which an
'intelligent terminal ' provides a manager with the information
which he or she requires in order to plan ahead. To do this, raw
data must be processed in some way and presented in a suitable
form, providing further scope for mathematical modelling. The
next chapter , for example , describes the manipulation of sales data
to provide a set of indices of sales volumes and prices.

2.4 The approach of this book to business operations research

This book is designed to fill the gap between texts on ' the
management appHcation of computers ' and texts on Operat ional
research techniques ' . It cannot hope to present balanced accounts
either of the art of mathematical modelUng or of O R techniques in
the space available. Instead I have made a selection from the core
curriculum of standardized models and have unavoidably neg­
lected the creative side of modelling.

The content is graded so that the numerate reader who is new to
O R should be able to follow all of the material on index numbers
in Chapter 3 , and most of the material on data fitting in Chapter 4.
Chapter 5 should be accessible to most readers and demonstrates
the potential of combining the graphics facilities of modern micros
with mathematical modelling in the context of project manage­
ment networks. Chapter 6 and 7 would be harder going for the
reader who is new to Unear programming and Markov chains.

There are a growing number of micro software packages for

16 Introduction to business operations research

Standardized modelling in the fields of investment appraisal,
critical path networks , and linear programming; etc. These are
mainly marketed for the professional O R analyst to use in a
commercial setting, but they may be poorly documented and
difficult to tailor for specific purposes. The programs of this book
have an educational purpose , but they may be useful in small scale
O R work.

Four references to excellent books are given below for the
interested reader .

2.5 References

1. Anderson, D. R., Sweeney, D. J. and Williams, T. Α., An Introduction to
Management Science (4th ed.). West Publishing Co. (1985).

2. Daellenbach, H. G. and George, J. Α., Introduction to Operations Research
Techniques, Allyn and Bacon (1978)

3. White, D. J., Operational Research, Wiley (1985)
4. Williams, H. P., Model Building in Mathematical Programming (2nd ed.), Wiley

(1985)

C h a p t e r 3

Index numbers

Essential theory

Index numbers are widely used by government agencies, t rade
organizations, public bodies and companies of all sizes. The
elementary material on index numbers is developed here in the
context of sales turnover , and then employees ' reports . The
elementary material on composite indices is developed in the
context of company sales figures. The reader should bear in mind
the applicability of the ideas across the spectra of activities which
are amenable to quantitative measurement , in commerce, industry
and the public sector.

3.1 Indices based on simple relatives'^

The significance of a percentage change in sales turnover may be
readily assimilated. A repor ted sales increase of 12 per cent has
immediate impact. The value of a 'year end ' sales index of 112
based on an index of 100 at the start of the year conveys the same
information just as readily.

Suppose that management is interested in monitoring sales
turnover in the face of the launch of a product by competitors. It
would be sensible to 'base ' a sales index of 100 upon the sales in
the period immediately preceding the launch. This choice would
clearly show up any sales t rends that might develop. The first row
of Table 3.1 provides a series of actual monthly sales figures,
where month 0 is the base month . It is seen that within three or
Table 3.1 Sales turnover

Month i 0 1 2 3 4 5 6 7 8
Sales (£000's) Si 300 305 306 282 258 190 310 329 350

Sales index Ii (1) 100 102 102 94 86 63 103 110 117
% increase (2) 2 0 -8 -9 -26 63 6 6
Chain index Γ (3) 1.02 1.00 0.92 0.91 0.74 1.63 1,06 1.06

Notes: (1) From / = 5//5o x 100.
(2) Month on month percentage increases in sales 5 to the nearest integer.
(3)From/' , - , , = 5A-i.

* Relatives are ratios in this context.

17

18 Index numbers

four months the rival product starts to make serious inroads into
sales turnover , which is then restored and eventually enhanced
(possibly by a vigorous promotional campaign).

The sales index // for month /, as shown in the third line of the
table , is calculated from

Sales turnover in month /
/ / = ^ - r Γ X 100 = Si/So X 100

Sales turnover m base month
where 5/ denotes the sales turnover in month /.

The ratio SI/SQ is an example of a simple (i.e. unweighted)
'relative' . The numerical value of the sales index /, shows how
sales turnover in month / compares to 'base turnover ' in the base
month (i .e. month 0) . This sales index is given in Hne three of the
table rounded to the nearest integer. There was a substantial drop
in sales in months 4 and 5 prior to a strong recovery from month 6
onwards.

The table also shows the month-on-month percentage changes
in sales levels: these figures can be important , as when the
remunerat ion of the sales force is tied to the monthly changes in
sales turnover! The same information can be expressed in index
form: the so-called chain index / ' is given by

_ Sales turnover in month / - 5 / 5
Sales turnover in m o n t h / - I '

Notice that the chain index / ' is the ratio of sales in successive
months . It is not difficult to see that the product of chain indices is
closely related to the sales index / . Thus

'̂0,1 ^ '̂1,2 X '̂2,3 X . . · X i'i-ij
= 5i/5o X 52/5i X 53/̂ 2 X . . . X 5¿/5¿_i = 5AJ = ¡¿¡100

This identity should be employed with caution. For example

/ 'ο , ι X ^'u2 X I'2,3 X I'sA = 1.02 X 1.00 X 0.92 x 0.91 = 0.85

There is a disparity in the second decimal place between this and
the value of /4/IOO = 0.86 shown in the table. Chain indices are not
in common use in industry partly because of this sort of problem;
on the other hand, many government indices are based around
similar, but further e laborated, ideas.

Program S I M P R E L , below, calculates an index based on a
simple relative and it also calculates a period-on-period chain
index. The simple main program sequences the following
P R O C E D U R E S :

índices based on simple relatives 19

Program 3.1 SIMPREL: Index of simple relatives

1 0 REN SIMPREL
2 0 REM INDEX OF SIMPLE RELATIVES
3 0 REM ALSO PROVIDES CHAIN INDICES
40 DIM D A T (1 0 0) , I N D E X (1 0 0) , C H I N D E X (1 0 0)
50
6 0 PROCinput
7 0 P R O C s i m p l e _ r e l a t i v e
80 PROCchain
90 END

1 0 0
1 0 0 0 DEF PROCinput
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY"
1 0 2 0 INPUT "BASE PERIOD " , B
1 0 3 0 INPUT "FINAL PERIOD ", Ν
1 0 4 0 PRINT : PRINT "PERIOD DATA"
1 0 5 0 FOR 1= Β TO Ν
1 0 6 0 PRINT T A B (0) ; I ; : INPUT TAB(10) D A T (I)
107 0 NEXT I
1 0 8 0 ENDPROC
1091)
2 0 0 0 DEF P R O C s i i n p l e _ r e l a t i v e
2 0 1 0 PRINT : PRINT
2 0 2 0 PRINT "PERIOD INDEX OF"
2 0 3 0 PRINT TAB(10) "SIMPLE RELATIVES"
2040 FOR I=B TO Ν
2 0 5 0 I N D E X (I) = D A T (I) / D A T (B) * 1 0 0
2 0 6 0 I N D E X (I) = I N T (I N D E X (I) + . 5)
207M PRINT T A B (0) ; I , I N D E X (I)
2 0 8 0 NEXT I
2 0 9 0 ENDPROC
2 1 0 0
3 0 0 0 DEF PROCchain
3 0 1 0 PRINT : PRINT
3 0 2 0 PRINT "PERIOD CHAIN INDEX"
3 0 3 0 FOR I=B+1 TO Ν
3 0 4 0 C H I N D E X (I) = D A T (I) / D A T (I - 1)
3050 C H I N D E X (I) = I N T (C H I N D E X (I) * 1 0 0 + . 5)
3 0 6 0 PRINT T A B (0) ; I , C H I N D E X (I) / 1 0 0
3 0 7 0 NEXT I
3 0 8 0 ENDPROC

PROCinpu t : allows the user to input the base period
B , and the final period Ν together with
the data D A T (I) for periods I = B ,
N .

P R O C s i m p l e _ r e l a t i v e : calculates the index INDEX(I) for the
simple relative D A T (I) / D A T (B) * 100
and tabulates these values for I = B ,
Ν to the nearest integer.

PROCcha in : calculates the chain index C H I N D E X (I)
from D A T (I) / D A T (I - 1) for each I =
B + 1 , . . . ,N and tabulates these values
rounded to the second decimal place.

Type in this program from the listing below.

20 Index numbers

R U N this program with the data from the first two Unes of Table
3 .1 . You should find that your output corresponds to the third and
final row of Table 3 .1 . R e R U N with data of your own choice, but
notice that because the arrays have been dimensioned to 100 in
hne 40 you should enter 1985, for example, as 85.

RUN
ENTER ALL DATA NUMERICALLY
BASE PERIOD ?0
FINAL PERIOD ?8

PERIOD DATA
0 3 0 0
1 3 0 5
2 306
3 2 8 2
4 2 5 8
5 1 9 0
6 310
7 3 2 9
8 350

PERIOD INDEX OF
SIMPLE RELATIVES

0 1 0 0
1 1 0 2
2 1 0 2
3 94
4 86
5 6 3
6 1 0 3
7 1 1 0
8 117

PERIOD CHAIN INDEX
1 1 . 0 2
2 1
3 0 . 9 2
4 0 . 9 1
5 0 . 7 4
6 1 . 6 3
7 1 . 0 6
8 1 . 0 6

Now do Problems 3.1 to 3.3 at the end of this chapter.

3.2 Deflators

Suppose that annual sales data is available for a span of several
years, as in Table 3.2. O n e could use program S I M P R E L to find
the sales indices in monetary terms. However , the expression of
sales turnover in real terms, which allowed for inflationary effects,
might have much greater importance.

National statistics include many 'deflator' series for use in a
variety of circumstances, from the most general to the highly
specific. The reader is almost certainly famihar with the
announcements of movements in the General Index of Retail
Prices (RPI) in the media: at the time of writing, the RPI is
projected to reach an average value of 282 for 1986 from a base of

Deflators 21

100 in 1975. This is an instance of a composite index which is
designed to summarize changes in the overall price of a 'package '
of retail goods as experienced by an 'average ' consumer. It has
achieved a measure of general (often unquestioning) acceptance
on both sides of industry for a variety of purposes, including wage
bargaining.

If the sales data of Table 3.2 relate to part-t ime earnings, say of
a t radesman in his spare t ime, then the RPI could well be
appropriate for adjusting these earnings to real rather than
monetary values. The RPI is shown in line 4 of Table 3.2.

Ano the r very important national statistic is that known as the
' Implied Deflator of the Gross Domest ic Product at Market Prices'
(G D P) ; this roughly doubled over the five years from 1975 to
1980. This index is imputed from the ratio of G D P at current
va lues /GDP in real values. The reader is referred elsewhere (see
The National Accounts - a short guide, by H . Copeman, 1981,
H M S O) for a technical definition and an authoritative statement
of the interpretat ion and use of this series. But in so far as a
company contributes in a general way to the gross domestic
product then the G D P series does provide a reasonable basis for
adjustment of sales turnover to real ra ther than monetary values.
This index is shown in line 3 of Table 3.2.
Table 3.2 Sales turnover and deflator series

Year/ 1975 1976 1977 1978 1979 1980 1981 1982 1983
Sales 5, 498 563 658 781 933 1203 1381 1572 1790
GDPdeflator^'^ 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7
RPI deflator '̂> 100 116.5 135.0 146.2 165.8 195.6 218.9 237.7 248.6

Sales index '̂'̂ 100 113 132 157 187 242 277 316 359
Real sales index̂ -'̂ 100 99 101 108 113 121 125 132 144
Real sales index̂ -'̂ 100 97 98 107 113 124 127 133 145

Notes: (1) From Table 1.16. UK National Accounts 1984. HMSO.
(2) From Table 114. Economic Trends Annual Supplement 1984. HMSO.
(3) Based on a simple relative 5,/5i) x 100.
(4) Based on (3) deflated bv the GDP deflator (1).
(5) Based on (3) deflated by the RPI deflator (2).

If we denote by Dj a deflator index in year / then the sales
turnover 5/ in that year can be deflated to real terms RSi in year 0
values as follows

RSi = Si X D^Di

Consequently the index of real sales turnover Rli is given by

Rli = RSi/RSo X 100 = / , DQ/DÍ

It is not difficult to modify program S I M P R E L in order to
produce indices in real ra ther than monetary terms, as follows.

22 Index numbers

A m e n d the following lines (but note that s tatement 50 is a specific
B B C print control s ta tement , which in this instance rounds all
printed values to the nearest integer. Users of other micros should
use the technique in lines 2060 and 3050 of Program S I M P R E L) :

1 0 REM DEFLATR
20 REM INDEX OF SIMPLE RELATIVES
3 0 REM WITH AND WITHOUT DEFLATOR
40 DIM D A T (1 0 0) , I N D E X (1 0 0) , D (1 0 0)
50 @%=&0002000A

80 P R O C d e f l a t e

D E L E T E 2060
D E L E T E 3000 to 3080

Now type in PROCdef la te which allows the user to input a deflator
series, and then prints the deflated index of simple relatives.

Program 3.2 DEFLATR: Indices with and without deflator series
1 0 REM DEFLATR
20 REM INDEX OF SIMPLE RELATIVES
3 0 REM WITH AND WITHOUT DEFLATOR
40 DIM D A T (1 0 0) , I N D E X (1 0 0) , D (1 0 0)
50 @%=&0002000A
60 PROCinput
7 0 P R O C s i m p l e _ r e l a t i v e
80 P R O C d e f l a t e
90 END

1 0 0
1 0 0 0 DEF PROCinput
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY"
1 0 2 0 INPUT "BASE PERIOD " , B
1 0 3 0 INPUT "FINAL PERIOD " , Ν
1 0 4 0 PRINT : PRINT "PERIOD DATA"
1 0 5 0 FOR 1= Β TO Ν
1 0 6 0 PRINT T A B (0) ; I ; : INPUT TAB(10) D A T (I)
1 0 7 0 NEXT I
1 0 8 0 ENDPROC
1 0 9 0
2 0 0 0 DEF P R O C s i m p l e _ r e l a t i v e
2 0 1 0 PRINT : PRINT
2 0 2 0 PRINT "PERIOD INDEX OF"
2 0 3 0 PRINT TAB(10) "SIMPLE RELATIVES"
2 0 4 0 FOR I=B TO Ν
2 0 5 0 I N D E X (I) = D A T { I) / D A T (B) * 1 0 0
2 0 7 0 PRINT T A B (0) ; I , I N D E X (I)
2 0 8 0 NEXT I
2 0 9 0 ENDPROC
2 1 0 0
4 0 0 0 DEF P R O C d e f l a t e
4 0 1 0 PRINT : PRINT : PRINT "NOW ENTER THE DEFLATOR SERIES "
4 0 2 0 PRINT "PERIOD DEFLATOR"
4 0 3 0 FOR 1= Β TO Ν
4 0 4 0 PRINT T A B { 0) ; I ; : INPUT TAB(10) D (I)
4 0 5 0 IF I>B THEN D (I) = D (I) / D (B)
4 0 6 0 NEXT I : D (B) = 1
4 0 7 0 PRINT : PRINT : PRINT "SERIES IN REAL TERMS"
4 0 8 0 PRINT "PERIOD BASE " ; B ; T A B (2 0) "BASE ";N
4 0 9 » PRINT TAB(10) " = 1 0 0 " ; T A B (2 0) " = 1 0 0 "
4 1 0 0 PRINT
4 1 1 0 FOR I=B TO Ν
4 1 2 0 I N D E X b = I N D E X (I) / D (I)
4 1 3 0 INDEXn=INDEXb/ lNDEX(N)*D(N)*100
4 1 4 0 PRINT T A B (0) ; I ; T A B (1 0) INDEXb;TAB(20) INDEXn
4 1 5 0 NEXT I
4 1 6 0 ENDPROC

Deflators 23

RUN
ENTER ALL DATA NUMERICALLY
BASE PERIOD ?7 5
FINAL PERIOD ? 8 3

RUN
ENTER ALL DATA NUMERICALLY
BASE PERIOD ?7 5
FINAL PERIOD ? 8 3

PERIOD DATA PERIOD DATA
7 5 . 4 9 8 7 5 . 4 9 8
7 6 . 5 6 3 7 6 . 5 6 3
7 7 . 6 5 8 7 7 . 6 5 8
7 8 . 7 8 1 7 8 . 7 8 1
7 9 . 9 3 3 7 9 . 9 3 3
8 0 . 1 2 0 3 8 0 . 1 2 0 3
8 1 . 1 3 8 1 8 1 . 1 3 8 1
8 2 . 1 5 7 2 8 2 . 1 5 7 2
8 3 . 1 7 9 0 8 3 . 1 7 9 0

PERIOD INDEX OF PERIOD INDEX OF
SIMPLE RELATIVES SIMPLE RELATIVES

7 5 . 1 0 0 . 7 5 . 1 0 0 .
7 6 . 1 1 3 . 7 6 . 1 1 3 .
7 7 . 1 3 2 . 7 7 . 1 3 2 .
7 8 . 1 5 7 . 7 8 . 1 5 7 .
7 9 . 1 8 7 . 7 9 . 1 8 7 .
8 0 . 2 4 2 . 8 0 . 2 4 2 .
8 1 . 2 7 7 . 8 1 . 2 7 7 .
8 2 . 3 1 6 . 8 2 . 3 1 6 .
8 3 . 3 5 9 . 8 3 . 3 5 9 .

NOW ENTER THE DEFLATOR SERIES NOW ENTER THE DEFLATOR SERIES
PERIOD DEFLATOR PERIOD DEFLATOR
7 5 . 5 0 . 2 7 5 . 1 0 0
7 6 . 5 7 . 6 7 6 . 1 1 6 . 5
7 7 . 6 5 . 6 7 7 . 1 3 5 . 0
7 8 . 7 2 . 9 7 8 . 1 4 6 . 2
7 9 . 8 3 . 5 7 9 . 1 6 5 . 8
8 0 . 1 0 0 8 0 . 1 9 5 . 6
8 1 . 1 1 1 . 7 8 1 . 2 1 8 . 9
8 2 . 1 1 9 . 6 8 2 . 2 3 7 . 7
8 3 . 1 2 5 . 7 8 3 . 2 4 8 . 6

SERIES IN REAL TERMS SERIES IN REAL TERMS
PERIOD BASE 7 5 . BASE 8 3 . PERIOD BASE 7 5 . BASE 8 3 .

= 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0

7 5 . 1 0 0 . 7 0 . 7 5 . 1 0 0 . 6 9 .
7 6 . 9 9 . 6 9 . 7 6 . 9 7 . 6 7 .
7 7 . 1 0 1 . 7 0 . 7 7 . 9 8 . 6 8 .
7 8 . 1 0 8 . 7 5 . 7 8 . 1 0 7 . 7 4 .
7 9 . 1 1 3 . 7 8 . 7 9 . 1 1 3 . 7 8 .
8 0 . 1 2 1 . 8 4 . 8 0 . 1 2 4 . 8 5 .
8 1 . 1 2 5 . 8 7 . 8 1 . 1 2 7 . 8 8 .
8 2 . 1 3 2 . 9 2 . 8 2 . 1 3 3 . 9 2 .
8 3 . 1 4 4 . 1 0 0 . 8 3 . 1 4 5 . 1 0 0 .

Now check your Usting against that for Program D E F L A T R
above. When satisfied with the accuracy of your Hsting you should
R U N with the data of Table 3.2 above. Note that the years should
be entered as double digits, so enter 1975 as 75. The output of a
R U N with the G D P deflator should resemble the series in the
penult imate row of Table 3.2, and the output of a second R U N
using the RPI deflator in the final row.

24 Index numbers

3.3 Employees' reports

It is now standard practice for many of the larger companies to
circulate annual 'Employees ' Repor t s ' . This is done partly to
foster an interest in the trajectory of the business, and partly to
engender positive att i tudes to profitable operat ion. Figures are
usually quoted , on a per capita basis, under the heads shown in
Figure 3.1 (although the use of the possibly emotive head
Operat ing profit ' is often avoided).

Sales turnover

Cost of bought- in
items and services

Wages and
salaries

Taxation Retained earnings
for investment

Dividends

Figure 3,1 Accounting structure of a conventional employees' report

The style of reporting is chosen to emphasize the importance of
value added concepts, so that wage bargaining is less likely to be
based on crude operat ing profitability. The figures are usually
expressed in real terms if comparisons are made with previous
years.

Suppose then that we have the same sales turnover figures from
Table 3.2, but that in addition the data on the number of
employees Ν i is available (in some appropriate units). O n e could
'deflate ' the monetary sales turnover figures 5/ by the number of
employees Ni before deflating once more by the G D P deflator.
But it seems easier here to modify program D E F L A T R to form
the rat io SJNi on data input. Make the following alterations:

1 0 6 0 PRINT T A B (0) ;
1 0 6 5 DAT(I) = s / n

I ; : INPUT TAB(10) s .

There is a marked similarity between the indices deflated both
by the RPI and the G D P deflators. The overall conclusion must be
that the apparent 250 per cent increase in monetary sales turnover
shrinks to much less than a 50 per cent increase in real terms. It
seems highly questionable whether the majority of U K firms even
today routinely interpret their sales figures in this way, despite the
crucial need to have done so during the period under investigation
here .

Employees' reports 25

Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Sales turnover 498 563 658 781 933 1203 1381 1572 1790
Employees 25 28 34 35 35 35 35 34 34
GDP deflator(l) 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7

Sales per 100 101 97 112 134 173 198 232 264
employee(2)
Real sales per 100 88 74 77 80 87 89 97 106
employee(3)

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO.
(2) Index of sales turnover per employee.
(3) Index of real sales turnover per employee deflated by (1).

RUN
ENTER ALL DATA NUMERICALLY
BASE PERIOD ?7 5
FINAL PERIOD ?83

PERIOD DATA
7 5 . 4 9 8 , 2 5
7 6 . 5 6 3 , 2 8
7 7 . 6 5 8 , 3 4
7 8 . 7 8 1 , 3 5
7 9 . 9 3 3 , 3 5
8 0 . 1 2 0 3 , 3 5
8 1 . 1 3 8 1 , 3 5
8 2 . 1 5 7 2 , 3 4
8 3 . 1 7 9 0 , 3 4

PERIOD INDEX OF
SIMPLE RELATIVES

7 5 . 1 0 0 .
7 6 . 1 0 1 .
7 7 . 9 7 .
7 8 . 1 1 2 .
7 9 . 1 3 4 .
8 0 . 1 7 3 .
8 1 . 1 9 8 .
8 2 . 2 3 2 .
8 3 . 2 6 4 .

NOW ENTER THE DEFLATOR SERIES
PERIOD DEFLATOR
7 5 . 5 0 . 2
7 6 . 5 7 . 6
7 7 . 6 5 . 6
7 8 . 7 2 . 9
7 9 . 8 3 . 5
8 0 . 1 0 0 .
8 1 . 1 1 1 . 7
8 2 . 1 1 9 . 6
8 3 . 1 2 5 . 7

Now R U N this amended program for the data in rows two to four
of Table 3.3 as shown below. Notice that you must enter the sales
turnover value, a comma, and the number of employees for the
data input in each period. This R U N is given after Table 3.3.

Table 3.3 Sales turnover per employee

26 Index numbers

SERIES IN REAL TERMS
PERIOD BASE 7 5 . BASE 8 3 .

= 1 0 0 = 1 0 0

7 5 . 1 0 0 . 9 5 .
7 6 . 8 8 . 8 3 .
7 7 . 7 4 . 7 0 .
7 8 . 7 7 . 7 3 .
7 9 . 8 0 . 7 6 .
8 0 . 8 7 . 8 2 .
8 1 . 8 9 . 8 4 .
8 2 . 97 . 9 2 .
8 3 . 1 0 6 . 1 0 0 .

Quite obviously the company has suffered very badly from
over-recruiting; the number of employees increased in rough
proport ion to the monetary sales turnover from 1975 to 1977. Sales
per employee in real terms had slumped by 1977 to around
three-quarters of the 1975 value, therafter creeping upward and
only passing the 1975 value for the first time by 1983. This example
illustrates the importance of manpower planning based on
quantitative data.

Value added is the difference between sales turnover 5, and the
cost C/ of bought-in materials and services: it is sometimes used as
a proxy for productivity in the service sector. High levels of value
added per capita in real terms is directly in the interests of both the
company shareholders and employees, providing both the
operating profit and the wages and salaries bill as shown in Figure
3 .1 . Since the wages and salaries Wi cannot be significantly altered
in the short te rm, without the appalling social costs of
unemployment , the containment and reduction of costs Q attracts
top priority. A R U N of modified D E F L A T R with the Q , and
G D P deflator data from Table 3.4 would give an index of real
costs. Likewise, a R U N of modified D E F L A T R with Wi, Ni and
the G D P deflator from Table 3.4 would give an index of real wages
per employee, as shown.

Table 3.4 Added value, wages and salaries, and operating profit

YÜi? 1975 1976 1977 1978 1979 1980 1981 1982 1983
Sales turnover 5, 498 563 658 781 933 1203 1381 1572 1790
Costs C, 415 456 493 588 718 942 1040 1217 1404
Wages and salaries 73 101 160 189 213 259 287 282 292
Employees 25 28 34 35 35 35 35 34 34
GDPdeflator(l) 50.2 57.6 65.6 72.9 83.5 100 111.7 119.6 125.7
Real indices per employee deflated by the GDP deflatór:
Costs
Value added
Wages
Operating profit

Notes: (1) From Table 1.16 UK National Accounts 1984, HMSO.

100 86 67 70 74 81 80 91 99
100 100 112 114 111 113 132 132 137
100 108 123 127 125 127 126 119 117
100 47 28 20 9 7 173 225 276

Composite indices 27

The company was most successful in reducing the real costs of
bought-in materials and services just when this was most needed.
The effect on the real value added per employee can be seen by
modifying D E F L A T R as follows

1 0 6 0 PRINT T A B (0) ; I ; : INPUT TAB(10) s , c , η
1 0 6 5 DAT(I) = (s - c) / n

A R U N of this program gives the required output , as shown in
Table 3.4, provided that the data is input as sales, costs, employees
(i .e. Si, Ci, Ni separated by commas for each period) . The reader
may care to take this on trust to avoid the tedium of data entry.
Similar comments apply to the modification below, designed to
produce the index of real operating profit per employee on input
of sales, costs, wages and employee numbers (i.e. 5,, C/, W,, Ni):

1 0 6 0 PRINT T A B (0) ; I I N P U T TAB{10) s , c , w, η
1 0 6 5 DAT(I) = (s - c) / n - w / n

The company remained profitable, if only just, because real value
added increased steadily and the index of real wages followed a
typical pat tern for the period. Real recovery in operating profits
was finally obtained, but it should not be assumed that this was
distributed in toto to the shareholders! Figure 3.1 shows that
operat ing profit must also provide for taxation, interest on loans,
and for reinvestment. It would seem likely that dividends
continued to fall in real terms and that the company has survived
to mount a long overdue programme of investment - but that is
another story.

3.4 Composite indices
Annual sales turnover is an aggregate of figures for sales volume
across the range of a company's marketable output . It is often
important for top management not only to assimilate summary
statistics of total sales values but also to appreciate whether any
changes are due to pricing or volume variations. Several composite
'price' and 'quanti ty ' indices are in use for this purpose. This
section describes the construction of two common types of
composite indices which are based on the following idea:

Price index = ILpiq^^fl^Lpoq^^f x 100
Quanti ty index = ^qip^^fl^^qop^^f x 100

where Pi is the price in period / of a 'product '
qi is the quantity sold in period / of a 'product '
the summation is over all the products involved
the index o indicates the base period
the index ref indicates the reference period.

28 Index numbers

Note that the roles of the price and quantity variables
interchange as between the price and quantity indices. Conse­
quently it will suffice to describe only one of them in detail. It must
be assumed that price and quantity data exist for each separately
identifiable 'product ' (or class of products) which together make
up the marketable output to which a chosen index relates.

Take the composite price index for the purpose of further
discussion. Such indices at tempt to measure price changes by
holding the quantity data numerically equal to that experienced in
a reference period. The numerator is the numerical value of the
sales of all products in period / if reference period quantities were
to be sold at period / prices. The demoninator is the numerical
value of the sales of all products in reference period quantities but
at base period prices.

There are two well-known extreme cases for the choice of
reference period. A Laspeyres price index Lp is obtained where
the reference period is the base period per se. A Paasche price
index is obtained where the reference period is the current
period.

Laspeyres price index Lpi = Σρ,^^ο/Σρο^ο x 100
Paasche price index Ppi = Σρ,^/Σροή', x 100

The corresponding quantity indices L^ and P^ are obtained by
interchanging the ρ and ^ in these expressions.

The Laspeyres price index has the great advantage of producing
the longest comparable series, always provided that quantity
variables are more or less static. It is the simplest and least
demanding of data , but the assumption of base period reference
becomes untenable if the quantity variables evolve rapidly. For
instance, price changes may partially determine the quantities
sold: a Laspeyres price index could lead to an overestimate of
price inflation if less is sold as prices rise.

A t the other ext reme, the use of current period quantities in the
Paasche index involves the collection of price and quantity data in
each period. The use of the current period quantities also means
that one cannot , strictly speaking, relate movements in this index
exclusively to price changes. Fur thermore , the introduction of new
products creates problems. In practice one might choose to update
a reference period somewhat infrequently so that the series
resembles a Laspeyres rather than a Paasche index.

The geometric mean of the Laspeyres and Paasche price indices,
known as the Ideal Price Index IDp, has some attractive
theoretical propert ies although it is not in common use.

lOpi = {Lpi X PpiY/i

Composite indices 29

Product 0 1 2 3 4 5 6 7 8

1 Unit price 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 0.7
Quantity 100 110 100 105 115 110 115 125 111

2 Unit price 25 25 25 25 25 25 25 25 25
Quantity 2.0 2.3 2.7 2.9 3.1 3.2 3.1 3.0 2.9

3 Unit price 12 12 11 11 10 10 10 9 9
Quantity 6.1 6.0 6.0 5.7 5.8 5.5 5.6 5.7 5.8

4 Unit price 3 3.2 3.6 3.8 4.0 4.0 4.0 4.0 4.0
Quantity 30 32 33 34 34 36 37 38 39

Price indices
Laspeyres Lp 100 105 101 106 109 103 106 107 101
Paasche Pp 100 106 101 107 110 104 107 109 103
Ideal ΙΌρ 100 106 101 106 110 103 107 108 102

Quantity indices
Laspeyres Lq 100 107 109 111 116 117 119 122 119
Paasche ?q 100 107 109 112 117 118 120 124 122
Ideal ID^ 100 107 109 112 117 117 119 123 120

Value index
ILpiqiPLpoq^ 100 113 110 119 128 121 127 133 122

It is not easy to say what overall movements have occurred in
prices, quantities or sales values by inspection of the data , and it is
impossible for more than, say, a dozen products. A computer
program I N D I C E S follows for the calculation of the composite
indices described in this section and shown in Table 3.5. A short
main program is dimensioned for up to 10 products but this is
easily enlarged as required.

PROCinpu t : allows the user to enter the base period Β and the
final period N , and the number of products PR
for which a composite index is required. The user

The product of price and quanti ty indices correctly provides the
sales index = Σν^/Σν^ = Σρ/ή^,/Σρο^ο only in the case of the Ideal
indices. If an ideal index based on 100 in the base year reaches 200
in the current year, then an alternative choice of base year in the
current year would lead to 50 in the base year. Neither Laspeyres
nor Paasche indices have the same desirable propert ies. The use of
the microcomputer obviously alleviates the computational burden,
which has been one objection to the use of the Ideal index in the
past . But the heavy cost of data collection remains, as does the
problem of deahng with a changing product mix.

Da ta on four classes of product are provided in Table 3.5 below.
Price and quantity sold are given for each of nine periods.

Table 3.5 Monthly sales data for four products

30 Index numbers

PROCindices :

FNp(ref):
FNq(ref) :
PROCpr in t :

supplies price and quantity data DATp(pr , I) and
D A T q (p r , I) for each product pr = 1, 2, . . . ,PR
and period I = B , . . . , N .
calculates Laspeyres, Paasche and Ideal price
indices Lp(I) , Pq(I) , IDp(I) and quantity indices
Lq(I) , Pq(I) , IDq(I) for periods I = B , , . . , N .
defines a price function ^Piq^J^Lp^q^^f
defines a quantity function Iqip^ci/^qoPr^f
organizes a tabular print of price and quantity
indices.

Type in Program I N D I C E S from the following listing and R U N
with the data of Table 3.5 when you are satisfied with the accuracy
of your listing. You should get the indices shown in the lower half
of the table.

Inspection of the output indices suggests that any one of the
three composite indices tells the same story. In particular, one can
see that quantity sold moved ahead up until month 8 whereas
prices fluctuated up and down. The value index, numerically equal
to one-hundredth of the product of I D p and IDq (unrounded
values), appears to fluctuate either side of an increasing trend.

31

Program 3.4 INDICES.Calculates Laspeyres, Paasche and Ideal
indices

1 0 REN INDICES
2 0 REM ACCEPTS PRICE & QUANTITY DATA FOR DIFFERENT PRODUCTS
3 0 REM CALCULATES COMPOSITE INDEX NUMBERS
40 DIM D A T p (1 0 , 1 0 0) , D A T q (1 0 , 1 0 0) , L p (1 0 0)
50 DIM L q (1 0 0) , P p (1 0 0) , P q (1 0 0) , I D p (1 0 0) , I D q (1 0 0)
60 @%«&0002000A
70 PROCinput
8 0 P R O C i n d i c e s
90 PROCprint

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 PRINT "ENTER ALL DATA NUMERICALLY"
1 0 2 0 INPUT "BASE PERIOD " , Β
1 0 3 0 INPUT "FINAL PERIOD " , N
1 0 4 0 INPUT "NUMBER OF PRODUCTS ",PR
1 0 5 0 FOR pr = 1 TO PR
1 0 6 0 PRINT : PRINT "PRODUCT No " ; p r
1 0 / 0 PRINT : PRINT "PERIOD PRICE QUANTITY"
1 0 8 0 FOR I = Β TO Ν
1 0 9 0 PRINT T A B (0) ; I ;
1 1 0 0 INPUT TAB(10) D A T p (p r , I) , T A B (2 0) D A T q (p r , I)
1 1 1 0 NEXT I
1 1 2 0 NEXT p r
1 1 3 0 ENDPROC
1 1 4 0
2 0 0 0 DEF P R O C i n d i c e s
2 0 1 0 FOR 1= Β TO Ν
2 0 2 0 L p (I) = F N p (B)
2 0 3 0 P p (I) = F N p (I)
2 0 4 0 I D p (I) = S Q R (L p (I) * P p (I))
2 0 5 0 L q (I) = F N q { B)
2 0 6 0 P q (I) = F N q (I)
2 0 7 0 I D q (I) = S Q R (L q (I) * P q (I))
2 0 8 0 NEXT I
2 0 9 » ENDPROC
2 1 0 0
3 0 0 0 DEF F N p (r e f)
3 0 1 0 NUM=0 : DENOM=0
3 0 2 0 FOR p r = l TO PR
3 0 3 0 NUM=NUM + D A T p (p r , I) * D A T q (p r , r e f)
3040 DENOM=DENOM + D A T p i p r , B) * D A T q (p r , r e f)
3050 NEXT pr
3 0 6 0 = NUM/DENOM*100
3 0 7 0
4 0 0 0 DEF F N q (r e f)
4 0 1 0 NUM=0 : DENOM=0
4 0 2 0 FOR p r = l TO PR
4 0 3 0 NUM=NUM + D A T q (p r , I) * D A T p (p r , r e f)
4 0 4 0 DENOM=DENOM + D A T q (p r , B) * D A T p (p r , r e f)
4 0 5 0 NEXT pr
4 0 6 0 = NUM/DENOM*100
4 0 7 0
5 0 0 0 DEF PROCprint
5 0 1 0 PRINT : PRINT : PRINT "PRICE INDICES"
5 0 2 0 PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT
5 0 3 0 FOR 1= Β TO Ν
5 0 4 0 PRINT T A B (0) ; I ; T A B (1 0) ; L p (I) ; T A B (2 0) ; P p (I) ; T A B (3 0) ; I D p (I)
5 0 5 0 NEXT I
5 0 6 0 PRINT I PRINT : PRINT "QUANTITY INDICES"
507W PRINT "PERIOD LASPEYRES PAASCHE IDEAL" : PRINT
5 0 8 0 FOR 1= Β TO Ν
5 0 9 0 PRINT T A B (0) ; I ; T A B (1 0) ; L q (1) ; T A B (2 0) ; P q (I) ; T A B (3 0) ; I D q (I)
5 1 0 0 NEXT I
5 1 1 0 ENDPROC

32 Index numbers

PROBLEMS

(3.1) Devise a P R O C d a t a to read data into Program 3.1
S I M P R E L from D A T A statements as an alternative, which can be
exercised at the user 's discretion, to conversational data input in
PROCinpu t .

3.5 Index numbers in perspective

The indices described above are very simple examples of the
genre. In practice there are a number of comphcations which have
to be considered. The pr ime consideration must be the purpose for
which an index is required, in the context of the availability and
reUability of the basic data . Any summary is bound to be overtly
selective in its data sources, and covertly limiting by its very
summarizing nature - the scope of the index should not be so wide
as to yield a meaningless series.

Problems of i n t eφre t a t i on arise if too long a series is presented.
Some products will have been phased out and new ones phased in.
Technical and qualititive improvements can be made in an
incremental manner over a protracted term so that like is not
always compared to like, i .e. value for money is explicitly excluded
from the information summary.

Problems of scale arise when there are numerous commodities.
It is more convenient to construct price indices, say, from 'weighed
means ' of relatives (WMR) of individual prices where the weights
Wref are tied to some reference period. Such an index, WM/?/, is

WMRi = Σρί/ρΒ X W^ref/SH^ref X 100

where the summation is taken over all the products.
When the weights W^et are taken as the values VQ of

expenditures in the base year (i .e. P o i o) then this index of
weighted price relatives is identical to the Laspeyres price index,
as the reader may confirm algebraically.

In fact, the Index of Retail Prices (RPI) is closely based on a
Laspeyres quantity index. Naturally, the details of the construc­
tion of this or any other government index, such as the Index of
Industrial Production, lies outside the present scope. Suffice it to
say that the R P I is obtained as a weighted mean of other
sub-indices, themselves defined as weighted means of relatives.
The way in which the annual Family Expendi ture Surveys are
utilized to derive and update the weights can be somewhat
complicated, and the calculations of the sub-indices are often in
chain index form.

Problems 33

(3.2) Devise a P R O C e d i t to be called at line 65. This procedure
should allow the user to alter any part of the input data.

(3.3) Modify PROCinpu t of S I M P R E L to accept any textual
identifier for the period I, such as 12/1985, in addition to the data
value for period I. Modify lines 2070 and 3060 to print out the
textual identifier in place of I.

(3.4) Modify D E F L A T R to accept the data from the top half of
Table 3.1 and to print out the real indices in the bot tom half of
Table 3.1 (you should introduce arrays to store sales, costs, wages,
employees and deflator data) .

(3.5) Modify Program I N D I C E S to produce the additional indices
as defined below, and r e R U N with the data of Table 3.5:

Dribisch index = (L + P)/2 x 100
Price index = 2/?/^ref/2po?ref x 100
Quanti ty index = ¿^¿Pref/^^OPref x 100
Price index (Edgeworth) = Σpi{qQ + ^/)/Σρο((7ο + q,) x 100
Quanti ty index (Edgeworth) = Σqi{po + pi)/Xqo{po + P/) x 100

(3.6) Write a program which forms the weighted mean of price
relatives to check numerically that the index defined in Section 3.5
conforms to the Laspeyres price index when the weights W^d are
taken as V o .

C h a p t e r 4

Data fítting

Essential theory

This chapter is designed to give an introduction to data
fitting.Simple linear regression on a controlled variable is first
described in the context of production costs. Next, a simple
logarithmic transformation of a non-linear relationship into a
linear form is developed in the context of the so-called 'learning
curve' . Piecewise linear regression is developed in the third section
and may be omitted on a first reading. Cost-volume-profit analysis
is developed for piecewise linear relationships in the final section.

4.1 A straight line fít to data

A straight line relationship is the simplest form of relationship
between two quantit ies, such as production cost C and the
production batch size N. Costs are not Ukely to be incurred in
absolutely direct proport ion to the size of a production batch, but
a linear relationship may be a satisfactory approximation for some
purposes.

Such approximations may be required when it is too expensive,
or simply not practicable, to work out the costs of a specified batch
from first principles. If a company submits priced tenders for
customers on a repetitive basis, then such a costing would be based
almost certainly on accumulated costing experience, rather than
the detail of an individual case.

Suppose that the data in Table 4.1 below, has been derived from
a close examination of the costs of producing different batch sizes
of some product .

Table 4.1 Costs and batch size data

Observation 1 2 3 4 5 6 7
Batch size 12 18 24 30 36 42 48
Cost 5.27 5.68 6.25 7.21 8.02 8.71 8.42

34

A straight line fit to date 35

9

8

" 6

6 12 18 24 30 36 42 48
Batch size

Figure 4.1 A plot of the data of Table 4.1

A search for a best linear relationship between costs and
production levels makes sense only if there is a prior supposition of
linearity. There are many other possibiUties, and two of the major
ones are considered later in this chapter . The interested reader is
referred to a companion volume {BASIC matrix methods by J.
Mason, But terworths , 1984) for a more comprehensive t reatment .

A linear relationship between costs C and batch size may be
stated as

C = F-^Vx Ν

where F is a fixed cost
y is a constant marginal cost.

If the cost of production Cj has been established for each of
several trial values of the batch size Nj then one can write

Cj = F-l· V X Njej

where e/ is a residual or error term.
The problem is to establish values for the fixed cost F and the

marginal (or variable) cost Vpei unit of production which best 'fit'
the data. There are several criteria depending upon what is meant
by a best fit. The simplest and perhaps the most commonly
employed criterion is to fit a linear relationship to data in the 'least
squares sense ' ; that is, a fit which minimizes the sum of the
squared residuals. This is correctly described here by the term
'linear regression (of costs) upon a controlled variable (the batch
size)' . Now

Σej = Z (C / - F-Vx Njf

where the summation extends over the number of data pairs of C
and V which are available.

Differential calculus is used to establish conditions which lead to

This data has been graphed in Figure 4 . 1 , which suggests that
there may indeed be a Unear relationship.

36 Data fitting

a minimum Σε], and on equating to zero the partial derivatives
with respect to V and F one finds

where is the average of Nj and C is the average of C¡.
A simple computer program L I N E F I T for the determination of

F and V is based upon a main program which calls four
P R O C E D U R E S :

PROCinpu t : allows the user to input the control and
dependent variable values N(I) and C(I) , for
I = 1,2, . . . ,NN.

PROCparame te r s : evaluates the arithmetic means C B A R and
N E A R on a first pass of the data, and the
values of F and V on a second pass.

PROCpr in t : tabulates N(I) , C(I) , F -f V x N(I) , and
residuals e/ for I = 1,2, . . . ,NN, and prints out
the best fit equation together with the coeffi­
cient of determinat ion.

PROCes t imate : enables the user to make an estimate of costs
C = F + 7 X for any iV.

37

1 0 REM LINEFIT
2 0 REM LINEAR REGRESSION OF C ON CONTROLLED VARIABLE Ν
30 DIM C (1 0 0) , N (1 0 0)
40 @%=&02040A
50
6 0 PROCinput
7 0 P R O C p a r a m e t e r s
80 PROCprint
90 P R O C e s t i m a t e

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 PRINT : INPUT "No OF DATA PAIRS ";NN
1 0 2 0 PRINT "CONTROL DEPENDENT"
1 0 3 0 PRINT "VARIABLE VARIABLE" :PRINT " N " ; T A B (1 1) ; " C "
1 0 4 0 FOR 1= 1 TO NN
1 0 5 0 INPUT N (I) ; T A B (1 0) ; C { I)
106 0 NEXT I
107 0 ENDPROC
1 0 8 0
2 0 0 0 DEF P R O C p a r a m e t e r s
2 0 1 0 SIGMAC=0 : SIGMAN=0
2 0 2 0 FOR 1= 1 TO NN
2 0 3 0 SIGMAC=SIGMAC+C(I)
2 0 4 0 SIGMAN=SIGMAN+N(I)
2 0 5 0 NEXT I
2 0 6 0 CBAR=SIGMAC/NN : NBAR=SIGMAN/NN
207 0 NUM=0 : DENOM=0 : CD=0
2 0 8 0 FOR 1= 1 TO NN
2 0 9 0 NUM=NUM+{ N(I) -NBAR) * (C (I) - C B A R)
2 1 0 0 DENOM=DENOM+(N{I) -NBAR) * (N (I) - N B A R)
2 1 1 0 CD=CD+(C (I) - C B A R) * { C (I) - C B A R)
2 1 2 0 NEXT I
2 1 3 0 V= NUM/DENOM
2 1 4 0 F =CBAR-V*NBAR
2 1 5 0 CD=NUM*V/CD
2 1 6 0 ENDPROC
2 1 7 0
3 0 0 0 DEF PROCprint
3 0 1 0 PRINT : PRINT "STRAIGHT LINE OF BEST FIT F+V*N = "
3 0 2 0 PRINT F ; " + " ; V ; " * N"
3 0 3 0 PRINT : PRINT T A B (9) ; " N " ; T A B (1 9) "C";TAB(25) "F+V*N";
3040 PRINT TAB(32) "RESIDUAL"
3 0 5 0 FOR 1=1 TO NN
3 0 6 0 PRINT N (I) , C { I) , F + V * N (I) , C (I) - F - V * N (I)
3 0 / 0 NEXT I
3 0 8 0 PRINT : PRINT "COEFF OF DETERMINATION =";CD*100;"%"
3090 ENDPROC
3 1 0 0
4 0 0 0 DEF P R O C e s t i m a t e
4 0 1 0 REPEAT
40 20 PRINT
4 0 3 0 INPUT "DO YOU WANT AN ESTIMATE (Y o r N) " , Z $
4040 IF Z$="N" THEN ENDPROC
4 0 5 0 INPUT "CONTROLLED VARIABLE VALUE = " , N
4 0 6 0 C=F+V*N
40/k) IF N<N(1) THEN PRINT "WARNING:CONTROL I S < DATA MIN."
4 0 8 0 IF N>N(NN) THEN PRINT "WARNING:CONTROL I S > DATA MAX."
40 90 PRINT "DEPENDENT VARIABLE VALUE = ";C
4 1 0 0 UNTIL FALSE
4 1 1 0 ENDPROC

Program 4.1 LINEFIT: Linear regression on a controlled variable

38 Data fitting

? 5 . 2 7

? 5 . 6 8

? 6 . 2 5

? 7 . 2 1

? 8 . 0 2

? 8 . 7 1

? 8 . 4 2

STRAIGHT LINE OF BEST FIT F+V*N =
3 . 9 9 4 3 + 0 . 1 0 2 9 * Ν

Ν C F+V*N RESIDUAL
1 2 . 0 0 0 0 5 . 2 7 0 0 5 . 2 2 8 6 0 . 0 4 1 4
1 8 . 0 0 0 0 5 . 6 8 0 0 5 . 8 4 5 7 - 0 . 1 6 5 7
2 4 . 0 0 0 0 6 . 2 5 0 0 6 . 4 6 2 9 - 0 . 2 1 2 9
3 0 . 0 0 0 0 7 . 2 1 0 0 7 . 0 8 0 0 0 . 1 3 0 0
3 6 . 0 0 0 0 8 . 0 2 0 0 7 . 6 9 7 1 0 . 3 2 2 9
4 2 . 0 0 0 0 8 . 7 1 0 0 8 . 3 1 4 3 0 . 3 9 5 7
4 8 . 0 0 0 0 8 . 4 2 0 0 8 . 9 3 1 4 - 0 . 5 1 1 4

COEFF OF DETERMINATION = 9 4 . 5 5 7 8 %

DO YOU VÍANT AN ESTIMATE (Y o r N) ?Y
CONTROLLED VARIABLE VALUE = ? 1 0
WARNING:CONTROL IS < DATA MIN.
DEPENDENT VARIABLE VALUE = 5 . 0 2 2 9

DO YOU WANT AN ESTIMATE (Y o r N) ?Y
CONTROLLED VARIABLE VALUE = ? 5 4
WARNING:CONTROL I S > DATA MAX.
DEPENDENT VARIABLE VALUE = 9 . 5 4 8 6

DO YOU WANT AN ESTIMATE (Y o r N) ?N

Type in L I N E F I T and replicate the given R U N when you are
satisfied with your listing. The output includes the residuals and it
is always important to look at them very carefully. The assumption
of linearity must be held with reserve, and it becomes clearly
untenable when the residuals have a strongly pronounced pat tern
- such as large positive values for small batches and large negative
values for large batches. In the present case the absolute values of
the residuals tend to become numerically larger as the batch size
increases, but their signs do not otherwise give rise for concern. So
there is little evidence here of systematic departure from linearity.

Fur thermore , the coefficient of determination is about 95 per
cent, which can be interpreted as follows: some 95 per cent of the

RUN

No OF DATA PAIRS ?7
CONTROL DEPENDENT
VARIABLE VARIABLE

Ν C
? 1 2

? 1 8

? 2 4

? 3 0

? 3 6

? 4 2

? 4 8

A straight line fit to date 39

variation in the cost data has been explained on the basis of the
linear relationship, which expressed to four decimal places is

Cost = 3,9943 + 0.1029 x TV

95 per cent is a reassuringly high percentage. A coefficient of 100
per cent resuhs when a line of best fit passes directly through all
the data points. It would have been much smaller had the costs not
varied substantially^ in proport ion to batch size. The total 'sum of
squares ' 1 (C / - Cf can be regarded as having an 'explained'
component , and an 'unexplained' component Σ^/ . The explained
component is obtained by differencing, and the coefficient of
determinat ion is the percentage ratio of this component to the
total sum of squares. This can be expressed as

Coefficient of determinat ion = 1̂ ^̂ 1 ^ ! . — x 100

The reader may have wondered why two passes of the data were
employed in PROCparame te r s of L INEFIT . The first pass was
used to evaluate t h e j n e a n s Ν and C__and the second to evaluate
Σ(Λ^/ - Ν) , Σ (0 - C) , and Σ(Λ^/ - Nf prior to substitution into
the expressions for Y and Έ. There is an alternative expression for
V which entails the quantities ΣΛ^/1//, Σ ^ / , ΣΛ^/ and ΣΑ^/, all of
which can be evaluated on a single pass of the data. But rounding
and truncation errors are more likely to occur, because the
denominator of V is then determined from the difference between
two large numbers ΝΝΣΝ] and (ΣΝ/γ. However , the reader is
referred elsewhere {BASIC statistics, by J. Tennant-Smith,
But terworths , 1985) for a discussion of a better method.

Recall that the purpose was to obtain assistance in making cost
estimates. This amounts to using the equation of the line of best fit
with a stipulated value of the controlled variable. Notice that the
output produces a warning if the value of the controlled variable
hes outside the range of the original data which was used to obtain
the line of best fit. This class of estimate is known as extrapolation,
and it has much less reliability than an interpolated estimate, since
there can be no assurance that the linear relationship holds for
arbitrarily small or large volumes.

The reader should next R U N the program for the data given in
Table 4.2. He re the controlled variable is the time period and so
a convenient choice is a quarterly variable with values from 1 to
14, The dependent variable C is not cost, but sales. The output is a
Une of best fit of the form

Sales = 211,9780 + 0.7363*Λ^

40 Data fitting

1 2
Quarter

3 4

1983 200 225 227 202
1984 204 228 230 207
1985 210 231 233 207
1986 209 232

However , the coefficient of determination is only 6 per cent, which
signals loud and clear that linear regression on this data is quite
inappropriate . The reader should graph the data to confirm this
observation. H e or she should also note that the residuals have a
consistent periodicity, those for quarters 1 and 4 being negative
while those in quarters 2 and 3 are positive. This is fully consistent
with a cyclical sales pat tern over an underlying shallow trend, and
this possibility must be explored in a quite different way, through
time series analysis (see BASIC forecasting, by D . G. Johnson and
M. King, But terworths) . You should do Problems 4.1 and 4.4
here .

4.2 The learning curve

Particular forms of non-linear relationships can be transformed
into linear relationships. Suppose that t = al^ -¥ τ where t is the
average assembly t ime for the first / assemblies; a and b are
parameters and τ is the long run average t ime.

Taking logarithms gives

log (i - τ) = log -h ft log /

This is the linear relationship

C = F Ν X V

where

C = log (i - τ) Ν = log / F = log V b

The first assembly takes the time a -\- τ and a negative value of b
gives rise to a geometrically decreasing average assembly t ime,
tending to τ in the limit. This phenomenon was first noticed in the
US aircraft industry and has become known as a learning curve.

Assembly times for the first eight of a production run of aircraft
components are given in Table 4 .3 . Figure 4.2 shows actual
average assembly times i/ from the third hne of Table 4 .3 .

Table 4.2 Sales for 14 quarters

The learning curve 41

900

800

700

600

1 2 3 A 5 6 7 8 /

Figure 4.2 A plot of the data of Table 4.3

The method of the previous section could be used to fit a
straight line in the least squares sense through the logarithmically
transformed data, always provided that a value of τ was supphed.
Indeed, one could repeat the process for each of a series of trial
values for τ. If the 'best' value was associated with the largest
coefficient of determination, then one would have a best fit
equation

C = F + X F and so Ö = 10^ and 6 = y

This approach would be clearly impractical by hand calculation,
but it can be carried out effectively and efficiently on a
microcomputer. Program L C U R V E consists of a short main
program which calls the following PROCEDURES:

PROCinput: allows the user to input the observed assembly
time T(I) of assemblies I = 1,2,. . . ,NN and calls
FNavtime to calculate t(I), the average time to
assemble each of the first I assemblies.

PROCiterate: calls PROCparameters (see LINEFIT) for 50 trial
values of τ in the range 0 =̂ τ ^ T (N N) , with C(I)
= LOG(t(I) - τ) and N(I) = LOG(I) for I =
1,2, . . . ,NN. The best value tau of T A U , the
highest coefficient of determination cd, and the
best values of a and b are available on comple­
tion.

Table 4.3 Assembly times for the fírst eight airframe components

Component/ 1 2 3 4 5 6 7 8
Actual times 946 593 572 589 525 555 516 549
Actual av. time 946 769.5 704 675 645 630 614 606
Predicted av. time 943 773 707 669 645 628 615 606
Learning curve of best fit: 438.35 x r"̂^ + 505.8
Coefficient of determination: 99.88%

42 Data fitting

Program 4.2 LCURVE: Learning curve regression

1 0 REM LCURVE
20 REM LEARNING CURVE REGRESSION
3 0 REM LOG-LOG TRANSFORMATION ON
40 REM AVERAGE TIME AND COMPONENT NUMBER
50 REM REQUIRES ACTUAL TIME FOR
6 0 REM COMPONENTS Nos 1 TO NN
7 0 DIM C (1 0 0) , T (1 0 0) , N (1 0 0) , t (1 0 0)
80 @%=&02020A
90

1 0 0 PROCinput
1 1 0 P R O C i t e r a t e
1 2 0 PROCprint
1 3 0 P R O C e s t i m a t e
1 4 0 END
150

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "MAX N O COMPONENTS";NN
1 0 2 0 PRINT
1 0 3 0 PRINT "COMPONENT ACTUAL"
1040 PRINT "NUMBER TIME"
1 0 5 0 FOR 1= 1 TO NN
106 0 PRINT T A B (4) ; I ; T A B (1 4) ; r I N P U T Τ (I)
1 0 7 0 t (I) = F N a v t i m e (I)
1 0 8 0 NEXT I
1 0 9 0 ENDPROC
1 1 0 0
2 0 0 0 DEF P R O C p a r a m e t e r s
2 0 1 0 SIGMAC=0 : SIGMAN=0
2 0 2 0 FOR 1= 1 TO NN
2 0 3 0 SIGMAC=SIGMAC+C(I)
2 0 4 0 SIGMAN=SIGMAN+N(I)
2 0 5 0 NEXT I
2 0 6 0 CBAR=SIGMAC/NN : NBAR=SIGMAN/NN
207Ifl NUM=0 : DENOM=0 : CD=0
2 0 8 0 FOR 1= 1 TO NN
2 0 9 0 NUM=NUM+(N(I) -NBAR) * { C (I) - C B A R)
2 1 0 0 DENOM=DENOM+(N(I) -NBAR) * { N(I) -NBAR)
2 1 1 0 CD=CD+(C (I) - C B A R) * (C (I) - C B A R)
2 1 2 0 NEXT I
2 1 3 0 V= NUM/DENOM
2 1 4 0 F =CBAR-V*NBAR
2 1 5 0 CD=NUM*V/CD
2 1 6 0 ENDPROC
2 1 7 0

PROCpr in t : tabulates the actual average assembly times t (I) ,
the predicted average times al^ + tau, and the
residuals for I = 1,2,. . . , NN; prints the equation
t = al^ + tau, together with the coefficient of
determinat ion cd.

PROCes t imate : allows the user to estimate the assembly time for
the Ith assembly.

FNavtime(i) : generates the average assembly time of the first i
assemblies t(i) = 1/1ΣΤ(Ι) from the actual
assembly times T(I) for I = 1,2,. . . , i .

43

3 0 0 0 DEF P R O C i t e r a t e
3 0 1 0 c d = 0
3 0 2 0 S = T (N N) / 5 0
3 0 3 0 FOR TAU=0 TO Τ(NN) STEP S
3 0 4 0 FOR 1= 1 TO NN
3 0 5 0 C(I)=LOG(t (I) - T A ü) : N (I) = L O G (I)
3 0 6 0 NEXT I
307 0 P R O C p a r a m e t e r s
3080 IF CD>ccl THEN cd=CD :tau=TAU : a=10 ' 'F : b=V
3 0 9 0 NEXT TAÜ
3 1 0 0 ENDPROC
3 1 1 0
4 0 0 0 DEF PROCprint
4 0 1 0 PRINT
40 20 PRINT " COMPONENT AVERAGE ESTIMATED RESIDUAL"
4 0 3 0 PRINT " NUMBER TIME TIME"
4 0 4 0 FOR 1= 1 TO NN
4 0 5 0 PRINT l , t (l) , a * l ' ' b + t a u , t (I) - a * I ' ' b - t a u
406 0 NEXT I
407Μ PRINT :PRINT "COEFF OF DETERMINATION " ; c d * 1 0 0
4 0 8 0 PRINT : PRINT "BEST FIT LEARNING CURVE "
4090 PRINT a ; " * I ' ' " ? T A B (1 4) b ;TAB { 2 2) "+" ;TAB (2 4) t a u
4 1 0 0 ENDPROC
4 1 1 0
5 0 0 0 DEF P R O C e s t i m a t e
5 0 1 0 REPEAT
5 0 2 0 INPUT "DO YOU WANT AN ASSEMBLY TIME ESTIMATE (Y/N) " , Z $
5 0 3 0 IF Z$="N" THEN ENDPROC
5 0 4 0 INPUT "INPUT AN ASSEMBLY NUMBER >1 " , I
5 0 5 0 t = a * (I ^ i b + D - d - l) " (b + 1)) + t a u
506 0 PRINT "ACTUAL ASSEMBLY TIME PREDICTION IS " ; t
507 Ii UNTIL FALSE
5 0 8 0 ENDPROC
5 0 9 »
6 0 0 0 DEF F N a v t i m e (i)
6 0 1 0 TC=0
6 0 2 0 FOR j = 1 TO i
6 0 3 0 TC=TC+T(j)
6 0 4 0 NEXT j
6 050 = T C / i

RUN
MAX No COMPONENTS?8

COMPONENT ACTUAL
NUMBER TIME

1 . 0 0 ? 9 4 6
2 . 0 0 ? 5 9 3
3 . 0 0 ? 5 7 2
4 . 0 0 ? 5 8 9
5 . 0 0 ? 5 2 5
6 . 0 0 ? 5 5 5
7 . 0 0 ? 5 1 6
8 . 0 0 ? 5 4 9

COMPONENT AVERAGE E S T I M A T E D R E S I D U A L
NUMBER TIME TIME

1 . 0 0 9 4 6 . 0 0 9 4 3 . 4 3 2 . 5 7
2 . 0 0 7 6 9 . 5 0 7 7 3 . 5 0 - 4 . 0 0
3 . 0 0 7 0 3 . 6 7 7 0 6 . 5 5 - 2 . 8 8
4 . 0 0 6 7 5 . 0 0 6 6 9 . 4 4 5 . 5 6
5 . 0 0 6 4 5 . 0 0 6 4 5 . 4 4 - 0 . 4 4
6 . 0 0 6 3 0 . 0 0 6 2 8 . 4 5 1 . 5 5
7 . 0 0 6 1 3 . 7 1 6 1 5 . 7 0 - 1 . 9 8
8 . 0 0 6 0 5 . 6 2 6 0 5 . 7 3 - 0 . 1 0

COEFF OF D E T E R M I N A T I O N 9 9 . 8 8

B E S T F I T L E A R N I N G CURVE
4 3 8 . 3 5 * 1 ' ^ - 0 . 7 1 + 5 0 5 . 0 8

DO YOU WANT AN ASSEMBLY T I M E E S T I M A T E (Y / N) ?Y
I N P U T AN ASSEMBLY NUMBER >1 ? 2 0
ACTUAL A S S E M B L Y T I M E P R E D I C T I O N I S 5 2 0 . 7 5
DO YOU WANT AN ASSEMBLY T I M E E S T I M A T E (Y / N) ? N

44 Data fitting

Type in L C U R V E from the Usting above (first load L IN E F IT
and D E L E T E 10,1080, and D E L E T E 3000,4110 to avoid the
tedium of entering PROCparamete r s) and R U N with the data of
the first two rows of Table 4.3 (the machine may require a minute
or so to carry out the 50 regressions). Your output should agree
with the rest of the table , and a prediction for the assembly time of
the twentieth airframe is 521.

Such models can be applied to a wide variety of circumstances,
such as plant maintenance costs which decrease with experience,
or the costs associated with obtaining repeat orders . However ,
caution should be exercised when using the model for extrapola­
tion beyond the immediate future: it is a useful model for
short-term decision making, such as budgeting, but it is doubtful
whether it is sensible to employ it for medium or long term
forecasts. Methods for the determination of confidence Umits are
omitted here .

You should do Problems 4.5 and 4.6 at this juncture.

^ 4̂.3 Fitting a piecewise linear function by least squares

A linear relationship (or a transformation of a Unear relationship)
may be quite inadequate for fitting the data to hand. Thus a R U N
of L I N E F I T on the data of Table 4.4 yields a very low coefficient
of determination of 3 6 % ·

Table 4.4 Further cost and batch size data

Observation 1 2 3 4 5 6 7 8 9 10
Batch size 10 20 30 40 50 60 70 80 90 100
Cost 220 252 273 281 298 211 240 273 299 403

This data is graphed in Figure 4 .3 , showing that the costs
increase more or less Unearly up to mid-range batch sizes: Then
there is a sudden decrease in costs followed by a second and
continuing rise. This pat tern of costs could be due to a change in
technology, which only becomes feasible in the light of
opportunity costs for production of the larger batches. The costs
for new technology production once again advance with batch size
in a more or less linear fashion.

Although it is obviously possible in this simple example to R U N
L I N E F I T twice, for lower and higher levels of output , this would
be tiresome with a large number of Unear segments. The practical
utility of piecewise linear data fitting should be self-evident, as the
next section on cost-volume-profit analysis will convincingly
demonstra te in one particular case.The L linear segments are said

Fitting a piecewise linear function by least squares 45

AGO

; 300

200

0 20 AO 60 80 100
Batch s i z e

Figure 4.3 A piecewise linear function: data from Table 4.4

to join at 'knots ' «χ, «2» · · Thus one can relate the cost C
to output iV by a piecewise linear function which includes a fixed
cost e lement / , and marginal costs V/ for outputs in the range
ni-i<N^ni as follows:

C = / + n i (V i - V2) + A22(V2 - V 3) + . . . + « / _ i (V / _ i - V/) + NVi

or

C = Co + c,(N - no) + C2ÍN - n,) -l· , . . c,(7V -
where no = 0

These alternatives are shown in Figure 4.4 for the case of a 2-piece
linear relationship (i .e. L = 2) .

^ n = 0 Π] Volume Volume

Figure 4.4 Two alternative formulations of 2-piece linearity

The correspondence between the two alternatives is given by

/ = Co

/
Vj = Σ Ck

k=l

Co=f
or

46 Data fitting

Now the second formulation can be written even more compactly
as

i

where

{N - nj-i)^ = Ν - nj.y if > o
= 0 otherwise

It is now convenient to use this equation to express the sum of
squared residuals, S.S., as follows:

NN L
S.S. = Σ

7=1 j

where the first summation extends over the Λ̂ Λ̂ observations.
On equating to zero the partial derivatives of S.S. with respect

to C(), Ci , C 2 , . . . , C/̂ one finds the following L + 1 Unear equations
in Co, c , , C 2 , . . . ,Cl:

NN L NN
Σ {Co + Σ Cj{Nj - nj.,)^) = Σ C/

7=1 y=l 7=1

NN L NN
Σ {[Co + Σ Cj{Nj - nj.^U](Nj-nj.,U}= Σ Cj{Nj- n^.^U

7=1 7=1 7=1

for / = 1, 2, . . . , L .
Writ ten in matrix form, these equations become A c.= ¿ w h e r e

c = (c o , c i , C 2 , . . ., and = IC/(iV/ -

for / = 1, 2, . . . , L
7 = 1, 2, . . . , L .

Thus A is symmetric and this fact allows the use of a simplified
method of solution (Gaussian elimination for a symmetric matrix
of coefficients). The equations are Unearly independent if there is
at least one data point for each segment / for / = 2, 3 , . . . , L and at
least two data points for the initial segment. The equations could
well be ill-conditioned, however, with a likelihood that increases
with increasing L. These equations can be seen to reduce to the
familiar equations for simple linear regression when L = 1 upon
substitution for the Cj.

Fitting a piecewise linear function by least squares 47

A Structured program P I E C E L N has a short main program
which calls the following procedures:

PROCinpu t : allows the user to input the observations C(I)
and N(I) for I = 1, 2, . . . , NN, and the
ordinates of knots Uj for i = 1, 2, . . . , L.

PROCmat r ix : generates the elements of A and b..
PROCgauss : solves for c. by a standard Gaussian elimination

(after Program 5.5 from BASIC matrix methods,
by J. Mason, But terworths , 1984).

PROCtransform: finds f and v(i) for i = 1, 2, . . . , L.
PROCpr in t : prints out the best L-piece linear relationship in

the least squared sense: also prints the residuals
and the coefficient of determination.

FNC(X) : returns the value of the dependent variable C for
a value of the controlled variable X.

A listing of Program P I E C E L N is given below. The program is
rudimentary and no particular efforts have been made to avoid
truncation or rounding errors , or to recognize the possible
existence of ill-conditioning. A R U N with the data of Table 4.4
follows the listing. For the (subjective) choice of knots as shown,
the coefficient of determinat ion is a modest 91 per cent.

48

1 0 REM PIECELN
2 0 REN PIECEWISE LINEAR REGRESSION
3 0 REN FOR DETAILS OP PROCgauss REFER BASIC m a t r i x m e t h o d s
4 0 REN BY J.NASON, BUTTERWORTHS 1 9 8 4
50 DIN C (1 0 0) , N (1 0 0) , n (1 0) , A (l l , l l) , B (l l) , c (l l) , v (l l)
60 e%»&02040A
70
80 PROCinput
90 PROCmatrix

1 0 0 PROCgauss
1 1 0 PROCtrans form
1 2 0 PROCprint
1 3 0 END
140

1 0 0 0 DEF PROCinput
1 0 1 0 CBAR»0 : PRINT : INPUT "NO DATA PAIRS "jNN
1 0 2 0 PRINT "CONTROL DEPENDENT"
1 0 3 0 PRINT "VARIABLE VARIABLE" :PRINT " N " ; T A B (1 1) ; " C "
1 0 4 0 FOR 1= 1 TO NN
1 0 5 0 INPUT N (I) ; T A B (1 0) ; C (I) : CBAR=^CBAR+C (I)
1 0 6 0 NEXT I : CBAR=CBAR/NN
107 0 PRINT:INPUT "No OF LINE SEGS. ";L
1 0 8 0 PRINT : I F L>1 THEN PRINT "KNOT ORDINATE"
1 0 9 0 1=1
1 1 0 0 REPEAT
1 1 1 0 IF K L THEN PRINT S T R $ (1) TAB(10) ; : INPUT n (l)
1 1 2 0 1 = 1+1
1 1 3 0 UNTIL 1>=L
1 1 4 0 ENDPROC
1 1 5 0
2 0 0 0 DEF PROCmatrix
2 0 1 0 A (0 , 0) = N N
2 0 2 0 FOR 1= 1 TO NN
2 0 3 0 B (0) = B (0) + C (I)
2 0 4 0 NEXT I
2 0 5 0 FOR j = 1 TO L
2 0 6 0 FOR 1= 1 TO NN
207IÖ T E R M = N (I) - n { j - 1)
2 0 8 0 IF TERM <0 THEN TERM =0
2 0 9 0 A (0 , j) = A (0 , j) + T E R M
2 1 0 0 NEXT I
2 1 1 0 A (j , 0) = A (0 , j)
2 1 2 0 NEXT j
2 1 3 0 FOR i = 1 TO L
2 1 4 0 FOR 1= 1 TO NN
2 1 5 0 P R O D = N (I) - n (i - l)
2 1 6 0 IF PROD <0 THEN PROD*0
2 1 7 0 B (i) = B (i) + P R O D * C (I)
2 1 8 0 NEXT I
219k) FOR j = 1 TO L
2 2 0 0 FOR 1= 1 TO NN
2 2 1 0 PROD = N (I) - n (j - l) : IF PROD<0 THEN PROD=0
2 2 2 0 P R O D = P R O D * (N (I) - n (i - l)) : I F PROD<0 THEN PROD=0
2 2 3 0 A (i , j) = A (i , j)+PROD
2240 NEXT I
2 2 5 0 NEXT j
2 2 b 0 NEXT i
2 2 7 B ENDPROC
2 2 8 0

Program 4.3 PIECELN: Piecewise linear regression

49

3 0 0 0 DEF PROCgauss
3 0 1 0 FOR K=0 TO L - 1
3 0 2 0 FOR I=K+1 TO L
3 0 3 0 M = - A (K , I) / A (K , K)
3040 FOR J= I TO L
3 0 5 0 A (I , J) = A (I , J)+M*A(K, J)
3 0 6 0 NEXT J
3 0 7 0 B (I) = B (I) + M * B (K)
3 0 8 0 NEXT I
3 0 9 0 NEXT Κ
3 1 0 0 C (L) = B (L) / A (L , I .)
3 1 1 0 FOR I = L - 1 TO 0 STEP - 1
3 1 2 0 D = B (I)
3 1 3 0 FOR J = I + 1 TO L
3 1 4 0 D = D - C (J) * A (I , J)
3 1 5 0 NEXT J
3 1 6 0 c (I) = D / A (I , I)
317 0 NEXT I
3 1 8 0
4 0 0 0 DEF PROCtrans form
4 0 1 0 f = c (0)
4 0 2 0 v (l) = c (l)
4 0 3 0 FOR 1 = 2 TO L
4 0 4 0 v (l) = v (l - l) + c (l)
40 50 NEXT 1
4 0 6 0 ENDPROC
40710
5 0 0 0 DEF PROCprint
5 0 1 0 PRINT : SS=0 : T=0 : PRINT "PIECEWISE LINEAR FIT = "
5 0 2 0 PRINT c (0)
5 0 3 0 FOR 1= 1 TO L
5 0 4 0 PRINT "+ (N - " ; n (l - l) ; ") + * " ; c (l)
5 0 5 0 NEXT 1
5 0 6 0 PRINT : PRINT "OR ALTERNATIVELY"
5 0 7 0 PRINT "FIXED ELEMENT = " ; f rPRINT "MARG. RATE <=KNOT"
5 0 8 0 FOR 1 = 1 TO L
5 0 9 0 PRINT v (l) , n (l)
5 1 0 0 NEXT 1
5 1 1 0 PRINT : PRINT T A B (9) ; " N C FITTED RESIDUAL"
5 1 2 0 FOR 1= 1 TO NN
5 1 3 0 PRINT N (I) , C (I) , F N C (N (I)) , C (I) - F N C (N (I))
5 1 4 0 S S = S S + (C (I) - F N C (N (I))) ' ^ 2 : T=T+(CBAR-C (I))'^2
5 1 5 0 NEXT I
5 1 6 0 C D = (T - S S) / T * 1 0 0
517 0 PRINT : PRINT "COEFF OF DETERMINATION =";CD
5 1 8 0 ENDPROC
5 1 9 0
6 0 0 0 DEF FNC(X)
6 0 1 0 TERM=0 : C = c (0)
6 0 2 0 FOR 1= 1 TO L
6 0 3 0 T E R M = X - n (l - l)
6 0 4 0 IF TERM<0 THEN TERM=0
6 0 5 0 C=C+TERM*C(1)
6 0 6 0 NEXT 1
6 0 7 0 =C

50 Data fitting

RUN

No DATA PAIRS ?10
CONTROL DEPENDENT
VARIABLE VARIABLE

Ν C
? 1 0

? 2 2 0
? 2 0

? 2 5 2
? 3 0

? 2 7 3
? 4 0

? 2 8 1
? 5 0

? 2 9 8
? 6 0

? 2 1 1
? 7 0

? 2 4 0
? 8 0

? 2 7 3
? 9 0

? 2 9 9
? 1 0 0

? 4 0 3

No OF LINE SEGS. ?3

KNOT ORDINATE
1 ?50
2 ? 6 0

PIECEWISE LINEAR FIT =
2 0 9 . 3 0 0 0

+ (N - 0 . 0 0 0 0) + * 1 . 8 5 0 0
+ { N - 5 0 . 0 0 0 0) + * - 1 2 . 3 7 0 0
+ (N - 6 0 . 0 0 0 0) + * 1 4 . 9 5 0 0

OR ALTERNATIVELY
FIXED ELEMENT = 2 0 9 . 3 0 0 0
MARG. PATE <=KNOT

1 . 8 5 0 0
- 1 0 . 5 2 0 0

4 . 4 3 0 0

5 0 . 0 0 0 0
6 0 . 0 0 0 0

Ν C FITTED RESIDUAL
1 0 . 0 0 C 10 2 2 0 . 0 0 0 0 2 2 7 . 8 0 0 0 - 7 . 8 0 0 0
2 0 . 0 0 ()0 2 5 2 . 0 0 0 0 2 4 6 . 3 0 0 0 5 . 7 0 0 0
3 0 . 0 0 C)0 2 7 3 . 0 0 0 0 2 6 4 . 8 0 0 0 8 . 2 0 0 0
40 .00C)0 2 8 1 . 0 0 0 0 2 8 3 . 3 0 0 0 - 2 . 3 0 0 0
5 0 . 0 0 t)0 2 9 8 . 0 0 0 0 3 0 1 . 8 0 0 0 - 3 . 8 0 0 0
6 0 . 0 0 { Ϊ0 2 1 1 . 0 0 0 0 1 9 6 . 6 0 0 0 1 4 . 4 0 0 0
7 0 . 0 0 Í)0 2 4 0 . 0 0 0 0 2 4 0 . 9 0 0 0 - 0 . 9 0 0 0
8 0 . 0 0 (Ϊ0 2 7 3 . 0 0 0 0 2 8 5 . 2 0 0 0 - 1 2 . 2 0 0 0
9 0 . 0 0 (30 2 9 9 . 0 0 0 0 3 2 9 . 5 0 0 0 - 3 0 . 5 0 0 0

1 0 0 . 0 0 (90 4 0 3 . 0 0 0 0 3 7 3 . 8 0 0 0 2 9 . 2 0 0 0

COEFF OF DETERMINATION = 9 1 . 2 1 4 0

P I E C E L N requires the user to input the number of Unear
segments L. It would obviously be advisable to start any at tempt at
data fitting with the simplest case of a Unear fit, and the reader
may care to confirm that a R U N on the data from Table 4.1 with L
= 1 does indeed reproduce the best linear fit. A similar run with
the data of Table 4.4 returns a coefficient of determination of 36

Cost-volume-profit (CVP) analysis 51

per cent, and a further R U N with L = 5 and knots at 3 0 , 5 5 , 5 6 and
95, say, naturally returns an excellent fit of 99.82 per cent.
Presumably one would use the minimum L consistent with
achieving a desired degree of fit. P I E C E L N also requires the user
to select the ordinates of the knot , and it may be far from obvious
precisely what the best values should be .

R U N the program on the data from Table 4.4 with knots at 49
and 61 . You should find a fit with a coefficient of determination of
92.6 per cent. The reader may have wondered throughout this
section whether it is reasonable to ignore the likelihood of a
dramatic discontinuity in mid-range in the data of Table 4.4, and
much depends on the detailed circumstances. The purpose here
has been to use as simple an example as possible to demonstrate
the main analytical points. The reader may care to repeat the task
of fitting a piecewise linear function to the data of Table 4.4 on the
supposition of an abrupt change in manufacturing technology once
55 or more units are produced. Now do Problem* 4.7.

4.4 Cost-volume-profít (CVP) analysis

The general objective in cost-volume-profit (CVP) analysis is to
identify the level of commercial activity which maximizes the
contribution to profits in absolute terms, i.e. maximizes the
revenue less the operating costs. Both costs and revenue functions
are assumed to be piecewise Unear functions.

Piecewise Unear functions can arise quite naturally. The
piecewise Unear production cost C in the foUowing numerical
example arises from the aggregation of linear energy costs C^, and
piecewise linear labour costs C^, machining costs and raw
material costs C^.

The energy cost is a directly variable cost. The labour cost
results from an initial training and famiUarization cost, and a

marginal cost rate which increases once overtime working
becomes necessary to produce large batches. The machining cost

consists of a constant marginal cost per unit of output plus
periodic set-up costs incurred every so many units. The first unit
produced after a second (or subsequent) set-up has a marginal cost
given by the sum of the set-up cost plus the machining cost per se.

A bulk discount applies to the variable raw material costs
beyond a threshold delivery volume, and there is a fixed delivery
cost. The marginal cost of the first unit at the threshold volume
could be negative as in case 1 of Figure 4.5: this occurs if the saving
which foUows the introduction of the discount to the whole
delivery is numericaUy larger than the discounted marginal cost.

52 Data fitting

0 20 40 60 80 100 120 UO 160
Act iv i ty

Figure 4.5 Two cases for piecewise linear raw material costs

A piecewise linear cost-volume relationship is shown in Figure
4.6. Here we find three linear segments, with gradients V^, V2, V2
and knots at Πι and «2.

The cost C of Ν units of activity is then

C = F + K , 7 V for N^n^
F + + V2ÍN - Ni) η^<Ν^η2
F + 1/, TV, + V^2(A^2-A^i) + ν^3(Λ^-Α^2) n2<N

Cost Γ

Act iv i ty Ν

Figure 4.6 A piecewise linear cost-volume relationship

Table 4.5 summarizes the numerical values for parameters F , V
and of the piecewise linear costs for the numerical example and
also gives the marginal rates of revenue r.

The parameters for the production costs C are obtained from
the following:

/ = F ^ + F ^ + F ^ + F ^ and V = + 4- + V^.

Case 2 of Figure 4.5 would apply if the threshold volume were
ordered wherever the actual raw material requirements lay
between this volume and the break-even volume: there is then a
zero marginal cost in this volume range. It is assumed that the
second case applies here .

Cost-volume-profit (CVP) analysis 53

Table 4.5 Piecewise linear parameters

Element Fixed cost Marginal rates for Λ̂ < =
knots

Energy = 0 V,^ = 12 150
Labour =50 V^^= 8 120

= 10 150
Machining F^ = 20 V,^= 7 90

= 27 91
= 7 150

Raw
Materials / ^ = 8 Vi^ = 10 90

= 0 100
= 9 150

Revenue — = 4 5 90
Γ2 = 37 150

It is clear that the marginal costs V have to be selected from the
appropriate range of activity levels. These aggregate production
cost parameters are given in Table 4.6 (the convention is that
lower case symbols are employed for aggregate cost parameters) .

Table 4.6 Parameters for aggregate production cost: data from Table 4.5

Fixed cost Marginal rate for Λ^<= knots

/ = 7 8 v, = 37 90
V2 = 47 91
V3 = 27 100
V4 = 36 120
V5 = 38 150

It is not immediately obvious how one could accomplish this
sorting process in an effective and efficient manner on a large
scale. But the aggregation of cost parameters can be achieved in
stages. We could first choose to aggregate the parameters for the
energy costs {C^} with those of the labour costs C^. The resulting
parameters for {C^ + C^} could be aggregated to those of the
machining costs C ^ . Finally, the parameters for {C^ -f + C^}
could be aggregated to those of the raw materials costs C^. The
first four stages in Table 4.7 illustrate this sequence for the
numerical data of Table 4.5.

It is easy to extend this algorithmic approach to the case of
profitabiUty analysis. The marginal profit rate ρ is given by
ρ = r -l· (-c) where the marginal parameters have to be selected

54 Data fitting

Element of cost or revenue aggregate
Stage Fixed Marginal Knots category

rates

fixed marginal knots
rates

1 / ^ = 50 8 120 / = 0 v i = 12 150
150

/ = 0

2 F^ = 20 V,^= 1 90 /=50 v , = 2 120
V-^ = 27 91

/=50
V 2 = 22 150

150
3 8 = 10 90 /=70 v i = 27 90

^ 2 " " = 0 100 V 2 = 47 91
^ 3 ^ = 9 150 V 3 = 27 120

V 4 = 29 150
4 = 4 5 90 /= -78 V, =-37 90

Γ2 = 37 150 V2 =-47 91
V3 =-27 100
V4 =-36 120
V5 =-38 150

5 PROFIT /=-78 v , = 8 90 /=-78
V2 =-10 91
V 3 = 10 100
V 4 = 1 120
V 5 = -1 150

from the appropriate range of activity levels. Consequently we
take the parameters for the aggregate costs, and reverse the sign of
the marginal and fixed cost parameters prior to the final stage of
aggregation.

This final aggregation results in the profit parameters at the foot
of Table 4.7, from which Figure 4.7 has been constructed.
Contribution to profits are maximized at an activity level of 120. It
is evident from the algorithmic basis of the whole approach that
the profitability relationship is piecewise linear if the cost and
revenue relationships are likewise piecewise Hnear.

Activity

Figure 4.7 A piecewise linear profit-volume relationship

Table 4.7 Sequential aggregation for stages 1 to 5

Cost-volume-profit (CVP) analysis 55

A formal algorithm follows for merging the Ith Une, say, from
the left side of Table 4.7 into the list on the right side, after line
/ - I .

Step 1. If ni_i < Nj < n¿ then introduce an extra line into the
right-hand list after line i-1 with a knot at Nj.

Step 2. A d d Vj to Vy, Vy + 1 , . . . , v¿ in lines / to / respectively where

A computer program can carry out these recursive calculations
very quickly. A short main program dimensions a marginal
parameter array v, and a knot array n, which jointly define a
piecewise linear function with up to 100 linear segments (easily
increased if required) . The main program calls the following
P R O C E D U R E S .

PROCinput_costs : enables the user to input the fixed, and
marginal cost parameters and the knots for
an arbitrarily large number of cost ele­
ments E M A X (= 4 in the above example) .
PROCs tep2 is called after each I N P U T of a
complete set of cost data for the next stage
in the aggregation of parameters .

PROCinput_revenue: reverses the signs of the aggregate cost
parameters and allows the user to input the
marginal revenue data.

PROCstep2 : calls P R O C s t e p l if necessary, and subse­
quently carries out step 2 of the algorithm.

P R O C s t e p l : carries out step 1 of the algorithm.
PROCprin t_ table : prints out aggregate fixed, marginal and

total costs and revenues.

Type in Program C V P from the listing and R U N with the data of
Table 4.5. The output is easy to assimilate and is seen to conform
to earlier results. The program requires very little memory and
executes extremely quickly.

56

Program 4.4 CVP: Cost-volume-profit analysis.
1 0 REM CVP
2 0 REM COST VOLME PROFIT ANALYSIS FOR PIECEWISE LINEAR FNS.
3 0 DIM v (1 0 0) , n (1 0 0)
40
50 P R O C i n p u t _ c o s t s
60 P R O C p r i n t . t a b l e
7 0 P R O C i n p u t _ r e v e n u e
80 P R O C p r i n t _ t a b l e
90 END

1 0 0
1 0 0 0 D E F P R O C i n p u t _ c o s t s
1 0 1 0 INPUT "MAXIMUM VOLUME ",NN
1 0 2 0 INPUT "MAX NO OF COST ELEMENTS",EMAX :Z$="C"
1 0 3 0 REPEAT
1 0 4 0 E=E+1
1 0 5 0 PRINT "COST ELEMENT ";E
1 0 6 0 INPUT "NO OF LINEAR SEGMENTS " , L
1 0 7 0 INPUT "FIXED COST " , F
1 0 8 0 PRINT "MARG. KNOTS"
1 0 9 0 PRINT "COST"
1 1 0 0 PRINT "V","N"
1 1 1 0 FOR 1=1 TO L
1 1 2 0 INPUT V
1 1 3 0 IF K L INPUT T A B (1 0) , N ELSE N=NN
1 1 4 0 IF E = l THEN ν (I) = V : n (I) = N
1 1 5 0 IF E>1 THEN P R 0 C s t e p 2
1 1 6 0 NEXT I
1 1 7 0 IF E = l THEN 1=L : f=F
1 1 8 0 UNTIL E=EMAX
1 1 9 0 PRINT
1 2 0 0 ENDPROC
1 2 1 0
2 0 0 0 DEF P R 0 C s t e p 2
2 0 1 0 IF 1=1 THEN f = f + F : j = l
2 0 2 0 n (0) = 0
2 0 3 0 i = 0
2 0 5 0 REPEAT
2 0 6 0 i = i + l
2 0 7 0 UNTIL N > = n (I - l) + l AND N < = n (i)
2 0 8 0 IF N < n (i) THEN P R O C s t e p l
2 0 9 0 REPEAT
2 1 0 0 v (j) = v (j) + V
2 1 1 0 j = j + l
2 1 2 0 UNTIL j = i + l
2 1 3 0 ENDPROC
2 1 4 0
3 0 0 0 DEF P R O C s t e p l
3 0 1 0 FOR k = l + l TO i + 1 STEP - 1
3 0 2 0 v (k) = v (k - l)
3 0 3 0 n (k) = n (k - l)
3040 NEXT k
3 0 5 0 n (i) = N
3 0 6 0 1=1+1
307 0 ENDPROC
3 0 8 0
4 0 0 0 DEF P R O C p r i n t . t a b l e
4 0 1 0 IF Z$="C" PRINT "COST-VOLUME PARAMETER TABLE"
4 0 2 0 IF Z$="P" PRINT "PROFITABILITY-VOLUME PARAMETER TABLE"
4 0 3 0 PRINT : PRINT "FIXED COMPONENT " ; f : PRINT
4 0 4 0 PRINT TAB(2) "SEGMENT MARGINAL KNOT TOTAL"
4 0 5 0 PRINT T A B (1 4) ; : I F Z$="C" PRINT " COST" TAB(35) "COST"
4 0 6 0 IF Z$="P" PRINT "PROFIT" TAB(33) "PROFIT"
407 Μ C = f I PRINT
4 0 8 0 FOR i = l TO 1
409fc) c = c + v (i) * (n (i) - n (i - l))
4 1 0 0 PRINT i , v (i) , n (i) , c
4 1 1 0 NEXT i
4 1 2 0 PRINT
4 1 3 0 ENDPROC
4 1 4 0

57

6 0 0 0 DEF P R O C i n p u t _ r e v e n u e
6 0 1 0 PRINT "ENTER REVENUE DATA" :Z$="P"
6 0 2 0 FOR i = l TO 1
6 0 3 0 v (i) = - v (i)
6 0 4 0 NEXT i
6 0 5 0 f = - f
6 0 6 0 INPUT "No OF LINEAR SEGMENTS " , L
6 0 / 0 F=0
6 0 8 0 PRINT "MARG. KNOTS"
6 0 9 0 PRINT "REVENUE"
6 1 0 0 PRINT " S " , " N "
6 1 1 0 FOR 1= 1 TO L
6 1 2 0 INPUT V
6 1 3 0 IF K L INPUT T A B (1 0) , N ELSE N=NN
6 1 4 0 P R 0 C s t e p 2
6 1 5 0 NEXT I
6 1 6 0 PRINT
617 0 ENDPROC

RUN
MAXIMUM VOLUME ? 1 5 0
MAX NO OF COST ELEMENTS?4
COST ELEMENT 1
NO OF LINEAR SEGMENTS ?1
FIXED COST ?0
MARG. KNOTS
COST
V Ν
? 1 2
COST ELEMENT 2
NO OF LINEAR SEGMENTS ?2
FIXED COST ?50
MARG. KNOTS
COST
V Ν
?8

? 1 2 0
? 1 0
COST ELEMENT 3
NO OF LINEAR SEGMENTS ?3
FIXED COST ?20
MARG. KNOTS
COST
V Ν
?7

?27
? 9 0

? 9 1
?7
COST ELEMENT 4
NO OF LINEAR SEGMENTS ?3
FIXED COST ?8
MARG. KNOTS
COST
V Ν
?10

? 9 0
?0

? 1 0 0
?9

COST-VOLUME PARAMETER TABLE

FIXED COMPONENT 7 8

SEGMENT MARGINAL KNOT TOTAL
COST COST

1 37 90 3 4 0 8
2 47 91 3 4 5 5
3 27 1 0 0 3 6 9 8
4 36 1 2 0 4 4 1 8
5 3 8 1 5 0 5 5 5 8

58 Data fitting

ENTER REVENUE DATA
No OF LINEAR SEGMENTS ?2
MARG. KNOTS
REVENUE
S Ν
? 4 5

?90
?37

PROFITABILITY-VOLUME PARAMETER TABLE

FIXED COMPONENT - 7 8

SEGMENT MARGINAL KNOT TOTAL
PROFIT PROFIT

1 8 90 6 4 2
2 - 1 0 91 6 3 2
3 10 1 0 0 7 2 2
4 1 1 2 0 7 4 2
5 - 1 1 5 0 7 1 2

Problems

(4.1) Amend L I N E F I T to include a PROCread_da ta which reads
from D A T A statements as an alternative to conversational data
input in PROCinpu t :

50 INPUT "ENTER Y FOR CONVERSATIONAL INPUT, Ν FOR DATA READ", Q$
60 IF Q$ = "Y" THEN PROCinput ELSE PROCread_data

You should devise PROCread_da ta to read NN, and then N(I)
and C(I) for I = 1, 2, . . . , NN from D A T A statements starting at
line 9500. PROCread_da ta should then call PROCdata_pr int
which should tabulate N(I) and C(I) prior to returning to the main
program.

(4.2) A m e n d L I N E F I T to include a PROCedi t which allows the
user to edit the data:

6 5 INPUT "ENTER Ε FOR EDIT OPTION", E$

66 IF E$ = "E" THEN PROCedi t

You should devise PROCedi t so that the user can conveniently
edit any item(s) of data .

(4.3) There are occasions when the value of F is known in
advance, the so-called *forced intercept ' case. This gives rise to the
following expression for V which minimizes the sum of squared
residuals:

^{Cj-F)Nj

This result is contained in standard works on regression theory.
A m e n d PROCparame te r s of L I N E F I T to work in this way, and

Problems 59

r e R U N using F = 4 and the data of Table 4 .1 . PROCinpu t should
allow the user to specify F, Note that the concept of a coefficient of
determination is not valid here , since a very poor choice of F c o u l d
easily lead to a sum of squared residuals in excess of 2 (C / - Cf.
So make the following amendments to PROCpr in t .

3 0 0 5 SS = 0
3 0 6 5 SS = SS + (C (I) - F - V * N (I))'^2
3 0 8 0 PRINT : PRINT " R . M . S . ERROR = SQR(SS/NN)

(4.4) Develop the program from Problem 4.3 to allow the user to
input a value for a false origin NO for the controlled variable N .
Then make the changes

1 0 5 5 N (I) = N (I) - N0
3 0 2 0 PRINT F; " + " , - ν ; " * (N - N 0) ' '
3 0 6 0 PRINT N (I) + N0 , C (I) , F + V * N (I) , C (I) - F - V * N (I)
40 55 Ν = N=N0

A R U N with F = 8.9314 and NO = 48 and six data pairs (i .e.
exclude the case Ν = 48) will force the regression through the
point 48, 9.9314 and the results should therefore tally exactly with
the R U N of L I N E F I T in the text.

(4.5) The non-linear relationship >̂ = ß*/?"" can be transformed into
a linear relationship between the log y and variable x.

analogous to log y= log α -h log ft * Λ:
C = F + V* Ν

Modify the program from Problem 4.4 to take the LOG(C(I)) and
L O G (F) in the lines following their INPUTs .

Wri te b = (1 -h R/lOO) where R is an average percentage rate
given by R = 100*(b - 1) or R = 100*(10^ - 1). Print out R and
amend line 4090 to print 10"". Now use this program to find an
average annual rate of inflation R % and to estimate the RPI for
1985 and 1986 from the following data.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984
RPI 157.1 182.0 197.1 223.5 263.5 295.0 320.4 335.1 351.8

(Average annual index values from table 18.3, Monthly Digest of
Statistics, H M S O .)

Force an intercept of 351.8 in 1984 and R U N with the data from
preceding years, and then R U N with 1980 to 1983 data. What
qualifications attach to these forecasts? (The actual average RPI
was 373.2 in 1985.)

(4.6) The works accountant needs to budget for maintenance costs
on chemical plant for the coming year. Plant is shut down for

60 Data fitting

maintenance every three months , and the following costs were
incurred last year:

Quar te r 1 2 3 4
Shut-down cost (£Ό00) 8.0 6.4 6.0 5.6

Modify L C U R V E to print-out the ' rate of learning' 2"^ and the
sum of predicted costs for quarters 5 to 8. What qualifying
observations attach to this forecast?

*(4.7) Develop P I E C E L N to allow the user to select provisional
knot ordinates, and then, for each knot in turn, to specify a
number of trial evaluations for knot ordinates over a stated range.
A knot must be contained within the range given by its adjacent
knots and there must be at least one data point between each knot.
Find the best fitting Hues with L = 1, 2, 3 , 4, 5 for the data of Table
4.4.

*(4.8) A particular product has the following price structure:

Quantity ordered q 1-99 100-249 250-499 500-999 1000+
Unit price p(q) 10.20 9.95 9.65 9.30 8.80

The total annual cost of stockholding C is the sum of the annual
purchase costs and the interest costs on the capital tied up in
stocks. If the rate of interest is / % per annum, and the average
weekly demand is for 10 stock items then it can be shown that

C = 520 p{q) -^O.Sql p(q)

Use CVP to derive the piecewise linear cost function C, and show
that the opt imum stock policy is to order 250 items when / = 20%
at an annual cost of £5066.

*(4.9) Develop C V P to identify the opt imum solution automati­
cally for Problem 4.8, and to step through the values of / from 8%
to 2 6 % . Use the results to plot the opt imum batch size against / .

*(4.10) A particular product has the following piecewise linear
revenue-volume relationship, and incremental fixed costs. Show,
using C V P , that the opt imum output is 8000 units if all of it can be
sold.

Quantity sold < = 1 0 0 0 < = 4 0 0 0 < = 9 0 0 0 < = 1 1 0 0 0 < = 1 5 0 0 0
Unit revenue £ 1.75 2.00 2.30 1.80 0.50
Incremental fixed costs 5000 at 0 units 8000 at 8000 units

Problems 61

*(4.11) In addition to the product from Problem 4.10 the company
can produce a second with the following piecewise linear
parameters :

Quanti ty sold ^ = 6 0 0 0 ^ = 1 1 0 0 0 ^ = 1 8 0 0 0
Unit revenue £ 2.25 2.0 1.0
Inc. fixed costs £ 4000 at 0 units 5000 at 10000 units

If each unit takes 0.5 machine hours and 0.42 machine hours for
products one and two respectively, find the opt imum product mix
if machine time is limited to 10000 hours .

Hint: Transform the volume parameters to the machine-time
domain and R U N CVP for each product individually. Graph the
profit-time relationship for each product on the same graph. Work
towards the constrained opt imum from the unconstrained
opt imum being guided by the marginal profit rates.

*(4.12) Restructure step 2 of the algorithm for cost-volume-profit
analysis to work on the basis of the following formulation of
piecewise linearity (from Section 4.3):

C = Co + Σ Cj {N - ny_i)+ where {N - nj.i)+ = Ν - nj.i if > 0
j = 0 otherwise

Amend CVP to work on this basis.

C h a p t e r 5

Critical path network analysis

Essential theory

5.1 Introduction

The launch of a new product , an increase in manufacturing
capacity, or perhaps the commissioning of a computerized
accounts system are examples of major projects. In every case a
major project management team will find it necessary to plan the
project , and then control its execution.

These can be formidable tasks if the project is capital intensive,
involves a complex set of interrelating factors, and if the success of
the project is vital to long-term development. Further difficulties
arise when it is necessary to coordinate a range of activities, each
with its own demands upon managements ' time and resources.

Network analysis has been developed specifically to assist the
project manager to understand the ramifications for the project as
a whole of the detailed arrangements of individual aspects. It is
applied as a routine in large civil engineering projects. But there is
hardly an area of industry or commerce which has not had
recourse to network analysis at some time to assist the rational
management of projects of every conceivable description.

A small-scale project has been chosen here as a vehicle for
describing the methodology. Even so the reader may well come to
a favourable judgement on the utility of the approach. We suppose
that a company has decided to introduce a modern system of
networked micros for automating the routine clerical tasks of an
existing accounts office. This project clearly involves a range of
preparatory activities. A t the very least, these will include: the
collection of information about suitable systems; the recruitment
of systems analysts; the development of new accounting systems
and procedures ; training existing staff in the new methods; making
arrangements to phase out the old and phase in the new; and
organizing maintenance contracts for the new equipment .

These major project activities are listed in Table 5 .1 , where each
activity is associated with an identifying index from 1 to 10. The

62

Introduction 63

Index I Activity ΙΡΛ Duration Τ
(weeks)

1 Draw up a short list of suitable systems — 4
2 Appraise selected systems 1 8
3 Make a final choice of system 2 3
4 Order and obtain selected system 3 12
5 Develop new systems and procedures 3,8 24
6 Train staff in new procedures 4,5 8
7 Phase in the new procedures 6,9,10 4
8 Recruit systems analysts — 6
9 Document the new procedures 5 12

10 Arrange maintenance contracts 3 5

The development of a dependency table like this is a major
organizational challenge in itself. Success in a complex project,
automating the routine procedures in the accounts office in this
example, requires that the organization be capable both of
generating the information on which to plan ahead, and of
encouraging its people into new pat terns of work.

The office automation project has been described in terms of
'activities' each of which require ' resources ' (only time in this
example) , and which interrelate through a set of stated IPA. But
the interrelation of activities Usted in Table 5.1 can be more
readily assimilated from a network diagram, as in Figure 5 .1 . Each
node of this network diagram is a specified activity, and the arcs
convey the sense in which the start of one activity depends upon
the prior completion of all those in the IPA list.

Notice that the network diagram includes a 'start ' and a 'finish'
node. The start node is impUcitly the preceding 'activity' to nodes
1 and 8 respectively, since these activities have no entry in their
IPA lists and may be started without delay. Fur thermore , aU other
activities have to be finished before activity 7 can commence, so it
must foUow that node 7 is the only IPA to the finish 'activity'. The
arcs show the logical (dependency) relationships between the
activities. The convention followed in Figure 5.1 is defined in
Figure 5.2. The convention adopted here is to label with the

table also records whether the start of any activity is dependent
upon the prior completion of other activities. These Immedia te ly
Preceding Activities' (IPA) represent managements ' considered
opinion on how the activities interlock and interrelate with one
another . Notice that some activities have no IP A , some have only
one , and yet others have several. A final column gives the
expected durat ion of each activity (in weeks) .

Table 5.1 A dependency table for accounts office automation project

64 Critical path network analysis

6

Start n i s h

Figure 5.1 An activity on node network diagram: data from Table 5.1

duration of the activity any arc incident from the node associated
with the activity. Thus the arcs inc ident / rom node 3 to nodes 4, 5,
and 10 are labelled with the duration of activity 3 which is T3 = 3
(weeks). The initial arcs are labelled with zero since activities 1
and 8 may commence immediately.

The completion of activity X precedes the start of Y
Activity X has durat ion Τχ
Activity Y has durat ion Ty

Figure 5.2 Labelling the arcs of an activity on node network diagram

The reader has probably noticed that the network of nodes is
highly structured. That is to say that the network is progressive,
that all the arcs are oriented from left to right; none is oriented
vertically or from right to left. Therefore the general progression of
the activities runs from start to finish. For an example, activity 8
must be completed before activity 5 is started, which awaits the
completions in turn of activities 3, 2 and 1. But the relative timings
of the start of the activities, cannot be inferred solely from the
dispositions of the nodes on the network. The relative timings
depend on the activity durations.

The network of Figure 5.1 displays sufficient information to
calculate the Earliest Start Time (EST) and the Latest Start Time
(LST) of every activity on the supposition that the project must be
begun immediately and completed as soon as possible. The
progressive character of the network ensures that simple

The construction of a progressive network 65

start

Nodes labelled Crit ical path

Figure 5.3 Activity on node network diagram, showing the EST, LST,
and the critical path: data from Table 5.1

The project can be finished in a minimum period of 55 weeks.
Activity 2 must start after 4 weeks, for example, whereas activity 8
can start at any t ime before the end of the ninth week.

When an activity has an earliest start time which coincides with
its latest start t ime then any delay in its start will delay the earliest
completion of the entire project. Such activities are described as
'critical', since management has no leeway in arranging the
starting times. A 'critical path ' from start to finish nodes through
critical activities is shown in Figure 5.3 above. But note that in
other examples there may be more than one critical path.

Activities not on the critical path(s) will have an EST which is
earlier than the LST. The difference between the two is called
' total float' since management has , at a very maximum, this
measure of discretion in varying the starting time. In fact there are
several types of float (and the details are described later in
Problem 5.7).

5.2 The construction of a progressive network

The calculation of EST and LST is a straightforward matter when
the network is progressive. The network may be displayed on a
monitor without ambiguity even when the arcs are shown as
undirected edges. The method described below for the generation
of a progressive network will also signal any contradictory logic
which may be obscure but none the less present in the lists of
IPA.

arithmetic is all that is required (details are provided later) . Note
the convention for wanting the calculated values of the EST and the
LST above and below the activity nodes , as illustrated in Figure
5.3.

66 Critical path network analysis

O n e can envisage a rectilinear grid of horizontal and vertical
rulings with activities positioned only at the nodes, i.e. intersec­
tions. The idea is to locate the activities at the nodes on this grid,
starting from the left-hand vertical ruling and working to the
right. A s many activities as possible are located on each vertical
ruling while maintaining the convention of a progressive network,
that the arcs which show the IPA logic must be oriented to the
right.

The method is i terative, and successive iterations correspond to
the allocation of activities to the nodes of successive vertical grid
rulings. The iterations end when all the activities have been
allocated. The algorithm can be described as follows:

Carry out the following two steps at each iteration:

Step 1: Locate activities at nodes of the current vertical ruling if
and only if they have empty IPA lists (as reduced by step 2
in earlier i terations).

Step 2. Dele te from all the IPA lists all those activities which have
been located in step 1.

This algorithm (due to Fulkerson) is easy to carry out on the data
of Table 5 .1 . A note is made of the activities which have been
located in step 1 at each iteration, and deletions in step 2 can be
shown by crossings out . A failure to locate any activity in step 1,

Table 5.2 The allocation of activities to the nodes of a progressive network, using
the algorithm in the text and the data of Table 5.1

Activity Iteration {vertical ruling}^''^
0^-'^ 1 2 3 4 5 6 7

2 V Τ z z z z z z
3 2 2 t _ _ _ _ _
4 3 3 3 Í _ _ _ _
5 3,8 3,0 3 ^ _ _ _ _
6 4,5 4,5 4,5 4,5 _ _ _
7 6,9,10 6,9,10 6,9,10 6,9,10 6,9,/0 — —

9 5 5 5 5 f — — —
10 3 3 3 Í _ _ _ _
Finish 7 7 7 7 7 7 / —

Activities
located in
stepl^''^ start 1,8 2 3 4,5,10 6,9 7 finish
Notes: (a) The start node is trivially located at iteration 0, and is omitted from ail the IPA to preserve clarity of

presentation.
(b) Assigned in index order to horizontal rulings about the horizontal axis of the network (one ruling

above and then one below, two rulings above and then two below, etc.).
(c) Deletions in step 2 indicated by crossings out.

The construction of a progressive network 67

1 2 1 2 2
2 3 2 3 3
3 1 3 1 1

Locate start

Program P R O G N E T is designed to carry out the algorithm
described above. It consists of a short main program which
dimensions arrays in order to accept up to 100 activities and up to
10 IPA per activity. It sequences PROCinpu t , PROCterminal and
P R O C r e o r d e r as follows:

PROCinpu t : allows the user to input the dependency table for
activity Y, for Y = 1, 2, . . . , N. Each activity Y
has an IPA list which is stored in an array
P R E C (Y , I) and the element P R E C (Y , 0) stores
the number of preceding activities. I M A X is set
equal to the maximum of the P R E C (Y , 0) over
all Y. Elements of an array T E R M I N A L (X) are
set to - 1 for any activity X which is contained in
the union of activities in the separate IPA lists.

PROCtermina l : accumulates the set of IPA for the Finished node
Ν + 1 in P R E C (N + 1,1), where 1 = 1 , 2 , . . . ,
P R E C (N + 1, O) .

PROCreorde r : controls the iterative nature of the algorithm
via the variable IT, which corresponds to the
index of the vert ical grid rul ing. Calls
P R O C s t e p l at each iteration, and locates the
Finished node Ν + 1 on completion. Calls
PROCres to re .

when some one or more activities remain to be located, will
indicate a contradictory dependency logic. Table 5.2 should be
self-explanatory.

The reader can check that the bot tom row of the table
corresponds to the disposition of the nodes on Figures 5.1 and 5.3.
The arcs can then be drawn from each activity in accordance with
the original I P A Hst.

If you try to construct a progressive network for the data in
Table 5.3 it soon becomes apparent that the lists of I P A are
mutually contradictory.

Table 5.3 Demonstration of the algorithm on a set of inconsistent data

Data Algorithm
Iteration

Activity IPA Activity 0 1

68 Critical path network analysis

P R O C s t e p l : corresponds to the description of step 1 in the
text above, using the test P R E C (Y , 0) = O
whereupon an activity Y, say, is assigned to an
array N O D E (I T , K) , where the index Κ corres­
ponds to a horizontal grid ruling. Further arrays
IT(Y) and K(Y) store ' the χ and y coordinates '
IT and Κ of the node for activity Y. Updates
K M A X the maximum value of Κ found to date .
Prints unfeasible network ' as appropriate or
calls PROCstep2 for every unassigned activity.

PROCstep2 : corresponds to the description of step 2 in the
text above; deletion of the activity Y from the
I P A list of activity X is achieved by reversing the
sign of the element storing Y in the array
P R E C (X , I) , and the value of P R E C (X , 0) is
reduced accordingly.

PROCres to re : restores the array PREC(Y, I) to its earlier
condition following PROCinput .

Type in P R O G N E T from the listing below.

Program 5.1 PROGNET: Assigns activities to nodes of a
progressive network

1 0 REM PROGNET
2 0 REM SEQUENCES ACTIVITIES BY FULKERSON'S APPROACH
3 0 REM FOR AN ACTIVITY ON NODE PLANNING NETWORK
40 REM IN ORDER TO CONSTRUCT A PROGRESSIVE NETWORK
50 DIM P R E C (1 0 0 , 1 0) , N O D E (1 0 , 1 0) , I T (1 0 0) , K (1 0 0) , T E R M I N A L (1 0 0)
60
7 0 PROCinput
80 P R O C t e r m i n a l
90 PROCreorder

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "HOW MANY ACTIVITIES Ν
1 0 2 0 PRINT "NOW INPUT THE PRECEDENCE RELATIONSHIPS"
1 0 3 0 PRINT "ON EACH PROMPT ENTER A PRECEDING ACTIVITY"
1 0 4 0 PRINT "ENTER ZERO WHEN NONE REMAIN"
1 0 5 0 PRINT : PRINT " ACTIVITY PREDECESSOR"
1 0 5 5 IMAX=0 : KMAX=0
106 0 FOR Y= 1 TO Ν
1 0 7 0 1=0 : PRINT
1 0 8 0 PRINT Y;
1 0 9 0 REPEAT
1 1 0 0 1=1+1
1 1 1 0 INPUT TAB(25) X
1 1 2 0 IF X>0 THEN P R E C (Y , 0) = P R E C (Y , 0) + 1
1 1 3 0 IF X>0 THEN PREC(Y, I)=X : TERMINAL(X)=-1
1 1 4 0 UNTIL X=0
1 1 5 0 IF I>IMAX THEN IMAX=I
117 0 NEXT Y
1 1 8 0 PRINT
1 1 9 0 ENDPROC
1 2 0 0

The construction of a progressive network 69

1 5 0 0 DEF P R O C t e r m i n a l
1 5 1 0 1=0
1 5 2 0 FOR X= 1 TO Ν
1 5 J 0 IF TERMINAL(X)=0 THEN 1=1+1 : P R E C (N + 1 , I) = X
1 5 4 0 NEXT X
1 5 5 0 P R E C (N + 1 , 0) = 1
1 5 6 0 ENDPROC
1 5 7 0
2 0 0 0 DEF PROCreorder
2 0 1 0 Z=0 : IT=0 : I T (0) = 0 : K { 0) = 1
2 0 2 0 REPEAT
2 0 3 0 PRINT : I T = I T + 1
2 0 4 0 P R O C s t e p l
2 0 5 0 UNTIL Z=N
2 0 6 0 N 0 D E (I T + 1 , 1) = N + 1
207 kJ NODE (I T + 1 , 0) =1
2 0 8 0 P R O C r e s t o r e
2 0 9 0 ENDPROC
2 1 0 0
2 5 0 0 DEF P R O C r e s t o r e
2 5 1 0 FOR Y= 1 TO Ν
2 5 2 0 J=0
2 5 3 0 FOR 1= 1 TO IMAX
2540 IF P R E C (Y , I) < 0 THEN J = J + 1
2 5 5 0 IF P R E C (Y , I) < 0 THEN P R E C (Y , I) = - P R E C (Y , I)
256 0 NEXT I
2 57 0 P R E C (Y , 0) = J
2 5 8 0 NEXT Y
2 5 9 0 ENDPROC
2 6 0 0
3 0 0 0 DEF P R O C s t e p l
3 0 1 0 K=0 : PRINT "REORDERING ITERATION " ; I T
3 0 2 0 FOR Y= 1 TO Ν
3 0 3 0 IF P R E C (Y , 0) = 0 THEN K=K+1 : PRINT Y;" AT NODE " ; I T ; " , " ; K
3040 IF P R E C (Y , 0) = 0 THEN Z=Z+1 :NODE(IT,K)=Y : I T (Y) = I T :K(Y)=K
3 0 5 0 IF P R E C (Y , 0) = 0 THEN P R E C (Y , 0) = - 1
306 0 NEXT Y
307 0 NODE{IT,0)=K
3 0 8 0 IF K>KMAX THEN KMAX=K
3 0 9 0 IF K=0 THEN PRINT "INFEASIBLE NETWORK" : END
3 1 0 0 FOR X= 1 TO Ν
3 1 1 0 IF PREC(X,0) > 0 THEN P R 0 C s t e p 2
3 1 2 0 NEXT X
3 1 3 0 ENDPROC
3140
4 0 0 0 DEF P R 0 C s t e p 2
4 0 1 0 FOR k= 1 TO Κ
40 20 FOR 1= 1 TO IMAX
4 0 3 0 IF P R E C (X , I) = N O D E (I T , k) THEN P R E C (X , 0) = P R E C (X , 0) - 1
4 0 4 0 IF P R E C (X , I) = N O D E (I T , k) THEN P R E C (X , I) = - P R E C (X , I)
40 50 NEXT I
4 0 6 0 NEXT k
407 k) ENDPROC
4 0 8 0

When satisfied with the accuracy of your Usting you should R U N
with the data of Table 5 .1 . Note that a zero is entered to indicate
the end of each Ust of IPA (pressing the R E T U R N key enters a
zero on the B B C Micro) . The output corresponds to the results in
the lower half of Table 5.2, and the grid is displayed in Figure 5.4.

70

K r 2

Κ=1 start -Finish

K = 3

I I "'|- I I I
ITrO IT=1 1T=2 IT=3 IT=4 IT=5 IT=6 IT=7

Figure 5.4 Assignment of activities to nodes of a progressive network:
data from Table 5.1

RUN
HOW MANY ACTIVITIES ? 1 0
NOW INPUT THE PRECEDENCE RELATIONSHIPS
ON EACH PROMPT ENTER A PRECEDING ACTIVITY
ENTER ZERO WHEN NONE REMAIN

ACTIVITY

1

2

PREDECESSOR

6
9
1 0

8

9

10

REORDERING ITERATION 1
1 AT NODE 1 , 1
8 AT NODE 1 , 2

REORDERING ITERATION 2

2 AT NODE 2 , 1

REORDERING ITERATION 3

3 AT NODE 3 , 1

Earliest and latest start analysis 71

REORDERING ITERATION 4
4 AT NODE 4 , 1
5 AT NODE 4 , 2

1 0 AT NODE 4 , 3

REORDERING ITERATION 5
6 AT NODE 5 , 1
9 AT NODE 5 , 2

REORDERING ITERATION 6

7 AT NODE 6 , 1

The reader should now do Problem 5 .1 .

5.3 Earliest and latest start analyses

It is a simple mat ter to calculate the EarUest Start Time (EST) for
each activity. The start of activity Y, say, must be preceded by the
completion of each immediately preceding activity. It follows that

E S T Y = MAXxeiPA of Y { E S T X + Τχ} where E S T Q = 0
= ESTp (Y) + Tp (Y)

where P(Y) is written for the 'maximizing' X. (Note that P(Y)
need not be unique.)

Since the activities are assigned to the nodes of a progressive
network, the EST could be calculated recursively, from the
left-hand vertical ruling to the right-hand vertical ruling.
Alternatively, the EST calculation can be made immediately an
activity is assigned to a node of the progressive network. Taking
either approach one would find for the data in Figure 5.1 that

ESTo = 0
ESTi = ESTo + 0 = 0 Pi = 0
EST« = ESTo + 0 = 0 Ps = 0
EST2 = ESTi + Ti = 4 P2 = 1
EST3 = EST2 + T2 = 12 P3 = 2
EST4 = EST3 + T3 = 15 P4 = 3
EST5 = MAX{EST3 + T3; ESTg + Tg} = 15 P5 = 3
ESTio = EST3 + T3 = 15 Pio = 3
ESTe = MAX{EST4 + T4; EST5 + T5} = 39 Pe = 5
EST9 = EST5 + T5 = 39 P9 = 5
EST7 = MAX{EST6 + Te; EST9 + T9; ESTjo + Τ^} = 51 P7 = 9
ESTi i = E S T , + T7 = 55 Pl l = 7

It is now easy to trace the critical path back from node (N -h 1). In
the present example this gives the unique sequence.

Pll = 7 P7 = 9 P9 = 5 P5 = 3 ?3 = 2 P2 = 1

72 Critical path network analysis

LSTi , — 55
LST7 _ L S T „ - T7 = 51
LSTe _ LST7 - T e = 43
LST9 _ LST7 _ T 9 = 39
LST4 LST6 - T 4 = 31
LST5 _ MIN{LST6 - T5; LST9
LSTio = LST7 - T i o = 46
LST3 _ MIN{LST4 - T3; LST5
LST2 _ LST3 - T 2 = 4
LSTi _ LST2 - T i = 0
LSTg = LST5 - T g = 9

T5} = 15

T3; LSTio - T3} = 12

Make the following changes and additions to P R O G N E T . The
resulting program, called C R I T P A T , allows the user to input the
activity duration into array Τ prior to inputting the list of IPA.
Three new P R O C E D U R E S , PROCearliest_start , PROClates t_
start and PROCpr in t are called at the end of the main
program.PROCearl ies t_star t and PROClatest_start are based
very closely upon the description of the calculations of EST and
LST. PROCpr in t is an output procedure which tabulates the
activities which have been assigned to each node of the progressive
network. It also prints a list of EST, LST and total float.

Suppose that activity Ζ is an Immediately Succeeding Activity
(ISA) to activity Y. Then the Latest Start Time, L S T Y , of activity
Y is given by

L S T Y = M I N {LSTz - Τ γ } where L S T N + I = E S T N + I
Ζ ε ISA of Y

This follows the recognition that L S T Y must be the smallest sum
LSTz ~ Τ γ . These calculations proceed recursively across the
progressive network from the right to the left. In the present
example based on Figure 5.1 one finds

73

1 0 REM CRITPAT
2 0 REM CONDUCTS EARLIEST AND LATEST START TIME ANALYSIS
3 0 REM FOR AN ACTIVITY ON NODE PLANNING NETWORK
40 REM AND FINDS A CRITICAL PATH
6 0 DIM P { 1 0 0) , E S T (1 0 0) , Τ (1 0 0) , L S T (1 0 0)

1 0 0 P R O C e a r l i e s t _ s t a r t
1 1 0 P R O C l a t e s t ^ s t a r t
1 2 0 PROCprint
1 3 0 END
140

1 0 5 0 PRINT : PRINT " ACTIVITY DURATION PREDECESSOR"

1 0 7 0 1=0 : LST(Y)=10'^10
1 0 8 0 PRINT Y; : INPUT TAB(19) T(Y)

1 1 1 0 INPUT TAB(31) X

5 0 0 0 DEF P R O C e a r l i e s t _ s t a r t
5 0 1 0 VDU 5
5 0 2 0 FOR i t - 1 TO IT+1
5 0 3 0 FOR k = 1 TO N O D E (i t , 0)
5 0 4 0 y = N O D E (i t , k)
5 0 5 0 FOR 1= 1 TO PREC(Y,0)
5 0 6 0 X=PREC(Y,I)
5 0 7 0 IF X O 0 THEN IF E S T (y) < E S T (X) + T (X) THEN P(Y)=X
5 0 8 0 IF X O 0 THEN IF EST (Y)<EST (X)+T (X) THEN EST (Y) =EST (X)+T (X)
50910 NEXT I
5 1 0 0 NEXT k
5 1 1 0 NEXT i t
5 1 2 0 ENDPROC
5 1 3 0
6 0 0 0 DEF P R O C l a t e s t _ s t a r t
6 0 1 0 LST(N+1)=EST(N+1)
6 0 2 0 FOR i t = IT+1 TO 2 STEP - 1
6 0 3 0 FOR k = 1 TO N O D E (i t , 0)
6 0 4 0 y = N O D E (i t , k)
6 0 5 0 FOR 1= 1 TO PREC(Y,0)
6 0 6 0 X = P R E C (y , I)
6 0 / » IF X O 0 THEN IF LST{X) > L S T (Y) - T (X) THEN L S T (X) = L S T (Y) - T { X)
6 0 8 0 NEXT I
6 0 9 0 NEXT k
6 1 0 0 NEXT i t
6 1 1 0 ENDPROC
6 1 2 0
6 5 0 0 DEF PROCprint
6 5 1 0 PRINT : PRINT "ITERATION INDEX ACTIVITY"
6 5 2 0 PRINT TAB(3) " i t " ; T A B (1 7) "k"
6 5 J 0 FOR i t « l TO IT
6 5 4 0 FOR k = l TO N O D E (i t , 0)
6 5 5 0 PRINT T A B (4) ; i t ; T A B (1 7) ; k ; T A B (2 5) ; N O D E (i t , k)
6 5 6 0 NEXT k
6 5 7 0 NEXT i t
6 5 8 0 PRINT : PRINT
6 5 9 0 PRINT "ACTIVITY EARLIEST LATEST FLOAT"
6 6 0 0 PRINT " START START"
6 6 1 0 PRINT " y EST(Y) LST(Y) LST-EST"
6 6 2 0 FOR Y « l TO Ν
6 6 3 0 PRINT T A B (3) ; Y ; T A B (1 5) E S T (Y) ; T A B (2 6) L S T (Y) ; T A B (3 6) L S T (Y) - E S T (Y)
6 6 4 0 NEXT Y
6 6 5 0 PRINT "FINISH";TAB(15) E S T (N + 1) ; T A B (2 6) L S T (N + 1) ; T A B (3 6) " 0 "
6 6 6 0 PRINT : PRINT
6 6 7 0 PRINT "CRITICAL PATH"
6 6 8 0 y « P (N + l)
6 6 9 0 REPEAT
6 7 0 0 PRINT Y,
6 7 1 0 Y = P (y)
6 7 2 0 UNTIL Y=0
6 7 3 0 ENDPROC

74 Critical path network analysis

R U N this program, called ' C R I T P A T ' , with the data of Table
5 .1 , noting that the activity duration is requested prior to the list of
IPA. The final part of the output , which is shown below,
corresponds to the results obtained earlier in this section. You
should note that this program ignores the possibility of multiple
critical paths , and this aspect is left as an exercise. D o Problems
5.3 to 5.7 now.

ITERATION INDEX ACTIVITY
i t k

1 1 1
1 2 8
2 1 2
3 1 3
4 1 4
4 2 5
4 3 1 0
5 1 6
5 2 9
6 1 7

ACTIVITY EARLIEST LATEST FLOAT
START START

Y EST{Y) LST(Y) LST-EST
1 0 0 0
2 4 4 0
3 12 1 2 0
4 15 3 1 16
5 1 5 1 5 0
6 39 43 4
7 51 51 0
8 0 9 9
9 39 39 0
1 0 15 46 31

FINISH 55 55 0

CRITICAL PATH

5.4 Graphics output

It is obviously desirable to have a network displayed on the
monitor , at least for small illustrative examples. The following
procedures produce a graphics output which resembles the
network diagram of Figure 5.3. The general approach is to offer
the user the option of a graphics output ; flag G$ = 'Y ' if graphics
are required. If it transpires that more than five horizontal or eight
vertical grid rulings are necessary, then the graphics option is
withdrawn automatically, and flag G$ = 'N ' .

The activity indices are placed on the network grid in

Graphics output 75

1 0 REM NETWORK
20 REM DRAWS ACTIVITIES AND NETWORK LOGIC
30 REM FOR AN ACTIVITY ON NODE NETWORK
40 REM DISPLAYS TIME ANALYSIS AND A CRITICAL PATH

1 0 0 MODE 4 : P R O C e a r l i e s t _ s t a r t
1 1 0 P R O C l a t e s t _ s t a r t
1 2 0 IF G$<>"N" THEN P R O C s c r e e n _ d r i v e r
1 3 0 IF G$<>"N" THEN PROCdraw_t imes
1 4 0 IF G$<>"N" THEN P R O C s c r e e n _ d r i v e r
1 5 0 IF G$<>"N" THEN P R O C d r a w _ c r i t _ p a t h
1 6 0 IF G$<>''N" THEN P R O C s c r e e n _ d r i v e r
17 0 MODE 7 : PROCprint
1 8 0 END
190

1 1 8 0 PRINT : INPUT "GRAPHICAL OUTPUT? (Y OR N) " , G $
1 1 9 0 ENDPROC
1 2 0 0

2 0 9 0 IF IT>8 THEN G$="N"
2 1 0 0 ENDPROC

2 1 1 0

3 080 IF K>KMAX THEN KMAX=K : I F K>7 THEN G$="N"

5 0 4 5 IF G$<>"N" THEN P R O C d r a w _ a c t i v i t y

5 0 6 5 IF i t = l AND G$<>"N" THEN P R O C d r a w _ l o g i c

5 0 6 6 IF X O 0 AND G$<>"N" THEN P R O C d r a w _ l o g i c
7 0 0 0 DEF P R O C d r a w _ a c t i v i t y
7 0 1 0 MOVE F N x (i t) , F N y (k) : PRINT STR$(Y)
7 0 2 0 ENDPROC
7 0 3 0
7 500 DEF P R O C d r a w _ l o g i c
7 5 1 0 MOVE F N x (i t) - 1 6 , F N y (k) - 1 6
7 5 2 0 PLOT 2 9 , F N x (I T (X)) + 6 4 , F N y (K { X)) - 1 6
7 5 3 0 ENDPROC
7 5 4 0
7 8 0 0 DEF P R O C s c r e e n _ d r i v e r
7 8 1 0 MOVE 0 , 2 4 : PRINT "PRESS SPACE BAR TO CONTINUE"
7 8 2 0 REPEAT : UNTIL GET$=" "
7 8 3 0 ENDPROC
7 8 4 0

PROCdraw_activi t ies , and the network logic is plotted in
P R O C d r a w J o g i c . Both these procedures are called from P R O C -
earliest_start. PROCscreen_dr iver halts the graphics display and
the user can proceed at his leisure by a tap on the space bar. This
activates PROCdraw_t imes which displays the EST and LST
alongside the nodes , and a further tap of the space bar activates
PROCdraw_cri t_path . A final tap of the space bar yields the
tabular print summary of PROCpr in t .

Make the following changes and additions to Program
C R I T P A T

76 Critical path network analysis

8 0 0 0 DEF PROCdraw_t imes
8 0 1 0 FOR i t = 1 TO IT+1
8 0 2 0 FOR k= 1 TO N O D E (i t , 0)
8 0 3 0 MOVE F N x (i t) , F N y (k) + 3 2
8 0 4 0 T = E S T (N O D E (i t , k))
8 0 5 0 PRINT STR$(T)
8 0 6 0 MOVE F N x (i t) , F N y (k) - 3 2
80/k) T = L S T (N O D E (i t , k))
8 0 8 0 PRINT STR$(T)
8 0 9 0 NEXT k
8 1 0 0 NEXT i t
8 1 1 0 ENDPROC
8 1 2 0
8 5 0 0 DEF P R O C d r a w _ c r i t _ p a t h
8 5 1 0 X=N+1 : I T (N + 1) = I T + 1 : k = l
8 5 2 0 REPEAT
8 5 3 0 Y=X
8540 i t = I T (Y) : k=K(Y)
8 5 5 0 MOVE F N x (i t) - 1 2 , F N y (k) - 1 2
8 5 6 0 X=P(Y)
8 5 7 0 PLOT 1 3 , F N x (I T (X)) + 6 8 , F N y (K (X)) - 1 2
8 5 8 0 UNTIL I T (X) = 1
8 5 9 0 ENDPROC
8 6 0 0
9 0 0 0 DEF F N x (i t)
9 0 1 0 X A X I S = 5 2 8 + (- l) '^ i t*INT (i t / 2) *16
9 0 2 0 = I N T (1 2 1 6 / (I T + 1)) * i t
9 0 3 0
9 5 0 0 DEF F N y (k)
9 5 1 0 IF KMAX=1 THEN KMAX=3
9 5 2 0 IF INT(KMAX/2)=KMAX/2 THEN KMAX=KMAX+1
9 5 3 0 DELTAY=INT(854/(KMAX-1))
9 5 4 0 IF I N T (k / 2) = k / 2 THEN =XAXIS+DELTAY*k/2
9 5 5 0 IF INT (k / 2) O k / 2 THEN =XAXIS+DELTAY* (. 5 - k / 2)

A R U N of this program, called N E T W O R K , should give the
screen display of Figure 5.5. It is reasonably clear, but r eRUNs
with other data may perhaps lead to some of the arcs passing very
close by some of the nodes. The 'x-axis' has been perturbed so that
nodes which would have lain on the same horizontal grid ruling
have some vertical separation. This is a necessary if not sufficient
condition if the network logic is to be displayed in an unambiguous
manner . You should do the rest of the Problems at this point.

5.5 Discussion

The type of network which has been described here is called
'activity on node ' , for fairly obvious reasons. An alternative form
is called 'activity on arrow' but although it is popular it has one
major disadvantage: it is sometimes necessary to introduce dummy
activities (arrows) in order to preserve the network logic. This can
make it difficult to write a clear BASIC program in a reasonable
amount of code. Otherwise the choice between the two methods is
largely made on the grounds of individual preference, rather than
fundamental differences in capability.

-ν 5 :..

Discussion 77

1Θ

PRESS SPRCE BRR TO CONTINUE

/ I S K 39

\51

Ii
46

PRESS SPRCE BRR TO CONTINUE

Í9\

\ 1 5
it

PRESS SPRCE BRR TO CONTINUE
Figure 5.5 A sequence of screen displays

78 Critical path network analysis

Problems

(5.1) Devise a P R O C d a t a which can be exercised at the user 's
discretion to read data from D A T A statements as an alternative to
conversational data input in PROCinput .

(5.2) Devise a PROCsensitivity to be called at Hne 180 of
N E T W O R K . This should allow the user to alter any part of the
input data for subsequent re-processing, as part of a R E P E A T -
U N T I L loop between lines 65 and 190.

(5.3) Use your amended program from Problem 5.1 to conduct a
network analysis when the minimum activity times are revised
downward from the maximum shown in Table 1 as follows:

Activity 1 2 3 4 5 6 7 8 9 10
Minimum duration 2 4 1 4 10 4 2 4 9 3

(5.4) Consider the ways in which one could develop N E T W O R K
to print out and display multiple critical paths.

(5.5) Classify each stage in the office automation project into one
of the following categories:

Definitely not critical: Possibly critical: Definitely critical

(5.6) Now suppose that the 'most likely' duration is available for
the activities. The data is now:

Activity 1 2 3 4 5 6 7 8 9 10

Minimum time 2 4 1 4 10 4 2 4 9 3
Most likely time 3 5 2 10 19 7 3 5 10 4
Maximum time 4 8 3 12 24 8 4 6 12 5

It can be shown, subject to the possibly realistic assumption that
the activity durations are drawn from a set of independent random

T h e question of the resource impHcations of any schedule of
activities is very important in the business context.But algorithms
for resource levelling and smoothing are outside the scope of this
chapter . Nevertheless, this chapter should have served to
introduce the reader to network analysis by computer . A large
number of fairly sophisticated software packages are now
available, but perhaps few packages offer such convenient
graphics as the small program described above.

Problems 79

variables which follow a beta distribution, that the project
duration has an expected value μ and variance o^

where μ = Σ ί γ

where the Σ is taken over all the critical activities Y

and ίγ = (4 M L y + Μ Ι Ν γ 4- Μ Α Χ γ) / 6
= (Μ Α Χ γ - ΜΙΝγ)2 / 36

where M L is the most likely duration of an activity
M I N is the minimum duration of an activity
M A X is the maximum durat ion of an activity.

Devise a P R O C p e r t which evaluates the standard normal
deviate

z = {x - μ)/σ
for a user input value of x. The reader can then determine the
associated probability that the project is completed on t ime.

N.B. This est imated probability is an upper bound, since any
activity with a highly variable duration which is off the critical
pa th , on average, could well become critical in a particular
instance.

(5.7) The EarHest Finish Time (ΕΕΤγ) and the Latest Finish Time
(L F T Y) of activity Y are given by

E F T Y = E S T Y + Τ γ
L F T Y = L S T Y + Τ γ

The management has discretion to delay the starting time of an
activity Y, without affecting the total float of subsequent activities
Z , by an amount called the Free Float F F Y , where

F F Y = MIN{ESTz} - E F T Y
Ζ ε I S A Y

and the minimization is taken over all immediately succeeding
activities Z .

The management may have discretion to vary the start of an
activity Y, without affecting the activities X which precede Y or
activities Ζ which succeed Y, by an amount called the Independent
Float I F Y , where

I F Y = MIN{ESTz} - M A X { L F T x } - Τ γ
Ζ ε I S A Y Χ ε Ι Ρ Α γ

and the minimization is over all immediately succeeding activities
Z , and the maximization is over all immediately preceding X.

80 Critical path network analysis

Duration Cost List of
(weeks) (£'000) IPA

3 6 3,10
4 8 3,9

10 3
4 2 7,10
1 0.5 4
3 6 8,10
2 0.2 8
5 4.5 —
5 3 —
8 12 9

Devise a PROCfloats which tabulates the E F T and LFT times
alongside the E S T and LST, and tabulates the three types of float.

(5.8) Devise a PROCresources which tabulates the growth in
cumulative cashflows week by week, on the assumption that all
activities commence at their EST. Use your program to analyse
the following project.

A company is preparing to launch a new product at a forthcoming
t rade show. The product manager has drawn up the following
dependency table, which also includes cost and duration data:

Activity

1 Train salesmen
2 Train service engineers
3 Prepare automation manuals
4 Organize t rade show
5 Train staff for t rade show
6 Pre-release publicity
7 Recruit staff for show
8 Set up sales office
9 Prepare service contract
10 Produce promotional materials

(5.9) Devise a PROCswop to interchange the indices of a pair of
activities which have been assigned to the same vertical grid ruling,
as a PROCsensit ivity faciUty. Then r e R U N Problem 5.8 with a
swop of activity indices 4 and 6. Notice that this is ideal for
improving the appearance of the network.

C h a p t e r 6

Linear programming

Essential theory

The term l i nea r programme' is given to a particular type of
constrained optimization problem. It is assumed explicitly that
there is a linear form of objective; say minimize the raw material
costs of product ion, or maximize the contribution of some activity
to overheads and profit. It is also explicitly assumed that the
optimization of the objective function is subject to linear
constraints. Constraints result from a multi tude of factors. A
constraint may be due to scarce resources such as a restriction
upon working capital, or a contractual obUgation to supply a
certain quantity of product .

The simplest linear p rogramme has the form.

Maximize ζ = hxx + ¿?2-̂2 + . . · +
Subject to a i j J C i + «1,2^2 + . · . + < = Ci

forxi> = 0 X2>= 0 . . . Xn>= 0

There are η main variables, sometimes called decision variables.
There are m linear inequality constraints which are written such
that the left-hand sides are less than or equal to the non-negative
right-hand side values (c i in the ith inequality). The main variables
Xj for y = 1,2, . . . ,Λ are subject to explicit non-negativity
restrictions, but it is important to appreciate the convention that
these are excluded from the count of m linear constraints per se.
O n occasion the constraints are mixed, i.e. include hnear equality
constraints, and hnear inequality constraints where the left-hand
side exceeds the non-negative right. These features are discussed
later.

Consider the following numerical example, which is deliberately
chosen for simpUcity rather than reaUsm. A division of a company
manufactures two main products , type 1 and 2. The number of

81

82 Linear programming

500

Figure 6.1 Constraints of PI

items produced per period is Χχ and X2 respectively. If it is assumed
that all the output can be sold and that the contribution to profit
and overhead is 3 and 1 monetary unit (mu) per item of type 1 and
2 respectively, then the objective, to maximize the total
contribution, z , can be written

Maximize ζ = 3xi + 1x2
However , there is a limit on working capital of 500 mu in the

period in question. The manufacture of each item requires 2 and 1
mu of working capital respectively, and so there is an inequality
constraint of the form

2xi + X2 <= 500
Fur thermore , the second product incorporates proprietary

bought-in items with an extended reorder lead t ime. The current
stockholding is sufficient for the production of a maximum of 200
items of the second product . Thus there is a second constraint of
the form

X2<= 200

To summarize, the linear programme can be written

Maximize ζ =3xi -\- X2 Objective function
subject to 2JCI + JC2 < = 500 Working capital

JC2 < = 200 Bought-in items
Xi and X2>= 0 Non-negativity

This problem, which will be referred to as P I for brevity, can be
portrayed graphically as follows. The two main variables are each
allocated to an axis of Figure 6.1 The non-negativity restrictions
are shown by the hatching on the 'forbidden' sides of the axes (i .e.
the hatching below the Χχ axis corresponds to the stipulation that
X2> = 0) .

Essential theory 83

^2 \

ζ =750

^ \
7 = 5 0 0 - ^ \ ^

Figure 6.2 Superimposing the objective

Take the case of the bought-in item constraint: this is
represented by the horizontal line which intersects the vertical axis
at X2 = 200, i .e. whatever the Xi value may be the value of X2 must
not exceed 200. To see how the * working capital ' constraint is
represented it is sufficient to appreciate that the boundary
between production plans which cost more or less than 500 mu is
represented by the equation

2Λ:Ι -f Jt:2 = 500

This Hnear equation can be represented by a straight Une. The X2
intercept can be found from the equation with jci = 0 and the Xi
intercept can be found from the equation with X2 = 0. The line in
Figure 6.1 joining these two points is hatched from above. The
origin, the point representing a failure to manufacture any
products at all, obviously satisfies the restriction upon working
capital. So it can be argued that all points *below' the line satisfy
the restriction.

Any point lying within or upon the boundary of the hatched
region represents a combination of xi and X2 which is feasible with
respect to the non-negativity restrictions, the availability of
working capital, and the availability of bought-in i tems. The area
fcad so defined is called the feasible region.

It can be shown that one (or more) of the vertices formed by an
intersection of the constraint boundaries will always optimize a
linear objective function. To see this, note that a profit
contribution of, say, 500 mu can be represented by

3JCI + JC2 = 500

This Une can be added to Figure 6.2, where it is seen to cross the
feasible region. It is clear that any point which lies both on the Une

84 Linear programming

Vertex 1̂ ζ

a 150 200 650
c 250 0 750
d 0 200 200
f 0 0 0

N.B. Vertices are indexed lexicographically, as later explained.

Problem P I was amenable to graphical analysis only because
there were just two main variables, Χχ and JC2. When there are large
numbers of main variables Xj for / = 1,2, . . .AÍ it is clearly impossible
to envisage the feasible region physically modelled in any way. But
the algebraic concept of a 'basis' is always equivalent to the
geometric concept of a vertex. To illustrate this idea for problem
P I it is necessary only to restate the inequality constraints as
equat ions. 'Slack' variables x^ and X4 are introduced into the
left-hand side of the working capital and bought-in item
inequalities.

2JCI +JC2 + JC3 = 500 Working capital
X 2 + X4 = 200 Bought-in items

and within the feasible region corresponds to a possible production
plan not exceeding available resources. But other lines with
different right-hand side values will be parallel. When the
right-hand side is 750 the objective line intersects vertex c as
shown in the figure. So it is possible to realize a contribution of 750
only if the unique production plan jci = 250 and JC2 = 0 is adhered
to . It is also clear that this is the opt imum contribution since the
objective Hne with a right-hand side of 751 or more must lie whoUy
outside the feasible region.

The coefficients of the objective function merely determine the
orientation of the family of objective function lines over the
feasible region. The sense of optimization (i.e. maximization or
minimization) determines which is the preferred Hne. In all cases
however a vertex will provide an opt imum solution. The case of
multiple opt ima is considered later.

6.1 A solution by complete enumeration of the vertices

In principle, the coordinates of each vertex and the correspond­
ing value of the objective function could be calculated in turn, as
shown in Table 6 .1 , and the vertex c is once again selected as the
opt imum solution.

Table 6.1 Vertex enumeration for problem PI

A solution by complete enumeration of the vertices 85

Xi = 0

2̂=0
Figure 6.3 Labelling the boundaries and vertices of problem PI

Consequently the vertices in Figure 6.3 correspond to certain
pairs of zero-valued variables, as indicated in the second column of
Table 6.2. A t vertex c, for instance, X2 = X3 = 0. Fur thermore , Χχ
and X4 are positive since vertex c is distant ifrom the boundaries at
which these variables are zero. There are altogether Ĉ2
combinations of two positive and two zero-valued variables and
these are enumerated in Table 6.2.

Table 6.2 Lexicographic vertex enumeration

Variables which are non-zero (basis) Vertex Variables = 0

jt, = 150

X, = 250
X2 = 200
X2 = 500
x^ = 500

j»:2 = 200

JC4 = 200
jc, = 300
JC4 = -300
λ : 4 = 200

a
none
c
d
e
f

^ 3

X2 X4
Χ2 X3
Xi X4
Xl x^
Xl X2

The slack variables are explicitly taken to be non-negative. The
numerical value of a slack variable is the amount by which the
actual resources usage, as expressed by the left-hand side of the
constraint, falls short of the resource availability, given by the
right-hand side value. If jci = JC2 = 0 then the slack variables are
numerically = 500 and X4 = 200. But as the main variables Xi
and X2 are increased so the value of each slack variable reduces to
maintain the equaUty. Further increases in a main variable are
prevented when a slack variable reaches zero, either because all
the working capital has been employed or the bought-in items
have been used up .

Figure 6.3 shows how each boundary of the feasible region is
associated with an individual zero-valued variable. Away from a
boundary and within the feasible region the corresponding slack or
main variable will be positive.

86 Linear programming

Maximize 3x, + X2 Obj . function
subject to + X2 < = 500 Working capital

X2< = 200 Bought-in items
Xi + 2X2> = 400 Normal time working
Xi >= 100 Process constraint
xi and X2> = 0 Non-negativity

This problem, which will be referred to as P2, is represented in
Figure 6.4. The feasible region of problem PI is now further
constrained. It seems from Figure 6.4 that the vertices again
correspond, with one exception, to the idea of two intersecting
boundaries of the feasible region, and thus to two zero-valued
variables. Notice, however, that the vertices labelled 3 , 12 and 13
are in fact coincident. This is a consequence of the intersection of

Two important observations can be made here . First, the Ust
contains all vertices, even obviously infeasible ones, such as vertex
e which lies outside the feasible region (see Figure 6.3). Second,
not all the expected vertices even exist. There is no vertex h since
the constraint boundaries along which X2 and JC4 are zero do not
intersect, and it is clear that the corresponding equations could
never be satisfied:

2JCI + JC3 = 500
OJCI + 0JC3 = 200

i .e. the matrix of coefficients is singular.
The two zero-valued variables, at each feasible vertex, are

te rmed non-basic variables. Since there are four variables
al together there are also two non-zero variables, termed basic
variables. Basic variables are known collectively as the basis. Each
feasible vertex has a feasible basis. In summary, when there are
two variables and two constraints there are no more than "^€2
feasible vertices, each with an associated basis.

Now suppose that two additional constraints are added to
problem P I . Products 1 and 2 require 1 and 2 units of assembly
time respectively, and to ensure 'normal t ime' working of 400 or
more units of assembly time we find a third constraint

jci 4- 2x2 >= 400 Normal t ime

Fur thermore , the first product is made on a continuous process
and management are reluctant to slow the process down below an
output of 100 units over the planning period. Thus

Xi >= 100 Process constraint

The enlarged problem can then be written

A solution by complete enumeration of the vertices 87

Figure 6.4 Graphical representation of problem P2

In order to investigate the problem further subtract non-zero
'surplus' variables Xs and Xe from the left-hand sides of the new
constraints. The constraint set then becomes

2xi + X2 +JC3 = 500
X2 + X4 = 200

jci +2JC2 - X5 = 400
Xl - X6 = 100

Since there are now six variables altogether and two must be
zero at a vertex we search for bases with 6 - 2 = 4 non-zero, or
basic variables. There are ^€4 = 15 ways of selecting 4 variables
from 6. The figure clearly shows only four vertices in the feasible
region and so we expect four feasible bases altogether. In general ,
with η main variables and m constraints we have a maximum of
' "^"C^ vertices and it is usual for only a small proport ion of these
to be feasible; as always, each feasible vertex gives rise to a
feasible basis.

Program V E R T E X is designed to list the '"^"C,^ combinations
of variables which are basis candidates. The list is in lexicographic
order of the variables (a standard dictionary contains words in
lexicographic order) . The main program calls the following
P R O C E D U R E S :

PROCinpu t : allows the user to enter the total number of variables

three ra ther than two constraint boundaries . Consideration of this
feature, te rmed degeneracy, will be postponed. But it can be seen
that an opt imum solution can be sought either through a complete
enumerat ion of the vertices, or by superimposing the family of
objective function lines: vertex 5 is the opt imum vertex here .

88 Linear programming

including the main, slack, and surplus variables,
together with the number of constraints.

PROCbas is : selects the first Μ variables as an initial basis
candidate set and generates successive candidates in
lexicographic order.

PROCpr in t : prints the candidate basis.

A R U N of this program yields the 15 candidates bases for
problem P2, which has 6 variables and 4 constraints. The index
numbers of the candidate bases correspond to the indexing of the
vertices in Figure 6.4.

Program 6.1 VERTEX: Generates basic variable sets for all bases

5 REM VERTEX
10 REN CANDIDATE BASIC VARIABLE SETS IN LEXICOGRAPHIC ORDER
2 0 V»0
3 0 §%»&020210
40 DIM K (1 0)
50 PROCinput
6 0 PROCbas i s
70 END
80

5 0 0 DEF PROCinput
5 1 0 INPUT "NUMBER OF MAIN +SLACK +SÜRPLÜS VARIABLES ";N
5 2 0 INPUT "NUMBER OF CONSTRAINTS ";M
5 3 0 ENDPROC
540

1 0 0 0 DEF P R O C b a s i s
1 0 1 0 FOR j = 1 TO Μ
1 0 2 0 K (j) = j
1 0 3 0 NEXT j
1 0 4 0 PROCprint
1 0 5 0 REPEAT
1 0 6 0 j=M+l
1 0 7 » REPEAT
1 0 8 0 j = j - l
1 0 9 0 UNTIL K (j) < N-M+j
1 1 0 0 K (j) = K (j) + 1
1 1 1 0 FOR L = j + 1 TO Μ
1 1 2 0 K(L) ^ K (L - 1) + 1
1 1 3 0 NEXT L
1 1 4 0 PROCprint
1 1 5 0 UNTIL K(1)=N-M+1
1 1 6 0 ENDPROC
1 1 7 0
1 5 0 0 DEF PROCprint
1 5 1 0 V = V+1
1 5 2 0 PRINT "VERTEX " ; S T R $ (V) ;
1 5 3 0 FOR J = 1 TO Μ
1 5 4 0 PRINT " x " ; S T R § (K (J)) ;
1 5 5 0 NEXT J
1 5 6 0 PRINT
157 0 ENDPROC

Of course, it is desirable to develop the program to evaluate the
values of the variables and objective function for each candidate
basis. This can be achieved by ignoring the non-basic variables and
solving the resulting constraint equations. Program E N U M E R

A solution by complete enumeration of the vertices 89

below uses Gaussian elimination for this purpose but the details
need not detain the reader (see BASIC matrix methods by J.
Mason, But terworths , 1984). A m e n d V E R T E X as follows:

20 REM OBTAINS VARIABLE VALUES BY GAUSSIAN ELIMINATION

40 DIM K (1 0) , a (1 0 , 1 0) , b (1 0) , c (1 0) , A (1 0 , 1 0) , B (1 0) , C (1 0) , X (1 0)

1 0 4 0 PROCgauss

1 1 4 0 PROCgauss

Now type in Unes 530-650, D E L E T E lines 1500-1570, and type
in lines 2000 et seq. from the Usting of E N U M E R below. The
p u φ o s e of these P R O C E D U R E S is described below.

PROCgauss :

P R O C d a t a :

PROCfind_pivot:

PROCinterchange_rows:

PROCel iminat ion:

PROCback_subst :

PROCmat_pr in t :

controls Gaussian elimination in stages
Κ = 1, 2, . . ., M - 1 , and calls the
foUowing Procedures,
sets up the Μ constraint equations
without the non-basic variables in the
form Ax = C where A is the matrix of
coefficients and C is the R H S vector,
finds the largest entry in the Kth
column A (R , K) = M A X (A(I ,K)) .
interchanges rows R and Κ when
R > K , i.e. the largest entry in Kth col.
is below the diagonal.
A(I ,K) is made zero by additions of the
new Kth row for I = Κ 4- 1, . . ., M.
if A (M , M) = 0 the matrix is singular
otherwise the Xy are determined succes­
sively for j = M, Μ - 1, . . ., 2,1 and
then ζ is evaluated,
prints out the current A and C.

90

5 REM ENUMER
1 0 REM CANDIDATE BASIC VARIABLE SETS IN LEXICOGRAPHIC ORDER
20 REM OBTAINS VARIABLE VALUES BY GAUSSIAN ELIMINATION
3 0 @%»&020210
40 DIM K (1 0) , a (1 0 , 1 0) , b (1 0) , c (1 0) , A (1 0 , 1 0) , B (1 0) , C (1 0) , X (1 0)
50 PROCinput
6 0 PROCbas i s
7 0 END
80

5 0 0 DEF PROCinput
5 1 0 INPUT "NUMBER OF MAIN +SLACK +SURPLUS VARIABLES ";N
5 2 0 INPUT "NUMBER OF CONSTRAINTS ";M
5 3 0 FOR I « 1 TO Μ
5 4 0 PRINT "INPUT a (i , j) & c (i) f o r c o n s t r a i n t i = " ; S T R $ (I)
550 FOR J = l TO Ν
5 6 0 PRINT " a (" ; S T R $ (I) ; " , " ; S T R $ (J) ; ") = "; :INPUT a (I , J) ;
5 7 0 NEXT J
5 8 0 PRINT " C (" ; S T R $ (I) ; ") = " ; : I N P U T c (I)
590 NEXT I
6 0 0 PRINT "Now i n p u t t h e o b j . f n . c o e f f s . b (j) "
6 1 0 FOR J= 1 TO N-M
620 PRINT " b (" ; S T R $ (J) ; ") = " ; : I N P U T b (J) ;
6 3 0 NEXT J
6 40 ENDPROC
6 5 0

1 0 0 0 DEF P R O C b a s i s
1 0 1 0 FOR j = 1 TO Μ
1 0 2 0 K (j) = j
1 0 3 0 NEXT j
1 0 4 0 PROCgauss
1 0 5 0 REPEAT
1 0 6 0 j=M+l
10713 REPEAT
1 0 8 0 j = j - l
1 0 9 0 UNTIL K (j) < N-M+j
1 1 0 0 K (j) = K (j) + 1
1 1 1 0 FOR L = j + 1 TO Μ
1 1 2 0 K(L) = K (L - 1) + 1
1 1 3 0 NEXT L
1 1 4 0 PROCgauss
1 1 5 0 UNTIL K(1)=N-M+1
1 1 6 0 ENDPROC
117 0
2 0 0 0 DEF PROCgauss
2 0 1 0 PROCdata
2 0 2 0 FOR K= 1 TO M-1
2 0 3 0 P R O C f i n d _ p i v o t
2 0 4 0 IF R>K THEN P R O C i n t e r c h a n g e _ r o w s
2 0 5 0 P R O C e l i m i n a t i o n
206 0 NEXT Κ
207 0 PROCback^subs t
2 0 8 0 P R O C p r i n t ^ b a s i s
2 0 9 0 ENDPROC
2 1 0 0
3 0 0 0 DEF PROCdata
3 0 1 0 M$="NS"
3 0 2 0 FOR I « 1 TO Μ
3 0 3 0 C d) « c (I)
3 0 4 0 FOR J = 1 TO Μ
3 0 5 0 A (I , J) = a (I , K (J))
3 0 6 0 NEXT J
307 0 NEXT I
3 0 8 0 ENDPROC
3090

Program 6.2 ENUMER: Obtains values of basic variables for all
bases

91

3 5 0 0 DEF P R O C f i n d _ p i v o t
3 5 1 0 D«0 : R=K
3 5 2 0 FOR I = Κ TO Μ
3 5 3 0 C = A B S (A (I , K))
3540 IF D < C THEN D=C : R^I
3 5 5 0 NEXT I
3 5 6 0 ENDPROC
3 5 / B
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s
4 0 1 0 FOR J = Κ TO Μ
4 0 2 0 D = A { K , J)
4 0 3 0 A (K , J) = A { R , J)
4 0 4 0 A (R , J) = D
40 50 NEXT J
4 0 6 0 D =̂ C(K)
4 0 7 0 C(K) = C{R)
4 0 8 0 C(R) = D
4 0 9 0 PROCmat_pr in t
4 1 0 0 ENDPROC
4 1 1 0
4 5 0 0 DEF P R O C e l i m i n a t i o n
4 5 1 0 FOR I = K+1 TO Μ
4 5 2 0 D = - A (I , K) / A (K , K)
4 5 3 0 FOR J = 1 TO Μ
4 5 4 0 A { I , J) == A (I , J) + D * A (K , J)
4 5 5 0 NEXT J
4 5 6 0 C { I) = C (I) + D*C(K)
4 5 7 0 NEXT I
4 5 8 0 PROCmat_pr in t
4 5 9 0 ENDPROC
4 6 0 0
5 0 0 0 DEF P R O C b a c k _ s u b s t
5 0 1 0 IF A B S (A (M , M)) > 0 THEN X(M)=C(M)/A(M,M) ELSE M$="S":ENDPROC
5 0 2 0 Ζ = X (M) * b (K (M))
5 0 3 0 FOR I = M-1 TO 1 STEP - 1
5040 D = C (I)
5 0 5 0 FOR J= I + l TO Μ
5 0 6 0 D=D--A(I, J) * X (J)
507 0 NEXT J
5 0 8 0 X (I) = D / A (I , I)
5 0 9 0 Ζ = Ζ + X (I) * b (K { I))
5 1 0 0 NEXT I
5 1 1 0 ENDPROC
5 1 2 0
5 5 0 0 DEF P R O C p r i n t _ b a s i s
5 5 1 0 V=V+1 : PRINT "VERTEX " ; S T R $ (V) ; " ";
5 5 2 0 FOR J = 1 TO Μ
5 5 3 0 PRINT " x " ; S T R $ (K (J)) ;
5 5 4 0 IF M$<>"S" THEN PRINT " = " ; X (J) ;
5 5 5 0 NEXT J
5 5 6 0 IF M$<>"S" THEN PRINT " O B J . F N . = " ; Z
5 5 7 0 IF M$="S" THEN PRINT " SINGULAR MATRIX"
5 5 8 0 PRINT
5 5 9 0 ENDPROC
5 6 0 0
6 0 0 0 DEF PROCmat_p r in t
6 0 1 0 FOR 1= 1 TO Μ
6 0 2 0 FOR J= 1 TO Μ
6 0 3 0 PRINT " " ; A (I , J) ;
6 0 4 0 NEXT J
6 0 5 0 PRINT " " ; C (I)
6 0 6 0 NEXT I
607 0 PRINT
6 0 8 0 ENDPROC

92 Linear programming

RUN
NUMBER OF MAIN +BLACK ŜURPLUS VARIABLES U
NUHBER OF CONSTRAINTS ''4
INPUT ad.j) i cd) for constraint i=l
a(l,l) = 2̂
ad,2) = '̂1
ad,3/ = "̂ l
ad,4) = 0̂
ad,5) =
ad,i>) =
cd) = 5̂Ββ
INPUT a(i,j) k c(i) for constraint i=2
a(2,l) = ''B
a(2,2) = ''I
a(2,3) = η
a(2,4) = 1̂
a(2,5) = :>e
a(2,6) = '^i
c(2) = ''288
INPUT a(i,j) ti c(i) for constraint i=3
a(3,l) = ?1
a(3,2) = •'2
a^3,3) = η
a(3,4) = ?B
a(3,5) = ?-l
a(3,6) = •'β
c(3) = ''488
INPUT a(i, j) ii cii) for constraint i=4
a(4,l) = ?1
a(4,2) = 8̂
a<4,3) = -̂B
a(4,4) = ?B
a(4,5) = B̂
a(4,6) = ?-l
c(4) = ?188
NoM input the obj. fn. coeffs. b(j)
bd)=''3
b(2)=?l
VERTEX I X 1^88.88 χ2Μ58.β8 χ3=15β.Β8 xÂ ŜB.BB 0BJ.FN.M5e.88
VERTEX 2 xl̂ lBB.BB x2=288.88 χ3=188.β8 xŜ l̂BB.SB OBJ.FN.̂ 588.88
VERTEX 3 xl=B.88 χ2=2ββ.8Β χ3=38β.88 χ6=-1βΒ.8β OBJ.FN.=288.88

R U N this program in Mode 3 for the data of problem P2, noting
that it is again necessary to input the matrix of constraint
coefficients after the addition of slack and surplus variables. The
printout gives the matrix of coefficients of the constraints
following each stage of Gaussian eUmination. When you
understand how this works you can D E L E T E Hues numbered
4090, 4580 and 5580. The vertex numbering conforms to that in
Figure 6.4. You should note in particular that vertices 3 ,12 and 13
are coincident, which is because three rather than two constraint
boundaries define this (infeasible) vertex. A basis corresponding
to a vertex of this kind is said to be degenerate , since one of the
basic variables would actually be zero. D o Problem 6.1 at this
stage.

http://0BJ.FN.M5e.88

The simplex method of Hnear programming 93

VERTEX 4 χ1=1ββ.ββ χ2=3Ββ.80 x4=-188.0fl χ5=30β.0Β 0BJ.FN.=6ee.Be
VERTEX 5 Μΐ=20β.Ββ χ2̂ 1ββ.ΒΒ χ4=10Β.Ββ χ6ΜΒΒ.Ββ OBJ.FN.̂ TBB.BB
VERTEX 6 χ1=15Β.β0 χ2=2ΒΒ.Ββ χ5=15Β.Ββ x¿=5B.BB 0BJ.FM.=65B.BB
VERTEX 7 ^=1βΒ.βΒ x3=3BB.BB χ4=2Ββ.ΒΒ χ5=-3ΒΒ.βΒ 0BJ.FN.=3BB.BB
VERTEX Β xl=4B0.B0 χ3=-3ΒΒ.Ββ x4=2BB.BB χ6=3ΒΒ.Ββ OBJ.FN.=12BB.0B
VERTEX 9 xl x3 x5 x6 SINGULAR HATRIX
VERTEX IB χ1=25Β.βΒ x4=2BB.BB χ5=-15Β.ββ x6=l5B.BB 0BJ.FN.=75B.BB
VERTEX 11 x2 x3 x4 x5 SINGULAR MATRIX
VERTEX 12 χ2=2βΒ.ββ x3=3BB.BB x4=B.BB x6=-lBB.BB 0Β3.ΕΝ.=2ΒΒ.βΒ
VERTEX 13 x2=2BB.BB x3̂ 3BB.0B xŜ B̂.BB χ6=-1βΒ.ΒΒ 0BJ.FN.=2BB.BB
VERTEX 14 χ2=5ββ.ΒΒ x4=-3BB.BB xŜ ôBB.BB χ6=-1ΒΒ.βΒ OBJ.FN.=SBB.BB
VERTEX 15 χ3=5βΒ.Ββ χ4=2βΒ.βΒ x5=-4Bfl.BB χ6=-1βΒ.ΒΒ OBJ.FN.=e.BB

6.2 The simplex method of linear programming

The reader will have been struck by the very considerable amount
of calculation involved in the process of enumerat ing the objective
function at each vertex. The situation would be improved
somewhat if some way could be found of concentrating on the
enumerat ion of feasible vertices. Indeed, it is fairly obvious that in
principle a 'Cook 's Tour ' could be made of the vertices which
define the extreme points of the feasible region. Pairs of feasible
vertices are adjacent in the sense that a Une segment of the
constraint boundary connects them. So the corresponding
non-basic variable is held in common, and indeed adjacent feasible
vertices have bases which differ in respect of a single variable. This
observation provides both the means to carry out a 'Cook 's Tour '
and a method for deriving one adjacent basis from another with
comparatively little computat ion.

It is vital to appreciate that if a feasible vertex can be found with
a bet ter objective function value than any of the adjacent feasible
vertices, then it provides an opt imum solution. A local opt imum in
Unear programming is a global opt imum. This desirable property
has been established by mathematicians whatever the number of
variables and constraints may be. This property provides the key
to a scheme of partial vertex enumerat ion which terminates with
the opt imum solution, just as soon as adjacent vertices fail to yield
an improvement upon the current objective function value. Thus
the idea underlying the simplex method is to start from an initial
feasible vertex and to move along a constraint boundary to an
adjacent vertex, terminating with a local opt imum. This is a
process of partial enumerat ion of feasible vertices, which can be
implemented via basic feasible solutions.

Take the former problem P I which was restated as

Maximise ζ = 3xi + X2
2xi + X2 + X3 = 500

X2 -f X4 = 200
X l , X2 ^ 0

94 Linear programming

A n obvious initial basis for problem PI is at the origin where the
slacks take the right-hand side values of the constraints, i.e. the
enumerat ion begins with vertex / of Figure 6.3. The objective
function can now be rewritten in the same format as the
constraints, as shown below in a simplex tableau. Notice that the
non-basic variables (numerically zero) at this stage are easily
distinguishable from the basic variables. Each basic variable has an
empty column of coefficients save for the unit entry in the basic
variable row, i.e. a unit column vector.

Basic ζ Χι X2 X3 X4 R H S Ratio

~z 1 ^3 ^1 0 Ö Ö ÑJA
0 2* 1 1 O 500 250

X4 O O 1 O 1 200 Infinite

Consequently an increase in either Χχ or X2 increases the
numerical value of ζ because of the negative ζ row coefficients in
the Xi and X2 columns. If Xi increases on its own then the boundary
of the feasible region is traversed from the initial vertex / toward
vertex c. An increase in X2 begins a traversal of the boundary from
vertex / toward vertex d. This can be seen from Figure 6.3 (page
85).

The ζ row coefficients represent the negative rates of change of
ζ with increases in the non-basic variables Xi and X2. A rule of
thumb is to choose to increase that non-basic variable which
confers the fastest rate of improvement in z, Χχ in this case.
Bringing Χχ into the basis in this way is recorded by the asterisk at
the foot of the Χχ column of the tableau, which is now referred to
as the pivot column.

There is a Hmitation upon possible increases in the value of Χχ,
however, since traversal of the constraint boundary from v e r t e x /
must halt at vertex c if feasibility is to be retained. This vertex is
defined by the constraint boundary JC3 = 0, and so the variable X3
which was a basic variable at vertex / becomes a non-basic
variable at vertex c. All this can be directly inferred from the
simplex tableau, by forming the ratio of the R H S value to the pivot
column entry for each constraint. The ratio gives the increase in
the new basic variable which results from driving the old basic
variable to zero, and therefore out of the new basis. In the case of
the tableau above the value of the ratio in the x^ row shows that Χχ
reaches 250 as x^ becomes zero. Since the ratio is infinitely large in
the case of the final constraint Χχ can approach infinity without
driving X4 to zero. The permissible increase in Χχ is then the
minimum of the ratios, and the corresponding row is indicated by
an asterisk and referred to as the pivot row.

The simplex method of linear programming 95

Basic ζ Xl Xl Xi X4 R H S

ζ 1 0 0.5 1.5 0 750
Xl 0 1 0.5 0.5 0 250
X4 0 0 1 0 1 200

T h e values of the new variables are seen to be Xi = 250 and X4 =
200, with X2 and X3 zero-valued, or non-basic variables. The
objective function has the value 750. This is impUcitly a maximum
value, since the fact that all the ζ row coefficients of the non-basic
variables are positive removes any scope for further improvement .
This basis is associated with vertex c.

For problem P I , therefore, the simplex method has expUcitly
considered only the vertices / and c of the four vertices at the
extreme points of the feasible region.. Fur thermore , the
computat ional burden in the iteration which transformed the
initial tableau to the final tableau was broadly equivalent to just
the computations involved in the first stage of Gaussian
elimination (i .e . when Κ = 1). So in this instance the partial
enumerat ion of the feasible vertices was both effectively and
efficiently conducted.

A listing of Program S I M P L E X follows. A main program calls

PROCinpu t : allows the user to input the matrix of
coefficients A (I , J) of the main variables jcj
and the non-negative R H S values C(I) in

It is important to realize that a negative pivot column entry
means that the existing basic variable increases with the incoming
basic variable in order to maintain an equaUty. This obviously
places no restriction whatsoever upon the value of the new basic
variable, and so an infinitely large ratio can be associated with a
negative pivot column entry and Ukewise for a zero entry.

The pivot lies at the intersection of the pivot row and pivot
column and is indicated by an asterisk. If the pivot row is divided
by the pivot then a new row appears as follows, with the basic label
changed to Χχ.

Basic ζ Xl X2 X3 X4 R H S

ζ
Xl 0 1 0.5 0.5 0 250
X4

This row can now be used to ehminate Xi from the remaining
rows. Thus adding thrice the new row to the ζ row and zero times
the new row to the χ4 row gives the next simplex tableau.

96 Linear programming

constraints I = 1,2,. . .Μ. The objective
function coefficients C(J) are input and
copied into A(0 , J) .
initially prints out the data as input when
E D I T = 1 , then prints the entire simplex
tableau less the ζ column. The signature of
ζ is - for minimization,
slacks with indices N + I are added to the
constraints for I = 1,2,. . . ,M, and are then
made basic, which is recorded by setting
S T A T U S (N + I) = 1 and A (I , 0) = N + I .
controls iterations via the following:
seeks most negative A(0 , J) to identify the
pivot column j , ignoring spurious A(0 , J)
> - E - 0 8 . Sets STATUS(j) = 1.
seeks row i with smallest non-negative ratio
of RHS/pivot column entry, and sets
STATUS(A(i , 0)) = 0.
records A(i , 0) = j and uses the pivot row
to eliminate Xj from all o ther rows.

Now type in the program SIMPLEX from the following Hsting.

PROCpr in t :

PROCslacks:

PROCi te ra t e :
PROCpivot^column:

PROCpivot_.row:

PROCpivot :

97

Program 6.3 SIMPLEX: LP for < = constraints with non-negative
RHS

5 REM SIMPLEX
10 REM Μ <= INEQUALITIES WITH NON-NEGATIVE R . H . S .
2 0 REM Ν DECISION VARIABLES AND Μ INEQUALITIES s . t . N+M<21
3 0 REM USES SLACK VARIABLES FOR IFS
40 @%e&020310
50 DIM A (1 1 , 2 1) , B (2 1) , C (1 1) , S T A T U S (2 1)
60 ITERATION=0
7 0 PROCinput
80 PROCprint
90 EDIT=0

1 0 0 P R O C s l a c k s
1 1 0 N=N4-M
1 2 0 PRINT : PRINT "PRIMAL FEASIBLE TABLEAU" : PROCpr in t
1 3 0 P R O C i t e r a t e
1 4 0 END
1 5 0
5 0 0 DEF PROCinput
5 1 0 INPUT "number o f m a i n v a r i a b l e s " , N
5 2 0 INPUT "number o f <= c o n s t r a i n t s ",M
5 3 0 PRINT
5 4 0 FOR 1= 1 TO Μ
5 5 0 PRINT " i n p u t a (i , j) & c (i) f o r c o n s t r a i n t i « " ; S T R $ (I)
5 6 0 FOR J= 1 TO Ν
5 7 0 PRINT " a (" ; S T R $ (I) ; " , " ; S T R $ (J) ; ") = " ; : I N P U T A (I , J)
580 NEXT J
5 9 0 PRINT " c (" ; S T R $ (I) ; ") = " ; : I N P U T C (I)
6 0 0 NEXT I
6 1 0 INPUT " t y p e o f o b j e c t i v e f u n c t i o n (e n t e r MAX o r M I N) " , Z $
6 2 0 PRINT "Now i n p u t t h e o b j e c t i v e f u n c t i o n c o e f f s b (j) "
6 3 0 FOR J = l TO Ν
6 4 0 PRINT " b (" ; S T R $ (J) ; ") = " ; : I N P Ü T B (J) ;
6 5 0 IF Z$ = "MIN" THEN A (0 , J) = B (J)
6 6 0 IF Z$ = "MAX" THEN A (0 , J) = - B (J)
6 7 0 NEXT J
6 8 0 EDIT =1
6 9 0 PRINT : PRINT "ROWS AS INPUT"
7 0 0 ENDPROC
7 1 0

1 0 0 0 DEF PROCprint
1 0 1 0 PRINT : I F EDIT=0 THEN PRINT "BASIC";ELSE PRINT "TYPE";
1 0 2 0 FOR J = 1 TO Ν
1 0 3 0 PRINT T A B { 1 0 * J) ; " X " ; S T R $ (J) ;
1 0 4 0 NEXT J
1 0 5 0 PRINT T A B (1 0 * (N + 1)) ; " R . H . S . "
1 0 6 0 PRINT
107 0 FOR 1= 0 TO Μ
1 0 8 0 FOR J= 0 TO Ν
1 0 9 0 IF Z$«"MAX" AND 1=0 AND J = 0 THEN PRINT "Z";
1 1 0 0 IF Z$="MIN" AND 1=0 AND J = 0 THEN PRINT " - Z " ;
1 1 1 0 IF EDIT=0 AND I > 0 AND J = 0 THEN PRINT " X " ; S T R $ (A (I , 0)) ;
1 1 2 0 IF EDIT=1 AND I > 0 AND J = 0 THEN PRINT "L";
1 1 3 0 IF J > 0 THEN PRINT T A B (1 0 * J) ; A (I , J) ;
1 1 4 0 NEXT J
1 1 5 0 PRINT T A B ((N + 1) * 1 0) ; C { I)
1 1 6 0 NEXT I
1 1 7 0 PRINT
1 1 8 0 ENDPROC
1 1 9 0
2 5 0 0 DEF P R O C s l a c k s
2 5 1 0 FOR 1= 1 TO Μ
2 5 2 0 A (I , 0) = N+I
2 5 3 0 A (I , N + I) = 1
2 5 4 0 STATUS(N+I) = 1
2 5 5 0 NEXT I
2 5 6 0 ENDPROC
2 5 7 0

98

4 5 0 0 DEF P R O C i t e r a t e
4 5 1 0 REPEAT
4 5 2 0 P R O C p i v o t _ c o l u m n
4 5 3 0 IF 3=0 THEN ENDPROC
4 5 5 0 PROCpivot_row
4 5 6 0 IF i = 0 THEN PRINT "UNBOUNDED SOLN":END
4 5 7 0 ρ = A (i , j)
4 5 8 0 PRINT "PIVOT = " ; p ; " NEW BASIC VAR. X " ; S T R $ (j) ;
4 5 9 0 PRINT " IN PLACE OF X " ; S T R $ (A (i , 0))
4 6 0 0 PROCpivot
4 6 2 0 PRINT : PRINT "ITERATION No ";STR$(ITERATION)
4 6 3 0 PROCprint
4 6 4 0 UNTIL FALSE
4 6 5 0 ENDPROC
4 6 6 0
5 0 0 0 DEF P R O C p i v o t _ c o l u i n n
5 0 1 0 BEST = 0 : COEFF = 0 : j = 0
5 0 2 0 FOR J= 1 TO Ν
5 0 3 0 IF A (0 , J) < - l E - 0 8 THEN COEFF = - A (0 , J)
5 0 5 0 IF COEFF > BEST THEN BEST = COEFF : j = J
5 0 6 0 NEXT J
507 0 STATUS(j) = 1
5 0 8 0 ENDPROC
5 0 9 0
5 5 0 0 DEF P R O C p i v o t _ r o w
5 5 1 0 RATIO = 1 0 E 1 0 : TEST = 1 0 E 1 0 : i = 0
5 5 2 0 FOR 1= 1 TO Μ
5 5 3 0 IF A (I , j) > l E - 0 8 THEN TEST = C (I) / A (I , j)
5540 IF TEST < RATIO THEN RATIO = TEST : i = I
5 5 5 0 NEXT I
5 5 6 0 S T A T U S (A (i , 0)) = 0
5 5 7 0 ENDPROC
5 5 8 0
6 0 0 0 DEF PROCpivot
6 0 1 0 A (i , 0) = j
6 0 2 0 REM DIVIDE PIVOT ROW BY PIVOT
6 0 3 0 FOR J = 1 TO Ν
6 0 4 0 A (i , J) = A (i , J) / p
6 0 5 0 NEXT J
6 0 6 0 C (i) = C (i) / p :REM STORE OLD PIVOT COLUMN ENTRY IN COL
6 0 / 0 FOR I = 0 TO Μ
6 0 8 0 COL = A (I , j)
6 0 9 0 FOR J= 1 TO Ν
6 1 0 0 IF I <>i THEN A (I , J) = A (I , J) - C O L * A (i , J)
6 1 1 0 NEXT J
6 1 2 0 IF I <> i THEN C (I) = C (I) - C O L * C (i)
6 1 3 0 NEXT I
6 1 4 0 ITERATION = ITERATION + 1
6 1 5 0 ENDPROC
6 1 6 0

>RUN
nuiber o f win variables ?2
nuiber o f <= constraints ?2

input a(i,j) i cli) for constraint i=l
a(l,ll=''2
3(1,2)=·Ί
c(l)=^5ee
input a(i, j) li cli) for constraint i=2
a(2,l)=?e
3(2,2)=·Ί
c(2)=?2Be
type of objective function (enter HAX or Ι1ΙΝ)?ΗήΧ
NoM input the objective function coeffs b(jl
b(l)='3
b(2l=''l

The simplex method of linear programming 99

TYPE Π 112 R.H.S.

Ζ -3.βββ -1.088 0.088
L 2.BB0 1.080 588.000
L 1.080 200.000

PR 1 HAL FEASIBLE TABLEAU

BASIC Kl U U U R.H.S.

7 -3.808 -1.088 0.000 0.000 0.000
X3 2.080 1.008 1.008 0.000 508.880
A 4 0.080 1.088 0.000 1.000 200.000

PIVOT =2.000 NE« BASIC VAR. U IN PLACE OF Vj

ITERATION No 1

BASIC η η η U R.H.S.

0.000 0.500 1.500 0.000 750.000
1.000 0.580 0.500 0.080 250.000

¡(4 0.000 1.000 0.000 1.000 200.000

When satisfied with the accuracy of your usting you should
R U N with the data of problem P I , noting that it is only necessary
to input the matrix of coefficients of main variables, as the slack
variables are entered automatically by the program. Your printout
should agree with the sequence of tableaux described earlier,
except that the ζ column is omitted as it does not change. You
should do Problems 6.2 to 6.5 now.

It is computationally convenient to transform minimization
objective functions into equivalent maximization functions with

MIN ζ = - M A X -ζ
or MIN bi Χι -\- 02 X2 • ' ' ^ b„ x„

= - M A X - b i Xl - b2X2 - ' · ' - Xn

For instance, you should check that this transformation holds for
P I by RUNning S I M P L E X with the minimization objective

- M I N -3xi - X2

If the search for the pivot row is frustrated by a pivot column of
negative elements then there is no restriction upon the value of the
incoming basic variable. In short, the solution is unbounded due to
a shortcoming in the formulation of the problem (see line 4560).

The simplex method implicitly assumes an improvement in the
value of the objective function at each iteration, since only then

ROWS AS INPUT

100 Linear programming

can one be sure of termination with the optimun solution in a finite
number of iterations. A degenerate basis is one in which one or
more basic variables happens to be zero, and this can occur if more
than η constraints intersect at a vertex. But if the pivot row
happens to have the zero right-hand side value in a degenerate
basis then the value of ζ remains unchanged in the next tableau.
This opens up the possibility of an endless 'cycling' of iterations
around a subset of the vertices, without ever reaching an opt imum.
This is unlikely to occur in practice, but one of the problems is to
R U N a specially constructed problem with several degenerate
bases which does , in fact, cycle.

Program S I M P L E X will fail to recognize the existence of an
alternative opt imum, which arises when a non-basic variable / has
a zero-valued ζ coefficient A(0 , j) . Amendments to the program
are left to the interested reader , who should do Problems 6.6 to 6.7
at this juncture .

6.3 Mixed inequality and equality constraints
The slack variables were used as an initial basis in S IMPLEX. But
this approach cannot be employed for s u φ l u s variables which are
subtracted from the left-hand side of > = constraints with
non-negative R H S , since a feasible basis must have non-negative
variables throughout . Take problem P2 as an illustration; one
could not have Xs = - 4 0 0 and x^ = - 1 0 0 here

M A X z =3JCI + X2
2xi + X2 -\-X3 = 500

X2 + X4 = 200
Xi-^2x2 -X5 = 4 0 0
jci -xe = 1 0 0

Another transformation can be used to overcome this difficulty
with the > = constraints. First identify the > = constraint, 10 say,
with the largest right-hand side. Next substitute for the other > =
constraints, in turn, the results of subtracting them from the 10
constraint. In this case 10=3 and so row 4 is replaced by row 3
minus row 4.

Μ Α Χ Ζ = 3 Λ : Ι + X2
2xi + X2 +X3 = 500

X2 X4 = 200
X i - h 2 j C 2 -X5 = 4 0 0

2X2 - J C 5 + J C 6 = 3 0 0

This transformation reverses the sign of the surplus variable in
each > = constraint, save the 10 constraint, whilst preserving a

Mixed inequality and equality constraints 101

non-negative right-hand side. As a result these surplus variables
are now obvious basis candidates, and Λ:6=300 is a basic variable in
this example. But the 10 constraint still poses a real problem, and
so an artifical variable Χη is introduced into the left-hand side.

Χχ + 2Χ2 - JC5 + JC7 = 400

The artificial is made basic, thus Χη = 400 here . This completes
an initial basis to the wrong problem! If we chose to minimize Χη as
a first objective, then immediately Χη was driven to zero we would
have an initial basis to the original problem P2. The original
objective could then be taken up and the iterations pursued to
optimality.

In summary, an artifical variable Χη is introduced into the 10
constraint and made basic; the objective is to minimize Χη in Phase
1, and when this is achieved the original objective is reinstated in
Phase 0. The following details are implicit. The ζ row is
transformed during Phase 1 as if it were a constraint row, in order
to express it in terms of the current non-basic variables, and at the
start of Phase 1 the objective function XQ, say, must also be written
in terms of non-basic variables.

M I N jco = JC7 = -xi - 2JC2 + JC5 + 400

The same broad approach can be developed to cater for equality
constraints as well. A n artificial variable is assigned to each
equality constraint, and the phase 1 objective is the minimization
of the sum of artificals.

If there are Ε equality constraints, L < = constraints, G > =
constraints then there will be A = E + 1 artificial variables (or A = E
if G = 0) . It is convenient to have PROCinpu t sort the input data so
as to place the equaUty constraints in the last Ε rows. Each row I
then has an extra variable X N + I which is either a slack added to < =
constraints, a surplus subtracted from > = constraints, or an
artificial added to = constraints. If G > 0 there will also be an
artificial X N + M + I associated with row 10.

Program S IMPLEX can be developed to work in this way and
Program 2 P H A S E , as it is called, involves the following changes
and additions:

PROCinpu t : now allows the user to input the type of
constraint, and counts L , G, E . Identifies 10
when G > 0 and sorts the equahties into rows M,
M - 1 , M - 2 , etc

PROCmat r ix : sets up the matrix of coefficients A(I , J) . Calls
P R O C s l a c k s if L > 0 , PROCart i f ic ia l and

102 Linear programming

PROCtransform if G > 0 , PROCequal i t ies if
E > 0 . Lists the artificials when A > 0 .

PROCartificial: adds an artificial to the 10 row and makes it
basic, increments the Xo coeffs by the 10 row
coefficients.

PROCtransform: carries out the transformations on the > =
inequalities, making surpluses basic.

PROCequal i t ies : increments the Xo coeffs by the Ε row coeffi­
cients, making artificials basic.

P R O C p h a s e : sets P H A S E = 1 for first phase , P H A S E = 0 for
second phase when all artificials have been
driven from the basis.

Load S IMPLEX and make the following alterations and
additions, as found in the Hsting of 2 P H A S E below.

A m e n d lines: 5 520 541-547 570-572 590-595
1070 1120 4530-4540 4610 5030-5040
6070

Dele te lines: 2510 2550
Type in: Main program PROCmatr ix PROCartificial

PROCtransform PROCequal i t ies PROCphase

Now check your hsting against the listing for 2 P H A S E below.

103

Program 6.4 2PHASE: LP for mixed inequality and equality
constraints with non-negative RHS

5 REM 2PHASE
1 0 REM M<11 INEQUALITIES PLUS EQUATIONS WITH NON-NEG RHS
2 0 REM WITH Ν DECISION VARIABLES LIMITS ARE N+M<21
3 0 REM USES 2-PHASE METHOD WITH ARTIFICIAL VARIABLES
40 @%»&020310
50 DIM A (l l , 2 1) , B (2 1) , C (1 1) , S T A T U S (2 1) , T Y P E $ (1 1)
60 ITERATION»0 :L=0 :E=0 :G»0 :PHASE=0 :A=0 :CMAX=0 : I 0 = 0
7 0 PROCinput
8 0 PROCprint
90 EDIT»0

1 0 0 PROCmatrix
1 1 0 PROCprint
1 2 0 P R O C i t e r a t e
1 3 0 END
140
5 0 0 DEF PROCinput
5 1 0 INPUT "number o f m a i n v a r i a b l e s " , N
5 2 0 INPUT "number o f c o n s t r a i n t s ",M
5 3 0 PRINT
5 4 0 FOR 1= 1 TO Μ
5 4 1 PRINT
5 4 2 PRINT " i n p u t t y p e o f c o n s t r a i n t i = " ; S T R $ (I)
5 4 3 PRINT " i . e . i n p u t L , Ε ,G f o r < = , = , > = " ;
5 4 4 INPUT TYPE$
5 4 5 IF TYPE$="L" THEN L=L+1 : T Y P E $ (I - E) = " L "
546 I F TYPE$="G" THEN G=G+1 : T Y P E $ (I - E) = " G "
547 IF TYPE$="E" THEN E=E+1 : TYPE$(M-E+1)="E"
5 5 0 PRINT " i n p u t a (i , j) & c (i) f o r c o n s t r a i n t i = " ; S T R $ (I)
5 6 0 FOR J= 1 TO Ν
5 7 0 PRINT " a (" ; S T R $ (I) ; " , " ; S T R $ (J) ; ") = " ;
5 7 1 IF TYPE$= "E" THEN INPUT TAB(10) A (M - E + 1 , J)
5 7 2 IF TYPE$<>"E" THEN INPUT TAB (1 0) A (I - E , J)
580 NEXT J
5 9 0 PRINT " c (" ; S T R $ (I) ; ") = " ;
5 9 1 IF TYPE$= "E" THEN INPUT TAB(10) C(M-E+1)
592 IF TYPE$<>"E" THEN INPUT TAB(10) C (I - E)
595 IF TYPE$="G" AND C(I-E)>=CMAX THEN CMAX=C(I-E) : I 0 = I - E
6 0 0 NEXT I
6 1 0 INPUT " t y p e o f o b j e c t i v e f u n c t i o n (e n t e r MAX o r M I N) " , Z $
6 2 0 PRINT "Now i n p u t t h e o b j e c t i v e f u n c t i o n c o e f f s b (j) "
6 3 0 FOR J = l TO Ν
6 4 0 PRINT " b (" ; S T R $ (J) ; ") = " ; t I N P U T B (J) ;
650 IF Z$ = "MIN" THEN A (0 , J) = B (J)
6 6 0 IF Z$ = "MAX" THEN A (0 , J) = - B (J)
6 7 0 NEXT J
6 80 EDIT =1
6 9 0 PRINT : PRINT "ROWS AS INPUT"
7 0 0 ENDPROC
7 1 0

1 0 0 0 DEF PROCprint
1 0 1 0 PRINT : I F EDIT=0 THEN PRINT "BASIC";ELSE PRINT "TYPE";
1 0 2 0 FOR J = 1 TO Ν
1 0 3 0 PRINT T A B (1 0 * J) ; " X " ; S T R $ (J) ;
1 0 4 0 NEXT J
1 0 5 0 PRINT TAB (1 0 * (N + D) ; " R . H . S . "
1 0 6 0 PRINT
107 0 FOR 1= 0 TO M+PHASE
1 0 8 0 FOR J = 0 TO Ν
1 0 9 0 IF Z$="MAX" AND 1=0 AND J = 0 THEN PRINT "Z";
1 1 0 0 IF Z$="MIN" AND 1=0 AND J = 0 THEN PRINT " - Z " ;
1 1 1 0 IF EDIT=0 AND I > 0 AND J = 0 THEN PRINT " X " ; S T R $ (A (I , 0)) ;
1 1 2 0 IF EDIT=1 AND I > 0 AND J = 0 THEN PRINT T Y P E $ (I) ;
1 1 3 0 IF J > 0 THEN PRINT T A B (1 0 * J) ; A (I , J) ;
1 1 4 0 NEXT J
1 1 5 0 PRINT T A B ((N + 1) * 1 0) ; C (I)
1 1 6 0 NEXT I
1 1 7 0 PRINT
1 1 8 0 ENDPROC
119U

104

2 0 0 0 DEF PROCmatrix
2 0 1 0 IF G>0 THEN P R O C a r t i f i c i a l
2 0 2 0 FOR 1*1 TO M-E
2 0 3 0 IF T Y P E $ (I) « "L" THEN P R O C s l a c k s
2 0 4 0 IF T Y P E $ { I) * "G" AND I O I 0 THEN PROCtrans f o r m
20 50 NEXT I
2 0 6 0 IF E>0 THEN P R O C e q u a l i t i e s
207 0 IF E+G > 0 THEN PHASE « 1
2 0 8 0 IF G>0 THEN A^l
2 0 9 0 A = A+E : PRINT
2 1 0 0 IF A>0 THEN PRINT "ARTIFICIAL VARIABLES REQUIRED"
2 1 1 0 IF E>0 THEN FOR I«M-E+1 TO M:PRINT "X";STR$(N+I) :NEXT I
2 1 2 0 IF G>0 THEN PRINT •X";STR$(N+M+1)
2 1 3 0 IF G>0 THEN N-N+M+1 ELSE N-N+M
2 1 4 0 PRINT : PRINT "PRIMAL FEASIBLE TABLEAU"
2 1 5 0 ENDPROC
2 1 6 0
2 5 0 0 DEF P R O C s l a c k s
2 5 2 0 A (I , 0) « N+I
2 5 3 0 Α (Ι , Ν + Ι) « 1
2 5 4 0 STATUS(N+I)»1
2 5 6 0 ENDPROC
2 5 7 0
3 0 0 0 DEF P R O C a r t i f i c i a l
3 0 1 0 A (I 0 , N + I 0) = - 1
3 0 2 0 A (I 0 , 0) = N+M+1
3 0 3 0 A (I 0 , N + M + 1) « 1
3 0 4 0 STATUS(N+M+1) « 1
3 0 5 0 FOR J = 1 TO N+M
3 0 6 0 A (M + 1 , J) «= A (M + 1 , J) + A (I 0 , J)
307 0 NEXT J
3 0 8 0 C(M+1) = C(M+1) + C (I 0)
3090 ENDPROC
3 1 0 0
3 5 0 0 DEF P R O C t r a n s f o r m
3 5 1 0 FOR J = 1 TO N+M-E
3 5 2 0 A (I , J) * A (I 0 , J) - A (I , J)
3 5 3 0 NEXT J
3 5 4 0 C (I) = C (I 0) - C (I)
3 5 5 0 A (I , 0) « N + I
3 5 6 0 A (I , N + I) = 1
3 5 7 0 STATUS(N+I)«1
3 5 8 0 ENDPROC
3590
4 0 0 0 DEF P R O C e q u a l i t i e s
4 0 1 0 FOR I = M-E+1 TO Μ
4 0 2 0 FOR J = 1 TO Ν
4 0 3 0 A (M + 1 , J) = A (M + 1 , J) + A (I , J)
40 40 NEXT J
4 0 5 0 C(M+1) = C(M+1) + C (I)
4 0 6 0 A (I , N + I) = 1
4 0 7 0 A (I , 0) = N + I
4 0 8 0 STATUS(N+I)=1
4 0 9 0 NEXT I
4 1 0 0 ENDPROC
4 1 1 0
4 5 0 0 DEF P R O C i t e r a t e
4 5 1 0 REPEAT
4 5 2 0 P R O C p i v o t _ c o l u m n
4 5 3 0 IF j = 0 AND PHASE=1 THEN PRINT "NO FEASIBLE BASIS" : END
4 5 4 0 IF j « 0 AND PHASE*0 THEN ENDPROC
4 5 5 0 P R O C p i v o t . r o w
4 5 6 0 IF i * 0 THEN PRINT "UNBOUNDED SOLN":END
4 5 7 0 ρ = A (i , j)
4 5 8 0 PRINT "PIVOT = " ; p ; " NEW BASIC VAR. X " ; S T R $ (j) ;
4 5 9 0 PRINT " IN PLACE OF X " ; S T R $ (A (i , 0))
4 6 0 0 PROCpivot
4 6 1 0 IF PHASE*1 THEN PROCphase
4 6 2 0 PRINT : PRINT "ITERATION No ";STR$(ITERATION)
4 6 3 0 PROCprint
4 6 4 0 UNTIL FALSE
4 6 5 0 ENDPROC
4 6 6 0

Mixed inequality and equality constraints 105

input type ol constraint i=l
i.e. input L ,E ,6 for <s ,= ,>= ?L
input a(i , j) Ir cli) for constraint i=l
ad,!): ' 2
a(l,2)= 1
C(I)» sai

input type of constraint i-2
i.e. input L ,E ,6 for <= ,= ?L
input a(i, j) It c(i) for constraint i=2
a(2,ll» I
a(2,2)s 1
c(2)= 2βΙ

5 0 0 0 DEF P R O C p i v o t _ c o l u m n
5 0 1 0 BEST = 0 : COEFF = 0 : j = 0
5 0 2 0 FOR J « 1 TO Ν
5 0 3 0 IF PHASE=0 AND A (0 , J) < - l E - 0 8 THEN COEFF = - A (0 , J)
5040 IF PHASE=1 AND A (M + 1 , J) > l E - 0 8 THEN COEFF = A (M + 1 , J)
5 0 5 0 IF COEFF > BEST THEN BEST « COEFF : j = J
5 0 6 0 NEXT J
5 0 7 0 STATUS!j) = 1
5 0 8 0 ENDPROC
5 0 9 0
5 5 0 0 DEF P R O C p i v o t _ r o w
5 5 1 0 RATIO = 1 0 E 1 0 : TEST = 1 0 E 1 0 : i = 0
5 5 2 0 FOR 1= 1 TO Μ
5 5 3 0 IF A (I , j) > l E - 0 8 THEN TEST = C (I) / A (I , j)
5 5 4 0 IF TEST < RATIO THEN RATIO = TEST : i = I
5 5 5 0 NEXT I
5 5 6 0 S T A T U S (A (i , 0)) = 0
5 5 7 0 ENDPROC
5 5 8 0
6 0 0 0 DEF PROCpivot
6 0 1 0 A (i , 0) = j
6 0 2 0 REM DIVIDE PIVOT ROW BY PIVOT
6 0 3 0 FOR J = 1 TO Ν
6 0 4 0 A (i , J) « A (i , J) / p
6 0 5 0 NEXT J
6 0 6 0 C (i) = C (i) / p :REM STORE OLD PIVOT COLUMN ENTRY IN COL
6 0 7 0 FOR I « 0 TO M+PHASE
6 0 8 0 COL = A (I , j)
6 0 9 0 FOR J * 1 TO Ν
6 1 0 0 IF I <> i THEN A (I , J) = A (I , J) - C O L * A (i , J)
6 1 1 0 NEXT J
6 1 2 0 I F I <> i THEN C { I) = C (I) - C O L * C (i)
6 1 3 0 NEXT I
6 1 4 0 ITERATION = ITERATION + 1
6 1 5 0 ENDPROC
6 1 6 0
6 5 0 0 DEF PROCphase
6 5 1 0 PHASE»0
6 5 2 0 FOR I « N - A + 1 TO Ν
6 5 3 0 IF S T A T U S (I) « 1 THEN PHASE=1
6 5 4 0 NEXT I
6 5 5 0 IF PHASE=0 THEN N=N-A
6 5 6 0 ENDPROC
6 5 7 0

Now R U N 2 P H A S E in Mode 3 for the data of problem P2, as
overleaf. The output is readable , but not as clearly organized on a
monitor as it is on a wide-carriage printer running in condensed
font. Try Problems 6.8 to 6.11 here .

>RUN
nuiber of Nin variables ?2
nuiber of constraints ?4

106

input type of constraint i=3
i.e. input L ,E ,B for <= ,= ,>= ?6
input a(i , j) tt cli) for constraint i=3
al3,l)= 1
a(3,2)= 2
c(3)= 4M

input type of constraint i-4
i.e. input L ,E ,B for <= ,= ,>= ?B
input a(i , j) k cli) for constraint i M
a(4,l)= 1
a{4,2)= Β
c(4)= m
type of objective function (enter HAX or m)mt
NoN input the objective function coeffs b(j)
b(l)=?3
b(2)=?l

RONS AS INPUT

TYPE XI X2 R.H.S.

Ζ -3. I N -l.BBB B.BBB
L 2.Βββ l.BBB 5BB.BBB
L Β.βββ l.BBB 2BB.BBB
G Ι.ΒβΒ 2.BBB 4BB.BBB
6 l.BBB B.BBB IBB.BBB

ARTIFICIAL VARIABLES REQUIRED
X7

PRIMAL FEASIBLE TABLEAU

BASIC XI X2 X3 X4 X5 Χό X7 R.H.S.

Ζ -3.BBB B.BBB B.BBB B.BBB B.BBB B.BBB
X3 2.BBB l.BBB l.BBB B.BBB B.BBB B.BBB B.BBB SBB.BBB
X4 B.BBB l.BBB B.BBB l.BBB B.BBB B.BBB B.BBB 2BB.BBB
X7 l.BBB 2.BBB B.BBB B.BBB -l.BBB B.BBB l.BBB 4BB.BBB
X6 B.BBB 2.BBB B.BBB B.BBB -l.BBB l.BBB B.BBB 3BB.BBB
XB l.BBB 2.BBB B.BBB B.BBB -l.BBB B.BBB B.BBB 4BB.BBB

PIVOT =2.BBB NEN BASIC VAR. X2 IN PLACE OF X&

ITERATION No 1

BASIC XI X2 X3 X4 X5 X6 X7 R.H.S.

Ζ -3.ΒΒβ B.BiB -B.5BB B.SBB B.BBB ISB.NB
X3 2.BBB B.BBB l.BBB B.BBB B.SBB -B.SBB B.BBB 3SB.BBB
X4 B.BBB B.BBB B.BBB l.BBB B.5BB -B.SBB B.BIB 5B.BBB
X7 l.BBB B.BBB B.BBB B.BBB B.BBB -l.BN l.BBB IBB.BBB
X2 B.BBB l.BBB B.BBB B.BBB -B.SBB B.SBB B.BBB ISB.BBB
XB l.BBB B.BBB

PIVOT =1.B NEM BASIC VAR. XI IN PLACE OF X7

ITERATION No 2

Post-optimal analysis 107

BASIC XI X2 X3 X4 X5 X6 R.H.S.

Ζ a . B N B.aee B.BBB B.BBB -B.SB8 -2.5Ββ 45B.BBB
X3 %.m B.BM l.BBB B.BBB B.5BB 1.5BB 15B.BBB
114 i.iei B.BBB B.BBB l.BBB B.5BB -B.5BB 5B.BBB
XI i . i a e B.BBB B.BBB B.BBB B.BBB -l.BBB IBB.BBB
X2 8. MB l.BBB B.NB B.BBB -B.5BB B.SBB ISB.BBB

PIVOT M.5BB NEN BASIC VAR. X6 IN PLACE OF X3

ITERATION No 3

BASIC XI X2 X3 X4 X5 X6 R.H.S.

2 B.BBB B.BN 1.667 B.BBB B.333 B.BN 7 N . N B
X& B.BBB B .NB B.667 B.BBB B.333 l . N B IBB.NB
X4 B.BN B .NB B.333 l . N B B.667 B .NB IBB.NB
XI l.BBB B.BN B.667 B .NB B.333 B .NB 2 N . N B
X2 B.BBB l . B N -B.333 B .NB -B.667 B . N B I N . N B

6.4 Post-optimal analysis

So far we have used only the information in the 'Basic' column and
the ' R H S ' column of the final tableau. The rest of the tableau
contains information of considerable value in post-optimal
analysis. The details are somewhat involved, and the reader may
consult references 2 and 4 in Chapter 2 for authoritative accounts.
A brief description of the main points of post-optimal analysis is
provided here for those interested. Others may go straight on to
the hsting of the extra Procedures below.

Consider the inequality constraints. If a particular 'slack'
('surplus') variable χ is basic then the constraint is loose, and the
R H S value can be reduced (increased) by the value of the variable,
and increased (reduced) without bound. A non-basic 'slack'
('surplus') variable χ results from a binding constraint. A unit
relaxation in the R H S value will result in a change in the values of
the basic variables, and an improved objective function value. The
correspondence works as follows. The coefficients in the χ column
in the final tableau must have been a result of elementary row
operat ions on the constraint in question. Thus a unit relaxation in
the original R H S would change the R H S column in the final
tableau by the absolute magnitude of the χ column coefficients.
This must mean that the objective function value changes by the
entry in the ζ row of the χ column. Economists call this the
'shadow price ' of a scarce unit of resource. The same rationale
allows the calculation of the extent of permissible changes to the
original R H S values which would leave the current basic variables
non-negative, and this is known as RHS ranging.

108 Linear programming

Program 6.5 SENSITY: LP as 2PHASE with ranging of RHS and
Ζ coefficients

5 REM SENSIT

3 5 REM RANGING OF RHS AND OBJECTIVE FUNCTION COEFFICIENTS

1 3 0 P R O C r h s _ r a n g i n g
1 4 0 P R O C o b j _ r a n g i n g
1 5 0 END
1 6 0

Consider next the main variables. If a main variable χ is
non-basic then a sufficiently favourable change in the original
objective function coefficient would lead to a zero χ coefficient in
the ζ row of the final tableau. The maximum change allowable, if JC
is to remain non-basic, is given by the χ coefficient in the ζ row of
the opt imum tableau. On the other hand, there is no restriction
upon unfavourable change in the original objective function
coefficient of JC. If a main variable is basic, then there are likely to
be restrictions on increases and decreases in the original objective
function coefficient of x, given that the final basis is to remain
optimal. The effect on ζ of a unit increase (decrease) in the
coefficient of χ is simply to add (subtract) the χ row to (from) the ζ
row in the final tableau. The resulting ζ coefficients must remain
non-negative if the final tableau is to remain optimal. O n e can thus
determine maximal decreases and increases in the original χ
coefficient which preserve optimality; this is known as ranging of
the objective function coefficients.

SENSITY is a development of 2 P H A S E which involves two
P R O C E D U R E S as follows.

PROCrhs_ranging: considers each 'slack' and 'surplus' in turn,
differentiating between binding and loose
constraints. Prints maximum change in R H S ,
and the shadow price of binding constraints.

PROCobj_ranging: considers each main variable χ in turn ,
differentiating between basic and non-basic
cases. Prints maximum changes in objective
function coefficients.

Now type in the following alterations to the main program, and
these two Procedures .

109

7 0 0 0 D E F P R O C r h Q _ r a n g i n g
7 0 1 0 I R I N T : P R I N T " B H S R A N G E W H I C H I R E S E R V E S B A S I S "
7 0 2 0 £ R I N T : P R I N T T ^ (l l) " S H A D O W MOC R H S l A X B H S "
7 0 3 0 I R I N T "IN5)lBLirY P R I C E E E O I E A S E I N C R E A S E "
7 0 4 0 I R I N T : J = N - D - G
7 0 5 0 R E P E A T
7 0 6 0 R E P E A T
7 0 7 0 « + l
7 0 8 0 I F J>N mtH WJPROC
7 0 9 0 I P STftJTOSiJ)«! TBW I « 0 : R E P E A T : I « I + 1 l U N T I L A (I , 0) = J
7 1 0 0 II=J-IHL-fG
7 1 1 0 IF STKrüS(J)«l Ί Η Ε ί I R I N T S I R $ (I I) ; " L O O S E " ; T Ä B (1 6) ; "-";
7 1 2 0 I F STimjS(J)«l ¿ W D T Y P E $ (I I) » " L " T H Q I I R I N T TftB(20) ; C (I) ;
7 1 3 0 I F STftTüS (J)«l / W D T Y P E $ (I I) » " L " T H E N I R I N T T » (3 0) ; " I N F -
7 1 4 0 I F STft!roS(J)«l M J D T Y P E $ (I I) » " G " T H E N P R I N T T B E (2 0) ; " I N F " ;
7 1 5 0 I F STATOS(J)«1 A N D T Y P E $ (I I) « " G " T H Q I I R I N T T ñ B (3 0) ; C (I)
7 1 6 0 I M T I L SiAaXJS(J)H3
7 1 7 0 I N C « 1 0 E 8 : D E C = 1 0 E 8 : ·Ι>=ΐΕ-08
7 1 8 0 F O R I « l TO L-KJfE
7 1 9 0 I F A B S (A (I , J)) > T T H E N L I M n X (I) / A (I , J) E L S E L I M r P » 1 0 E 8
7 2 0 0 I F A (I , J X-T A N D (-LIMrP)<INC TSW INO-LIMIT
7 2 1 0 I F A (I , J) > Τ A N D L M T < D E C T H E N D E O ^ L D U T
7 2 2 0 N E X T I
7 2 3 0 P R I N T S T R $ (I I) ; " B I N D I N G " ; T Ä B (1 2) ; A (0 , J) f
7 2 4 0 I F TyPE$(II)="L" A N D E E C < 1 0 E 8 T H E N I R I N T T B B (2 0) ; D E C ;
7 2 5 0 I F Τ Ϊ Ρ Ε $ (Ι Ι) » Ί : . " A N D E E O 1 0 E 8 TBW P R I N T T ñ B (2 0) ; " I N F " ;
7 2 6 0 I F TyPE$(II) « " L " A N D I N C a 0 E 8 T H Q I I R I N T TfiB(30);INC
7 2 7 0 I P T Y P E $ (I I) « " L " A N D I N O 1 0 E 8 T H Q < I R I N T T f t B (3 0) ; " I N F "
7 2 8 0 I P T Y P E $ (I I) ' « " G " A N D I N C < 1 0 E 8 T H E N P R I N T TftB(20);INC;
7 2 9 0 I F T Y P E $ (I I) « " G " A N D I N O 1 0 E 8 T H Q l I R I N T T ñ B (2 0) ; " I N F " ;
7 3 0 0 I P T Y P E $ (I I) « " G " A N D E E C < 1 0 E 8 O H E N P R I N T Tffi(30);DEC
7 3 1 0 I F T Y P E $ (I I) « " G " A N D E E O 1 0 E 8 Tñm P R I N T TftB(30) ; " I N F "
7 3 2 0 U N T I L F A L S E
7 3 3 0 Q i E P R O C
7 3 4 0
7 5 0 0 D E F P R O 0 o b j _ r a n g i n g
7 5 1 0 I R I N T : P R I N T t B E N ωΕΡΡ R A N G E W H I C H I R E S E S V E S B A S I S "
7 5 2 0 I R I N T : I R I N T " M A I N O R I G I N A L M A X M A X "
7 5 3 0 I R I N T " V A R I A B L E ωΕΡΡ D E C R E A S E I N C R E A S E "
7 5 4 0 JJ=9
7 5 5 0 R E P E A T
7 5 6 0 R E P E A T
7 5 7 0 JJ=JJ+1
7 5 8 0 I F JJ > N - L - G Τ Η Β Ϊ E N E P R O C
7 5 9 0 I F STATÜS (J J)=0 T H Q I I R I N T "X";STR$(JJ) | T Ä B (9) ?B(JJ) ,·
7 5 0 0 I F STATOS (JJ)=fl A N D Z $ « " M A X " T H E N I R I N T T A B (2 0) ; " I N F " ;
7 6 1 0 I F STA!roS(JJ)=fl A N D Z $ « " M A X " T H E N P R I N T T A B (3 0) ; A (0 , JJ)
7 6 2 0 I F STA!njS(JJ)=0 A N D Z $ = " M I N " T H E M I R I N T T A B (2 0) ;A(0,JJ) ;
7 6 3 0 I F STimJS(JJ)=0 i W D Z $ = " M I N " T H Q I P R I N T T A B (3 0) ; " I N F "
7 6 4 0 U N T I L Sa3mJS(JJ)-l
7 6 5 0 I = 0
7 6 6 0 R E E G A T
7 6 7 0 1 = 1 + 1
7 6 8 0 U N T I L A (I , 0) = JJ
7 6 9 0 I N O 1 0 E 8 : D E O 1 0 E 8 : T>=lB-08
7 7 0 0 F O R J=l T O Ν
7 7 1 0 I F S T A a U S (J) = 0 A N D A B S (A (I , J)) > T I H Q J L I M r P = A (0 , J) / A (I , J)

E L S E L I N n > » 1 0 E 8
7 7 2 0 I F A (I , J) < - T A N D (-iilMTT) < I N C T H Q < I N O = - L I M I T
7 7 3 0 I F A (I , J) > Τ A N D L I M I T < D E C T H E N D E O L I M I T
7 7 4 0 N E X T J
7 7 5 0 I R I N T " X - ; S T R $ (A (I , 0)) ; T A B (9) ; B (A (I , 0)) ;
7 7 6 0 I F Z $ = " M A X " A N D E E C < 1 0 E 8 TEm I R I N T T 2 ß (2 0) ; M : C ;
7 7 7 0 I F Z $ = " M A X " A N D E E O 1 0 E 8 T H Q i I R I N T T A B (2 0) ; " I N F " ;
7 7 8 0 I F Z $ = " M A X - A N D I N C < 1 0 E 8 T H E N I R I N T T ! » (3 0) ; I N C
7 7 9 0 I F Z$»"MAX'' A N D I N O 1 0 E 8 TäW I R I N T T W (3 0) ; " I N F "
7 8 0 0 I F Z $ = " M I N " A N D I N C < 1 0 E 8 Τ Η ΐ Μ I R I N T T A B (2 0) ; I N C ;
7 8 1 0 I F Z $ = " M I N " A N D I N C ^ 1 0 E 8 T H Q J I R I N T T A B (2 0) ; " I N F " ;
7 8 2 0 I F Z $ « " M I N " A N D E E C < 1 0 E 8 T H Q I I R I N T T A B (3 0) ; D E C
7 8 3 0 I F Z $ « " M I N " A N D E E O 1 0 E 8 Τ Η Ο < I R I N T T A B (30) ; " I N F "
7 8 4 0 U N T I L J J«N-L-G
7 8 5 0 Q I E P R O C

110 Linear programming

RHS RANGE MHICH PRESERVES BASIS

SHADON MAX RHS NAX RHS
INEQUALITY PRICE DECREASE INCREASE

1 BINDING 1.667 15β.βββ 3Ββ.0Ιβ
2 LOOSE - IIB.BIB INF
3 BINDING B.333 ISB.BBB ISB.BBB
4 LOOSE - INF IBB.BBB

OB FN COEFF RANGE WHICH PRESERVES BASIS

HAIN ORIGINAL HAX NAX
VARIABLE COEFF DECREASE INCREASE
XI 3.ΒΒβ l.BBB INF
X2 l.BBB INF B.SBB

The post-optimal analysis contains some very important
management information. The R H S ranging analysis was apphed
to the four constraints, Working capital (constraint 1), Bought-in
items (constraint 2) , Normal time working (constraint 3) , and the
Process constraint (constraint 4). The printout tells us firstly that
for every additional monetary unit of working capital up to a
maximum of 300 additional mu, an extra contribution of 1.667 mu
is possible. Conversely, a reduction of up to 150mu will reduce the
contribution in the same proport ion. Secondly, there are sufficient
bought-in items for the production of a further 100 units of product
2. Thirdly, for each hour reduction (increase) in normal time
working there is an increase (decrease) in the contribution of 0.333
mu for changes of up to 150 hours over the planning period.
Finally, the minimum process rate of product 1 production is
comfortably exceeded.

The ranging of the objective function coefficients shows that the
current basis stays optimal if the profit contribution of product 1 is
in excess of 2 mu; it is also optimal if the profit contribution of the
second product is less than 1.5 mu.

You should do the remaining Problems now.

Problems

(6.1) Modify Program E N U M E R to pick out the opt imum basis
and objective function value for Maximize and Minimize
problems. Test your program on the data for problems P I and P2.

When satisfied with the accuracy of your hsting you should
R U N with the data of problem P2. The final part of the printout is
given below.

Problems 111

Minimize Ζ = 4xi -\-5x2 +7JC3 +6;C4
Subject to JCi + ;ií2 + .^3 + -̂ 4 = 1

5x2 +3^:3 +5JC4 > = 2
X2 +2x3 +2JC4 > = 1

ΙΟΛΤΙ + 4JC3 +2Λ:4 = 5
4x2 + JC3 + ;C4 < = 2

(6.9) R U N SENSITY with numerical examples drawn from
standard textbooks. You can redimension the program to cater for
larger problems. Using Μ-hi rows and N-hM-hl columns a

(6.2) Devise a P R O C r e a d which reads data from D A T A
sta tements , as an alternative which can be exercised at the user 's
discretion to conversational data input in PROCinput .

(6.3) Devise a PROCedi t to be called from the main program of
S I M P L E X which enables the user to change any of the input data ,
until the user is satisfied, whereupon set Q $ = ' N ' .

84 R E P E A T
85 PROCedi t
86 U N T I L Q$ = " N "
N.B. PROCedi t must call PROCpr in t .

(6.4) Devise a PROCsoln for S IMPLEX which prints out the
value of ζ and the values of the basic variables in the opt imum
solution.

(6.5) Devise an improvement which allows the user to give names
to main variables and to constraint rows. Incorporate the naming
of variables into PROCsoln of Problem 6.4, and extend PROCsoln
to provide the values of the slack variables for named rows.

(6.6) R U N SIMPLEX to observe cycling with E .M.L . Beale 's
example:

MIN ζ = - .75λΊ + 20x2 - .5Λ:3 + 6x4
Subject to .25JCI - 8x2 - Λ:3 4- 9JC4 < = 0

.5xi - 12x2 - '5x3 + < = 0
JC3 < = 1

(6.7) Devise a PROCal ternat ive which is called in line 129 of
S I M P L E X when there exist one or more non-basic variables j at
the opt imum solution such that A(0, j) is near zero. The user
should be given the option of entering j into the basis.

(6.8) Use 2 P H A S E to solve the following L.P. problem, which is
an example of the so-called 'diet ' problem described by E . M . L .
Beale in Mathematical Programming in Practice, Pi tman, 1968.

file://-/-5x2

112 Linear programming

Standard B B C Β micro can cope with a problem with, say, 20 rows
and 20 main variables in, say, 5 minutes, but you should beware
problems due to rounding errors and ill-conditioning,

(6.10) R U N SENSITY for problem P2 with the additional
equality constraint Χχ - X2 = 0. Superimpose this equality
constraint upon Figure 6.4 to check your output .

(6.11) Write a PROCknown^bas is which generates a first simplex
tableau from a set of user input basic variable indices. (Hint: draw
upon E N U M E R for the Gaussian elimination procedures.)

(6.12) Re-draw the eight feasible regions for each of the eight
changes in the constraints indicated by the R H S ranging analysis in
the text. Then re-draw the original feasible region and superim­
pose the four instances of objective function hues, which apply at
the extremes of the ranging of the objective function coefficients.

(6.13) Write a management report upon your interpretation of the
results of the post-optimal analysis of the R U N to problem P2
which was given in the text.

(6.14) Readers who understand the definition of a linear
programming problem of ' t ransportation type ' should write the
following procedures: P R O C t l p J n p u t and PROCtlp^matr ix . The
former should allow the user to input the number of origins and
destinations, the availabilities and requirements , and the trans­
portat ion cost coefficients. The latter generates the matrix of
constraint coefficients automatically.

C h a p t e r 7

Markov chains

Essential theory

7.1 Introduction to Markov chains

A Markov chain model may be usefully employed for the analysis
of a system with both dynamic and probabiUstic features. Suppose
that a system can be in one of a finite number of states, and its
behaviour can be modelled as a probabiHstic trajectory through
intermediate states at some suitably chosen instances, which may
be regular or irregular points in t ime. A discrete valued state
variable Si is associated with the ith system state for / = 0 , 1 , 2 , . . . , / .
This state variable is distinguished from a discrete valued stage
variable n. Variable η is used to convey the idea that the state of
the system is examined at successive discrete instances n = 0 , l , 2 , . .
. ,N where the initial examination occurs at stage η = 0.

A Markov chain has the property that the random change from
state s¿ at stage η to Sj at stage n + 1 does not depend in any way
upon the state trajectory which developed prior to stage n. So this
random change of state accords with the conditional probability
distribution

ProbabiHty (state Sj at stage n + l / s t a t e Si at stage n) = Pij
for all stages η = 0,1,2, . . N-1

Thus Markov chains are said to have a 'stationary set of
transition probabilit ies ' ; i .e. independent of the stage variable.
Transitions between each pair of states may occur in principle and
so a square conditional probability transition matrix Ρ can be
defined with non-negative conditional transition probabihties. The
matrix Ρ has order 7 + 1 , where the rows correspond to the state at
stage η and the columns to the state at stage n-l·l, Conditional
transition probabihties for certain or impossible transitions are 1
and 0 respectively and since a transition must occur between
successive stages, if only to the same state, the entries in the rows
of the matrix Ρ sum to unity.

113

114 Markov chains

So

P = s,

So S, S3
/ 0.9 0.1 \

0.75 0.25
\ 1 /

Notice that there is a probability Po,i = 0.1 that a 'properly
adjusted' machine at the start of a shift is 'poorly adjusted' at the
start of the next shift. There is an even larger probability Pi 2 =
0.25 that a machine which is 'poorly adjusted' at the start of a shift
is ' inoperable ' at the start of the next. The element ^ 2 , 0 = 1 in the
third row follows from the definitions of state and stage, i.e. it is
certain that a machine which is ' inoperative' at the start of a shift is
'properly adjusted' at the start of the next.

A comprehensive set of system trajectories over the first three
shifts is provided in Figure 7 .1 . There are 2, 4 and 7 trajectories
from state SQ to the system states at stages 1, 2 and 3. The reader
can extend the figure to check that there are 12 trajectories to the
system states at stage 4. All the non-zero transition probabilities
are shown, and the trajectories have probabilities which are
calculated from the product of the appropriate transition
probabilities.

The n-stage probability ""Pij of achieving state Sj at stage η by a
trajectory from state s¿ at stage 0 is given by the sum of the

7.2 An illustrative example

Suppose, for illustration, that a machine has a random tendency to
deter iorate instantaneously from a state SQ 'properly adjusted' at
the start of a period of operation to 'poorly adjusted' just prior
to the end of the period. If the periods are the duration of a
working shift, say, then the stages correspond to the intervals
between shifts. The machine is assumed to be 'properly adjusted'
before the start of the first shift, i .e. at stage 0. A machine which is
'properly adjusted' at the start of a shift produces 100 items of
acceptable quahty in that shift. A machine which is 'poorly
adjusted' at the start of a shift produces 90 acceptable items in that
shift. Management needs to know what level of acceptable output
to expect from a shift. A machine which is in state Si 'poorly
adjusted' at the start of a shift may deteriorate instantaneously to
the state S2 ' inoperable ' just prior to the end of the shift. A n
' inoperable ' machine always receives attention for the duration of
the next shift and it is returned to the state SQ 'properly adjusted'
by the end. The matrix of stationary transition probabilities is
given in Table 7 .1 .

Table 7.1 A matrix of transHion probabilities

An illustrative example 115

P r o b a b i l i t y
of t r a j e c t o r y

• 1 » -25« 1 •025

• 1 * -75« - 2 5 = 0 1 8 7 5

• 1 * - 7 5 * -75 =

• 9 * 1 * -25 =

•05625

•0225

•9M -1» -75 = 0 6 7 5

9 * ·9» ·1

• 9 * -9« 9 =

•081

•729

Figure 7.1 The system state trajectories over three transitions

appropria te trajectory probabilities. For example, it is evident
from Figure 7.1 that the machine is in state 'poorly adjusted' at
stage 3 with probability.

^Po,i = .05625 + .0675 + .081 = .20475

But it is much easier to calculate "P¿,y recursively. The
probability associated with an n-stage trajectory to state Sj from
state Si at stage 0 can be obtained from the sum of products , over
all k, of the probabilities of the / i - l stage trajectory to state Si^ and
the single-stage transition from s^ to Sj. Thus

"Λν = Σ " - ' Η) ^ * ^ . , ; Ί Θ Γ Η = 2 ,3 , . . . , Ν

k

where ^P/y = Pij

s t a g e 0

= 1

S h i f t

E x p e c t e d
o u t p u t Ε

- Λ
ζ · 9

1

1 0 0

ζ 0 2 5
ζ - 1 6 5
= · 81

2

9 9

= 0 4 1 2 5

^ Ρ Ο , , = 2 0 Α 7 5

9 5 85 93 83

Figure 7.2 State diagram over three transitions, , and Ε

116 Markov chains

This idea is synonymous with redrawing Figure 7.1 so that each
state is uniquely represented at each stage, with the result that
individual trajectories are no longer discernible. This is done in
Figure 7.2, which also gives the probabilities "P/ j for η = 1,2,3
from recursive calculations. Now the expected output in the nth
shift, £ , can be written as follows, and this expression was used for
the calculations of Ε for η = 2,3,4 also shown in Figure 7.2:

= 100 * "-^Ρο,ο + 90 * "-^Po.i + 0 * " -^Po ,2

It is not necessary to assume that the machine is in state 0 at
stage 0. Its initial state could be taken as a vector ^p' of
probabilit ies, and in general we can think of the state of the
machine at stage η as the vector y where

"p' = (Prob, of So, Prob, of Si, . . . ,Prob. of Sj)

A recursion can then be written compactly using matrix algebra

torn = 1,2, , . . ,N.
If an output vector is denoted by e where e = (100, 90, 0) then

the output E„ in the nth shift is given by

= ""-y e

In the present example, one finds that

V = (1, 0, 0)and£i = 100
y = (.9, . 1 , 0) E2= 99
y = (.81 , .165, .025) £ 3 = 95.85
Y = (.754, .20475, .04125) £ 4 = 93.83

The elements of the vectors and the values of Ε accord with
the n-stage probabilities and expected outputs from Figure 7.2
above. Now a solution to the recursion is obviously

ψ = y Ρ "

for η = 1,2, . . , ,Ν,
The first row of Ρ " corresponds to " p ' when the initial state

vector y = Α ,Ο,Ο), the second row of P " to y = (0,1,0), and the
third row to y = (0,0,1). Thus the rows of P " contain in vector
form the n-stage probabilities "P¿,y for all / = 0,1,2, . . . ,/. If the
rows of P " are similar then the vector y is not closely dependent
upon the initial state. If the difference between the individual rows
of P" , and the difference between each row of P " and the
corresponding row of P""*"̂ both reduce as η increases then there is
a priori evidence of a 'steady s ta te ' , i.e. that the state vector of

An illustrative example 117

probabilities settles into a form for large η which is independent of
the stage and the initial state. This is discussed more fully later on.

The program M A R K O V consists of the following P R O C E ­
D U R E S :

PROCinpu t :

PROCstate_vector :

PROCnstage_matr ix :

allows the user to enter the total number of
system states IH-I, the maximum number
of stages N , the elements of the array
v(0,i) which is used to store the initial state
vector ^p' and the elements of the array
P (i J) which is used to store the matrix of
transition probabilities P.
uses the equation
vectors recursively f o r n = 1,2, . . . ,N
and stores them as rows of a two-
dimensional array v(n,i) .
finds and prints the nth power P" of Ρ for η
= 1,2, . . . ,iV which is stored as a
three-dimensional array n_stage(i, j ,n).

y=^-^p'P to find the

Type in M A R K O V from the listing below.

118

Program 7.2A MARKOV: Markov chain analysis for first Ν stages

1 0 REM MARKOV
20 REM FINDS FIRST Ν VECTORS OF STATE PROBABILITIES
3 0 REM FINDS FIRST Ν POWERS OF TRANSITION MATRIX Ρ**!!
40 DIM v (1 0 , 9) , P (9 , 9) , n _ s t a g e (9 , 9 , 1 0)
50 @%=&0002060A
6 0
7 0 PROCinput
80 P R O C s t a t e _ v e c t o r
90 P R O C n s t a g e _ m a t r i x

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I
1 0 2 0 I = I - l
1 0 3 0 INPUT "ENTER THE MAXIMUM NUMBER OF STAGES " , Ν
1 0 4 0 PRINT "ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR"
1 0 5 0 FOR i = 0 TO I
1 0 6 0 PRINT " p (" ; S T R $ (i) ; ") = " ; : INPUT v (0 , i)
107 0 NEXT i
1 0 8 0 PRINT
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX"
1 1 0 0 FOR i = 0 TO I
1 1 1 0 FOR j = 0 TO I
1 1 2 0 PRINT " P (" ; S T R $ (i) ; " , " ; S T R $ (j) ; ") = " ; : INPUT P (i , j)
1 1 3 0 n _ s t a g e (i , j , l) = P (i , j)
1 1 4 0 NEXT j
1 1 5 0 NEXT i
1 1 6 0 ENDPROC
1 1 7 0
1 5 0 0 DEF P R O C s t a t e _ v e c t o r
1 5 1 0 PRINT : PRINT "STAGE STATE PROBABILITY VECTOR"
1 5 2 0 FOR η = 1 TO Ν
1 5 3 0 FOR j = 0 TO I
1 5 4 0 FOR i = 0 TO I
1 5 5 0 v (n , j) = v (n , j) + v (n - l , i) * P (i , j)
1 5 6 0 NEXT i
1 5 7 0 NEXT j
1 5 8 0 PRINT STR$(n) TAB(7) " (" ;
1 5 9 0 FOR j = 0 TO I
1 6 0 0 PRINT v (n , j) ;
1 6 1 0 NEXT j
1 6 2 0 PRINT ") -
1 6 3 0 NEXT η
1 6 4 0 ENDPROC
1 6 5 0
2 0 0 0 DEF P R O C n s t a g e _ m a t r i x
2 0 1 0 FOR η = 2 TO Ν
2 0 2 0 PRINT:PRINT STR$(n)"-STAGE TRANSITION MATRIX P " " ; S T R $ (n)
2 0 3 0 FOR i = 0 TO I
2 0 4 0 FOR j = 0 TO I
2 0 5 0 FOR k = 0 TO I
2 0 6 0 n _ s t a g e (i , j , n) = r u s t a g e (i , j , n) + P (i , k) * n _ s t a g e (k , j , n - 1)
2 0 7 0 NEXT k
2 0 8 0 PRINT n _ s t a g e (i , j , n) ;
2090 NEXT j
2 1 0 0 PRINT ""
2 1 1 0 NEXT i
2 1 2 0 NEXT η
2 1 3 0 ENDPROC
2 1 4 0

RUN
ENTER THE TOTAL NUMBER OF SYSTEM STATES ?3
ENTER THE MAXIMUM NUMBER OF STAGES 77
ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR
P (0) = ?1
P (l) = ?0
P (2) = ? 0

An illustrative example 119

ENTER THE ELEMENTS OF THE TRANSITION MATRIX
P (0 , 0) = ? . 9
P (0 , 1) = ? . l
P (0 , 2) = ? 0
P (1 , 0) = ?0
P (l , l) = ? . 7 5
P (l , 2) = ? . 2 5
P { 2 , 0) = ? 1
P (2 , l) = ? 0
P (2 , 2) = ? 0

STAGE STATE PROBABILITY VECTOR
1 (0 . 9 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 0 0 0 0 0 0)
2 (0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0)
3 (0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0)
4 (0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7)
5 (0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1)
6 (0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7)
7 (0 . 6 7 8 6 7 6 0 . 2 5 8 1 5 3 0 . 0 6 3 1 7 1)

2-STAGE TRANSITION MATRIX P*2
0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0
0 . 2 5 0 0 0 0 0 . 5 6 2 5 0 0 0 . 1 8 7 5 0 0
0 . 9 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 0 0 0 0 0 0

3-STAGE TRANSITION MATRIX P'^3
0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0
0 . 4 1 2 5 0 0 0 . 4 4 6 8 7 5 0 . 1 4 0 6 2 5
0 . 8 1 0 0 0 0 0 . 1 6 5 0 0 0 0 . 0 2 5 0 0 0

4-STAGE TRANSITION MATRIX P"4
0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7
0 . 5 1 1 8 7 5 0 . 3 7 6 4 0 6 0 . 1 1 1 7 1 9
0 . 7 5 4 0 0 0 0 . 2 0 4 7 5 0 0 . 0 4 1 2 5 0

5-STAGE TRANSITION MATRIX P"5
0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1
0 . 5 7 2 4 0 6 0 . 3 3 3 4 9 2 0 . 0 9 4 1 0 2
0 . 7 1 9 8 5 0 0 . 2 2 8 9 6 2 0 . 0 5 1 1 8 7

6-STAGE TRANSITION MATRIX P''6
0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7
0 . 6 0 9 2 6 7 0 . 3 0 7 3 6 0 0 . 0 8 3 3 7 3
0 . 6 9 9 0 5 2 0 . 2 4 3 7 0 7 0 . 0 5 7 2 4 1

7-STAGE TRANSITION MATRIX P''7
0 . 6 7 8 6 7 6 0 . 2 5 8 1 5 3 0 . 0 6 3 1 7 1
0 . 6 3 1 7 1 4 0 . 2 9 1 4 4 7 0 . 0 7 6 8 4 0
0 . 6 8 6 3 8 8 0 . 2 5 2 6 8 5 0 . 0 6 0 9 2 7

You should duphcate the R U N when you are satisfied with the
accuracy of your Hsting. If you should try other R U N s with more
than 10 stages or 10 states you should first redimension the arrays
in line 40. D o Problems 7.1 and 7.2 here .

There is strong a priori evidence of the gradual approach of
steady state conditions. The idea of a steady state is synonymous
with redrawing Figure 7.2 as in Figure 7.3. The transition
probabilities are written alongside the arrows, which convey the
sense of progression from one stage to the next.

If steady state conditions do occur then the superscript can be
dropped from the state vector to yield an equation in the steady
state vector of probabilities p'\

120 Markov chains

. S o ;

.0 ' >«0 •25

Figure 7.3 State transitions under steady state conditions

p'=pT
or p' {P-I) = 0 ' where 0 ' is a null vector

These equations are written out in full for the numerical
example of this section, using the notation p' - {po, Pu Pi)

-.lpo+ 0 pi + lp2 = 0
Λρο ~ . 2 5 p i + 0p2 = 0
0 po + .25 p i - 1 /72 = 0

These steady state equations can be given a 'flow' interpreta­
tion. Figure 7.4 is similar to Figure 7.3 but the elements of the
matrix P - I are written alongside the arrows. In the steady state
there is a zero rate of change in stage dependent probability. So in
the case of state SQ, say the 'flow rate into state SQ of 1 p2 must
equal the 'flow rate out of state SQ of .1 po. The equality between
these flow rates yields the first steady state equation. A similar
analogy for and S2 yields the second and third steady state
equations respectively.

Ü0 ^ ^ J 2

Figure 7.4 Flow analogy for steady state equations

Notice that these three equations are not linearly independent
(e.g. the third is the negative sum of the first two). This will be the
case in general , and the following 'normalizing condition' can be
substituted for any one of them

Po + P i + P2 = 1
These steady state equations are very easy to solve here . The
second and third yield

P i = 2/5 Po and p2 = 1/10 po

An illustrative example 121

The appHcation of the 'normahzing condition' gives

po = 2/3, p i = 4/15, p2 = 1/15

The long run output of parts of acceptable quality is 90.67 per
shift, from substituting the steady state probabiHties into the
former expression for E.

In general , the steady state equations may be solved by
Gaussian elimination. The approach here is to borrow the
appropriate P R O C E D U R E S from Program E N U M E R of the
preceding chapter .

PROCsteady^s ta te : sets up the matrix of coefficients A and the
right-hand side vector C for the steady state
equations A p ' = C, having substituted the
normalizing equation for the final steady state
equation. Calls other procedures from line
3000 et seq.

Make the foHowing amendments to Program M A R K O V .

10 REM LONG RUN

3 5 REM FINDS STEADY STATE PROBABILITIES
40 DIM v (1 0 , 9) , P (9 , 9) , n _ s t a g e (9 , 9 , 1 0) , p (9) , A (9 , 9) , C (9)

85 P R O C s t e a d y _ s t a t e

Now type in lines 2500 etseq from the listing below.

122

Program 7.2Β LONGRUN: Finds steady state probability vector

1 0 REM LONGRUN
20 REM FINDS FIRST Ν VECTORS OF STATE PROBABILITIES
3 0 REM FINDS FIRST Ν POWERS OF TRANSITION MATRIX P'^n
3 5 REM FINDS STEADY STATE PROBABILITIES
40 DIM v (1 0 , 9) , P (9 , 9) , i u s t a g e (9 , 9 , 1 0) , p (9) , A (9 , 9) , C (9)
50 @%«&0002060A
6 0
7 0 PROCinput
80 P R O C s t a t e _ v e c t o r
85 P R O C s t e a d y _ s t a t e
90 P R O C n s t a g e _ m a t r i x

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES I
1 0 2 0 I - I - l
1 0 3 0 INPUT "ENTER THE MAXIMUM NUMBER OF STAGES " , Ν
1 0 4 0 PRINT "ENTER THE ELEMENTS OF THE INITIAL STATE VECTOR"
1 0 5 0 FOR i = 0 TO I
1 0 6 0 PRINT " p (" ; S T R $ { i) ; ") = " ; : INPUT v (0 , i)
107 0 NEXT i
1 0 8 0 PRINT
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX"
1 1 0 0 FOR i = 0 TO I
1 1 1 0 FOR j = 0 TO I
1 1 2 0 PRINT " P (" ; S T R $ (i) ; " , " ; S T R $ (j) ; ") = " ; : INPUT P (i , j)
1 1 3 0 n _ s t a g e (i , j , l) = P (i , j)
1140 NEXT j
1 1 5 0 NEXT i
1 1 6 0 ENDPROC
117 0
1 5 0 0 DEF P R O C s t a t e _ v e c t o r
1 5 1 0 PRINT : PRINT "STAGE STATE PROBABILITY VECTOR"
1 5 2 0 FOR η = 1 TO Ν
1 5 3 0 FOR j = 0 TO I
1 5 4 0 FOR i = 0 TO I
1 5 5 0 v (n , j) = v (n , j) + v (n - l , i) * P (i , j)
1 5 6 0 NEXT i
1 5 7 0 NEXT j
1 5 8 0 PRINT STR$(n) TAB(7) " (" ?
1 5 9 0 FOR j = 0 TO I
1 6 0 0 PRINT v (n , j) ;
1 6 1 0 NEXT j
1 6 2 0 PRINT ") "
1 6 3 0 NEXT π
1 6 4 0 ENDPROC
1 6 5 0
2 0 0 0 DEF P R O C n s t a g e ^ m a t r i x
2 0 1 0 FOR η = 2 TO Ν
2 0 2 0 PRINT:PRINT STR$(n)"-STAGE TRANSITION MATRIX P ~ " ; S T R $ (n)
2 0 3 0 FOR i = 0 TO I
2 0 4 0 FOR j = 0 TO I
2 0 5 0 FOR k = 0 TO I
2 0 6 0 n _ s t a g e (i , j , n) = n _ s t a g e (i , j , n) + P (i , k) * n _ s t a g e (k , j , n - 1)
207 0 NEXT k
2 0 8 0 PRINT n _ s t a g e (i , j , n) ;
2 0 9 0 NEXT j
2 1 0 0 PRINT ""
2 1 1 0 NEXT i
2 1 2 0 NEXT η
2 1 3 0 ENDPROC
2 1 4 0

123

2 5 0 0 DEF P R O C s t e a d y _ s t a t e
2 5 1 0 FOR i = 0 TO I - l
2 5 2 0 FOR j = 0 TO I
2 5 3 0 A (i , j) = P (j , i)
2 5 4 0 NEXT j
2 5 5 0 A (i , i) = A (i , i) - 1
2 5 6 0 C (i) = 0
257 0 NEXT i
2 5 8 0 FOR j = 0 TO I
2 5 9 0 A (I , j) = 1
2 6 0 0 NEXT j
2 6 1 0 C (I) = 1
2 6 2 0 PROCgauss
2 6 3 0 ENDPROC
2 6 4 0
3 0 0 0 DEF PROCgauss
3 0 1 0 FOR k= 0 TO I - l
3 0 2 0 P R O C f i n d _ p i v o t
3 0 3 0 IF r>k THEN P R O C i n t e r c h a n g e _ r o w s
3040 P R O C e l i m i n a t i o n
3 0 5 0 NEXT k
3 0 6 0 P R O C b a c k _ s u b s t
307 0 ENDPROC
3 0 8 0
3 5 0 0 DEF P R O C f i n d _ p i v o t
3 5 1 0 d=0 : r=k
3 5 2 0 FOR i = k TO I
3 5 3 0 c = A B S (A (i , k))
3540 IF d < c THEN d = c : r = i
3 5 5 0 NEXT i
356 0 ENDPROC
3 5 7 0
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s
4 0 1 0 FOR j = k TO I
4 0 2 0 d = A (k , j)
4 0 3 0 A (k , j) = A (r , j)
4 0 4 0 A (r , j) = d
40 50 NEXT j
4 0 6 0 d = C{k)
4 0 7 0 C (k) = C (r)
4 0 8 0 C (r) = d
4 0 9 0 ENDPROC
4 1 0 0
4 5 0 0 DEF P R O C e l i m i n a t i o n
4 5 1 0 FOR i = k+1 TO I
4 5 2 0 d = - A (i , k) / A (k , k)
4 5 3 0 FOR j = 1 TO I
4 5 4 0 A (i , j) = A (i , j) + d * A (k , j)
4 5 5 0 NEXT j
4 5 6 0 C { i) = C (i) + d*C{k)
457 0 NEXT i
4 5 8 0 ENDPROC
4 5 9 0
5 0 0 0 DEF P R O C b a c k _ s u b s t
5 0 1 0 IF A (I , I) = 0 THEN PRINT "SINGULAR P - I " : ENDPROC
5 0 2 0 p (I) = C { I) / A (I , I)
5 0 3 0 FOR i = I - l TO 0 STEP - 1
5040 d = C (i)
5 0 5 0 FOR j = i + 1 TO I
5 0 6 0 d = d - A (i , j) * p (j)
507 0 NEXT j
5 0 8 0 p (i) = d / A (i , i)
5 0 9 0 NEXT i
5 1 0 0 PRINT : PRINT TAB(12) "STEADY STATE VECTOR"
5 1 1 0 PRINT TAB(7) " (";
5 1 2 0 FOR i = 0 TO I
5 1 3 0 PRINT p (i) ;
5 1 4 0 NEXT i
5 1 5 0 PRINT ") "
5 1 6 0 ENDPROC

124 Markov chains

A R U N with the data for the numerical example of this section
should corroborate the earlier calculations of the steady state
probability vector. Now do Problems 7.3 to 7.7.

7.3 Maintenance policies

It is often cheaper to schedule preventative maintenance, rather
than incur the costs of unexpected breakdown. Suppose that the
data of Table 7.2 has been obtained for the 'number of periods
completed prior to failure' from a trial of 100 identical machines

Table 7.2 Failure data

Number of
completed
periods before
failure

Number of
machines

Failure
probability

Conditional failure
probability

0 20 .2 20/100= .2
1 20 .2 20/80 = .25
2 24 .24 24/60 = .4
3 18 .18 18/36 = .5
4 9 .09 9/18 = .5
5 9 .09 9/9 = 1.0

If it is assumed that failures occur just prior to the end of a
period then the average service Hfe is given by the quantity

l x . 2 4- 2X.2 + 3X.24 + 4X.18 + 5 x . 0 9 + 6 x . 0 9 = 3.03
periods

If it is further assumed that a repair can be completed prior to the
start of the next period and that the subsequent failure probability
distribution reverts to that of a new machine, then in the absence
of preventative maintenance one would find a long-run failure
probability = 3.03"^ = .33 per period. This gives rise to an
expected cost of .33 x 350 = £115.51 per period for the cost data
of Table 7.3.

Table 7.3 Cost data

Cost of repair per failure
Cost of scheduled maintenance

£350
£ 25

O n e might expect that preventative maintenance policies could
be devised to reduce this expected long-run cost. Such policies fall
into two classes:

C I Maintain η periods after the machine last received attention
C2 Maintain the machine after η calendar periods

Maintain η periods after the machine last received attention 125

0

Periods completed without attention
at stage A:+l

1 2 3 4 5

Periods 0 .2 .8
completed 1 .25 .75
without 2 .4 .6
attention 3 .5 .5
at stage 4 .5 .5
k 5 1.0

The steady state vector p ' = (po, PuPi, Ps, PA, PS) can be found
from program L O N G R U N . The first element is po = .33 which is
interpreted as the long-run probability that a machine commences
a period of operation having just been repaired. Note that no
preventative maintenance is possible if machines are allowed to
commence a sixth period of operation as in the matrix of Table
7.4. The value of po gives confirmation of the long-run probability
of failure per period given in the last section.

For an example of the first class of policy one could cite the
maintenance schedules for an aircraft engine, say, which is
overhauled after a prescribed number of flying hours have been
completed either since the previous overhaul or since a repair was
effected. The second class of poUcy is much easier to administer
because it is not necessary to keep detailed service histories for
individual machines. O n e may choose for example to service
equipment on an annual basis.

These two classes of poHcy are considered separately in the
following sections.

7.4 Maintain η periods after the machine last received attention

The steady state behaviour of Markov chains can be employed to
model the long-run performance of this first class of preventative
maintenance pohcy. The stages correspond to the t ime between
periods. The states are defined as the number of periods of
consecutive use without attention. Table 7.4 shows the non-zero
elements of the conditional probability matrix using the data from
the final column of Table 7.2. It is explicitly assumed that any
failures occur at the end of a period of operation and that repairs
are effected in t ime for the start of the next period. Fur thermore ,
the repair or maintenance of a machine provides a future failure
distribution which is the same as that of a new machine.

Table 7.4 Transition matrix P: no scheduled maintenance

126 Markov chains

0

Periods completed without attention
at stage A:+l

1 2 3 4

Periods 0 .2 .8
completed 1 .25 .75
without 2 .4 .6
attention 3 .5 .5
at stage k 4 1.0

Another R U N of L O N G R U N with the data of Table 7.5 yields
a value of po = .34. But this cannot be interpreted simply as the
failure probability here . State SQ is achieved whenever the machine
has just received attention, either because it has failed or because
it has been maintained. Instead, an expression for the failure
p robab i l i t y / can be written as follows, using the vector notation *p
for the conditional probabilities *pi of the final column of Table
7.2:

= (. 3 4 0 1 3 6 , . 2 7 2 1 0 9 , . 2 0 4 0 8 2 , . 1 2 2 4 4 9 , . 0 6 1 2 2 4) ' *
(.2,.25,.4,.5..5)

= .309524

This expression sums the products of the steady state probabilities
with the conditional probabilities of failure in these states during
the forthcoming period. Notice t h a t / i s smaller than was the case
without preventative maintenance.

Now the probability of maintenance m is given by

m = p 4 X (1 - */74) = .061224 X .5 = .030612

The expected cost per period C5 of scheduled maintenance after
5 periods in use is given by

C5 = 3 5 0 / + 25 m = £109 .10

Thus it is marginally cheaper to maintain after 5 periods in use
than not to maintain the machine at all. But the best policy will
have the lowest value of C„ for η = 1,2,3,4,5,6. Program
S C H E D C l below carries out these calculations. Make the
following alterations to L O N G R U N .

If, however , preventative maintenance is scheduled after 5
periods of machine operat ion without failure then the associated
transition matrix Ρ is given in Table 7.5.

Table 7.5 Transition matrix P: Maintenance scheduled after n = 5 consecutive
periods of operation

Maintain η periods after the machine last received attention 127

1 0 REM SCHEDCl
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS CI
35 REM EVERY η PERIODS OF UNINTERUPTED USE
40 DIM P (9 , 9) , p (9) , A (9 , 9) , C (9)
7 5 η = I
80 FOR I = 1 TO η
85 P R O C s t e a d y _ s t a t e
90 NEXT I

1 0 3 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F
1 0 4 0 INPUT "ENTER THE COST OF MAINTENANCE ",M

DELETE 1 0 5 0 t o 1 0 7 0 DELETE 1 1 3 0 DELETE 1 5 0 0 t o 2 1 4 0

2 5 7 5 A (0 , I) = 1
5 1 0 0 c o s t = F * P (0 , 0) + M*(1 - P (0 , 0))
5 1 1 0 IF 1=1 THEN PRINT " M a i n t a i n a f t e r 1 p e r i o d c o s t s f " ; c o s t
5 1 2 0 f = 0
5 1 3 0 FOR i = 0 TO I
5 1 4 0 f = f + p (i) * P (i , 0)
5 1 5 0 NEXT i
5 1 6 0 m = p (I) * { 1 - P (I , 0))
517 0 c o s t = F * f + M * m
5 1 8 0 PRINT " M a i n t a i n a f t e r " ; S T R $ (I + l) ; " p e r i o d s c o s t s ' " ; c o s t
5 1 9 0 ENDPROC

Now check your program against the hsting of S C H E D C l below,
and a R U N with the data of Tables 7.3 and 7.4 should confirm the
results in Table 7.6, which follows the listing.

Program 7.4 SCHEDCl: preventative maintenance class CI

1 0 REM SCHEDCl
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS CI
35 REM EVERY η PERIODS OF UNINTERUPTED USE
40 DIM P (9 , 9) , p (9) , A (9 , 9) , C (9)
50 @%=&0002060A
6 0
7 0 PROCinput
7 5 η = I
80 FOR I = 1 TO η
85 P R O C s t e a d y _ s t a t e
90 NEXT I

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I
1 0 2 0 I = I - l
1 0 3 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F
1 0 4 0 INPUT "ENTER THE COST OF MAINTENANCE ",M
1 0 8 0 PRINT
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX"
1 1 0 0 FOR i = 0 TO I
1 1 1 0 FOR j = 0 TO I
1 1 2 0 PRINT " P (" ? S T R $ (i) ; " , " ; S T R $ (j) ; ") = " ; : INPUT P (i , j)
1 1 4 0 NEXT j
1 1 5 0 NEXT i
1 1 6 0 ENDPROC
1 1 7 0

128

2 5 0 0 DEF P R C X : s t e a d y _ s t a t e
2 5 1 0 FOR i « 0 TO I - l
2 5 2 0 FOR j » 0 TO I
2 5 3 0 A (i , j) = P (j , i)
2540 NEXT j
2 5 5 0 A (i , i) = A (i , i) - 1
2 5 6 0 C (i) = 0
2 5 7 0 NEXT i
2 5 7 5 A (0 , I) = 1
2 5 8 0 FOR j = 0 TO I
2 5 9 0 A (I , j) = 1
2 6 0 0 NEXT j
2 6 1 0 C (I) = 1
2 6 2 0 PROCgauss
2 6 3 0 ENDPROC
2 6 4 0
3 0 0 0 DEF PROCgauss
3 0 1 0 FOR k= 0 TO I - l
3 0 2 0 P R O C f i n d . p i v o t
3 0 3 0 IF r>k THEN P R O C i n t e r c h a n g e _ r o w s
3040 P R O C e l i m i n a t i o n
3 0 5 0 NEXT k
3 0 6 0 P R O C b a c k _ s u b s t
307 0 ENDPROC
3080
3 5 0 0 DEF P R O C f i n d _ p i v o t
3 5 1 0 d = 0 : r=k
3 5 2 0 FOR i = k TO I
3 5 3 0 c β A B S { A (i , k))
3540 IF d < c THEN d = c : r = i
3 5 5 0 NEXT i
3 5 6 0 ENDPROC
3 5 7 0
4 0 0 0 DEF P R O C i n t e r c h a n g e _ r o w s
4 0 1 0 FOR j = k TO I
4 0 2 0 d = A (k , j)
4 0 3 0 A (k , j) = A (r , j)
4040 A (r , j) = d
4 0 5 0 NEXT j
4 0 6 0 d = C (k)
4 0 7 0 C (k) = C (r)
4 0 8 0 C (r) = d
4 0 9 0 ENDPROC
4 1 0 0
4 5 0 0 DEF P R O C e l i m i n a t i o n
4 5 1 0 FOR i = k+1 TO I
4 5 2 0 d = - A (i , k) / A (k , k)
4 5 3 0 FOR j = 1 TO I
4 5 4 0 A (i , j) = A (i , j) + d * A (k , j)
4 5 5 0 NEXT j
4 5 6 0 C (i) = C (i) + d * C (k)
4 5 7 0 NEXT i
4 5 8 0 ENDPROC
4 5 9 0
5 0 0 0 DEF P R O C b a c k _ s u b s t
5 0 1 0 IF A (I , I) = 0 THEN PRINT "SINGULAR P - I " : ENDPROC
5 0 2 0 p (I) = C (I) / A (I , I)
5 0 3 0 FOR i » I - l TO 0 STEP - 1
5040 d = C (i)
5 0 5 0 FOR j « i + 1 TO I
5 0 6 0 d « d - A (i , j) * p (j)
507 0 NEXT j
5 0 8 0 p (i) « d / A (i , i)
5 0 9 0 NEXT i
5 1 0 0 c o s t « F * P (0 , 0) + M*(1 - P (0 , 0))
5 1 1 0 IF I « l THEN PRINT " M a i n t a i n a f t e r 1 p e r i o d c o s t s " j c o s t
5 1 2 0 f - 0
5 1 3 0 FOR i = 0 TO I
5 1 4 0 f - f + p (i) * P (i , 0)
5 1 5 0 NEXT i
5 1 6 0 m - p (I) * (1 - P (I , 0))
5 1 7 0 c o s t « F * f + M * m
5 1 8 0 PRINT " M a i n t a i n a f t e r " ; S T R $ (I + 1) ; " p e r i o d s c o s t s £ " ; c o s t
5 1 9 0 ENDPROC

Maintain the machine after η calendar periods 129

7.5 Maintain the machine after η calendar periods

If a machine is maintained every η calendar periods whatever the
service history may be then the expected number of machine
failures f„ in the η periods can be obtained as a sum of ^-stage
transition probabiUties as follows

Thus the expected cost per period C„ is given by

C„ = (3 5 0 / , + 25)/«

If η = 4 then a R U N of M A R K O V with the data of Table 7.4 (with
states now defined as 'calendar periods since last maintenance ')
gives

/ 4 = .2 4- .24 + .328 + .3416 = 1.1096

and so

C4 = (1.1096 X 350 + 25)/4 = £103.34

The best value of η can be determined from a comparison of the
C„ for η = 1,2,...,6. Program S C H E D C 2 below carries out these
calculations. Make the following alterations to M A R K O V .

10 REM SCHEDC2
2 0 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS C2
3 5 REM EVERY η CALENDAR PERIODS
40 DIM v (1 0 , 9) , P (9 , 9)

90 PROCcost

Table 7.6 Cost of preventative maintenance policies class C1 from a RUN of
SCHEDCl with data of Tables 7.3 and 7.4

Maintain after η consecutive periods in operation Expected cost

£ 90.00
2 £ 86.11
3 £ 97.08
4 £105.62
5 £109.10
6^2) £115.51

Notes
(' ^ e machine always starts a period 'as new', thus/ = .2 m = .8.
^^^e case of 'no maintenance'.

It is seen from this table that the best policy is to maintain after
two consecutive periods of machine operat ion. Now do Problem
7.8.

130 Markov chains

1 0 3 0 v (0 , 0) = 1
1 0 4 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F
1 0 5 0 INPUT "ENTER THE COST OF MAINTENANCE ",M
1 0 6 0 PRINT "ENTER THE MAXIMUM LENGTH OF THE MAINTENANCE"
1 0 7 0 INPUT "CYCLE IN PERIODS ", Ν

DELETE 1 1 3 0 DELETE 1 5 1 0 DELETE 1 5 8 0 DELETE 1 6 0 0 DELETE 1 6 2 0

2 0 0 0 DEF PROCcost
2 0 1 0 FOR η = 1 TO Ν
2 0 2 0 f a i l u r e s = f a i l u r e s + v (n , 0)
2 0 3 0 c o s t = (f a i l u r e s * F + Μ) / η
2 0 4 0 PRINT " M a i n t a i n e v e r y " ; S T R $ (n) ; " p e r i o d s c o s t s / " ; c o s t
20 50 NEXT η
206 0 ENDPROC

DELETE 207 0 e t s e q

Now check your listing against Program S C H E D C 2 below.

Program 7.5 SCHEDC2: preventative maintenance class C2
1 0 REM SCHEDC2
20 REM MACHINE FAILURES AT PERIOD END ARE REPAIRED
30 REM FINDS COST OF SCHEDULED MAINTENANCE CLASS C2
35 REM EVERY η CALENDAR PERIODS
40 DIM v (1 0 , 9) , P (9 , 9)
50 @%=&0002060A
60
7 0 PROCinput
80 P R O C s t a t e _ v e c t o r
90 PROCcost

1 0 0 END
1 1 0

1 0 0 0 DEF PROCinput
1 0 1 0 INPUT "ENTER THE TOTAL NUMBER OF SYSTEM STATES " , I
1 0 2 0 I = I - l
1 0 3 0 v (0 , 0) = 1
1 0 4 0 INPUT "ENTER THE COST OF REPAIR PER FAILURE " , F
1 0 5 0 INPUT "ENTER THE COST OF MAINTENANCE ",Μ
1 0 6 0 PRINT "ENTER THE MAXIMUM LENGTH OF THE MAINTENANCE"
1 0 7 0 INPUT "CYCLE IN PERIODS " , Ν
1 0 8 0 PRINT
1 0 9 0 PRINT "ENTER THE ELEMENTS OF THE TRANSITION MATRIX"
1 1 0 0 FOR i = 0 TO I
1 1 1 0 FOR j = 0 TO I
1 1 2 0 PRINT " P (" ; S T R $ (i) ; " , " ; S T R $ (j) ; ") = " ; : INPUT P (i , j)
1 1 4 0 NEXT j
1 1 5 0 NEXT i
1 1 6 0 ENDPROC
117 0
1 5 0 0 DEF P R O C s t a t e _ v e c t o r
1 5 2 0 FOR η = 1 TO Ν
1 5 3 0 FOR j = 0 TO I
1 5 4 0 FOR i = 0 TO I
1 5 5 0 v (n , j) = v (n , j) + v (n - l , i) * P (i , j)
1 5 6 0 NEXT i
1 5 7 0 NEXT j
1 5 9 0 FOR j = 0 TO I
1 6 1 0 NEXT j
1 6 3 0 NEXT η
1 6 4 0 ENDPROC
1 6 5 0
2 0 0 0 DEF PROCcost
2 0 1 0 FOR η = 1 TO Ν
2 0 2 0 f a i l u r e s = f a i l u r e s + v (n , 0)
2 0 3 0 c o s t = { f a i l u r e s * F + Μ) / η
2 0 4 0 PRINT " M a i n t a i n e v e r y " ; S T R $ (n) ; " p e r i o d s c o s t s ¿ " ; c o s t
2 0 5 0 NEXT η
2 0 6 0 ENDPROC

Problems 131

The opt imum policy here is to maintain every two calendar
periods at a cost which is slightly more expensive than that of the
opt imum policy of class C I (see Table 7.6). However , the cost
penalty for increasing the cycle length is less severe than before.
The reader should now complete the Problems.

Problems

(7.1) Devise a P R O C d a t a to read data into Program 7.2B
L O N G R U N from data statements as an alternative, which can
exercised at the user 's discretion, to conversational data input in
PROCinpu t .

(7.2) Devise a PROCed i t to allow the user to alter any part of the
input to M A R K O V .

(7.3) Develop L O N G R U N to print out the value of £ , the
expected number of acceptable items produced by the machine in
the example of Section 7.2.

(7.4) R U N L O N G R U N for the transition matrix below and plot
t h e Az-stage t r a n s i t i o n p r o b a b i l i t i e s "Pi ,o " P i , i P\,2
for η = 1,2, . . . ,8 on the same graph.

.1 .8 .1
P = . l .1 .8

.8 .1 .1

You should find that the probabilities ""Pi^j exhibit damped
oscillations which decay as η increases, leavingp' = (1/3,1/3,1/3) in

A R U N of S C H E D C 2 with the data of Table 7.3 and 7.4 should
eonfirm the results in Table 7.7.

Table 7.7 Cost of preventative maintenance policies class C2 from a RUN of
SCHEDC2 with data of Tables 7.3 and 7.4

Maintain every η calendar periods Expected cost

1 £ 95.00
2 £ 89.50
3 £ 97.93
4 £103.34
5 £104.90
6 £108.52
7 £108.84
8 £109.42
9 £110.20

10 £110.79

132 Markov chains

0 .5 .5 0
.5 0 0 .5
.5 0 0 .5
0 .5 .5 0

You should find that the program prints a message ' S I N G U L A R
Ρ-Γ and it cannot therefore find a steady state vector. You should
also find that even powers of Ρ are identical but different from odd
powers of P. Can you account for this behaviour, and think of a
necessary and sufficient condition for the existence of a steady
state vector? (P is an example of a non-ergodic chain.)

(7.6) Rework the example of Section 7.2 under the new
assumption that the repair of a failed machine takes two periods.

(7.7) A warehouse manager must decide whether or not to stock a
'slow moving' product . The weekly probability distribution of
demand is .8 , . 1 , .1 for 0,1,2 items respectively. What is the
expected weekly long-run contribution to profits for the following
cases if the storage cost is £5 per item per week, each sale
contributes a gross profit of £25, demands which cannot be met
ex-stock are lost and items which are ordered at the end of one
week arrive at the beginning of the next?

(a) Order one item when stock on hand is zero.
(b) Order two items when stock on hand is zero.

Can you devise a better ordering rule?

(7.8) Suppose that the following data substitutes for that of Table
7.3

Cost of failure (disruption, etc.) £300
Cost of repair £ 50
Cost of maintenance £ 25

Fur ther suppose that a machine which has failed at the end of the
nth period of continuous operation under a class CI policy is not
repaired per se at a cost of £50 but restored to working order at a
cost of £25 as part of the scheduled maintenance. Modify
S C H E D C l to calculate the costs of this new poHcy.

the steady state. Ρ is an example of a 'doubly stochastic' matrix,
since both rows and columns sum to unity, and the steady state
probabilities are therefore equal.

(7.5) R U N Program L O N G R U N for the following transition
matrix Ρ

Problems 133

(7.9) Use the data of Problem 7.8 to modify S C H E D C 2 to
calculate the costs of a modified class C2 policy of leaving the
repair of a failed machine at the end of the nth period to scheduled
maintenance.

*(7.10) The *first-passage t ime' Tij is the number of stages which
are required to make a transition from state / to state ; for the first
t ime. Tij is a random variable if / can be reached from / at all and it
has a probability distribution "g¿y which satisfies the recursive
relationship

ί=1

Develop M A R K O V to print out "g,,y for η = 1,2,... ,Λ^ for a given /
and j .

*(7.11) The expected value of T¿j is denoted t^j and satisfies

tu = (Pi)-'

tij = 1 + Σ Pi,k tkj
k o j

Develop L O N G R U N to solve this set of simultaneous linear
equations for a user input state j .

(7.12) Reformulate the model of Section 7.4 so that the original
state So is split into two distinct states s^f and 'newly repaired'
and 'newly maintained ' respectively. Modify S C H E D C l to work
in this way, and in addition to print out the expected number of
periods between overhaul given by (/?o,m)~^-

(7.13) Find the opt imum level to restore stocks for the data of
Problem 7.7 if in addition the items have a limited shelf life of two
weeks and are fresh on delivery. Outda ted stock is liquidated and
the oldest stock items are sold first.

Hint: Be sure to enumera te all the system states.

(7.14) Redesign statements 1090 etseq in PROCinput for programs
S C H E D C l and S C H E D C 2 to allow the user to input just the
probability distribution for failure from the second column of
Table 7.2. The array element P(/,0) should be assigned the
conditional probability of failure *p/ from a calculation as shown in
the final column of Table 7.2 and P (/ , / + l) is assigned the value
l - P (/ , 0) .

Index

Acora microcomputers, 1
Arithmetic operators, 3
Artificial variables, 101,107

BASIC
Acorn BASIC, 1
arrays, 3-4
BBC BASIC, 1
dialects, 1-2
execution, 2
input, 4-5
introduction to, 1-9
loops, 6-7
mode, 5-6
numeric variables, 3
output, 4-5
print field separators, 5
print control, 6
PROCEDURES, 7-8
separators, 3,5
standard functions, 3-4
string variables, 3-4
structured BASIC, 1,7-8
user defined functions, 6-7
variables, 3-4

BASIC statements
assignment, 2-3
blank statement lines, 2
conditional statements, 6-7
DATA, 4-5
DEFPROC,8
DIM, 3
END, 2
ENDPROC, 8
FOR-NEXT, 6-7,9
GOSUB,8
GOTO, 7
IF-THEN, 6,9
INPUT, 5
LN(X),4

LOG(X),4
multiple statements, 3
PRINT, 5-6
print control statement, 6
READ, 4-5
REM, 2
R E P E A T - U N m , 6 - 7 , 9
RETURN, 8
SQR(X),4
STR$(X),4
TAB(X),5-6

Basic variables, 86
Basis, 86
Beale,E, M. L.,111
Binding constraints, 107,110

Chain index, 18-20
Coefficient of determination, 38-51,47
Composite index, 21,27-31
Conditional probability matrix, 113
Constraints, 81
Cost-volume-profit analysis, 51-58
Critical path, 65,71
Critical Path Network Analysis, 62-80
Cycling in simplex method, 111

Data fitting, 34-61
Definitions of operations research, 10
Deflators, 20,24
Degeneracy, 87,92
Dependency relationships, 63-65
Dependency table, 63
Diet problem, 111
Doubly stochastic matrix, 132

Earliest Finish Time, 79
Earliest Start Time, 64,71-74
Employees' reports, 24-27
Equality constraints, 100,107

135

136 Index

Family Expenditure Survey, 32
Feasible region, 83
Finish node, 63-65
First passage time, 133
Float, 65,72-74,79
Free Float, 79
Fulkerson, G., 66

Gaussian elimination, 46,89,92,95,
112,121

General index of retail prices (RPI),
20-24

Graphics, 14-15,74-77

Ideal index, 28-31
Immediately Preceding Activities,

63-80
Immediately Succeeding Activities,

63-80
Implied deflator of the Gross Domestic

Product (GDP), 21-27
Independent Float, 79
Index Numbers, 17-33
Index of Industrial Production, 32
Inequahties, 81

Johnson, D. G., VI,40

King, M., VI, 40
Knots, 45-58

Laspeyres index, 28-32
Latest Finish Time, 79
Latest Start Time, 71-74
Learning curve, 40-44
Lexicographic order, 85,87
Linear independence, 120
Linear Programming, 81-112
Linear regression, 34-44

Mainframe, 1
Maintenance poUcies, 124-133
Management information system, 15
Management Science, 10
Markov Chains, 113,133
Mason, J., VI, 35,47,89
Mathematical models, 1,12-14
Microcomputers, 1,14-15
Mixed inequahty constraints, 100-107

n-stage probabilities, 114-115

Network analysis, 62-80
Non-basic variables, 86
Non-^rgodic, 132
Non-negativity restrictions, 81,85
Normalizing condition, 120-121

Objective function, 81
Operating profit, 24-27
Operations Research, 10-16

Paasche index, 28-32
Partial enumeration, 93
Piecewise linear regression, 44-51
Pivot, 95
Pivot column, 94
Pivot row, 94
Post-optimal analysis, 107-110
Preventative maintenance, 124-133

Ranging ζ coefficients, 108,110
References, 9,16
RHS ranging, 107,110

Simple relatives, 17-20
Simplex method, 94-110
Simplex tableau, 94
Singular matrix, 86
Slack constraints, 107,110
Slack variables, 84
Slow moving product, 132
Spaghetti programming, 7
Stage variable, 113
Start node, 63-65
State variable, 113
Stationary transition probabilities, 113
Steady state conditions, 120-121,125-

127
Stratfold, Ρ.Ι.,νΐ

Tennant-Snüth,J.,VI,39
Total Float, 69,72-74
Trajectories, 114-115
Transition probabilities, 113
Transportation Linear Program, 112
Two-phase simplex method, 101,107

Value added, 24-27
Vector of state probabihties, 116
Vertex, 83
Vertex enumeration, 84-93

