

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page i — #1

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page ii — #2

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page iii — #3

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page iv — #4

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page v — #5

Table of Contents

Preface . xv

Acknowledgments . xvii

Author . xix

Chapter 1 Introduction to Production Planning and Scheduling 1
1.1 Production Planning . 1

1.1.1 Pictorial View of a Production Planning and Control System . . 2
1.1.2 Production Systems. 3
1.1.3 Characteristics of Production Systems . 4
1.1.4 Response Time. 4
1.1.5 Supply Chain . 5
1.1.6 Inventory . 6

1.2 Scheduling. 6
1.2.1 Scheduling Examples. 7
1.2.2 Scheduling on Shop Floor. 8

1.3 What Is Not Included . 13
1.4 Summary . 13
1.5 Problems. 14
References and Suggested Readings . 14

Chapter 2 Plant Locations and Capacity Determination . 15
2.1 Existing Production Facilities . 15

2.1.1 Distribution Network with Existing Facilities 15
2.1.2 Response Time Consideration . 18
2.1.3 Limitation on Number of Facilities . 18

2.2 New Plant Locations . 21
2.2.1 New Facilities with Capacity Determination . 21
2.2.2 Variables in Linear Programming Initial Formulation and

Alternate Formulation . 22
2.2.3 Spreadsheet Approach Using Solver Tool . 25
2.2.4 Single Sourcing . 28
2.2.5 Time Constraints. 30

2.3 Uncertainty in Demand . 32
2.3.1 Large Plant Evaluation . 35
2.3.2 Small Plant Evaluation . 36
2.3.3 Revenue Evaluation . 37

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page vi — #6

vi Contents

2.3.4 Expansion in Future . 38
2.4 Summary . 39
2.5 Exercise . 39
References and Suggested Readings . 42

Chapter 3 Forecasting and Aggregate Planning . 45
3.1 Forecasting . 45

3.1.1 Qualitative Forecasting . 45
3.1.2 Quantitative Forecasting . 46
3.1.3 Static Forecasting . 47
3.1.4 Seasonal Correction . 48
3.1.5 Adaptive Forecasting . 50
3.1.6 Exponential Smoothing . 50
3.1.7 Holt’s and Winter’s Models . 52
3.1.8 Analysis of Forecasting Errors . 53

3.2 Aggregate Planning . 57
3.2.1 Strategies . 58
3.2.2 Problem Description. 60
3.2.3 Other Factors . 66

3.2.3.1 Human Factors . 66
3.2.3.2 Changing Demand . 66
3.2.3.3 Spreadsheet Approach . 67

3.3 Summary . 68
3.4 Exercise . 68

3.4.1 Discussion and Review Questions . 68
References and Suggested Readings . 74

Chapter 4 Master Production Scheduling and Material Requirement
Planning . 75

4.1 Master Production Schedule . 75
4.1.1 Fixed Order Quantity (FOQ) . 77
4.1.2 Periodic Order Quantity (POQ) . 79
4.1.3 Lot for Lot (L4L) . 79
4.1.4 Least Total Cost. 79
4.1.5 Incremental Cost Analysis (ICA) . 80
4.1.6 Available-to-Promise Chart (ATP) . 82
4.1.7 Concluding Remarks on MPS . 82

4.2 Material Requirement Planning and Other Techniques 83
4.2.1 Least Unit Cost Purchase Policy . 87
4.2.2 General Considerations. 91

4.2.2.1 Planning Period. 91
4.2.2.2 Product Structure . 92
4.2.2.3 Manufacturing Resource Planning 92
4.2.2.4 Enterprise Resource Planning . 92

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page vii — #7

Contents vii

4.2.3 Distribution Requirement Planning . 93
4.2.3.1 DRP Example . 93

4.3 Summary . 94
4.4 Exercise . 95
References and Suggested Readings . 97

Chapter 5 Inventory and Capacity Planning . 99
5.1 Inventory Planning . 99

5.1.1 Economic Order Quantity . 99
5.2 Safety Stock Determination . 102

5.2.1 Fixed Quantity–Varying Cycle System . 104
5.2.2 Periodic Review System . 104
5.2.3 Safety Stock with Substitute Products . 105

5.3 Quantity Discounts. 106
5.3.1 All Unit Quantity Discount. 107
5.3.2 Marginal Unit Quantity Discount . 109
5.3.3 One-Time Unit Price Discount . 111
5.3.4 Multiple Products Order Jointly . 113

5.4 Single Period Planning . 117
5.4.1 Discrete Order Quantity . 117
5.4.2 Single Period Ordering with Continuous Demand 119
5.4.3 Buyback Policy . 121
5.4.4 Effect of Reduction in σ . 121

5.5 Consumption during Production . 124
5.6 JIT Inventory System . 124

5.6.1 Distribution Strategy . 125
5.6.1.1 Day 1 Evaluation . 128
5.6.1.2 Day 2 Evaluation . 129
5.6.1.3 Day 3 Evaluation . 130
5.6.1.4 Day 4 Evaluation . 130
5.6.1.5 Day 5 Evaluation . 132
5.6.1.6 Day 6 Evaluation . 132
5.6.1.7 Day 7 Evaluation . 132

5.6.2 Backward Check. 134
5.7 Recourse Center Capacity Planning. 135

5.7.1 Rough Cut Planning . 135
5.7.2 Capacity Bills . 136
5.7.3 Number of Machines Needed . 138

5.8 Theory of Constraints . 139
5.9 Summary . 140
5.10 Exercise . 140
References and Suggested Readings . 146

Chapter 6 Single Machine Scheduling . 147
6.1 Tardiness Problem . 148

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page viii — #8

viii Contents

6.2 Survey of Exact Methods for Single-Machine Scheduling Problem 148
6.2.1 Exhaustive Enumeration . 148
6.2.2 Branch-and-Bound Algorithm . 149

6.2.2.1 Illustrative Example 1 . 149
6.3 Commonly Used Heuristic Rules . 150

6.3.1 Earliest Due Date Rule . 152
6.3.2 Cost Over Time (COVERT) Rule. 152
6.3.3 Shortest Processing Time (SPT) Rule . 152
6.3.4 Largest Penalty per Unit Length (LPUL) Rule. 152
6.3.5 Shortest Processing Time and LPUL Rule . 153
6.3.6 Shortest Weighted Processing Time (SWPT) Rule 153
6.3.7 Largest Weight (WT) and LPUL Rule . 153
6.3.8 Critical Ratio (CR) Rule . 153

6.3.8.1 Illustrative Example 1 . 153
6.4 Description of an Efficient Heuristic . 156

6.4.1 Backward Phase . 156
6.4.2 Forward Phase . 158
6.4.3 An Illustrative Example Using the Heuristic Algorithm 158
6.4.4 Validity of the Heuristic and Conclusions . 160

6.5 Single Machine Problem with Early and Late Penalties 162
6.5.1 Backward Phase . 163

6.5.1.1 Illustrative Example 2 . 163
6.5.1.2 Modified Background Phase When Early Penalties

and Present . 164
6.5.2 Validity of the Heuristic . 166

6.6 Some Well-Known Theorems . 167
6.7 Summary . 168
6.8 Problems. 168
References and Suggested Readings . 170

Chapter 7 Other Objectives in Single-Machine Scheduling 171
7.1 Common Due Date . 171

7.1.1 Illustrative Example 7.1 . 172
7.2 Common Due Date Specified by a Customer . 174
7.3 Early and Late Due Dates . 174

7.3.1 Illustrative Example 7.2 . 175
7.4 Quadratic or Nonlinear Penalty Function . 177

7.4.1 Illustrative Example 7.3 . 178
7.5 Minimization of the Average Delay . 178
7.6 Minimization of the Maximum Delay . 179
7.7 Minimize the Number of Jobs That Are Delayed . 179

7.7.1 Illustrative Example 7.4 . 180
7.8 Maximize the Number of Jobs Processed When the Available Time Is

Less than Total Processing Time . 181
7.8.1 Illustrative Example 7.5 . 181

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page ix — #9

Contents ix

7.9 Sequence-Dependent Jobs . 182
7.9.1 Illustrative Example 7.6 . 182
7.9.2 Forward Phase . 184

7.10 Sequence-Dependent Jobs with Minimum/Maximum Separations. 184
7.10.1 Illustrative Example 7.7 . 185

7.11 Minimize Variation of Flow Time . 185
7.11.1 Illustrative Example 7.8 . 186

7.12 Sequence-Dependent Setup Times . 186
7.12.1 Illustrative Example 7.10. 186

7.13 Dual Criteria . 187
7.13.1 Illustrative Example 7.11. 187

7.14 Delay of Early Completing Jobs . 188
7.14.1 Phase I. Slack Introduction. 189
7.14.2 Phase II. Optimal Sequence Search. 191
7.14.3 Illustrative Example 7.12. 191
7.14.4 Phase II: Optimal Sequence Search. 195

7.15 Jobs Arriving at Different Times . 198
7.16 Summary . 206
7.17 Problems. 206
References and Suggested Readings . 210

Chapter 8 Flowshop Problems . 213
8.1 Two-Machine Problem. 213

8.1.1 Illustrative Example 8.1 . 214
8.2 Three-Machine Problem . 216

8.2.1 Illustrative Example 8.2 . 216
8.3 Setup/Processing and Removal Times Separated: Another Extension

of Johnson’s Algorithm . 218
8.4 Two-Machine Flowshop with Travel Time between Machines 219

8.4.1 Relationships for Makespan Calculations . 220
8.4.2 Illustrative Example 8.3 . 221
8.4.3 Makespan Calculations . 222

8.5 n Jobs/m-Machines Problem . 222
8.5.1 Minimize Machine Idle Time Method . 223

8.5.1.1 Procedure . 224
8.5.1.2 Illustrative Example . 224

8.5.2 Palmer Procedure . 227
8.5.3 Nawaz Heuristic . 227
8.5.4 Campbell, Dudek, and Smith (CDS) Procedure. 229

8.6 n-Job/m-Machine Problem: Jobs Arriving at Different Times 229
8.6.1 Example . 230
8.6.2 Result. 233

8.7 Summary . 233

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page x — #10

x Contents

8.8 Problems. 234
References and Suggested Readings . 236

Chapter 9 Parallel Processing and Batch Sequencing . 237
9.1 Parallel Processing . 237

9.1.1 Jobs with Equal Weight and No Due Dates . 237
9.1.1.1 Procedure . 237
9.1.1.2 Illustrative Example . 238

9.1.2 Jobs with Priorities Ranked by Weights . 240
9.1.3 Jobs with Due Dates . 241

9.1.3.1 Illustrative Example . 242
9.2 Single Operation Job-Related Earliness/Tardiness Penalties with

Machine Activation Cost . 248
9.2.1 Example . 250
9.2.2 Single Machine . 250
9.2.3 Two Machines . 252

9.3 Nonidentical Parallel Processors . 254
9.3.1 Procedure . 254

9.4 Parallel Machines in a Flowshop . 259
9.5 Batch Scheduling for a Limited-Capacity, Fixed-Period Process

Problem. 262
9.5.1 Integer Programming Model . 263
9.5.2 Heuristic Approach . 265
9.5.3 Illustrative Example . 266

9.6 Batch Scheduling for Limited-Capacity Processors in Sequence with
Varying Job Requirements . 267
9.6.1 Illustrative Example . 267
9.6.2 Improvement Routine . 269

9.7 Batch Sequencing . 271
9.7.1 Procedure and Analysis . 272
9.7.2 Application . 273

9.8 Summary . 275
9.9 Problems. 275
References and Suggested Readings . 278

Chapter 10 Network-Based Scheduling . 281
10.1 Critical Path Method . 281
10.2 Scheduling a Network of Jobs on a Specified Number of Parallel

Processors . 284
10.2.1 Solution Procedure . 285

10.2.1.1 Illustrated Example. 287
10.3 Scheduling n Jobs on m Parallel Machines When Each Job Can Be

Scheduled on p Machines, “p” Being a Subset of m, That Is, p ≤ m 293
10.3.1 Solution Procedure . 293
10.3.2 Illustrated Example . 295

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xi — #11

Contents xi

10.4 Assembly Line Balancing . 296
10.4.1 Largest Candidate Rule. 296
10.4.2 Ranked Positional Weight Method . 299
10.4.3 Cycle Time Less than Task Time . 301

10.5 Mixed-Model Assembly Line Balancing . 302
10.5.1 Procedure and an Illustrative Example . 302
10.5.2 Effects of Other Ways of Balancing (Grouping) 307

10.5.2.1 An Assembly Line for Each Model. 307
10.5.2.2 A Single Assembly Line for All Models 307

10.5.3 Advantages of the Suggested Approach . 308
10.5.3.1 Problem Areas . 308

10.6 Mixed-Model Assembly—Method to Minimize Stations 308
10.6.1 Procedure . 309
10.6.2 Numerical Illustration . 310

10.6.2.1 Solution . 310
10.7 Network Scheduling with Resource Constraint . 313

10.7.1 Illustrative Example . 314
10.7.2 Multiple Resources . 317

10.8 Summary . 319
10.9 Problems. 319
References and Suggested Readings . 324

Chapter 11 Job Shop Scheduling . 325
11.1 Job Shop . 325
11.2 Job Shop Scheduling to Minimize Makespan (SPT) . 327

11.2.1 Shortest Processing Rule . 328
11.3 Network Approach to Job Shop Scheduling . 329

11.3.1 The Modified Shifting Bottleneck Heuristic . 331
11.3.1.1 Illustrative Example . 333

11.3.2 Two-Stage Job Shop Scheduling Heuristic . 340
11.3.2.1 Illustrative Example . 342

11.4 Job Shop Scheduling to Minimize Tardiness . 346
11.4.1 The CEXSPT Rule . 347
11.4.2 Minimizing Penalty Using Modified Shifting Bottleneck

Procedure . 349
11.4.3 Optimizing Total Penalty and Makespan Using MODSB

(Dual Criteria) . 359
11.5 Summary . 361
11.6 Problems. 361
References and Suggested Readings . 365

Chapter 12 Open-Shop Scheduling . 367
12.1 Minimize Makespan: Two-Machine Problem . 367
12.2 Minimize Makespan: Multiple-Machine Problem . 368

12.2.1 Illustrative Example . 371

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xii — #12

xii Contents

12.3 Minimization of Total Tardiness–Open Shop (MTT-OP) 378
12.3.1 Solution Procedure . 378
12.3.2 Initial Assignment . 378
12.3.3 Special Cases . 380
12.3.4 Subsequent Assignments . 380
12.3.5 Illustrative Example . 381
12.3.6 Special Cases . 385

12.3.6.1 Special Case 1 (Example). 385
12.3.6.2 Special Case 2 (Example). 387

12.4 Minimization of Total Weighted Tardiness Penalties–Open Shop
(MTWT-OP). 388
12.4.1 Initial Assignment . 388
12.4.2 Subsequent Assignments . 389
12.4.3 Illustration Example . 390

12.5 Summary . 394
12.6 Problems. 394
References and Suggested Readings . 396

Chapter 13 Manpower Scheduling . 397
13.1 Consecutive Days-Off Scheduling . 398

13.1.1 Illustrative Example . 399
13.2 Rotating Days (Weekends) Off . 401

13.2.1 Illustrative Example . 403
13.3 Monroe’s Algorithm . 406

13.3.1 Illustrative Example II. 408
13.3.2 Illustrative Example III . 409
13.3.3 Realignment of a Worker . 409
13.3.4 Increasing the Workforce. 410
13.3.5 Assigning Nonconsecutive Days Off . 411

13.4 Tour Scheduling . 412
13.4.1 Procedure . 412
13.4.2 Illustrative Example . 413
13.4.3 Other Variations . 416

13.5 Three Consecutive Days Off . 416
13.5.1 Assign Nonconsecutive Days Off . 421
13.5.2 Special Case and Further Discussion . 422

13.6 Summary . 423
13.7 Problems. 424
References and Suggested Readings . 427

Chapter 14 Industrial Sequencing I: Scheduling on NC Machines 429
14.1 Tabular Approach in Group Forming . 429
14.2 Job Sequencing to Minimize Tool Changeovers in Flexible

Manufacturing Systems. 435
14.2.1 Assumptions and Problem Statement . 435

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xiii — #13

Contents xiii

14.2.2 Solution Procedure . 437
14.2.3 Illustrative Example . 439

14.3 Heuristic to Minimize Throughput Time on an NC Machine 442
14.3.1 Problem Definition and Assumptions. 444
14.3.2 Heuristic Procedure and Its Application . 445
14.3.3 Alternative 1: Start with a Job Having the Largest Demand. . . . 446

14.3.3.1 Discussion of the Procedure . 446
14.3.3.2 Applications of Steps 3 through 5 to the Illustrative

Example . 450
14.3.4 Alternative 2: Minimize the External Tool Changes 452
14.3.5 Select the Best Alternative . 452

14.3.5.1 Further Comments . 452
14.4 Summary . 453
14.5 Problems. 453
References and Suggested Readings . 456

Chapter 15 Industrial Sequencing II: Electronic Assemblies: Component
Tape Assemblies on a Sequencer . 457

15.1 A Heuristic Procedure for Tape Assembling on a Sequencer 458
15.1.1 Problem Statement. 459
15.1.2 Solution Procedure . 459
15.1.3 Phase II: Scheduling . 462
15.1.4 Solution to the Example Problem. 466

15.2 Summary . 471
15.3 Problems. 471
References and Suggested Readings . 473

Chapter 16 Industrial Sequencing III: Sequencing Feeder for Component
Tape Assembly . 475

16.1 Problem Description . 476
16.2 Heuristic Procedure . 478

16.2.1 Developing Basic Component Assignments to the Slots 478
16.2.2 Developing the Initial Assignment. 483

16.2.2.1 Calculation of Priorities for Locations 483
16.2.2.2 Location Assignments. 483

16.2.3 Smoothing the Assignment. 487
16.2.4 Improving the Assignment . 488
16.2.5 Check for Improvement . 492

16.3 Problems. 494
References and Suggested Readings . 495

Chapter 17 Industrial Sequencing IV: Scheduling in Flexible Manufacturing 497
17.1 A CDS-Based, Two-Phase Algorithm for Group Scheduling with

Group-Dependent Setup Times. 497
17.1.1 Introduction . 497

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xiv — #14

xiv Contents

17.1.2 Heuristic . 497
17.1.2.1 Phase I: Preliminary Sequence . 497
17.1.2.2 Phase II: Makespan Reduction by Minimizing the

Machine Idle Time . 498
17.1.3 Illustrative Example . 498

17.1.3.1 Phase I: Preliminary Sequence . 499
17.1.3.2 Phase II: Makespan Reduction by Minimizing the

Machine Idle Time . 501
17.1.4 Results . 503

17.2 Multiple Robot in Assembly Operations . 505
17.2.1 Illustrative Example . 507
17.2.2 More than Two Robots . 509

References and Suggested Readings . 510

Appendix: Computer Program Description . 513

Index . 527

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xv — #15

Preface

This book is a substantially enlarged edition of the original title, Industrial Scheduling.
It now provides a broad outlook on optimization and planning, from the initial stages of
plant location and capacity determination to within-plant operations and optimization.

On occasion, production planning and control are looked upon as a collection of
techniques with little relationship between the different procedures. For example,
when an inventory control discussion defines an economic production quantity,
it gives scant regard to the available plant capacity or the different machines through
which the product must be processed. Diverse techniques are taught as independent
procedures with very little coordination between how the result of one technique may
influence the other. Each workstation is optimized independently without realizing
its effect on the entire system.

This book integrates logistics and planning in the areas of production planning
and scheduling in a broad sense. To plan for production, there must be facilities where
products are made. The book starts with the development of strategies for establish-
ing plant locations and their capacities. It discusses forecasting methods to predict
demands under differing scenarios. Narrowing down to a plant level, the discussion
concentrates on techniques that improve plant efficiencies in various areas. The topics
include master production scheduling (MPS), material requirement planning (MRP),
and inventory management.

Once decisions about when and how much to produce are made, the next step is
to plan for these quantities. If the resources are not limited, the intended production
can be achieved without any difficulty. However, with limited resources, scheduling
of assets becomes necessary to increase overall plant efficiency, capacity utilization,
as well as to reduce the required time to complete all tasks.

Major resources needed in production are plants, machines, and manpower.
A manufacturing facility may be thought of as a single machine that is optimized.
Proceeding one step further, operations within the plant can be examined in detail.
Within a production facility, different machine configurations define various material
flow patterns. Arrangements such as flow shops, job shops, open shops, and assembly
lines are common. The book illustrates many of the scheduling issues associated with
these patterns.

Business scheduling often requires optimization of a bottleneck machine. Some
practical examples of industrial scheduling are illustrated in the later chapters, along
with manpower scheduling.

For efficient scheduling, there are numerous mathematical techniques illustrated
in the literature. However, these techniques are quite often cumbersome, and not
easy to understand and apply. The most frequently used methods, therefore, are good

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xvi — #16

xvi Preface

heuristics. This book is primarily concerned with easy-to-follow heuristics that can be
clearly understood and used.

The book is intended for diverse curricula in engineering, industrial, mechanical,
and manufacturing departments as teach topics illustrated in this book, while in busi-
ness schools, operations management and production departments emphasize these
topics. It is projected for use in industrial and/or mechanical engineering technology
programs as well. Since each procedure is completely illustrated by a solved example,
the book will also be a good reference for practitioners.

Additional material is available from the CRC Web site: www.crcpress.com on
Production Planning and Industrial Scheduling on the Web download.

Under the menu Electronic Products (located on the left side of the screen), click
on Downloads & Updates. A list of books in alphabetical order with Web downloads
will appear. Locate this book by a search, or scroll down to it. After clicking on the
book title, a brief summary of the book will appear. Go to the bottom of this screen
and click on the hyperlinked “Download” that is in a zip file.

Or you can go directly to the Web download site, which is www.crcpress.com/
e_products/downloads/default.asp

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xvii — #17

Acknowledgments

In the writing of this edition, the contributions of a few graduate students need to
be recognized. In particular, Manish Chavan’s assistance is greatly appreciated. His
constant help with whatever was needed resulted in the timely completion of this
book. Kishor Joshi, Advait Damle, and James Wang also provided assistance. I thank
them and others who I may have inadvertently neglected to mention.

And finally, the staff at Taylor & Francis and Newgen Imaging have been very
helpful and cheerful during the entire process, especially Cindy Carelli, the senior
acquisitions editor. I thank her and project editor Rachael Panthier for their support.

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xviii — #18

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xix — #19

Author

Dileep R. Sule is the Thurman Laureate professor of industrial engineering at
Louisiana Tech University. He has authored three books (one translated into Spanish)
and over 70 publications in professional journals and conferences. Dr. Sule is a fel-
low of the Institute of Industrial Engineering. He received his B.S. in mechanical
engineering (1963) from the Birla Institute of Technology, Ranchi, India, and his
M.S. (1967) and Ph.D. (1969) in industrial engineering from Texas A&M University,
College Station. Dr. Sule has extensive experience in industrial consulting and has
worked full-time in the industry in England and Scotland.

Dileep: “44206_c000” — 2007/9/20 — 14:44 — page xx — #20

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 1 — #1

1 Introduction to
Production Planning and
Scheduling

As the title of the book suggests, we discuss two important issues in manufacturing;
they are: production planning and scheduling. These topics are critical because they
define operational productivity. The proper application of these techniques results
in reducing manufacturing cost, satisfying customer demands in a timely manner,
and overall better planning and control of manufacturing operations. To compete
successfully, we must be efficient and productive. Good production planning and
scheduling leads to the achievement of these goals and, therefore, are integral parts
of every professionally run organization.

1.1 PRODUCTION PLANNING

Manufacturing organizations exist to produce and supply products that customers
need, at a price that they are willing to pay. Successful organizations achieve this
aim while making profit for their shareholders. There are very few organizations that
exist in monopoly, and most have to compete in the open market. The product price
is therefore determined by the competition, and the only way to increase profit is
to reduce production and distribution costs. This means managing and operating the
organization in an efficient manner.

Production planning and scheduling are two important topics that serve to
increase efficiency in manufacturing and improve effectiveness in customer service.
Production planning determines what, when, and how much to produce to meet the
customers’ needs, without excessive inventory or back order costs. Scheduling, on
the other hand, determines how to achieve the goals set in production planning when
the resources are limited; and, if the goals cannot be realized, how best to set new
goals that are optimum and practical with the available resources. Many aspects are
involved in production planning, as discussed in the following chapters.

We start the discussion by illustrating a broad scope of planning. It involves
forecasting of customer orders, determination of plant capacities, and planning for
long range such as 1 year or more. The next step is that of short-range or immediate
planning, narrowing the planning period down to monthly and then to weekly levels,
involving topics such as production planning, inventory control, and scheduling.

1

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 2 — #2

2 Production Planning and Industrial Scheduling

PRODUCTION
PLANNING

Master
production
scheduling

(MPS)

Resource
management

Demand
management

Marketplace

Distribution
requirement

planning (DRP)

Forecasting

Detailed material
requirement

planning (MRP)

Bills of
materials

Shop floor
scheduling

Inventory
management

Enterprise resource planning (ERP)

FIGURE 1.1 Diagram connecting various topics that are discussed in the book.

1.1.1 PICTORIAL VIEW OF A PRODUCTION PLANNING AND
CONTROL SYSTEM

Figure 1.1 connects various topics that are discussed in the book. Every production
planning and control system begins with the marketplace. Marketplace demand is an
independent demand that relies heavily on factors such as changing consumer test,
different seasons in a year, the ups and downs of national economy, and even political
winds. With varying demand, it is important to match production with respect to
the demand at that time. Different forecasting techniques can be used to make good
demand prediction. With expected demand as an input to production and aggregate
planning, all resources necessary to meet the demands and plans for the future are
evaluated. These might include capital investment, labor force, full-time and/or part-
time workers, overtime, and subcontracting. The outcome of an aggregate planning is
a master production schedule (MPS). The next stage is material requirement planning
(MRP), where a product is disintegrated into several components, and the requirement
for each component is determined with help of bills of materials and inventory records.
Next, a shop floor schedule for each component is developed. Production is often
greater than what is required, which creates inventory, which is again looped back
into the MRP phase.

Although the production planning and control system is made of these blocks,
there are many important functional departments in plant operations, such as human
resources, sales and marketing, operations, distribution, and finance. Enterprise
resource planning (ERP) refers to software that integrates the entire system.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 3 — #3

Introduction to Production Planning and Scheduling 3

Next, we describe a few basic concepts in production planning.

1.1.2 PRODUCTION SYSTEMS

The development of manufacturing systems and the arrangement of machines within
that system lead to different plant layouts. Different features affect selection of system.
They may include factors such as the variety of items produced, volume of production
of each item, flexibility necessary to change the product mix, time within which
customer demand must be met, and of course, the financial resources available to buy
or build the capacity needed for each operation.

A large mix of different types of products demands machines that can be easily
configured to produce a wide variety of products. Such machines tend to be more
general purpose, perhaps slower in-production rates than otherwise possible, but allow
more flexibility. Job shop and flexible manufacturing form such production systems.
In a job shop, a variety of general-purpose machines are assembled, each machine
type in separate departments. Thus, for example, we may have general-purpose lathes
together in one department, stamping machines in another, and drilling machines in yet
another. Jobs go from one department to the next as the operations demand. Machines
can be set and reset to produce each type of item. Labor is more generalized, being
able to perform different types of operations. The drawbacks are excessive material
handling, extreme downtimes necessary for all set ups, excessive production cost,
and low production rates. The quality of the product can be good, since it is possible
to pay attention to each unit produced, and if necessary, inspected and reworked.
Specialized, one of type item may be produced in “job shop” environment.

Material handling, set-up times, and cost of production can be reduced some what,
while maintaining flexibility to produce a large variety of products by using flexible
manufacturing arrangements. In flexible manufacturing, the collections of machines
are more sophisticated. They mainly include numerically controlled machines, and
are therefore more expensive. However, we can easily change setups on these
machines to produce different types of items with very little downtime. Machines
need not be placed in separate departments based on their functions as in a job
shop, but are arranged in cells, based on operation flow. This arrangement is also
referred to as cellular manufacturing. The type of machine in each cell can be
changed, preferably physically, but if not then logically, so as to accommodate mater-
ial/product flow for each product. Here, a more educated and trained labor force is
needed.

Production rate can be significantly improved while reducing the material-
handling cost, if all items require the same sequence of operations in their production.
Different types of machines can now be arranged in a fixed sequence, as necessary
in the manufacturing of products. Such an arrangement is called a flow shop. The
assembly line is a special case of flow shop where very few, often as little as one
product, is produced in a single flow line. Machines are built to perform very special-
ized operations very fast and are arranged in a specific sequence. All this adds to high
production rates and very low unit cost. All excessive material handling is reduced
to a minimum. Labor need not be very trained, since they repeatedly perform a lim-
ited operation to perfection. Flexibility to change the product mix of items is very

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 4 — #4

4 Production Planning and Industrial Scheduling

limited to almost none; since most of the machines are built specifically to perform
operations necessary for the present items. The following summary chart displays
some of these relationships.

Labor cost High cost Low cost

Product characteristics Unique Semi
customized

Standard
high
volume

Continued
very high
volume

Jumbled flow Job shop
Intermittent flow Batch
Line flow Repetitive
Continuous Oil, gas,

chemical
products

Production systems may also be characterized based on other factors such as those
given in the chart below.

1.1.3 CHARACTERISTICS OF PRODUCTION SYSTEMS

Labor incentive—job shops Capital incentive—assembly lines
Flexible manufacturing

Flexile—job shops, flexible
manufacturing

Nonflexible—assembly lines

High-status products—job shops Consistent products—assembly lines
Non flexible in volume of

production—assembly lines
Flexible in volume of production—job

shops, flexible manufacturing

No matter what the production arrangement is, production planning is essential.
We must know what we can produce in a given time period, with the capacity we have,
and also when we can promise the delivery of items. Limited capacity may require
replanning of delivery times. Excessive capacity that remains idle is a cost that must
be borne by the items that are produced. This may make the products too expensive
to compete. There are ways to plan for needed capacity besides buying additional
equipment. They may include inventory build-up, adding extra or part-time workers,
and subcontracting, as we shall discuss in chapter “Aggregate Planning.”

1.1.4 RESPONSE TIME

The time within which customer demand must be met is called response time or lead
time. It is the measure of time it takes to deliver the items, from the moment an order
is placed till it is received. Aggregate planning helps in reducing the response time.
There are other policy decisions that may also affect the response time. For example,

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 5 — #5

Introduction to Production Planning and Scheduling 5

a question may be at what stage of completeness the products should be maintained
in the inventory. One extreme is to build the product when an order is received. The
system working under this operating environment is called the pull system. It has the
advantage that it requires no inventory of the product, thus reducing the inventory
cost. But it does take a long time to build a product from the scratch, which results
in a long response time. The other extreme is to keep products on hand, in inventory,
and ship it as soon as demand occurs. This is called the push system. Here the
response time is minimum but the inventory cost is high. Also, there are possibilities
of obsolescence of products. And then there are options to build the product to a
certain level of completeness and finish it when demand occurs, thus compromising
on both inventory cost and response time. What level of completeness a product
should be maintained is a strategic decision.

In general, products with high functional use, such as the products with basic
needs found in grocery stores, low cost is the controlling factor. If a product is not
available substitution is readily available. For high-status products such as computers
or machine parts, response time is more important than cost, that is, customers are
ready to pay slightly higher price for a better response time.

1.1.5 SUPPLY CHAIN

Another means of controlling response time is to reduce the delivery time.
Manufacturing all products in one central facility can be more economical because
of a large quantity being produced in one plant, but may increase distribution time
and cost when deliveries must be made to all customers spread across the nation.
Alternately, we may have multiple production facilities and/or warehouses situated
in different sections of the country, perhaps smaller in production capacities and
therefore more expensive as far as unit production cost is concerned, but responding
quickly to local customer needs. Building multiple facilities increases the overall
cost but may satisfy the goal of maintaining certain maximum response time as the
customer service criteria. Figure 1.2 shows the effect of the number of facilities on
response time and cost.

Number of facilities Number of facilities

(b)(a)

C
os

t

R
es

po
ns

e
tim

e

FIGURE 1.2 The effect of the number of facilities on response time and cost.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 6 — #6

6 Production Planning and Industrial Scheduling

How to develop a production–distribution network to satisfy maximum response
time constraint and yet minimize the total cost of production and distribution is a
challenge addressed in development of supply chains.

1.1.6 INVENTORY

Inventory is built and used to satisfy multiple reasons. Units can be produced and
stored when demand is low to satisfy demand in periods where it exceeds the pro-
duction capacity. If set-up cost is high, production in large lots may reduce unit
production cost as set-up cost is spread over a large number of units, but will also
create inventory that must be stored. If quick response time is desired, an inventory
may be necessary. Just-in-Time philosophy of a customer may mean stocking some
items at our end, if we have multiple products to produce on the same facility and
may not produce the parts each time immediately after demand occurs. In purchasing
raw material, sometimes, due to quantity discounts, it may be advantages to purchase
a large quantity from our supplier, which then must be stored till needed. Cancelled
orders and poor production planning may also result in excessive inventory.

Keeping inventory is expensive. We need storage space, some amount of money
is invested in the inventory, and there are carrying and maintenance costs. Good
production planning optimizes issues involved in inventory policies.

1.2 SCHEDULING

Scheduling in its broadest sense is as old as mankind. Loosely defined, scheduling
is an act of defining priority or arranging activities to meet certain requirements,
constraints, or objectives. In olden days (and even now), time was (and still is) a
major constraint. People scheduled their activities so that jobs could be accomplished
within the available time. For example, time to get up, time to work, time to play,
time to sleep, and so on. Time was, and still is, a limiting resource, and we need to
schedule our activities, consciously or unconsciously, to utilize this limited resource
in an optimum manner.

As the industrialized world develops, more and more resources are becoming crit-
ical. Machines, manpower, and facilities are now commonly thought of as resources
in production and/or service activities. Scheduling these leads to increased efficiency,
utilization, and ultimately, profitability for the organization.

Scheduling activities can convey a broad range of efforts. It may involve no more
than working with paper and pencil, plotting charts and diagrams, or to the extent
of working with sophisticated algorithms and theorems. Simple methods may not
provide good results, and unless the analyzer is aware of other techniques, he/she
may not even realize that the solutions may be improved. On the other hand, complex
and mathematically involved methods require substantial and extensive knowledge.
We cannot expect such expertise from every person who does scheduling in the
industry. The number of times such techniques go unused in business, because of
their intricacies and mathematical complications, makes it difficult for managers to
comprehend the methods and then have the confidence to apply them and rely on

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 7 — #7

Introduction to Production Planning and Scheduling 7

the results. In this book, we shall present many scheduling techniques that give good
results with minimum complexity, and which are easy to understand and apply. In
fact, knowledge of basic algebra is all that is needed.

1.2.1 SCHEDULING EXAMPLES

The following examples illustrate the role of scheduling in modern industries.

1. In a box carton manufacturing operation, the sales personnel must go out
and “beat the bushes” to find the customers. The customers vary in their
orders and prices. Local manufacturers who send their products in cartons
do not wish to carry a large inventory of cartons and will spread their
orders over a time. Customers who are further away tend to order in larger
amounts to minimize transportation costs. Sales promises a delivery date
for each order. Depending on the volume of orders received, the plant may
or may not be able to produce all the products on time. If there is to be a
delay, which orders should be delayed to minimize the penalties? If there is
similarity between the cartons by different customers so that some of them
could be produced with the same setup, how should we plan the production
to take advantage of this fact and yet meet the due date requirements of
different customers?

2. A manufacturer of industrial lighting equipment assembles products using
assembly lines controlled by operators performing their assigned tasks.
Depending on the current product flowing down the assembly line, the
operators have a defined set of tasks for which they are responsible. For each
product, product modification, or new product, predetermined times are
used to develop workstations and to make task assignments to these stations
for an estimated production level and efficiency. The same techniques are
used to make improvements in existing assembly lines where possible. The
question is, how can assembly lines be modified for product modifications
or for new products to obtain the desired production levels and efficiencies?

3. A petroleum refinery must have its continuous processes manned by oper-
ators 24 hr a day, 7 days a week. They operate with a system of three shifts,
whereby operators always have at least 2 consecutive days off and every
third weekend off. The schedules are developed for 3 months at a time
and posted so that employees can plan for their days off and shifts worked
for a horizon of 3 months. How can fair schedules be developed for all
employees?

4. A machine shop has a stamping machine that stamps five different versions
of a part used in compressors manufactured by one of its customers. Each
of these five versions uses a different dye and requires a different time for
processing. The machine shop generates weekly schedules for this machine
to minimize the number of late shipments to its customers. How should
these schedules be developed?

5. The quality department for an electronic printed circuit board (PCB)
manufacturer is responsible for conducting tests on the PCBs produced.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 8 — #8

8 Production Planning and Industrial Scheduling

For one of the tests, components are placed in a thermo-shock chamber
(with limited space), so that they can be subjected to varying temperature
extremes, based on the PCB types. Since the duration of tests vary and
are quite lengthy (usually 24–28 hr), the greatest efficiencies are obtained
when PCBs are grouped into batches. How should we form these batches
and meet the customers’ due dates on each PCB type?

1.2.2 SCHEDULING ON SHOP FLOOR

Scheduling plays an important role in shop floor planning. A schedule shows the
planned time when the processing of a specific job will start on each machine that
the job requires. It also indicates when the job will be completed on every machine.
Thus, it is a timetable for both jobs and machines. The starting time of a job on the
first machine in its sequence of operation should also be the release time for the job
(assuming zero lead time). If some lead time in the shop is necessary, the release
time is correspondingly adjusted. In practice, release time is the time when the job
is scheduled for processing, and all purchased raw materials for the job should be
available in the shop. For such a just-in-time manufacturing philosophy to work, we
must know the job schedule. If the raw material is stocked before the release time, it
will add to the carrying cost. On the other hand, if it is delayed beyond the release
time, then not only this job but other jobs could be delayed, adding to the cost of
operations.

The completion time of a job on the last machine in its sequence of operations is
also the time when the job is available for shipping to a customer. If the due dates can
be negotiated to match these completion times, then again just-in-time philosophy
will prevail.

Capacity planning is an integral part of scheduling procedures. The term “capacity
planning” is used in deciding how much of the production time of a machine (in units
such as minutes, hours, or days) should be allocated to each job. Alternately, capacity
planning can decide which job should be processed on which machine. If there is no
capacity on the machine, a new job cannot be processed, postponing the processing
and completion of the job to some future time periods.

We must know the processing time for each job on each machine that it will
use in order to develop a schedule. In order to calculate the processing time for a
job, we must consider both machine- and job-dependent factors such as setup time,
unit processing time, machine speed and quality factors, as well as the number of
units to produce to make the job order complete. If we have a choice of performing
a certain operation of a job on different machines, then we may have, depending
on the machine used, different processing times for the operation. Scheduling can
offer choices if alternatives are available. For example, if scheduling all jobs on
a single machine leads to an unacceptable cost (one reason may be overuse of the
capacity), we may try a few jobs on different machines and develop schedules on
each individual machine again. Alternatively, we may develop a schedule on multiple
identical machines and evaluate economically the ideal number of identical machines
we could use for production of the present set of jobs.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 9 — #9

Introduction to Production Planning and Scheduling 9

A machine schedule also displays the times when the machine is idle. This may be
because no job is available for processing, or perhaps the jobs are being processed on
some other machines. When a machine is idle, it is the best time to plan for preventive
maintenance activities as no productive time is taken away from the machine. It will
also reduce the frequencies of unplanned breakdowns. When unplanned breakdowns
do occur, a new schedule could be developed after the machine is repaired with the
present job conditions as the input to the scheduling models.

To blend scheduling algorithms or rules in a plant, integration of information
from several sources is required. We may have data files for shop floor factors such as
workers shift schedules, machines and their characteristics, maintenance data, pro-
gress on the presently scheduled jobs in the shop, and current status of the machines,
whether busy, idle, broken and needing repairs, or broken and under repairs. We
may also have information on customer order data such as the name of the customer,
product, and quantity ordered and when the delivery is promised. The manager may
assign a priority to each order in terms of quantitative weight, 1, 2, 3, 5—or perhaps
in qualitative terms, “hot,” “very hot,” and “hottest,” which is then converted into a
weight with predefined rules. These priorities may change from day to day, based on
the present status of the jobs. For example, a job that is hot one day may be hottest
on another day as the due date nears, or a hot job may go on “hold” status if there are
difficulties with the order and with the customer. Information from MRP may give the
release date of the job, indicating when the raw material would be available to process
the job. As mentioned earlier, ideally, MRP job release date and job scheduling date
should be the same to make the system work efficiently.

We may also have a data file indicating the setup times for different types of jobs
on different machines. The processing times for the jobs are calculated based on the
machine- and job-related data such as setup time, machine speed and accuracy, and
quantity required.

In practice, schedules are generated using either scheduling algorithms or using
knowledge-based rules. Scheduling algorithms develop schedules that tend to optim-
ize a measuring criterion, such as minimizing deviation from due dates, minimizing
tardiness penalty, or minimizing the maximum delay. The rule- or knowledge-based
approach tries to find a schedule that is feasible under the shop operating environment
by mainly working with “If and Then” rules. For example, the rule may be: if machine
A and the operator X are available, then load job type Z; if machine A and operator X
and helper Y are available, then load job type P. The feasible schedule developed
by using rule-based algorithms may or may not (most often not) be optimum with
respect to a measuring criterion.

The scheduling information can be displayed in a variety of forms. The Gantt
chart, first illustrated and used for scheduling by Henry Gantt between late 1800 and
early 1900, is one of the most popular tools, even today, for displaying scheduling
information. The Gantt chart is a line or block chart, where time is represented on the
x-axis and other quantities of interest such as machines and/or jobs are represented
on y-axis. For example, a Gantt chart may display, for each machine, the jobs that are
loaded in different time periods. Similar information can also be illustrated in tables
called “dispatching tables.” This table may, among others, show the information
on each machine as per the sequence of jobs that are scheduled on the machine,

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 10 — #10

10 Production Planning and Industrial Scheduling

when the processing on a job is expected to start, and when it is expected to be
complete.

Another chart that may be of interest is one that may display the capacities of
each machine used in each time period (e.g., a day). This is called the capacity bucket
chart. For example, based on the schedule developed, it may display information on
machine 1, such as on day 1 machine 1 is utilized 80% of time, on day 2 it is utilized
90% of the time, and so on. Again, if the capacity used is more than what is available,
then the schedule is not feasible, and alternatives must be evaluated.

Throughput charts may also be of interest to an analyzer. These show how many
jobs (or units) are available and how many are processed every day. The difference
between the two defines the in-process inventory, the value of which should be kept
to a minimum. What is included in the scheduling chapters?

Over a number of years, many researchers have contributed to developing schedul-
ing techniques, and some common themes and terminologies have been developed.
Most of these procedures and terminologies are defined for a production environment.
This is because production planning continues to be one area where these techniques
dominate in their application. Also, most of us easily understand the vocabulary in
industrial terms, though their use is not restricted to manufacturing alone. While
machines may be viewed as a resource, jobs requiring the services of machines may
be viewed as entities that need attention from the machines. Other parameters can
also be easily transported from the production environment to another.

In production planning terminology, the scheduling models may be divided into
the following categories.

1. Single machine: There is only one machine (server) available, and the
arriving jobs (work) require services from this machine. Jobs are processed
by the machine one at a time. Each job has a processing time and a due
date and may have other characteristics such as priority. We may also
have a penalty function for jobs deviating from the due date. The most
common objective is to sequence jobs on the machines so as to minimize
the penalty for being late, commonly called “Tardiness Penalty.” Based
on other objectives, there are many criteria that may serve as a basis for
developing job schedules.

2. Flow shop: Jobs are processed on multiple machines in an identical
sequence. However, the processing time of each job on each machine
may be different. The objective may be to minimize the makespan, that is,
the time required for the completion of all jobs.

3. Parallel machines: A number of identical machines are available and the
jobs can be processed on any one of them. Jobs may have dependency, that
is, unless the previous job in the sequence has been completely processed,
the following job in the sequence may not start. The objective may be to
minimize the makespan.

4. Job shop: This is one of the most popular generalized production systems.
There are different machines in the shop, and a job may require some or
all of these machines in any sequence, the only restriction being that a job
cannot use the same machine more than once. The objective may be to
minimize makespan or tardiness penalty.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 11 — #11

Introduction to Production Planning and Scheduling 11

S
ch

ed
ul

in
g

m
od

el
s

di
sc

us
ed

 in
 th

e
bo

ok

G
en

er
al

 p
ur

po
se

sc
he

du
lin

g
m

od
el

s

In
du

st
ria

l
sc

he
du

lin
g

m
od

el
s

S
in

gl
e

m
ac

hi
ne

s

T
oo

l s
ch

ed
ul

in
g

on
 N

C
 m

ac
hi

ne
s

E
le

ct
ro

ni
c

co
m

po
ne

nt
ta

pe
 a

ss
em

bl
ie

s
on

 a
se

qu
en

ce
r

S
eq

ue
nc

in
g

fe
ed

er
 fo

r
co

m
po

ne
nt

 ta
pe

as
se

m
bl

y

S
ch

ed
ul

in
g

in
 fl

ex
ib

le
m

an
uf

ac
tu

re

R
ob

ot
sc

he
du

lin
g

B
at

ch
 s

ho
p

O
pe

n
sh

op

Jo
b

sh
op

F

lo
w

 s
ho

p
P

ar
al

le
l

m
ac

hi
ne

s
D

ep
en

de
nt

sh
op

M
an

po
w

er
sc

he
du

lin
g

FI
G
U
R
E
1.
3

Sc
he

m
at

ic
di

ag
ra

m
of

sc
he

du
lin

g
m

od
el

s.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 12 — #12

12 Production Planning and Industrial Scheduling

5. Open shop: An open shop is similar to a job shop, except a job may be
processed in any sequence on the machines that the job needs. In other
words, there is no operation-dependent sequence that a job must follow.
The objective is generally to minimize the makespan.

6. Dependent shop: In a job shop environment, if the processing order of
one or more jobs depends on the processing of other jobs, it is called a
dependent shop. The general objective is to minimize the makespan.

7. Batch processing: Jobs are processed in batches, each batch requiring a
certain processing time and having a capacity limitation on how many jobs
can be processed at one time. A baking oven with limited volume is one
example of batch processing.

8. Sequence-dependent setup times: Some authors also refer to this problem
as batch processing. Here, each job may belong to a type. If jobs of the
same type are processed one after the other, then no additional setup is
required. On the other hand, if a different type of job is processed, there is
a setup cost. Each job has a due date, and we want to schedule the jobs to
minimize the total penalty.

9. Assembly line: The job goes through a certain sequence of operations, and
the objective is to define workstations and assign tasks to these stations to
achieve a certain production level and efficiency.

10. Mixed-mode assembly line: An assembly line built to produce similar (not
identical) products with different task requirements and task times.

Each topic is covered in the remaining chapters in sufficient detail. In addition, there
are a number of other topics covered in the remaining chapters that do not directly
relate to the standard definition of production systems. They include

11. Manpower planning models: To develop manpower schedules that sat-
isfy legal and contractual requirements with a minimum workforce for a
7-day-a-week operation. One reason for concern could be safety, where
employees must have enough time off, so that they stay alert on the job.

These requirements may include that each employee have, in a week: 2 consecutive
days off, or “B” weekends off in a cycle of “A” weeks, or have 2 nonconsecutive days
off. It is also possible that all employees start work at the same time, or an employee
may start his/her shift at different times of the day to cover more than the standard
8 hr operation (also called tour scheduling).

Three chapters are devoted to industrial scheduling. These chapters illustrate
different areas of scheduling that are not thought of as production systems. The topics
include

a. Group technology
b. Use of group technology in minimizing tool changeovers in flexible

manufacturing
c. Scheduling to minimize throughput time on numerically controlled (NC)

machines
d. Development of component tape assemblies in electronic PCB production

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 13 — #13

Introduction to Production Planning and Scheduling 13

e. Sequencing feeders for component tape assemblies in electronic compon-
ent production

1.3 WHAT IS NOT INCLUDED

There are other topics that are discussed by the research community in scheduling.
When all the data are known, the problem is considered to be a deterministic problem.
When the data is probabilistic in nature that is, it takes random values, the problem is
called a stochastic problem. Most of the scheduling problems are either deterministic
or can be closely approximated by the deterministic models. The most common way
to convert a stochastic problem into a deterministic one is to work with the average
values. We shall restrict ourselves to only deterministic models since they illustrate
many basic principles well, and are applicable to most real-life scheduling problems.

Another variation is whether preemptions are allowed. Preemption implies that
we do not need to keep a job on the machine till it is completed. If another job with
a higher priority arrives, it may be loaded on the machine by removing the present
one. The present job may be reloaded after the completion of the priority job. We will
not treat a specific model in this regard but assume that if preemption is permitted
we can develop a new job sequence at any time by applying the sequencing methods
again with whatever jobs are available at that time, including the job taken off of the
machine with its modified (most often remaining) processing time.

We also will not discuss the phenomena of blocking. Blocking occurs if the
completed job cannot be removed from the machine because of space constraints. In
other words, there is no space for the completed job to move to, and it must remain on
the machine. Such limitation of space is rare, and when it happens consistently, a better
solution might be to investigate the reason for the space limitation and find a solution
to that problem. One possible solution may be to rearrange the facilities. Yet another
alternative may be to investigate material handling resources and policies. With the
present emphasis on just-in-time manufacturing, excess build-up of inventories is
discouraged and, consequently, the nonavailability of space is also resolved.

1.4 SUMMARY

Important topics in production planning and scheduling are really based on
information and decision flow within manufacturing systems.

For planning for far and in near future, we must estimate demands by forecasting
both long and short terms. Capacities for plant productions must be established.
Firm customer orders and estimated immediate sales lead to short-term planning that
include topics such as master production planning and MRP. To implement these
plans, resources are need. Aggregate planning, rough-cut planning, and capacity
requirement planning are the tools used in such planning. And, ultimately, we must
distribute the products leading to distribution planning techniques.

Scheduling methods are tools that are available to allow production and other
systems to run efficiently. Production planning involves activities of predicting
demands, planning for production, and determining and utilizing capacity in an
optimum manner. The scheduling utilizes the limited capacity in most efficient way.

Dileep: “44206_c001” — 2007/9/17 — 14:48 — page 14 — #14

14 Production Planning and Industrial Scheduling

The scheduling efficiency can be measured by various indexes. Two of the most
popular are minimization of the time required to complete all jobs, that is, makespan,
and minimization of penalty for completing jobs early or after the due dates. This
chapter illustrates a few examples of scheduling in both the production and nonpro-
duction environments. The topics listed in this chapter will be discussed in detail later
on. These scheduling methods have proven to provide optimum or near-optimum res-
ults, and are based on simple algebra. Most often, the methods progress and develop
solutions in successive tables.

1.5 PROBLEMS

1.1 What is production planning? Why is it important?
1.2 Describe different production systems. Why do we have so many different ways

to produce a product?
1.3 What is the purpose of inventory? Is a large inventory always good? Can we

reduce inventory to zero?
1.4 Why is response time important to both customer and supplier? How does invent-

ory influence the response time? Can you relate response time to the profit and
cost picture?

1.5 Discuss in your own words the importance of scheduling.
1.6 Draw a schematic diagram indicating different data files and how they may be

connected to each other in scheduling within a manufacturing shop.
1.7 Give one example of a situation wherein the following scheduling methods could

be applied
a. Single machine
b. Parallel processing
c. Batch processing

1.8 Describe a situation where manpower scheduling would be appropriate.
1.9 What are the benefits of assembly line balancing?

REFERENCES AND SUGGESTED READINGS

Cavinato, Joseph L. 2002. “What’s Your Supply Chain Type?” Supply Chain Management
Review (May–June): 60–66.

Chopra, Sunil. 2003. “Designing Delivery Network for a Supply Chain” Transportation
Research, Part E (39): 123–140.

Fisher Marshall, L. 1997. “What Is the Right Supply Chain for Your Product?” Harvard
Business Review (March–April): 83–93.

Goodwin, B., M. Seegart, J. Cardillo, and E. Bergmann. 1996. “Implementing ERP in a Big
Way” APICS-The Performance Advantage, June

Holstein, W.K. 1968. “Production Planning and Control Integrated” Harvard Business Review,
May/June: 70–82.

Magretta, Joan. 1998. “Fast, Global and Entrepreneurial: Supply Chain Management, Hong
Kong Style” Harvard Business Review (September–October): 102–114.

Van Dierdonck, R. and J.G. Miller. 1980. “Designing Production Planning and Control
Systems” Journal of Operations Management, 1(1): 102–112.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 15 — #1

2 Plant Locations and
Capacity Determination

A manufacturing concern often has customers spread nationally or even
internationally over wide area, and the challenge on hand may be to decide which
customers should be served by which facility and what should be the capacity of
each facility to minimize the costs of production and distribution. This also forms the
foundation for supply chain development.

There are two situations that may be present. First, production facilities already
exist, and customers have to be assigned or reassigned to improve the performance of
the production/distribution system, and second, new facilities and associated capa-
cities are to be established to develop a new network. The second alternative gives
us much more flexibility since we can also choose locations for the new facilities.

2.1 EXISTING PRODUCTION FACILITIES

If we have just a single existing facility, there is no alternative but to service all
customers from this facility. The capacity of the facility should ideally be able to
support the total demand from all customers.

In case of multiple facilities, there are two types of problems. First, we may want
to keep all existing facilities and determine optimum production and distribution
systems or, secondly, we may only want to maintain production facilities that provide
total optimum cost for production and distribution.

2.1.1 DISTRIBUTION NETWORK WITH EXISTING FACILITIES

With the existing production facilities and customers, the development of production
and distribution plan requires nothing more than simple application of the trans-
portation algorithm from linear programming (LP). If the reader is unfamiliar with
the transportation algorithm, we direct him/her to any standard operations research
book for a quick review. We can also solve the problem using LP formulation and
using standard computer programs developed to solve LP problems, such as LINDO
or Excel. (LINDO and Excel are copyrighted software from Lindo System Inc and
Microsoft respectively).

Consider a company with three plants and five warehouse customers. The cost of
producing a unit at a plant i and transporting it to a warehouse j, denoted as cij, is
shown in the Table 2.1. For example, the cost of transporting one unit from plant 1
to warehouse 1 is 2. Also shown are the production capacities of each plant, and the
requirements at each warehouse.

15

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 16 — #2

16 Production Planning and Industrial Scheduling

TABLE 2.1
Initial Data

Warehouse

Plant 1 2 3 4 5 Supply

1 2 4 5 3 4 30
2 5 4 6 2 5 50
3 3 3 4 4 6 80
Demand 20 30 10 15 20

TABLE 2.2
Modified Data for Transportation Algorithm

Warehouse

Plant 1 2 3 4 5 6 Supply

1 2 4 5 3 4 0 30
2 5 4 6 2 5 0 50
3 3 3 4 4 6 0 80
Demand 20 30 10 15 20 65 160

TABLE 2.3
Final Solution

Warehouse

Plant 1 2 3 4 5 6 Supply

1 2 4 5 3 4 0
20 10 30

2 5 4 6 2 5 0
15 10 25 50

3 3 3 4 4 6 0
30 10 40 80

Demand 20 30 10 15 20 65 160

Since the total of supply is 160 and the demand is 95, a dummy warehouse,
warehouse number 5, is introduced to make the total of demand equal to that of
supply, as shown in Table 2.2.

Applying the transportation algorithm results in the following final solution of
Table 2.3. For example, 20 units are transported from plant 1 to warehouse 1, 10 units
from plant 1 to warehouse 5, and so on. The cost of this solution is = 20 × 2 + 10 ×
4 + 15 × 2 + 10 × 5 + 30 × 3 + 10 × 4 + 40 × 0 = 290.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 17 — #3

Plant Locations and Capacity Determination 17

Alternately, to formulate the problem in LP, we define following variables:

xij = Amount shipped from plant i to warehouse j. There are n plants and m
warehouses.

cij = Cost for production and transportation of one unit from plant i to
warehouse j

Si = Maximum production or supply available at plant i
Dj = Demand from customer j

The objective is to minimize cost

Min
n∑

i=1

m∑

j=1

cijxij

Subject to following constraints:

1. A plant cannot supply more than what is available:

m∑

j=1

xij ≤ Si for j = 1, 2, . . . , n

2. Each customer’s demand must be met:

n∑

i=1

xij = Dj for j = 1, 2, . . . , m

For the data in Table 2.1, the LP problem results in following:

Min 2x11 + 4x12 + 5x13 + 3x14 + 4x15 + 5x21 + 4x22 + 6x23 + 2x24 + 5x25

+ 3x31 + 3x32 + 4x33 + 4x34 + 6x35

Subject to:

x11 + x12 + x13 + x14 + x15 ≤ 30

x21 + x22 + x23 + x24 + x25 ≤ 50

x31 + x32 + x33 + x34 + x35 ≤ 80

x11 + x21 + x31 = 20

x12 + x22 + x32 = 30

x13 + x23 + x33 = 10

x14 + x24 + x34 = 15

x15 + x25 + x35 = 20

all xij ≥ 0

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 18 — #4

18 Production Planning and Industrial Scheduling

Solving by LINDO gives an alternate solution: x11 = 10, x15 = 20, x24 = 15,
x31 = 10, x32 = 30, and x33 = 10, with optimum cost of 290.

2.1.2 RESPONSE TIME CONSIDERATION

One of the considerations in the development of supply chains is the response time —
how quickly we can supply the demand. In the previous example, we assumed that
all plants can supply to all warehouses within the response time limit set by the
management. If this is not the case, only slight modifications are needed in above
formulation.

In the optimum solution of the previous example, x11 is equal to 20. But suppose
it is not possible to produce and ship from plant 1 to warehouse 1 in the required
response time and, therefore, x11 needs to be zero. There are two ways to address this.
Either assign a very high cost (cost of M for those who are used to LP), or introduce
a constraint in LP formulation that says x11 = 0, and solve the problem again. In
practice, we should introduce such constraints associated with variables in the initial
formulation and then solve the resulting LP problem.

In our problem, the optimum value increases to 300 with following solution:

x15 = 20, x24 = 15, x31 = 20, x32 = 30, and x33 = 10.

2.1.3 LIMITATION ON NUMBER OF FACILITIES

A possible situation may exist when we are required to reduce the number of facilities
from n to a number less than n, to reduce the total fixed cost associated with running n
facilities. LP formulation needs slight modification to achieve this. Suppose the total
number of facilities cannot exceed k. The modified formulation is as follows:

Min
n∑

i=1

m∑

j=1

cijxij

Subject to following constraints:

1. A plant cannot supply more than what is available:
m∑

j=1

xij ≤ yiSi for i = 1, 2, . . . , n

2. Each customer’s demand must be met:
n∑

i=1

xij = Dj for j = 1, 2, . . . , m

3. The number of facilities is limited to k.
n∑

i=1

yi = k

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 19 — #5

Plant Locations and Capacity Determination 19

TABLE 2.4
Variables Defined for New Problem

Warehouse

Plant 1 2 3 4 5 Supply

1 2 4 5 3 4
x1 x2 x3 x4 x5 30

2 5 4 6 2 5
x6 x7 x8 x9 x10 50

3 3 3 4 4 6
x11 x12 x13 x14 x15 80

Demand 20 30 10 15 20

4. yi takes value of either 0 or 1. If the plant is closed, the associated yi = 0,
and if the plant is open, the associated yi = 1.

Suppose in the previous problem, management is interested in reducing the
number of open plants to 2. We solve the problem by using LINDO. The variables
are modified as shown in the Table 2.4.

The LPformulation for LINDO is displayed in the following. Int instruction makes
the associated variable only take the value of 0 or 1.

Min 2x1 + 4x2 + 5x3 + 3x4 + 4x5 + 5x6 + 4x7 + 6x8 + 2x9 + 5x10 + 3x11

+ 3x12 + 4x13 + 4x14 + 6x15

st

x1 + x2 + x3 + x4 + x5 − 30y1 ≤ 0

x6 + x7 + x8 + x9 + x10 − 50y2 ≤ 0

x11 + x12 + x13 + x14 + x15 − 80y3 ≤ 0

x1 + x6 + x11 = 20

x2 + x7 + x12 = 30

x3 + x8 + x13 = 10

x4 + x9 + x14 = 15

x5 + x10 + x15 = 20

y1 + y2 + y3 = 2

end

Int y1

Int y2

Int y3

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 20 — #6

20 Production Planning and Industrial Scheduling

Solution is:

Objective function value

(1) 320

Variable Value Reduced Cost

y1 1 −30
y3 1 0
x1 10 0
x5 20 0
x11 10 0
x12 30 0
x13 10 0
x14 15 0

We have plants 1 and 3 open, and plant 2 is closed. The cost has gone up from
290 to 320.

Now, suppose the fixed cost for operations at each plant is different, and we wish to
include this fact in trying to decide which plants to keep open. The only modification
needed is to include the fixed cost in the objective function based on whether the plant
is open or not.

In our example, suppose the fixed costs associated with plants 1, 2, and 3 are
30, 25, and 30 respectively. When all three plants are operating, the optimum cost is
290 + 30 + 25 + 30 = 375.

The new objective function is:

Min 2x1 + 4x2 + 5x3 + 3x4 + 4x5 + 5x6 + 4x7 + 6x8 + 2x9 + 5x10 + 3x11

+ 3x12 + 4x13 + 4x14 + 6x15 + 30y1 + 25y2 + 30y3

Keeping the same constraint set to keep only two facilities, the solution is:

Objective function value
(1) 375

Variable Value Reduced Cost

y2 1 25
y3 1 30
x9 15 0
x10 20 0
x11 20 0
x12 30 0
x13 10 0

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 21 — #7

Plant Locations and Capacity Determination 21

This solution is to keep facilities 2 and 3 open. The solution is better than when
we had plants 1 and 3 open with no fixed cost consideration. The optimum cost, if we
had included the fixed cost, would have been 320 + 30 + 30 = 380, as compared to
375 now.

2.2 NEW PLANT LOCATIONS

Plant locations are long-term decisions, and once taken cannot be easily changed.
Judicious decisions can be made by first selecting a few candidate locations where
plants might be located that satisfy basic production and economic requirements.
Considerations in selecting the initial list of sights might include factors such as cost
and availability of raw materials, as well as labor, transportation facilities and their
costs, demands and sale price from different regions for the produced goods, land
and building expenses, and taxes and insurance costs at the locations.

2.2.1 NEW FACILITIES WITH CAPACITY DETERMINATION

Once the acceptable prospective locations are selected, further detailed economic
evaluation can be made by applying zero/one integer LP algorithm to minimize the
total cost of operations.

For example, consider n possible location sites, from which we can choose any
number of locations for new plants. A plant can be built with different capacities from
p potential capacities. Let us define a few other variables as follows:

Indexes
For possible locations: i = 1, 2, . . ., n
For customers: j = 1, 2, . . ., m
For possible capacities: k = 1, 2. . ., p
Ck = Capacity of facility k
fki = Amortized annual fixed cost of placing a plant of size k at location i
m = number of different customers (distribution areas) that the facilities must

serve
Dj = Unit loads of demand from customer j

ckij = Cost of production and distribution of one unit load from a plant, with
capacity k placed in location i to customer j

xkij = Quantity (unit loads) shipped from plant with capacity k located in i to
customer j

yki = 1 if plant of capacity k is placed in location i
yki = 0 otherwise

The problem of minimization of cost can then be formulated as

Min
p∑

k=1

n∑

i=1

fkiyki +
p∑

k=1

n∑

i=1

m∑

j=1

ckijxkij

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 22 — #8

22 Production Planning and Industrial Scheduling

TABLE 2.5
Data for Capacitated Problem

Facility Costs and Capacities
Facility Cost Capacity

1 (small—S) 100 50
2 (large—L) 120 80

Demand/Supply and Cost Data
Customer

Location
Additional

Site Cost per Year 1 2 3 Capacity

1 for S 20 20 10 30 50
1 for L 30 18 8 27 80
2 for S 10 10 15 20 50
2 for L 30 9 13 18 80
3 for S 15 15 15 20 50
3 for L 40 14 14 18 80
Demand 50 40 70

Subject to following constraints:

1. Demand from each customer must be met.

p∑

k=1

m∑

j=1

xkij = Dj for each i

2. Total supply from a facility in a location cannot exceed its capacity.

p∑

k=1

n∑

i=1

xkij = Cj for each j

Consider the following data from Table 2.5. We have three possible locations
where either a small or a large or both facilities can be placed. There are three
customers to whom products must be supplied. It cost slightly less to produce with a
large facility than a small one, and therefore costs of production and distribution are
different for each type.

2.2.2 VARIABLES IN LINEAR PROGRAMMING INITIAL

FORMULATION AND ALTERNATE FORMULATION

In Table 2.6, the original variables as defined in the formulation and alternate variables
(AT) for finding the solution by computerized algorithms.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 23 — #9

Plant Locations and Capacity Determination 23

TABLE 2.6
Variable Definition

Location Customer

k AT 1 AT 2 AT 3 AT Capacity

1 for S 1 y11 y1 x111 x1 x112 x2 x113 x3 50
1 for L 2 y21 y2 x211 x4 x212 x5 x213 x6 80
2 for S 1 y12 y3 x121 x7 x122 x8 x123 x9 50
2 for L 2 y22 y4 x221 x10 x222 x11 x223 x12 80
3 for S 1 y13 y5 x131 x13 x132 x14 x133 x15 50
3 for L 2 y23 y6 x231 x16 x232 x17 x233 x18 80
Demand 50 40 70

AT: Alternate variable defination

The problem can then be stated as

Min (100 + 20)y11 + (120 + 30)y21 + (100 + 10)y12 + (120 + 30)y22

+ (100 + 15)y13 + (120 + 40)y23 + 20x111 + 10x112 + 30x113 + 18x211 + 8x212

+ 27x213 + 10x121 + 15x122 + 20x123 + 9x221 + 13x222 + 18x223 + 15x131

+ 15x132 + 20x132 + 14x231 + 14x232 + 18x233

Subject to

Supply constraints:

x111 + x112 + x113 ≤ 50y11

x211 + x212 + x213 ≤ 80y21

x121 + x122 + x123 ≤ 50y12

x221 + x222 + x223 ≤ 80y22

x131 + x132 + x133 ≤ 50y13

x231 + x232 + x233 ≤ 80y23

Demand constraints:

x111 + x211 + x121 + x221 + x131 + x231 = 50

x112 + x212 + x122 + x222 + x132 + x232 = 40

x113 + x213 + x123 + x223 + x133 + x233 = 70

Zero–one integer constraints

Each of the variables, y11, y21, y12, y22, y13, y23 is either 0 or 1

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 24 — #10

24 Production Planning and Industrial Scheduling

Alternate variables can be appropriately substituted to get an LP formulation
that can be solved with available LP software such as LINDO as shown
below.

Min 120y1 + 150y2 + 110y3 + 150y4 + 115y5 + 160y6 + 20x1 + 10x2 + 30x3

+ 18x4 + 8x5 + 27x6 + 10x7 + 15x8 + 20x9 + 9x10 + 13x11 + 18x12

+ 15x13 + 15x14 + 20x15 + 14x16 + 14x17 + 18x18

st

x1 + x2 + x3 − 50y1 ≤ 0

x4 + x5 + x6 − 80y2 ≤ 0

x7 + x8 + x9 − 50y3 ≤ 0

x10 + x11 + x12 − 80y4 ≤ 0

x13 + x14 + x15 − 50y5 ≤ 0

x16 + x17 + x18 − 80y6 ≤ 0

x1 + x4 + x7 + x10 + x13 + x16 = 50

x2 + x5 + x8 + x11 + x14 + x17 = 40

x3 + x6 + x9 + x12 + x15 + x18 = 70

end

integer 6

The “integer 6” command makes the first 6 variables in objective function to be
either 0 or 1. In our case, y1 through y6 would have either 0 or 1 value.

The optimum solution has a cost of $2480, with following variables with values:

y2 = y3 = y4 = 1 and x5 = 40, x7 = 40, x10 = 10, x12 = 70

If only one type of plant, either large or small, can be placed in a location, we add
the following constraints in the preceding formulations.

y1 + y2 ≤ 1

y3 + y4 ≤ 1

y5 + y6 ≤ 1

The optimum solution, z, is slightly higher at $2490, with following values:

y2 = y4 = y6 = 1 and x5 = 40, x10 = 50, x18 = 70.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 25 — #11

Plant Locations and Capacity Determination 25

2.2.3 SPREADSHEET APPROACH USING SOLVER TOOL

Following are the steps for using Excel to solve an LP problem:

1. The first step is to load solver to the add-in. Go to the Tools menu and
click Add-ins. In the Add-Ins available box, select the check box next to
Solver Add-in, and then click OK. Now click Tools on the menu bar, and
you will see the Solver command added to the Tools menu.

2. Construct an Excel sheet as shown in Figure 2.1. It consists of inputs,
decision variables, constraints, and objective function. All inputs such as
costs, capacities, and demands are entered from cells B4 to H10.All decision
variables (Xi, Yi) are entered from cells B15 to E20, and all the variables are
initially set to be 0. Next are the set of limitations. The constraints are of two
types, one is for supply from locations, and the other is for demand from
customers. Cells B25–B30 represents supply constraints from locations and
cells, and B33–D33 represents demand constraints from all three customers.
The cell B36 contains the objective function that minimizes the total cost.

3. Enter the formulas given below in the respective cells:

Cell Formula Alternative

B25 = H4 ∗ E15–SUM(B15:D15) Enter the formula in B25 and
copy it till B30

B26 = H5 ∗ E16–SUM(B16:D16)
B27 = H6 ∗ E17–SUM(B17:D17)
B28 = H7 ∗ E18–SUM(B18:D18)
B29 = H8 ∗ E19–SUM(B19:D19)
B30 = H9 ∗ E20–SUM(B20:D20)
B33 = B10–SUM(B15:B20) Enter the formula in B33 and

copy it till D33
C33 = C10–SUM(C15:C20)
D33 = D10–SUM(D15:D20)
B36 = SUMPRODUCT(B4:D9,B15:D20)+ —

SUMPRODUCT(G4:G9,E15:E20)

4. Go to Tools and invoke the solver, as shown in Figure 2.2. In this formula-
tion, our goal is to minimize the total cost set in the target cell B36. Next
is the addition of constraints; for this, click the add button and add all the
constraints as shown below:

B15 : D20 ≥ 0{Non negativity condition}
B25 : B30 ≥ 0{Capacity constraints for 6 locations}
B33:D33 = 0{Demand constraints of 3 customers}
E15:E20 = binary{Location variables are either 0 or 1}

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 26 — #12

26 Production Planning and Industrial Scheduling

FI
G
U
R
E
2.
1

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 27 — #13

Plant Locations and Capacity Determination 27

FI
G
U
R
E
2.
2

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 28 — #14

28 Production Planning and Industrial Scheduling

Note: At the time of adding the last constraint for binary variables,
enter E15:E20 in By Changing Variable Cells, then click Add, and enter
the constraint E15:E20 = binary.

5. At the end, enter B15:E20 (all variables integer and binary) in By Changing
Variable Cells and click Solve to obtain an optimal solution of $2480, as
shown in Figure 2.3.

2.2.4 SINGLE SOURCING

Single sourcing is when a customer is served from a single plant and not from multiple
plants, as was allowed in the previous section. The new policy may not be as efficient
in terms of cost as compared to when order slitting was allowed, but it has one
advantage. By being able to receive all its orders from one supplier, both the customer
and supplier will have a good communication structure and understanding between
them. This results in quick and accurate response to changes. For example, changes in
order size or sales and promotions can be responded to immediately by the supplier.
Only slight modification is needed in the previous model to accommodate this new
policy. We now define xkij as a zero or one variable. It is equal to 1 if units from plant
with capacity k, located in location i, are shipped to customer j, and zero otherwise.
The cost of assigning the entire demand from customer j to a location i with a facility
of capacity k, is calculated as CAj = ckijDj. For example, C213 = 27 × 70 = 1890.
As before, the objective is to minimize the fixed cost of facility location and the costs
of production and distribution. Constraints are modified to reflect the entire demand
assignment to one facility. All variables are zero–one variables. The procedure is
illustrated by applying it to the previous example (Table 2.5, 2.6, 2.7).

Min 120y1 + 150y2 + 110y3 + 150y4 + 115y5 + 160y6 + 1000x1 + 400x2

+ 2100x3 + 900x4 + 320x5 + 1890x6 + 500x7 + 600x8 + 1400x9 + 450x10

+ 520x11 + 1260x12 + 750x13 + 600x14 + 1400x15 + 700x16

+ 560x17 + 1260x18

Subject to:

50x1 + 40x2 + 70x3 − 50y1 ≤ 0

50x4 + 40x5 + 70x6 − 80y2 ≤ 0

50x7 + 40x8 + 70x9 − 50y3 ≤ 0

50x10 + 40x11 + 70x12 − 80y4 ≤ 0

50x13 + 40x14 + 70x15 − 50y5 ≤ 0

50x16 + 40x17 + 70x18 − 80y6 ≤ 0

x1 + x4 + x7 + x10 + x13 + x16 = 1

x2 + x5 + x8 + x11 + x14 + x17 = 1

x3 + x6 + x9 + x12 + x15 + x18 = 1

end

integer 24

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 29 — #15

Plant Locations and Capacity Determination 29

FI
G
U
R
E
2.
3

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 30 — #16

30 Production Planning and Industrial Scheduling

TABLE 2.7
Demand/Supply and Cost Data

Customer

Location

Additional
Site Cost
per Year 1 2 3 Capacity

1 for S 20 20 × 50 = 1000 10 × 40 = 400 30 × 70 = 2100 30
1 for L 30 18 × 50 = 900 8 × 40 = 320 27 × 70 = 1890 40
2 for S 10 10 × 50 = 500 15 × 40 = 600 20 × 70 = 1400 30
2 for L 30 9 × 50 = 450 13 × 40 = 520 18 × 70 = 1260 40
3 for S 15 15 × 50 = 750 15 × 40 = 600 20 × 70 = 1400 30
3 for L 40 14 × 50 = 700 14 × 40 = 560 18 × 70 = 1260 40
Demand 50 40 70

Variable Definition

Customer

Location

Additional
Site Cost
per Year 1 Variables 2 Variables 3 Variables Capacity

1 for S y1 20 20 × 50 = 1000 x1 10 × 40 = 400 x2 30 × 70 = 2100 x3 30
1 for L y2 30 18 × 50 = 900 x4 8 × 40 = 320 x5 27 × 70 = 1890 x6 40
2 for S y3 10 10 × 50 = 500 x7 15 × 40 = 600 x8 20 × 70 = 1400 x9 30
2 for L y4 30 9 × 50 = 450 x10 13 × 40 = 520 x11 18 × 70 = 1260 x12 40
3 for S y5 15 15 × 50 = 750 x13 15 × 40 = 600 x14 20 × 70 = 1400 x15 30
3 for L y6 40 14 × 50 = 700 x16 14 × 40 = 560 x17 18 × 70 = 1260 x18 40
Demand 50 40 70

The optimum solution is: objective z = 2490. y2 = 1, y3 = 1, y4 = 1, x5 = 1,
x7 = 1, x12 = 1.

A large plant is open is open in location 1, and both large and small plants are
open in location 2. If only one type of plant is to be open in each facility, we need an
addition constraint for each location, such as,

For location 1, y1 + y2 ≤ 1

2.2.5 TIME CONSTRAINTS

Let us now consider another problem where locations and capacities of new facilities
are known. Facilities are operational; however, at times, it may or may not be possible
to produce and immediately deliver all items from every facility to every customer.
Some facilities may be overloaded and may not have the capacity to produce new
orders immediately. Yet, in some other facilities, appropriate distribution systems may
be lacking at that instance. The problem is to develop optimum production/distribution
network.

This is not a simple transportation problem and requires the zero–one program-
ming formulation again. For example, consider a problem with three customers and
three facilities, with cost data as follows (Table 2.8).

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 31 — #17

Plant Locations and Capacity Determination 31

TABLE 2.8
Transportation Cost Data

Customers

Facilities 1 2 3

1 5 8 7
2 3 9 6
3 6 18 14
Demand 300 600 700

TABLE 2.9
Maximum Amount that Can be
Shipped between a Facility and
a Customer

Customers

Facilities 1 2 3

1 100 50 300
2 200 200 0
3 300 600 700
Demand 300 600 700

Based on the present load on each facility and the available time to produce and
deliver the products, the following quantities can be delivered to each customer within
the customer’s time frame requirements (Table 2.9).

In addition, facility 1 can either supply 100 units to customer 1 or 50 units to
customer 2, or 300 units to customer 3 but only to at the most one customer. Similarly,
facility 2 can supply 200 units to customers 1 or 2, or none at all. Facility 3 can supply
the entire requirement of any and all customers, but at considerably higher prices.

Let xij be the amount shipped from facility i to customer j. yk zero–one variables
are introduced to handle “either” type of constraint.

The formulation for the preceding data is as follows:

Min 5x11 + 8x12 + 7x13 + 3x21 + 9x22 + 6x23 + 6x31 + 18x32 + 14x33

Subject to

x11 + x21 + x31 = 300

x12 + x22 + x32 = 600

x13 + x23 + x33 = 700

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 32 — #18

32 Production Planning and Industrial Scheduling

x11 ≤ 100 − 100y1

x12 ≤ 50 − 50y2

x13 ≤ 300 − 300y3

y1 + y2 + y3 ≥ 2

x21 ≤ 200 − 200y4

x22 ≤ 200 − 200y5

x23 = 0

y4 + y5 ≥ 1

x31 ≤ 300

x32 ≤ 600

x33 ≤ 700

The first set of constraints assure us that each customer’s demands are met.

Alittle explanation about the second set of constraints—each variable has an upper
limit and, from it, same constant times yk is deducted. Since yk can only take values of
zero or one, when it is one corresponding variable xij is zero. y1 + y2 + y3 ≥ 2 assures
us that at the most only one yk can be 0, then corresponding variable can take value up
to the limit to which it is defined. When all yk are one, none of the corresponding xij

can be greater than zero. These sets of constraints satisfy the requirements. A similar
explanation results in the third set of constraints.

The solution is: x13 = 300, x22 = 200, x31 = 300, x32 = 400, x33 = 400, and
z = $18,500.

2.3 UNCERTAINTY IN DEMAND

It is hardly possible to predict the future with complete certainty. Prices go up and
down, and so can the demand. New competitors can come into market, or product can
experience obsolescence. Indeed, as we go further into the future, it becomes more
difficult to predict all the factors that affect sales. The forecasting methods discussed
in the later chapters provide some guidelines that may be followed; however, errors in
prediction are most often present. To build a production plant/facility under such an
environment is difficult. Remember, building a plant is expensive and has its influence
over a long period of time.

A decision tree can be used in making decisions in this environment. Consider the
following situation where we need to decide whether to build a large or small plant
to meet the demand for next 2 years.

A large plant has capacity of 1000 units/year, while a small plant has a capacity of
only 750 units/year. At present, the demand for the product is 700 units, and it has a
sales price of $1000/unit. Both demand and price may also change from year to year.
Demand can go up or down by 10% with probabilities of 0.6 and 0.4, respectively.
The price can also go up and down, based on what happens to the demand. When
demand goes up, the unit price can go up by 5% with a probability of 80%, and when

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 33 — #19

Plant Locations and Capacity Determination 33

it goes down, the price goes down by 10% with a probability of 20%. When demand
goes down, the probability price goes up is 0.3 and probability it goes down is 0.7.

Let U and D define up or down changes, and let the first letter be associated with
demand and the second with price. For example, UU means demand is up and price
is up in that year. Then, there are four possible states:

(UU), (UD), (DU), (DD)

The probabilities for each state are

UU = p (demand up) × p (price up) = 0.6 × 0.8 = 0.48

UD = p (demand up) × p (price down) = 0.6 × 0.2 = 0.12

DU = p (demand down) × p (price up) = 0.4 × 0.3 = 0.12

DD = p (demand down) × p (price down) = 0.4 × 0.7 = 0.28

There are four possible states at the end of first year, and for each state in the
first year, there are four possible states in the second year, for a total of 16 states.
They are shown in Figure 2.4. Also, shown are the demands for the associated states
(details are shown in the calculation table). Since the capacity of a large plant is 1000,
with a large plant we can meet all the demand. However, with a small plant, with a
maximum capacity of 750, the demand can only be satisfied up to 750 units.

Year 0 Demand Year 1

Demand at
the end of
year 1 Year 2

Demand at
the end of
year 2

700 UU 770 UU 847
UD 847
DU 693
DD 693

UD 770 UU 847
UD 847
DU 693
DD 693

DU 630 UU 693
UD 693
DU 567
DD 567

DD 630 UU 693
UD 693
DU 567
DD 567

Let us calculate the revenue at each stage for the first and second years. When
demand goes up, the price goes up by 5% or 1.05 times the previous year’s price,

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 34 — #20

34 Production Planning and Industrial Scheduling

0.48

0.28

0.28

0.28

0.12

0.12

0.12

0.12

0.12

0.12

0.48

0.48

0.48

0.28

0.12

0.12

0.48

0.28

0.12

0.12

D =700
p =1.00

D =630
p=0.88

D =630
p =1.02

D=770
p =0.90

D=770
p =1.05

D =693
p =0.924

D =567
p =0.8976

D = 567
p =1.0404

D = 693
p =0.792

D =847
p =0.81

D = 693
p = 0.918

D =693
p =1.071

D =847
p =0.945

D=847
p =1.1025

D =567
p = 0.7744

Year 2 Year 1 Year 0

FIGURE 2.4 Decision tree for large plant.

while it goes down by 10% or 0.9 times previous year’s price. When demand goes
down, the price is up by 2%, and goes down by 12%. Revenues for all the states in
each year are also shown.

First-Year Revenue Calculations

State Total Demand Revenue = Demand × Price

UU (700 × 1.1) = 770 770 × (1,000 × 1.05) = 808,500
UD (700 × 1.1) = 770 770 × (1,000 × 0.9) = 693,000
DU (700 × 0.9) = 630 630 × (1,000 × 1.02) = 642,600
DD (700 × 0.9) = 630 630 × (1,000 × 0.88) = 554,400

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 35 — #21

Plant Locations and Capacity Determination 35

Second-Year Revenue Calculations

Year 1 Year 2 Total Demand Revenue

UU UU (700 × 1.1) × 1.1 = 847 847 × (1,000 × 1.05) × 1.05 = 933,817.5

UU UD (700 × 1.1) × 1.1 = 847 847 × (1,000 × 1.05) × 0.5 = 800,415

UU DU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.05) × 1.02 = 742,203

UU DD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.05) × 0.88 = 640,332

UD UU (700 × 1.1) × 1.1 = 847 847 × (1,000 × 0.9) × 1.05 = 800,415

UD UD (700 × 1.1) × 1.1 = 847 847 × (1,000 × 0.9) × 0.9 = 686,070

UD DU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.9) × 1.02 = 636,174

UD DD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.9) × 0.88 = 548,856

DU UU (700 × 1.1) × 0.9 = 693 693 × 1,000 × 1.02) × 1.05 = 742,203

DU UD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.02) × 0.9 = 636,174

DU DU (700 × 0.9) × 0.9 = 567 567 × (1,000 × 1.02) × 1.02 = 589,907

DU DD (700 × 0.9) × 0.9 = 567 567 × (1,000 × 1.02) × 0.88 = 508,939

DD UU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.88) × 1.05 = 640,332

DD UD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.88) × 0.9 = 548,856

DD DU (700 × 0.9) × 0.9 = 567 567 × (1,000 × 0.88) × 1.02 = 508,939

DD DD (700 × 0.9) × 0.9 = 567 567 × (1,000 × 0.88) × 0.88 = 439,085

2.3.1 LARGE PLANT EVALUATION

All the calculations are shown in the following table. We start by placing state prob-
abilities for all states (as calculated in the previous table and shown in Figure 2.4)
and revenues for the second year, in the table. Start from the second year and eval-
uate the expected revenue from the second year for each possible state of the first
year. For example, the expected second-year revenue for the first year UU state is:
0.48 × 93,3817 + 0.12 × 800,415 + 0.12 × 742,203 + 0.28 × 640,332 = 812,639.
Assuming all revenues are end-of-year revenues, and assuming an interest rate of
8%, calculate the end of first year, that is beginning of the second year, equivalent
amount by multiplying the end-of-year revenue by 1/(1 + 0.08) = 0.9259. So, the
present value at the end of the first year is 812,639×0.9259 = 752,443. This amount
is added to the revenue for the first year at stage UU, which is 808,500, resulting in
808,500 + 752, 443 = 1,560,943. Similar calculations for other states results in total
revenues of 1,337,951 for state UD, 1,193,522 for state DU, and 959,249 for state
DD at the end of the first year. The present values at the beginning of the first year are
obtained by again multiplying with 0.9259. The expected value at the beginning of
year 1, year 0, is: 0.48 × 1,445,318 + 0.12 × 1,238,844 + 0.12 × 1,105,113 + 0.28 ×
959,249 = 1,243,617. This is the expected profit if a large plant is placed in service
at the beginning of year 1, that is year 0.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 36 — #22

36 Production Planning and Industrial Scheduling

Large Plant: Expected Profit Evaluation

Year 0 Year 1 Year 2

Expected
Value Probability

Present
Value

First- and
Second-
Year
Total State

Present
Value

Expected
Value Probability State Revenue

1,257,746 0.48 1,445,318 1,560,943 UU 752,443 812,639 0.48 UU 933,817
0.12 UD 800,415
0.12 DU 742,203
0.28 DD 640,332

0.12 1,238,844 1,337,951 UD 644,951 812,639 0.48 UU 800,415
0.12 UD 686,070
0.12 DU 636,174
0.28 DD 548,856

0.12 1,148,746 1,240,646 DU 598,046 645,890 0.48 UU 742,203
0.12 UD 636,174
0.12 DU 589,906
0.28 DD 508,939

0.28 991,075 1,070,361 DD 515,961 557,238 0.48 UU 640,332
0.12 UD 548,856
0.12 DU 508,939
0.28 DD 439,084

2.3.2 SMALL PLANT EVALUATION

Similar calculations are needed to evaluate expected profit of a small plant with
750-unit capacity, placed at at the end of year 0.

Small Plant Demands at Years 1 and 2, with Maximum Capacity of 750

Year 0 Demand Year 1 Demand Year 2 Demand

700 UU 750 UU 750
UD 750
DU 693
DD 693

UD 750 UU 750
UD 750
DU 693
DD 693

DU 630 UU 693
UD 693
DU 567
DD 567

DD 630 UU 693
UD 693
DU 567
DD 567

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 37 — #23

Plant Locations and Capacity Determination 37

2.3.3 REVENUE EVALUATION
First Year

State Total Demand Revenue = Demand × Price

UU (700 × 1.1) = 770 750 × (1,000 × 1.05) = 787,500
UD (700 × 1.1) = 770 750 × (1,000 × 0.9) = 675,000
DU (700 × 0.9) = 630 630 × (1,000 × 1.02) = 642,600
DD (700 × 0.9) = 630 630 × (1,000 × 0.88) = 554,400

Year 1 Year 2 Total Demand Revenue

UU UU (700 × 1.1) × 1.1 = 847 750 × (1,000 × 1.05) × 1.05 = 826,875
UU UD (700 × 1.1) × 1.1 = 847 750 × (1,000 × 1.05) × 0.9 = 708,750
UU DU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.05) × 1.02 = 742,203
UU DD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.05) × 0.88 = 640,332
UD UU (700 × 1.1) × 1.1 = 847 750 × (1,000 × 0.9) × 1.05 = 708,750
UD UD (700 × 1.1) × 1.1 = 847 750 × (1,000 × 0.9) × 0.9 = 607,500
UD DU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.9) × 1.02 = 636,174
UD DD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.9) × 0.88 = 548,856
DU UU (700 × 1.1) × 0.9 = 693 693 × 1,000 × 1.02) × 1.05 = 742,203
DU UD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 1.02) × 0.9 = 636,174
DU DU (700 × 0.9) × 0.9 = 567 567 × (1,000 × 1.02) × 1.02 = 589,907
DU DD (700 × 0.9) × 0.9 = 567 567 × (1,000 × 1.02) × 0.88 = 508,939
DD UU (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.88) × 1.05 = 640,332
DD UD (700 × 1.1) × 0.9 = 693 693 × (1,000 × 0.88) × 0.9 = 548,856
DD DU (700 × 0.9) × 0.9 = 567 567 × (1,000 × 0.88) × 1.02 = 508,939
DD DD (700 × 0.9) × 0.9 = 567 567 × (1,000 × 0.88) × 0.88 = 439,085

Small Plant Expected Profit Evaluation

Year 0 Year 1 Year 2

Expected
Value Probability

Present
Value

First- and
Second-
Year
Total State

Present
Value

Expected
Value Probability State Revenue

1,215,283 0.48 1,372,434 1,482,229 UU 694,729 750,307 0.48 UU 826,875
0.12 UD 708,750
0.12 DU 742,203
0.28 DD 640,332

0.12 1,176,372 1,270,482 UD 595,482 643,121 0.48 UU 708,750
0.12 UD 607,500
0.12 DU 636,174
0.28 DD 548,856

0.12 1,148,746 1,240,646 DU 598,046 645,890 0.48 UU 742,203
0.12 UD 636,174
0.12 DU 589,906
0.28 DD 508,939

0.28 991,075 1,076,644 DD 522,244 564,024 0.48 UU 640,332
0.12 UD 548,856
0.12 DU 508,939
0.28 DD 439,084

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 38 — #24

38 Production Planning and Industrial Scheduling

0.48

0.28

0.28

0.28

0.12

0.12

0.12

0.12

0.12

0.12

0.48

0.48

0.48

0.28

0.12

0.12

0.48

0.28

0.12

0.12

D =700
p = 1.00

D = 630
p = 0.88

D = 630
p = 1.02

D= 750
p = 0.90

D = 750
p = 1.05

D =693
p=0.924

D =567
p =0.8976

D =567
p =1.0404

D =693
p =0.792

D =750
p =0.81

D =693
p =0.918

D=693
p =1.071

D =750
p =0.945

D=750
p =1.1025

D =567
p =0.7744

Year 2 Year 1 Year 0

FIGURE 2.5 Decision tree for small plant.

Small plant evaluations are similar to those of a large plant. The expected income
from a small plant is 1,079,063. The difference between large plant and small plant
revenue is $1,257,746−$1,215,283 = $42,463. So, as long as the cost of construction
of the large plant does not exceed the small plant price by this amount, we should
build a large plant (Figure 2.5).

2.3.4 EXPANSION IN FUTURE

Suppose we can start with a small plant and add capacity of 250 after 1 year for
$50,000. Should we expand?

The answer depends on what state we are in after 1 year. Calculate the expected
profit for going from small to expanded capacity, which in our case then becomes
the large plant. The detailed calculations are already available in previous large and
small plant expected profit evaluation tables.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 39 — #25

Plant Locations and Capacity Determination 39

Expected Profit from

State After 1 Year Small Plant Large Plant Difference

UU 694,729 752,443 57,714
UD 595,482 644,951 49,469
DU 598,046 598,046 0
DD 522,244 522,244 0

With a cost of expansion of $50,000, it is obvious that we should expand only if
we are in state UU after 1 year.

2.4 SUMMARY

The chapter introduces models in plant location and capacity determination. The
models are based on specific aim and available resources. The major objective is
to develop optimum customer distribution network and to determine the associ-
ated capacity required at each plant. The last model is probabilistic, which allows
decisions on plant capacity based on future prospects of demand, as judged today by
the management.

2.5 EXERCISE

2.1 J & A International is a wholesaler who sells computer parts to its retailers
from its three warehouses located at Los Angeles, Boston, and Chicago. It
regularly supplies the parts to its retailers in different parts of the country. For
this month, there is a specific demand for scanners from three retailers. The
following table shows the demand from its retailers and the associated shipping
costs.

Shipping Cost per 100 Units ($)

Retailer 1 Retailer 2 Retailer 3 Stock (in Units)

Los Angeles 1675 400 1160 1250
Chicago 760 1160 543 930
Boston 320 1230 440 830
Order from retailer 600 700 300

a. Formulate the LP model.
b. Find the optimal shipping plan from each wholesaler to each

retailer.
2.2 If in Problem 2.1 a complete order must be fulfilled from only one warehouse,

what should be the optimum policy?

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 40 — #26

40 Production Planning and Industrial Scheduling

2.3 A company has three different plants producing the same products and sup-
plying to different warehouses. The following table shows the order sizes,
capacities of each plant, and the shipping costs.

Shipping Cost Per Units ($)

Plant W1 W2 W3 Stock (in Units)

1 400 450 375 60
2 390 330 — 40
3 — — 370 55
order 33 21 25

Plant 1 can distribute to all the warehouses, whereas plant 2 can distribute to
warehouses 1 and 2 only, and plant 3 can distribute to warehouse 3 only. Ware-
house 1 can receive any units supplied from any plant, whereas warehouses 2
and 3 can receive only 34 and 25 units, respectively.

The management wants to know how much to distribute to different
warehouses from different plants, while minimizing the total shipping cost.

2.4 For the problem described in Problem 2.3, because of high operating cost,
the management would like to operate only two plants to meet the demand.
Keeping the shipping cost minimal, suggest from which plant it is justifiable
not to produce anything.

2.5 Tricon Corporation (TC) is a manufacturer of several rubber products such as
speed breakers, neoprene bearing pads, etc. Due to reconstruction work after
some natural disasters and a good economic environment, the rubber industry
is expecting a huge demand for the year 2007. The management is anticipating
a demand of 180,000 units in the south, 150,000 in the west, 120,000 in the
east, and 90,000 in the north. Considering the low labor cost and availability of
natural rubber, the management has decided to build the manufacturing plants
in Asia and South America. Plants can be of three types: large, medium, and
small. The management has decided that no more than two plants can be built in
any country. Capacities, fixed costs, and the costs of producing and shipping a
unit from four locations to four marketplaces are shown in the following tables:

Capacities

India Sri Lanka Brazil Argentina

Large 400,000 350,000 420,000 375,000
Medium 200,000 220,000 — 205,000
Small 100,000 — 80,000 120,000

Fixed Costs

India Sri Lanka Brazil Argentina

Large 10 million 8 million 9 million 7 million
Medium 6 million 6.5 million — 6.5 million
Small 4 million — 3.75 million 3.6 million

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 41 — #27

Plant Locations and Capacity Determination 41

Transportation and Shipping Costs

India Sri Lanka Brazil Argentina

East $210 $230 $220 $235
South $217 $220 $195 $215
West $250 $245 $225 $233
North $222 $236 $250 $255

So, where should TC build their factories?
2.6 From a survey, the annual demand for a product XYZ is found to be 25 units.

The selling price is $1200/unit. From one year to the next, demand may go
up and down by 8% with probabilities 0.5 and 0.3, respectively. When the
demand goes up, the price may also go up by 2% with probability of 82%;
when the demand goes up, the price may decrease by 3% with 12% prob-
ability; when the demand goes down, the price may go up by 3% with 36%
probability; and finally demand and price may go down by 2% with probability
74%. Calculate the expected revenue for first and second years by using the
decision tree.

2.7 A small plant has a capacity of manufacturing 900 units/year, while a large
plant has a capacity of 1,500 units/year. A small plant can be built in year 0 for
$100,000, and in year 1 for $120,000; similarly, a large plant can be built for
$150,000 in year 0 and $180,000 in year 1. Current demand for the product
is 825 units/year. The management decides to sell the product at $1,200/unit.
From one year to the next, demand may go up and down by 8%, with probabil-
ities 0.5 and 0.3, respectively. When the demand goes up, the price may go up
by 2%, with a probability of 82%. When the demand goes up, the price may
decrease by 3%, with 12% probability; the demand goes down and price up by
3%, with 36% probability; and demand and price go down by 2% with prob-
ability 74%. A small and large plant can be built in year 1 or year 2. Determine
the optimum policy for plant placements.

2.8 Plants can be placed in any one of the 5 locations. The costs of shipping from
locations to the existing warehouses are follows:

Warehouse

Plant 1 2 3

A 16 18 9
B 12 15 15
C 10 8 14
D 13 9 11
E 7 12 16
Requirements at the warehouse per year 35 50 85

Plants can be built with two capacities, of 100 or 150 units per year. The
small plant costs $2000 per year to operate, while the large plant requires $3500
per year. Determine where to place plants, and what their capacity to minimize
the total cost of the operation should be. Formulate the solution to the problem.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 42 — #28

42 Production Planning and Industrial Scheduling

2.9 A National food company wants to build an additional new plant to meet
the demand in central United States. The management is looking at four pos-
sible locations: Wichita, Omaha, St Louis, and Oklahoma City. The following
table shows the associated fixed costs per year, the variable cost per unit, and
the annual fixed transportation costs to the main distribution center.

Location/Cost Wichita Omaha St Louis Oklahoma City

Fixed cost/year $500,000 $440,000 $470,000 $475,000
Variable cost/unit $3 $4 $3 $3.30
Transportation cost $49,000 $63,000 $60,000 $57,000

The plant can produce 40,000 units per month. Assuming that the units
sell for $12 per unit, and the plant capacity being fully utilized, determine the
location that will be best suited for an additional plant.

2.10 A chocolate maker produces and sells five different kinds of candies: chocolate
liquor, milk chocolate, white chocolate, couverture, and ganache. The respect-
ive profits per package are $10, $12, $19, $25, and $22. All the products
basically require the same process: mixing and conching, tempering, and pack-
ing. The times for these operations vary for the various items, as shown in the
following table:

Operation Time (Min)

Mixing and Conching Tempering Packaging

Chocolate liquor 7 12 3
Milk chocolate 5 9 3
White chocolate 8 14 4
Couverture 8 12 5
Ganache 12 8 6

The time available for mixing and conching, tempering, and packing are
300, 380, and 270 min, respectively. To maximize the profit, what should the
manufacturer produce, and in what quantity?

REFERENCES AND SUGGESTED READINGS

Amram, Martha and Nalin Kulatilaka. 1999. Real Options, Cambridge, MA: Harvard Business
School Press.

Ballou, Ronald H. 1999. Business Logistics Management, Upper Saddle River, NJ:
Prentice Hall.

Daskin, Mark S. 1995. Network and Discrete Location, New York: John Wiley & Sons.
Harding, Charles F. 1988. “Quantifying Abstract Factors in Facility Location Decisions”

Industrial Development (May–June): 24–28.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 43 — #29

Plant Locations and Capacity Determination 43

Korpela, Jukka, Antti Lehmusvaara, and Marku Tuominen. 2001. “Customer Service Based
Design of the Supply Chain” International Journal of Production Economics 69:
193–204.

Luehrman, Timothy A. 1995. “Capital Projects as Real Options: An Introduction” Harvard
Business School, case 9-295-074.

McCormack, Alan D., Lawerence J. Newman III, and Donald B. Rosenfield. 1994.
“The New Dynamics of Global Manufacturing Site Location” Sloan Management
Review (Summer): 69–79.

Note on Facility Location. 1989. Harvard Business School, note 9-689-059.

Dileep: “44206_c002” — 2007/9/17 — 14:49 — page 44 — #30

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 45 — #1

3 Forecasting and
Aggregate Planning

3.1 FORECASTING

Objective of every manufacturing facility is to produce and sale product and make
profit in doing so. They must therefore decide when to produce and how much to
produce. The answer requires estimation of what the product demand would be in
future periods.

Forecasting is a technique for estimating the expected demand in future. However,
since it is an estimate, it seldom is exactly equal to the actual demand. There is strong
likelihood of actual demand being different from the forecasted demand. Then why
go through the trouble of forecasting? For one, it is better to have an estimate than to
have none at all. For example, for an auto dealership, the forecasted knowledge that
the sales of new cars could be 200 cars per month has a value. They can plan their
activities based on this goal. If the actual demand happens to be 224 for a particular
month, the planning necessary to get the additional 24 cars would be much less than
if the dealer did not know the initial estimate at all ahead of time. Forecasting is more
robust when it is done over an aggregated product line. For example, the cumulative
error in forecasting the sale for each model of a car will be much higher than error in
forecasting the total sales of the car. Low sales in some models may be compensated
by increased sales in other models.

Forecasting could be over a long range with time span of years or could be over
a short time frame such as weeks or even days. Errors in forecasting tend to be larger
as the planning period gets longer. Uncertain factors that influence the demand may
not be well estimated over a long period of time. There are many forecasting methods
based on information available and market variations. There is no golden rule or
model that fits all circumstances. A good forecasting method should minimize the
error between the actual demand and forecasted value. We will study some of the
forecasting methods in the following pages.

There are two ways of making a forecast: (1) qualitative forecasting based on
informed judgment and (2) quantitative forecasting based on past data.

3.1.1 QUALITATIVE FORECASTING

Qualitative forecasting is generally subjective and is associated with a new product
for which we have no historical data. Expert opinion, based on market surveys, panel
discussion, or even life-cycle analogy to similar existing product lines, is used to
estimate the future demand for a new product. Such forecasting may be quick but
tend to have bias based on the personality of the forecaster. An optimistic person
tends to overestimate, while a pessimistic person has the opposite tendency.

45

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 46 — #2

46 Production Planning and Industrial Scheduling

It is commonly believed that a group of experts can make better predictions than
a single individual. It allows the experience and knowledge of multiple individuals to
address the problem. They challenge and support each other’s reasoning to arrive at
more accurate predictions. However, it is necessary to avoid interpersonal relation-
ships that may result in bandwagon or authority effects. One technique used for such
analysis is called the Delphi technique.

Here, a group is formed where the experts are not introduced to each other and
all decisions are made by polling. A questionnaire related to the question on hand is
passed anonymously to the members of the team, and the results are collected and stat-
istically analyzed. The predictions outside inter-quartile range (IQR) are challenged,
and participants are asked to support or examine the assumptions and reasoning for
these predictions. The new prediction, supporting or opposing arguments and other
feedback, is recycled to all participants. New predictions are made, and iterations are
continued till a convergence in prediction is obtained or no further improvement in
prediction is possible.

Another method of forecasting is to see how future technology, economics, polit-
ics, and other related factors might influence the sales of the present products. This is
called future creations. Different situations are created based on alternate scenarios
associated with these factors, and the likelihood of each scenario is examined. It
results in somewhat reliable sales estimates.

3.1.2 QUANTITATIVE FORECASTING

Quantitative forecasting can be further broken down into three classes based on
the relationship between demand and the factors that influence demand. The
classifications are

1. Casual forecasting: Causal forecasting methods are appropriate when there
is a strong relationship between demand and environmental factors. For
example, housing sale is strongly influenced by interest rates. Plywood
sales depend on the housing market, demand for flashlights goes up when
bad weather is predicted, and so on. Regression analysis, modeling and
simulation, and/or econometric modeling are the common methods used
in such analyses.

2. Time series analysis: Forecast is based on the assumption that future
demand will follow the demand pattern of the past. Past demand may
have a random variation around mean demand; in addition, it may have
a trend pattern and/or may even show a seasonal effect. For example, for
a grocery store, demand for steady products like bread and milk are not
going to change drastically from day to day. However, it may show a trend
based on the overall trend of customers visiting the store over a period
of time. On other hand, demand for lawn mowers may not only show
a trend pattern but will also have seasonal variations. One way to under-
stand the previous demand behavior is to plot the past data against time and
observe if any pattern is present. Of course, we must have sufficient data
to make such an observation. In many instances, such as in the example of

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 47 — #3

Forecasting and Aggregate Planning 47

lawn mowers, seasonal variation can be predicted by knowing the product
line.

Various methods such as moving average, exponential smoothing, and regression
analysis are available for analysis, and they are explained later on in the chapter.
Accuracy and effectiveness of these methods can be evaluated by determining the
error in forecasting, that is, actual demand versus the predicted demand. We can
then choose a method that gives the least forecasting error. More about analyzing
forecasting errors is illustrated in Section 3.1.3. We are going to use two measures:
sum of error squares and sum of absolute errors. These measures are calculated and
displayed in each forecasting method shown in this section.

Time series forecasting methods can be further divided into static and dynamic
techniques. In the static method, which mainly consists of regression analysis, a
prediction for multiple future periods can be made based on the model developed with
the present available data. The model is static and does not change with additional
data available in time. In the dynamic method, on the other hand, the parameters of
the model are continuously adjusted, based on the latest available information. Thus,
to make forecast for the next period, and parameters are reevaluated based on the
actual demand is in the present period.

To illustrate forecasting methods, let us take an example. Suppose we have
the following demand data available for last 13 time periods, each period being
of 3 months duration.

Period 0 1 2 3 4 5 6 7 8 9 10 11 12
Observed demand 18 30 50 60 32 50 70 45 40 60 80 60 55

Plot of the data indicates that there is a trend and may also follow a seasonal
pattern, with a cycle time of four periods or 1 year, perhaps representing a season.
(Figure 3.1).

3.1.3 STATIC FORECASTING

Placing a regression equation through the data gives following relationship between
period and demand. We have used Microsoft Excel software to obtain this relationship

0

20

40

60

80

100

0 5 10 15

Series 1

FIGURE 3.1 Plot of observed demands.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 48 — #4

48 Production Planning and Industrial Scheduling

(Excel–Tools–Data Analysis–Regression), but we can use any widely used statistical
analysis software for this analysis.

Demand in period t, Dt = 33.41 + 2.76 (t)

ANOVA

df SS MS F Significance F

Regression 1 1390.159 1390.159 7.254701 0.0209
Residual 11 2107.841 191.6219
Total 12 3498

Standard Lower Upper Lower Upper
Coefficients Error t Stat P -Value 95% 95% 95.0% 95.0%

Intercept 33.41758 7.255575 4.60578 0.000758 17.44816 49.387 17.44816 49.387

Here, the intercept of line 33.41 is considered as level demand, since its value will
remain constant, no matter the time period. The slope of the line, 2.76, is the trend
factor. For each time period in future, the demand will increase by 2.76 units. It is
an increasing trend. We can evaluate how good the linear regression is by calculating
the predicted values and forecasting errors, predicted minus actual demand, for the
past data based on this equation. The sum of the square of error (2107.84) from
Table 3.1 gives one measure as to how good the prediction equation is, as we will see
in Section 3.1.8.

3.1.4 SEASONAL CORRECTION

In the plot of the data, we have seen seasonal influence in demand. We can see that the
season repeats itself every forth time period. We can probably reduce the errors and
come out with better forecasted values if we can adjust the predictions for seasons.
This is done by developing seasonal multipliers (Table 3.1).

For each season, calculate the ratio of actual demand to the predicted value based
on regression equation. The season in period 0 repeats three more times in periods
4, 8, and 12, in different years. Take an average of these ratios for these periods,
which results in (0.538632 + 0.71978 + 0.720747 + 0.826595)/4 = 0.701439 as the
season multiplier for the season in period 0, 4, 8, and 12. For the next season starting
at period 1, there are only two additional data points, and therefore, the average is
calculated as (0.829233 + 1.058918 + 1.029901)/3 = 0.972684. Similarly, other
seasons’ averages also are calculated. These are called seasonal multipliers. The new
prediction for each period is obtained by multiplying the predicted value from the
linear equation by its seasonal multiplying factor. In general, the predicted demand
value is equal to (level demand + trend x period) x seasonal factor for the trend.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 49 — #5

Forecasting and Aggregate Planning 49

TA
B
LE

3.
1

St
at
ic

Fo
re
ca
st
in
g
w
it
h
Se
as
on

al
C
or
re
ct
io
ns

Pe
ri
od

D
em

an
d

(D
)

Pr
ed

ic
te
d

D
em

an
d

(P
)

Er
ro
r

(D
−

P
)

R
at
io

=
(D

/
P

)

Se
as
on

al
Fa
ct
or
s

Pr
ed

ic
te
d

D
em

an
d

M
od

ifi
ed

by
Se

as
on

al
Fa
ct
or

(P
1)

M
od

ifi
ed

Er
ro
r

(D
−

P
1)

0
18

33
.4

18
−1

5.
41

8
0.

53
86

32
0.

70
14

39
23

.4
40

67
48

4
1

30
36

.1
78

−6
.1

78
0.

82
92

33
0.

97
26

84
35

.1
89

77
28

2
−5

.4
40

67
48

2
50

38
.9

38
11

.0
62

1.
28

40
93

1.
33

19
32

51
.8

62
78

72
−5

.1
89

77
28

3
60

41
.6

98
18

.3
02

1.
43

89
18

1.
07

76
52

44
.9

35
93

15
−1

.8
62

78
72

4
32

44
.4

58
−1

2.
45

8
0.

71
97

8
0.

70
14

39
31

.1
84

55
68

8
15

.0
64

06
9

5
50

47
.2

18
2.

78
2

1.
05

89
18

0.
97

26
84

45
.9

28
20

75
5

0.
81

54
43

1
6

70
49

.9
78

20
.0

22
1.

40
06

16
1.

33
19

32
66

.5
67

32
18

6
4.

07
17

92
4

7
45

52
.7

38
−

7.
73

8
0.

85
32

75
1.

07
76

52
56

.8
33

20
91

5
3.

43
26

78
1

8
40

55
.4

98
−1

5.
49

8
0.

72
07

47
0.

70
14

39
38

.9
28

43
89

3
−1

1.
83

32
09

9
60

58
.2

58
1.

74
2

1.
02

99
01

0.
97

26
84

56
.6

66
64

22
9

1.
07

15
61

1
10

80
61

.0
18

18
.9

82
1.

31
10

89
1.

33
19

32
81

.2
71

85
65

2
3.

33
33

57
7

11
60

63
.7

78
−3

.7
78

0.
94

07
63

1.
07

76
52

68
.7

30
48

68
1

−1
.2

71
85

65
12

55
66

.5
38

−1
1.

53
8

0.
82

65
95

0.
70

14
39

46
.6

72
32

09
8

8.
32

76
79

Su
m

of
er

ro
r

sq
ua

re
s

21
07

.8
5

61
5.

43

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 50 — #6

50 Production Planning and Industrial Scheduling

For example, the predicted demands for periods 13, 14, and 15 are

• Predicted demand for period 13 = (33.41 + 2.76 (13) 0.972684 = 67.39
• Predicted demand for period 14 = (33.41 + 2.76 (14) 1.331932 = 95.96
• Predicted demand for period 15 = (33.41 + 2.76 (15) 1.077652 = 80.61

3.1.5 ADAPTIVE FORECASTING

Though the methods in adaptive forecasting are based on historical demand these
methods are developed to respond quickly to the latest available demand information.
Any sudden change in demand pattern is quickly responded to in making the new
predictions.

The simplest method is termed moving average. It predicts the demand for the
next period by simply taking the average of past n periods’ demand. Each forecast,
therefore, reflects the latest n periods’ demand history. For example, if we select a
value of n = 4, prediction for period 4 is an average of the previous four demands,
that is, demands (18 + 30 + 50 + 60)/4 = 39.5. The prediction for period 5 involves
the latest information on past four demands, that is, periods 1 through 4, which is
(30 + 50 + 60 + 32)/4 = 43, and so on as shown in Table 3.2.

A variation of moving average, where we placed an equal weight on each element
of the past demand data, is to give different weights for historical data based on its
age. For example, we may place weight of 0.4 on the immediate past period data, 0.3
on the data that is two periods old, 0.2 on the data that is three periods old, and 0.1
for four-period-old data. Such a method is called weighted moving average. Based
on our weights, the demand prediction for period 4 is (.1 × 18 + 0.2 × 30 + 0.3 ×
50+0.4×60)/4 = 46.8. Similar calculations result in the predicted demands shown
in Table 3.2. The table also shows the error squares and sum of error squares for each
method.

3.1.6 EXPONENTIAL SMOOTHING

It is similar to weighted moving average; however, it does have its own weighting
scheme. The forecast for period t, Ft is determined as

Ft = Ft−1 + α(Dt−1 − Ft−1)

where α is called the exponential smoothing constant and has a value between 0
and 1. Using this equation with α = 0.2, to determine the forecasted values, we
start with period 0, assuming that the period’s forecasted value was the same as the
actual demand. The forecasted value for period 1 is F1 = F0 + α (D0 − F0) =
18 + 0.2 (30 − 18) = 20.4. Similarly, F2 = 20.4 + 0.2 (30 − 20.4) = 22.34.

Other values are shown in Table 3.3. Of course, other values of α will result in
different forecasts and different errors. One way to choose an optimum value of α is to
simulate the forecasts with different values of α and then choose for future prediction
a value of α that gives the least sum of square of error.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 51 — #7

Forecasting and Aggregate Planning 51

TABLE 3.2
Moving Average and Weighted Moving Average

Period Demand
Moving
Average Error Weighted

Weighted
Error

Moving
Average
Error
Square

Wt. Mov.
Avg. Error
Square

0 18
1 30
2 50
3 60
4 32 39.5 −7.5 46.8 −14.8 56.25 219.04
5 50 43 50 43.8 6.2 2500 38.44
6 70 48 22 46.6 23.4 484 547.56
7 45 53 −8 55.4 −10.4 64 108.16
8 40 49.25 −9.25 52.2 −12.2 85.5625 148.84
9 60 51.25 8.75 48.5 11.5 76.5625 132.25

10 80 53.75 26.25 52 28 689.0625 784
11 60 56.25 3.75 62.5 −2.5 14.0625 6.25
12 55 43 12 64 −9 144 81
Sum of

error
squares 4113.5 2065.54

TABLE 3.3
Exponential Smoothing with α = 0.2

Period Observed Demand Forecasted Demand Error

0 18 18 0
1 30 20.40 −9.60
2 50 22.32 −27.68
3 60 27.86 −32.14
4 32 34.28 2.28
5 50 33.83 −16.17
6 70 37.06 −32.94
7 45 43.65 −1.35
8 40 43.92 3.92
9 60 43.14 16.86

10 80 46.51 33.49
11 60 53.21 6.79
12 55 54.57 0.43
Sum of error square 4712.82

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 52 — #8

52 Production Planning and Industrial Scheduling

We can show that by repeated substitutions in exponential smoothing formula
results in the following identity:

Ft = Ft−1 + α(Dt−1 − Ft−1) = αDt−1 + (1 − α)αFt−1

= αDt−1 + (1 − α)αDt−2 + (1 − α)2Ft−2 =

= αDt−1 + (1 − α)αDt−2 + (1 − α)2αDt−3 + (1 − α)3αDt−4 + · · ·
+ (1 − α)t−2αD1 + (1 − α)t−1F1

As can be seen in the preceding expression, the weights on prior periods’ demands
decline exponentially, and, therefore, this forecasting technique is called exponential
smoothing.

3.1.7 HOLT’S AND WINTER’S MODELS

Exponential smoothing can be further expanded to include trend, called Holt’s Model,
and trend and seasonal corrections called Winter’s Model.

In both models, we start with linear regression equation through the available
demand data. In our case, we have the equation

Demand in period t, Dt = 33.41 + 2.76 (t).

As mentioned earlier, the intercept is considered as the initial level demand L0, and
slope 2.76 is considered as initial trend value, T0. The seasonal factors calculated
earlier are treated as the initial seasonal values for each season.

In Holt’s model, level and trend factors are successively modified, based on the
latest observed demand in following manner,

Ft+1 = Lt + Tt

Lt = αDt + (1 − α)(Lt−1 + Tt−1) = αDt + (1 − α)Ft

Tt = β(Lt − Lt−1) + (1 − β)Tt−1

In addition, with periodicity of p, the seasonal factors are modified in following
manner:

St = γ (Dt/Lt) + (1 − γ)St−p,

where α, β, and γ are constants between 0 and 1.
In our example, first applying Holt’s model with α = 0.2 and β = 0.3 results in

results tabulated in Table 3.4.
L0 = 33.41 and T0 = 2.76 give the forecast for period 1 as F1 = 36.17. To

calculate L1 and T1,

L1 = 0.2D1 + 0.8(L0 + T0) = 0.2D1 + 0.8F1 = 0.2 × 30 + 0.8 × 36.17 = 34.93

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 53 — #9

Forecasting and Aggregate Planning 53

T1 = β(L1 − L0) + (1 − β)T0 = 0.3(L1 − L0) + 0.7T0

= 0.3(34.93 − 33.41) + 0.7 × 2.76 = 2.39.

And, hence, F1 = 34.93 + 2.39 = 37.32.
Similarly other calculations. The forecasted demand for period 13 is 68.01, and

from there on the forecast, based on the present demand, is Ft = 66.12+1.89 (t−12).
To apply seasonal factors to the Winter’s model, modifications require the calcu-

lation of modified seasonal factors. Remember that in our example, the periodicity
p = 4, that is, the same season repeats every four time periods. Using successive
values of demands and level factors from the Table 3.4, the new values of seasonal
factors are calculated as shown in the following.

New Seasonal Factors

Old Seasonal
Period Demand Lt Factors New Seasonal Factors

0 18 33.41 0.7014 0.7014
1 30 34.93 0.9726 0.3 (30/34.93) + 0.7 × 0.9726 = 0.938
2 50 39.86 1.3319 0.3 (50/39.86) + 0.7 × 1.3319 = 1.307
3 60 46.4 1.0776 0.3 (60/46.4) + 0.7 × 1.0776 = 1.205
4 32 46.85 0.7014 0.3 (32/46.85) + 0.7 × 0.7014 = 0.696
5 50 49.92 0.9726 0.3 (50/49.92) + 0.7 × 0.938 = 0.957
6 70 56.38 1.3319 0.3 (70/56.38) + 0.7 × 1.307 = 1.29
7 45 57.37 1.0776 0.3 (45/57.37) + 0.7 × 1.205 = 1.08
8 40 56.41 0.7014 0.3 (40/56.41) + 0.7 × 0.696 = 0.70
9 60 58.66 0.9726 0.3 (60/50.66) + 0.7 × 0.957 = 1.02

10 80 64.54 1.3319 0.3 (80/64.54) + 0.7 × 1.29 = 1.27
11 60 66.18 1.0776 0.3 (60/66.18) + 0.7 × 1.08 = 1.03
12 55 66.12 0.7014 0.3 (55/66.12) + 0.7 × 0.70 = 0.74

The forecasted demand is calculated as Ft+1 = (Lt +Tt)St . The values are shown
in Table 3.5.

3.1.8 ANALYSIS OF FORECASTING ERRORS

If the forecasting method is perfect, it really would have no errors. But of course,
such perfect forecasting is hardly possible. The next best thing is to have a method
that produces as small an error as possible. In addition, the error should be random
around the mean of zero and have variance (or standard deviation) that is as small as
possible. There are number of indicators that can be useful, and they are as follows:

Variance can be estimated as being equal to (sum of square of errors)/n.
Another quick estimate of the variance of error by determining the sum of absolute

mean deviation, called mean absolute deviation, MAD = (sum of absolute values of
error)/n. Then, the standard deviation can be estimated as σ = 1.2 × MAD.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 54 — #10

54 Production Planning and Industrial Scheduling

TABLE 3.4
Holt Model: Forecast with Level and Trend Corrections: α = 0.2 and β =
0.3

Period Demand Lt Tt Forecast Ft+1 Error Error Square Absolute Error

0 18 33.41 2.76 36.17
1 30 34.93 2.39 37.32 −6.17 38.0689 6.17
2 50 39.86 3.15 43.01 12.68 160.7824 12.68
3 60 46.4 4.17 50.57 16.99 288.6601 16.99
4 32 46.85 3.05 49.9 −18.57 344.8449 18.57
5 50 49.92 3.06 52.98 0.1 0.01 0.1
6 70 56.38 4.08 60.46 17.02 289.6804 17.02
7 45 57.37 3.15 60.52 −15.46 239.0116 15.46
8 40 56.41 1.92 58.33 −20.52 421.0704 20.52
9 60 58.66 2.02 60.68 1.67 2.7889 1.67

10 80 64.54 3.18 67.72 19.32 373.2624 19.32
11 60 66.18 2.72 68.9 −7.72 59.5984 7.72
12 55 66.12 1.89 68.01 −13.9 193.21 13.9

Sum 2410.988 150.12

TABLE 3.5
Winters Model: Forecast with Level, Trend, and Seasonal Corrections:
α = 0.2, β = 0.3, and γ = 0.3

Period Demand Lt Tt

New Seasonal
Factors St

Forecast
Demand

Ft+1 Error
Error
Square

Absolute
Error

0 18 33.41 2.76 0.7014 25.37
1 30 34.93 2.39 0.938 35.01 4.63036 21.44025 4.630362
2 50 39.86 3.15 1.307 56.21 14.9938 224.8152 14.99384
3 60 46.4 4.17 1.205 60.94 3.78593 14.33327 3.78593
4 32 46.85 3.05 0.696 34.73 −28.9369 837.3413 28.93685
5 50 49.92 3.06 0.957 50.70 15.2696 233.1607 15.2696
6 70 56.38 4.08 1.29 77.99 19.2981 372.4182 19.29814
7 45 57.37 3.15 1.08 65.36 −32.9934 1088.564 32.9934
8 40 56.41 1.92 0.7 40.83 −25.3616 643.2108 25.3616
9 60 58.66 2.02 1.02 61.89 19.169 367.4506 19.169

10 80 64.54 3.18 1.27 86.00 18.1064 327.8417 18.1064
11 60 66.18 2.72 1.03 70.97 −26.0044 676.2288 26.0044
12 55 66.12 1.89 0.74 50.33 −15.967 254.9451 15.967

Sum 5061.75 224.51652

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 55 — #11

Forecasting and Aggregate Planning 55

The forecasting method should also be consistent. It should not overestimate or
underestimate the demands following any pattern. To estimate the accuracy of the
forecasting method, calculate the mean absolute percentage error, MAPE, which is
defined as

MAPE =
(∑

ABS(Error/Demand) × 100
) /

n.

Also, determine if the forecasting method consistently overestimates or underes-
timates the actual demand by calculating bias, which is defined as:

Bias t =
t∑

I=1

Error for I = 1 . . . n

Bias should vary around 0 in a random manner.
Next determine the tracking signal, TS, defined as TS = Biast /MADt .
The tracking signal should be between ±6.
In our example, we have plotted the errors for static forecasting with trend, with

seasonal corrections, and for adaptive forecasting with trend and seasonal corrections.
None of the errors look random (Figure 3.2).

In fact, all of them are following a cyclic pattern around the mean of zero. This
indicates that may be we can take some corrective action to improve forecasting.

Let us examine one method, static with trend. Observe the errors for each season.
They follow the same pattern. Errors for periods 1, 5, and 9 are very close to 0 or are
negative. Errors for periods 2, 6, and 10 have large positive values and so on. Maybe
we can modify the original forecasts to reduce these errors.

Let us observe the errors for all method, from Table 3.4. Plot is displayed in
Figure 3.2c.

Period t Error Sum of Squares

1 −6.17 38.06
2 12.68 160.78
3 16.99 288.66
4 −18.57 344.84
5 0.1 0.01
6 17.02 289.68
7 −15.46 239.01
8 −20.52 421.07
9 1.67 2.78

10 19.32 373.26
11 −7.72 59.59
12 −13.9 193.21

2410.98

Since the error is cyclic, a curve error = a + b sin (2π(t − 1))/4 may help reduce
the error.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 56 — #12

56 Production Planning and Industrial Scheduling

Static forecasting with trend

−20

−10

0

10

20

30
(a)

(b)

(c)

(d)

1 3 5 7 9 11 13

Period + 1

E
rr

or Series 1

Static forecasting with trend and
seasonal factors

−20

−10

0

10

20

1 3 5 7 9 11

Period

E
rr

or

Adaptive forecasting with trend and
seasonal corrections

−40

−20

0

20

40

1 2 3 4 5 6 7 8 9 10 11 12

Adaptive forecasting with trend
modification

−40
−20

0
20
40

Period

Period

E
rr

or
E

rr
or

1 3 5 7 9 11

Series 1

Series 1

Series 1

FIGURE 3.2 Error plot for various forecasting methods.

An equation through the 12 period errors leads to the following equation.

y = −1.213 + 17.00 sin(2π(t − 1))/4

Giving error correction for each period as

Period Error Correction

1 −1.21
2 15.78
3 −1.21
4 −18.21

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 57 — #13

Forecasting and Aggregate Planning 57

−10

−5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 3.3

Therefore, the corrected forecasts and associated errors are

Period
Forecasted
Demand Correction

New
Forecast

Actual
Demand

New
Error

Sum of
Square

1 37.32 −1.21 36.11 30 6.11 37.33
2 43.01 15.78 58.79 50 8.79 77.26
3 50.57 −1.21 49.36 60 −10.64 113.20
4 49.9 −18.21 31.69 32 −0.31 0.09
5 52.98 −1.21 51.77 50 1.77 3.13
6 60.46 15.78 76.24 70 6.24 38.93
7 60.52 −1.21 59.36 45 14.36 206.20
8 58.33 −18.21 40.12 40 0.12 0.01
9 60.68 −1.21 59.47 60 −0.53 0.28

10 67.72 15.78 83.5 80 3.5 12.25
11 68.9 −1.21 67.69 60 7.69 59.13
12 68.01 −18.21 49.8 55 −5.2 27.04

574.85

The new errors are smaller in magnitude than the original values. Sum reducing
error sum of square from 241.9 (Table 3.4) to 574.85. The plot of new error also
shows more random pattern (Figure 3.3).

3.2 AGGREGATE PLANNING

Once the demands for different periods are forecasted, it is time for aggregate plan-
ning. Although the exact demands are not yet known, because such planning is
performed 3–18 months in advance, we must decide how to meet forecasted oblig-
ations, present planning is mainly in broad terms of product families rather than an
individual product. For example, we shall plan, for each period, on how to meet
the total television sales need and not how many televisions of each width to pro-
duce. We have some basic goals in aggregate planning; we should minimize the

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 58 — #14

58 Production Planning and Industrial Scheduling

total cost of operation and yet meet the expected customer demand. Such plans, even
though rough, give a good idea to the management in overall planning and in collect-
ing necessary resources. Planning information may include deciding what and how
many of each type of resources to maintain, what the process capacity should be,
when to subcontract, when to stock out, when to carry inventory, items, and quantity
to be outsourced, what the overtime predictions for labor are, and how many workers
are to be hired and/or fired for each period in future.

3.2.1 STRATEGIES

There are three basic strategies in aggregate planning. They are based on trade-offs
between three costs: costs of production capacity; inventory; and back log. Costs
of inventory and back log can be reduced if we have large production capacity, or
alternatively, with minimum capacity, we might be able to meet the expected demand
by producing and storing when we can and subcontracting when we cannot. These
strategies are called: chase strategy, level strategy, and a combination of two, flexible
strategy.

Chase strategy: In this strategy, useful production capacity is used as a driver. We
have a large production capacity that can meet any forcible demand. The production
capacity for each period and production rate are balanced with varying numbers of
workers, and by hiring and firing the workers as needed. The result of this strategy
is to maintain very low inventory, but it results in a high level of changes in capacity
use and workforce. This strategy can be utilized when the cost of holding inventory is
high, compared to the costs of facility and hiring/firing cost of the workers. Grocery
stores, fast food facilities, and electric utility companies commonly use this strategy.
In the fast food industry, for example, the production capacity of the facility is changed
by hiring numbers of workers, and the number based on the expected demand in that
hour. In a grocery store, the production cost is the acquisition cost, which hardly
changes on daily basis and workers are required for placing units on the selves and to
work as cashiers. Inventory cost is the cost of money tied down in inventory, which is
proportional to the amount of grocery and time it remains on the shelf. With a number
of different products stocked in a grocery store, this cost can be high when a large
volume is placed on the shelves for long time. Chase strategy of storing what we can
immediately (or in short time) sale, thus reducing inventory, has an advantage.

Level strategy: In this strategy, we have a limited capacity and a fixed workforce
size. The production remains at a constant level, and inventory is used as the lever.
When demand is lower than production, the inventory is built up, and when the
situation is reversed, inventory and/or back order is used to supplement production.
Thus, in this strategy, as the demand changes, inventory and stock outs will vary. The
strategy is used when inventory carrying and back order costs are low. It is also used
when at times capacities are hard to change. For example, in a continuous production
environment, such as a chemical plant or glass and steel production, it is difficult
if not impossible to change production levels in a short time. In airlines and hotel
businesses, capacities are constant, and incentives such as reduced rate on weekends
are used to change or level the demand pattern.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 59 — #15

Forecasting and Aggregate Planning 59

Flexible strategy: If there is enough production capacity, then utilization of the
facility is used as the driver unlike chase strategy, the workforce size, that is, the
number of workers, is also kept constant. However, the number of working hours
each person works is changed according to demand. This results in low inventory
cost since very small, if any, inventory is maintained. When both inventory carrying
cost and capacity cost are relatively small, this strategy is used.

In addition, there are two options to balance the resources — internally,
by changing parameters that affect capacity, and externally, by following
policies that may change the demand pattern.

Internal Factors

The operational parameters that can be controlled internally are

1. Fixed or changing production rates: Adjusting machine capacities such
that it may produce a fixed or variable number of the units in a
period.

2. Workforce: the number of workers employed in a period.
3. Overtime/slack times: the number of extra hours/vexing permitted.
4. Hire and fire: Workers hired and fired as required in a planning period.
5. Machine capacity level: the number of units of machine capacity used in

production.
6. Subcontracting: the amount of capacity or product contacted to subcon-

tractors.
7. Backlog: the part of the demand that is not satisfied in the intended

period and is carried forward to the next periods as a promised delivery
date.

8. Inventory on hand: inventory that is carried over to next time periods.
9. Lost sales: by not meeting some or all of the demand.

External Factors

Outside plant factors that may influence demand are

1. Pricing: Changing the product price. Giving discounts in off seasons.
Example, sale on air conditioners in winter months.

2. Promotions: giving incentives. Example, giving free air conditioning to a
new car to a new car buyer.

3. Package deals: Two or more products rapped together for an attract-
ive price. Example, vacation package that includes airfare and hotel
accommodation.

4. Advertising: To increase brand or product awareness. Example: advertise-
ment for department stores in news papers.

5. Specify appointment times: Doctors’ offices use this strategy to level off
demands.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 60 — #16

60 Production Planning and Industrial Scheduling

The chase strategy generally influences internal factors, while the level strategy, which
requires steady demand, uses external factors to maintain a constant demand rate. The
following chart summarizes three strategies.

Chase strategy • Uses production capacity as a driver
• Workers are hired and fired according to need,

resulting in low morale
• Implemented when inventory and stock out costs are

higher than hiring and firing costs

Level strategy • Fixed workforce size
• Stable working conditions, resulting in high morale
• Implemented when it is difficult to change capacity

and the availability of skillful workforce is limited

Flexible strategy • Uses both production capacity and workforce as
drivers

• Working hours are varied according to demand
• Implemented when inventory cost is relatively high

and production capacity is relatively inexpensive

Linear programming is a popular tool in developing optimum aggregate plan. We
shall illustrate this approach by means of an example.

3.2.2 PROBLEM DESCRIPTION

Consider a manufacturing company with two product lines A and B (note that it
would be mathematically more convenient if we describe products as 1 and 2, but for
clarity we are noting them as products A and B). The forecasted demands for these
products for next 6 months are as shown in Table 3.6. The firm has a starting inventory
of 1500 for product A and 50 units for product B. The workforce at the beginning
of the month is 15 full-time workers. The plant has a total of 20 working days per
month, and the employees earn $16/hr on the regular time and one and half times or
$24/hr on overtime. The employee cannot work for more than 30% of regular time on
overtime in any month. The plant starts with an initial inventory of 50 units for each
product and wishes to keep 50 units of inventories for each product at the end of the
planning period. No initial back orders are present, and no back orders are permitted
at the end of the planning period. Other information on operation of the plant is given
in Tables 3.6 and 3.7. We wish to develop an optimum planning strategy that will
minimize the total cost over the planning period of 6 months.

Production rate per month for product A

= (60 min/hr × 8 hr/day × 20 days/month) = 480 units/month

Similarly, production rate for B = 320 units/month

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 61 — #17

Forecasting and Aggregate Planning 61

TABLE 3.6
Expected Product Demands

Forecasted Demand for Product

Month A B

1 1300 1000
2 1500 3000
3 2000 4000
4 1400 2000
5 2000 2000
6 1800 2200

TABLE 3.7
Associated Data for Products A and B

Cost Source Cost for Product A in $ Cost for Product B in $

Hiring and training a new worker 200 200
Lay off of a worker 300 300
Carrying cost for an item from one

month to next
2 3

Subcontracting cost per unit 35 50
Back order or stock out cost per unit 6 8
Material and production costs 10 15

Other information
Product A Product B

Time required to produce one unit 0.33 hr 0.5 hr

Decision variables

We must first identify the decision variables, the values of which we can decide
to achieve our objective. For t = 1, 2, 3 . . . 6, the variables are

DAt : Demand for product A in period t
DBt : Demand for product B in period t
Wt : Total number of workers working in month t
WAt : Number of workers working on product A in month t
WBt : Number of workers working on product B in month t
Ht : Number of workers hired at the beginning of the month t
Lt : Number of employees laid off at the beginning of the month t
PAt : Number of units of A produced at the end of the month t
PBt : Number of units of B produced at the end of the month t
IAt : Inventory of product A at the end of the month t

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 62 — #18

62 Production Planning and Industrial Scheduling

IBt : Inventory of product B at the end of the month t
SAt : Number of units of product A stocked out/backlogged at the end of the

month t
SBt : Number of units of product B stocked out/backlogged at the end of the

month t
CAt : Number of units of product A subcontracting for month t
CBt : Number of units of product B sub contracting for month t
Ot : Number of overtime hours worked in month t
OAt : Number of overtime hours worked on product A in month t
OBt : Number of overtime hours worked on product B in month t

Analysis

Objective function is to minimize cost. The components of the objective
functions are

1. Full-time workers cost per month =
 (20 days/month×8 hr/day×$16/hr)
×Wt =
2560 Wt

2. Overtime cost per month—
 24 Ot

3. Cost of hiring and layoff—
 200 Ht +
 300 Lt

4. Cost of the inventory and stocking out
Product A:
 2 IAt +
 6 SAt

Product B:
 3 IBt +
 8 SBt

5. Cost of materials and subcontracting
Product A:
 10 PAt +
 35 CAt

Product B:
 15 PBt +
 50 CBt

With these cost data, the objective function is

Min
 2560 Wt +
 24 Ot +
 200 Ht +
 300 Lt +
 2 IAt +
 6 SAt

+
 3 IBt +
 8 SBt +
 3 IBt +
 8 SBt +
 10 PAt +
 35 CAt

+
 15 PBt +
 50 CBt

Constraints

1. Workforce, hiring and layoff constraints: Workers available in period t
equal to workers available in period t − 1 plus new hires in period t minus
layoffs in period t. Again, the linear programming will prevent both hiring
and layoffs in the same period, simultaneously as they both incur costs.

Wt = Wt−1 + Ht − Lt

and
Wt = WAt + WBt

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 63 — #19

Forecasting and Aggregate Planning 63

2. Capacity constraints: Total production capacity of each product is what
regular workers can produce in a month plus what they produce in overtime
hours during the month. Thus,

PAt <= 480 WAt + OAt

0.33

PBt <= 320 WBt + OBt

0.50

3. Overtime constraint: Overtime cannot exceed 30% of regular time.

OAt <= 0.3(8 × 20 × WAt) = 48 WAt

and

OBt <= 0.3(8 × 20 × WBt) = 48 WBt .

Therefore

Ot = OAt + OBt

4. Inventory balance: This equation balances what is or can be available with
what is required or can be carried forward for the next period.

Net available is inventory from the previous month plus what is
produced this month plus what is subcontracted for this month. Net require-
ment is demand for this month plus back order from previous month that
is due this month plus remaining inventory for this month minus any back
orders to be fullfilled next month. Note, as before in optimization, if we
have an inventory in this period then we will not have back order in this
period, and vice versa.

IAt−1 + PAt + CAt = DAt + SAt−1 + IAt − SAt

IBt−1 + PBt + CBt = DBt + SBt−1 + IBt − SBt

5. Initial conditions

IA0 = 50, DA1 = 1300, DA2 = 1500, DA3 = 2000, DA4 = 1400,

DA5 = 2000, DA6 = 1800, IB0 = 50, DB1 = 1000, DB2 = 3000,

DB3 = 4000, DB4 = 2000, DB5 = 2000, DB6 = 2200

W0 = 15, SA0 = 0, SB0 = 0

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 64 — #20

64 Production Planning and Industrial Scheduling

TABLE 3.8
Linear Programming Solution

Month 1 2 3 4 5 6

Number of workers, Wt 5.54 12.5 16.66 9.79 9.79 7.13
Overtime hours, Ot

New hire, Ht 6.95 4.16
Workers laid off, Lt 9.45 6.87 2.65
Inventory of product A, IAt 300 50
Inventory of product B, IBt 50
Production of A, PAt 1250 1500 2000 1700 1700 1850
Production of B, PBt 940 3000 4000 2000 2000 1050
Workers on product A, WAt 2.60 3.12 4.16 3.54 3.54 3.85
Workers on product B, WBt 2.93 9.37 12.50 6.25 6.25 3.28
Overtime for product A, OAt

Overtime for product B, OBt

6. Final requirements

IA6 = 50, IB6 = 50, SA6 = 0, SB6 = 0

The results of linear programming solution, solved by software LINDO, is given
in Table 3.8. It is assumed in all solutions displayed that internal workers can be
switched between products A and B as needed.

The minimum cost solution follows a flexible strategy. It has all options available
and selects the alternatives that results in a minimum cost of $460,875. As seen in
Table 3.8, it has fraction workers working during various months. This is possible
only if workers, can be vexed as needed.

Linear Programming Results
Minimum cost $460,875.00

If workers cannot be vexed, then the number of full-time workers, new hires,
and the workers laid off must have integer values. Placing those conditions in our
formulation leads to the results in Table 3.9. Now, the cost has increased, but it still
follows a flexible strategy. It allows for hiring, firing, build up of inventory and stock
outs as needed, and the solution does take advantage of the available options.

Integer solution $462,127.30

Next, we examine level and chase strategies. In level strategy, the number of
workers are kept constant, W = 15, in our case, for all time periods. No layoffs or

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 65 — #21

Forecasting and Aggregate Planning 65

TABLE 3.9
Integer Solution

Month 1 2 3 4 5 6

Number of workers, Wt 6 12 16 10 10 7
Overtime hours, Ot 7 62
New hire, Ht 6 4
Workers laid off, Lt 9 6 3
Inventory of product A, IAt 50
Inventory of product B, IBt 146.6 0.66 174.66 43.33 50
Production of A, PAt 1250 1500 2000 1400 2000 1850
Production of B, PBt 1086.6 2854 3910.66 2265.30 1866.66 1006.66
Workers on product A, WAt 2.60 3.08 3.78 2.92 4.16 3.85
Workers on product B, WBt 3.39 8.91 12.22 7.08 5.83 3.14
Overtime for product A, OAt 7 62
Stock out of product B, SBt 88.66

TABLE 3.10
Level Workforce Strategy

Month 1 2 3 4 5 6

Number of workers, Wt 15 15 15 15 15 15
Overtime hours, Ot

New hire, Ht

Workers laid off, Lt

Inventory of product A, IAt 800 50
Inventory of product B, IBt 50
Production of A, PAt 1250 2300 1200 1400 2000 1850
Production of B, PBt 940 3000 4000 2000 2000 1050
Workers on product A, WAt 2.60 5.63 2.5 8.75 8.75 11.72
Workers on product B, WBt 12.39 9.37 12.50 6.25 6.25 3.28
Overtime for product A, OAt

Overtime for product B, OBt

new hires are permitted by making Ht and Lt equal to zero for all time periods. The
cost of solution has now gone up to $527,100 (Table 3.10).

In chase strategy, no inventories or stock outs are allowed for any period. The
resulting integer solution is $464,314, a little more than flexible strategy (Table 3.11).

Chase strategy: No inventory or stock out
Minimum cost $464,314

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 66 — #22

66 Production Planning and Industrial Scheduling

TABLE 3.11
Chase Strategy Results

Month 1 2 3 4 5 6

Number of workers, Wt 6 12 16 9 10 7
Overtime hours, Ot 80 107 27 92 5
New hire, Ht 6 4 1
Workers laid off, Lt 9 7 3
Inventory of product A, IAt 50
Inventory of product B, IBt 50
Production of A, PAt 1250 1500 2000 1400 2000 1800
Production of B, PBt 940 3000 4000 2000 2050 1050
Workers on product A, WAt 2.60 3.12 3.50 2.92 4.16 3.75
Workers on product B, WBt 3.39 8.87 12.50 6.08 5.83 3.25
Overtime for product A, OAt 107
Overtime for product B, OBt 80 27 92 5

3.2.3 OTHER FACTORS

3.2.3.1 Human Factors

Flexible strategy with its ability to choose from all possible alternatives normally
does provide optimum aggregate planning; however, it does have some drawbacks.
Layoffs are never easy and does incur human cost, even on the people who are not laid
off. Seeing co-workers, relatives, and friends getting fired creates a feeling of fear
and guilt. Loyalty to the company can hardly be demanded in these circumstances.
A worker will try to find alternate employment as soon as the opportunity arises.
Labor laws and contracts may also restrict the firing of workers. Hiring also presents
a problem. New workers need to be trained, and it takes to bring them to the speed.
These people also affect the performance of the present workers. Use of temporary
workers is an acceptable alternative that some companies follow.

Large storages space is necessary if unlimited storage is allowed. Also, building of
a large inventory has problems associated with pilferage, breakage, and risk of sudden
change in customer preference. Back orders are not always accepted by customers,
and they eventually may look for an alternate supplier who is more reliable and
consistent.

3.2.3.2 Changing Demand

Aggregate planning can avoid the costly alternatives of hiring/firing, storage, and
back orders by adjusting the forecasted demands. The demands could suit the avail-
able capacities and known operating policies. But external factors used to influence
demands that are mentioned earlier also have some limitations. The customer, for
example, may get used to, and indeed expect, discounts and promotions as a normal
way of doing business. Labor contracts, government regulations, and competition
from other suppliers may also limit the flexibility in applying promotional policies.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 67 — #23

Forecasting and Aggregate Planning 67

3.2.3.3 Spreadsheet Approach

To develop an aggregate plan, we have used linear programming in this chapter. This
approach allows selection of alternatives from among the largest possible options. It
is also possible to develop the aggregate plan using the spreadsheet approach. But
it requires some pre-analysis. Let us illustrate this approach as applied to the level
strategy.

In our example, recall that it requires 0.33 hr for productAand 0.5 hr for product B.
Each worker, therefore, can produce 480 units of product A or 320 units of product
B. The worker is paid $16/hr on regular time and $24/hr on overtime. No more than
30% of overtime is allowed. Carrying cost for A is $2/month and for B is $3/month.
Material cost for A is $10 and for B is $15. Based on these data, we can draw some
conclusions.

1. Total cost of production forAis 16×0.33+10 = $15.28 in regular time and
24×0.33+10 = $17.92 in overtime. However, in level production strategy,
a worker will not be fired and, therefore, is available all the time. Hence,
labor cost is constant and does not change with the production quantity;
therefore, only the material and production costs can be considered as
the price of products. Thus, price for A and B are only $10 and $15,
respectively. With subcontract cost of $35 for A, we can add as much as
35 − 10 = $25, in inventory carrying or back order cost. This allows
for as much as 25/2 = 12.5 months of carrying a unit in inventory or
25/6 = 4.16 months of back order. Similar analysis for product B reveals
11.66 months of carrying and 4.37 months of back orders. In other words,
over the planning period of 6 months, it is always profitable to produce A
and/or B for future use whenever there are idle workers available than to
give a subcontract to an outside company.

2. To compare carrying and back order for product A with a carrying cost of
$2/month and back order cost of $6.00, it is cheaper to carry inventory for
as much as 6/2 = 3 months before back ordering. In other words, if there is
not sufficient workforce to build product A to meet a demand for a period,
go back as many as 3 months to see if the inventory can be built before
back ordering. Similarly, for product B, the period is 8/3 = 2.33 months.

3. It is cheaper to carry product A in the inventory than product B.

To proceed with the analysis, let us fist determine net requirement for each product.
An initial inventory of 50 units for each product and final (period 6) requirements of
50 units for each product lead to the net monthly requirement as displayed. Dividing
each requirement by the production rate of each worker gives monthly manpower
requirement for products A and B. Adding the requirements for each product gives the
total manpower requirement. With a level workforce of 15 workers, we can meet the
manpower requirements of all periods except for period 3. We need to transfer 16.33−
15 = 1.33 units manpower capacity in previous months, if possible. In month 2, the
requirement is 12.49, giving an idle capacity of 15 − 12.49 = 2.51 units. We can,
therefore, turn out a product in month 2. Now the question is, which product to

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 68 — #24

68 Production Planning and Industrial Scheduling

TABLE 3.12
Spread Sheet Approach

Month 1 2 3 4 5 6

Demand for product A 1300 1500 2000 1400 2000 1800
Demand for product B 1000 3000 4000 2000 2000 2200
Net requirement for A 1250 1500 2000 1400 2000 1850
Net requirement for B 950 3000 4000 2000 2000 2250
Workers needed, product A 2.60 3.12 4.16 2.91 4.16 3.84
Workers needed, product B 2.9 9.37 12.50 6.25 6.25 7.03
Total 5.5 12.49 16.66 9.16 10.41 10.83
Shift worker, product A 1.66 −1.66
Product B
New assignments 5.5 14.15 15 9.16 10.41 10.83
Workers available 15 15 15 15 15 15
Inventory for A 796

produce. Since product A has lower carrying cost than product B, we will produce all
of B in period 3 and 1.33 man months of product A in period 2. That gives inventory
of 1.33 × 480 = 796 units for A in period 2 (Table 3.12).

The approach is logical and simple once some basic rules are established.

3.3 SUMMARY

The chapter presents two important concepts. How to determine the expected demand
for the future and how to plan for it. Commonly used methods and models are
presented and are illustrated with examples.

3.4 EXERCISE

3.4.1 DISCUSSION AND REVIEW QUESTIONS

1. What advantages and disadvantages does the quantitative forecasting have
over qualitative forecasting as a forecasting tool?

2. Compare and contrast the use of exponential smoothing and moving
averages in evaluating forecasts.

3. Discuss how the flexibility in production systems relates to the forecast
horizon and forecast accuracy.

4. What are the main advantages and limitations of exponential smoothing
over moving averages?

5. Discuss how the number of periods in a moving average affects the
responsiveness of the forecast?

3.1 Two different techniques (F1 and F2) were used to forecast the demand
of hamburgers in a university cafeteria. The actual demand and the two

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 69 — #25

Forecasting and Aggregate Planning 69

sets of forecasts are as follows:

Forecast

Period Demand F1 F2

1 108 106 106
2 115 108 108
3 110 112 110
4 114 111 112
5 109 112 114
6 112 110 116
7 120 111 118
8 118 114 120

a. Compute MAD and MSE for each forecast. Justify which
forecasting appears to be more accurate.

b. Compute the tracking signal for the eighth period of each forecast.
What does it show?

3.2 Weekly sales of a vehicle for a dealer for the past 12 weeks are

Week Sales

1 20
2 24
3 18
4 14
5 25
6 20
7 18
8 21
9 24

10 22
11 28
12 32

a. The manager would like to predict the sales for the coming week.
Use a 3-week moving average.

b. Also, find out whether or not a 2-week moving average is bet-
ter than a 3-week moving average or moving average of longer
periods. (Hint: Use mean absolute deviation.)

c. Compare the graph (week versus sales) for actual data, 2-week
moving average, and 3-week moving average.

3.3 For the data in Problem 3.1, compute the forecast for the next week
using the 3-week weighted average with weights 0.5, 0.3, and 0.2.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 70 — #26

70 Production Planning and Industrial Scheduling

3.4 The monthly accidents in a certain county is given as

Month Number of Accidents

July 22
August 15
September 20
October 18
November 23
December 20
January 25

a. Compute the forecast for the month of February using exponential
smoothing with F1 = 22 and α = 0.5.

b. Using linear regression, forecast for the next month.
3.5 The demand and forecast of an item are given for the respective years.

Find the missing demand.

Year Demand Forecast

1982 620 —
1983 520 —
1984 360 —
1985 730 500
1986 ??? 537
1987 460 580
1988 530 613
1989 570 547
1990 680 520

3.6 Determine the forecast demand for the next four periods, using linear
regression. Also determine if the error is random; or additional nonlinear
term is needed in the regression equation.

Time Period Demand

1 1600
2 2100
3 2500
4 3100
5 2050
6 2800
7 3300
8 3600
9 2200

10 2600
11 2900
12 3400

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 71 — #27

Forecasting and Aggregate Planning 71

Continued

Time Period Demand

13 3200
14 3600
15 4250
16 4500

3.7 Jane Martin is a senior staff in the purchasing and marketing department
at Whipple Electronics Products. She has been working to develop a
forecasting system for the monthly price of a particular type of insulated
wire. She has accumulated the historical data for the past 12 months.

Month Price/feet ($) Month Price/feet ($)

1 1.15 7 1.20
2 0.98 8 0.96
3 1.25 9 1.40
4 0.87 10 1.25
5 1.03 11 1.25
6 1.15 12 1.15

a. Forecast for all the months with α = 0.1, α = 0.3, α = 0.5. Use
exponential smoothing for the forecast.

b. Calculate the least mean absolute deviation for all the above three
values of α over the 12-month period.

c. Using the best value of α from above, calculate the forecast for
the next period (i.e., month 13).

d. Compare the above forecast with the three-point moving average
method.

3.8 You have been hired as an industrial engineer in the purchase and sales
department of an electronics product company. The planning director
aims to forecast for the next 12 months from the following historical data:

Month 2004 2005 2006

January 575 578 608
February 527 507 597
March 540 562 612
April 502 533 603
May 508 516 658
June 573 580 605
July 508 537 627
August 498 440 578
September 485 511 585
October 526 480 581
November 552 499 632
December 587 542 656

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 72 — #28

72 Production Planning and Industrial Scheduling

a. Forecast the monthly demand for the year 2007 using mov-
ing average, simple exponential smoothing, Holt’s model, and
Winter’s model methods.

b. Make an analysis for the above part, and suggest the best method
to the planning director. (Include bias, tracking signal, MAPE,
MSE, and MAD in your analysis.)

3.9 ABC Instruments manufactures various electronic equipments for stu-
dents. Of these, it sells calculators to K&P Supplies, with orders to
deliver 650 for winter quarter (starting January 1), 720 for spring quarter
(starting April 1), 400 copies for summer quarter (starting July 1), and
900 copies for fall quarter (starting October 1). The production cost
(material + labor) is $18 per piece but, starting summer quarter, the
material and labor cost is going to increase by 10%. Also, any order
below 700 costs $1.2 per piece for shipping and handling; otherwise, it
costs $0.9 per piece.

Because of the cost factor, the management wants to keep the pro-
duction steady to avoid overtime and layoff. It has been decided that
production in any quarter cannot vary by more than 25% of the previous
quarter. The previous year fall quarter production was 600. It costs $1.0
per piece per quarter for the inventory.

The following table shows the production and delivery for each
quarter and the variables.

Production (in) Delivery (in) Variable

Winter Winter P11
Winter Spring P12
Winter Summer P13
Winter Fall P14
Spring Spring P22
Spring Summer P23
Spring Fall P24
Summer Summer P33
Summer Fall P34
Fall Fall P44

where, Pij denotes the production in quarter i and delivery in quarter j.
Assuming no starting inventory, develop a production schedule for

ABC Instruments in each of the three quarters for the coming year, in
order to minimize the total cost.

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 73 — #29

Forecasting and Aggregate Planning 73

3.10 The following table shows the production and demand of a table
manufacturer for a local company.

Month Demand

May 200
June 500
July 300
August 550
September 600
October 700

The company has gathered the following data.

Costs

Holding cost $8/table/month
Subcontracting $20/table
Regular labor $10/hr
Overtime labor $16/hr above 8 hr/worker/day
Hiring cost $40/worker
Layoff cost $80/worker

Other data

Current workforce 12
Labor hr/table 5
Work days/month 20
Beginning inventory 120

What will be the cost of the two following strategies?
a. Vary the workforce to have exact production to meet the forecast

demand.
b. Vary overtime, and use the constant (given) workforce.

3.11 Plan production for a 4-month period: February through May. For
February and March, you should produce to exact demand forecast.
For April and May, you should use overtime and inventory with a stable
workforce; stable means the number of workers needed for March will
be held constant through May. However, government constraints have
put a maximum of 5000 hr of overtime labor per month in April and
May (zero overtime in February and March). If demand exceeds supply,

Dileep: “44206_c003” — 2007/9/20 — 14:44 — page 74 — #30

74 Production Planning and Industrial Scheduling

then back orders will occur. There are 100 workers on January 1. You
are given the following demand forecast:

February 80,000
March 64,000
April 100,000
May 40,000

Productivity is four units per worker hr/8 hr per day/20 days per
month.

Assume zero inventory on February 1. Costs are

Hiring = $50 per new worker
Layoff = $70 per worker laid off
Inventory holding = $10 per unit month
Straight time labor = $10 per hr
Overtime labor = $15 per hr
Back order = $20 per unit.

Find the total cost of this plan.

REFERENCES AND SUGGESTED READINGS

Armstrong, J.S. 1986. “The Ombudsman: Research on Forecasting: AQuarter Century Review,
1960–1984” Interfaces, January–February.

Box, G.E.P. and G.M. Jenkins. 1970. Time Series Analysis: Forecasting and Control, New-York:
Holden-Day.

Chambers, J.C., S.K. Mullick, and D.D. Smith. 1971. “How to Choose the Right Forecasting
Technique” Harvard Business School, July–August: 45–74.

Dougherty, John R. “Getting Started with Production Planning” Readings in Production and
Inventory Control and Planning, APICS 27th Annual Conference, 1984, pp. 176–79.

Gupta, S. and P.C. Wilton. March 1987. “Combinations of Forecasts: An Extension”
Management Science, 33(3).

Hodgeson, T.J., R.E. King, and C.U. King. 1990. “Development of Production Planning
System: A Case History” Production and Inventory Management 31(4): 18–24.

Holt, C.C., F. Modigliani, J.F. Muth, and H.A. Simon. 1960. Planning Production, Inventories
and Workforce, New York: Prentice Hall.

Konijnendijk, P.A. 1982. Coordination of Production and Sales, Eindhoven, the Netherlands:
Technical Eindhoven University.

Lawrence, M.J., R.H. Edmundson, and M.J. O’Connor. December 1986. “Accuracy of
Combining Judgmental and Statistical Forecasts” Management Science, 32(12).

Ling, R.C. and W.E. Goddard. 1995. Orchestrating Success: Improved Control of Business
with Sales and Operations Planning, New York: John Wiley & Sons.

Winters, P.R. April 1960. “Forecasting Sales by Exponentially Weighted Moving Averages”
Management Science, 6: 324–342.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 75 — #1

4 Master Production
Scheduling and Material
Requirement Planning

As the title suggests, this chapter presents two topics in planning. Both use
a spreadsheet approach and use similar logic in planning and are therefore grouped
together in one chapter.

4.1 MASTER PRODUCTION SCHEDULE

In aggregate planning, we had established overall policies, determined the resources
needed, and made other necessary plans to meet the forecasted demands for different
product families. The time frame was fairly long, in terms of months, if not years.
The next step is to develop a detailed planning for individual products. The short
planning horizon is in terms of weeks rather than months. The purpose of these plans
is to transfer each product requirement into time-phased production and purchasing
plans. They also serve to develop capacity and resource requirement in production
and distribution. In some cases, planning information is directly based on actual
customer orders for immediate future and not based on forecasted values, displaying
real-time resource needs. Most of these plans use simple spreadsheets approach to
present information. We shall demonstrate some commonly used planning tools in
this chapter.

Master production schedule (MPS) determines how many units are to be produced
in a specific period. Generally, the period is small, such as a week. Two major factors
are considered: first, for which products we should develop the MPS, and second,
what information we should take into account. This information may include factors
such as customer order or replenishment needs.

Ideally, we like to develop detailed plans for each independent product. However,
the number of products can soon become unmanageable. For example, should we
consider automobile with different colors or different options such as radios and air
conditioners as different product lines? If we do, then the combinations and therefore
the number of products could be very large indeed. A simple solution is to consider
a basic product as an independent product and additional options as add-ons.

Production environment may also influence what should be considered as a
“product” in MPS. Indeed, the production environment may even influence the earlier
stage of aggregate planning in deciding what the parent product is.

Products are made in three ways. In the make-to-stock (MTS) environment, sup-
pliers produce products to their specifications and customers have the option to
either purchase it or not. Here, the customers have no influence on the design of

75

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 76 — #2

76 Production Planning and Industrial Scheduling

the product or any other details. Products in a department store, such as toasters,
hot pots, and coffee makers, follow this mode. We either purchase the product as
displayed or look for another alternative. Typically, in MTS, the numbers of different
items produced by a company are limited and are produced in an assembly line envir-
onment. The final products are stored, and customers are supplied from an inventory.
MPS is used to determine when to build the stock level or inventory for each product.
They are not used to satisfy individual orders, as these orders are filled from the
built-up inventory.

In the assemble-to-order (ATO) environment, different options may be used to
assemble a product that a customer wants, for example, building a computer system
on customer specifications, or adding options to a basic product based on customer
preference, such as in an automobile. Here, although the number of basic products
is limited, the number of final items can be large. MPS is developed for each basic
product.

In the make-to-order (MTO) environment, a product is made to customer spe-
cification. Here, a large number of final products can be made using the basic skills
and expertise of the company. The MPS is made for raw material or basic resources
that are used to develop the final products.

Production Environment Master Production Schedule (MPS)

Make to stock (MTS) Final product
Assemble to order (ATO) Basic components
Make to order (MTO) Raw material and basic resources

The development of MPS is a simple procedure and requires sequential evalu-
ations. However, some basic principles must be followed. The sum of individual
product quantities in MPS must add to those with the production requirements for the
parent product of this family in aggregate planning. Each individual product must be
given appropriate resources such as storage space, labor, raw materials, and machin-
ing capacities in each period to satisfy the production needs. The production lot size
should be determined by using appropriate inventory models, which are discussed in
the next chapter, which includes detailed cost analysis.

In aggregate, imagine we had two parent products, A and B. Suppose product A
has three subproducts. For example, product A is table and subproducts A1 is a table
with side supports, A2 is a table with central support, andA3 is a large table. In another
situation, where the parent product A is wooden chair and A1 is a high-back chair,
A2 is an armchair, and A3 is a cushioned chair. Assume, in our example, that the
rough distribution for product A is as given in Table 4.1.

Roughly, 30% of A is A1, 40% is A2, and 30% is A3. Then, the monthly require-
ments of products A1, A2, and A3 when distributed on weekly requirements may be
as follows.

By the way, the time per unit, used in aggregate planning for the parent product A,
is the weighted average of production times for the family, namely 0.3 × 30 + 0.4 ×
20 + 0.3 × 10 = 20 min or 0.33 h.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 77 — #3

MPS and MRP 77

TABLE 4.1
Data on Product A Distribution

Parent Product A

Subproducts A1 A2 A3
Distribution % 30 40 30
Production time/unit in min 30 20 10

TABLE 4.2
Percent Distribution of Main Product A into
Subproducts

Month Week A1 A2 A3
Product A Requirements

in Aggregate Plan

1 1 200 100 50 1085
2 300 100
3 125 50
4 35 125

2 1 200 50 750
2 25 100
3 100 100
4 100 75

Continuing with A1 for illustration, weekly gross requirements are listed in
Table 4.2. Initially, we have 50 units available and it takes 1 week between the
time an order is placed (released) and the time it is received, that is, a lead time is
1 week. We have one order of 120 units, scheduled to be received in week 1 from
previous planning. Incidentally, we will use the same information for all MPS plans
illustrated in this chapter.

The basic principle used in MPS development is that in any given week, we
should have sufficient, but not excessive, inventory on hand to satisfy the demand
for that week. This is achieved by planning receipts, and therefore order releases, in
an optimum manner. We can determine inventory on hand by applying the following
equation:

Inventory on
hand at the
end of period t

 =

Inventory on
hand at the
end of period t − 1

 +

Planned
Receipts
in period t

 −

Gross
requirements
in period t

4.1.1 FIXED ORDER QUANTITY (FOQ)

Suppose the optimum production quantity for A1 is 120 (Table 4.3) and is fixed at
that level.

In our example, in week 1, we expect to receive 120 units from the previous order
and have 50 units on hand, making total of 170. However, demand is for 200 units and,

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 78 — #4

78 Production Planning and Industrial Scheduling

TABLE 4.3
Replenishment Policy for A1 Using FOQ

Weeks

1 2 3 4 5 6 7 8

Gross requirements or demand 200 125 200 25
Scheduled receipts from earlier orders 120
On-hand inventory 50 −30 90 85 85 5 100 100 100
Planned receipts 120 120 120
Planned order release 120 120 120 120

after satisfying the demand, we will have −30 units of inventory on hand or will have
30 units of back order in period 1. This does not follow the principle that we should
have sufficient inventory on hand to satisfy the demand (no back order as far as
possible), but here we did not have any choice since we had started our planning with
only 50 units on hand, and the maximum quantity we can receive is 120.

To satisfy this back order, which, in reality, is the demand for week 2, we must
have an order arriving in period 2. Since the optimum order quantity is 120 units with
the lead time of 1 week, replenishment order for 120 units must be released in week 1.
In week 2, we receive 120 units. The total demand is 0 + 30 units of back order =30,
giving on hand inventory of 90 units. Looking forward to period 3, we see there is a
demand for 125 units, which will require one order receipt. Therefore, an order for
120 units must be released in period 2. With a total inventory of 90+120 = 210 units,
125 will be used to satisfy the demand in product 3, leaving 85 of on-hand inventory.
There is no demand in period 4; however, 200 units are on demand in period 5, which
means we must receive one order in period 5. In period 5, the remaining on-hand
inventory is 85 + 120 − 200 = 5. To satisfy the demand of 25 units in period 6, we
must receive a new order. Thus, an order is placed in period 5. Net on-hand inventory
in period 6 is 5 + 120 − 25 = 100. Since there are no demands in periods 7 and 8,
this inventory remains in those periods.

The MPS, developed for product A1, was based on ordering and receiving a fixed
quantity of 120 units per order. This policy is called fixed order quantity (FOQ)
rule. This quantity may be decided based on economic analysis called economic
production quantity (explained in Inventory Control Chapter 5) or may be decided
based on some physical constraint, such as the amount that can be accommodated in
a truck or minimum quantity that must be purchased, called FOQ.

However, if the product requirements are not more or less uniform from period to
period, then an FOQ cannot be ordered based on economic order quantity (EOQ) prin-
ciple. Indeed, if the requirement variations are very large from period to period, FOQ
policy may lead to excessive inventory in some periods and excessive backorders or
stock-outs in others. Increase or decrease in FOQ may also lead to corresponding
increases in the costs of shipping and purchase along with inventory and stock-
out costs. There are other alternative order policies that may be appropriate when
requirements are very irregular. They are discussed next.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 79 — #5

MPS and MRP 79

TABLE 4.4
Replenishment Policy Using POQ

Weeks

1 2 3 4 5 6 7 8

Gross requirements or demand 200 125 200 25
Scheduled receipts from earlier orders 120
On-hand inventory 50 −30 125 0 25
Planned receipts 155 225
Planned order release 155 225

4.1.2 PERIODIC ORDER QUANTITY (POQ)

In this policy, the order quantity per order varies and is based on the quantity needed
during a predetermined fixed time periods between orders. In this policy, since periods
when orders are placed are preplanned, the corresponding order processing cost is
expected to decrease.

In our example, suppose we fix time between orders to 3 weeks (Table 4.4).
During the first 3 weeks, the total demand is 200 + 0 + 125 = 325. On-hand

inventory in period 1 consists of initial inventory of 50 units and scheduled receipts
of 120 units. So, we must order 325 − (50 + 120) = 155. Since the lead time is
1 week, orders placed in week 1 will be received in week 2. After satisfying 30 units
of back order from week 1, we have 125 units of on-hand inventory, which takes care
of demand of period 3. The total demand for next 3 weeks, i.e., weeks 4, 5, and 6,
is 0 + 200 + 25 = 225. Since there is no demand in period 4, we should receive
the order in period 5 and therefore place the order in period 4. There is no demand
in periods 7 and 8; hence, no new order is placed. Note, strictly following POQ,
we should have placed order in period 3 to receive it in period 4, but that involves
carrying additional inventory cost for period 4. This could be avoided by obvious
modification to the firm POQ policy. Such corrections are not unusual in POQ.

4.1.3 LOT FOR LOT (L4L)

The policy states to order just enough to meet the immediate requirement. This policy
should result in no inventory in any period.

The application of lot for lot (L4L) policy to our example is shown in Table 4.5
and hardly needs any explanation. There are multiple orders, increasing the total order
cost, but no inventory carrying cost, since there is no inventory in any period.

4.1.4 LEAST TOTAL COST

Here, lot size and order interval are adjusted so that order (or set up) cost per order
and carrying cost per unit of time, generally a week, for order quantity are about the
same. Thus, we have, order cost/order = carrying cost/period × quantity ordered
for the period.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 80 — #6

80 Production Planning and Industrial Scheduling

TABLE 4.5
Replenishment Policy Using L4L

Weeks

1 2 3 4 5 6 7 8

Gross requirements or demand 200 125 200 25
Scheduled receipts from earlier orders 120
On-hand inventory 50 −30
Planned receipts 30 125 200 25
Planned order release 30 125 200 25

Suppose in our example, order cost is $30 per order and carrying cost per week
is $0.15. Then Q for least total cost (LTC) is 30/0.15 = 200. Then, policy calls for
ordering the exact quantity to meet number of periods of demand that is as close to
200 as possible.

In our example, the net requirements are as follows.

Week 1 2 3 4 5 6 7 8
Net requirement 30 125 200 25

Let us determine the first order. Cumulative demands are:

Week 1 2 3 4 5 6 7 8
Cumulative net 30 30 155 155 355 380 380

It is obvious that, in this case, the first order should be for 155 units, the closest
number to 200 units LTC value. It covers periods 1 through 3. The remaining
cumulative net requirements are:

Week 1 2 3 4 5 6 7 8
Cumulative net 200 225 225 225

The second order ideally should be for 200 units, and a third order will have to
be placed just for 25 units of demand in period 6.

The preferred alternative for the last two orders would have been to order 225 units
in the second order and not placing the third order, reducing the order cost while
slightly increasing the carrying cost.

4.1.5 INCREMENTAL COST ANALYSIS (ICA)

A slight variation to LTC procedure is to calculate the incremental carrying cost of
adding a demand week to the previous order. If the incremental cost is greater than

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 81 — #7

MPS and MRP 81

the order cost, we place a new order. If it is less, we include this demand period in
the previous order. The policy provides lower cost than LTC, since it incorporates
multiple periods in carrying cost determination.

Week 1 2 3 4 5 6 7 8
Net requirement 30 125 200 25

An order is necessary to acquire 30 units for week 1. If we include week 2, there
is no additional cost, since there is no requirement for period 2. If we include the next
period, week 3, the additional carrying cost is 125 units received in period 1 to be
used in period 3 or 125 units × 2 periods × $0.15/period = $37.5. Since additional
carrying cost is more than the order cost of $30, restrict the first order to first week’s
demand. The remaining requirements are:

Week 1 2 3 4 5 6 7 8
Net requirement 125 200 25

The second order for 125 units will be placed to receive 125 units in period 3.
Check if addition of demand from month 5 to this order is economical.

Additional carrying cost for period 5 demand when demand is added to period 3
order = 200 × 2 × 0.15 = $60.

Again the carrying cost is greater than order cost, and therefore do not include
month 5 in month 3 order.

The third order is for month 5. To check if month 6 should be included or not,
follow the same procedure.

The additional carrying cost for period 6 when demand is added to period 5
order = 25 × 1 × 0.15 = $3.75. Hence, add requirements for month 6 in order for
period 5. The final assignments, with 1 week of lead time, are listed in Table 4.6.

TABLE 4.6
Replenishment Policy Using ICA

Weeks

1 2 3 4 5 6 7 8

Gross requirements or demand 200 125 200 25
Scheduled receipts from earlier orders 120
On-hand inventory 50 −30
Planned receipts 30 125 200 25
Planned order release 30 125 225 25

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 82 — #8

82 Production Planning and Industrial Scheduling

TABLE 4.7
ATP Calculations

Weeks

1 2 3 4 5 6 7 8

Gross requirements or demand (forecasted) 200 125 200 25
Actual customer orders 100 50 100 60 70 30 5 15
Scheduled receipts from earlier orders 120
Planned receipts 120 120 120
Projected inventory 20 90 110 50 100 70 65 50
Available to promise (ATP) 20 90 50 50 50 50 50 50

4.1.6 AVAILABLE-TO-PROMISE CHART (ATP)

The MPS clearly shows, based on forecasted demands, when orders should be
released, when they are received, and how much inventory on hand we have in each
period. The information on planned receipts can be used further to develop another
chart, called available-to-promise (ATP) chart. This chart indicates how many items
we can promise to a new demand, based on actual customer demands that are on our
books right now, and not on the forecasted values of the demands.

For example, suppose we are following the FOQ policy with Q = 120 and have
actual demands on record for our product A1 during the next 8 weeks of the planning
period as shown in Table 4.7.

The ATP is calculated as the available inventory till next planned receipts after
satisfying customers’ orders for all periods from present till one period before next
planned receipt. For example, in period 1, scheduled receipt from the earlier order is
120, next planned receipt is in period 2, and hence, ATP is 120−100 = 20. Similarly
for period 2, ATP = 120 − 50 = 90. ATP for period 3 is ATP available in inventory
from period 2 + planned receipts − amount promised from now till the next planned
receipts, which is period 5. So, ATP = 90 + 120 − (100 + 60) = 50. In period 4,
projected inventories goes down from 110 in period 3, by actual demand in period 4
to 50, while ATP stays the same as in period 3. ATP for period 5 is available inventory
in period 4 + receipt in period 5 − all actual orders till next planned receipt. In our
case, we have no new planned receipted in the present planning period. Hence, ATP
for period 5 is 50 + 120 − (70 + 30 + 5 + 15) = 50. For the remaining periods,
ATP remains the same, while projected inventory decreases based on actual customer
orders.

4.1.7 CONCLUDING REMARKS ON MPS

Generally, in MPS, receipts are planned so that all the gross requirements are met and
there are no back orders. In our example, in all MPS policies, we observe back order
in period 1. Really, we do not have any control on that since they are the results of
the past decisions.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 83 — #9

MPS and MRP 83

Each policy plans when and by how many units to order. We can evaluate which
policy is better by calculating some indicators and costs such as order cost and
inventory carrying cost, which are discussed in the Chapter 5. However, some general
observations can be made here.

Fixed order quantity policy normally carries high level of inventory, because the
order level generally does not match the weekly requirements and there is some
inventory left over from week to week. Many times, an order may have to be
placed to satisfy a demand even though there is some but not enough inventory
on hand for that period. Periodic order quantity (POQ) reduces average inventory on
hand, as it matches order quantity to the required amount for the period. However,
based on the period initial inventory or number of orders could be large. L4L policy
has no inventory but large number of orders. However, these policies also need to
carry some safety stock to respond to any unpredictability of demands. The incre-
mental cost analysis (ICA) technique requires some calculations, but reduces the total
operating cost.

4.2 MATERIAL REQUIREMENT PLANNING AND
OTHER TECHNIQUES

Material requirement planning (MRP) translates or “explodes” demand requirements
of parent items from MPS to the requirements of all their components. These com-
ponents may include manufactured items, purchased items, subassemblies, and
even the indirect products that are required for assemblies. The purpose is simple.
Determine the exact time and quantity when each item is required so that the invent-
ory within the system is minimized and production and purchases are properly
planned.

To develop MRP, we need some basic information. Some information is inde-
pendent of time, while others are time dependent, based on the time over which MRP
is developed. The information includes:

1. MPS chart(s) for parent item(s). This is a time-dependent chart(s) and, to
develop MRP for a predetermined period, select MPS for product(s) over
the same period.

2. Bill of material (BOM) for a product: BOM is developed in levels. It shows
product structure or relationship between parent product at level zero with
all its components and subassemblies at successive lower levels.

3. Lead times for all products whether purchased, manufactured, or
assembled.

4. Initial inventories of all products.

The MRP for each level follows a logic similar to one used in development of MPS.
We shall illustrate development of MRP by an example.

Let us continue with the example of tables, which we have divided into three
subproductsA1 (with side supports),A2 (with central support), andA3 (circular table).
Now consider a case in which subproducts A1, A2, and A3 require components A,

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 84 — #10

84 Production Planning and Industrial Scheduling

A A

B B

A

CC

D

E

F

A1 A2

A = Pedestal; B = Top; C = Drawer; D = Decorative handle;
E = Hinge support; F = Base support

FIGURE 4.1 Tables (A1 and A2) and their components.

F

A3

D

E

A

FIGURE 4.2 Table (A3) and its components.

B, C, D, and E in quantities and in order as shown in Figures 4.1 and 4.2. This is a
popular graphical way of representing BOM as shown in Figure 4.3.

BOM is developed in levels, showing at each level immediate components needed
to make a unit at that level. For example, at level 0 is product A1, which requires
components at level 1, with components A, B, and C in quantities indicated in par-
enthesis. To make components in level 1, we need components in level 2, again in
quantities needed shown in parenthesis.

A1Level 0

Level 1

Level 2

A2 A3

A(2)

E(1) F(2) G(2)

B(1) C(2) A(1)

E(1) F(2) F(2)E(1)

B(1) A(1) D(1)

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 85 — #11

MPS and MRP 85

Parent product
Tables

Subproduct
A1

table (with side supports)

Subproduct
A2

table (with central support)

Subproduct
A3

circular table

A (2) B (1) C (2)

E (1) F (2) G (2)

Aggregate planning
for parent product

Master production
schedule (MPS) for
subproduct

Material requirement
planning (MRP) for
raw material and basic
components

A (1) B (1)

E (1) F (2)

A (1) D (1)

E (1) F (2)

FIGURE 4.3 Flow diagram of product A (table).

TABLE 4.8
Component Data

Product/
Component

Initial
Inventory
on Hand

Replenishment
Policy

Lead Time
in Weeks

A1 50 FOQ of 120 units 2
A2 120 L4L 1
A3 100 L4L 1
A 600 L4L 1
B 600 L4L 1
C 300 FOQ of 300 units 1
D 350 FOQ of 200 units 2
G 650 L4L 2
E 400 FOQ of 400 0
F 600 L4L 1

In addition, we have information on the products as shown in Table 4.8.
MPS for subproducts A1, A2, and A3 for the next 8 weeks are as given in

Tables 4.9, 4.10, and 4.11.
Now we must understand timings. Planned order release time for a lower-level

item, (say item A1 at level 0), is when the next higher-level components, (items A
and B at level 1 in our example), needed for that item must be delivered. While,
the lead time within an item, (item A1 with 1 week lead time), is the time required
to process (and deliver) the incoming components, (components A and B in our
example), to develop the final product, (A1).

Based on order release time for products A1 and A2, requirements for the
next higher-level components, items A and B, are as displayed in Tables 4.12
and 4.13.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 86 — #12

86 Production Planning and Industrial Scheduling

TABLE 4.9
Requirements for Subproduct A1

Weeks

FOQ = 120/Lead Time = 2 1 2 3 4 5 6 7 8

Gross requirements or demand 200 125 200 25
Scheduled receipts from earlier orders 120
On-hand inventory 50 −30 90 85 85 5 100 100 100
Planned receipts 120 120 120
Planned order release 120 120 120 120

TABLE 4.10
Requirements for Subproduct A2

Weeks

L4L/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 100 300 35 100 100 100
Scheduled receipts from earlier orders
On-hand inventory 120 20
Planned receipts 280 35 100 100 100
Planned order release 280 35 100 100 100

TABLE 4.11
Requirements for Subproduct A3

Weeks

L4L/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 50 100 50 125 50 100 75
Scheduled receipts from earlier orders
On-hand inventory 100 50
Planned receipts 50 50 125 50 100 75
Planned order release 50 50 125 50 100 75

Applying appropriate replenishment policies for each item results in
production/purchase policies as shown in Tables 4.14, 4.15, and 4.16.

Similarly, continuing the analysis for the next level components E and F results
in Tables 4.17 and 4.18.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 87 — #13

MPS and MRP 87

TABLE 4.12
Total Requirements for Component A

Weeks

1 2 3 4 5 6 7 8

Gross requirements for A1 240 240 240 240
Gross requirements for A2 280 35 100 100 100
Gross requirements for A3 50 50 125 50 100 75
Total requirements 570 290 160 290 340 200 175

TABLE 4.13
Total Requirements for Component B

Weeks

1 2 3 4 5 6 7 8

Gross requirements for A1 120 120 120 120
Gross requirements for A2 280 35 100 100 100
Total requirements 400 120 35 120 220 100 100

TABLE 4.14
Production/Purchase Planning for Product A

Weeks

L4L/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 570 290 160 290 340 200 175
Scheduled receipts from earlier orders
On-hand inventory 600 30
Planned receipts 260 160 290 340 200 175
Planned Order release 260 160 290 340 200 175

Similarly, production/purchase plans for items C and G are developed in
Tables 4.19 and 4.20.

4.2.1 LEAST UNIT COST PURCHASE POLICY

We have seen in the previous example that all replenishment policies discussed in
MPS can be used to replenish in MRP analysis. In all these policies, it was assumed
that the unit price of an item remains unchanged, no matter what the order quantity is.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 88 — #14

88 Production Planning and Industrial Scheduling

TABLE 4.15
Production/Purchase Planning for Product B

Weeks

L4L/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 400 120 35 120 220 100 100
Scheduled receipts from earlier orders
On-hand inventory 600 200 80 45
Planned receipts 75 220 100 100
Planned order release 75 220 100 100

TABLE 4.16
Production/Purchase Planning for Product D

Weeks

FOQ = 200/Lead Time = 2 1 2 3 4 5 6 7 8

Gross requirements or demand 50 50 125 50 100 75
Scheduled receipts from earlier orders
On-hand inventory 350 300 250 125 75 75 175 100
Planned receipts
Planned order release 200

TABLE 4.17
Production/Purchase Planning for E

Weeks

FOQ = 400/Lead Time = 0 1 2 3 4 5 6 7 8

Gross requirements or demand 260 160 290 340 200 175
Scheduled receipts from earlier orders
On-hand inventory 400 140 240 350 10 210 35
Planned receipts 400 400 400
Planned order release 400 400 400

However, when a quantity discount exists, that is, when the unit price changes based
on the order quantity, it may be profitable to order a larger quantity than what is
immediately required to reduce the total cost of operation. Least unit cost analysis
can be used to determine economic purchase quantities that satisfy planned order
releases. We illustrate least unit cost (LUC) policy by an example.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 89 — #15

MPS and MRP 89

TABLE 4.18
Production/Purchase Planning for Product F

Weeks

L4L/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 520 320 580 680 400 350
Scheduled receipts from earlier orders
On-hand inventory 600 80
Planned receipts 240 580 680 400 350
Planned order release 240 580 680 400 350

TABLE 4.19
Production/Purchase Planning for Product C

Weeks

FOQ = 300/Lead Time = 1 1 2 3 4 5 6 7 8

Gross requirements or demand 240 240 240 240
Scheduled receipts from earlier orders
On-hand inventory 300 60 120 120 180 240
Planned receipts 300 300 300
Planned order release 300 300 300

TABLE 4.20
Production/Purchase Planning for Product G

Weeks

L4L/Lead Time = 2 1 2 3 4 5 6 7 8

Gross requirements or demand 600 600 600
Scheduled receipts from earlier orders
On-hand inventory 650 50 50 0 0
Planned receipts 550 600
Planned order release 550 600

Suppose item E is a purchase item with following purchase price structure.

Quantity Purchase Price/Unit

1–400 $3.00
401–800 $2.75
801 to up $2.50

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 90 — #16

90 Production Planning and Industrial Scheduling

The order cost is $100/order, and the carrying cost is $0.50/unit/week. Based
on this information, we need to decide the optimum quantity to purchase for the
requirements determined in Section 4.2.

The calculations are displayed in Tables 4.21, 4.22, and 4.23. In each table, we
are trying to decide the order quantity that gives the least cost per unit. In Table 4.21,
demands are tabulated for all weeks. The next column is cumulative demand. It is
never optimum to place an order for less than a full week’s demand. The order cost
is fixed to one order, which is $100. We are seeking order quantity for the first order.

First order is placed at the beginning of the first week. Carrying cost is based on
the order quantity. For example, if the order is for 360, it will be consumed in the
first week, and the carrying cost is zero. If the order is for the first and second weeks,
that is, the next cumulative quantity of 520 units, then 160 units, the demand for

TABLE 4.21
Calculations for the First Order Quantity

Week Demand
Cumulative
Demand

Order
Cost

Carrying
Cost

Unit
Purchase
Price

Total
Cost

Cost
Per Unit

of Demand

1 360 360 100 0 3 1180 3.277
2 160 520 100 80 2.75 1610 3.096
3 400 920 100 480 2.5 2880 3.130
4 40 960 100 540 2.5 3040 3.166
5 140 1100 100 820 2.5 3670 3.336
6 60 1160 100 970 2.5 3970 3.422
7 0 1160 100 970 2.5 3970 3.422
8 0 1160 100 970 2.5 3970 3.422

TABLE 4.22
Calculations for the Second Order Quantity

Week Demand
Cumulative
Demand

Order
Cost

Carrying
Cost

Unit
Purchase
Price

Total
Cost

Cost
Per Unit

of Demand

1
2
3 400 400 100 0 3.0 1300 3.250
4 40 440 100 20 2.75 1330 3.022
5 140 580 100 160 2.75 1855 3.198
6 60 640 100 250 2.75 2110 3.296
7 0 640 100 250 2.75 2110 3.296
8 0 640 100 250 2.75 2110 3.296

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 91 — #17

MPS and MRP 91

TABLE 4.23
Calculations for the Third Order Quantity

Week Demand
Cumulative
Demand

Order
Cost

Carrying
Cost

Unit
Purchase
Price

Total
Cost

Cost
Per Unit

of Demand

1
2
3
4
5 140 140 100 0 3.0 520 3.714
6 60 200 100 30 3.0 730 3.650
7 0 200 100 30 3.0 730 3.650
8 0 200 100 30 3.0 730 3.650

the second week, will be carried in inventory in week 1, for 1 week, and the cost is
360 × 0 + 160 × 1 × 0.5 = 80. Similarly, carrying cost for ordering the first 3 weeks
of demand of 920 units is 360 × 0 + 160 × 1 × 0.5 + 400 × 2 × 0.5 = 480 and so on.
The unit purchase cost is based on order quantity. The total cost is, purchase cost per
unit × quantity ordered + order cost + carrying cost. The total cost divided by the
order quantity gives the cost per unit, the last column data.

The least cost is associated with the order quantity of 520. Therefore, the first
order is for 520 units. Perform the analysis again with the remaining demands. The
details are shown in the Table 4.22.

The second order is for 440 units. To determine the third order, perform the
analysis again for remaining demands. The details are in Table 4.23

The third order is for 200 units.
If the order quantity must remain constant, then similar analysis can be made

using fixed quantities. More about quantity discount analysis is given in Inventory
and Capacity Planning chapter.

4.2.2 GENERAL CONSIDERATIONS

Some observations associated with planning factors in MRP are as follows:

4.2.2.1 Planning Period

What is the minimum planning horizon? Ideally, it should be at least as long as the
cumulative lead times for the entire product structure. This allows planning on the par-
ent product propagation through to the highest-level component. In our example in
Table 4.8, for product A1, the longest total lead time through the structure tree is lead
times 2 for A1 + 1 for A + 1 for F = 4. Similarly, for product A2, the minimum
planning period is 1 for A2 + 1 for A + 1 for F = 3 (or 1 for A2 + 2 for B = 3).
Similarly for A3 planning period is 3. Hence, the minimum planning period should
be four periods.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 92 — #18

92 Production Planning and Industrial Scheduling

4.2.2.2 Product Structure

When many products are planned simultaneously, as we had with products A1, A2,
and A3 there might be some common components among the products. These com-
ponents may appear at different levels in each product tree. It is important that when
planning for the component, we collect requirements from all levels and from all
parent products. We had performed this analysis for component A, B, and E in our
example, even though they appear as the same levels in all products.

4.2.2.3 Manufacturing Resource Planning

Development of MRP assumes that we can receive the input components/material
when required. We can then use the lead time in that stage to process and produce
the number of components as the MRP plan calls for. This is possible if we have
sufficient manpower and processing capacities, so that there are no bottlenecks and
delays. However, if not, we must consider the limitations imposed by the production
system and incorporate those in our planning. Manufacturing Resource Planning, also
known as MRP II, allows us to modify MRP plans to respond to system limitations.
MRP II is a computerized software that modifies the production quantities, order
releases, and receiving dates based on the current available resources. MRP II is an
extended mode of planning that incorporates the available recourses and capacities
in MRP planning.

4.2.2.4 Enterprise Resource Planning

The next phase of integration is to include most of the supporting departments in the
planning picture. Enterprise resource planning (ERP) is such a software. It includes,
in planning, the departments of sales and marketing, engineering, finance, human
resources, distribution, and operations.

There are a number of reasons for using an ERP software.

1. Assimilate customer order information: All customer order information,
from the time orders are received till they are delivered, is maintained in
the system, making it easier to keep up with the orders at all stages of
production and distribution. All departments concerned with the status and
progress of an order have access to the information and can act on it.

2. Standardize manufacturing: The system can be standardized by all depart-
ments, following the same rules with integrated information management
system.

3. Inventory reduction: With systems like MRP and MRP II integrated
within ERP allows efficient and smooth manufacturing without excessive
inventories at any point in the system.

4. Human resource planning: ERPhas means of following every employee’s
allocation and efforts. It improves human resource utilization.

5. Combine financial information: ERP creates a single financial measure
across all departments, such as finance, sales, and operations, which

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 93 — #19

MPS and MRP 93

everyone understands and follows. Financial information is presented
in a manner that allows the accounting department to coordinate payments
and collections while facilitating the finance department to plan for working
capital and resource planning, and so on.

With all explicit advantages of ERP, there are also some difficulties. ERP software
can be very expensive and difficult to implement completely throughout the system.
The need for key personnel to buy into the system is essential, and it is not always
successful.

Detailed discussion of both MRP II and ERP is beyond the scope of this book.
However, we will discuss capacity evaluations in a later chapter.

4.2.3 DISTRIBUTION REQUIREMENT PLANNING

Instead of supplying products directly to customers, many large companies distribute
their products through the warehouses that are set in different parts of the country.
Customer demands are collected at retail warehouses and then transferred to the
central warehouses and from there transferred back to the plants. In each stage, order
quantity is adjusted for the best economics. In this case, most of the uncertainty in
demand is absorbed by the inventories available at different points in the distribution
system. These uncertainties may arise in response to marketing strategies, advertising,
changing customer preferences, or excessive competition.

Distribution requirement planning (DRP) integrates the distribution system with
the objective of meeting customers’ demands, which are independent demands
without incurring excessive inventory. It influences demand management at the pro-
duction source plant, and hence influence MPS. It follows the same basic principles
as MRP in developing distribution policies. Replenishments to distribution centers
are, in general, by truckload quantities, which help in reducing transportation cost.
However, it may also create a large quantity in replenishments. DRP encourages
logistics savings through better planning of aggregate transportation capacity needs
and order dispatching policies.

An example of DRP is shown below. It hardly needs any explanations, since it
follows the same logic as MRPeven though the notation may be different. Safety stock
is maintained to respond to any unexpected demand highs. It is used in emergencies
as needed and must be replenished as soon as possible, without increasing inventory
unnecessarily.

4.2.3.1 DRP Example

Consider a company having two field warehouses and a central one. Table 4.24
represents a typical DRP record for a particular field warehouse. The table consists of
the following information:

Requirements: Predicted or expected demand.
In transit: Quantity or order that is available.
Lead time: Time between placement of order and receiving it.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 94 — #20

94 Production Planning and Industrial Scheduling

TABLE 4.24
Data for DRP Example

Warehouse 1a

Time period 1 2 3 4 5 6 7
Marketplace forecast 15 50 5 15 15 35 15
In transit (order to receive) 40 40 40 40
Available balance 22 7 37 22 7 12 37
Planned shipments (order release) 40 40 40 40
Safety stock 5 2 5 5 5 5 5

Warehouse 2b

1 2 3 4 5 6 7
Marketplace forecast 20 20 70 20 30 30 30
In transit (order receive) 60 60 60
Available balance 45 25 5 35 5 35 5
Planned shipments (order release) 60 60 60
Safety stock 10 10 5 10 10 10 10

a Safety stock = 5; shipping quantity = 40; lead time = 1.
b Safety stock = 10; shipping quantity = 60; lead time = 2.

Available balance: The amount of inventory available. Balance before the first
period shows the beginning inventory.

Planned shipments: Released order quantity.
Safety stock: Quantity maintained in reserve to respond to unexpected demand

spike.

Gross requirements for the central warehouse are addition of planned shipments
for warehouse 1 and warehouse 2. Gross requirements for the central warehouse are
dependent on the demand of the field warehouse (Table 4.25).

Firm order is the same as planned order release, unless there are some reasons
to change them. These reasons may include available transportation capacities and
optimum shipping quantities that may depend on truckload size. Firm orders are then
used in master production system or ERS planning. A safety stock of 20 units is used
to supplement on-hand inventory when demand is greater than stock on hand, and
then it is replenished as soon as possible.

DRP shows when the central warehouse should receive its orders. These periods
in turn are incorporated in MRP and MPS as the demand points for further planning.
DRPalso allows us to develop an efficient transportation/distribution system, knowing
when and how many units are to be shipped from one point to another.

4.3 SUMMARY

The chapter presents a number of planning techniques that follow a similar spread-
sheet approach. It is important to know when to produce, how many units

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 95 — #21

MPS and MRP 95

TABLE 4.25
Gross Requirements at Central Warehouse

Warehouse 1 Warehouse 2

1 2 3 4 5 6 7 1 2 3 4 5 6 7
40 40 40 40 60 60 60

+

Central warehouse

1 2 3 4 5 6 7
100 100 60 40 40

Central warehouse

1 2 3 4 5 6 7

Gross requirement 100 100 60 40 40
Scheduled receipts 100 100 100
Available balance 90 30 50 50
Planned order release 100 100 100
Firm planned order (MPS) 100 100 100
Safety stock 10 10 10 20 10 20

Safety stock = 20; shipping quantity = 100; lead time = 0.

to produce, and when to deliver. Different replenishment policies may result in
different costs, and we should try to apply one that minimizes the cost. ERP
is inclusive software that interlinks operations from different departments in the
plant, allowing common information, without any distortions, being made available
to all.

These techniques assume that sufficient resources are available when needed.
If this is not the case, we need to schedule the available resources in an optimum
manner. How to achieve this objective is illustrated in scheduling chapters.

4.4 EXERCISE

4.1 The gross requirement for a material from an MRP schedule is:

Period (week) 1 2 3 4 5 6 7 8 9
Gross requirements 25 30 30 70 25 15 70 50 30

Units ending as inventory at the end of a period t must be carried
over as beginning inventory for the next period, with $1.50 per unit
as holding cost per week. The set up cost is $120, and the lead time is
1 week. The beginning inventory is 35 units.
a. Develop a L4L 9-week schedule and calculate the total relevant

costs.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 96 — #22

96 Production Planning and Industrial Scheduling

b. Develop POQ solution if time between the orders is fixed to
2 weeks. Calculate the total relevant costs, assuming that the stock
out cost is $10 per unit.

c. Resolve the above problem with zero lead time.
d. In the problem, if actual demands for period 1, 2, and 3 were 15,

20, and 35, respectively, find the APT for these periods.
4.2 The MRP gross requirements for item A for next 8 weeks are shown

in the following table.

Period (week) 1 2 3 4 5 6 7 8
Gross requirements 20 15 15 45 30 70 100 40

The beginning inventory is 65 units. The lead time for the item is
2 weeks, the setup cost is $15, and the carrying cost is $0.050 per
unit per day. Using least total cost method, determine the time and the
magnitude of the first order to be placed.

4.3 In Figure 4.1, two tables A1 and A2 are illustrated. Suppose that the
requirements for each type for next 4 weeks are as follows:

Week 1 2 3 4
A1 20 25 30 15
A2 12 8 9 10

Develop the requirements for all its components.
4.4 The annual demand of item X is 10,400 units over a 52-week-per-year

schedule. It costs $300 for the setup. When one unit of this item must
be carried in inventory from 1 week to another, it incurs $0.60 per unit.

The net requirements for the item from an MRP schedule are:

Period (week) 1 2 3 4 5 6 7 8 9 10
Gross 75 150 400 200 150 140 300 200 150 500

requirements

Determine which of the following lot-sizing methods results in the
least carrying and ordering costs for the 10-week schedule:
a. L4L
b. POQ with a period of 3 weeks
c. FOQ of 200 units

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 97 — #23

MPS and MRP 97

4.5 In example 4.4.3, if the units are bought from an outside vendor with
following purchase price:

Quantity Price/Unit ($)

1–150 2.00
151–300 1.80
301 and more 1.75

Determine the least cost purchase policy.
4.6 A product’s demand varies during 8 weeks for warehouse 1 and is

given as follows:

Weeks 1 2 3 4 5 6 7 8
Demand 150 75 90 — 165 50 200 —

a. Determine the DRP schedule if the shipping quantity is 120 units,
lead time is 1 week, and the required safety stock is for 50 units. If
it costs $200/trip and $5/period for storage, what is the total cost
of the policy?

b. We have the choice to purchase a larger truck with the cost
of $275/trip. It can carry 180 units. With a storage cost of
$5/period/unit, which truck we should utilize—the one with
capacity of 120 or the new one with a capacity of 180?

4.7 Repeat problem 4.4.6 if in addition to the warehouse 1 we have
warehouse 2 with demands as follows:

Weeks 1 2 3 4 5 6 7 8
Demand 100 — 190 50 105 50 20 80

In addition, central warehouse is also supplied using one of the two
types of trucks of capacity 120 or of capacity 180. All other data also
remains the same for warehouse 2 and the central warehouse.

REFERENCES AND SUGGESTED READINGS

Berry, W.L., T.E. Vollmann, and D.C. Whybark. 1979. Master Production Scheduling:
Principles and Practice, Falls Church, VA: American Production and Inventory
Control Society.

Davis, E.W. 1979. Case Studies in Materials Requirement Planning, Falls Church, VA:
American Production and Inventory Control Society.

Dougherty, J.R. and J.F. Proud. “From Master Schedules to Finishing Schedules in the
1990s” American Production and Inventory Control Society, 1990 Annual Conference
Proceedings, 1990, pp. 368–370.

Dileep: “44206_c004” — 2007/9/17 — 14:52 — page 98 — #24

98 Production Planning and Industrial Scheduling

Ford, Q. “Distribution Requirement Planning and MRP” APICS 24th Annual Conference
Proceedings, 1981, pp. 275–278.

Funk, P.N. “The Master Schedulers Job Revisited” American Production and Inventory Control
Society, 1990 Annual Conference Proceedings, pp. 374–377.

Harvard Business Review, September–October, 1975.
Kinsey John, W. “Master Production Planning: The Key to Successful Master Scheduling”

APICS 24th Annual Conference Proceedings, 1981, pp. 81–85.
Orlicky, J. 1975. Materials Requirement Planning, New York: McGraw-Hill.
Proud John, F. “Controlling the Master Schedule” APICS 23rd Annual Conference Proceedings,

1980, pp. 413–416.
Smith, B. July 1985. “DRP improves Productivity, Profit and Service Levels” Modern

Materials Handling, 63–65.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 99 — #1

5 Inventory and Capacity
Planning

Chapter presents two topics, inventory planning and capacity planning. In inventory
control, we determine the optimum inventory levels, ordering and restocking policies,
and factors that may influence inventory cost. In capacity planning, we decide how
to determine the capacity required at each resource center and how to plan or manage
the available capacity to meet the requirements.

5.1 INVENTORY PLANNING

There are a number of reasons to have inventories. Inventories are built as a result of
production or purchase of quantities that cannot be utilized immediately. We want to
buy or build an economic quantity to minimize a unit cost of production and storage.
This may require purchase or building of larger lots. Inventories can also be a result
of taking advantage of quantity discounts offered by suppliers. Here, a large quantity
is purchased to reduce the unit purchase price. Inventories are used between two
production stations to decouple two operations if they have imbalanced production
rates. Inventories are used as safety stocks to respond to unexpected demands. They
can be used to level production capacities, producing more when demand is low
to compensate for the periods when demand is higher than the production capacity.
Inventories are also needed to display the available items for sale in retail stores.

With all these reasons to have inventory, why not have an unlimited inventory?
The answer is obvious. There is cost associated with inventories, cost of storage, cost
of spoilage, cost of taxes and insurance, and even cost of obsolescence. As the size
of inventory and time of storage goes up, so do these costs. So, we must find a good
balance between cost and benefits.

5.1.1 ECONOMIC ORDER QUANTITY

There are two basic costs in inventory management—first, order cost if the item is
purchased, (or setup cost, if the units are produced in our own facilities), and second,
carrying cost, which is a time-dependent cost. The longer an item is in storage, the
more it costs to keep it. This cost might include factors such as cost of storage, taxes,
insurance, spoilage, and obsolescence. For a demand that is uniform over a time
period, as in Figure 5.1, we may have different alternatives in satisfying the demand.

For example, we might just place one order and order a large quantity at one time,
incurring the minimum order cost but a large carrying cost, or we may order in very
small quantities frequently, reducing the carrying cost but increasing the order costs.
The objective is to determine the optimum order quantity.

99

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 100 — #2

100 Production Planning and Industrial Scheduling

Q
ua

nt
ity

 o
n

ha
nd

Reorder
point

Time Lead time

EOQEOQEOQ

FIGURE 5.1 Economic order quantity with uniform demand.

Let us define following notation:

Q Quantity to order (or produce) per order
D Demand per unit time, normally a year
C Cost of a unit
S Setup or order cost/order
H Holding or carrying cost per unit time. Holding cost may be defined as

$/unit/unit time multiplied by the cost of a unit or $/$ invested/unit time

Then, the total cost, TC, is

TC = CD + Q

2
× H +

(
D

Q

)
S (5.1)

The first term reflects the total unit purchase cost per year. The second term represents
inventory carrying cost. It is equal to inventory carrying cost per unit multiplied by
the average inventory over the year. The average inventory is calculated with the
following logic. The best time to receive a new order is when the inventory on hand
is zero. In a situation where demand rate is known and constant, there is no need
to keep any safety stock. If we have a policy that receives the order when there is
some inventory present, that inventory will remain in the system all year without ever
being utilized. The total inventory at this point when the new shipment is received is
then 0 + Q = Q. Thus, average inventory in a cycle is (Q + 0)/2 = Q/2. Since the
demand, D, is at a uniform rate, this quantity is depleted to zero in Q/D time period,
or the cycle time is Q/D. The same cycle repeats throughout the year and hence the
average stock in the system over the year is also Q/2. The third term represents order
cost per year. With Q units ordered per order, there are D/Q number of orders that
must be placed to receive the total of D units in a year. With S dollar cost per order,
order cost is (D/Q)S (Figure 5.2).

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 101 — #3

Inventory and Capacity Planning 101

EOQ
Order quantity, Q

C
os

t

Holding cost

Order cost

Total cost

FIGURE 5.2 Order quantity, Q.

To minimize the total cost, take derivative of (5.1) with respect to Q, equate it to
zero, and solve for Q, which results in:

Q = SQRT

(
2DS

H

)
,

where SQRT stands for square root.
This quantity s called economic order quantity (EOQ).

Example
Acompany uses 600 units per month. It incurs an order cost of $200/order consisting of
placing order, transportation cost and receiving the product. Each unit costs $40/unit
and holding cost is 25% per year per dollar. Determine the optimum order quantity.

Q = SQRT

(
2DS

H

)

Here, H is the carrying cost of the unit per year, which is 0.25 × 40 = $10/unit/year.
Demand is 600 × 12 = 7200 units per year. Substituting appropriate values leads to
an EOQ of

Q =
(

2 × 7200 × 200

10

)1/2

= 536.6 or 537

Total cost is = 7,200 × 40 + (536.6/2) × 10 + (7,200/536.7) × 200 = 288,000 +
2,683 + 2,683 = $293,366.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 102 — #4

102 Production Planning and Industrial Scheduling

It is interesting to note that the carrying cost and order cost are equal. This is one
of the properties of EOQ. At EOQ, the carrying cost and order cost are always equal.

Suppose we order 500 units at time rather than EOQ of 537. Now, the total cost
per year is,

7,200 × 40 +
(

500

2

)
× 10 +

(
7,200

500

)
× 200 = 288,000 + 2,500 + 2,880

= $293,380

or an increase of $14 from EOQ quantity. This is hardly a significant increase in cost
for deviating from economic order quantity. In fact, the second property of EOQ is
that the total of carrying cost and order cost are fairly flat (remains relatively same)
around EOQ. Therefore, it is advantages to order what is convenient to order near
EOQ quantity rather than exact EOQ. This property also allows for small errors in
estimating exact costs for carrying or order and even some variation in the basic
assumption that the demand is at a constant rate.

To receive an order when inventory goes to zero, it may be necessary to reorder
before inventory actually reaches zero. Time between placement of order and receiv-
ing it is called replenishment lead time. The demand during this time t (in weeks)
is, assuming demand D is for a year (52 weeks), t × D/52. This quantity is called
reorder point. Whenever the inventory level on hand (stock level) reaches the reorder
point, a new order for Q units is placed. This rule is often used in practice since
it is not difficult with modern computers to keep the record of inventory on hand.
It can also absorb small variations from week-to-week demands since only invent-
ory on hand is the trigger mechanism for placing a new order and not a fixed time
period.

5.2 SAFETY STOCK DETERMINATION

Safety stock is needed when demand though fairly uniform over a period, is not
necessarily constant from day to day and we may have some unexpected spicks. It
does not matter what daily demands are till we reach reorder point R since a quantity of
items are there to take care of the demands (see Figure 5.3). However, to make sure we
have sufficient inventory on hand to meet expected demand during the replenishment
time, we need to adjust both reorder point, R, and the order quantity compare to the
EOQ model. The analysis and procedure is shown with the following example.

Assume demand distribution during lead time is normal with mean µ, (which is
also the reorder point) and standard deviation of σ . This is fairly good assumption
when demand has random variation about the mean value. Determination of µ and
σ are based on historical data of the demand during the lead time. A decision must
be made as to what is the most percent of time, α%, we can be without stock and
thus lose the customer. Then, 1 − α% is called level of customer service or customer
level of service. If α = 0, then we must have 100% level of service, that is, we must
satisfy all customer demand during the lead time. In this case, safety stock would be
very large, theoretically close to infinity.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 103 — #5

Inventory and Capacity Planning 103

Variable demand (normally
distributed) during lead time

µIn
ve

nt
or

y

Safety stock

R

Lead time
Time

FIGURE 5.3 Safety stock requirements.

Using standard Z analysis, determine the quantity, U, the new reorder point, as
follows:

Z =
(

U − µ

σ

)
or U = σZ + µ,

where

Z = 1.645 for 95% customer level of service

= 2.33 for 99% customer level of service.

In our example, suppose the lead time is 1 week and standard deviation of demand
during this time is 20. Reorder point, without safety stock, is 1 × (7200/52) = 138,
which is also the mean value of reorder point µ. Then, to provide 99% customer
service,

U = 20 × 2.33 + 138 = 46.6 + 138 = 184.6 or 185

Quantity σZ is called safety stock. In our case, safety stock is 46.6 or 47.
Sometimes, it is easier to estimate mean and variance of demand during the lead

time by estimating mean daily (or weekly) demand and its variation. Knowing the
lead time duration in days, the use of central limit theorem from statistics allows us
to estimate mean and variance of the demand during lead time. For example, suppose
the average daily demand is 27.6, with standard deviation of 5 and lead time of 1 week
or 5 days. Then, mean and standard deviation of demand during the lead time is

Mean = 5 × 27.6 = 138 and variance of 5 × 52 = 125.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 104 — #6

104 Production Planning and Industrial Scheduling

EOQ

Reorder point

Lead time

In
ve

nt
or

y

Reorder point

Safety stock

1 2 3

EOQ

Time
Fixed order quantity-varying cycle system

FIGURE 5.4 Fixed order quantity-varying cycle system.

Or standard deviation of 11.18. That is,

Mean demand during lead time = Lead time in days × Mean demand

Day

and

Standard deviation during lead time = (Lead time in days)1/2

×
(

Standard deviation of demand

Day

)
.

5.2.1 FIXED QUANTITY-VARYING CYCLE SYSTEM

With safety stock, the real reorder point is 185. In fixed order quantity-varying cycle
length policy, any time the inventory level goes to U or below, we order EOQ units.
In our example with reorder point set at 185, any time the inventory level falls to
or below 185, we should order 537 units. With the order of 537 units and if there
had not been an abnormal demand, the inventory on hand after ordering would have
been 537 + 185 = 722 units. Figure 5.4 shows varying cycle lengths for each cycle
because of variations in daily demands. Again, inventory on hand is also not depleted
at the same constant rate, but may vary somewhat from day to day, based on actual
demand.

5.2.2 PERIODIC REVIEW SYSTEM

Rather than monitoring inventory continuously, it may be more convenient to review
it every fixed interval of time. At that time, we check on-hand inventory and place
an order so that the inventory reaches a predetermined level. To match with EOQ

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 105 — #7

Inventory and Capacity Planning 105

321
In

ve
nt

or
y

Safety stock
Lead time

Time
Fixed order cycle–varying quantity system

Reorder point

FIGURE 5.5 Fixed order cycle-varying quantity system.

calculations, the review period could be as close to cycle time in EOQ as possible.
Recall that the cycle time in EOQ is Q/D. In our example (Section 5.1.1), EOQ is 537,
with D = 7200 units/year. Cycle time is (537/7200) × 52 = 3.87, or say 4 weeks.
Using our safety stock analysis (Section 5.2.1), we will review the inventory every
4 weeks and order sufficient quantity to bring the level back to target value of 722.
For example, if the inventory level on Monday morning is 200, and there is demand
of 54 during Monday, the net available inventory on Tuesday is 200 − 54 = 146.
Since this is less than the reorder point of 185, by 185 − 146 = 39, we have used this
amount from safety stock. So, we should place an order for 537 + 39 = 576 units, or
simply for 722 − 146 = 576 units.

Average demand during week 4 is (4 × 7200)/52 = 553.84. Safety stock of 185
remains in the system throughout the year, and is used when needed. If the demand
was very predictive and constant, we could avoid the use of safety stock, and order
only the 4 weeks requirement of 553.84 or 554 units (Figure 5.5).

Assuming safety stock is maintained, cost of the inventory system per year is

7,200 × 40 +
(

553.84

2

)
× 10 + 185 × 10 + 200

(
52

4

)
= 288,000 + 2,769.2

+ 1,850 + 2,600

= $295,219.2

5.2.3 SAFETY STOCK WITH SUBSTITUTE PRODUCTS

Suppose we have two or more similar products in stock, it may be possible to substitute
one product by another if demand arises and the demanded item is out of stock. For
example, in a grocery store if a milk carton of one brand is not available, the customer
generally picks up another brand without any complaints. Under these circumstances,

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 106 — #8

106 Production Planning and Industrial Scheduling

it is possible to reduce total safety stock for each item and still provide the desired
level of service.

Consider three brandsA, B, and C, each having demand that is normally distributed
with a mean of 30 per day and a standard deviation of 6 per day. If one brand of product
is not available, demand can be substituted by another brand. Lead time is 2 days.
We wish to provide service level of 95%.

Demand during lead time for each product has normal distribution with mean of
2 × 30 = 60 and standard deviation of

√
2 × 6 = 8.48.

For 95% service level, z = 1.645 and hence safety stock S = σZ , is

8.48 × 1.645 = 13.94 or 14.

If substitution of products is not allowed, we would require 14 units of safety stock
for each brand for the total of 3 × 14 = 42 units in safety stocks.

But since substitution is allowed, the total demand for all products is determined
by applying the central limit theorem as follows:

Mean demand =
∑

Demand for each product in lead time,

and

Variance of demand =
∑

Variance of demand in lead time for each product

Or standard deviation, if the variance of each product is same = √
(Number of

products) × Standard deviation for a product in lead time.
Or, in our case, the mean of total demand during lead time is 3 × 60 = 180, and

the standard deviation of the total demand is
√

3 × 8.48 = 14.68.
Therefore, total safety stock St is,

1.645 × 14.68 = 24.14, or St = 25

As expected, safety stock when the products could be substituted is less than the
combined safety if the products cannot be substituted. That is,

St < 3 × S.

5.3 QUANTITY DISCOUNTS

At times a seller offers to reduce the cost of a unit if larger quantities are purchased as
an incentive to make consumer buy bigger quantities at one time. Sellers can distribute
their fixed cost over a larger quantity and reduce their unit cost of production. They
are thus able to pass some of the savings to customers in terms of quantity discounts.

As buyers, how should we respond to this offer? Our objective should be same
as before: reduce the total cost of inventory, including the total purchase cost. We

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 107 — #9

Inventory and Capacity Planning 107

should determine what is the optimum quantity we should purchase to minimize
this cost.

There are two types of quantity discounts that are offered in practice. They are all
unit quantity discount and marginal unit quantity discount.

In all unit quantity discount, the unit price for a unit is constant, based on the
purchase quantity per order. In marginal unit quantity discount, the unit price is based
on quantity ordered in each break point. The average price of a unit will therefore
vary based on the total units bought.

5.3.1 ALL UNIT QUANTITY DISCOUNT

Here, all units are charged the same amount based on the quantity order in a single
order.

Consider our problem again, except the unit price of the product now depends on
the quantity purchased. Recall that the company uses 600 units per month. It incurs
an order cost of $200/order, consisting of placing the order, transportation cost, and
receiving the product. Holding cost, h, (carrying cost) is 25% per year per dollar. Unit
cost is as follows:

Quantity Unit Price

1–699 $40/unit
700–999 $38/unit
1000 and up $37/unit

Our objective is to determine the optimum order quantity (Figure 5.6).
We can start with applying EOQ formula, except we have a problem of deciding

what is the carrying cost here. The carrying cost per unit is calculated as unit cost
multiplied by the holding cost. So, we have different carrying costs based on the
quantity ordered.

$38

$40

$37

700 1000

Quantity

U
ni

t p
ric

e

FIGURE 5.6 Quantity.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 108 — #10

108 Production Planning and Industrial Scheduling

The procedure can start with the least unit cost and by calculating the EOQ. If it
is feasible, that is, order quantity is greater than 1000, this would be the least-cost
solution, and there is no need to proceed further.

For Q ≥ 1000, C = 37

and

H = C × h = 37 × 0.25 = 9.25

Hence

EOQ = SQRT

(
2SD

H

)
= SQRT

(
2 × 200 × 7200

9.25

)
= 557.9

This EOQ quantity cannot be purchased for $37 per unit. The minimum quantity we
will have to purchase to get the unit price of $37 is 1000 units. Calculate the total
yearly cost with this quantity to see what the cost/year would be if 1000 units are
ordered.

Total cost/year = 7,200 × 37 +
(

1,000

2

)
9.25 +

(
7,200

1,000

)
× 200 = $272,465.

Let us now check the next least cost bracket, when the unit price is $38. The holding
cost is 38 × 0.25 = 9.5. The EOQ with this holding cost is

EOQ = SQRT

(
2 × 200 × 7200

9.5

)
= 550.59

Again, this quantity cannot be bought for $38 unit cost. Again, check what the annual
cost would be if we place the minimum order, Q = 700, with the present unit cost.

Total cost/year = 7,200 × 38 +
(

700

20

)
9.5 +

(
7,200

700

)
× 200 = $275,989

This cost is higher than the one with unit cost of $37. There is no need to check
any further bracket(s) where the unit cost is higher than the one we had just checked
since the total cost will only go up. By the way, had we calculated the total cost with
C = 40, it is $293,380. This cost was calculated earlier when we solved the problem
without quantity discount.

The procedure can now be stated as follows:

1. Start with the lowest unit cost bracket.
2. Determine EOQ for this cost. If EOQ is feasible, determine the associated

cost. Mark this as present minimum, PM, and go to step 4.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 109 — #11

Inventory and Capacity Planning 109

3. If the EOQ is not feasible, calculate the cost associated with purchasing
the smallest possible quantity with the present unit cost. Mark this as PM.

4. Go to next higher price bracket.
5. Determine EOQ for this cost. If the EOQ is feasible, determine the

associated cost. Mark this as New Minimum, NM, and go to step 7.
6. If the EOQ is not feasible, calculate the cost associated with purchasing

the smallest possible quantity with the present unit cost. Mark this as NM.
7. Compare PM with NM. If PM is less than NM, stop. Quantity associated

with PM is the optimum quantity to order. If not go to step 8.
8. Make PM = NM and go to step 4.

5.3.2 MARGINAL UNIT QUANTITY DISCOUNT

In the marginal quantity discount, the unit price is bracket dependent. In the following
chart, for example, the first 699 units are charged at $40.00 per unit, next 300 units
cost at $38/unit, and the remaining order, if greater than 1000, costs $37/unit,

Bracket Quantity Unit Price

0 1–699 $40/unit
1 700–999 $38/unit
2 1000 and up $37/unit

The carrying cost depends on the unit price, which in turn depends on the quantity
ordered. Let us define break points by qi. So, q0 = 1, q1 = 700, and q2 = 1000.

Let Ri define the cost of ordering qi units. Total cost at the end of bracket i, is,

Ri = C0(q1 − q0) + C1(q2 − q1) + · · · + Ci−1(qi − qi − 1)

In our case, R0 = 0, R1 = (700 − 1) × 40 = 27,960, and R2 = 27,960 + 38(1000 −
700) = 39,360.

The average cost per unit for ordering Q which is in bracket i is

=
(

Ri + (Q − qi)Ci

Q

)

Therefore, the holding cost is: average inventory × unit price × holding cost in $/$
invested

=
(

Q

2

)
×

(
Ri + (Q − qi)Ci

Q

)
× h =

(
Ri + (Q − qi)Ci

2

)
× h (5.2)

And the purchase cost is

D × Average cost

Unit
= D ×

(
Ri+(Q − qi)Ci

Q

)
(5.3)

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 110 — #12

110 Production Planning and Industrial Scheduling

Order cost is

Number of orders

Year
× order cost per order = (D/Q) × S (5.4)

Total cost/year is the sum of (5.2), (5.3), and (5.4).
To minimize the total cost, apply basic calculus. Take derivative with respect to

Q, equate it to zero, and solve for Q results in

Optimum quantity for i = 0

Q0 = SQRT

(
2DS

hC0

)

and

Optimum Q in cost bracket i = SQRT(2D × (S + Ri − qiCi))/(h × Ci), where
i = 1, 2 . . .

The procedure to solve a problem is as follows:

1. Calculate EOQ for each cost bracket. If feasible, calculate the total cost
for the associated Q.

2. If Q calculated in step 1 is not feasible, calculate the total cost with quantity
at each break point.

3. Select the least total cost alternative.

In our example:

For bracket i = 0

Q0 = SQRT

(
2 × 7200 × 200

0.25 × 40

)
= 536.6

which is a feasible quantity.
With total cost of

7,200 × 40 +
(

536.6

2

)
× 10 +

(
7,200

536.7

)
× 200 = 288,000 + 2,683 + 2,683

= $293,366

For bracket i = 1

R1 = 40 × 699 = 27,960 and q1 = 700

Q1 = SQRT

(
2 × 7,200 × (200 + 27,900 − 700 × 38)

0.25 × 38

)
= 1,507.8

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 111 — #13

Inventory and Capacity Planning 111

This quantity is outside the range of bracket 1. Calculate the total cost at the break
point that is, Q = 999.

Average cost/unit is
R2

999
= 39,360

999
= $39.4

Total cost = 39.4 × 7,200 +
(

999

2

)
× 39.4 × 0.25 +

(
7,200

999

)
× 200 = $290, 041

The total cost has decreased from bracket 0.
For bracket i = 2

R2 = 3,9360 and q2 = 1,000

Q2 = SQRT

(
2 × 7,200 × (200 + 39,360 − 1,000 × 37)

0.25 × 37

)
= 1,996.3 = 1,996

This is a feasible quantity in bracket 2.

Average unit price = (R2 + (1996 − 1000) × 38)

1996
= $38.68

Total cost = 7,200 × 38.68 +
(

1,996

2

)
× 38.68 × 0.25 +

(
7,200

1,996

)
× 200

= 264,096 + 9,650.6 + 721.44 = $274,468

This is the least total cost of all the total costs we have examined. Hence, optimum
order policy is to order Q = 1996 units.

Note that, in case of quantity discount, no matter whether all unit or marginal unit
case, in optimum policy, the annual order cost and annual carrying costs may not be
equal as was the case when we did not have quantity discount in the EOQ model from
Section 5.1.1.

5.3.3 ONE-TIME UNIT PRICE DISCOUNT

At times, the supplier offers a one-time deal. Order more units now (or in a short time
span) and receive certain percentage of unit purchase price off. Consider the earlier
problem as modified in the following.

The company uses 600 units per month. It incurs an order cost of $200/order,
consisting of placing the order, transportation cost, and receiving the product. Holding
cost, h, (carrying cost) is 25% per year per dollar. Unit cost is $40/unit.

Now, we have received a promotional advertisement. We can receive p% , or in
our case 5%, off if we buy more than the regular number of EOQ units. The question
is, how many units should we order now?

Assuming our demand is not going to be affected by any additional purchases,
we can purchase more than the EOQ quantity as long as there is net savings. If we

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 112 — #14

112 Production Planning and Industrial Scheduling

order n multiples of EOQ at the same time to take advantage of this offer, we would
save (n − 1) future orders. In addition, savings in purchase cost savings would be
C × p × n × EOQ. The additional cost would be for carrying excess inventory. We
need to calculate this savings as follows:

Had we ordered Q units at a time for n cycles, the inventory carrying cost would be
Average inventory×cycle time in years)×(unit cost)×(unit carrying cost/$/year)×

number of cycles

=
(

Q

2

)
×

(
Q

D

)
C × h × n (5.5)

On other hand, inventory carrying cost for ordering nQ units with discount price, at
one time, is

=
(

nQ

2

)
×

(
nQ

D

)
(1 − p) × C × h (5.6)

The difference between (5.6) and (5.5) is the additional carrying cost by ordering nQ
units to take the advantage of the discount.

Determine the maximum value of n for which the savings are more than the cost.
In our example, we have

H = C × h = 40 × 0.25 = 10

The optimum EOQ is

Q = SQRT

(
2 × 7200 × 200

10

)
= 536.6 or 537

Savings by ordering n × Q units,

Order cost saving = (n − 1) × 200

Purchase saving = 0.05 × 40 × n × 537 = 1074 n

Additional carrying cost =
[(

n × 537

2

)
×

(
n × 537

7200

)
×(1 − 0.05)×40×0.25×n

]

−
[(

537

2

)
×

(
537

7200

)
× 40 × 0.25 × n

]

= 190.24 n2 − 198.69 n

To determine optimum ‘n’, check effects on savings and cost for different values of n.
The results of simulating on n are given in Table 5.1. We see that cost is more

than savings at n = 8. Select n = 7 and order Q = 537 × 7 = 3759 units at the given
discount of 5%.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 113 — #15

Inventory and Capacity Planning 113

TABLE 5.1
Simulation on n

n Order Cost Savings Purchase Cost Saving Total Savings Additional Carrying Cost

2 200 2,148 2,348 363.56
3 400 3,222 3,622 1,118.16
4 600 4,296 4,896 2,249.08
5 800 5,370 6,170 3,762.55
6 1,000 6,444 7,444 5,656.5
7 1,200 7,518 8,718 7,930.93
8 1,400 8,592 9,992 10,585.84

5.3.4 MULTIPLE PRODUCTS ORDER JOINTLY

At times, we may have one supplier shipping more than one product. The advantage
of delivering multiple products at the same time is reduced total shipping cost. For
example, we may have one incoming delivery truck on which all the items could be
loaded. However, each product may have different demand and, therefore, it may not
be economical to ship every product in each shipment.

Suppose we have n items. Let S be the fixed order cost and si the additional order
cost of placing item i in that order. Let other costs be the same as before, except
defined for each item i as follows:

Qi Quantity to order for item i per order
Di Demand per unit time, normally a year, for item i
Ci Cost of a unit of item i
S Order cost/order
si Additional order cost associated with item i
hi Holding or carrying cost per unit time for item i in $/$ invested/year
HI Holding cost for item i in $/unit/unit = Ci × hi

We define one more variable, mi, as the yearly frequency of order for item i. The most
frequently ordered item will have some of the other items included with its orders,
based on the values of mi.

The problem is to find optimum order quantity for each product, so that shipping
can be coordinated, which requires determination of the optimum values of mi.

Let us consider following data for three products.

Items 1 2 3
Demand/year 6000 3000 1000
Cost/unit 50 80 100
Holding cost/unit/year, Hi 12.5 20 25
Item order cost, si 50 150 200
Order cost/order 800

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 114 — #16

114 Production Planning and Industrial Scheduling

Steps of the solution procedure are as follows:

1. Determine the optimum order quantity and, from that, the optimum order
frequency for, each product.

When each product i is ordered separately, the order cost is S + si, and
therefore the associated EOQ is

Qi = SQRT

(
2D (S + si)

H

)

In our case

Q1 = SQRT

(
2×6000× (800 + 50)

12.5

)
= 903.3 Q2 = 553.8 Q3 = 282.8

And the associated order frequencies are

m1 = D1

Q1
= 6000

903.3
= 6.64, m2 = 5.4 m3 = 3.53

2. Determine the item associated with maximum mi. This is the item that
would be ordered most frequently. All other items’ order frequencies will
be adjusted so that their ordering time coincides with the ordering time of
item i. Recalculate mi.

In our case, the maximum mi = m = max (6.64, 5.4, 3.53) = 6.64.
So, the most frequently ordered item is item 1.

3. Calculate the relative frequency of order ri for each product by taking the
ratio of mi/m. If the ratio is not an integer, round to an integer value.
Rounding up or down is based on if the decimal portion is greater than or
less than 0.5.

In our case, m = max (6.64, 5.4, 3.53) = 6.64.

r1 = 1, r2 = 6.64/5.4 = 1.22 or 1, and r3 = 6.64/3.53 = 1.88 or 2

This means, for every order, items 1 and 2 are included, and for every
second order, items 1, 2, and 3 are included.

4. Reevaluate order quantity and relative frequency of the most frequently
ordered item with modified fixed portion of order cost, S, so that it is
distributed in appropriate proportion to each item.

The frequency calculations reveal relative frequencies when each item
would be in order. In our example, items 1 and 2 are in every order while
item 3 is in every other order. Reevaluate the fixed setup cost S allocation to
distribute amongst items ordered in each order. In our case it is as follows:

Order 1 2 3 4
Items ordered 1, 2 1, 2, 3 1, 2 1, 2, 3
Percentage fixed cost distribution

per item in the order set
50% 33% 50% 33%

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 115 — #17

Inventory and Capacity Planning 115

Since same ordering pattern repeats itself after second order, we can
denote two orders as the cycle time. Average percentage of fixed cost
carried by each item is then as follows:

Average or
Order 1 (%) Order 2 (%) Per-Order Cost Distribution

Item 1 50 33 (0.5 + 0.33)/2 = 0.415
Item 2 50 33 (0.5 + 0.33)/2 = 0.415
Item 3 0 33 (0.0 + 0.33)/2 = 0.165

5. Distribute fixed cost in the proportion calculated in step 4 and reevaluate
the order quantities and order frequencies.

In our case

Q1 = SQRT

(
2 × 6000

(
0.415 × 800 + 50

12.5

))
= 605.5

m1 = 6000

605.5
= 9.9

Q2 = SQRT

(
2 × 3000

(
0.415 × 800 + 150

20

))
= 380.2

m2 = 3000

380.2
= 7.89

Q3 = SQRT

(
2 × 1000 ×

(
0.165 × 800 + 200

25

))
= 162.97

6. Repeat steps 3, 4, and 5 till ri from two successive iterations are the same.
In our case, m = max(9.9, 7.89, 5.95) = 9.9.

r1 = 1, r2 = 9.9/7.89 = 1.25 or 1, and r3 = 9.9/5.89 = 1.68 or 2.

Since relative frequencies in two consecutive iterations are the same, the
procedure is stopped.

Order frequencies for each product per year are: Item 1 = 9.9, Item
2 = 9.9, and Item 3 = 9.9/2.

7. Calculate the cost.

Q1 = 6000

9.9
= 606.06 Q2 = 3000

9.9
= 303.03 and

Q3 = 1000

(9.9/2)
= 202.02

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 116 — #18

116 Production Planning and Industrial Scheduling

Determine cost. In our case,

Holding cost/year =
(

Q1H1 + Q2H2 + Q3H3

2

)

=
(

606.06 × 12.5 + 303.03 × 20 + 202.02 × 25

2

)

= 9343.42

Order cost/year = m × S +
(

m

r1

)
× s1 +

(
m

r2

)
× s2 +

(
m

r3

)
× s3

= 9.9×800+
(

9.9

1

)
×50+

(
9.9

1

)
× 150+

(
9.9

2

)
×200

= 10,890

Total purchase cost/year = D1 × C1 + D2 × C2 + D3 × C3

= 6,000 × 50 + 3,000 × 80 + 1,000 × 100

= 640,000

Total cost of inventory = 640,000 + 9,343.42 + 10,890 = $660,233.42

At times, a better answer may be obtained by applying steps 8 and 9.
8. Take the average of order frequencies for items associated with m, in pre-

vious two cycles, and fix that as the optimum order frequency. Call it p.
The reason for this is, choosing an optimum frequency of only one item
and adjusting all others to suit it may not, and most often does not, form
the optimum order frequency for the entire system. The average value of
two trials tries to make the necessary compensation.

In our case, m is associated with item 1. Initial frequency in first iter-
ation for item 1 is 6.64 and in the second iteration it is 9.9. Average is
(9.9 + 6.64)/2 = 8.27 call it p.

9. Determine the order quantity for each product which is Di/p, and then
calculate the total cost

The most frequently used item, item 1 is ordered 8.27 times a year.
Item 2 is ordered every time item 1 is ordered, and item 3 is ordered every
other time. Hence,

Q1 = 6000

8.27
= 725.5 Q2 = 3000

8.27
= 362.75 and

Q3 = 1000

(8.27/2)
= 120.9

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 117 — #19

Inventory and Capacity Planning 117

Determine the optimum cost. In our case,

Holding cost/year =
(

Q1H1 + Q2H2 + Q3H3

2

)

=
(

725.5 × 12.5 + 362.75 × 20 + 120.9 × 25

2

)

= 9673

Order cost/year = m × S +
(

m

r1

)
× s1 +

(
m

r2

)
× s2 +

(
m

r3

)
× s3

= 8.27 × 800 +
(

8.27

1

)
× 50 +

(
8.27

1

)
× 150

+
(

8.27

2

)
× 200

= $9097

Total purchase cost/year = D1 × C1 + D2 × C2 + D3 × C3

= 6,000 × 50 × 3,000 × 80 + 1,000 × 100

= 640,000

Total cost of inventory = 640,000 + 9,673 + 9,097 = $658,770

In our case, the application of steps 8 and 9 results in a better solution.

5.4 SINGLE PERIOD PLANNING

Inventory management of seasonal goods presents a special challenge. The items must
be stocked before the season begins, and if not sold during the season, the same item
cannot be sold for full price in off-season. Christmas trees are good examples. The
trees must be stocked before the season starts, and once the Christmas is over, they
have no value. Breads and other perishable items in a grocery store present similar
problem. Changing fashion presents adequate stocking of fashionable clothings a
similar challenge. A newsboy must purchase newspapers early in the morning and
must sell them during the day. At the end of day, the remaining papers have only
salvage value.

The problem is typically referred to in literature as a “newsboy problem” or
“Christmas tree problem.”

5.4.1 DISCRETE ORDER QUANTITY

When demand is small and can be approximated by discrete quantities, and the order
quantity is also same as one of these values, the following procedure, illustrated by
an example, can be applied to evaluate the optimum order quantity.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 118 — #20

118 Production Planning and Industrial Scheduling

TABLE 5.2
Profit from Purchasing Q Units with
Demand of D Units

D (Demand)

Q (Purchase) 10 20 30 40 50

10 200 200 200 200 200
20 100 400 400 400 400
30 0 300 600 600 600
40 −100 200 500 800 800
50 −200 100 400 700 1000

Consider the following example. A clothing store must decide how many new
shirts to stock at the beginning of fall season. Demand is probabilistic and, based
on the past experience, is estimated to follow the distribution given in the following
table. Other pertinent data is also given. Determine the optimum order quantity, if
order can only be placed at the beginning of the fall season.

Demand 10 20 30 40 50
Probability f (x) 0.1 0.2 0.4 0.2 0.1

Purchase price, c, is $15/unit. The sale price, p, is $35/unit. If a shirt is not sold
in the season, it can be sold at the end of the season for a salvage value, s, of $5/shirt.
Determine how many units we should order.

Unlike in the previous models, here the order cost does not play any part in the
determination of optimum Q. This is because we must place the order at the beginning,
and it does not matter what the order cost is, only one order is placed. The carrying
cost is also ignored since inventory holding time is very short and is limited to only
one cycle or period.

Let us develop a table that displays profit if Q units are purchased and D is the
demand for the units.

Profit = D × p − Q × c + (Q − D) × s for Q > D

= (p − c) Q for Q ≤ D

Calculate the expected profit for each possible value of Q based on demand dis-
tribution. Assuming we can purchase in multiples of 10 units, the profit is shown in
Table 5.2.

Since demand is not known, but has probability distribution, the expected profit
over the entire range of demand is found by calculating the expected value (Table 5.3).

We know the expected value, E(x) = ∑
xf (x).

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 119 — #21

Inventory and Capacity Planning 119

TABLE 5.3
Expected Profit

Q 10 20 30 40 50

Expected profit 200 370 480 470 400

For example, in our case,

Expected value of profit for Q = 40 is, −100 × 0.1 + 200 × 0.2

+ 500 × 0.4 + 800 × 0.2 + 800 × 0.1

= 470

Maximum expected profit is associated with Q = 30, and therefore we should
place the order for 30 units.

5.4.2 SINGLE PERIOD ORDERING WITH CONTINUOUS DEMAND

With large demands and possible order quantity values, it is more convenient to
consider demand as a continuous variable. In general, such demand has normal
distribution with a mean of µ and a standard deviation of σ .

Let us define the following terms:

Cost of understocking Cu = p − c
Cost of overstocking Co = c − s
Q∗ = optimum order size
Optimum service level (OSL) = probability that demand ≤ O∗
The probability that demand is ≤ Q∗ is OSL, and the probability that it is

higher than Q∗ is (1 − OSL).

If we purchase one unit more than optimum Q∗, the probability that we will sell
that unit is (1 − OSL), and we will have a profit of Cu, or the expected profit is
(1 − OSL) × Cu.

If the demand does not exceed Q∗, the probability of that is OSL, then by storing
one additional unit will incur a loss due to overstocking. The expected cost of the loss
is OSL × Co.

The optimum order quantity is such that any unit stocked more than optimum
quantity will incur a net loss, or

Expected profit − Expected loss ≤ 0

The minimum possible loss by adding one more unit than optimum Q, that is, Q∗, is
zero. From the preceding expression, the condition is

Expected profit = expected loss

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 120 — #22

120 Production Planning and Industrial Scheduling

or

(1 − OSL) × Cu= OSL × Co

or

Optimum OSL = Cu

(Cu + Co)

To illustrate, consider the clothing store example again, with few modifications. We
now have a large demand for the shirts, which can be approximated by a normal
distribution, with a mean of 300 and a standard deviation of 66.6. The purchase price,
c, is $20/unit. The sale price, p, is $55/unit. If a shirt is not sold in the season, it can
be sold at the end of the season for a salvage value, s, of $15/shirt. Determine the
optimum order quantity. Here,

Cu = p − c = 55 − 20 = $35

Co = c − s = 20 − 15 = $5

OSL = 35

35 + 5
= 0.875

In standard normal distribution, determine the value of z below which the area is
0.875. From a standard normal table, z∗ = 1.15.

z∗ = Q∗ − µ

σ

1.15 = Q∗ − 300

66.6

Q∗ = 300 + 66.6 × 1.15 = 376.59

Note that the optimum quantity is greater than the mean value of the demand. This is
because cost of understocking is more than the cost of overstocking, which suggests
we should meet most of the demand rather than just the mean demand.

When demand is normally distributed, the expected profit of stocking Q∗ is
given by

[(p − s) × µ × OSL] − [(p − s) × σ × vz∗] − [Q∗ × (c − s) × OSL]
+ [Q∗ × (p − c) × (1 − OSL)]

Where v(z∗) is Probability mass function (value of z function at z∗). This value can
be obtained by evaluating the following expression.

v(z) = f (z∗) = 1√
2π

e−(z/2)∗2

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 121 — #23

Inventory and Capacity Planning 121

Or evaluating NORMDIST (z∗, 0, 1, 0) from Excel.
In our case,

(p − s) = 55 − 15 = 40 (c − s) = 20 − 15 = 5 (p − c) = (55 − 20) = 35

OSL = 0.875 z∗ = 1.15 µ = 300 σ = 66.6 Q∗ = 376.59

OSL = 0.875 and v(z∗) = NORMDIST (1.15, 0,1, 0) = 0.2059 (from Excel).

Profit = (40 × 300 × 0.875) − (40 × 66.6 × 0.2059) − (376.59 × 20 × .875)

+ (376.59 × 35 × (1 − 0.875)

= $5008.76

5.4.3 BUYBACK POLICY

One interesting observation in formulas developed before, namely,

Cu = p − c Co = c − s

and

OSL = Cu

Cu + Co

If the supplier follows a buyback policy, that is, buying back any units not sold at the
end of the season for full purchase price, then c = s. In this case, Co = 0 and OSL
= 1, indicating an optimum service level of 100% and the associated z = ∞. The
corresponding optimum Q is also ∞, indicating that we should stock as many units
as physically possible.

If the buyback policy is s = f ×c, where f is a certain percentage value, optimum
Q can be easily determined for different possible percentage values by applying the
previously developed procedure.

5.4.4 EFFECT OF REDUCTION IN σ

Standard deviation represents uncertainties in demand. If we knew the demand with
complete certainty, σ should have been zero. It is possible to reduce σ by various
means such as collecting more information on expected demand or placing an order
closer to the start of the season, so that the demand distribution can be more accurately
estimated or by accumulating multiple similar products as a group for placing an order
and then customizing each item based on its demand. For example, in a clothing store
that sells customizes logo blazers, we might order all the basic blazers together and
then place different logos when demand arises rather than ordering each logo blazer
separately.

Some such alternative might increase the purchase price of a unit but may still
improve the overall profit. For in the previous example, supposing ordering closer to

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 122 — #24

122 Production Planning and Industrial Scheduling

the start of fall season reduces σ from 66.6 to 33 but suppose purchase price c also
increases from 20 to 22.

The new values are

Cu = p − c = 55 − 22 = $33

Co = c − s = 22 − 15 = $7

Or OSL = Cu/(Cu + Co) = 33/(33 + 7) = 0.825; the associated z∗ is 0.935.

z∗ = Q∗ − µ

σ

0.935 = Q∗ − 300

33

therefore,

Q∗ = 330.855

v(z∗) = NORMDIST (0.825, 0, 1, 0) = 0.2576

Profit = [(p − s) × µ × OSL] − [(p − s) × σ × v(z∗)]
− [Q∗ × (c − s) × OSL] + [Q∗ × (p − c) × (1 − OSL)]

= [(55 − 15) × 300 × 0.825] − [(55 − 15) × 33 × 0.2576]
− [330.855 × (22 − 15) × 0.825] + [330.855 × (55 − 22) × 0.175]

= $9560

Hence, reducing uncertainty in demand distribution does increase profit. The profit
might improve even if the unit price goes up, if σ can be reduced sufficiently.

Now, consider anther problem where we sell three different embalmed novelty
souvenirs for a football game. It is estimated that each item has a demand that is
normally distributed with a mean of 300 and a standard deviation of 60. Units can be
bought with three distinctive emblems already affixed. Or, alternatively, all souvenirs
can be bought as generic souvenirs, and emblems are attached when demand arises.
The second alternative does create additional cost. All impertinent information is as
follows:

P = $35, c = $10, s = $0, Additional cost for second alternative $1.

1. For first alternative: Cu = p−c = 35−10 = 25. Co = c−s = 10−0 = 10.

OSL = 25

25 + 10
= 0.714

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 123 — #25

Inventory and Capacity Planning 123

Associated z∗ = 0.568

z∗ = Q∗ − µ

σ

0.568 = Q∗ − 300

60

Q∗ = 300 + 60 × 0.568 = 334.08

Profit = [(p − s) × µ × OSL] − [(p − s) × σ × v(z∗)]
− [Q∗ × (c − s) × OSL] + [Q∗ × (p − c) × (1 − OSL)]

Profit = [(35 − 0) × 300 × 0.714] − [(35 − 0) × 60 × 0.339)]
− [334.08×(10−0)×0.714]+[334.08×(35−0)×(1−0.714)]

= $7743.91 for each product.

Total profit for all three products = 3 × 7,743.91 = $23,231.73

2. For the second alternative: Cu = p − (c + 1) = 35 − 11 = 24. Co =
(c + 1) − s = 11 − 0 = 11

OSL = 24

24 + 11
= 0.685

The associated z∗ = 0.482.

z∗ = Q∗ − µ

σ

New µ = 3 × 300 = 900, and new σ = √
3 × 60 = 103.92.

0.482 = Q∗ − 900

103.92

Q∗ = 900 + 103.92 × 0.482 = 950.08

Profit = [(35 − 0) × 900 × 0.685] − [(35 − 0) × 103.92 × 0.355]
− [950.08×(11−0)×0.685]+[950.08×(35−11)×(1−0.685)]

= $20, 310.04

In this example, ordering independent products preamble is a better alternative
than combining the products, even though σ is affected. The additional cost involved
in embalming does not make the proposition economical.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 124 — #26

124 Production Planning and Industrial Scheduling

N
um

be
r

of
 It

em
s

Q = Order quantity

Maximum
inventory level

Average
inventory level

Reorder level

t ’= Replenishment period t = Interval between orders

FIGURE 5.7 Consumption during production.

5.5 CONSUMPTION DURING PRODUCTION

When a product is produced in our plant while it is being continuously shipped to
customers or continuously consumed in production of some other products in the
plant, then it is continuously depleted at the rate of its demand even while it is being
produced. If the production rate is P units/year and demand rate is D units/year, then
inventory is accumulated at a rate of (P − D) while units are produced. For inventory
to build, production rate has to be greater than the demand rate. The time required
to produce Q units at a rate of P units is Q/P. Maximum inventory built during the
production time, Imax, is the net production rate multiplied by the time of production,
that is,

Imax = (P − D) × Q

P

Average cycle inventory = Maximum cycle inventory

2
= Imax

2

Total annual cost = D × c +
(

Imax

2

)
× H +

(
D

Q

)
× S

Taking derivative with respect to Q and equating it to zero gives

Q∗ =
[

SQRT

(
2 × D × S

H

)]
×

[
SQRT

(
P

P − D

)]

This quantity is called economic production lot size or simply economic lot size (ELS)
(Figure 5.7).

5.6 JIT INVENTORY SYSTEM

Just-in-Time (JIT) is a philosophy in which raw material or products are scheduled
to arrive at the production facility just in time for processing. It eliminates keeping

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 125 — #27

Inventory and Capacity Planning 125

a large inventory at the production facility, and at the same time allows a small
variation in the daily production rate. JIT in its expanded format also optimizes
manufacturing processes by eliminating all waste, including wasted steps, wasted
material, and excess inventory. A lean manufacturing system depends on JIT invent-
ory systems. A large part of the JIT system depends on logistics, which include
transportation, warehousing, and several strategies for handling the potential supply
chain uncertainties. JIT is easy to grasp conceptually; everything happens “just-in-
time.” Conceptually, there is no problem about this; however, achieving it in practice
is likely to be difficult!

AJIT system minimizes investment in inventory. Since materials arrive at the time
they are needed, the company minimizes inventory investment by having only work-
in-process (WIP) inventory. This eliminates the need for safety stocks, and reduces
inventory on hand. However, there must be good coordination between the company,
the supplier, and the shipping company to meet schedules for the production line. It
has been found that a well-balanced JIT system results in increased quality, a decrease
in product costs, reduction in investments, reduction in requirements, and minimum
total manufacturing, distribution, and inventory costs.

However, a JIT system does have a few drawbacks. JIT is not possible without
short distances or reliable and prompt transportation system between the customer
and supplier. JIT requires good, consistent quality, so that throughput is unaffected.

5.6.1 DISTRIBUTION STRATEGY

Since distribution plays so important apart in JIT, let us look at some of the typical
delivery/distribution systems used in a typical supply chain. They can be broadly
classified into three types:

1. Direct: Trucks travel directly from supplier to a plant. Often a large one
type of product shipment is made in this manner.

2. Milk-run (peddling): Trucks pick up products at one or more suppliers
and deliver them to one or several plants. Different products are collected,
perhaps one type from each supplier and bought to the customer.

3. Cross-dock: This system is used when we have multiple suppliers and
customers. Products are delivered from suppliers to a cross dock facil-
ity, and then are shipped from the cross dock to each customer. Different
products are collected at the cross dock facility, and only the ones that are
required by a given customer are shipped to that customer.

The three distributions strategies are illustrated in the following diagram (Figure 5.8).

Suppler

Direct

, Plant

, Milk-run

, Cross-dock

Cross-dock

The different distribution strategies have dissimilar transportation costs and times.
For example, direct delivery has the shortest transportation distance and, therefore,

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 126 — #28

126 Production Planning and Industrial Scheduling

Direct

Milk-run
Cross-dock

FIGURE 5.8 Types of distribution strategies.

the lowest transportation cost if full load (full truck) can be delivered every time. The
delivery times can also be very short, and frequent deliveries can be made. A delivery
through a cross-dock is used when the distances are long and therefore the direct
transportation cost is high and the quantity for direct shipment may not fill the entire
truck. Delivery times might be long compare to direct run. Milk run falls somewhere
in between.

There are various rules for collection and distribution that can be developed to
minimize procurement and inventory cost in a JIT system. We illustrate basic concepts
as an illustration, by applying two different rules in a milk-run procurement strategy.
One can develop many additional logical rules based on the particular situation on
hand. In our example, we have multiple sources (suppliers), each shipping a single
product to a single destination (customer), with the following facts.

1. Daily demands for all products are known, and can vary from day to day.
2. Batch size of each product may vary from day to day based on the policy

followed. Here, the “batch size” is the number of units picked up to fulfill
the “daily demand” of a particular product. Only units associated with full
day’s demand are collected in a pick-up trip since that is the only way we
can avoid a trip to the associated supplier.

3. There is one truck with known capacity available for daily transportation.
The truck capacity is large enough to accommodate one milk run through
all suppliers.

4. There is sufficient inventory at each supplier to ship the required number
of units as a pick-up policy may demand.

5. Cost of procurement for each product is known and constant and is incured
each time the truck visits a supplier.

6. If the number of units required to fulfill the “daily demand” of a product
is available at the customer site, then no truck needs to visit the associated
suppler for that day.

The objective is to develop a pick-up policy so as to minimize the total cost of pick
up and inventory for a finite time period.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 127 — #29

Inventory and Capacity Planning 127

The procedure is to perform daily evaluation of how to use excess capacity, if
one is available. Starting with the first day, apply the following steps to each day of
planning

1. Calculate the total required pick up for the day. Subtract it from the capacity
of the truck to get available excess capacity (AEC).

2. To utilize excess capacity, we must determine which product quantities (if
any) that are not immediately needed should be picked up. Additional pick
up is only possible from a supplier whom we are presently visiting. Picking
up extra units may avoid a trip to that supplier but will create an additional
inventory and associated cost.

For each supplier that is visited, calculate the possible savings as equal to the cost of
procurement minus cost of inventory. It is assumed that if additional units are picked
from a supplier, only full demand quantities for a day would be picked. This policy
assures that no visit for that day would be required and thus incurring savings in
procurement cost. Since the maximum additional quantity that can be picked is equal
to the excess capacity for that day, the analysis is only performed only for future
demands that are less than or equal to the available excess capacity.

Select the possible pick up, the product with maximum net savings. If there is a
tie between products for selecting maximum net savings, then initially, select the one
with minimum quantity. This allows maximum possible excess capacity still made
available for additional pick ups.

Subtract this quantity from the available excess or AEC, to determine the new
value for the excess capacity. Continue selection with next maximum savings, as
long as it is in continuous fashion, that is, either from the next cell in the row where
the previous pick up was made or the same day demands where present visit is being
made. If, for example, next cell’s demand exceeds the excess capacity, the associated
pick up cannot be made. Do not go to following cells (days) for the same product,
even though the savings in those cells are higher than any other product that can
be picked up presently. This is because we will have the opportunity to obtain the
additional savings due to decrease in carrying costs, as we visit the prior infeasible
cell in the following trips.

The objective is to fill the truck as much as possible. If under tie rule we had
selected a minimum quantity and even with additional pick ups, there still some
capacity left in the truck that cannot be filled, try selecting the larger demand product
from the tied pair at this time. This is because by picking up a larger quantity now, we
may have released some capacity for the following trips (example problem illustrates
these concepts).

3. Repeat step 2 until AEC becomes zero or there are no possible pick-up
policies for the excess capacity.

Backward pass: Check if any site visit can be avoided by performing the analysis
from the last day of planning and moving towards day 1. The trip can be avoided to
a site if the quantity required for a day can be picked up earlier, even in broken down
amounts. This is possible if the associated carrying cost is less than the site visit cost.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 128 — #30

128 Production Planning and Industrial Scheduling

TABLE 5.4
Data for Milk Run Example

Master Schedule

Pick-Up Cost Product/Day 1 2 3 4 5 6 7
20 1 3 5 7 3 5 7 5
18 2 13 11 9 11 13 9 8
16 3 7 9 7 10 7 10 9
14 4 5 7 9 5 7 9 5
12 5 12 10 8 12 8 10 8

Total 40 42 40 41 40 45 38

Example
There are five products, each from different suppliers, that are picked up every day
for use in our plant. Expected daily requirements for next 7 days are displayed in
Table 5.4. Every day, a truck with capacity of 50 units can be used to pick up these
products in a milk run. Procurement or pick-up cost inures every time the truck visits
a supplier to pick up a product. This is in addition to travel cost, which does not
change since the truck makes the round trip every time. Inventory carrying cost is
$1/unit/day for all products.

5.6.1.1 Day 1 Evaluation

On day 1, the total pick up is for 40 units, giving AEC = 50 − 40 = 10 units. There
are a number of products on day 2, for which demand is less than 10. There are also
demands on day 3, 4 . . . that are less than 10. Savings are calculated for each feasible
demand as follows:

Savings = pick-up cost for the product − inventory carrying cost

= pick-up cost for the product − (number of units picked up

× days picked up earlier × inventory carrying cost/day)

For example, savings for product 1 on day 2, savings = 20 − 5 × 1 × 1 = 15.
For the same product on day 4, savings is 20 − 3 × 3 × 1 = 11. The savings are
noted. When savings are zero or negative, they are marked by “−” in associated
cells.

The maximum savings is 15 with product 1 on day 2, so pick up demand of 5
units, leaving 10 − 5 = 5 units of excess capacity. Next maximum savings is for
day 4 of product 1, but since demand for product 1 has not been picked yet (pick
ups in a row are not continuous), examine other products first (go in the column for
day 1).

Products 2, 3, and 4 all have savings of 7 for day 2, but associated demands of
11, 9, and 7 respectively are greater than presently available excess capacity of 5, and

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 129 — #31

Inventory and Capacity Planning 129

TABLE 5.5
Day 1 Evaluation

Day 1: Requirements and Calculations

Product Pick-Up Cost Days 1 2 3 4 5 6 7

1 20 Daily demand 3 5 7 3 5 7 5
Savings 15 6 11 − − −
Additional pick up 5 x 3

2 18 Daily demand 13 11 9 11 13 9 8
Savings 7 − − − − −
Additional pick up x

3 16 Daily demand 7 9 7 10 7 10 9
Savings 7 2
Additional pick up x

4 14 Daily demand 5 7 9 5 7 9 5
Savings 7
Additional pick up x

5 12 Daily demand 12 10 8 12 8 10 8
Savings 2
Additional pick up x

Total pick up 40 45 48

x: cell examined but units cannot be picked
Bold entries: units picked

hence, none can be picked up. Next maximum savings is 6 associated with 1 day 2,
but again the available excess capacity (AEC) does not allow us a pick up. Product 5
for day 2 cannot be picked up because of AEC. Since there is no immediate feasible
demand cell (demand cell that can be reached in a row without a non-visit cell before
it) available with savings, now go to product 1, day 4 with savings of 11 and pick up
3 units, which is feasible (Table 5.5).

No other pick up is possible, and our total load for the truck is 48 units.

Total savings for day1 = 15 + 11 = 26

5.6.1.2 Day 2 Evaluation

Table 5.6 shows day 2 calculations. Total required pick up for day 2 is for products 2,
3, 4, and 5, resulting in 37 units. Since demand requirement for product 1 in day 2 was
picked up in day 1 trip, there is no visit to product 1 site in day 2. AEC = 50−37 = 13.
Since no site visit is made for product 1, no additional units can be picked up for that
product and therefore no savings calculations are made. Other saving calculations are
shown in the Table 5.6.

Total savings for day 2 = 9 + 4 = 13

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 130 — #32

130 Production Planning and Industrial Scheduling

TABLE 5.6
Day 2 Evaluation

Day 2: Requirements and Calculations

Product Pick-Up Cost Days 1 2 3 4 5 6

1 20 Daily demand 7 5 7 5
Savings No visit
Additional pick up

2 18 Daily demand 11 9 11 13 9 8
Savings 9 − − − −
Additional pick up

3 16 Daily demand 9 7 10 7 10 9
Savings 9 −
Additional pick up 7

4 14 Daily demand 7 9 5 7 9 5
Savings 5 4
Additional pick up 5

5 12 Daily demand 10 8 12 8 10 8
Savings 4 −
Additional pick up

Total pick up 37 44 49

Maximum savings of 9 is associated with products 2 and 3, Demands are 9 and 7,
respectively. Initially, choose product 3 with smaller demand to see if any additional
pick ups can be made. AEC is 13 − 7 = 6. We can pick up product 4 day 4 demand
of 5 units. So, pick up those units. The truck is filled to capacity 49.

5.6.1.3 Day 3 Evaluation

Table 5.7 shows the remaining pick up requirements. It also shows the days and
products cells where the quantities that are already picked up and therefore no visits
are to be made. Savings are shown in Table 5.7. Again no savings are calculated for
the product 3, since on day 3 no visit is made to pick up product 3.

Total savings for day 3 = 10 + 7 = 17

Based on savings 5 units for product 1 in day 5 are picked up first and then 11
units for product 2 for day 4 are selected next.

5.6.1.4 Day 4 Evaluation

Again, savings are only calculated for products where visit is made for day 4, namely
products 3 and 5 (Table 5.8).

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 131 — #33

Inventory and Capacity Planning 131

TABLE 5.7
Day 3 Evaluation

Day 3: Requirements and Calculations

Product Pick-Up Cost Days 1 2 3 4 5

1 20 Daily demand 7 No visit 5 7 5
Savings 10 −
Additional pick up 5

2 18 Daily demand 9 11 13 9 8
Savings 7 − −
Additional pick up 11

3 16 Daily demand No visit 10 7 10 9
Savings
Additional pick up

4 14 Daily demand 9 No visit 7 9 5
Savings 2 −
Additional pick up

5 12 Daily demand 8 12 8 10 8
Savings −
Additional pick up

Total pick up 33 49 38

TABLE 5.8
Day 4 Evaluation

Day 4: Requirements and Calculations

Product Pick-Up Cost Days 1 2 3 4

1 20 Daily demand No visit No visit 7 5
Savings
Additional pick up

2 18 Daily demand No visit 13 9 8
Savings
Additional pick up

3 16 Daily demand 10 7 10 9
Savings 9 − −
Additional pick up 7

4 14 No visit 7 9 5
Savings
Additional pick up

5 12 Daily demand 12 8 10 8
Savings 4 − −
Additional pick up 8

Total pick up 22 37

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 132 — #34

132 Production Planning and Industrial Scheduling

TABLE 5.9
Day 5 Evaluation

Day 5: Requirements and Calculations

Product Pick-Up Cost Days 5 6 7

1 20 Daily demand No visit 7 5
Savings
Additional pick up

2 18 Daily demand 13 9 8
Savings 9 0
Additional pick up 9

3 16 Daily demand No visit 10 9
Savings
Additional pick up

4 14 Daily demand 7 9 5
Savings 5 4
Additional pick up 9 5

5 12 Daily demand No visit 10 8
Savings
Additional pick up

Total pick up 20 38 43

Only requirements for day 5 for products 3 and 5 can be selected at this time.

Total savings for day 4 = 9 + 4 = 13

5.6.1.5 Day 5 Evaluation

The calculations are shown in Table 5.9. In addition to remaining day 5 pick up,
additional pick ups are product 2 day 6 and product 4 days 6 and 7.

Total savings for day 5 = 9 + 5 + 4 = 18

5.6.1.6 Day 6 Evaluation

The details are in Table 5.10. Visits to products 1, 3, and 5 are made, and a total of
49 units are picked up.

Savings for day 6 = 15 + 7 + 4 = 26

5.6.1.7 Day 7 Evaluation

Table 5.11 shows the details. Only 8 units for product 2 need to be picked.

Savings for day 7 = 0.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 133 — #35

Inventory and Capacity Planning 133

TABLE 5.10
Day 6 Evaluation

Day 6: Requirements and Calculations

Product Pick-Up Cost Days 6 7

1 20 Daily demand 7 5
Savings 15
Additional pick up 5

2 18 Daily demand No visit 8
Savings
Additional pick up

3 16 Daily demand 10 9
Savings 7
Additional pick up 9

4 14 Daily demand No visit No visit
Savings
Additional pick up

5 12 Daily demand 10 8
Savings 4
Additional pick up 8

Total pick up 27 49

TABLE 5.11
Day 7 Evaluation

Day 7: Requirements and Calculations

Product Pick-Up Cost Days 7

1 20 Daily demand No visit
Savings
Additional pick up

2 18 Daily demand 8
Savings
Additional pick up

3 16 Daily demand No visit
Savings
Additional pick up

4 14 Daily demand No visit
Savings
Additional pick up

5 12 Daily demand No visit
Savings
Additional pick up

Total pick up 8

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 134 — #36

134 Production Planning and Industrial Scheduling

Overall cost of operation =
[(

Cost

Day to visit all product sites

)

× Number of days in planning

]

− [Sum of daily savings in planning]
= [(20 + 18 + 16 + 14 + 12) × 7]

− [26 + 13 + 17 + 13 + 18 + 26]
= 560 − 113

= $447

5.6.2 BACKWARD CHECK

As a final step, a backward check is made. There are only 8 units to be picked up on
day 7 from site 2. If we can be pick up these units when the truck is visiting that site
in previous planning, that is, in days 1, 2, 3, and 5, we may be able to save the site
procurement cost of $18. Presently used and available truck capacity in these days is

Days 1 2 3 5
Truck capacity used 48 49 49 43
Capacity available 2 1 1 7

Since the total available is 11 units, it is possible to accommodate 8 units from
site 2 and avoid a trip on day 7. To reduce additional carrying cost that this policy
will incur, we should collect the excess products as close to day 7 as possible. So, if
we pick up 7 units on day 5 and 1 unit on day 3, the additional carrying cost will be
units×days picked up earlier×carrying cost = 7×(7−5)×1+1×(7−3)×1 = $18.
There is savings of 18 − 18 = 0, or there is no net savings by following this policy;
however, it may be good to give the driver off on the seventh day since it is not costing
us any additional dollars.

Total cost of operation is 447.

No other backward pass is possible due to truck capacity limitation. The present
solution is the optimum solution.

One variation of the problem is to include cost of travel. Suppose travel cost for the
truck is $50.00 per round trip, on day 7, the savings are not only for not visiting site 2
on that day, but also due to not making the entire trip together. Thus, the savings are
50 + 18 = 68. This value should be compared with additional carrying cost incures,
18 in our case. The final pick-up table is displayed in Table 5.12 with the cost of $447
without considering travel cost and $447+6×50 = $747 by considering travel cost.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 135 — #37

Inventory and Capacity Planning 135

TABLE 5.12
Final daily Pick Up Schedule

Days

Product 1 2 3 4 5 6 7

1 3 + 5 + 3 = 11 − 7 + 5 = 12 − − 7 + 5 = 12 −
2 13 11 = 11 9 + 11 + 1 = 21 − 13 + 9 + 7 = 29 − −
3 7 9 + 7 = 16 − 10 + 7 = 17 − 10 + 9 = 19 −
4 5 7 + 5 = 12 9 − 7 + 9 + 5 = 21 − −
5 12 10 8 12 + 8 = 20 − 10 + 8 = 18 −
Truck

capacity

utilized

48 49 50 37 50 49 −

5.7 RECOURSE CENTER CAPACITY PLANNING

All production plants are comprised of resource centers. They might include work
centers with multiple machines and workers and/or with single production facility or
a worker. Resource centers is where detailed everyday production takes place. They
must know what items to produce and how many units of each item to produce on a
daily basis. If capacity is available, such a schedule can be met; if not, we must do
alternate planning. This generally involves scheduling of resources.

We discuss here some of the topics in resource center planning.

5.7.1 ROUGH CUT PLANNING

This is a quick and dirty way of calculating roughly how much capacity of each center
has been promised based on the present schedule, whether such a plan is feasible,
and if additional products can be added in these periods. The estimates are based
on information that is readily available on product demand, labor and/or machine
standards, and historic utilization of each work center.

For example, suppose the MRP schedule for productsAand B for the next 5 weeks
is as shown in Table 5.13.

The time standard for each product is: product A 0.4 hr/unit and for product B
0.3 hr/unit. Products A and B use work centers W10, W11, and W12. Historically,
utilization of each work center is 50%, 40%, and 10% to produce these products.
That is, of the total time required for products roughly the time distribution for each
center is 50% in W10, 40% in W11, and 10% in W12.

The total time required for each week for each product is obtained by multiplying
the required quantity and its time standard. For example, for product A in week 1, the
time required is 50 × 0.4 = 20 hr (Table 5.14).

With the given utilization of each work center, the total time distributed in pro-
portion by which products require work centers are given below. For example, for
week 1, capacity from WC 10 = 29×0.5 = 14.5, for WC 11 = 29×0.4 = 11.6, and

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 136 — #38

136 Production Planning and Industrial Scheduling

TABLE 5.13
Demand for Products for Each Week

Week 1 2 3 4 5

Product A 50 0 50 0 50
Product B 30 30 30 30 30

TABLE 5.14
Weekly Time Requirements

Week 1 2 3 4 5

Product A 20 0 20 0 20
Product B 9 9 9 9 9

Total 29 9 29 9 29

TABLE 5.15
Time Distribution to Each Work Center

Week 1 2 3 4 5

WC 10 14.5 4.5 14.5 4.5 14.5
WC 11 11.6 3.6 11.6 3.6 11.6
WC 12 2.9 0.9 2.9 0.9 2.9

A B

X (2) Y (1) X (1) Y (1)

FIGURE 5.9 Bill of material for products A and B.

for WC 12 = 29 × 0.1 = 2.9 (Table 5.15). We can also draw bar charts to visualize
this information.

Many times, in a stable production, this information is sufficient to make any
adjustments, such as rescheduling demands and increasing capacities.

5.7.2 CAPACITY BILLS

More detailed and therefore a more accurate capacity determination technique
depends on additional information such as what is available in bill of materials and
routing information.

Bill of materials give information structure and subcomponents of the product.
For example, suppose bill of materials for products A and B are shown in Figure 5.9.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 137 — #39

Inventory and Capacity Planning 137

TABLE 5.16
Routing Information Part X

Operation Machine Aux Equipment Setup Time Hr/pc Production/hr
1 of 2 Molding 10-Injection 0.05 0.02 50
2 of 2 Cutting 20-Saw Auto Jaw 0.1 0.10 10

TABLE 5.17
Expanded Routing Sheet Information

Operation Aux Set Up
Prod Run
Time per Total Hours

Time per
Lot in

Sequence Lot Size Machine Equipment Time Piece per Unit Hours

1 of 2 Molding 50 10-Injection 0.05 0.02 0.021 1.05
2 of 2 Cutting 100 20-Saw Auto Saw 0.1 0.10 0.11 10.1

TABLE 5.18
Routing Sheet

Product/
Part Operation Lot Size

Machine/
Work center

Setup Time
in Hours

Production Run
Time/Piece

Total
Hr/Unit

Time
for Lot

A 1 of 1 30 W10 0.6 0.18 0.2 6
B 1 of 1 50 W10 2.5 0.1 0.15 7.5
X 1 of 2 100 W11 1 0.02 0.03 5
X 2 of 2 100 W12 1 0.01 0.02 2
Y 1 of 1 100 W11 2 0.08 0.1 10

It shows that product A is made with two subcomponents, X and Y, It needs 2
units of X and 1 unit of Y. Similarly, B is made of 1 unit of X and 1 unit of Y.

Routing sheet gives even further detailed information on the production of an
item. There are some variations on how exhaustive information it can have, but two
versions are shown in Tables 5.16 and 5.17.

If the number of units to produce is large and the setup time is negligible compare
to total production time, we might have routing sheet similar to the following one
(Table 5.16).

When lot size is predetermined, we might be able to distribute set time to each
piece produced. For example, we might transfer the above routing information sheet
to Table 5.17.

In our example, suppose the routing information is condensed in Table 5.18.
From here, we can determine the time taken to produce each product A and B in

each work center.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 138 — #40

138 Production Planning and Industrial Scheduling

TABLE 5.19
Work Center Utilization

Week 1 2 3 4 5

WC 10 50 × 0.2 +30 × 0.15 = 14.5 4.5 14.5 4.5 14.5
WC 11 50 × 2 × 0.03 + 50 × 0.1 + 30 × 0.03 + 30 × 0.1 = 11.9 3.9 11.9 3.9 11.9
WC 12 50 × 0.02 + 30 × 0.02 = 1.6 0.6 1.6 0.6 1.6

To produce product A, we need 2 units of X and 1 unit of Y. The time requirements
in each center are displayed in a routing chart.

Time for product A = Time for A in W10 + 2 × Time for X in W11

+ 2 × Time for X in W12 + Time for Y in W11

= 0.2 + 2 × 0.03 + 2 × 0.02 + 0.1 = 0.4

Similarly Time for B is = 0.15 + 0.03 + 0.02 + 0.1 = 0.3
For weekly demand displayed below:

Week 1 2 3 4 5
Product A 50 0 50 0 50
Product B 30 30 30 30 30

Utilization of each work center would be as shown in Table 5.19.
These utilization hours are different from the ones where we had based our

allocation on historical data alone. In a historical prospective, all products man-
ufactured in a center are used to develop average utilization data. When we use
bill of materials and routing data, we are much more specific to the products on
hand. And that also illustrates the difference between rough cut and capacity bill
planning.

5.7.3 NUMBER OF MACHINES NEEDED

Once we have determined work load at each work center, next step would be to
establish resources needed to perform the work. For example, if the plant is operating
at 95% efficiency, realistically we only have 480 × 0.95 = 456 min of working time.
Collected production data as shown above must be modified to account for shrinkage
allowances, personal times and for factors such as material handling efficiencies, tools
availability, and other factors that may stop production. For example, consider WC
10; if shrinkage allowance is 3% for product A and 2% for product B and personal

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 139 — #41

Inventory and Capacity Planning 139

allowance is 8%, then the data can be modified as follows:

Number of units of A production should start = Number of units needed

×(1 + Shrinkage allowance)

Standard time for production = Actual production time × (1+Personal allowances)

Available production time

Machine
= Daily production time × Plant efficiency Available

In our case, for week 1

Number of A required = 50 × (1 + 0.03) = 51.5 or 52

Number of B required = 30 × (1 + 0.02) = 30.6 or 31

Standard time per unit for A = 0.2 × (1 + .08) = 0.216

Standard time per unit for B = 0.15(1 + 0.08) = 0.162

Total load = 52 × 0.216 + 31 × 0.162 = 16.254

Machines needed = 16.254

(8 × 0.96)
= 2.116 or 3.

5.8 THEORY OF CONSTRAINTS

The operation of a manufacturing plant is a process that combines many work centers
together. In fact, if we look at the entire production operation, it involves many work
centers including purchasing of raw material, manufacturing of products, distribution
of the finished products, and even includes departments such as finance, sales, and
human resources. Again, within each department, there may be many individual
work centers.

Not all departments and work centers perform at the same pace nor do they have
equal resources to do so.

Consider a simple example, consisting of three work centers in series. If pro-
duction rate of first station is 60/hr, second work center 45/hr, and third 30/hr, then
maximum production rate of this system is 30/hr.

WS 1 WS 2 WS 3
60/hr 45/hr 30/hr

The only way to increase the production rate is to increase the rate at WS3. Thus,
WS3 is the bottleneck work station or constraint in this flow. It is not productive to
spend additional resources to increase flow rates in nonbottleneck work stations.

The theory of constraints has some basic rules. Make sure that constraint work
center is working to the fullest extent possible ‘Drumings’ all times. Take out all
inefficiencies from that work center. Only well-trained workers should work at the
constrain station. Ensure that machines do not break down; that means having a good

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 140 — #42

140 Production Planning and Industrial Scheduling

preventive maintenance program. Ensure that the bottleneck machine is not starved
or chocked, and that is units are available when needed and moved immediately out
of machine when processing is complete. This may mean altering scheduling at other
work stations so that units are available at the bottleneck machine when needed, by
providing ‘buffer’for inventories and ‘rope’to pull units from the bottleneck machine.
This is called Drum, Buffer, Rope system.

Increasing the capacity of the bottleneck station by adding additional shifts, over-
time, and additional parallel machines and work centers are other means of increasing
capacity. We need to be careful though, as it may not increase throughput capacity as
much as increase of capacity in the bottleneck machine as some other station may now
become the bottleneck. For example, the addition of one more WS 3 increases the
total capacity of WS 3–60, but now WS 2 is the bottleneck, with throughput of 45/hr.

It was fairly easy in our example to identify the bottleneck machine. But this
may not be the case when the systems are complex. And, even if we can identify
the bottleneck machine, how do you make sure that continuous flow of units can
be maintained? Many products are manufactured, perhaps using different machines
in different sequences with different times on each machine. It is very difficult to
sequence the jobs without some help.

Scheduling techniques discussed in the next chapters are the ways to optimize
the entire system, including the bottleneck machine. Different methods are applied,
based on the system configurations and objectives, as we shall discuss in scheduling
chapters.

5.9 SUMMARY

All the topics covered so far, such as forecasting, material requirement planning,
and inventory control, lead to decisions on what to produce, when to produce, and
how much to produce to make the system run efficiently and economically. Even
when to ship and how much to ship are decisions made with distribution requirement
planning.

All the planning is feasible if sufficient production capacity is available when
needed. Aggregate planning tries to resolve capacity issue to a certain extend, by
subcontracting, increasing capacity by over times, and/or by adding work shifts and
by changing the workforce. Even with such planning, we ultimately need capacity to
produce.

In the next chapters, we go to each production center within the plant, where
day-to-day capacity planning must be done. This planning directly lead us to
scheduling, the next important topic in production planning.

5.10 EXERCISE

5.1 An item has a demand of 650 units for a year. Cost of each unit is $55,
reorder cost is $100, and holding cost is 15% of value of the unit cost
per year. No shortages are allowed.
a. Describe the economic order quantity.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 141 — #43

Inventory and Capacity Planning 141

b. Determine the total minimum cost per year and order and carrying
cost per year.

c. If only 100 units can be ordered at a time, calculate the
costs.

5.2 A university bookstore sells the book “Things You Learn at University.”
The annual demand of the book is 1500 units. The book can be ordered
any time, and the ordering cost is $34 per order. The holding cost for
the book is $0.50 per unit per month. The store is looking to reduce its
inventory cost by determining the optimal number of books to obtain
per order.

Calculate
a. Optimal order quantity
b. Expected number of orders and expected time between orders
c. Annual order cost
d. Total annual cost for the store
Also, verify that to reduce the optimal lot size by a factor k, the fixed
cost of order cost has to be reduced by a factor of k2.

5.3 For the Problem 5.2, for the next 2 years it has been predicted that the
demand, which presently is 1500, will increase by 50% in the first year
and then reduce by 25% in year 2. Recalculate the optimal lot size(s)
and the number of orders to be placed.

5.4 A company that operates 52 weeks a year is concerned about its
inventory of plastic tubes. There is a demand of 7500 m a week,
which costs $10 a meter. The replenishment cost of these tubes is
$42 for administration and $58 for delivery, while holding costs
are determined as 25% of value held a year. No shortages are
allowed.
a. What can be the inventory policy for these tubes?
b. What is the gross profit if the company sells tubes for $15 a meter?
c. If the lead time is 1 week, what is the reorder point?

5.5 In Problem 5.4, if a periodic review policy is used, determine the
optimum review period.

5.6 A product has an average demand of 800 units per year. The unit cost of
the product is $50. The carrying cost is $20/unit/year, and the order cost
is $300. Assume that the preferred safety stock is for 20 units. For past
10 weeks, the demand has been as follows:

Week 1 2 3 4 5 6 7 8 9 10
Demand 50 69 45 32 54 71 33 48 59 70

Determine the actual order quantities per order over the past 10 weeks
based on the periodic review policy.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 142 — #44

142 Production Planning and Industrial Scheduling

5.7 KPElectronics needs to determine the order quantities and reorder points
for computer parts that it sells. The following data refers to the computer
monitor:

Cost to place an order $49
Holding cost 15% of the product cost per year
Cost of computer monitor $150 each
Annual demand 700
Standard deviation during lead time 15
Lead time 7 days

The demand for the monitor occurs 365 days a year.
Calculate the economic order quantity. If the firm wants to provide

95% of customer level of service, what reorder point, R, should be used?
5.8 The monthly demand of hamburger patties in a university cafeteria is

3000 units. The ordering cost for the meat patties is $17/order, and
the holding cost is $0.25 per unit per year. For quality of food, the
management does not want to keep the patties more than 15 days in
its freezer.

Calculate the reorder point and size. Also, find the average inventory
level.

5.9 There are four products in the store. Demand for each product are as
follows:

Product Demand/Day

1 10 ± 2
2 12 ± 3
3 15 ± 3
4 11 ± 2

If the lead time for each product is 5 days, determine the safety stock
to serve 95% of the time if:
a. Each product is independent and hence cannot be substituted for

one another.
b. If demand for any product can be substituted by other available

product if the demanded product is not available.
5.10 ABC manufacturers needs ball bearings to manufacture it various

products. The supplier of ball bearing has offered quantity discounts
if the company purchases more than the present order quantities. The
new volume and prices are:

Order Quantities Cost per Bearing (in $)

0–499 3.20
500–999 3.00
1000 and more 2.90

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 143 — #45

Inventory and Capacity Planning 143

Further, the ordering cost is $32 per order, the annual demand is
6000 units, and the cost of inventory is $0.6 per year per bearing.
a. Determine the optimum policy if all unit quantity discount is

allowed.
b. Determine the optimum policy if marginal quantity discount is

allowed.
5.11 The demand of a product is 520 per month. To maintain a customer level

satisfaction of 95% with a lead time of 1 week, find the safety stock and
reorder point.

5.12 There are four similar products of different brands, each having demand
of 75 units per day and standard deviation of 6 per day. If one product
is not available, the customers are satisfied with the other brands. With
a lead time of 4 days to provide 99% customer service determines the
safety stock and when to reorder the products.

5.13 Freeman Motor Company has a normally distributed demand for a new
car model during its reorder period. The average demand during this
period is 250, and the standard deviation is 10 cars. The manager wants
to know how much safety stock it should maintain if they maintain stock
outs only 5% of the time.

5.14 A company uses 1200 units per year. It cost $300 per order, and the
carrying cost is $12 per unit per year. The unit cost is $100. A new
proposition manufacturer has offered one-time 7% off if we buy more
than EOQ units. How many units should we buy?
b. Another manufacturer has agreed to sell the unit for $95 if the

quantity ordered is greater than 300. Should we go with this
alternative?

5.15 In the following example, either joint or individual order can be
placed.

Item 1 2 3
Demand/year 4,000 3,000 10,000
Cost/unit in $ 20 30 40
Holding cost/unit/year in $ 10 15 13
Item cost in $ 100 150 225
Order cost/item in $ 40 50 40
Order cost in $ 1,000

5.16 A local toy manufacturer uses computer chips in one of its products.
The annual usage of these computer chips is 25,000 units and maybe
assumed to be uniform over the year. The carrying cost for any inventory
in the plant is taken as 20% for every dollar invested for a year. The
current supply comes from four different distributors, and the maximum
quantity a supplier can supply and some other data are shown in the
following table.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 144 — #46

144 Production Planning and Industrial Scheduling

Distributor Quantity Cost per Unit ($) Order Cost
Ruston 8,000 4 $20
Monroe 10,000 4.5 $30
Shreveport (A) 11,000 5.0 $25
Shreveport (B) 5,000 6.0 $10

Develop a strategy of purchasing to minimize the annual cost.
5.17 An item has an annual demand of 2500 units, each order costs $13 to

place, and the yearly holding cost is 35% of unit cost. The unit cost
depends on the quantity ordered as given:
a. Ordered quantity less than 999—unit cost is $1.5
b. Quantities between 999 and 1499—unit cost is $$1.1
c. Quantities 1500 and more—unit cost is $.80
What is the optimal ordering policy?

5.18 An order must be placed for the coming New Year celebration. Past
experience has shown that the demand for firework boxes have the
following distribution.

Demand 150 200 225 250 300
Probability 0.1 0.2 0.3 0.2 0.2

The purchase price is $30/box, and the sales price is $50/box. Based
on the county ordinance, any fireworks left over after the week has no
value since it cannot be stored in the city limits. Determine the order
quantity.

5.19 Suppose in Problem 5.18 that the demand is large enough to be approxim-
ated by normal distribution with a mean of 230 and a standard deviation
of 25. Determine how many units to order.

5.20 In Problem 5.18, suppose the manufacturer will buy back any leftover
firework boxes for $20/box. Determine how many units of order should
be placed.

5.21 The expected demand for two products for the next 6 weeks is as follows:

Week 1 2 3 4 5 6
Product X 50 30 20 10 40 20
Product Y 10 20 15 15 20 15

Time required to produce X is 13 hr/unit and for Y is 1 hr/unit.
Product X uses work centers W1, W2, and W3, while Y uses W2 and
W3. The work center efficiencies are: W1 80%, W2 90%, and W3 70%.

Perform rough cut planning for three work centers.
5.22 Two products are produced in the plant P1 and P2. Demands for the

products are 500 units/week and 1000 units/week, respectively. The

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 145 — #47

Inventory and Capacity Planning 145

plant works 40 hr/week. The following parts go into making each
product.

P1
A1 (2 units) A2 C1

P2
A1 A2 C2

The routing sheets for different products are as follows:

Operation Machine Setup Time/hr Production/hr

Product P1
1 of 2 M1 1.1 50
2 of 2 M2 2.3 15
A1
1 of 2 M3 0.2 10/hr
2 of 2 M2 1.4 10/hr
A2
1 of 1 M3 1.5 15/hr

C1 and C2 are purchased from outside.
Determine the number of machines of each type that are needed.

5.23 In Problem 5.22, product P1 sells for $50 and P2 for $30. Each hour of
working on machines M1, M2, and M3 cost $6, $7, and $8, respectively.
If we have two machines of each type, determine the number of units of
P1 and P2 to produce to optimize the profit.

5.24 Develop an efficient truck pick-up schedule for a milk run strategy to
pick up the following. The inventory carrying cost is $0.8/day/unit

Master Schedule

Pick-up Cost Product/Day 1 2 3 4 5 6 7

30 1 7 5 8 3 5 7 5
18 2 13 11 9 15 13 9 11
22 3 7 7 7 10 7 12 9
14 4 5 7 9 5 7 9 5
16 5 12 10 8 12 8 10 8

5.25 If a trip travel cost in Problem 5.24 is $75, determine the pick-up schedule
and the associated cost.

Dileep: “44206_c005” — 2007/9/17 — 14:53 — page 146 — #48

146 Production Planning and Industrial Scheduling

REFERENCES AND SUGGESTED READINGS

Baker, K.R., M.J. Magazine, and H.L.W. Nuttle. August 1986. “The Effect of Commonality
on Safety Stock in a Simple Inventory Model” Management Science, 32(8).

Berry, W.L., T. Schmitt, and T.E. Vollmann. November 1982. “Capacity Planning Techniques
for Manufacturing Control Systems: Information Requirements and Operational
Features” Journal of Operations Management, 3(1).

Blackstone, J.H. Jr. 1989. Capacity Management, Cincinnati, OH: South-Western Publishing.
Brown, R.G. 1967. Decision Rules for Inventory Management, New York: Holt, Rinehart &

Winston.
Burlingame, L.J. “Extended Capacity Planning” APICS Annual Conference Proceedings, 1974,

pp. 83–91.
Constable, G.C. and D.C. Whybark. October 1978. “The Interaction of Transportation and

Inventory Decisions” Decision Sciences, 9(4): 688–699.
Crowther J. 1964. “Rationale for Quantity Discounts” Harvard Business Review,

(March–April): 121–127.
Dolan Robert, J. 1987. “Quantity Discounts: Managerial Issues and Research Opportunities”

Marketing Science, 6: 1–24.
Lankford, Ray. “Short Term Planning of Manufacturing Capacity.” APICS 21st Annual

Conference Proceedings, 1978, pp. 37–68.
Lee Hau L. and Corey Billington. 1992. “Managing Supply Chain Inventory” Sloan

Management Review, Spring: 65–73.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 147 — #1

6 Single Machine
Scheduling

The broad subject of scheduling is introduced next in Part II. There are various
topics and problems in scheduling, and they are discussed in the subsequent chapters.
We shall start with the broadest application and narrow it down in the subsequent
chapters to detail shop floor planning.

In this chapter, we introduce the basic problem of single machine sequencing.
The basic problem can be stated as follows (See also Figure 6.1): there are a number
of jobs (works, demands, etc.) requiring the services of a single machine (a facility,
a person, etc.), and we want to schedule these jobs in the best possible manner to
optimize some objectives. There are, in practice, many different objectives, and
one may be more dominant over another in a specific instance. There are many
variations of the problem and solution procedures. In some instances, for example,
it may be more important to minimize the penalty for completing jobs late (called
tardiness penalty), while in other instances, it may be paramount that we meet certain
specified due dates without exception. In yet another problem, a job may be delivered
within a certain range of due dates, and the penalty occurs only if we are earlier
than the earliest specified due date or later than the latest specified due date for the
job. There are many other objectives; however, we will study the basic problem in
this chapter, while its variations are introduced in Chapter 7. Fortunately, most of
the variations require slight modifications to the heuristic procedure developed in
Section 6.3.

Job 6

Job 5

Job 4

Job 3

Job 2

Job 1

CNC M/C

FIGURE 6.1 Single machine scheduling setup.

147

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 148 — #2

148 Production Planning and Industrial Scheduling

6.1 TARDINESS PROBLEM

The definition of the basic single machine tardiness problem is as follows.
We have n jobs to schedule on a single machine. For each job, the processing

time Pi, the due date Di, and the cost per unit time of tardiness Li are known.
The tardiness cost for a job is assumed to be linear, that is, if a job i is finished
t time units after the due date, a penalty of Li × t is incurred. If a job is completed
before its due date, there is no penalty. The objective is to minimize the total tardiness
penalty, which is defined as the sum of the tardiness cost of each job. This problem
is commonly referred to as the single-machine scheduling problem with tardiness
penalty.

Implied in the problem statement are some assumptions: All jobs are available
for processing at time zero. Setup times for the jobs are sequence independent and
may be included in the processing times. Once the job is taken up for processing,
it is continuously worked on without interruptions, and there is no machine failure;
therefore, the machine is available for work all the time.

The practical and industrial applications of the problem are considerable.
For instance, in scheduling n jobs on a single machine such as a lathe, the processing
times for each job may vary based on the number of units and the amount of work
needed for the job. The due dates and penalty values are established due to idleness
or availability of the succeeding resources such as next required machines or trans-
portation facilities. In scheduling n jobs in a job shop environment, for example, the
entire manufacturing facility may be treated as a “single machine.” Here, the jobs are
customer specified, and the due dates and penalty functions are negotiated in advance.
In an office environment, a manager might schedule his or her meeting appointments,
based on time required for the meeting and the importance of the meeting measured
as consequences or penalties that may result from not making on time the decisions
that may result from the meetings. A bottleneck facility may also be viewed as a
single machine. Bottlenecks occur because of capacity limitations, and jobs requiring
services of this facility must be scheduled to satisfy one or more of the objectives
discussed in Chapters 6 and 7.

6.2 SURVEY OF EXACT METHODS FOR
SINGLE-MACHINE SCHEDULING PROBLEM

6.2.1 EXHAUSTIVE ENUMERATION

Computationally, the solution to the single-machine sequencing problem could be
very demanding. We could develop all possible sequences defining the order in which
the jobs could be processed, find the penalty for each sequence, and then select a
sequence that gives the minimum penalty as the optimum sequence. This approach is
called an exhaustive enumeration. The problem with exhaustive enumeration is that
examination of all possible sequences would entail analysis of n! combinations. For
a large value of n, this is an impossible task. Mathematicians call such a problem as
NP-complete or NP-hard, meaning the problem cannot be solved in polynomial time
as n gets large. Quite often, the time required to solve such a problem (by hand or

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 149 — #3

Single Machine Scheduling 149

on computer) increases exponentially with respect to n. This makes it impractical to
apply exhaustive enumeration in almost all cases except in a few problems where
“n” is relatively small, generally less than 10.

6.2.2 BRANCH-AND-BOUND ALGORITHM

An approach to reduce the number of sequences that must be examined from n! to
a somewhat manageable level is to apply a branch-and-bound method. This method
can be used to solve any optimization problem that has a finite number of feasible
solutions, and is called combinatorial optimization.

The steps of the branch-and-bound method as they are applied to a sequencing
problem are as follows:

Step 1: Determine the job to be processed last. In any sequence, there is always
a job that is processed last, and if there are no restrictions, any job can be
processed last. Draw a tree diagram indicating a node for each possible job
to be processed last.

Step 2: Calculate the lower bound on the total penalty (W) associated with the
node. The total penalty is the due date of the job subtracted from the sum
of the processing time of the remaining jobs (jobs that are not yet assigned
to nodes in the branch, including the job under consideration for the present
node) multiplied by the penalty weight (L) for the job.

Step 3: Select the node with the lowest lower bound penalty value (parent
node) for branching. Each of the remaining jobs can be processed in the
next position, so construct nodes for each of these jobs. Develop branches
connecting these nodes from the parent node.

Step 4: Calculate the late penalty for each of the jobs on the nodes developed
in step 3. The penalty is calculated as in step 2 and added to the lower bound
of the parent node to obtain the lower bound of the present node.

Step 5: Repeat steps 3 and 4 until the first sequence is determined. This penalty
value is the initial minimum penalty value.

Step 6: Search the tree diagram, eliminating all nodes that have lower bounds
above the current minimum value.

Step 7: Begin branching on each of the nodes that remain, eliminating nodes
where lower bounds are above the current value. Replace the current
minimum lower bound with the new minimum value if one is found.

Step 8: Once all other nodes have been eliminated, the current lower bound
will be the total penalty for the associated sequence of jobs.

6.2.2.1 Illustrative Example 1

Let us illustrate these steps by applying them to the data in Table 6.1.
Applying the branch-and-bound method to the data in Table 6.1 yields the tree

diagram in Figure 6.2.
In step 1, nodes 1, 2, 3, and 4 are constructed, indicating that each of the four jobs

could be processed in the last position of the sequence.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 150 — #4

150 Production Planning and Industrial Scheduling

TABLE 6.1
Data for an Example Problem 1

Job
Number

Processing
Time Pi

Due Date
Di

Weight
Li

1 37 49 1
2 27 36 5
3 1 1 1
4 28 37 5

In step 2, we get the lower bounds of the penalties at this stage. For example,
for node 1, the total processing time for all remaining jobs, including the job to be
scheduled at this point (presently all four jobs), is 37+27+1+28 = 93. Subtracting
the due date of job 1 yields 93 − 49 = 44. Multiplying 44 by the penalty weight for
job 1, yields W > 44 (44 × 1), where W indicates the total penalty for the sequence.
Similarly, the lower bound on the penalty values for the remaining jobs is W > 285
(node 2), W > 92 (node 3), and W > 280 (node 4).

Step 3 selects job 1 as the branching node since 44 is the lowest penalty value of
the four nodes. Since job 1 is now assigned to position 4, step 3 also constructs nodes
branching from job 1 for jobs 2, 3, and 4.

Step 4 calculates the lower bound for these jobs. For example, consider node 6.
The total processing times for jobs that are not yet scheduled, that is, jobs 2, 3, and 4
is 27 + 1 + 28 = 56. The due date for job 3, which is being considered for this
node, is 1. Hence, the penalty for job 3 is (56 − 1) × 1 = 55 added to the penalty of
node 1 from where the branching has started, gives the lower bound on the penalty
as W > 55 + 44 = 99. Similarity, W > 144 for node 5 and W > 139 for node 7.

Of all the nodes that are open (from which further branches can be developed)
node 3 has the lowest cost of 92. Develop nodes 8, 9, and 10 by placing jobs 1, 2,
and 4 respectively in Position 3 of the sequence.

From amongst the nodes 2, 4, 5, 6, 7, 8, 9, and 10, node 6 has the least cost.
Proceed from that node to develop nodes 11 and 12 by placing Jobs 2 and 4 in the
second position.

Of nodes that are open, node 8 has the least cost. Develop nodes 13 and 14.
Continuing in the same manner node 17 gives the minimum cost of 139. It is also

a completed sequence with jobs assigned in each position. No other open node has a
cost less than 139 and therefore no further analysis is needed.

The optimum sequence is 3-2-4-1 with a minimum penalty of 139.

6.3 COMMONLY USED HEURISTIC RULES

The branch-and-bound method is computationally more efficient than exhaustive
enumeration, but for a large value of n, it still requires high computational time and
effort. Most of the real-life problems, therefore, are solved by some heuristic methods.
Eight different rules have been prominently used in literature to solve the single

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 151 — #5

Single Machine Scheduling 151

N
od

e
1

Jo
b

1
W

 ≥
 4

4
P

os
iti

on
 4

P
os

iti
on

 3

P
os

iti
on

 2

P
os

iti
on

 1

N
od

e
5

Jo
b

2
W

 ≥
 1

44

N
od

e
17

Jo
b

3
W

 =
 1

39

N
od

e
11

Jo
b

2
W

 ≥
 1

94

N
od

e
12

Jo
b

4
W

 ≥
 1

89

N
od

e
15

Jo
b

2
W

 ≥
 1

39

N
od

e
16

Jo
b

3
W

 ≥
 1

66

N
od

e
13

Jo
b

2
W

 ≥
 2

30

N
od

e
14

Jo
b

4
W

 ≥
 2

35

N
od

e
6

Jo
b

3
W

 ≥
 9

9

N
od

e
7

Jo
b

4
W

 ≥
 1

39

N
od

e
8

Jo
b

1
W

 ≥
 1

35

N
od

e
9

Jo
b

2
W

 ≥
 3

72

N
od

e
10

Jo
b

4
W

 ≥
 3

67

N
od

e
2

Jo
b

2
W

 ≥
 2

85

N
od

e
3

Jo
b

3
W

 ≥
 9

2

N
od

e
4

Jo
b

4
W

 ≥
 2

80

FI
G
U
R
E
6.
2

B
ra

nc
h

an
d

bo
un

d
tr

ee
fo

r
si

ng
le

m
ac

hi
ne

sc
he

du
lin

g
ex

am
pl

e.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 152 — #6

152 Production Planning and Industrial Scheduling

machine problem (Ahmed, 1992; Baker, 1974; Conway, 1967; Johnson, 1974). They
are briefly described, then illustrated by an example.

6.3.1 EARLIEST DUE DATE RULE

A schedule is developed considering the due dates of the jobs. Start by placing the
job with the earliest due date (EDD) in the first position. The next job scheduled is
the job that has the EDD from among the jobs that are yet to be scheduled. Continue
this process until all the jobs are scheduled. The resulting sequence is the same if the
jobs are arranged and processed in ascending order of their due dates.

6.3.2 COST OVER TIME (COVERT) RULE

Few additional notations are defined to explain this rule.

TT: Sum of all processing times.
RT: Sum of processing times of the jobs that are yet to be scheduled.
ST: Starting time for the next scheduled job. It is zero for the first job.
CF: Coefficient that is calculated as explained below.
PR: Priority that is calculated as explained below.

The COVERT rule has three steps.

Step I. Calculate PR. For all jobs that are yet to be scheduled, PR is calculated
as follows:

Case 1: If Di < (ST + Pi), then PR = 1
Case 2: If (Di > (ST + Pi)) and Di < TT, then PR = ((TT − Di)/

(RT − Pi))

Case 3: If TT ≤ Di, then PR = 0.
Step II. Calculate CF for a job i, yet to be scheduled as:

CFi = PR × Li/Pi

Step III. Job with the maximum CF is scheduled next.
ST and RT are recalculated with the remaining jobs, and the steps are

repeated.

6.3.3 SHORTEST PROCESSING TIME (SPT) RULE

Arrange the jobs in the ascending order of their processing times and schedule them
in the same order.

6.3.4 LARGEST PENALTY PER UNIT LENGTH (LPUL) RULE

For each job, calculate a ratio, Ui = Li/Pi. Schedule the jobs in the descending order
of Ui. In case of a tie, from among the tied jobs, the job with the smallest processing
time is selected next.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 153 — #7

Single Machine Scheduling 153

6.3.5 SHORTEST PROCESSING TIME AND LPUL RULE

Use SPT rule to schedule the jobs. In case of a tie, break it using Ui from
LPUL rule.

6.3.6 SHORTEST WEIGHTED PROCESSING TIME (SWPT) RULE

Calculate ratio Si = Pi/Li for each job. Jobs are scheduled using the ascending order
of the ratios.

6.3.7 LARGEST WEIGHT (WT) AND LPUL RULE

Arrange the jobs in descending order of their weights Wi and schedule them in the
same order. Break a tie by using LPUL rule.

6.3.8 CRITICAL RATIO (CR) RULE

Calculate the value for T , which is the sum of processing times for all the jobs that
have been scheduled. Calculate the ratio CRi for each unscheduled job i, which is
equal to (Di −T)/Pi. The job with the smallest value of CR is scheduled next. Repeat
the process until all the jobs are scheduled.

6.3.8.1 Illustrative Example 1

Next, we apply the rules to the data in Table 6.1.

6.3.8.1.1 EDD Rule
According to EDD rule, the job having the EDD is processed first, the job with the next
EDD is processed second, and so on. In our example, the job processing sequence
would be 3-2-4-1. The evaluation of this sequence is shown in four lines. The first line
is the job sequence line. It shows the starting time, processing time, and completion
time for a job. The notation is: the number to the left of parenthesis is the starting
time for the job, within parenthesis are the job number and the job’s processing time,
and the number to the right of parenthesis is the completion time of the job, which
also is the starting time of the next job. The next line is the due date line, which
indicates a job number in the parenthesis and its due date to the right. The third line
is the deviation line. It compares the completion time and due date for each job and
determines if the job is early (E), late (L), or on time (W), and by how many days. In
this line, we note the number of days of deviation from the due date and mark it with
the associated symbol (E, L, or W). The penalty for the sequence is calculated in the
fourth line.

Job sequence: 0 (3/1) 1 (2/27) 28 (4/28) 56 (1/37) 93.

Due dates: (3) 1 (2) 36 (4) 37 (1) 49

Deviation: 0/W 8/E 19/L 44/L

Penalty: (5 × 19) + (1 × 44) = 139

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 154 — #8

154 Production Planning and Industrial Scheduling

6.3.8.1.2 COVERT
Calculations associated with the application of the COVERT rule to the example
problem are shown next.

Iteration 1. TT = 93; RT = 93; ST = 0.
The unscheduled job list consists of all jobs, namely job 1, 2, 3, and 4. The calculations
for PR and CF for each unscheduled job are

Job 1: 49 > (0 + 37) hence PR1 = (93 − 49)/(93 − 37) = 0.785.
CF1 = 0.785 × 1/37 = 0.0212

Job 2: 36 > (0 + 27) hence PR2 = (93 − 36)/(93 − 27) = 0.864.
CF2 = 0.864 × 5/27 = 0.16

Job 3: 1 = (0 + 1) hence PR3 = 1. CF3 = 1 × 1/1 = 1

Job 4: 37 > (0 + 28) hence PR4 = (93 − 37)/(93 − 28) = 0.862.
CF4 = 0.862 × 5/28 = 0.153

Since job 3 has the largest CF value, it is selected and scheduled in the first place.
Job 3 is also taken off from the unscheduled job list.

Iteration 2. TT = 93 RT = (93 − processing time for job 3) = 93 − 1 = 92.
ST = 1

Unscheduled jobs are 1, 2, and 4. The calculations for PR and CF are

Job 1: 49 > (1 + 37) hence PR1 = (93 − 49)/(92 − 37) = 0.800;
CF1 = 0.8 × 1/37 = 0.022

Job 2: 36 > (1 + 27) hence PR2 = (93 − 36)/(92 − 27) = 0.877;
CF2 = 0.877 × 5/27 = 0.162

Job 4: 37 > (1 + 28) hence PR4 = (93 − 37)/(92 − 28) = 0.875;
CF4 = 0.875 × 5/28 = 0.156

Since job 2 has the largest CF, it is selected for the second position.
Iteration 3. TT = 93 RT = (92 − 27) = 65; ST = 1 + 27 = 28.
Unscheduled jobs are 1 and 4. The calculations for CF and CR are:

Job 1: 49 < (28 + 37) hence PR1 = 1; CF1 = 1 × 1/37 = 0.027
Job 4: 37 < (28 + 28) hence PR4 = 1; CF4 = 1 × 5/28 = 0.178

Job 4 is scheduled in the third position, and the remaining job, job 1, is scheduled in
the last position. The final sequence is 3-2-4-1.

This is the same sequence as obtained with EDD rule and hence the penalty for
the sequence is the same, that is, 139.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 155 — #9

Single Machine Scheduling 155

6.3.8.1.3 SPT Rule
Ranking jobs based on shortest processing time leads to the sequence 3-2-4-1. This
sequence is the same as we have obtained using the EDD and COVERT rules.

6.3.8.1.4 LPUL Rule
The calculations for LPUL rule are shown below.

Job 1: U1 = 1/37 = 0.027
Job 2: U2 = 5/27 = 0.185
Job 3: U3 = 1/1 = 1.0
Job 4: U4 = 5/28 = 0.178

Scheduling jobs in descending order of U results in the sequence: 3-2-4-1, the same
as other methods.

6.3.8.1.5 SPT and LPUL Rule
Since the application of LPUL resulted in no ties, the SPT/LPUL rule leads to the
same schedule.

6.3.8.1.6 SWPT Rule
The calculations for Si are as follows:

S1 = 37/1 = 37
S2 = 27/5 = 5.4
S3 = 1/1 = 1.0
S4 = 28/4 = 5.6

Arranging jobs in ascending order of Si leads to the schedule 3-2-4-1, the same as
before.

6.3.8.1.7 Largest WT and LPUL
Jobs 2 and 4 have the same weight of 5. Since U2 = 5/27 = 0.185 is greater than
U4 = 5/28 = 0.178, job 2 is placed in position 1 and job 4 in position 2 of the
sequence. Jobs 1 and 3 again have the same weights, namely 1. The corresponding
U values are 0.027 and 1.0, respectively. Hence, job 3 is placed in position 3, and
job 1 is placed in position 4. The final sequence is 2-4-3-1.

Job sequence: 0 (2/27) 27 (4/28) 55 (3/1) 56 (1/37) 93.

Due dates: (2) 36 (4) 37 (3) 1 (1) 49

Deviations: 9/E 18/L 55/L 44/L

Penalties: (18 × 5) + (55 × 1) + (44 × 1 = 171)

6.3.8.1.8 Critical Ratio Rule
Iteration 1: T = 0. All jobs are unscheduled.

CR1 = (49 − 0)/37 = 1.324
CR2 = (36 − 0)/27 = 1.333

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 156 — #10

156 Production Planning and Industrial Scheduling

CR3 = (1 − 0)/1 = 1.000
CR4 = (37 − 0)/28 = 1.321

Least ratio is associated with job 3. Schedule job 3 in the first position.

Iteration 2: T = 1

CR1 = (49 − 1)/37 = 1.297
CR2 = (36 − 1)/27 = 1.296
CR4 = (37 − 1)/28 = 1.285

Job 4 has the smallest ratio, and therefore job 2 is placed in the second position.
The sequence so far is 3-4.

Iteration 3: T = 1 + 28 = 29

CR1 = (49 − 29)/37 = 0.540
CR2 = (36 − 29)/27 = 0.259

Job 2 is placed in the third position, and the remaining job 2 is placed in the last
position, giving the sequence of 3-4-2-1.

Job sequence: 0 (3/1) 1 (4/28) 29 (2/27) 56 (1/37) 93.

Due date: (3) 1 (4) 37 (2) 36 (1) 49

Deviations: 0/W 8/E 20/L 44/L

Penalties: (20 × 5) + (44 × 1) = 144.

The best sequence among all the sequences obtained using the various rules is
3-2-4-1, giving a penalty of 139. A number of procedures gave this sequence, as
shown in Figure 6.3.

6.4 DESCRIPTION OF AN EFFICIENT HEURISTIC

The eight rules described in the previous section, though simple, do not produce
optimum or even near optimum results consistently. In fact, a few rules do not even
use all the available information. For example, the SPT rule only considers the pro-
cessing times, the EDD rule only considers the due dates. Thus, more often than
not, the resulting solutions are nowhere near the optimum values for the objective
of minimization of the total tardiness penalty. A heuristic procedure is presented
here, which is simple to apply and has proven to be very effective. The procedure is
developed in two phases; the backward phase is applied first and then the forward
phase is implemented. The details of the two phases are described next.

6.4.1 BACKWARD PHASE

In this phase, the initial job sequence is developed. The sequential job assignments
start from the last position and proceed backwards toward the first position. The

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 157 — #11

Single Machine Scheduling 157

10 20 30

1 28 56 93

J3 J2 J4 J1Penalty = 139

1 28 56 93

J3 J2 J4 J1Penalty = 139

1 28 56 93

J3 J2 J4 J1Penalty = 139

1 28 56 93

J3 J2 J4 J1Penalty = 139

1 28 56 93

J3 J2 J4 J1Penalty = 139

1 28 56 93

J3 J2

27 55 56 93

J4 J1

J1J4 J3J2

Penalty = 139

Penalty = 171

1

C
R

 R
at

io
W

T
/L

P
U

L
S

P
T

/L
P

U
L

LP
U

L
S

P
T

C
O

V
E

R
T

E
D

D
S

W
P

T

28 56 93

J3 J2 J4 J1Penalty = 139

40 50 60 70 80 90 100

FIGURE 6.3 Sequence obtained using different methods and their associated penalties.

assignments are complete when the first position is assigned a job. The process consists
of the following steps (for clarity the number of jobs n is now indicated as N):

1. Note the position in the sequence (the value of the position counter) in
which the next job is to be assigned. The sequence is developed starting
from position N and continuing backwards to position 1. The initial value
of the position counter is N .

2. Calculate T , which is the sum of processing times for all unscheduled jobs.
3. Calculate the penalty for each unscheduled job I as (T − Di) × Li.
4. The next job to be scheduled in the designated position (the value of the

position counter) is the one having the minimum penalty from step 3.
In case of a tie, choose the job with the largest processing time.

5. Reduce the position counter by 1.

Repeat steps 1 through 5 until all the jobs are scheduled.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 158 — #12

158 Production Planning and Industrial Scheduling

6.4.2 FORWARD PHASE

Perform the forward pass on the job sequence found in the backward phase, which
is the “best” sequence at this stage. The forward pass progresses from the job in
position 1 towards the job in position N . Let k define the lag between two jobs in the
sequence that are exchanged. The steps of the forward phase are as follows:

1. Set k = N − 1
2. Set j = k + 1.
3. Determine the savings (or cost) by exchanging two jobs in the best sequence

with a lag of k. The job scheduled in position j is exchanged with the job
scheduled in position j−k (if j−k is zero or negative, go to step 6). Calculate
the penalty after exchange, and compare it to the “best” sequence penalty.

4. If there is either positive or zero savings in step 3, go to step 5; otherwise,
there is cost associated with this exchange and the exchange is rejected.
Increase the value of j by one. If j is equal to or less than N , go to step 3.
If j is greater than N , go to step 6.

5. If the total penalty has decreased, the exchange is acceptable. Perform the
exchange. The new sequence is now the “best” sequence, go to step 1. Even
if the savings is zero, make the exchange and go to step 1, except if the set
of jobs associated in this exchange had been checked and exchanged in an
earlier application of the forward phase. In that case, no exchange is made
at this time. Increase the value of j by one. If j is less than N , go to step 3.
If j = N , go to step 6.

6. Decrease the value of k by one. If k > 0, go to step 2. If k = 0, go to step 7.
7. The resulting sequence is the best sequence generated by this procedure.

6.4.3 AN ILLUSTRATIVE EXAMPLE USING

THE HEURISTIC ALGORITHM

The procedure is illustrated by applying it to the problem given in Table 6.1. For
convenience, the data is reproduced below.

Job
Number

Processing
Time Pi

Due Date
Di

Weight
Li

1 37 49 1
2 27 36 5
3 1 1 1
4 28 37 5

Start the procedure with the backward phase.
Since all the jobs are unscheduled at this point, the total processing time of all

unscheduled jobs is the sum of processing times for all jobs, namely

T = 37 + 27 + 1 + 28 = 93

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 159 — #13

Single Machine Scheduling 159

Calculate the penalty for each job if it was to be completed at T = 93.

Job Penalty

1 (93 − 49) × 1 = 44
2 (93 − 36) × 5 = 285
3 (93 − 1) × 1 = 92
4 (93 − 37) × 5 = 280

Since job 1 has the least cost, it is scheduled in the last position, that is, position 4.
Since job 1 now has been scheduled, the new value of T = (93 − processing

time of job 1) = (93 − 37) = 56.
The new penalty values for the remaining jobs are as follows:

Job Penalty

2 (56 − 36) × 5 = 100
3 (56 − 1) × 1 = 55
4 (56 − 37) × 5 = 95

The least penalty is with job 3, and hence it is placed in position 3.
The next value of T = (56 − processing time for job 3) = (56 − 1) = 55.
The new penalty values for jobs 2 and 4 are as follows:

Job Penalty

2 (55 − 36) × 5 = 95
4 (55 − 37) × 5 = 90

Job 4 is placed in position 2 and the remaining job, job 2, is placed in position 1.
This results in the job sequence 2-4-3-1. Thus, we have:

Job sequence: 0 (2/27) 27 (4/28) 55 (3/1) 56 (1/37) 93

Due dates: (2) 36 (4) 37 (3) 1 (1) 49

Deviations: 9/E 18/L 55/L 44/L

Penalty: (18 × 5) + (55 × 1) + (44 × 1) = 189

The total penalty for the above schedule is 189.
The next step is to apply the forward phase. We should note that exchanging jobs

in positions j and j + 1 does not change the completion times for the jobs scheduled
before position j or the starting times of the jobs scheduled after position j + 1.
For example, switching jobs 4 and 3 will not change the completion time of job 2,
that is, 27 and the starting time of job 1, which is 56. Therefore, we only need to
calculate the increase or decrease of penalty associated with completion times of the

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 160 — #14

160 Production Planning and Industrial Scheduling

switched jobs to measure the change in penalty of the entire sequence. However,
in a small problem like the one that we are illustrating, it may be just as quick to
recalculate the penalty for the entire sequence after an exchange is made.

Setting k = N − 1 results in k = 3. Switching jobs with lag of 3, that is, job 2
and 1, results in the sequence 1-4-3-2. The associated penalty is 420. Since the penalty
is higher than the original sequence penalty, no switch is made. The best sequence so
far is still 2-4-3-1.

There are no other jobs with lag of 3; therefore, the value of k is changed to 2.
With k = 2, exchanging jobs 2 and 3 results in sequence 3-4-2-1, with the penalty

of 144. Since the new penalty is less than that obtained for the original sequence of
2-4-3-1, the new sequence 3-4-2-1 becomes the best sequence.

The evaluation continues, starting from the first job in the new best sequence and
k set back to 3. Exchanging jobs 3 and 1 results in sequence 1-4-2-3 with the penalty
of 644, and hence the exchange is rejected. The best sequence is still 3-4-2-1.

Setting k = 2 and exchanging 3 and 2 results in 2-4-3-1 with the penalty of 189,
and the exchange is rejected. Switching 4 and 1 results in sequence 3-1-2-4 with the
penalty higher than 144, and the switch is again rejected. Since no more exchange
with k = 2 is possible, the k is set to the new value of 1. The best sequence so far is
still 3-4-2-1.

Exchanging 3 and 4 results in 4-3-2-1 as the nonpromising sequence with a penalty
of 172. The next exchange, namely 3-2-4-1, has a penalty of only 139. Hence, the
sequence 3-2-4-1 becomes the best sequence.

Performing all the exchanges again on the current best sequence leads to no fur-
ther improvement; hence, the sequence 3-2-4-1 also becomes the optimum sequence
(see Figure 6.4). An exhaustive enumeration also displayed 3-2-4-1 as the optimum
sequence.

Incidentally, though the procedure seems long and tedious in this instance, this
example was specifically chosen to display the importance of the backward phase and
to show how to make the exchanges. Experience with the method has shown that in
most instances the best sequence is obtained either immediately after the application
of the forward phase or with very few additional iterations of the backward phase.

6.4.4 VALIDITY OF THE HEURISTIC AND CONCLUSIONS

Acomputer program was developed (included in the appendix) that computes many of
the heuristic algorithms. Also, a program that exhaustively enumerates the optimum
solution by checking N! combinations was developed. The tardiness factor index T ,
first introduced by Srinivasan (1971), and also illustrated by Ow and Morton (1989),
was used to generate 100 data sets for each file of 4, 5, 50, and 100 jobs. T is defined
as T = 1 − D/NP, where D is the average due date, P is the average processing
time, and N is the number of jobs. The value of T can vary from 0 to 1. A data set
with T close to zero has large positive slack (slack = due date − processing time)
or very loose schedule. The slack becomes smaller or the schedule becomes tighter
as we examine data sets with increasing value of T . In fact, with T close to 1,
we may have jobs in the data set such that their processing times are greater than the
times when the jobs are due.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 161 — #15

Single Machine Scheduling 161

10 20 30

27 36 37 49 55 561

dd3 dd2

ct2 ct4 ct3

93

ct1

Penalty = 189

Penalty = 139

Sequence obtained by forward phase (final sequence)

Sequence obtained by backward phase

dd4 dd1

28 36 37 49 561

dd2dd3

ct2ct3 ct4

93

ct1

dd4 dd1

40 50 60 70 80 90 100

FIGURE 6.4 Sequence obtained applying the heuristic of section 2.4 (note ct = completion
time; dd = due date).

TABLE 6.2
Comparisons Statistics: Minimum Tardiness
Penalty in 100 Trials—4 Jobs/5 Jobs

Method T = 0.1 T = 0.5 T = 0.7

EDD 100/100 13/44 16/15
COVERT 57/59 42/31 59/41
SWPT 83/77 54/40 92/76
SPT/LPUL 100/100 48/48 23/15
WT/LPUL 32/30 15/11 26/12
CRITICAL RATIO 100/100 13/29 16/9
New heuristic 100/100 98/97 99/98
Exhaustive search 100/100 100/100 100/100

We developed the data sets of 100 problems each for T = 0.1, 0.5, and 0.7.
For each job, the processing time was chosen randomly between 1 and 50, and the
corresponding due date was established by Di = Pi × N × (1 − T). This approach
of assigning due dates is more consistent and in line with what a manufacturer may
wish. Very few manufacturers can survive a trauma of assigning random due dates,
especially when there are penalties associated with not meeting the due dates. The
tardiness penalty between 1 and 5 was assigned randomly to each job. For 4 and
5 job case, each problem was also solved with exhaustive enumeration. The relative
performances of different methods are tabulated in Table 6.2. The table indicates the

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 162 — #16

162 Production Planning and Industrial Scheduling

TABLE 6.3
Comparisons Statistics: Minimum Tardiness
Penalty in 100 Trials—50 Jobs/100 Jobs

Method T = 0.1 T = 0.5 T = 0.7

EDD 100/100 39/38 0/0
COVERT 100/69 7/11 0/0
SWPT 43/27 0/0 0/0
SPT/LPUL 43/27 0/0 0/0
WT/LPUL 100/0 0/0 0/0
CRITICAL RATIO 100/51 17/25 0/0
New heuristic 100/100 100/100 100/100

number of times, in 100 test problems, each method gave the minimum tardiness
sequence, the first number representing the results from the 4 job data set and the
second representing the results from the 5 job data set. The average computational
times on the Sun workstation for the methods ranged between 0.3 and 0.5, with the
heuristic procedure taking the longest time.

Because of the long computational time for the problems with 50 and 100 jobs,
the exhaustive search was not possible. In these cases, we compared the solutions
from the heuristic with the solutions from all other methods. The heuristic proced-
ure gave the least penalty sequence in each of 100 problems. Table 6.3 shows the
number of times the other methods had the same tardiness penalty as the heuristic.
The computational times for the other methods varied from 0.1 to 0.4 s for a 50-job
problem and from 0.1 to 0.9 s for a 100-job problem. The average computational
time for the new heuristic was 7.6 s for a 50-job problem and 11.99 s for a 100-job
problem.

The accuracy and dependability of the eight heuristic rules decreased rapidly
as the value of T increased, making the schedule tighter. The heuristic procedure
consistently performed better. Where it did differ from the optimum, the best answers
were within an average of 3% of the optimum.

6.5 SINGLE MACHINE PROBLEM WITH EARLY AND
LATE PENALTIES

In this section, we extend the basic problem to include early penalties if a job is
completed earlier than the due date, Di. Let us assume that for job I , the cost per
unit time of being early Ei is known. The earliness and tardiness costs for a job are
assumed to be linear, that is, if a job I is finished t time units after the scheduled
due date, a penalty of Li × t is incurred, and if it is completed t time units before
the due date, a penalty of Ei × t is incurred. The objective is to minimize the total
penalty, which is defined as the sum of the penalty cost of each job. This problem
is commonly referred to as the single machine scheduling problem with early and
tardiness penalties.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 163 — #17

Single Machine Scheduling 163

The motivation for early and tardy penalties comes from the just-in-time (JIT)
philosophy, to produce goods only when they are necessary. In general, the earliness
cost can be considered as holding cost for finished goods, deterioration of perishable
goods, and opportunity costs. The tardiness cost may be the backlogging cost, which
includes performance penalties, lost sales, and lost goodwill.

The procedure described in Section 6.4 is slightly modified to account for earliness
penalties. The step 3 of backward phase now requires calculations of both early
penalties and late penalties. A job is selected in step 4 using the minimum penalty
rule, which now includes both early and late penalties. Thus, the modifications needed
are as shown below.

6.5.1 BACKWARD PHASE

In step 3, calculate the penalty for each unscheduled job I as (T − Di)× Li if T > Di

or (Di − T) × Ei if T < Di.

6.5.1.1 Illustrative Example 2

The procedure is illustrated by applying it to another 4-job problem with the data in
Table 6.4 that includes early penalties.

Start the procedure with the backward phase. Since all the jobs are unscheduled at
this point, the total of processing times of all unscheduled jobs is the sum of processing
times for all jobs, namely:

T = 1 + 49 + 10 + 27 = 87

Calculate the penalty for each job if it was to be completed at T = 87.

Job Penalty

1 (87 − 3) × 3 = 252
2 (176 − 87) × 0 = 0
3 (87 − 35) × 5 = 260
4 (97 − 87) × 2 = 20

TABLE 6.4
Data for an Example Problem 2

Job
Number

Processing
Time Pi

Due Date
Di

Early Penalty
Ei

Late Penalty
Li

1 1 3 2 3
2 49 176 0 9
3 10 35 3 5
4 27 97 2 3

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 164 — #18

164 Production Planning and Industrial Scheduling

Since job 2 has the least cost, it is scheduled in the last position, that is, position 4.
Since job 1 now has been scheduled, the new value of T = 87 − processing time of
job 2 = 87 − 49 = 38.
The new penalty values for the remaining jobs are as follows:

Job Penalty

1 (38 − 3) × 3 = 105
3 (38 − 35) × 5 = 15
4 (97 − 38) × 2 = 118

The least penalty is with job 3, and hence it is placed in position 3.
The next value of T = 38 − processing time for job 3, that is, 10. Thus, T = 28.
The new penalty values for jobs 1 and 4 are as follows:

Job Penalty

1 (28 − 3) × 3 = 75
4 (97 − 28) × 2 = 138

Job 1 is placed in position 2, and the remaining job, job 4, is placed in position 1.
This results in the job sequence of 4-1-3-2 with following start and completion times.

0 - (4/27) - 27 - (1/1) - 28 - (3/10) - 38 - (2/49) - 87.

The total penalty for the above schedule is 230.
Application of the Forward Phase results in the optimum sequence of:

1 3 2 4

With penalty of 96.

6.5.1.2 Modified Backward Phase When Early Penalties are
Present

A slight modification to the backward phase presented earlier leads to a solution that
is very close to, if not, the optimum. Notice as we move from the last position to the
first position in the sequence, the completion times of the jobs are decreasing. When
examining a job for the present position, if it has an early penalty now and we do not
schedule it, the penalty will only go up when scheduled in an earlier position. For
job that has late penalty now, this penalty will decrease if we schedule it in an earlier
position. So the new rule is as follows:

In backward phase, select a job with maximum early penalty and schedule it in
the position under examination. If no job with penalty is available, select a job with
minimum late penalty and place it in that position.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 165 — #19

Single Machine Scheduling 165

Applying this rule to the previous example leads to following:
If a job is completed at T = 87

Job Late/Early Penalty

1 L
2 E (171 − 87) × 0 = 0
3 L
4 E (97 − 87) × 2 = 20

Maximum E penalty is 20 associated with job 4. Place job 4 in last position.

– – – 4

New T = 87 − Processing Time of Job 4 = 87 − 27 = 60
If Job is completed at T = 60

Job Late/Early Penalty

1 L
2 E (171 − 60) × 0 = 0
3 L

Select Job 2 with early penalty for position 3.

– – 2 4

New T = 60 − Processing Time of Job 2 = 60 − 49 = 11
If a Job is completed at T = 11

Job Late/Early

1 L
3 E

Select Job 3 since it is the only job with early penalty.

– 3 2 4

Since job 1 is the only for position 1, place it in that position. The final sequence from
Backward Phase is:

1 3 2 4

Which is also the optimum sequence when applied the forward phase.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 166 — #20

166 Production Planning and Industrial Scheduling

The procedure leads to 1-3-2-4 as the final sequence with the cost of 96.
Incidentally, exhaustive enumeration also displayed 1-3-2-4 as the optimum sequence.

6.5.2 VALIDITY OF THE HEURISTIC

Similar to the validation of the heuristic for tardiness penalty alone, a computer
program was developed that evaluates many of the existing heuristic methods along
with the heuristic for early and late penalties. Also, a program that exhaustively
enumerates the optimum solution, by checking N! combinations, was developed.
The tardiness factor T was used to generate 100 data sets for each file of 4, 5, 50, and
100 jobs. T is defined as T = 1 − D/NP, where D is the average due date, P is the
average processing time, and N is the number of jobs.

We developed the data sets of 100 problems each for T = 0.1, 0.5, and 0.7.
For each job, the processing time was chosen randomly between 1 and 50, and the
corresponding due date was established by Di = Pi × N × (1 × T). This approach
of assigning due dates is more consistent and in line with what a manufacturer may
wish. Very few manufacturers can survive the trauma of assigning random due dates,
especially when there are penalties associated with not meeting the due dates. The
tardiness penalty between 1 and 5 was assigned randomly to each job. For 4 and
5 job case, each problem was also solved with exhaustive enumerations. The relative
performances of different methods are tabulated in Table 6.5. The table indicates the
number of times, in 100 test problems, each method gave the minimum tardiness
sequence, the first number representing the results from the 4-job data set and the
second representing the results from the 5-job data set. The average computational
times on the Sun workstation for the methods ranged between 0.3 and 0.5, with the
heuristic procedure taking the longer time.

Because of the long computational time for problems with 50 and 100 jobs, an
exhaustive search was not possible, and we compared the solutions from the heur-
istic with the solutions from all other methods. The heuristic procedure gave the
least penalty sequence in each of the 100 problems. Table 6.6 shows the number of

TABLE 6.5
Comparisons Statistics: Minimum Tardiness
Penalty in 100 Trials—4 Jobs/5 Jobs

Method T = 0.1 T = 0.5 T = 0.7

EDD 100/100 46/44 22/15
COVERT 57/59 42/31 59/41
SWPT 83/77 54/40 92/76
SPT/LPUL 100/100 48/48 23/15
WT/LPUL 32/30 15/11 26/12
CRITICAL RATIO 100/100 13/29 16/9
New heuristic 100/100 98/97 99/98
Exhaustive search 100/100 100/100 100/100

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 167 — #21

Single Machine Scheduling 167

TABLE 6.6
Comparisons Statistics: Minimum Tardiness
Penalty in 100 Trial—50 Jobs/100 Jobs

Method T = 0.1 T = 0.5 T = 0.7

EDD 100/100 37/37 0/0
COVERT 100/67 7/11 0/0
SWPT 41/27 0/0 0/0
SPT/LPUL 100/98 43/37 0/0
WT/LPUL 100/0 0/0 0/0
CRITICAL RATIO 100/51 17/25 0/0
New heuristic 100/100 100/100 100/100

times the other methods had the same tardiness penalty as the heuristic. The com-
putational times for the other methods varied from 0.1 to 0.4 s for a 50-job problem
and from 0.1 to 0.9 s for a 100-job problem. The average computational time for
the heuristic procedure was 7.6 s for a 50-job problem and 11.99 s for a 100-job
problem.

Again, we see that the new heuristic consistently performed well. If it did differ
from the optimum on average, the answers were within 2% of the optimum.

6.6 SOME WELL-KNOWN THEOREMS

The validity checks in Sections 6.5 and 6.6 showed that the eight heuristic rules
do not necessarily perform well when the objective is to minimize total tardiness
penalty or the early-tardy penalty. The question that arises now is, if the heuristic
rules are not performing well, why are they so popular? The answer is: Some of
them do give optimal sequences with other important objectives. These objectives
measure different criteria in a schedule. Afew well-known theorems in single machine
scheduling literature associated with these criteria are presented here without their
proofs. The reader interested in the proofs is directed to other excellent scheduling
books (Baker, 1974; Pinedo, 1995) listed in the references.

1. One measure of scheduling efficiency is to minimize the total weighted com-
pletion time or weighted flow time. It is defined as 3WiCi, where Wi is the weight
proportional to the value invested (perhaps indicating the importance of the job) and
Ci is completion time for job I . This measure gives an indication of the holding or
inventory cost incurred by the schedule.

Theorem 6.1: Weighted flow time is minimized if jobs are sequenced based on
LPUL rule (here Li = Wi) or the SWPT rule. It should be noted that both
LPUL and SWPT rules will produce the same sequence.

Lemma 6.1: If all jobs are equally important (i.e., Wi for all jobs is same), then
the SPT rule minimizes both the total flow time and the mean flow time.

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 168 — #22

168 Production Planning and Industrial Scheduling

2. Let us measure the lateness of job I as LTi = Ci−Di, where Ci is the completion
time for job I . LTi can be both negative and positive, depending on whether the job
is completed earlier or later than the due date. This is unlike tardiness Ti = Ci − Di,
which can only take positive values since Ti = 0 if Ci − Di < 0. Lateness, thus,
measures the conformity of the schedule to known due dates. A schedule that has
lower mean value of lateness is completing jobs closer to the due dates than the
schedule that has higher mean lateness value.

Theorem 6.2: The mean lateness is minimized by SPT rule sequencing.
Theorem 6.3: The maximum job lateness, that is, the maximum value among

LTi, is minimized by EDD rule sequencing.
Theorem 6.4: If all jobs have a common due date, then SPT rule sequencing

minimizes the mean tardiness.
Theorem 6.5: The maximum tardiness is minimized by EDD rule sequencing.

6.7 SUMMARY

This chapter examined the basic single machine scheduling problem, where jobs have
due dates and there are penalties associated with their being tardy. The objective of
scheduling jobs is to minimize the total tardiness penalty. Exhaustive enumeration,
although it gives an optimum sequence, is only feasible for small-size problems,
that is, where the numbers of jobs are less than ten. The branch-and-bound method
reduces the computations, but is still overwhelming. The heuristic rules, although they
work efficiently for other objectives, do not provide a good solution for the objective
of minimizing total early/tardy cost. A heuristic for tardy jobs and its modification for
early and tardy jobs is suggested, which has proven to be very effective in minimizing
the total penalty cost. Some theorems have been stated without proofs to illustrate the
importance of the heuristic rules if the scheduling efficiency is measured using other
criteria.

6.8 PROBLEMS

6.1 Using the BF heuristic presented in this chapter, develop a schedule for the
following data to minimize the lateness penalty. Also, solve the problem using
the branch-and-bound method, and compare the results.

Job #
Processing

Time Due Date Weight

1 24 38 2
2 13 22 6
3 32 61 6
4 9 47 2

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 169 — #23

Single Machine Scheduling 169

6.2 For the data given in Problem 2.1, develop a schedule using each of the following
heuristics and compare each result to that obtained in Problem 2.1.
a. EDD
b. COVERT
c. SPT
d. LPUL
e. SWPT
f. CR

6.3 Develop a schedule for the following data using the BF heuristic presented in
this chapter.

Job #
Processing

Time Due Date Weight

1 24 38 2
2 13 22 6
3 32 61 6
4 9 47 2
5 3 8 6

6.4 For the data given in Problem 2.3, develop a schedule using each of the following
heuristics and compare each result to that obtained in Problem 2.3.
a. EDD
b. COVERT
c. SPT
d. LPUL
e. SWPT
f. CR

6.5 Rework Problem 2.1 with the addition of the following early and late
penalties.

Job # 1 2 3 4
Early penalty 0 2 1 2
Late penalty 2 6 6 2

6.6 Rework Problem 2.3 with the addition of the following early and late
penalties.

Job # 1 2 3 4 5
Early penalty 0 2 1 2 2
Late penalty 2 6 6 2 2

Dileep: “44206_c006” — 2007/9/17 — 14:57 — page 170 — #24

170 Production Planning and Industrial Scheduling

REFERENCES AND SUGGESTED READINGS

Ahmed, I. and W.W. Fisher. 1992. “Due Date Assignment, Job Order Release and Sequencing”
Decision Sciences, 23: 633–644.

Baker, K.R. 1974. Introduction to Sequencing and Scheduling, New York: Wiley.
Baker, K.R. and G.D. Scudder. December 1991. “Sequencing with Earliness and Tardiness

Penalties: Part I” Computers and Operations Research, 38: 22–36.
Cambadi, B.V. December 1991. “One Machine Scheduling to Minimize Expected Mean

Tardiness: Part I” Computers and Operations Research, 18(9): 787–796.
Conway, R.W., Maxwell, W.L., and L.W. Miller. 1967. Theory of Scheduling, Reading, MA:

Addison-Wesley.
Fathi, Y. and H.W.L. Nuttle. September 1990. “Heuristics for the common Due Date Weighted

Tardiness Problem” IIE Transactions, 22: 215–225.
Hall, N.G., Kubiak, W., and S. Sethi. September–October 1991. “Weighted Deviation of

Completion Times about a Restrictive Common Due Date” Operations Research, 39:
847–856.

Hall, N.G. and M.E. Posner. September–October 1991. “Weighted Deviation of Completion
Times about a Common Due Date” Operations Research, 39: 836–846.

Johnson, L.A. and D.C. Montgomery. 1974. Operations Research in Production Planning,
Scheduling and Inventory Control, New York: Wiley.

Lee, C.Y., Danusaputro, S.L., and C.S. Lin. 1991. “Minimizing Weighted Number of Tardy Jobs
and Weighted Earliness-Tardiness Penalties about a Common Due Date” Computers
and Operations Research, 379–389.

Ow, P.S. and T.E. Morton. February 1989. “The Single Machine Early/Tardy Problem”
Management Science, 35: 177–187.

Pinedo, M. 1995. Scheduling Theory, Algorithms and Systems, Englewood Cliffs, NJ:
Prentice Hall.

Srinivasan, V. 1971. “A Hybrid Algorithm for the One Machine Sequencing Problem to
Minimize Total Tardiness” Naval Research Logistics Quarterly, 18: 317–127.

Sung, C.S. and U.G. Joo. November 1992. “A Single Machine Scheduling Problem with
Earliness, Tardiness and Starting Time Penalties under a Common Due Date”
Computers and Operations Research, 19(8): 757–766.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 171 — #1

7 Other Objectives in
Single-Machine
Scheduling

In this chapter, we shall study numerous alternative objectives commonly used to
schedule jobs on a single machine. One or more of these goals may be more appropri-
ate in a particular work surroundings than merely to minimize early/tardy penalties
discussed in Chapter 6. The basic assumptions stated in Chapter 6 are still applic-
able, unless specifically modified to accommodate a goal. Most of these problems
are generally solved by a heuristic, and many researchers have developed different
heuristic procedures to address these problems. The heuristic methods described in
this chapter are, to a large part, extensions of the methods studied in Chapter 6.
All of the procedures are well tested and found to give optimum or near-optimum
solutions; therefore, independent validly test results for each goal are not shown.

7.1 COMMON DUE DATE

Scheduling jobs on a single machine or facility, when all jobs must be shipped at
the same time, is a typical example of a common due date problem. Such instances
occur, for example, when a customer orders different variations of a product, all of
them being made on the same facility. For example, a paper manufacturer may supply
paper rolls with different widths (24′′, 30′′, and 36′′) to a customer who may process
them further in bags. Because of the transportation cost, the customer may ask all
rolls to be delivered in the same truck, if possible. If not, there would be additional
cost of inconvenience charged as the lateness cost per unit of time. There may also
be an early penalty indicating storage and carrying cost.

In such a case, one might think that the optimum due date would be one that is
equal to or greater than the total processing time of all jobs. However, this may not
be the case. Since the penalties are associated with both early and late completions,
an optimum due date should balance these penalties.

If the common due date specified by the customer is less than the summation
of the processing times of all the jobs, the jobs are shipped in two shipments, one
on the specified due date and second on the completion time of all the jobs. This
proposed heuristic tries to find the minimum penalty without considering any specific
common due date. So, if the customer-specified common due date is somewhere near

171

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 172 — #2

172 Production Planning and Industrial Scheduling

the common due date obtained by this heuristic, one can bargain with the customer,
and reduce the loss incurred, by reducing the penalty.

Assume that the number of jobs to be performed and their respective processing
times, early penalty and late penalty are known. The objective is to find the minimum
penalty. The end result will give the common due date, the sequence to be followed
and the total penalty incurred, so that the penalty is minimum most. The steps for the
procedure are as follows:

1. Check the early and late penalties for all the jobs yet to be sequenced and
find the minimum.

2. If the minimum is associated with the early penalty, place the corresponding
job in the earliest possible position in the sequence. If the minimum is
associated with the late penalty, place the corresponding job in the latest
possible position in the sequence. If there is a tie in the early penalties,
the job with the largest processing time is scheduled at the earliest possible
position. If there is a tie in the late penalties, the job with the largest
processing time is scheduled at the latest possible position in the sequence.
If the tie remains, it is solved randomly. If the early and the late penalties
are the same for a job, two sequences are obtained by first placing that job
at the earliest possible position, and second, by placing that job at the latest
possible position in the sequence.

3. Mark the job as being sequenced and scratch the associated early and late
penalties.

4. If all the jobs are placed in the sequence, go to step 5; otherwise go to
step 1.
• The sequences obtained are called the initial sequences, or the best

sequence obtained so far. By considering the completion time of each job
in the initial sequence as the common due date, the penalty is calculated.
The job completion time where the penalty is minimum is the best
common due date for the initial sequence.

5. Apply only the backward phase of B/F method to the initial sequence and
select the one with minimum cost.

6. Find 6%, a percentage figure chosen somewhat randomly but which has
proved to be very good, of the total processing time. Call the obtained
integer value as deviation. This deviation is subtracted and added to the
common due date obtained so far. Check the penalties by applying the
backward phase of B/F method to initial sequence with each value as
the common due date. The sequence and associated common due date
that gives minimum cost is the best policy.

7.1.1 ILLUSTRATIVE EXAMPLE 7.1

A problem given by Feldmann and Biskup [19] is used to illustrate the method. The
data are as follows in Table 7.1.

Following this procedure will help solve the preceding problem.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 173 — #3

Other Objectives in Single-Machine Scheduling 173

TABLE 7.1
Data for Problem

i 1 2 3 4 5 6 7 8 9 10
pi 20 6 13 13 12 12 12 3 12 13
Early penalty 4 1 5 2 7 9 5 6 6 10
Late penalty 5 15 13 13 6 8 15 1 8 1

Step 1: The early and late penalties of the corresponding jobs are given in the third and
forth rows, respectively. The initial sequence obtained by following steps 2 through
4 is as follows.

2 4 1 3 7 9 6 5 8 10

The completion times of the jobs can be given as follows:

0 (2/6) 6 (4/13) 19 (1/20) 39 (3/13) 52 (7/12) 64 (9/12) 76 (6/12) 88 (5/12)

100 (8/3) 103 (10/13)116.

By considering the job completion time as the common due date, the penalty is
calculated (Table 7.2).

In the preceding table, 819 is the lowest penalty obtained for the same initial
sequence or the best sequence obtained so far with the common due date as 76.
Six percent of the total processing time is 6.96. The common due date obtained so
far is 76. The time span obtained by subtracting and adding the integer value of 6

TABLE 7.2
Penalties Calculated with Each Due Date

Due Date Penalty

116 (110 × 1) + (97 × 2) + (77 × 4) + (64 × 5) + (52 × 5) + (40 ×
6) + (28 × 9) + (16 × 7) + (13 × 6) + (0 × 1) = 1874

103 (97 × 1) + (84 × 2) + (64 × 4) + (51 × 5) + (39 × 5) + (27 ×
6) + (15 × 9) + (3 × 7) + (0 × 1) + (13 × 1) = 1302

100 (94 × 1) + (81 × 2) + (61 × 4) + (48 × 5) + (36 × 5) + (24 ×
6) + (12 × 9) + (0 × 6) + (3 × 1) + (16 × 1) = 1191

88 (82 × 1) + (69 × 2) + (49 × 4) + (36 × 5) + (24 × 5) + (12 ×
6) + (0 × 8) + (12 × 6) + (15 × 1) + (28 × 1) = 903

76 (70 × 1) + (57 × 2) + (37 × 4) + (24 × 5) + (12 × 5) + (0 × 8) +
(12 × 8) + (24 × 6) + (27 × 1) + (40 × 1) = 819

64 (58 × 1) + (35 × 2) + (15 × 4) + (12 × 5) + (0 × 8) + (12 × 8) +
(24 × 8) + (36 × 6) + (39 × 1) + (52 × 1) = 843

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 174 — #4

174 Production Planning and Industrial Scheduling

TABLE 7.3
Penalties over the Range of Due Dates

Due Date 70 71 72 73 74 75 76 77 78 79 80 81 82

Penalty 860 853 846 839 832 825 818 825 832 839 846 853 860

to this common due date is 70–82. Start applying the complete backward-forward
heuristic with the common due date as 70. Increment the common due date by 1 until
we reach 82. The results are given in Table 7.3.

The minimum value obtained is 818, associated with the due date 76.
The associated sequence using only the backward phase of the B/F method on the

initial sequence is: 4-2-1-3-7-9-6-5-8-10. The details of this sequence are as follows:

0 (4/13) 13 (2/6) 19 (1/20) 39 (3/13) 52 (7/12) 64 (9/12) 76 (6/12) 88 (5/12)

100 (8/3) 103 (10/13) 116.

7.2 COMMON DUE DATE SPECIFIED BY A CUSTOMER

Often, a common due date is specified by a customer. All the jobs are to be delivered
on the specified due date. If the entire set of jobs are not produced by then, the
customer may still accept the jobs that are completed but will associate penalties for
the jobs that are not delivered on the due date. The penalties for the jobs may vary
based on the importance of the jobs, perhaps the customer’s way of specifying which
jobs he would like to get done first and which may be later.

Both early and late penalties might apply for each job. The late penalties are cus-
tomer defined, while early penalties may indicate the cost of storing and inventorying
of the finished jobs until they are delivered.

7.3 EARLY AND LATE DUE DATES

On occasions we have customers who may specify a range of due dates. An early
due date is a date before which the order is not desired and will be assigned an early
penalty, and a late due date is a date after which the order is considered late and
carries a late penalty. The penalties are proportional to the time units of deviations
from early due date, DEi or the late due date, DLi. We are required to develop the
production schedule to minimize the penalty costs.

Again, a minor modification to the heuristic is all that is needed to solve this
problem. When a job is scheduled, determine if the job completion time Ci is earlier
than the early due date DEi, within due dates (on time indicated by W) or later than the
late due date, DLi. The penalties for application of step 3 in Section 6.4 are assessed
as follows:

1. If Ci < EDi Penalty = (EDi − Ci) Ei

2. If EDi < Ci < LDi (i.e., Ci = W) Penalty = 0
3. If Ci > LDi Penalty = (Ci − LDi) Li

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 175 — #5

Other Objectives in Single-Machine Scheduling 175

TABLE 7.4
Data for Early and Late Due Dates: Example 7.2

Job Pi EDi LDi Ei Li

1 10 20 25 2 3
2 15 25 33 1 4
3 5 30 35 1 3
4 20 40 50 3 5

One more modification in the backward phase; if there are a number of jobs
tied for placement in a sequence position because of the equal penalties, select
the job with the longest processing time from the jobs that are tied, and place it
in the position under consideration. The remaining steps of the heuristic remain
unchanged.

7.3.1 ILLUSTRATIVE EXAMPLE 7.2

Consider a four job problem with the following data (Table 7.4).
Application of the backward phase:

Iteration 1: T = 10 + 15 + 5 + 20 = 50. (Note, T indicates the possible completion
time, Ci, for a job, and the penalties are calculated based on the question: What if the
job is completed at time T?)

Determine the job to schedule in position 4:

Job Status Penalty

1 L (50 − 25) × 3 = 75
2 L (50 − 33) × 4 = 68
3 L (50 − 35) × 3 = 45
4 W 0

The minimum penalty is associated with job 2, place the job in position 4.

Iteration 2: T = 50 − 20 = 30

Job Status Penalty

1 L (30 − 25) × 3 = 45
2 W 0
3 W 0

Jobs 2 and 3 are tied with the least penalty. Schedule the job with longest processing
time, job 2 and place it in position 3. The partial sequence so far is –, –, 2-4.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 176 — #6

176 Production Planning and Industrial Scheduling

Iteration 3: T = 30 − 15 = 15

Job Status Penalty

1 E (20 − 15) × 2 = 10
3 E (30 − 15) × 1 = 15

Job 2 with minimum penalty is scheduled in position 2, and the remaining job, job 2,
goes in position 1.

The best sequence is 3-1-2-4.

Schedule: 0 (3/5) 5 (1/10) 15 (2/15) 30 (4/20) 50
Due dates: (3) 30/E (1) 20/E (2) W (4) W
Delays: 25/E 5/E
Penalty: 25 × 1 + 5 × 2 = 35

Application of the forward phase.
Cycle 1. Iteration 1. Best sequence 3-1-2-4. K = 3. Exchange 3-4. Sequence to

examine: 4-1-2-3

Schedule: 0 (4/20) 20 (1/10) 30 (2/15) 45 (3/5) 50
Due dates: (4) 40/E (1) 25/L (2) 33/L (3) 35/L
Delays: 20/E 5/L 12/L 15/L
Penalty: 20 × 3 + > 35, no exchange.

Cycle 1. Iteration 2. Best sequence 3-1-2-4. K = 2. Exchange 3-2. Sequence to
examine: 2-1-3-4.

Schedule: 0 (2/15) 15 (1/10) 25 (3/5) 30 (4/20) 50
Due dates: (2) 25 (1) W (3) W (4) W
Delay: 10/E
Penalty: 10 × 1 = 10, <35 Exchange.

The new best sequence is 2-1-3-4.
Cycle 2: Iteration 1: Best sequence 2-1-3-4. K = 3. Exchange 2-4. Sequence to

examine: 4-1-3-2.

Schedule: 0 (4/20) 20 (1/10) 30 (3/5) 35 (2/15) 50
Due dates: (4) W (1) 25/L (3) W (2) 33/L
Delays: 5/L 17/L
Penalty: 5 × 3 + 17 × 4 = 83 > 10, no exchange.

Cycle 2: Iteration 2. Best sequence 2-1-3-4. K = 2. Exchange 2-3. Sequence to
examine: 3-1-2-4.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 177 — #7

Other Objectives in Single-Machine Scheduling 177

The sequence was already examined and has a penalty of 35. No exchange is
made.

Cycle 2: Iteration 3. Best sequence 2-1-3-4. K = 2. Exchange 1-4. Sequence to
examine 2-4-3-1.

Schedule: 0 (2/15) 15 (4/20) 35 (3/5) 40 (1/10) 50
Due dates: (2) 25/E (4) 40/E (3) 35/L (1) 25/L
Delays: 10/E 5/E 5/L 25/L
Penalty: 10 × 1 + 5 × 3 + 5 × 3 + 25 × 3 = 115 > 10, no exchange.

Cycle 2: Iteration 4. Best sequence 2-1-3-4. K = 1. Exchange 2-1. Sequence to
examine 1-2-3-4.

Schedule: 0 (1/10) 10 (2/15) 25 (3/5) 30 (4/20) 50
Due dates: (1) 20/E (2) W (3) W (4) W
Delays: 10/E
Penalty: 10 × 2 = 20 > 10, no exchange.

Cycle 2: Iteration 5. Best sequence 2-1-3-4. K = 1, Exchange 1-3. Sequence to
examine 2-3-1-4.

Schedule: 0 (2/15) 15 (3/5) 20 (1/10) 30 (4/20) 50.
Due dates: (2) 25/E (3) 30/E (1) 20/L (4) 50
Delays: 10/E 10/E 10/L W
Penalty: 10 × 1 + 5 × 3 + 10 × 3 = 55 > 10, no exchange.

Cycle 2: Iteration 6: Best sequence 2-1-3-4. K = 1, Exchange 3-4. Sequence to
examine 2-1-4-3.

Schedule: 0 (2/15) 15 (1/10) 25 (4/20) 45 (3/5) 50
Due dates: (2) 25/E (1) W (4) W (3) 35/L
Delays: 10/E 15/L
Penalty: 10 × 1 + 15 × 3 = 55 > 10 no exchange.

Since all the exchanges have been examined, the current best sequence 2-1-3-4
is the overall best sequence, with the penalty of 10 units.

7.4 QUADRATIC OR NONLINEAR
PENALTY FUNCTION

So far, we have been considering both early and late penalties as linear functions of
the difference between job completion times and the due dates. Often, the thought
is that as a job completion time deviates further and further away from the due
date, it should be assessed at a much higher penalty and not just be charged a pen-
alty that is linearly proportional to the deviation. Quadratic penalty function reflects
this sentiment. The cost for early completion and/or late completion may be stated

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 178 — #8

178 Production Planning and Industrial Scheduling

as EiX2 or LiX2, respectively, where X is the deviation between completion time and
due date for the job. As X increases, the cost increases in a quadratic manner. In
some instances, not all jobs have quadratic penalty functions, reflecting perhaps the
importance that is attached toward completion of a job on or very close to the due
date. For example, some job cost may still be linearly proportional to X while others
may be a step function such as cost = A + BX.

To develop the best schedule requires a simple modification to the procedure
applied in Section 6.4. The penalties are calculated based on the individual job’s cost
function. All other steps of the procedure remain the same.

7.4.1 ILLUSTRATIVE EXAMPLE 7.3

The cost functions for four jobs in Section 6.2 are now modified to reflect acceptable
early and late completion dates. The data are shown in Table 7.5.

Here, the user is placing more emphasis on completion of job 2 on time (not too
early or too late), while job 2 may be early but not too late. The penalty values are
calculated using appropriate functions for jobs 2 and 3. For example, at T = 50, the
backward process leads to penalty values as follows:

Job Status Penalty

1 L (50 − 25)2 × 3 = 1875
2 L (50 − 33) × 4 = 68
3 L (50 − 35)2 × 3 = 675
4 W 0

The remaining steps being the same as shown in Section 6.4, we leave it to the
reader to complete the calculations and develop the best sequence.

7.5 MINIMIZATION OF THE AVERAGE DELAY

Another objective that is frequently preferred by schedulers is the minimization of
the average delay. Here, each job is equally important and has an associated due date.
The preference is of course to deliver all jobs on time; however, if there are going

TABLE 7.5
Data for Quadratic Penalty: Example Problem 7.3

Job Pi EDi LDi Ei Li

1 10 20 25 2X2 3X2

2 15 25 33 1 4
3 5 30 35 1 3X2

4 20 40 50 3 4

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 179 — #9

Other Objectives in Single-Machine Scheduling 179

to be some delays then we want to develop a schedule that will minimize the average
of all delays.

This objective can be accommodated by modifying the procedure described in
Section 6.4. Since we are only concerned with the delays, only the late penalties are
of interest. Remember that the procedure in Section 6.4 develops a sequence that
minimizes the total penalty, which is defined as the sum of delay times weight for
each job. Here, all jobs are equally important and all have equal weights (e.g., one),
and hence, the application of the Section 6.4 procedure, which leads to minimization
of the total penalty, also leads to minimization of the total delay. With the number of
jobs being constant, this is also equivalent to minimization of the average delay.

7.6 MINIMIZATION OF THE MAXIMUM DELAY

Another objective may be to minimize the maximum delay associated with any job.
Scheduling jobs based on earliest due dates (EDD) rule leads to a schedule that gives
the least possible value for the maximum delay (Theorem 2.5).

7.7 MINIMIZE THE NUMBER OF JOBS THAT
ARE DELAYED

It is not the magnitude of the total delay or the delay associated with an individual
job that may be of importance but rather the number of jobs that are delayed may be
critical. Here, the objective is to maximize the number of jobs that are performed by
their due dates. Asimple procedure to achieve this objective has the following steps:

1. Arrange the jobs in ascending order of the due dates. Let T denote the
completion time of all jobs that are in the “select set.” Initially, there are
no jobs in the select set, and therefore, the value of T is zero.

2. If all the jobs have been examined go to step 6, if not, select the first
unexamined job, call it job i, in the order established in step 1. Add the
processing time of the job i to the current value of T and denote it by T
temp. This indicates the completion time of the job i if it is selected to
process next. Compare it with its due date. If T temp is less than or equal
to the due date for job i, go to step 3; if it exceeds the due date, go to step 4.

3. Add job i to the select set. Make T equal to T temp. Go to step 2.
4. Select the job with maximum processing time from the select set, call it

job j, and compare its processing time with job i. If the processing time
of the job i is greater or equal to the processing time of job j, job i is not
selected, go back to step 2. If the processing time of job i is less than that
of job j, go to step 5.

5. Check if by removing the largest processing job from select set, job j,
and replacing it with the job under consideration, job i, we will be able
to finish the job i by its due date. If we can, perform this operation and
modify the value of T by making it equal T temp and subtracting from it the
difference between the processing times of job j and I . Go back to step 2.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 180 — #10

180 Production Planning and Industrial Scheduling

TABLE 7.6
Data for Minimization of Number of Jobs Delay:
Example 7.4

Jobs 1 2 3 4 5
Processing times 10 15 8 12 22
Due dates 15 25 27 32 40

If we cannot complete the job i by its due date, job i is not selected and the
value of T remains the same. Go back to step 2.

6. All the jobs have been examined. The select set gives the maximum number
and sequence of jobs that can be done by their due dates.

7.7.1 ILLUSTRATIVE EXAMPLE 7.4

Consider the data given in Table 7.6 where the objective is to minimize the number
of jobs that are delayed.

The jobs are arranged in the ascending order of their due dates. Initially, all the
jobs are unexamined and there are no jobs in the select set. Thus, T = 0. Select the
first job. T temp = T + 10 = 10.

Since T temp is less than the due date for the job 2, it is selected and included in
the select set. T is now made equal to T temp and hence has a value of 10.

The next job to examine is job 2. T temp = 10 + 15 = 25. Since this value is
equal to the due date of job 2, the job is selected and added to the select set. The select
set now has jobs 2 and 2. T = T temp, which is equal to 25.

For job 2, T temp = 25+8 = 33, which exceeds the due date for job 2. According
to step 4, the job with the maximum process time in the select set is job 2, with the
processing time of 15. This is greater than the processing time for job 2. Removing
job 2 from the select set will make T = 25 − 15 = 10. Now T temp = 10 + 8 = 18,
which is lower than the due date for job 2. Hence, according to step 5, job 2 is removed
from the select set and job 2 added. The new value of T is 18.

The next job is job 2. T temp = 18 + 12 = 30 which is less than 32, the due date
for the job and hence it is selected and added to the select set, which now has jobs 2,
3, 4 with T = 30.

When the processing time of job 2 is added in T , T temp becomes 52, which is
greater than its due date. Applying step 4, the job with the largest processing time in
the select set is job 2. Its processing time of 12 is smaller than the processing time
for job 2, and hence job 2 is not selected.

All the jobs are now examined. The maximum number of jobs that can be
processed on time is three, in sequence of 1-3-4 with the following results:

Schedule: 0 (1/10) 10 (3/8) 18 (4/12) 30
Due dates (1) 15 (3) 27 (4) 32
Deviation 5/E 8/E 2/E

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 181 — #11

Other Objectives in Single-Machine Scheduling 181

Note, none of the three accepted jobs are delayed.

7.8 MAXIMIZE THE NUMBER OF JOBS PROCESSED
WHEN THE AVAILABLE TIME IS LESS THAN TOTAL
PROCESSING TIME

Suppose we have a set of jobs that cannot be performed in the available time, that is,
the sum of processing times is greater than the time available on the facility. Also,
each job has a weight that is proportional to the importance of the job to the customer
and also has late and early due dates and associated penalties. Which jobs should
be completed and which ones should be discarded? The following steps suggest a
procedure.

1. Calculate for each job the ratio Mi = Li/Pi. Since the late penalty indicates
the importance of the job (e.g., higher the late penalty, the more important
the job is to the customer), the ratio indicates the importance of the job per
unit time.

2. Check if the present total processing time required is equal to or less than the
available process time on the facility. If yes, go to step 3. If not, eliminate
the job with the smallest value of Mi. If there is a tie, apply the following
rules:
a. Choose a job with the largest processing time, if (present time

required – processing time of the job) is greater than the total time
available for processing on the facility.

b. Choose a job such that (the present time required – processing time)
is as close to the time available. Perform step 2 until we can go to
step 3.

3. Apply the procedure from Section 7.3 on the remaining jobs to obtain the
best sequence.

7.8.1 ILLUSTRATIVE EXAMPLE 7.5

Consider the job data given in Table 7.7. Suppose the facility is available for only
50 time units, and we want to maximize the number of jobs processed.

The total of all processing times is 77. Since only 50 time units are available
on the facility, we cannot process all jobs. The first job to drop is job 2 with the
lowest value of M. The processing time still required is 77 − 13 = 64 and hence
at least one more job needs to be dropped. The next smallest value of M is 0.20
and jobs 2, 7, and 8 are tied. Based on step 2a, the largest processing time among
these is 16, which is associated with job 2. (64 − 16) = 48, which is less than 50.
Hence, we apply step 2b. Based on step 2b, trying jobs 2, 7, and 8, elimination
of job 2 brings us closest to the available time of 50 units, and hence job 2 is
dropped.

Applying step 3, the best sequence obtained for the remaining job is 4-5-6-7-3-1-9.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 182 — #12

182 Production Planning and Industrial Scheduling

TABLE 7.7
Data to Maximize the Number of Jobs Processed: Example 7.5

Job
Processing

Time
Early Due
Date

Late Due
Date

Early
Penalty

Late
Penalty M

1 10 15 17 1 2 0.20
2 13 20 24 1 1 .077
3 5 25 27 2 3 0.6
4 8 10 11 2 5 0.62
5 7 15 16 2 6 0.85
6 3 17 19 1 2 0.66
7 5 13 17 0 1 0.20
8 16 30 32 1 3.2 0.20
9 12 50 51 2 5 0.41

TABLE 7.8
Data for Sequence Dependent Jobs: Example 7.6

Job
Number

Processing
Time Pi

Early Due
Date EDi

Late Due
Date LDi

Early
Penalty Ei

Late
Penalty Li

1 15 20 25 1 3
2 20 25 30 0 3
3 30 30 40 2 3
4 15 20 25 2 2
5 30 40 50 1 2

7.9 SEQUENCE-DEPENDENT JOBS

At times, especially in the chemical industry, the same facility is used to produce differ-
ent products. For example, to make chemical X may require adding chemicalsYand Z,
which are both produced on the same facility. To keep the setup costs down, it may be
required or strongly preferred to produce chemical Y before Z. How can we develop
a sequence that accommodates such precedence relationships?

Only a minor change is needed in the procedure Section 6.4. When calculating
the penalties in the backward phase, assign a very large penalty for a job whose
succeeding job has not yet been scheduled. Also, any job exchanges in the forward
phase must satisfy the precedence relationships or that sequence is invalid and has an
infinite cost.

7.9.1 ILLUSTRATIVE EXAMPLE 7.6

Consider the data given in Table 7.8 in which a constraint is that job 3 cannot be
processed until both jobs 1 and 2 are done.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 183 — #13

Other Objectives in Single-Machine Scheduling 183

Applying backward phase

T = 15 + 20 + 30 + 15 + 30 = 110

Job Penalty Remarks

1 Infinity Job 2 cannot be scheduled before 3 in the
backward phase.

2 Infinity Job 2 cannot be scheduled before 3 in the
backward phase

3 (110 − 40) × 3 = 210
4 (110 − 25) × 2 = 170
5 (110 − 50) × 2 = 120

The minimum penalty job is job 2; therefore, it is placed in the fifth position.

T = 110 − 30 = 80

Job Penalty Remarks

1 Infinity Job 1 cannot be scheduled before job 3 in
the backward phase

2 Infinity Job 2 cannot be scheduled before job 3 in
the backward phase

3 (80 − 40) × 3 = 120
4 (80 − 25) × 2 = 110

Place job 2 in sequence position 4. The partial sequence so far is –, – ,– , 4, 5

T = 80 − 15 = 65

Job Penalty Remarks

1 Infinity Job 1 cannot be scheduled before job 3 in
the backward phase

2 Infinity Job 2 cannot be scheduled before job 3 in
the backward phase

3 (65 − 40) × 3 = 75

Place job 2 in position 3. The partial job sequence so far is –, –, 3, 4, 5

T = 65 − 30 = 35

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 184 — #14

184 Production Planning and Industrial Scheduling

Job Penalty Remarks

1 (35 − 25) × 3 = 30
2 (35 − 30) × 3 = 15

Place job 2 in position 2 and therefore job 1 in position 1. The sequence is 1-2-3-4-5.
The cost of the sequence is 325.

7.9.2 FORWARD PHASE

A summary of forward phase results are displayed in the following:
Cycle 1: Best sequence. 1-2-3-4-5. Cost = 325

K = 4 5-2-3-4-1 Not feasible
K = 3 4-2-3-1-5 Not feasible

1-5-3-4-2 Not feasible
K = 2 3-2-1-4-5 Not feasible

1-4-3-2-5 Not feasible
1-2-5-4-3 Cost = 370 Do not exchange

K = 1 2-1-3-4-5 Cost = 335 Do not exchange
1-3-2-4-5 Not feasible
1-2-4-3-5 Cost = 310 Exchange

Cycle 2: Best sequence: 1-2-4-3-5 Cost = 310

K = 4 5-2-4-3-1 Not feasible
K = 3 3-2-4-1-5 Not feasible

1-5-4-3-2 Not feasible
K = 2 4-2-1-3-5 Cost = 340 Do not exchange

1-3-4-2-5 Not feasible
1-2-5-3-4 Cost = 385 Do not exchange

K = 1 2-1-4-3-5 Cost = 320 Do not exchange
1-4-2-3-5 Cost = 315 Do not exchange
1-2-3-4-5 Cost = 325 Do not exchange
1-2-4-5-3 Cost = 340 Do not exchange

The optimum sequence is 1-2-4-3-5 with the penalty of 310.

7.10 SEQUENCE-DEPENDENT JOBS WITH
MINIMUM/MAXIMUM SEPARATIONS

A rapid deterioration of chemical Y may dictate how quickly chemical Z must be
produced and then mixed with each other to make a good quality of chemical X.
Thus, the maximum time within which the two chemicals can be produced may have

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 185 — #15

Other Objectives in Single-Machine Scheduling 185

a limit. In other instances, there might be minimum separation that is required between
the production of two products (jobs). Such separation may allow a sufficient lead
time to purchase outside components (or chemicals) before the two jobs produced on
our facility can be assembled. The due dates in each case specify the target date of
production. Early penalties may signify the storage charges, while the late penalties
may be due to additional charges incurred because of the deviations from the target
dates.

Changes required in the procedure from Section 7.9 are as follows: In the backward
phase, a job cannot be assigned unless all its prerequisites are met. These include
the precedence relationship and separation requirement. Similarly, in the forward
phase the job prerequisites are checked to see if the sequence is feasible. Only on a
feasible sequence are the penalties calculated and further comparisons made.

7.10.1 ILLUSTRATIVE EXAMPLE 7.7

Consider the problem illustrated in Section 7.9. Now, let us impose an additional
constraint that does not allow the lag between job 3 and job 1 to be more than
15 days. The allocation in the backward phase changes slightly. When T = 35 and
the sequence developed so far is –, –, 3, 4, 5, job 2 cannot be placed in position 2
because the processing time of job 2 is 20 units. This means if job 2 is placed in
position 2, there would be time lag of 20 units between job 1 and job 3, thus violating
the constraint. Indeed, any job with a processing time of greater than 15 would be
ineligible in the second position. Thus, the feasible sequence is 2-1-3-4-5, which has
the penalty of 335. Incidentally, this sequence remains optimum in the forward phase.

7.11 MINIMIZE VARIATION OF FLOW TIME

In a service industry, it may be desirable to provide each customer (job) with approx-
imately the same degree of service by making him/her spend roughly the same time in
the system. Since all the jobs are available initially, one way to achieve this objective
is by specifying a common due date. If the due date is greater than the sum of pro-
cessing times of all jobs, then all customers have received exactly the same degree of
service. In achieving such goal, however, we will also carry a large penalty cost since
the completed jobs will have to be held in inventory until all the jobs are processed.

Kanet (1981) has suggested an interesting way to develop a job sequence if we
can deliver the jobs whenever they are processed. Here, each job is equally important,
and there are no due dates or penalties defined by the customer. The time a job spends
in the system includes not only its own processing time but also waiting for other
jobs ahead in the sequence to be processed. The completion times for all jobs should
be as close together as possible to satisfy our objective. Alternatively, this objective
may be to minimize the total absolute difference in completion (TADC) times or the
variance of completion times.

The procedure starts by arranging jobs in descending order of processing times.
The job sequence is built from both directions, forward and backward. The first job in
the arrangement is assigned to the first position in the job sequence, the second in the

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 186 — #16

186 Production Planning and Industrial Scheduling

TABLE 7.9
Data for Minimization of Variation in Flow Time: Example 7.8

Job # 1 2 3 4 5
Processing time 14 9 18 15 10

last or nth position, the third in the second position, the fourth in the n– 1 position, and
so on. This is called a V-shape arrangement. The resulting job sequence minimizes
the TADC times given by the following expression.

TADC =
n∑

I=1

n∑

j=1

|Ci − Cj|

7.11.1 ILLUSTRATIVE EXAMPLE 7.8

Let us illustrate this procedure by applying it to the following example. The objective
is to develop schedule to minimize the variation in flow time (Table 7.9).

The job arrangement in the descending order of processing times is: 3-4-1-5-2.
The corresponding job sequence is developed by placing job 2 in the first position,
job 2 in the fifth position, job 1 in the second position, job 2 in the forth position and
finally job 2 in the third position. The final sequence is 3-1-2-5-4. The corresponding
completion dates are

0 (3/18) 18 (1/14) 32 (2/9) 41 (5/10) 51 (4/15) 66.

The objective value is (32 − 18)+ (41 − 18)+ (51 − 18)+ (66 − 18)+ (41 − 32)+
(51 − 32) + (66 − 32) + (51 − 41) + (66 − 41) + (66 − 51) = 230.

7.12 SEQUENCE-DEPENDENT SETUP TIMES

So far, we have assumed that all jobs are independent of each other and each has its
own due date and penalty values. The setup times for the jobs were implicitly included
in the total processing times. However, if the setup times are sequence dependent and
substantial, the objective may be to develop a schedule that would minimize the total
setup time.

7.12.1 ILLUSTRATIVE EXAMPLE 7.10

Table 7.10 shows the setup times when job j is processed after job i. We can solve
the problem by considering all possible combinations, that is, by applying exhaustive
enumerations. For small problems, this is possible, but for large n the method becomes
impractical. We can also treat the problem as a traveling salesman problem (Taha,
1987) and apply a heuristic such as the “next best (NB) rule.” According to the rule, if

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 187 — #17

Other Objectives in Single-Machine Scheduling 187

TABLE 7.10
Sequence-Dependent Setup Times: Example 7.10

Follower Job j

Predecessor
Job i

1 2 3 4 5 6
1 0 5 8 3 6 4
2 8 0 6 7 5 9
3 6 9 0 2 4 9
4 1 4 3 0 6 4
5 3 10 12 10 0 8
6 2 9 14 8 9 0

job i is being processed, select the next unprocessed job j that requires the minimum
setup time”.

Suppose we start with job 2; the next job selected is job 2, since it has the lowest
setup cost following job 2. After job 2, job 2 is selected, since it has the lowest
setup cost of all unprocessed jobs following 4. Continuing the process leads to the
sequence 1-4-3-5-6-2, with total setup time of 27. We might try different starting jobs
and determine the best sequence and associated cost and then select the minimum cost
sequence as the operational sequence. In our example, the sequences and associated
costs are as follows:

2 − 5 − 1 − 4 − 3 − 6 = 23, 3 − 4 − 1 − 6 − 2 − 5 = 23,

3 − 4 − 1 − 6 − 5 − 2 = 23, 4 − 1 − 6 − 2 − 5 − 3 = 31,

5 − 1 − 4 − 3 − 2 − 6 = 27, 6 − 1 − 4 − 3 − 5 − 2 = 22

7.13 DUAL CRITERIA

Each procedure discussed so far develops a schedule that performs the best for the
intended criterion. What would happen if we have two or more objectives that we
want to optimize simultaneously? Is it possible to develop a schedule that will be
performed best for multiple objectives? The answer is it may or may not be. The
optimum sequence for one criterion may not be optimum for another, and we may
have to seek a compromise solution. The procedure is demonstrated by the following
example.

7.13.1 ILLUSTRATIVE EXAMPLE 7.11

For example, consider the data from Table 7.11
Supposing we have two objectives: (1) to minimize penalty (P) and (2) to

minimize the number of tardy jobs (NT).
It is not possible to apply both criterions simultaneously within a solution pro-

cedure. We might apply the procedure for minimization of penalty and determine

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 188 — #18

188 Production Planning and Industrial Scheduling

TABLE 7.11
Data for Multiobjective Scheduling: Example 7.11

Job
number

Processing
Time Due Date

Early
Penalty

Late
Penalty

1 5 45 0 1
2 5 20 1 1
3 5 15 0 1
4 10 20 1 2

the value of the second criteria for every sequence as it develops and then select a
sequence that best serves both criteria. The solution is shown in the following:

Backward Phase

2-3-4-1 P = 15 NT = 0
Forward Phase

Cycle 1 K = 3 1-3-4-2 P = 5 NT = 1 Accept the exchange
Cycle 2 K = 3 2-3-4-1 P = 15 NT = 0

K = 2 4-3-1-2 P = 15 NT = 0
K = 2 1-2-4-3 P = 20 NT = 1
K = 1 3-1-4-2 P = 5 NT = 1 Accept the exchange

Cycle 3 K = 3 2-1-4-3 P = 25 NT = 1
K = 2 4-1-3-2 P = 20 NT = 2
K = 2 3-2-4-1 P = 10 NT = 0
K = 1 1-3-4-2 P = 5 NT = 1
K = 1 3-4-1-2 P = 10 NT = 1
K = 1 3-1-2-4 P = 15 NT = 1

The calculations show some dominating sequences, and we could select from
these based on our inclination towards each of the objectives. For example, we could
select sequence 3-2-4-1 with a penalty cost of 10 and with no tardy jobs or sequence
1-3-4-2 with the penalty of 5 but one tardy job.

7.14 DELAY OF EARLY COMPLETING JOBS

Let us examine the concept of early penalty more critically. Early cost is incurred
when the job is completed before its due date. If, however, the processing time avail-
able on the facility is larger than the total processing times required by all jobs,
then it may be possible to delay the start of one or more jobs (introduce slack in the
facility) so that the completion times are as close to the due dates as possible. The
delay or slack introduction may factually mean keeping the facility idle or subcon-
tracting the facility for special order jobs. Such non use or sub use of the facility
may involve a penalty. The question is: where and how to introduce slack in order to

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 189 — #19

Other Objectives in Single-Machine Scheduling 189

minimize the total cost which includes the job related penalties and idle facility related
cost?

The algorithm is presented in two phases (1) slack introduction and (2) optimal
sequence search.

We start the procedure by first obtaining the initial best sequence using the
Section 6.4 procedure. To that sequence, apply the following steps of slack
introduction:

7.14.1 PHASE I. SLACK INTRODUCTION

1. Calculate the completion times of all the jobs in the sequence. This is done
to determine the due date slack. If no job is completed early this method
cannot be applied and the sequence is the best. If one or more jobs can be
completed early, it might be possible to reduce the cost by introduction of
slack in the facility. Determine the cost of idle facility “s” and precede to
step 2.

2. Arrange the jobs in the first column of the savings table, Table 7.12, in the
reverse sequence. For example, if 1-2-3 is the initial sequence, then job 3
is entered in the first row and jobs 2 and 1 are entered in rows 2 and 3 in
rows, respectively.

3. Calculate the due date slack Yi = (Di − Ci) where i = 1, 2, . . ., n, and
tabulate them in column 4 of the savings table. The slack in each job is
calculated to determine the maximum amount of slack that can be added
in the sequence at this time. If for all jobs Yi < 0, then no additional
slack can be added, go to step 10. If at least one value of Yi > 0, go to
step 4.

4. The value of slack that can be introduced in this iteration “S” is the min-
imum positive value of Yi. It is note in column 5. For jobs with Yi > 0,
the addition of slack may give savings. On the other hand, the addition of
minimum slack ensures minimal increase in the late penalties for jobs with
Yi < 0.

5. Calculate the value of S × Li for jobs with YiL0 and the product S × Ei

for jobs with Yi > 0 and enter them in columns 5 and 6, respectively.
Each value represents a savings in early penalty or an additional cost in
late penalty for each job, as appropriate.

6. Compute the slack cost (idle machine cost) as the product of the S
and slack cost per unit time, s. Note, introduction of slack renders the
machine/facility idle, and hence the slack cost of the facility is determined
to find the net savings.

7. Calculate cumulative savings and tabulate in column 10. The cumulative
savings are calculated to see the amount of savings that are realized by
the addition of slack S before the corresponding job. Note the cumulative
savings of a job is the result of sum of the savings of the subsequent jobs
in the actual sequence shown in the reverse order in the savings table.

8. Calculate the net profit for all the jobs as the difference between cumulative
savings and slack cost. Enter the net profit in column 11, and proceed to

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 190 — #20

190 Production Planning and Industrial Scheduling

TA
B
LE

7.
12

Sa
vi
ng
s
Ta
bl
e

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
ue

D
at
e

D
i

(2
)

A
dj
us
ta
bl
e

C
om

pl
et
io
n

Ti
m
e

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S (5
)

L i (6
)

E i (7
)

C
os
t
(I
f

Y
i

<
=
0)

S
×

L i
(8
)

Sa
vi
ng
s
(I
f

Y
i

>
0)

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

(1
1)

N
et

sa
vi

ng
s
=

Po
in

to
f

in
tr

od
uc

tio
n

of
sl

ac
k

is

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 191 — #21

Other Objectives in Single-Machine Scheduling 191

step 9. Slack S is added immediately before the job for which the maximum
cumulative positive savings are observed. If there are no positive savings,
go to step 10.

9. Add slack value S computed in step 4 to the completion times of the jobs
that follow the job that has maximum savings and go to step 2. This is done
because the addition of slack would delay the completion of all succeeding
jobs by that amount. Since only the minimum positive amount of Yi (due
date slack) is added every time, the next iteration (steps 2 through 9) is
performed to find if more savings can be realized by the addition of some
more slack in the sequence.

10. Add the values of the savings from all the savings tables and subtract it
from the cost of the initial best sequence obtained in step 1. This represents
the cost of the sequence due to the addition of slack(s). Determine the start
and completion times of all the jobs.

7.14.2 PHASE II. OPTIMAL SEQUENCE SEARCH

The above solution does not always represent the optimal sequence, even though the
initially selected sequence represents the best sequence with the least cost. It may
happen that addition of slack to a different sequence may lower the cost even further.
Forward phase of Section 6.4 is performed on the best sequence obtained at the end
of introduction of slack phase, and phase I of slack introduction is repeated, till there
is no further job switch.

7.14.3 ILLUSTRATIVE EXAMPLE 7.12

To illustrate the above methodology, the following example is used. Also, consider
the cost of idle facility as 5 unit/time unit (Table 7.13).

The initial job sequence using the procedure from Section 6.4 is 3-4-2-5-1.

Step 1: calculation the completion times of jobs in sequence.

Sequence: 0 (3/8) 8 (4/6) 14 (2/35) 49 (5/43) 92 (1/45) 137
Delay: (3) 33/E (4) 25/E (2) 146/E (5) 180/E (1) 188/E
Penalty: 25 × 1 + 11 × 3 + 97 × 1 + 88 × 2 + 51 × 3 = 484.

TABLE 7.13
Data for Example 7.12

Job Number
Processing
Time (Pi)

Due Date
(Di)

Late Penalty
(Li)

Early Penalty
(Ei)

1 45 188 11 3
2 35 146 2 1
3 8 33 7 1
4 6 25 8 3
5 43 180 4 2

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 192 — #22

192 Production Planning and Industrial Scheduling

Most of the jobs (in this case in fact all the jobs) are completed early and therefore
delaying some jobs may prove profitable. Phase I of the slack introduction method is
now applied.

Iteration 1: Sequence 3-4-2-5-1

Step 2: Construction of a savings in Table 7.14 as follows:

Step 3: The difference between the due dates and the job finish times are noted in
column 4.

Step 4: The minimum positive value of Yi is 11 (i.e., S = 11) for job number 4.This
is the slack value S (col 5) in this iteration.

Step 5: The product of the slack value and early penalties (since slack here represents
early slack) for the respective jobs is calculated and entered in column 9.

Step 6: Cumulative values of col 9 are entered in col 10.

Step 7: Since the slack cost is 5 / unit time, the slack cost in this case is 5 × 11 = 55.

Step 8: The cumulative savings are calculated and entered in column 11. They are
calculated as (cumulative savings in column 10 - slack cost from step 7).

Step 9: The maximum positive savings of $55 is observed for job 2. A profit of $55
can be realized by adding a slack value of 11 at the start of job 2, that is, at the start
of the sequence. The start and completion times of the jobs after iteration 1 are given
in the following. Note that the introduction of slack is shown as +11.

0 + 11 (3/8) 19 (4/6) 25 (2/35) 60 (5/43) 103 (1/45) 148

Iteration 2: Sequence 3-4-2-5-1

Repeat steps just illustrated (step 2 through 9) on the same sequence, 3-4-2-5-1,
with the new starting and completion times that result from the introduction of slack.
The calculations are shown in Table 7.15.

In iteration 2, the slack value S is 14 (col 5), and the maximum savings realized
is 14 (col 11). Here, the slack should be added at the beginning of job 2, the job for
which this savings is realized. The starting and completion times for the jobs after
iteration 2 are

0 + 11 (3/8) 19 (4/6) 25 + 14 = 39 (2/35) 74 (5/43) 117 (1/45) 162

Again, note the slack times are indicated by +11 and +14, giving starting times
for job 2 as 11 and for job 2 as 39.

Iteration 3: Sequence 3-4-2-5-1
Continue with the starting and completion times for the sequence in iteration 2.

The resulting calculations are shown in Table 7.16.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 193 — #23

Other Objectives in Single-Machine Scheduling 193
TA

B
LE

7.
14

Sa
vi
ng
s
Ta
bl
e
fo
r
In
it
ia
lB

es
t
Se
qu

en
ce

(I
te
ra
ti
on

1)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(C
S

−
11

×
5)

1
18

8
13

7
18

8
−

13
7

=
51

11
3

—
33

33
−2

2
5

18
0

92
18

0
−

92
=

88
4

2
—

22
55

0
2

14
6

49
14

6
−

49
=

97
2

1
—

11
66

11
x4

25
14

25
−

14
=

11
11

8
3

—
33

99
44

3
33

8
33

−
8

=
25

7
1

—
11

11
0

55
∗

N
et

sa
vi

ng
s
=

55
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

be
fo

re
jo

b
2

TA
B
LE

7.
15

Sa
vi
ng
s
Ta
bl
e
fo
r
In
it
ia
lB

es
t
Se
qu

en
ce

(I
te
ra
ti
on

2)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(C
S

−
14

×
5)

1
18

8
14

8
18

8
−

14
8

=
40

11
3

—
42

42
−2

8
5

18
0

10
3

18
0

−
10

3
=

77
4

2
—

28
70

0
2

14
6

60
14

6
−

60
=

86
2

1
—

14
84

14
∗

4
25

25
25

−
25

=
0

8
3

-1
12

—
−2

8
−9

8
3

33
19

33
−

19
=

14
14

7
1

—
14

−1
4

−8
4

N
et

sa
vi

ng
s
=

14
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

be
fo

re
jo

b
2

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 194 — #24

194 Production Planning and Industrial Scheduling

The maximum positive savings of 14 is associated with job 2. The value of slack
is 14 (minimum positive value of Yi), and it should be added at the beginning of job 2.
This is in addition to slack introduced in the previous iteration. The following are the
start and finish times of the jobs after iteration 3:

0 + 11 (3/8) 19 (4/6) 25 + 14 + 14 = 53 (2/35) 88 (5/43) 131 (1/45) 176

Iteration 4: Sequence 3-4-2-5-1(Table 7.17)

Iteration 4 has shown positive savings and hence 12 units of slack is added in
front of job 2. The next sequence is 0 + 11 = 11(3/8)19(4/6)25 + 14 + 14 + 12 =
77(2/35)112(5/43)155(1/45)200 (Table 7.18).

There is no further savings and hence the previous solution is best with cost of

0 + 11 = 11(3/8)19(4/6)25 + 14 + 14 + 12 = 77(2/35)112(5/43)155(1/45)200.

Due date 33 25 146 180 180
14/E 0/E 34/E 25/E 20/L

Cost 14 × 1 + 0 × 3 + 34 × 1 + 25 × 2 + 20 × 11 = 318

7.14.4 PHASE II: OPTIMAL SEQUENCE SEARCH

The best sequence examined so far is 3-4-2-5-1. Proceeding with the forward
phase, the next sequence to examine is one check with K = 4, that is, sequence
1-4-2-5-3. The slack introduction phase is applied to this sequence in the following
iterations.

Iteration 1: Best sequence 3-4-2-5-1. K = 4. Sequence to examine: 1-4-2-5-3

The calculations are summarized in Table 7.19.
There is no reduction in the cost, and therefore the best sequence remains

3-4-2-5-1.

Iteration 2: Best sequence: 3-4-2-5-1: K = 3. Sequence to examine 5-4-2-3-1

Since there are no other jobs with a lag of 4, the value of the lag, K , is changed to 3.
The new sequence with lag 3 to examine is 5-4-2-3-1. The initial cost of this sequence
is $1094. Since there is no reduction of cost after slack introduction, the sequence
3-4-2-5-1 remains the best sequence.

Iteration 3: Best sequence 3-4-2-5-1: K = 3. Sequence to examine 3-1-2-5-4

With K = 3, exchanging jobs 2 and 4 resulted in the sequence 3-1-2-5-4 which had
a higher cost and did not improve on the best sequence.

Iterations 3, 4, and 5. Best sequence 3-4-2-5-1: K = 2

None of the sequences with K = 2 exchanges showed any cost reductions over the
best sequence though sequences 3-4-1-5-2 did reduce in cost with slack introduction.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 195 — #25

Other Objectives in Single-Machine Scheduling 195

TA
B
LE

7.
16

Sa
vi
ng
s
Ta
bl
e
fo
r
In
it
ia
lB

es
t
Se
qu

en
ce

(I
te
ra
ti
on

3)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(C
S

−
14

×
5)

1
18

8
16

2
18

8
−

16
2

=
26

11
3

—
42

42
−

−
28

5
18

0
11

7
18

0
−

11
7

=
63

4
2

—
28

70
0

2
14

6
74

14
6

−
74

=
62

2
1

—
14

84
14

∗
4∗

25
25

25
−

25
=

0
8

3
–1

12
–2

8
−9

8
3∗

33
19

33
−

19
=

14
14

7
1

14
-1

4
−8

4
N

et
sa

vi
ng

s
=

26
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

be
fo

re
jo

b
2

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 196 — #26

196 Production Planning and Industrial Scheduling
TA

B
LE

7.
17

Sa
vi
ng
s
Ta
bl
e
fo
r
In
it
ia
lO

pt
im
al
Se
qu

en
ce

(I
te
ra
ti
on

4)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(C
S

−
12

×
5)

1
18

8
17

6
18

8
−

17
6

=
12

12
11

3
36

36
−2

4
5

18
0

13
1

18
0

−
13

1
=

49
4

2
—

24
60

0
2

14
6

88
14

6
−

88
=

58
2

1
—

12
72

12
∗

4∗
25

25
25

−
25

=
0

8
3

−9
6

-
−2

4
−8

4
3∗

33
19

33
−

19
=

14
7

1
12

−1
2

−7
2

N
et

sa
vi

ng
s
=

12
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

jo
b

2

TA
B
LE

7.
18

Sa
vi
ng
s
Ta
bl
e
fo
r
In
it
ia
lO

pt
im
al
Se
qu

en
ce

(I
te
ra
ti
on

5)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

(1
1)

1
18

8
20

0
18

8
−

20
0

=
−1

2
11

3
−1

54
−1

54
−2

24
5

18
0

15
5

18
0

−
15

5
=

25
4

2
−

28
−1

26
−1

96
2

14
6

11
2

14
6

−
11

2
=

34
2

1
−

14
−1

12
−1

82
4∗

25
25

25
−

25
=

0
8

3
−1

12
−

−2
24

−2
94

3∗
33

19
33

−
19

=
14

14
7

1
14

−2
10

−2
80

N
et

sa
vi

ng
s
=

--
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

N
A

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 197 — #27

Other Objectives in Single-Machine Scheduling 197

TA
B
LE

7.
19

Sa
vi
ng
s
Ta
bl
e
fo
r
Se
qu

en
ce

1-
4-
2-
5-
3
(I
te
ra
ti
on

)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(1
1)

3
33

13
7

33
−

13
7

=
−1

04
7

1
−3

57
—

−3
57

−6
12

5
18

0
12

9
18

0
−

12
9

=
51

51
4

2
—

10
2

−2
55

−5
10

2
14

6
86

14
6

−
86

=
60

2
1

—
51

−2
04

−4
59

4
25

5 1
25

−
51

=
− 2

6
8

3
−4

08
—

−6
12

−8
67

1
18

8
45

18
8

−
45

=
14

3
11

3
—

15
3

−4
59

−7
14

N
et

sa
vi

ng
s
=

–
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
is

N
A

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 198 — #28

198 Production Planning and Industrial Scheduling

Iteration 6: Best sequence 3-4-2-5-1: K = 1 Sequence to examine 4-3-2-5-1

Jobs 2 and 2 are exchanged giving the new sequence to examine as 4-3-2-5-1. The
initial cost of this sequence is 502 and the final cost after three internal iterations is
375. The details are shown Tables 7.20 through 7.23. The exchange is accepted and
sequence 3-4-1-5-2 now becomes the best sequence which is examined further.

Summary of all calculations are tabulated in Table 7.23. The best sequence
remains, even after the application of forward phase, the initial sequence 3-4-2-5-
1with the penalty of 318. The starting and completion times of each job are indicated
in the sequence diagram.

0 + 11 = 11(3/8)19(4/6)25 + 14 + 14 + 12 = 77(2/35)112(5/43)155(1/45)200.

7.15 JOBS ARRIVING AT DIFFERENT TIMES

So far, we have assumed that all jobs are available for scheduling at time zero. If
this is not the case, slight modifications to both backward and forward phases are
required. The backward phase is now applied to only the jobs that are available up
to the completion time of the previous job in the sequence. Initially, only the jobs
available at time zero are considered for the backward phase. If all the jobs arrive at
time greater than zero, then the process starts at time of the first job’s arrival (there
might be multiple jobs arriving at the same time). The steps are given in the following.

Backward Phase

Step 1: Set C = 0 and K = 1.
Step 2: Among all the unscheduled jobs, choose the minimum arrival time of

the jobs. Let it be ES.
Step 3: Set S = maximum value of either ES or C.
Step 4: Choose all the jobs that have their arrival time values less than or equal

to S. Put them in set J .
Step 5: Compute T , which is the sum of processing times of all the jobs in set

J . Set H = T + S. Set C = H.
Step 6: Schedule all the jobs in set J in the backward direction based on the

penalty. Penalty for job i, TDi, is: if (H − Di) > 0, TDi = (H − Di) × Li;
otherwise, TDi = (Di − H) × Ei.

The criterion for choosing a job is the one which has the least penalty. In
case of a tie, the job with the maximum value of processing time is chosen.
If there is still a tie, choose the job with the maximum value of arrival time;
if there is still a tie, break it arbitrarily. If there are N jobs in set J , we assign
jobs from set J starting at position N + K – 1, ending in position K . Once
a job has been assigned, the value of H is reduced by its processing time,
and penalties for the remaining jobs in set J are recalculated. This process
is repeated until all the jobs in set J are assigned.

Step 7: Set K = K + N .
Step 8: If K is less than or equal to the total number of jobs, then go to step 2;

otherwise, stop and go to forward phase.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 199 — #29

Other Objectives in Single-Machine Scheduling 199
TA

B
LE

7.
20

Sa
vi
ng
s
Ta
bl
e
fo
r
Se
qu

en
ce

4-
3-
2-
5-
1
(I
te
ra
ti
on

6)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(1
1)

1
18

8
13

7
18

8
−

13
7

=
51

11
3

-
57

57
−3

8
5

18
0

92
18

0
−

92
=

88
4

2
-

38
95

0
2

14
6

49
14

6
−

49
=

97
2

1
-

19
11

4
19

33
14

33
−

14
=

19
7

1
-

19
13

3
38

4
25

6
25

−
6

=
19

19
8

3
-

57
19

0
95

∗
N

et
sa

vi
ng

s
=

95
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
be

fo
re

4

TA
B
LE

7.
21

Sa
vi
ng
s
Ta
bl
e
fo
r
Se
qu

en
ce

4-
3-
2-
5-
1
(I
te
ra
ti
on

2)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(1
1)

1
18

8
15

6
18

8
−

15
6

=
32

32
11

3
—

96
96

−6
4

5
18

0
11

1
18

0
−

11
1

=
69

4
2

—
64

16
0

0
2

14
6

68
14

6
−

68
=

78
2

1
—

32
19

2
32

∗
3∗

33
33

33
−

33
=

0
7

1
-2

31
—

−3
9

−1
99

4∗
25

25
25

−
25

=
0

8
3

-1
52

—
−1

91
−3

51
N

et
sa

vi
ng

s
=

32
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
be

fo
re

2

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 200 — #30

200 Production Planning and Industrial Scheduling

TA
B
LE

7.
22

Sa
vi
ng
s
Ta
bl
e
fo
r
Se
qu

en
ce

4-
3-
2-
5-
1
(I
te
ra
ti
on

3)

Jo
bs

R
ev
er
se

Se
qu
en
ce

(1
)

D
i

(2
)

C
i

(3
)

Y
i

=
D

i
−

C
i

(4
)

M
in
(+

Y
i)

S
(5
)

L i (6
)

E i (7
)

C
os
t
If

Y
i

<
=
0

S
×

L i
(8
)

Sa
vi
ng
s
If

Y
i

>
0

S
×

E i
(9
)

C
um

ul
at
iv
e

Sa
vi
ng
s
(C
S)

(1
0)

N
et
Sa
vi
ng
s

(C
S

−
S

×
s)

=
(1
1)

1
18

8
18

8
18

8
−

18
8

=
0

11
3

-4
07

—
-4

07
−5

92
5

18
0

14
3

18
0

−
14

3
=

37
37

4
2

—
74

-3
33

−5
18

2
14

6
10

0
14

6
−

10
0

=
46

2
1

—
37

-2
96

−4
81

3∗
33

33
33

−
65

=
−3

2
7

1
-2

59
—

-5
55

−7
40

4∗
25

25
25

−
57

=
−3

2
8

3
-2

96
—

-8
51

−1
03

6
N

et
sa

vi
ng

s
=

–
Po

in
to

f
ad

di
tio

n
of

sl
ac

k
be

fo
re

N
A

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 201 — #31

Other Objectives in Single-Machine Scheduling 201

TA
B
LE

7.
23

It
er
at
io
ns

Sh
ow

in
g
th
e
O
pt
im
al
Se
qu

en
ce

Se
ar
ch

Sa
vi
ng
s/
A
m
ou
nt
/P
oi
nt

of
A
dd
it
io
n

It
er
at
io
n
an
d
K

B
es
t
Se
qu
en
ce

Se
qu
en
ce

In
it
ia
lP
en
al
ty

It
er
at
io
n
1

It
er
at
io
n
2

It
er
at
io
n

Fi
na
lP
en
al
ty

3-
4-

2-
5-

1
3-

4-
2-

5-
1

48
4

55
/1

1/
3

14
/1

4/
2

26
/2

6/
2

38
9

1.
K

=
4

1-
4-

2-
5-

3
15

27
—

—
—

15
27

2.
K

=
3

5-
4-

2-
3-

1
10

94
—

—
—

10
94

3.
3-

1-
2-

5-
4

14
82

—
—

—
14

82
4.

K
=

2
2-

4-
3-

5-
1

68
0

—
—

—
68

0
3-

5-
2-

4-
1

10
36

—
—

—
10

36
5.

3-
4-

1-
5-

2
61

0
45

/9
/3

4/
2/

3
—

56
1

6.
K

=
1

4-
3-

2-
5-

1
50

2
95

/1
9/

4
32

/3
2/

2
—

37
5

1.
K

=
4

4-
3-

2-
5-

1
1-

3-
2-

5-
4

16
21

—
—

—
16

21
2.

K
=

3
5-

3-
2-

4-
1

11
49

—
—

—
11

49
3.

4-
1-

2-
5-

3
13

58
—

—
—

11
49

4.
K

=
2

2-
3-

4-
5-

1
70

2
—

—
—

70
2

5.
4-

5-
2-

3-
1

94
7

—
—

—
94

7
6.

4-
3-

1-
5-

2
62

8
45

/9
/4

20
/1

0/
4

—
56

3
7.

K
=

1
4-

2-
3-

5-
1

60
3

—
—

—
60

3
8.

4-
3-

5-
2-

1
52

9
95

/1
9/

4
32

/3
2/

5
—

40
2

9.
4-

3-
2-

1-
5

54
1

95
/1

9/
4

24
/2

4/
2

—
42

2

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 202 — #32

202 Production Planning and Industrial Scheduling

Forward Phase
Now the forward phase is applied. The forward phase remains the same, except

that the penalty is calculated differently. Ai is the arrival time for job i. CT is the
total completion time for the jobs in the sequence so far examined by the forward
phase. TDi is the penalty for job i. CT is initially set to 0. We start from the first job
in the sequence (i.e., from the left). If at any point in time a job does not arrive at
the time the previous job was completed, the next job can only start when it arrives;
therefore, the completion time of the job arriving late is given by the sum of the time
at which it arrives and its processing time. This results in a delay in the processing of
subsequent jobs.

The following conditions illustrate the penalty calculation.

If Ai > CT, then CT = Ai + Pi; otherwise, CT = CT + Pi.
If CT−Di > 0, then TDi = (CT−Di)×Li; otherwise, TDi = (Di −CT)×Ei.

Consider the following example shown in Table 7.24.
where Pi, Ai, Di, Li, and Ei represent the processing time, arrival time, due date, and
late and early penalties of the jobs, respectively.

Backward Phase Application

K = 1 and C = 0
ES = minimum (2, 5, 28, 10, 10) = 2
S = maximum (ES = 2, C = 0) = 2.
J = {1}
T = 5, H = T + S = 5 + 2 = 7, C = H = 7
N = 1 since there is only one job in set J .
Assign job 1 at position N + K − 1(1 + 1 − 1 = 1).
K = K + N = 1 + 1 = 2.
The partial sequence is 1 - - - -.
ES = minimum (5, 28, 10, 10) = 5
S = maximum (5, 7) = 7
J = {2}
T = 7, H = 14, C = 14
N = 1
Assign job 2 at position 1 + 2 − 1 = 2.
K = K + N = 1 + 2 = 3
The partial sequence is 1-2 - - -.
ES = minimum (28, 10, 10) = 10
S = maximum (10, 14) = 14
J = {4, 5}
T = 5, H = 5 + 14 = 19, C = 19
Penalty for job 2 = (H − Di) = (19 − 15) × 1 = 4
Penalty for job 2 = (19 − 17) × 2 = 4

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 203 — #33

Other Objectives in Single-Machine Scheduling 203

TA
B
LE

7.
24

D
at
a
fo
r
Si
ng
le
-M

ac
hi
ne

Pe
na
lt
y
M
in
im
iz
at
io
n
fo
r
Jo
bs

A
rr
iv
in
g
at
D
iff
er
en
t
Ti
m
es

Jo
bs

P i
A

i
D

i
L i

E i

1
5

2
9

2
1

2
7

5
15

2
1

3
8

28
42

1
0

4
3

10
15

1
0

5
2

10
17

2
1

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 204 — #34

204 Production Planning and Industrial Scheduling

Since there is a tie. we look for the job with a maximum value of processing time.
Since the processing time for job 4 is higher, we choose job 4. Assign job 4 at position
2 + 3 − 1 = 4. The partial sequence now becomes 1-2-4-

H = 19− Processing time for job 4 = 19 − 3 = 16.

Since there is only one other job left (job 5) in set J , we assign it to position K , which
is 3. The partial sequence is 1-2-5-4-.

K = 3 + 2 = 5

ES = 28
S = maximum (28, 19) = 28
J = {3}
T = 8, H = 8 + 28 = 36, C = 36.

Note that this job can be assigned at time 28 and not 19, which was the completion
time of the previous job.

K = K + N = 5 + 1 = 6

Since K exceeds the total number of jobs 2, we stop the backward phase. The
optimal sequence obtained from the backward phase is 1-2-5-4-3. Now, we proceed
to the forward phase.

Forward Phase Application
The total penalty for the sequence 1-2-5-4-3 is
Initially, CT = 0.

Job 2: CT = 7, TD1 = 2
Job 2: CT = 14, TD2 = 1
Job 2: CT = 16, TD3 = 1
Job 2: CT = 19. TD4 = 4
Job 2: CT = 36, TD5 = 0

The total penalty for the sequence 1-2-5-4-3 is the sum of all TDi, which is 8.

Cycle 1. Iteration 1. Best sequence 1-2-5-4-3; K = number of jobs −1 = 4.
Exchange 1–3. Sequence to examine 3-2-5-4-1

Schedule: 28−(3/8)−36−(2/7)−43−(5/2)−45−(4/3)−48−(1/5)−53
Due dates: (3) − 42 − (2) − 15 − (5) − 17 − (4) − 15 − (1) − 9
Penalties: 0 + 56 + 56 + 33 + 88 = 233.
Total penalty = 233 > 8, no exchange.

Cycle 1. Iteration 2. Best sequence 1-2-5-4-3; K = 3. Exchange 1–4. Sequence
to examine 4-2-5-1-3.

Total penalty = 56 > 8, no exchange.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 205 — #35

Other Objectives in Single-Machine Scheduling 205

Cycle 1. Iteration 3. Best sequence 1-2-5-4-3; K = 3. Exchange 2–3. Sequence
to examine 1-3-5-4-2.

Total penalty = 136 > 8, no exchange.
Cycle 1. Iteration 4. Best sequence 1-2-5-4-3; K = 2. Exchange 1–5. Sequence

to examine 5-2-1-4-3.
Total penalty = 55 > 8, no exchange.
Cycle 1. Iteration 5. Best sequence 1-2-5-4-3; K = 2. Exchange 2–4. Sequence

to examine 1-4-5-2-3.
Total penalty = 18 > 8, no exchange.
Cycle 1. Iteration 6. Best sequence 1-2-5-4-3; K = 2. Exchange 5–3. Sequence

to examine 1-2-3-4-5.
Total penalty = 75 > 8, no exchange.
Cycle 1. Iteration 7. Best sequence 1-2-5-4-3; K = 1. Exchange 1–2. Sequence

to examine 2-1-5-4-3.
Total penalty = 30 > 8, no exchange.
Cycle 1. Iteration 8. Best sequence 1-2-5-4-3; K = 1. Exchange 2–5. Sequence

to examine 1-5-2-4-3.
Total penalty = 22 > 8, no exchange.
Cycle 1. Iteration 9. Best sequence 1-2-5-4-3; K = 1. Exchange 5–4. Sequence

to examine 1-2-4-5-3.
Total penalty = 9 > 8, no exchange.
Cycle 1. Iteration 10. Best sequence 1-2-5-4-3; K = 1. Exchange 4–3.

Sequence to examine 1-2-4-3-4.
Total penalty = 28 > 8, no exchange.

Applying forward phase in this case does not improve the solution. The optimal
sequence remains 1-2-5-4-3, and the optimal total penalty is 8.

Alternatively, we can understand the procedure by applying it to a little expanded
example. Start with the earliest arrival, and schedule that job first. If there are multiple
jobs arriving at the earliest time, choose the one with shortest processing time, and
schedule it first.

Jobs Pi Ai Di Li Ei

1 5 2 9 2 1
2 7 5 15 2 1
3 8 15 42 1 0
4 3 10 15 1 0
5 2 10 17 2 1
6 4 9 20 1 1

Earliest arrival job is 1 at time 2. Scheduling it gives following:

0(1/5)5

The job is completed at time 5. By that time, only one new job has arrived, job 2.
Schedule job 2. The schedule is as follows:

0(1/5)5(2/7)12

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 206 — #36

206 Production Planning and Industrial Scheduling

By time 12, jobs 2, 5, and 6 have arrived. The total time to process all three jobs is
3 + 2 + 4 = 9. Apply backward phase to choose the sequence of these three jobs, but
only select first job in the sequence and repeat the process.

Completion time for the last of these is 12 + 9 = 21. The associated penalties are:
job 2 (21−15)×1 = 6; for job 2 (21−17)×2 = 8; for job 2 it is (21−20)×1 = 1.
The least cost is 1, and hence schedule job 2 in last position. The completion time for
the other two jobs is 21 − 4 = 17.

The completion of job 2 at time 17, costs (17−15)×1 = 2, and for job 2 the cost
is (17 − 17) × 1 = 0. Schedule job 2 in the second position from end, and therefore
job 2 is scheduled next. The sequence is

0(1/5)5(2/7)12(4/3)15

By time 15, jobs 2, 5, and 6 have arrived. Since these are all jobs have arrived,
applying backward phase with these three jobs results in completion of the sequence.

0(1/5)5(2/7)12(4/3)15(5/2)17(6/4)21(3/8)29

7.16 SUMMARY

The chapter illustrates many different variations of the single-machine problem. These
variations are primarily due to different objectives. As the objective changes, so does
the solution procedure, and ultimately the final sequence. It is, therefore, important
that we understand the goal defined by management before embarking on developing
a schedule.

It is possible that we may have dual criteria to evaluate. In such a case, the
schedule may be a compromise schedule, based on the importance we attach to each
criterion.

In some instances (and they may not be as rare as we think), it may be beneficial to
keep a facility idle for some time rather than to complete the jobs before the due dates
and build an inventory. The just-in-time principle is such a case. We have illustrated
a procedure that adapts to this goal.

We have also seen how backward and forward phases can be modified to accom-
modate sequencing of jobs that arrive at different times. The procedure is simple and
very effective.

7.17 PROBLEMS

7.1 A facility manufactures refrigeration compressors based on orders
received from customers. The product line consists of three models (A,
B, and C), each with a different BTU rating. Models A and B are man-
ufactured in jobs of 1000 units each, and model C in jobs of 500 units
each. The facility operates 20 hr/day. Models A and B can be produced
at a rate of 500/day, whereas model C can be produced at a rate of
only 400/day. No model or customer has priority over any other. Partial

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 207 — #37

Other Objectives in Single-Machine Scheduling 207

orders can be shipped to a customer, but all of the same models ordered
must be shipped at the same time. The following is a list of orders from
customers.

Customer Model Units Ordered Due Date

1 A 2000 5
2 A 2000 8

C 2500 16
3 B 2000 23

C 2000 30
4 A 2000 12

B 2000 26

i. Calculate the number of jobs for each model to be produced, along
with the total processing time.

ii. Determine a schedule of jobs based on the minimization of
maximum delay.

iii. Determine the maximum delay.
7.2 A defense contractor for the U.S. government manufactures circuit card

subassemblies for use in weapons systems. The contractor has received
the following orders from its customers:

Quantity 100 200 150 125 250 125 250 75
Due date 20 20 20 20 30 30 30 30
Late penalty l 0 1 2 3 1 2 1

Each order is processed as a job. Each unit requires 0.05 days of
processing. The company assigns a penalty of 1 for any early orders to
account for inventory carrying costs. Develop a schedule for each of the
common due dates, and calculate the associated penalty.

7.3 A company manufactures industrial lighting fixtures such as recessed
lighting fixtures, “exit” signs, and “entrance” signs. The company
receives the following order from one of its established customers:

Product Description Quantity

XP: Exit signs—letters in red, plastic housing 1200
XM: Exit signs—letters in red, metal housing 1200
EP: Entrance signs—letters in green, plastic housing 1200
EM: Entrance signs—letters in green, metal housing 1200

Each of the products is scheduled in jobs of 1200 units. The known
processing times are 3 days for XP, 5 days for XM, 6 days for EP, and 8
days for EM. The following table shows the early and late penalties that
will be incurred. The customer wants delivery of all four products at the

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 208 — #38

208 Production Planning and Industrial Scheduling

same time. Develop the schedule, and determine the shipment date and
the associated penalties incurred.

Job Pi Di Ei Li

1 3 Common 3 2
2 5 Common 0 1
3 6 Common 4 2
4 8 Common 1 3

7.4 Achemical manufacturer that supplies a petroleum refinery has received a
purchase order for four different chemicals from the refinery’s purchasing
department. The chemicals will be used in one of the refinery’s continuous
processes. Because of the refinery’s safety stock, some lateness is accept-
able. However, the later the shipment, the more crucial it becomes. There-
fore, the following late penalties will be incurred if deliveries are late:

Order Processing Time Due Date Late Penalty

1 12 20 2x2

2 16 18 3x2

3 8 25 x2

4 18 30 2x2

Develop the schedule for the chemicals, given the nonlinear penalty
functions to be assessed if the chemicals are shipped late.

7.5 Acompany manufactures riding lawnmowers at one of its facilities. Model
XYZ lawnmower is manufactured with the nameplate of customer 1, and
model ABC is manufactured with the nameplate of customer 2. With the
exception of the nameplate, the two mowers are identical. Four different
size engines are available on both models: 8, 10, 12, and 16 hp. The 8-hp
and 10-hp mowers have a 36” cutting deck, whereas the 12-hp and 16-hp
have a 42” cutting deck. Regardless of the nameplate, the total manu-
facturing time (hours) for each is as follows: 0.08, 0.09, 0.11, and 0.12,
for 8, 10, 12, and 16 hp, respectively. Work orders are generated from
the materials department to produce batches of mowers at the following
quantities: 500, 900, 560, and 455 for 8, 10, 12, and 16 hp, respectively.
The following orders have been received from customers 1 and 2 with
associated expected delivery dates:

Customer Horsepower Quantity Expected Delivery Date

1 8 500 10
1 10 400 30
1 16 300 20
2 10 500 15
2 12 560 12
2 16 155 22

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 209 — #39

Other Objectives in Single-Machine Scheduling 209

The company knows that it can actually deliver the mowers 3 days
before or after the expected delivery date without any question from the
customers. Outside this range, however, an early penalty of 2 and a late
penalty of 3 will be incurred. Develop the production schedule for the
materials department for the batches of lawnmowers (plant operation is
for 8 hr per day).

7.6 Automobile tires are produced by a company and sold to automobile
manufacturers. Because the automobile manufacturers are very depend-
ent on the tire manufacturer, the relationship between the two is critical.
Realizing this, the tire manufacturer’s objective is to have as few late
deliveries as possible to its customers. Generate the next production
schedule based on the following orders received with their expected
delivery dates specified by the customers and the processing times known:

Order 1 2 3 4 5 6

Processing time 18 12 6 20 13 10
Due date 25 80 40 65 15 50

7.7 Customized computer systems are built by a company for industrial cus-
tomers with business application requirements. The company is in a period
of growth, with an increasing number of orders being requested. Although
it strives to meet all customers’ requirements, it is limited by its resources
and at times must reject orders. When developing its schedule, consider-
ation is given to long-standing customers and also to larger orders. The
following orders have been received. The company has listed what it
believes to be an acceptable range for completion of the orders based on
requested delivery dates. Also, the company has assigned early and late
penalties to the jobs, indicating the relative importance of each job. The
estimated processing times are listed as well.

Job
Processing

Time
Early Due
Date

Late Due
Date

Early
Penalty

Late
Penalty

1 2 4 8 0 1
2 6 12 16 1 2
3 3 10 12 1 0
4 7 12 20 0 0
5 4 20 25 2 1
6 1 3 5 2 2

Determine which orders, if any, must be declined.
7.8 A newly built company is concerned with developing good relationships

with its customers. Because it has minimum capital, it is also concerned
with maximizing its cash flow. Consequently, to develop its production
schedules, it desires to both minimize its cash penalties and minimize

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 210 — #40

210 Production Planning and Industrial Scheduling

the number of jobs that it ships late. Suggest a schedule based on the
following data while simultaneously considering both these objectives:

Job Processing Time Due Date Early Penalty Late Penalty

1 5 10 1 2
2 15 20 1 1
3 10 40 0 1
4 5 15 0 2

7.9 A company that competes in the industrial welding supplies market man-
ufactures welding machines, which it sells to many different distributors
and retailers. Because of the high levels of competition and low profit
margins in this industry, the company desires to keep the average delay
of product delivery to its customers to a minimum. Suggest a schedule
based on the following orders received:

Order 1 2 3 4 5

Manufacturing time 6 9 5 12 15
Delivery date 15 35 10 50 25

The company considers each customer equally important and assesses
a late penalty of 2 to itself if any order is delivered late.

7.10 An accounting firm has accepted requests from eight customers to prepare
their tax returns during the upcoming week. The firm has estimated the
time required for each return. Its objective is to minimize the variation
in the amount of time the tax return stays in the office for processing.
Given the estimated processing time for each of the following tax returns,
develop the best order of processing the returns to meet the firm’s
objective.

Tax return 1 2 3 4 5 6 7 8
Estimated processing time 8 4 7 10 3 6 9 8

REFERENCES AND SUGGESTED READINGS

Ahmed, I. and W.W. Fisher. 1992. “Due Date Assignment, Job Order Release and Sequencing”
Decision Sciences, 23: 633–644.

Baker, K.R. 1974. Introduction to Sequencing and Scheduling, New York: Wiley.
Cambadi, B. l991. “One Machine Scheduling to Minimize Expected Mean Tardiness: Part I”

Computers and Operations Research, 22–36.
Conway, R.W., Maxwell, W.L., and L.W. Miller. 1967. Theory of Scheduling, Reading, MA:

Addison-Wesley.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 211 — #41

Other Objectives in Single-Machine Scheduling 211

Eilon, S. and I.E. Chowdhury. 1977. “Minimizing Waiting Time Variance in the Single Machine
problem” Management Science, 23(6): 567–575.

Elmaghraby, S.E. 1968. “The One-Machine Scheduling Problem with Delay Costs” Journal
of Industrial Engineering, 19: 105–108.

Emmons, H. 1969. “One Machine Sequencing to Minimize Certain Functions of Job Tardiness”
Operations Research, 17: 701–715.

Fathi, Y. and H.W.L. Nuttle. 1990. “Heuristic for Common Due Date Weighted Tardiness
Problem” IIE Transactions, 22: 215–225.

Hamada, T. and K. D. Glazebrook. 1993. “A Bayesian Sequential Single Machine Schedul-
ing Problem to Minimize the Expected Weighted Sum of Flow Times of Jobs with
Exponential Processing Times” Operations Research, 924.

Kanet, John J. December 1981. “Minimizing Variation of Flow Time in Single Machine
Systems” Management Science, 27: 1453–1459.

Lawler, E.L. l973. “Optimal Sequencing of a Single Machine Subject to Precedence
Constraints” Management Science, 19: 544–546.

Lee, C.Y., Danusaputro, S.L., and C.S. Lin. 1991. “Minimizing Weighted Number of Tardy Jobs
and Weighted Earliness-Tardiness Penalties about a Common Due Date” Computers
and Operations Research, 18(4): 379–389.

Merten, A.G. and M.E. Muller. 1972. “Variance Minimization in Single Machine Sequencing
Problems” Management Science, 18(9): 518–528.

Mittenthal, J., M. Ragavachari, andA.I. Rana. 1993. “AHybrid SimulatedAnnealingApproach
for Single Machine Scheduling Problems with Non-Regular Penalty Functions”
Computers and Operational Research, 103.

Moore, J.M. 1968. “An ’N’ Job, One Machine Sequencing Algorithm for Minimizing the
Number of Late Jobs” Management Science, 15: 102–109.

Ow, P.S. and T.E. Morton. 1989. “The Single Machine Early/Tardy Problem” Management
Science, 35: 177–187.

Panwalkar, S.S., Sluith, M.L., and A. Seidmann. 1982. “Common Due Date Assignment
to Minimize Total Penalty for the One Machine Scheduling problem” Operations
Research, 30: 391–399.

Schrage, L. 1975. “Minimizing the Time-In System Variance for a Finite Jobset” Management
Science, 21(5): 540–543.

Sundararaghavan, P.S. and M.U. Ahmed. 1984. “Minimizing the Sum of Absolute Lateness in
Single-Machine and Multimachine Scheduling” Naval Research Logistics Quarterly,
31: 325–333.

Taha, H.A. 1987. Operations Research, New York: Macmillan.

Dileep: “44206_c007” — 2007/9/17 — 14:58 — page 212 — #42

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 213 — #1

8 Flowshop Problems

In Chapters 6 and 7, we have discussed what is generally referred to as a single
machine facility problem where the entire production unit or work center may be
considered as the facility. Here, we shall extend the analysis to the next level of detail
and complexity by evaluating a flowshop problem (Figure 8.1). The characteristic of
a flowshop is: we have m machines or work centers in the facility, and all jobs are
processed on these machines in the same sequence. However, the processing time
for each job on each machine may vary. All jobs are assumed to be available at time
zero. It is further assumed that there is sufficient physical buffer space between two
successive machines. This allows each machine to release the processed jobs to the
succeeding machine without being concerned about the busy or idle status of the
machine. A usual objective is to develop a schedule that minimizes the makespan.
Furthermore, in this case the schedule that minimizes the makespan also minimizes
major alternative objectives of minimizing the sum of job waiting times and the sum
of machine idle times. We use the notation pij to denote the processing time of job i
on machine j. Many industrial and non-industrial applications follow the flowshop
arrangement when the operations are to be performed sequentially.

8.1 TWO-MACHINE PROBLEM

The simplest form of a flowshop arrangement is when there are only two machines or
work centers and each job must be processed successively on these two machines; the

Job 1

Drilling
M/C

Milling machine
Lathe

Finished jobsGrinding machine

Job 2 Job 3 Job 4 Job 5

FIGURE 8.1 Scheduling in a flowshop.

213

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 214 — #2

214 Production Planning and Industrial Scheduling

In process

Job flow

Input Output
Machine 1 Machine 2

FIGURE 8.2 The two-machine flowshop model.

TABLE 8.1
Data for Example 8.1

Job
Number

Processing Time on
Milling Machine

Pi1 = Ai

Processing Time
on NC Grinder
(Pi2 = Bi)

1 15 3
2 8 20
3 18 5
4 25 8
5 17 20
6 22 30

first operation on the first machine and the second operation on the second machine
(Figure 8.2). Johnson (1954) developed a scheduling procedure that gives a minimum
makespan for the jobs on which this procedure is applied. This method is well known
in the scheduling literature as Johnson’s rule. For making the procedure general, let
us define Ai = Pi1 and Bi = Pi2. The steps of the procedure are as follows:

1. For the jobs yet to be sequenced, determine the minimum times of all Ai

and Bi.
2. If the minimum is associated with Ai then place the corresponding job in

the earliest possible position in the sequence. If the minimum is associated
with Bi, then place the corresponding job in the latest possible position in
the sequence.

3. Mark the job as being sequenced and scratch the associated Ai and Bi values.
4. If all jobs are placed in the sequence, go to step 5, otherwise go to step 1.
5. We have the optimum sequence.

8.1.1 ILLUSTRATIVE EXAMPLE 8.1

Consider a machine shop operation where each piece is first rough cut and shaped
on the milling machine and then ground to the required tolerance and polished on
the NC grinder. We have six jobs that need processing, and we wish to determine the
optimum sequence to minimize the makespan. The data are given in Table 8.1.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 215 — #3

Flowshop Problems 215

1 13

Iteration 1 Iteration 2

1342 134652

Iteration 3 Iteration 4
final sequence

FIGURE 8.3 Solution to two-machine example.

Iteration 1: The minimum processing time is 3 on the second machine for
job 1. Hence, job 1 is placed in the last position, and its processing times are
scratched. The sequence developed so far is: –, –, –, –, –, 1.

Iteration 2: Processing time 5 with machine 2 associated with job 3 is the next-
smallest processing value. Job 3 is placed in the fifth position, the latest
possible position in the partial sequence developed so far. The new partial
sequence is: –, –, –, –, 3, 1. Job 3 and the associated processing times are
scratched.

Iteration 3: Minimum time now is 8 associated with job 2 (machine 1) and
job 4 (machine 2). Job 2 is placed in the first position and job 4 in position 4.
The partial sequence is: 2, –, –, 4, 3, 1. Both jobs are scratched.

Iteration 4: Job 5 with 17 units on machine 1 is the lowest value. Place job 5 in
position 2 and the remaining job 6 is placed in position 3. The final sequence
is: 2, 5, 6, 4, 3, 1.

Figure 8.3 shows the iterative developments. The detailed time schedule that
shows the start and completion times of each job on each machine M1 and M2 is
shown below:

M1: 0 (2/8) 8 (5/17) 25 (6/22) 47 (4/25) 72 (3/18) 90 (1/15) 105

M2: 0/8 (2/20) 28/25 (5/20) 48/47 (6/30) 78/72 (4/8) 86/90 (3/5) 95/105 (1/3) 108

On machine 1, the start and completion times are determined by adding processing
times in job sequence, and are displayed using the convention from Chapters 6 and 7.
Loading on machine 2 requires special attention. A job when completed in machine 1,
goes to machine 2. It is processed immediately if machine 2 is available. However,
it may have to wait in the buffer space if machine 2 is still processing the previous
job. Thus, the starting time for a job that is in position j in the sequence on the second
machine is the maximum of two values; completion time on job j − 1 in that machine
and the release time of job j from the previous machine. This is easily visualized on the
second machine by writing completion time of the previous job (Cj−1,2) first followed
by the release time of job j from machine one (Cj,1). For example, in machine 2
processing of job 2 can start at time 8 after it has been processed in machine 1, greater
of initial time of 0 and 8. Job 5 can start on machine 2, on greater of two times,
28 when the previous job, Job 2 completes its requirements on machine 2 (time at
which machine 2 is available for processing new job) and 25 when job 2 is released

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 216 — #4

216 Production Planning and Industrial Scheduling

TABLE 8.2
Data for Three Machine Problem: Example 8.2

Job
Number Milling Time

Grinder
Processing Time

Polishing
Processing Time

1 15 2 1
2 8 6 14
3 18 2 3
4 25 5 5
5 17 10 10
6 22 10 20

from machine 1 and is available for processing on machine 2. The start of job 1, for
example, is delayed (and machine 2 is idle) because it is released from machine 1
at time 105 even though machine 2 is available at time 95. The makespan for this
sequence is 108 time units.

8.2 THREE-MACHINE PROBLEM

Unfortunately, Johnson’s rule results cannot be extended to n machine/facilities flow-
shop. However, in a special case, it can be extended to a three-machine flowshop,
provided the second machine is not a “bottleneck” machine. For a machine not to be
a bottleneck, it should not delay any job, or, in other words, as the job is released
from the first machine, it should immediately be processed in the second machine.
If such is the case, then develop the following two factors for each job i:

Ai = Pi1 + Pi2 and Bi = Pi2 + Pi3

Then, apply the procedure described in Section 8.1, except treat factor Ai as machine 1
time and factor Bi as machine 2 time.

8.2.1 ILLUSTRATIVE EXAMPLE 8.2

Consider Example 8.1, except now suppose the grinding and polishing operations are
separated in machine 2 grinder and machine 3 polisher. The processing times now
are as given in Table 8.2.

The associated Ai and Bi factors are calculated in Table 8.3.
Applying the procedure from Section 8.1 on Ai and Bi factors results in the

sequence of 2-6-5-4-3-1, as illustrated in Figure 8.4.
The schedule for the sequence on three machines is as follows:

Machine 1: 0 (2/8) 8 (6/22) 30 (5/17) 47 (4/25) 72 (3/18) 90 (1/15) 105
Machine 2: 0/8 (2/6) 14/30 (6/10) 40/47 (5/10) 57/72 (4/5) 77/90 (3/2) 92/105 (1/2) 107
Machine 3: 0/14 (2/14) 28/40 (6/20) 60/57 (5/10) 70/77 (4/5) 82/92 (3/3) 95/107 (1/1) 108

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 217 — #5

Flowshop Problems 217

TABLE 8.3
Ai and Bi Factors for the Data
in Table 8.2

Job Ai = Pi1 + Pi2 Bi = Pi2 + Pi3

1 17 3
2 14 20
3 20 5
4 30 10
5 27 20
6 32 30

1 13

Iteration 1 Iteration 2

132 1342

Iteration 3 Iteration 4

13452 134562

Iteration 5 Iteration 6
final sequence

FIGURE 8.4 Solution to three-machine example.

Note the times on machine 3. The first number is when machine 3 completed
processing on job j − 1, and the next number is when job j is available to work on
machine 3. For example, 60/57 in front of job 5 on machine 3 indicates that the
previous job 6 is completed on time 60 and job 5 is released by machine 2 on time 57.
Thus, job 5 had to wait for the machine for 3 time units. According to our convention,
if the first number is greater than the second number, then the job is waiting on the
machine, and if the second number is larger than the first number, then the machine is
waiting on the job (machine is idle). We can easily determine the following quantities:

Machine k idle time =
∑

(Ci−1, k − Ci, k−1) for Ci−1, k − Ci, k−1 < 0

Total waiting time of jobs on machine k

=
∑

(Ci−1, k − Ci, k−1) for Ci−1, k − Ci, k−1 ≥ 0

For example, machine 2 idle time is = (30 − 14) + (47 − 40) + (72 − 57) +
(90 − 77) + (105 − 92) = 64, and total waiting time of jobs on machine 2 is zero.
Machine 2 is not a bottleneck machine, and the sequence developed by applying the
modified Johnson’s rule is optimum.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 218 — #6

218 Production Planning and Industrial Scheduling

TABLE 8.4
Start and Completion Times Calculations of Each Job on Each Machine

Machine 1 Machine 2 Machine 3

Process Complete Process Complete Process Complete
Job
Sequence

2 8 8 6 14 14 28
6 22 30 10 40 20 60
5 17 47 10 57 10 70
4 25 72 5 77 5 82
3 18 90 2 92 3 95
1 15 105 2 107 1 108

Perhaps it might be easier to understand the starting and completion times for
each job on each machine if we display them in a table such as Table 8.4.

The table is constructed by first listing the sequence and each job’s processing
times on each machine. For machine 1, since the machine is never idle, the completion
time of any job is the cumulative times up to and including that job’s processing
times. For all other machines, we must check the availability of machine and job.
For example, job 6 is available for processing on machine 2 at time 30, and the
machine is available for the next job (after job 2) at time 14. The greater of these two
numbers is when job 6 can start on machine 2. In short, compare the completion times
for the job in the previous machine (same row, previous column) with availability
time for the present machine (same column, previous row), and choose the larger of
the two numbers as the starting time for the job. We shall leave it up to the reader to
compare the numbers in the table with the numbers shown on each machine sequence
display and also to develop a similar table for Problem 8.1.

8.3 SETUP/PROCESSING AND REMOVAL TIMES
SEPARATED: ANOTHER EXTENSION OF
JOHNSON’S ALGORITHM

Now, consider a two-machine flowshop problem and assume that the time taken
to process a job can be divided into parts. Some parts of the processing time are
dependent on the job, while others, though required, can be performed independent
of the job itself. For example, consider a machine shop. Operations associated with
each job on each machine may be summarized as follows:

1. Setup time that is independent of the unit to be processed. This may consist
of activities such as obtaining the blueprints, procuring the necessary tools,
fetching the required jigs and fixtures, and setting them on the machine.

2. Setup time that is unit dependent. This may include the time required to
set the unit in jigs and fixtures and to adjust the tools as necessary.

3. Processing time.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 219 — #7

Flowshop Problems 219

Machine 1

Machine 2

Ci –1,1

Ci –1,2 Si 2 CSi 2 CPi 2 CPi 2Pi 2 Ri 2 Ci 2

Si1 CSi1 Pi1 CPi1 Ri1 Ci1

FIGURE 8.5 Illustration of two-machine problem with setup, processing, and removal times
separated.

4. Removal time that is unit dependent. This may include activities such as
disengaging the tools from the unit, and releasing the unit from jigs and
fixtures.

5. Removal time independent of the unit. The operation includes
activities such as dismantling the jigs, the fixtures and/or tools,
inspecting/sharpening of tools, returning some tools to the tool room, and
cleaning the machine and adjacent area.

Since activities 2, 3, and 4 are unit dependent, their times could be combined and
designated as the processing time. However, times for activities 1 and 5 are inde-
pendent of the unit processed. Can Johnson’s rule be applied here? The answer is yes,
but with some modifications.

Let us define a few more variables as follows:

Sik = Setup time independent of the unit, that is, activity 1, for job i on
machine k.

Pik = Processing time of job i on machine k. This includes times for activities 2,
3, and 4.

Rik = Removal time, that is, activity 5, for job i on machine k.

Calculate factors Ai and Bi such that: Ai = (Si1 − Si2 + Pi1) and Bi =
(Pi2 + Ri2 − Ri1), and then apply the procedure from Section 8.1. Note that this
is a generalized result, which is applicable even if independent setups or removals
on one or both machines are absent (corresponding values are zeros). Figure 8.5
illustrates the separation.

8.4 TWO-MACHINE FLOWSHOP WITH TRAVEL TIME
BETWEEN MACHINES

Suppose there is one transporter in the system (such as an automatic guided vehicle
or an AGV), which connects machines 1 and 2. It picks a job from the first machine
and delivers it to the second machine and returns to the first machine. The travel
time from the first machine to the second machine is Tf and the travel time from the
second machine, back to the first machine is Tb. The time to load and unload the

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 220 — #8

220 Production Planning and Industrial Scheduling

AGV is included in the travel time. How will the scheduling change? The problem
was first introduced by Panwalker (1991). We shall study here the generalization of
the problem such that unit-independent setup and removal times may also be present.

Here, if the AGV is not available to load and transport the unit when it has been
processed on machine 1, the machine becomes blocked until the unit is removed
by the AGV. We cannot start the unit-independent removal on machine 1 until the
job is moved by the AGV, or both unit-independent removal on the first machine
and travel forward by the AGV, starts at the same time. When the AGV reaches
the second machine, it delivers the job to the second machine if the setup has been
completed, and the machine is ready to receive the job. If not, it places the job in a
waiting line (queue) and immediately starts its return to machine one. In other words,
once the AGV leaves the first machine, it always returns in time Tf + Tb to take the
next job.

To develop the optimum sequence requires formulation of two factors:

Ai = max([Tf + Tb], [Si1 − Si2 + Pi1])
Bi = Pi2 + Ri2 − Ri1

Step 1: Apply algorithm described in Section 8.1 (Johnson’s algorithm) using
the factors calculated above. Denote such sequence as M1 and calculate its
makespan.

Step 2: For each job k, where the condition (Tf + Tb) > (Sk1 − Sk2 + Pk1)

is valid, place that job k first in the sequence, scratch the corresponding Ak
and Bk and apply Johnson’s algorithm on the remaining factors to develop
the remaining sequence. Denote these sequences (one for every job that is
forced first). We shall denote these sequences as M2, M3, . . . Calculate the
makespan for each sequence.

Step 3: From among the sequences M1, M2, M3, . . ., select the sequence with
minimum makespan.

The reader must note that we have introduced step 2 and step 3 here.
The reason is simple. It is assumed that the AGV is initially available for
transporting at machine 1 and, therefore, the first job does not wait for AGV.
If (Sk1 −Sk2 +Pk1) is less than Tf +Tb, it is possible that job k completes its
operations on machine 1 before AGV can make its round trip. The waiting
time of the job can thus be reduced if it is processed first. Johnson’s rule
then applies on the remaining jobs to determine the optimum sequence of
the remaining jobs. Step 3 selects the best sequence.

8.4.1 RELATIONSHIPS FOR MAKESPAN CALCULATIONS

For job i:

STi1 = Setup time on machine 1
STi2 = Setup time on machine 2
RTi1 = Removal time on machine 1
RTi2 = Removal time on machine 2

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 221 — #9

Flowshop Problems 221

PTi1 = Process time on machine 1
PTi2 = Process time on machine 2

For machine 1:
Start setup on machine 1 = Ci−1,1 (for i = 1, C01 = 0).
Complete setup on machine 1 (independent of the unit), CSi1 = Ci−1,1 + Si1.
Start processing on machine 1, SPi1=CSi1 .
Complete processing on machine 1, CPi1 = SPi1 + Pi1.
Start removal on machine 1, SRi1 = max(CPi1, CTBi−1).
CTB is complete travel backward time of AGV (for job 1, CTB0 = 0).
Job completed on machine 1, Ci1 = CPi1 + Ri1.

For AGV:
Start travel forward, STFi = SRi1
Complete travel forward, CTFi = STFi + Tf
Start travel forward, STBi = CTFi1
Complete travel forward, CTBi = STBi + Tb

For machine 2:
Start setup on machine 2, = Ci−1,2 (for i = 1, C02 = 0)
Complete setup on machine 2 (independent of the unit), CSi2 = Ci−1,2 + Si2
Start processing on machine 2, SP2i = max(CSi2, CTFi)
Complete processing on machine 2, CPi2 = SPi2 + Pi2
Job completed on machine 2, Ci2 = CPi2 + Ri2
Start removal on machine 2, SRi2 = CPi2
Complete removal and job on machine 2, Ci2 = SRi2 + Ri2

8.4.2 ILLUSTRATIVE EXAMPLE 8.3

Consider the data shown in Table 8.5 for five jobs to be processed on two machines.
Each job has unit-independent setups and removals along with unit-dependent pro-
cessing time. The transporter requires 15 units to travel forward from machine 1 to 2,
while it takes only 12 units to travel back from machine 2 to 1. The difference occurs
because on the forward travel the transporter is loaded with a unit and the time for
forward travel includes the loading and unloading times of the unit.

TABLE 8.5
Data for Example 8.3

JOB # STi1 PTi1 RTi1 STi2 PTi2 RTi2

1 10 27 17 17 46 15
2 22 52 8 5 45 19
3 8 26 9 15 35 11
4 23 70 9 5 12 9
5 3 69 11 22 48 1

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 222 — #10

222 Production Planning and Industrial Scheduling

TABLE 8.6
Ai and Bi Values for the Data in Table 8.5

Job Number Ai = Max(Tf + Tb , STi1 − STi2 + PTi1) Bi = PTi2 + RTi2 − RTi1

1 Max(27, 10 − 17 + 27 = 20) = 27 46 + 15 − 17 = 44
2 Max(27, 22 − 5 + 52 = 69) = 69 45 + 19 − 9 = 55
3 Max(27, 8 − 15 + 26 = 19) = 27 35 + 11 − 9 = 37
4 Max(27, 23 − 5 + 70 = 88) = 88 12 + 9 − 9 = 12
5 Max(27, 3 − 22 + 69 = 50) = 50 48 + 1 − 11 = 38

Thus, we have: Tf = 15; Tb = 12, and therefore the total transport time,
Tf + Tb = 27.

The first step is to develop Ai and Bi factors. Table 8.6 displays these calculations.
Applying Johnson’s algorithm from Section 8.1 on the two factors, we get a

sequence 1-3-2-5-4. Since job 3 also satisfies Tf + Tb > (STi1 − STi2 + PTi1)

we place job 3 first and develop the remaining sequence using the method from
Section 8.1 and get 3-1-2-5-4 as the second sequence. Calculation of makespans shows
both sequences having the makespans of 391. Details of the makespan calculations
for one job sequence are shown in the following.

8.4.3 MAKESPAN CALCULATIONS

The final step is to check the makespan for each sequence. The Table 8.7 displays a
sample calculation for sequence 1-3-2-5-4. It is convenient to perform the calcula-
tions in three parts: machine l, transporter, and machine 2. Note that a job can start
forward transportation (SFTi) as soon as it completes processing on machine 1 (CPi1).
Machine 2 can start processing job if has received the job from transporter after the
completion of transport forward (CTFi) and has completed the unit-independent setup
(CSi2). Since the transporter does not wait on machine 2, CTFi is also the time it starts
back towards machine 1 (STBi). A unit cannot be removed from machine 1 unless the
transporter is available, that is, the transporter has completed its back travel (CTBi).
Start removal on machine 1 (SRi1) can only start after the unit is picked up by the
transporter from machine 1. The setup for next job cannot start (SSi1 and SSi2) until
the previous job’s removal has been completed (CRi1 and CRi2).

8.5 n JOBS/m-MACHINES PROBLEM

So far, we have seen various flowshop results with two-machine problems and a
specialized extension to a three-machine problem. In this section, we shall study two
heuristic scheduling techniques that expand the analysis to m machines. The four
methods are:

1. Minimize machine idle time method
2. Palmer’s method

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 223 — #11

Flowshop Problems 223

TABLE 8.7
Makespan calculations for Sequence 1-3-2-5-4.

Machine 1

Job Ssi1 CSi1 SPi1 CPi1 SRi1 CRi1

1 0 10 10 37 37 54
3 54 62 62 88 88 97
2 97 119 119 171 171 179
5 179 182 182 251 251 262
4 262 285 285 355 355 364

Transporter

Job STFi CTFi STBi CTBi

1 37 52 52 64
3 88 103 113 125
2 171 186 186 198
5 251 266 266 278
4 355 370 370 382

Machine 2

Job Ssi2 CSi2 SPi2 CPi2 SRi2 CRi2

1 0 17 52 98 98 113
3 113 128 128 163 163 174
2 174 179 186 231 231 250
5 250 272 272 320 320 321
4 321 326 370 382 382 391

The makespan = 391

3. Nawaz’s method
4. Campbell, Dudek, and Smith (CDS) procedure

Since all four methods are heuristic, they do not guarantee optimum solution in every
case, but do give good solutions that are very close to the optimum.

8.5.1 MINIMIZE MACHINE IDLE TIME METHOD

Our basic principle is to schedule the jobs in such a way so as to minimize the idle
times of the machines. To this extent, the information generated in Table 8.4 is most
useful. In developing Table 8.4, we have listed machines on the columns and jobs in
the rows. A job i can only start on the machine k if two conditions are satisfied. First,
job i is available, that is, it has been processed in the previous machine (machine
k − 1), and second, if machine k is available, (that is, the machine has completed
work on the previous job). The time when job i is available is shown by the row i
entry for completion time of the job in the previous machine (column k −1). The time

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 224 — #12

224 Production Planning and Industrial Scheduling

TABLE 8.8
Processing Time of Each Jobs on Each Machine and
Their Sum

Job/Machine 1 2 3 4
∑

Pij

1 25 45 52 40 162
2 7 41 22 66 136
3 41 55 33 21 150
4 74 12 24 48 158
5 7 15 72 52 146
6 12 14 22 32 80

when the machine k is available is given by the completion time for the previous job
(job i − 1), the completion time entry for job i − 1 in column k.

Thus, the idle time of machine k is given by completion time of job i on the
previous machine (row i column k−1) minus completion time of job i−1 in machine k
(row i − 1, column k).

8.5.1.1 Procedure

1. Find the sum of processing times for each job. Arrange the jobs in the
ascending order of their sum. Schedule the job with minimum sum in the
first position, and calculate its completion time on each machine.

2. Select the three jobs, if available (the number chosen somewhat arbitrarily
to minimize calculations), with next minimum sums of processing times,
and list them in the iteration table. These are denoted as testing jobs. The
iteration table lists the last job (LJ) in the schedule developed so far and
its completion times. Calculate the completion times of each one of the
testing jobs as if each job is the next one to be scheduled.

3. Calculate the total machine idle time for each of the test jobs. Remem-
ber there is idle time on the machine only if job completion time (row i,
column k − 1) > machine free time (completion time for LJ in column k).
The value of the machine idle time is the difference in these two values.

4. The next job to be put in sequence is the one with minimum total idle time.
If there is a tie, each schedule with the tie jobs may be evaluated.

5. If all jobs are scheduled, stop. If not, calculate the completion times for
the job added to the schedule in step 4 and go back to step 2.

8.5.1.2 Illustrative Example

Consider the flowshop problem with four machines and six jobs. The processing times
are given in Table 8.8.

The ascending job order based on the sum of processing times is 6-2-5-3-4-1.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 225 — #13

Flowshop Problems 225

TABLE 8.9
Search for Sequence Position 2

Job/Machine 1 2 3 4
Total Machine Idle Time

(Ci ,k−1 > Cr ,k)

Conf. 6 12 12 14 26 22 48 32 80

Test jobs
2 7 19 41 67 22 89 66 155 (67 − 48) + (89 − 80) = 28
5 7 19 15 41 72 120 52 172 (120 − 80) = 40
3 41 53 55 108 33 141 21 162 (53 − 26) + (108 − 48)

+(141 − 80) = 148

TABLE 8.10
Search for Sequence Position 3

Job/Machine 1 2 3 4
Total Machine Idle Time

(Ci ,k−1 > Cr ,k)

Conf. 2 19 67 89 155

Test jobs
5 7 26 15 82 72 161 52 213 (161 − 155) = 6
3 41 60 55 122 33 155 21 176 (122 − 89) = 33
4 74 93 12 105 24 129 48 203 (93 − 67) + (105 − 89) = 42

The first job sequenced is job 6. The next step is to develop Table 8.9 to determine
which job should follow job 6. The table lists job 6, as the confirmed job, and the
next three jobs from the ascending order as the test jobs.

Some explanation of Table 8.9 is necessary. For each job, there are two entries
for each machine. The first entry is the processing time and the second entry is its
completion time on that machine. Each test job is compared with the last confirmed
job r (job 6) for determining its completion times. For example, job 2 completion time
on machine 3 is calculated as (max(67, 48) + 22) = 89. Similarly, completion time
for job 5 on machine 3 is (max(41, 48) + 72) = 120, and for job 3, the completion
time on machine 3 is (max(108, 48) + 33) = 141. The idle time of each machine as
a job is sequenced is calculated and added to get the total idle time (note that the idle
time only occurs if the row entry for job i in column k − 1, Ci,k−1 is greater than the
entry in row r and column kCr,k for the confirmed machine).

Since job 2 has the minimum machine idle time, it is scheduled next. The sequence
confirmed so far is 6, 2, –, –, –, –. For the search for the next position job, job 2
becomes the confirmed job and Table 8.10 is constructed.

The minimum total idle time is with job number 5, and hence it is sequenced in
position 3. The sequence thus far is 6, 2, 5, –, –, –. The next iteration is shown in
Table 8.11.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 226 — #14

226 Production Planning and Industrial Scheduling

TABLE 8.11
Search for Sequence Position 4

Job/Machine 1 2 3 4
Total Machine Idle Time

(Ci ,k−1 > Cr ,k)

Conf. 5 26 82 161 213

Test jobs
3 41 67 55 137 33 194 21 234 0
4 74 100 12 24 48 >0, no need to calculate
1 25 51 45 127 52 213 40 253 0

TABLE 8.12
Search for Sequence Position 5

Job/Machine 1 2 3 4
Total Machine Idle Time

(Ci ,k−1 > Cr ,k)

Conf. 1 51 127 213 253

Test jobs
3 41 92 55 182 33 246 21 274 0
4 74 125 12 139 24 237 48 301 0

TABLE 8.13
Throughput Time by Placing Job 3 in Position 5
and Job 4 in Position 6

Job/Machine 1 2 3 4

3 41 92 55 182 33 246 21 274
4 74 166 12 194 24 270 48 322

Here, both jobs 3 and 1 have zero machine idle time. Both should be tried in
the fourth position. We have not continued calculations for job 4 since the first machine
itself has the idle time of (100−82) = 18, which is greater than the zero machine idle
time we have obtained for the previous job. Let us continue with job 1 in the fourth
position. Table 8.12 searches for sequence position 4. Table 8.13 shows the next
iteration.

Again, either jobs 3 or 4 may be in position 5, and the remaining in position 6.
The throughput times by placing each job in position 5 are determined in Tables 8.13
and 8.14.

Both sequences 6-2-5-1-3-4 and 6-2-5-1-4-3 have makespans of 322. Incidentally,
we would have gotten the sequence of 6-2-5-3-4-1 after Table 8.11, had we chosen
job 3 for position 4 instead of job 1. This sequence also has makespan of 322.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 227 — #15

Flowshop Problems 227

TABLE 8.14
Throughput Time by Placing Job 4 in Position 5
and Job 3 in Position 6

Job/Machine 1 2 3 4

4 74 125 12 139 24 237 48 301
3 41 166 55 221 33 270 21 322

8.5.2 PALMER PROCEDURE

Palmer (1965) suggested developing the slope index for each job given by following
expression:

Si = (m − 1)Pjm + (m − 3)Pjm−1 + (m − 5)Pjm−2 + · · ·
− (m − 5)Pj3 − (m − 3)Pj2 − (m − 1)Pj1

and then constructing the sequence based on the descending order of the mag-
nitude of Sj. The idea is to progress by scheduling jobs needing short times first
and then continuing in terms of the magnitude of times, with longest job being
scheduled last.

For the data in Table 8.7, since we have four machines, m = 4, and Sj is given by:

Sj = 3Pj4 + Pj3 − Pj2 − 3Pj1

Substituting the process time values, we get: S1 = 52, S2 = 158, S3 = −82,
S4 = −66, S5 = 192, and S6 = 68. The job schedule developed by arranging Sj in
descending order is 5-2-6-1-4-3. The makespan for this sequence is 353.

8.5.3 NAWAZ HEURISTIC

Nawaz (1983) describes a heuristic that is easy to construct and gives good results
in most cases. It does, however, construct a number of schedules that need evaluations
that can be time consuming. The steps are as follows:

1. Calculate the sum of processing times for each job. Arrange the jobs in the
descending order of their sum. Call this the “job list” and the job order as
a1, a2, a3 … am.

2. Select the first two jobs from the job list. Determine the best (minimum
makespan) of two sequences, first by placing job a1 in the first place and
a2 in the second place and then reversing the order. Do not change the
relative positions of the two jobs with respect to each other in the remaining
steps of the algorithm.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 228 — #16

228 Production Planning and Industrial Scheduling

TABLE 8.15
Makespan Calculations for Sequence 6-2-5-1-3-4

Sequence/
Machine 1 2 3 4

6 12/12 14/26 22/48 32/80
2 7/19 41/67 22/89 66/155
5 7/26 15/82 72/161 52/213
1 25/51 45/127 52/213 40/253
3 41/92 55/182 33/246 21/274
4 74/166 12/194 24/270 48/322

3. Pick the job that is in the next position in the job list and find the best
sequence by placing it in all possible positions in the partial sequence
developed so far. Make sure not to change the relative positions of the jobs
that are already assigned in sequence.

4. Repeat step 3 till all jobs are placed in the sequence.

For the data in Table 8.7, the list of the jobs arranged in the descending order of
sum of processing time is 1, 4, 3, 5, 2, 6.

Select the first two jobs from the list, jobs 1 and 4. Two partial sequences can
be formed. They are 1-4 and 4-1. The completion time for sequence 1-4 is 210 and
for sequence 4-1 is 236. The best between these is 1-4, and therefore the relative
positions of these two jobs will remain as job 1 ahead of job 4.

Next, job 3 is to be added to the sequence being developed. Three possible partial
sequences that can be formed now are: 3-1-4-; 1-3-4; and 1-4-3 (note that the best
order of jobs 1 and 4 found earlier remains and job 3 has been added from left to
right). The makespan for each partial sequence is 281, 231, and 249, respectively.
The best sequence is 1-3-4.

Based on the job list, job 5 is the next one to be added to the partial sequence.
The sequences to examine are: 5-1-3-4; 1-5-3-4; 1-3-5-4; and 1-3-4-5. The partial
makespan times are: 255, 315, 330, and 306, respectively. The partial sequence
5-1-3-4 with makespan of 255 is selected at this stage.

The next job to add is job 2. Sequences to examine are: 2-5-1-3-4; 5-2-1-3-
4; 5-1-2-3-4; 5-1-3-2-4; and 5-1-3-4-2 with 304, 320, 321, 321, and 321 as their
respective make spans. The partial sequence 2-5-1-3-4 with the makespan value of
304 is selected.

The LJ to add is job 6. The sequences are: 6-2-5-1-3-4; 2-6-5-1-3-4; 2-5-6-1-3-4;
2-5-1-6-3-4; 2-5-1-3-6-4; and 2-5-1-3-4-6 with the makespans of 322, 332, 336, 336,
336, and 336. The sequence 6-2-5-1-3-4 is the best sequence with the make span of
322. The makespan calculations for sequence 6-2-5-1-3-4 are shown in Table 8.15
with a/b convention where, for each machine, “a” value is the processing time and
“b” value is the job completion time.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 229 — #17

Flowshop Problems 229

TABLE 8.16
Application of CDS Heuristics

l = 1 l = 2 l = 3
Job Ai ,1 Bi ,1 Ai ,2 Bi ,2 Ai ,3 Bi ,3

1 25 40 70 92 122 137
2 7 66 48 88 70 129
3 41 21 96 54 129 109
4 74 48 86 72 110 84
5 7 52 22 124 94 139
6 12 32 26 54 48 68
Sequence 2-5-6-1-4-3 5-6-2-1-4-3 6-2-5-1-3-4
Span 335 353 322

8.5.4 CAMPBELL, DUDEK, AND SMITH (CDS) PROCEDURE

This is a simple heuristic that in general gives a good result (Campbell et al., 1970). The
method generates m − 1 sequences, one for each value of l, where i = 1, 2, . . . m − 1,
from which the best is chosen. The sequence number l is constructed by solving a
two-machine problem using Johnson’s rule where the two pseudo factors Ail and Bil
are generated using the following expressions:

Ai1 =
1∑

j=1

Pi·j and Bi1 =
1∑

j=1

Pi,m−j+1

Table 8.16 displays the application of CDS heuristic to the example problem. For
job 1, for example, A11 = 25 and B11 = 40 for l = 1, A12 = 24+45 = 92 and B12 =
40+52 = 92 for l = 2, and A13 = 25+45+52 = 122 and B13 = 40+52+45 = 137
for l = 3. Applying Johnson’s rule to each data set thus generates three sequences.
The best among these is the sequence 6-2-5-1-3-4 with a makespan of 322.

8.6 n-JOB/m-MACHINE PROBLEM: JOBS
ARRIVING AT DIFFERENT TIMES

The CDS method is extended to apply in a flowshop where jobs are not available
at time 0 but have known arrival times. The objective is to minimize the makespan.

The steps of the procedure are as follows:

Phase 1

1. Schedule the job that arrives first. If there is a tie, choose the one with
shortest processing time. Start developing the main sequence.

2. Determine the completion times of the selected job on machine 1.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 230 — #18

230 Production Planning and Industrial Scheduling

3. Select the jobs that have arrived before previous completion time and
arrange them using the CDS method.

4. Form temporary sequence(s) by attaching the sequence(s) from step 3 to
the main sequence. Determine the minimum makespan for these jobs.

5. Select the sequence with minimum makespan.
6. If all jobs have arrived, the sequence from step 5 is the main sequence;

go to phase 2. Otherwise, schedule the job that is first in the sequence as
the next scheduled job in the main sequence and go back to step 2.

Phase 2

Apply forward phase to the sequence developed in phase 1.
Though most often the above procedure leads to minimum makespan, it is also

suggested that we start with each job as the first job in the sequence (step 1) and then
apply the remaining steps of the procedure. Then select the best sequence.

8.6.1 EXAMPLE

Consider a flowshop problem with three machines and five jobs with different arrival
times. Processing and arrival times for the jobs are tabulated in the following:

Machine

Job Arrival Time 1 2 3

1 22 17 3 2
2 10 9 5 4
3 15 23 8 5
4 5 15 2 1
5 18 21 6 3

Phase I

Job 4 has the earliest arrival and is therefore selected as a starting point for the main
sequence. Job 4 arrives to the shop at five time units, and its processing time on
machine 1 is 15 time units. C indicates the time at which job 4 will be finished on
machine 1 at 20 time units.

Jobs that arrive before time 20 are jobs 2, 3, and 5, with arrival times 10, 15, and 18,
respectively. Apply the CDS method with these three jobs on all three machines and
get temporary sequences. The calculations are shown in the following:

4

Main sequence

C = 5 + 15 = 20

CDS calculations for C = 20

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 231 — #19

Flowshop Problems 231

Jobs 1 2

2 9 4 14 9
3 23 5 31 13
5 21 3 27 9

3 2 5
3 5 2

Temporary sequences are:

4-3-2-5
4-3-5-2

Calculate makespan with these temporary sequences.

4-3-2-5

1 2 3

Job Arrival Time Pi Ci Pi Ci Pi Ci

4 5 15 20 2 22 1 23
3 15 23 43 8 51 5 56
2 10 9 52 5 57 4 61
5 18 21 73 6 79 3 82

4-3-5-2

1 2 3

Job Arrival Time Pi Ci Pi Ci Pi Ci

4 5 15 20 2 22 1 23
3 15 23 43 8 51 5 56
5 18 21 64 6 70 3 73
2 10 9 73 5 78 4 82

As both temporary sequences 4-3-2-5 and 4-3-5-2 have the same makespan, select
one at random, say 4-3-2-5, and fix the second job, that is, job 3 of this temporary
sequence with job 4 of the main sequence. So, the main sequence as 4-3.

Iteration 2

Completion time of job 3 on machine 1 is 43. There is only one job arriving during
this time, and that is job 1. Apply the CDS method to unscheduled jobs 2, 5 and newly
arrived job 1.

4 3

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 232 — #20

232 Production Planning and Industrial Scheduling

Main sequence

C = 20 + 23 = 43.

CDS calculations for C = 43

Jobs 1 2

2 9 4 14 9
5 21 3 27 9
1 17 2 20 5

2 5 1
2 5 1

Temporary sequence:

4-3-2-5-1

1 2 3

Job Arrival Time Pi Ci Pi Ci Pi Ci

4 5 15 20 2 22 1 23
3 15 23 43 8 51 5 56
2 10 9 52 5 57 4 61
5 18 21 73 6 79 3 82
1 22 17 90 3 93 2 95

Here, there is only one temporary sequence 4-3-2-5-1 with the makespan of 95.
As all jobs have been covered, this sequence will become a permanent sequence.

Permanent sequence

4-3-2-5-1 Makespan = 95.

Phase II

Forward Phase
Cycle 1. Permanent sequence 4-3-2-5-1 Makespan = 95

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 233 — #21

Flowshop Problems 233

K = 4 1-3-2-5-4 Makespan = 110 Do not exchange

K = 3 5-3-2-4-1 Makespan = 108 Do not exchange
4-1-2-5-3 Makespan = 105 Do not exchange

K = 2 2-3-4-5-1 Makespan = 100 Do not exchange
4-5-2-3-1 Makespan = 95 Do not exchange
4-3-1-5-2 Makespan = 99 Do not exchange

K = 1 3-4-2-5-1 Makespan = 105 Do not exchange
4-2-3-5-1 Makespan = 95 Do not exchange
4-3-5-2-1 Makespan = 95 Do not exchange
4-3-2-1-5 Makespan = 99 Do not exchange

The final sequence with job 4 as a starting point of the solution is

4-3-2-5-1 Makespan = 95

Same way, starting first position of main sequence with different jobs leads to the
following:

The final sequence with job 1 as a starting point of the solution is

4-3-2-5-1 Makespan = 95

The final sequence with job 2 as a starting point of the solution is

4-3-2-5-1 Makespan = 98

The final sequence with job 3 as a starting point of the solution is

2-3-5-1-4 Makespan = 98

The final sequence with job 5 as a starting point of the solution is

2-3-5-1-4 Makespan = 98

8.6.2 RESULT

The optimum sequence is 4-3-5-2-1 with makespan of 95.

8.7 SUMMARY

The chapter presents a few interesting examples in flowshop scheduling. We started
by illustrating Johnson’s rule for two-machine scheduling, which was first published
in 1954. This rule provides the optimum solution when all jobs are processed on two
machines in sequence. We have shown an extension of Johnson’s rule where a job
may require unit-dependent and unit-independent times. Travel time between the two
machines has also been included in another extension of the results. A rule that also
gives optimum schedule, under certain restrictions, for a three-machine flowshop
problem is illustrated. Most generalized results are, of course, where m machines are
involved. Numerous simple and effective heuristics were presented to address such
problems.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 234 — #22

234 Production Planning and Industrial Scheduling

8.8 PROBLEMS

8.1 A machine shop receives cast metal parts from a customer. The machine shop
must turn one of the part’s surfaces on a CNC lathe and then mill another sur-
face on a CNC milling machine. All parts require both operations in the same
sequence. The following orders have been received from the customer, and the
milling shop has estimated the processing times of each. Determine the sequence
that minimizes the makespan.

Order 1 2 3 4 5 6

Processing (lathe) 10 13 6 20 8 17
Processing (milling) 2 13 7 21 18 9

8.2 A production cell consists of a CNC milling machine, a finishing machine, and a
deburring machine. These machines are programmed to process different parts.
The following orders have been given to the supervisor, who has listed the known
processing times for each part. Develop the best schedule for the supervisor that
will minimize the makespan of five jobs.

Work Order Mill Finish Debur

1 17 3 2
2 9 5 4
3 23 8 5
4 15 2 1
5 21 6 3

8.3 Using the following data, determine the optimum sequence to minimize the
makespan.

Order 1 2 3 4 5 6 7 8

Processing (machine A) 30 5 23 24 9 11 18 28
Processing (machine B) 10 22 35 12 18 28 15 33

8.4 A cutoff saw and a vertical band saw are both required machines (M1 and M2)
for two operations on various parts. Both machines have fixtures on which parts
must be aligned. All parts delivered to the machines have drawings attached
that instruct the operator as to what fixtures are needed and at what speeds the
machines must be operated. Develop the sequence for the orders as given below,
for installing and removing fixtures, and machine settings and adjustments.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 235 — #23

Flowshop Problems 235

Settings Fixture Fixture
Processing Install Removal Adjustment

Order M1 M2 M1 M2 M1 M2 M1 M2

1 10 13 2 1 1 2 1 1
2 20 18 4 3 3 2 2 1
3 12 20 5 4 4 3 1 2
4 16 9 1 2 2 1 1 2
5 8 15 6 5 5 4 2 1

8.5 Using the data from Problem 4.3, consider AGVs that have been installed to
transport parts between machines. The AGV requires eight units of time to travel
from the first machine to the second, and seven units of time from the second to
the first. The AGV does not have to wait for machine B to deposit the parts and
return to machine A. Find the sequence with the minimum makespan.

8.6 Using the following data on the three-machine processing requirements of seven
jobs, develop the best sequence to minimize the makespan.

Job
Number

Machine 1
Processing

Machine 2
Processing

Machine 3
Processing

1 12 6 9
2 15 7 18
3 7 4 10
4 23 12 26
5 14 7 11
6 19 10 22
7 6 3 3

8.7 Consider the following data for six jobs processed on two machines with unit-
independent setups and removals:

Job
Machine X
Setup

Machine X
Processing

Machine X
Removal

Machine Y
Setup

Machine Y
Processing

Machine Y
Removal

1 6 12 5 2 1 3
2 3 6 4 8 4 7
3 2 4 1 4 2 5
4 4 8 5 1 1 2
5 1 2 2 5 3 4
6 9 18 8 9 5 8

Develop the optimum schedule to minimize the makespan.

Dileep: “44206_c008” — 2007/9/17 — 14:59 — page 236 — #24

236 Production Planning and Industrial Scheduling

8.8 For truck drivers, the average is eight time units to deliver jobs from machine K
to L and seven time units returning from machine L to K . Given the following
data, develop the sequence that minimizes makespan.

Job
Machine K
Setup

Machine K
Processing

Machine K
Removal

Machine L
Setup

Machine L
Processing

Machine L
Removal

1 10 15 11 5 11 10
2 8 13 9 6 9 8
3 9 9 7 10 16 11
4 7 18 5 9 18 6
5 4 11 3 12 5 7

REFERENCES AND SUGGESTED READINGS

Achugbue, J.O. and F.Y. Chin. November 1982. “Complexity and Solutions of Some Three-
Stage Flowshop Scheduling Problems” Mathematics and Operations Research, 7(4):
532–544.

Campbell, H.G., Dudek, R.A., and M.L. Smith. 1970. “A Heuristic Algorithm for the ‘N’ Job
‘M’ Machine Sequencing Problem” Management Science, 16: B630–B637.

Johnson, S.M. 1954. “Optimal Two- and Three-Stage Production Schedules with Setup Times
Included” Naval Research Logistics Quarterly, 1(1): 61–68.

Nawaz, M. 1983. “AHeuristicAlgorithm for the ‘M’-Machine, ‘N’-Job Flow-Shop Sequencing
Problem” Management Science, 11(1): 91–95.

Palmer, D.S. 1965. “Sequencing Jobs through a Multi-Stage Process in the Minimum Total
Time-AQuick Method of Obtaining a Near Optimum” Operations Research Quarterly,
16: 101–107.

Panwalker, S.S. 1991. “Scheduling of a Two-Machine Flowshop with Travel Time between
Machines” Journal of Operations Research Society, 42(7): 609–613.

Pinedo, M. January-February 1982. “Minimizing the Expected Makespan in Stochastic Flow
Shops” Operations Research, 30(1): 148–62.

Sule, D.R. 1982. “Sequencing ‘N’Jobs on Two Machines with Setup, Processing and Removal
Times Separated” Naval Research Logistics Quarterly, 29(3): 517–519.

Szwarc, W. December 1981. “Note on the Flow Shop Problem without Interruptions in
Job Processing” Naval Research Logistics Quarterly, 28(4): 665–669.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 237 — #1

9 Parallel Processing and
Batch Sequencing

In this chapter, we introduce three different concepts. In parallel processing, jobs
are processed by one of several identical machines, allowing considerable reduction
in makespan. How to divide jobs among processors is the challenging issue that is
addressed here. Two issues in batch sequencing are discussed in this chapter. First is
the “baking problem” where a batch of jobs is subjected to identical processing. How
to form job batches to minimize delays is an interesting problem. Finally, we shall
study a problem where setup times are dependent on job types, and it is desired to
form a job sequence to minimize the setup times while meeting due dates.

9.1 PARALLEL PROCESSING

In the previous chapters, we have assumed that we only have one facility or machine
on which we can process all jobs. What if we have multiple facilities all being able
to provide the same services? How will the job scheduling change? How will the
makespan change? We might visualize these as being facilities/machines in parallel
(they do not have to be physically parallel) because they are identical to each other
and thereby performing the same services. This design is called parallel identical
processors scheduling (Figure 9.1). We shall study here a few representative examples
in parallel scheduling.

9.1.1 Jobs with Equal Weight and No Due Dates

Suppose we have N jobs and they can be processed on any one of M parallel pro-
cessors. The objective is to develop a job schedule on each processor so as to minimize
the makespan for all jobs. The procedure given in the following, in most cases,
achieves this objective effectively.

9.1.1.1 Procedure

Step 1: Arrange the jobs in the descending (nonincreasing) order of the processing
times. Designate this as the list.

Step 2: The lower bound of the minimum achievable makespan is given by the sum
of processing times divided by the number of available parallel processors. Amachine
(processor) is designated as available if the sum of the processing times of the jobs
assigned to the machine is less than the calculated lower bound. Initially, all the
machines are available.

237

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 238 — #2

238 Production Planning and Industrial Scheduling

Job 1 Job 2

Milling
Machine

Drill
M/C

Job 3 Job 4 Job 5 Job 6 Job 7

Milling
Machine

Drill
M/C

Milling
Machine

Drill
M/C

FIGURE 9.1 Parallel Processing Setup.

Step 3: Start allocating the jobs to one machine (processor) beginning with the job
having the highest processing time. In case of a tie, break it randomly. Continue alloc-
ating the jobs to the machine under consideration, in decreasing order of processing
times (Pi) till one of the following happens.

1. Sum of processing times of the jobs assigned to the machine under con-
sideration becomes equal to the lower bound. If this happens, then start
assigning jobs to the next available machine.

2. Sum of processing times of the jobs allocated to the machine becomes
greater than the lower bound. If this happens, then the job that has caused
the sum to be greater than the lower bound and subsequent jobs are allocated
in the following sweeping manner:
• Sweep across the available machines (in order 1, 2, 3, …). If the sum of

processing times on the next machine is less than the lower bound and
allocation of the job here will not increase the cumulative processing
time on the machine beyond the lower bound, then assign the job there.
If not, continue the check with the next available machine. If, on all
available machines, the assignment of the present job will increase the
sum beyond the lower bound, then assign the job to the machine where
such increase would be minimum.

Once all the jobs are assigned, the minimum makespan is the maximum of the sum
of processing times on each machine.

9.1.1.2 Illustrative Example

Suppose we have nine jobs with the processing times given in the Table 9.1 and three
processors. We wish to develop the detailed schedule for each processor to minimize
the makespan. We present here a slightly modified means of presentation and calcu-
lations that achieves the steps described in the procedure. The same representation
will then be continued to be used in the rest of this section when we are working with
other objectives.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 239 — #3

Parallel Processing and Batch Sequencing 239

TABLE 9.1
Processing Times for Jobs

Job 1 2 3 4 5 6 7 8 9
Processing time 10 12 5 8 7 3 5 15 12

TABLE 9.2
Jobs Arranged in Descending Order of Processing Times

Job 8 2 9 1 4 5 3 7 6
Processing time 15 12 12 10 8 7 5 5 3

TABLE 9.3
Job Assignments on Each Machine

Machine 1 Machine 2 Machine 3

Job
Processing
Time RCT = 26 Job

Processing
Time RCT = 26 Job

Processing
Time RCT = 26

8 15 11 2 12 14 4 8 18
1 10 1 9 12 2 5 7 11

6 3 –1 3 5 6
7 5 1

Table 9.2 displays the application of the first step: arranging jobs in the descending
order of the processing times.

The sum of the processing times is 77, and therefore with three processors the
minimum makespan is 77/3 = 26 (the numbers are rounded up). This number is
noted as the remaining cumulative time (RCT) allowed in associated column for each
machine in Table 9.3. Each time a job is assigned to a machine, it is noted in the table
along with its processing time. The available cumulative time is then decreased by
this value. This makes application of step 3 easier to implement.

Select the first job from the list, and assign it to the first available machine.
The available cumulative time is reduced by 15, the processing time of job 8. The
next job in the list is job 2 with the processing time of 12. It cannot be assigned to
machine 1, since the available time (the present RCT value of machine 1) is only
11. It is then allocated to the next available machine, machine 2, and the RCT for
machine 2 is modified. The third job from the list, job 9, has a processing time of
12 and cannot be assigned to machine 1. We check machine 2 next. The job can
be specified on machine 2, and hence the allocation is made. The RCT for machine
2 is now 2. This sweeping procedure (starting from first machine and continuing

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 240 — #4

240 Production Planning and Industrial Scheduling

in the machine order of 2, 3 … till the assignment is made) is continued for the
remaining jobs from the list. It might be interesting to note that when the last job
in the list, job 6, is to be assigned, the RCTs on the machines 1, 2, and 3 are 1, 2,
and 1, respectively. The job has a processing time of 3. So, we need a cumulative
time on at least one machine that is greater than what is initially allocated to each
machine, namely 26. The least increase in time requirement is achieved by assigning
the job to machine 2, giving RCT = −1. The makespan for all jobs is therefore
26 + 1 = 27.

If there are only two processors, the job distribution on each is

Machine 1: jobs 8, 2, and 9 for the total processing time of 15+12+12 = 39.
Machine 2: jobs 1, 4, 5, 3, 7, and 6 for the total processing time of 10 + 8 +

7 + 5 + 5 + 3 = 38, giving the makespan of 39.

9.1.2 Jobs with Priorities Ranked by Weights

Now, suppose the jobs have priorities as specified by their weights. The jobs with the
higher weights should have smaller makespans than the jobs with the smaller weights.
We can form the job groups based on the weights; all jobs with the same weight are
grouped together. There is no specific due date for each job, but we want to minimize
the makespan for each priority set.

The procedure is similar to the one developed in the previous section, except for
minor variations. Develop the job sets (groups) for each weight. Rank these sets in the
descending order of the weights. Calculate the minimum makespan for each weight.
Apply the procedure from the previous section to assign jobs to each processor, based
on the established weight priorities and continuing on the previous assignments (if
any). The following example illustrates the procedure.

Suppose each job in the data Table 9.1 has a weight indicating its priority (higher
the weight, higher the priority), as shown in Table 9.4. Further, assume that we now
have only two processors.

There are two priority classes, and the jobs are arranged in the descending order
of processing times in each weight class. The weight classes are also arranged in the
descending order of their magnitude, as shown in Table 9.5.

The minimum makespan for each weight level is: weight 2 = (12 + 10 + 7 + 5 +
5)/2 = 20, and for weight 1 = (15 + 12 + 8 + 3)/2 = 19.

The Table 9.6 shows the assignments. Jobs with weight 2 are assigned first. The
makespan for this weight class is 20. Jobs are assigned following sweep procedure.

TABLE 9.4
Jobs with Priorities

Job 1 2 3 4 5 6 7 8 9
Processing time 10 12 5 8 7 3 5 15 12
Weight 2 2 2 1 2 1 2 1 1

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 241 — #5

Parallel Processing and Batch Sequencing 241

TABLE 9.5
Sets and Jobs in Descending Order

Job 2 1 5 3 7 8 9 4 6
Processing time 12 10 7 5 5 15 12 8 3
Weight 2 2 2 2 2 1 1 1 1

TABLE 9.6
Final Assignments

Machine 1 Machine 2

Weight Job Processing RCT for Weight Job Processing RCT for
W2 time W2 = 20 W2 time W2 = 20

2 12 8 1 10 10
5 7 1 3 5 5

7 5 0
Weight W1 RCT for W1 Weight W1 RCT for W1

= 1+ 19 = 20 = 0+ 19 = 19
8 15 5 9 12 7
6 3 2 4 8 −1

After the job assignments on two machines, there is one unit of RCT left in machine
1. It is added to the RCT for the next weight jobs on that machine, and the sweep
procedure is applied to the jobs with weight 1. The maximum makespan for jobs
with weight 2 is 20 (on machine 2), while that for weight 1 is also 20 (machine 1:
19 + 1 = 20).

9.1.3 Jobs with Due Dates

Suppose now that jobs have due dates, and the weights represent the lateness penalties
as defined in Chapter 6. The objective is to schedule jobs to minimize the total penalty.

The procedure developed before is no longer applicable since the jobs not only
have weights but also due dates and the objective has also changed from minimization
of makespan to minimization of the penalty. But still, we can develop on the previous
procedure as well as use the concepts from the backward procedure of Chapter 6.

The details of the procedure are as follows:

Step 1: Calculate RCT for each machine. Initially, assume that we can develop
a schedule on each machine so that makespan is equal to the initial value of
the RCT. With this assumption, the present value of RCT is also the time at
which the last assigned job completes its processing (i.e., TT = RCT).

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 242 — #6

242 Production Planning and Industrial Scheduling

Step 2: Divide the jobs into each weight class. Within each class, arrange the
jobs in the descending order of the due dates.

Step 3: For each processor, determine the current value of RCT. This is also
the completion time of the next job to be scheduled on that processor.

Step 4: Select as many not-yet-assigned jobs (if available) from each job group
as there are processors, starting with the unassigned job with the largest due
date from each weight group. Calculate the penalty of assigning each selected
job on each processor.

Step 5: Select the feasible combination(s) of jobs that result in minimum sum
of the penalty. For each combination, perform steps 6 and 7.

Step 6: Assign each of the jobs selected in the combination in step 5 to the
appropriate processor, and modify the RCT value for each processor by
subtracting the processing time of the assigned job. If all jobs are assigned,
go to step 7; if not, go to step 4.

Step 7: If the final RCT for any processor(s) is negative, it is due to the last job
assigned to the processor in the backward phase, and therefore it is also the
first job in the sequence. Evaluate by placing the job in the first place of each
sequencer, and calculate the total penalty for each combination by applying
the single-machine sequencing forward phase from Chapter 6. Select the
combination with the minimum cost as being the best solution.

The procedure can best be illustrated with two tables developed simultaneously. The
penalty table calculates the penalties on each machine, which are then transferred
into an evaluation and selection table, in which we determine the jobs to be selected
and assigned to the processors and determine the new values of RCTs, which are then
entered back into the penalty table.

9.1.3.1 Illustrative Example

Consider nine jobs for which the data is given in Table 9.7. We have two parallel
processors, and we want to schedule the jobs to minimize the tardiness penalty.

To apply the procedure, the sum of processing times is 77, and therefore, the
initial value of RCT is 77/2 = 39. We divide the jobs based on weight class, and
within each class arrange the jobs in the descending order of the due dates. Table 9.8
shows the results.

TABLE 9.7
Jobs with Due Dates

Job 1 2 3 4 5 6 7 8 9
Process time 10 12 5 8 7 3 5 15 12
Weight 2 2 2 1 2 1 2 1 1
Due date 10 15 27 42 50 35 20 16 20

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 243 — #7

Parallel Processing and Batch Sequencing 243

TABLE 9.8
Jobs Arranged in Weight Class and in Descend-
ing Order of Due Dates

Weight 2 Weight 1

Job 5 3 7 2 1 4 6 9 8
Process time 7 5 5 12 10 8 3 12 15
Due date 50 27 20 15 10 42 35 20 16

The procedure starts with iteration 1 in the penalty Table 9.9. Since we have two
processors, the first two jobs from each weight class in Table 9.8 are selected. They
are jobs 5, 3 from weight 2 class and jobs 4, 6 from weight 1 class. Initially the RCT
on each machine is 39. The penalties for each job on each machine are calculated. For
example, consider job 3. Its due date is 27. On machine 1, if the job is completed on the
present value of RCT that is, at time 39, it would be 12 units late. The corresponding
penalty is 12 × 2 = 24 units, both values are noted in the table. Since the RCT for
the second machine is the same, the associated numbers are the same on the second
machine.

The penalty values are inserted into the evaluation and selection Table 9.10. Each
job’s penalty value for assigning the job to that machine now is noted below each
machine in the evaluation phase. We require that each job be assigned to one machine
and only to one machine. A combination of jobs that gives the minimum cost is
selected. If there is more than one such combination, then every combination of jobs
that gives the minimum cost must be selected and evaluated. In this illustration, a total
of six options (combinations) is generated through the iterations that need checking.
For example, in iteration 1, the two possible combinations are: job 5 on machine
1 with job 4 on machine 2 and job 5 on machine 2 with job 4 on machine 1. Both
combinations have the same penalty value of zero. The first combination is shown as
option 1, and the second is shown as option 4. We shall continue the description of
the procedure on option 1. Job 5 is assigned to machine 1, and job 4 is assigned to
machine 2 and recorded in the selection section of the Table 9.10 (option 1). RCTs of
each machine are modified by reducing it by the processing time of the job assigned
to the machine. These values are then entered in the penalty table and are used to
calculate the penalties for the selected jobs in the next iteration.

In iteration 2, cost combination of 0 and 8 gives the minimum total cost for that
iteration, and therefore the associated job 6 is assigned to machine 1 and 3 is assigned
to machine 2. The RCT for each machine is modified by subtracting processing time
of the assigned job from the previous value of the RCT, and the resulting values are
entered in the penalty table for the next iteration.

Iteration 5 is of interest. RCT values from iteration 4 are: 5 for machine 1, and
6 for machine 2. Job 1 has a processing time of 10, which may not be assigned to
any machine without making RCTs negative. Therefore, according to step 7, job 1
should be assigned to each machine and checked for cost as shown in the following

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 244 — #8

244 Production Planning and Industrial Scheduling
TA
B
LE
9.
9

Pe
na
lt
y
Ta
bl
e

It
er
at
io
n

W
ei
gh
t
2
Jo
b
G
ro
up

W
ei
gh
t
1
Jo
b
G
ro
up

Jo
b/

Pr
oc
es
si
ng

Ti
m
e

D
ue

D
at
e

M
ac
hi
ne
1

R
C
T
=
39

M
ac
hi
ne
2

R
C
T
=
39

Jo
b/

Pr
oc
es
si
ng

Ti
m
e

D
ue

D
at
e

M
ac
hi
ne
1

R
C
T
=
39

M
ac
hi
ne
2

R
C
T
=
39

O
pt

io
n

1
L

at
e

Pe
n

L
at

e
Pe

n
L

at
e

Pe
n

L
at

e
pe

n
1

5/
7

50
0

0
0

0
4/

8
42

0
0

0
0

3/
5

27
12

24
12

24
6/

3
35

4
4

4
4

R
C

T
=

32
R

C
T

=
31

R
C

T
=

32
R

C
T

=
31

2
3/

5
27

5
10

4
8

6/
3

35
0

0
0

0
7/

5
20

12
24

11
22

9/
12

20
12

12
11

11
R

C
T

=
29

R
C

T
=

26
R

C
T

=
29

R
C

T
=

26
3

7/
5

20
9

18
6

12
9/

12
20

9
9

6
6

2/
12

15
14

28
11

22
8/

15
16

13
13

10
10

R
C

T
=

17
R

C
T

=
11

R
C

T
=

17
R

C
T

=
11

4
7/

5
20

0
0

0
0

2/
12

15
2

4
4

8
R

C
T

=
5

R
C

T
=

6
5

1/
10

PR
C

T
=

− 5
PR

C
T

=
− 4

O
pt

io
n

2
3

R
C

T
=

14
R

C
T

=
14

4
7/

5
20

0
0

0
0

2/
12

15
0

0
0

0
R

C
T

=
9

R
C

T
=

2
5

1/
10

10
0

0
0

0
R

C
T

=
− 1

R
C

T
=

− 8

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 245 — #9

Parallel Processing and Batch Sequencing 245

O
pt

io
n

3
4

R
C

T
=

2
R

C
T

=
9

5
1/

10
10

0
0

0
0

R
C

T
=

−8
R

C
T

=
−1

O
pt

io
n

4
L

at
e

pe
n

L
at

e
Pe

n
L

at
e

Pe
n

L
at

e
pe

n
1

5/
7

50
0

0
0

0
4/

8
42

0
0

0
0

3/
5

27
12

24
12

24
6/

3
35

4
4

4
4

R
C

T
=

31
R

C
T

=
32

R
C

T
=

31
R

C
T

=
32

2
3/

5
27

4
8

5
10

6/
3

35
0

0
0

0
7/

5
20

11
22

12
24

9/
12

20
11

11
12

12
R

C
T

=
26

R
C

T
=

29
R

C
T

=
26

R
C

T
=

29
3

7/
5

20
6

12
9

18
9/

12
20

6
6

9
9

2/
12

15
11

22
14

28
8/

15
16

10
10

13
13

R
C

T
=

14
R

C
T

=
14

R
C

T
=

14
R

C
T

=
14

4
7/

5
20

0
0

0
0

2/
12

15
0

0
0

0
R

C
T

=
9

R
C

T
=

2
5

1/
10

10
0

0
0

0
PR

C
T

=
−1

PR
C

T
=

−8

O
pt

io
n

5
4

R
C

T
=

2
R

C
T

=
9

5
1/

10
10

0
0

0
0

PR
C

T
=

−8
PR

C
T

=
−1

O
pt

io
n

6
3

R
C

T
=

11
R

C
T

=
17

4
7/

5
20

0
0

0
0

2/
12

15
0

0
0

0
R

C
T

=
−1

R
C

T
=

12
5

1/
10

10
0

0
2

4
R

C
T

=
−1

1
R

C
T

=
2

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 246 — #10

246 Production Planning and Industrial Scheduling

TABLE 9.10
Evaluation and Selection Table

Iteration Evaluation Selection Penalty
Machine 1 Machine 2

Job Mach 1 Mach 2 Job RCT Job RCT
Option 1
1 5 0 0 5 39 − 7 = 32 4 39 − 8 = 31 0 + 0 = 0

3 24 24
4 0 0
6 4 4

2 3 10 8 6 32 − 3 = 29 3 31 − 5 = 26 0 + 8 = 8
7 24 22
6 0 0
9 12 11

3 7 18 12 9 29 − 12 = 17 8 26 − 15 = 11 9 + 10 = 19
2 28 22
9 9 6
8 13 10

4 7 0 0 2 17 − 12 = 5 7 11 − 5 = 6 0 + 4 = 4
2 4 8

5 1

Option 2
3 7 18 12 8 29 − 15 = 14 9 26 − 12 = 14 13 + 6 = 19

2 28 22
9 9 6
8 13 10

4 7 0 0 7 14 − 5 = 9 2 14 − 12 = 2 0
2 0 0

5 1

Option 3
4 7 0 0 2 14 − 12 = 2 7 14 − 5 = 9 0

2 0 0
5 1

Option 4
1 5 0 0 4 39 − 8 = 31 5 39 − 7 = 32 0 + 0 = 0

3 24 24
4 0 0
6 4 4

2 3 8 10 3 31 − 5 = 26 6 32 − 3 = 29 8 + 0 = 8
7 22 24
6 0 0
9 11 12

3 7 12 18 9 26 − 12 = 14 8 29 − 15 = 14 6 + 13 = 19

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 247 — #11

Parallel Processing and Batch Sequencing 247

TABLE 9.10
Continued

2 22 28
9 6 9
8 10 13

4 7 0 0 7 14 − 5 = 9 2 14 − 12 = 2 0 + 0 = 0
2 0 0

5 1

Option 5
4 7 0 0 2 14 − 12 = 2 7 14 − 5 = 9 0 + 0 = 0

2 0 0
5 1

Option 6
3 7 12 18 8 26 − 15 = 11 9 29 − 12 = 17 9 + 10 = 19

2 22 28
9 6 9
8 10 13

4 7 0 0 2 11 − 12 = −1 7 17 − 5 = 12 0 + 0 = 0
2 0 0

5 1

Note: Bold entries in columns in each option provide the minimum sum. The associated jobs are selected
and loaded on respective machine

combination calculation (note that in Table 9.9, jobs are developed applying backward
phase, and therefore they are listed in the reverse order of actual schedule).

Combination I

Assign job 1 to machine 1. The sequence to check on the first machine is 1-2-9-6-5.
Applying the procedure from Section 6.4 results in no change in the sequence. The
cost calculations for the sequence are shown in the following.

Machine 1

Schedule 0 (1/10) 10 (2/12) 22 (9/12) 34 (6/3) 37 (5/7) 42
Due dates (1) 10/T (2) 15/L (9) 20/L (6) 35/L (5) 50/E
Penalty 7 × 2 + 14 × 1 + 2 × 1 = 30

On machine 2, the sequence to check is 7-8-3-4. The application of the proced-
ure in Section 6.4 results in 8-7-3-4 as being the optimum sequence. The cost
calculations are as follows:

Schedule 0 (8/15) 15 (7/5) 20 (3/5) 25 (4/8) 33
Due dates (8) 16/E (7) 20/ T (3) 27 /E (4) 50/E

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 248 — #12

248 Production Planning and Industrial Scheduling

Machine 2

Schedule 0 (7/5) 5 (8/15) 20 (3/5) 25 (4/8) 33
Due dates (7) 20/E (8) 16/L (3) 27/E (4) 42/E
Penalty 0

Total penalty for combination 1 is 30 + 0 = 30

Combination 2

Assign job 1 to machine 2. The job sequence on machine 1 now is 2-9-6-5. Application
of the Section 6.4 procedure does not change the sequence. The cost calculations are
as follows:

Machine 1

Schedule: 0 (2/12) 12 (9/12) 24 (6/3) 27 (5/7) 34
Due dates: (2) 15/E (9) 20/L (6) 35/E (5) 50/E
Penalty: 4 × 1 = 4

The initial sequence on machine 2 is 1-7-8-3-4. It changes to 1-7-3-8-4 after the
application of the Section 6.4 procedure. The corresponding cost calculations are

Machine 2

Schedule 0 (1/10) 10 (7/5) 15 (3/5) 20 (8/15) 35 (4/8) 43
Due dates (1) 10/T (7) 20/E (8) 27/E (3) 16/L (4) 42/L
Penalty 19 × 1 + 1 × 1 = 20

The total penalty for combination 2 is 4 + 20 = 24. Hence, we choose combination
2 as our assignments for the first possible sequence.

Calculations for all six combinations developed as the alternate job combinations
give the same minimum cost. They are also shown in Tables 9.9 and 9.10. The
tables are constructed such that each option only shows the calculations that have
changed from the previous option. The resulting sequence penalties are shown in
Table 9.11. Combination 1 for sequence 2 and combination 2 for sequence 5, both
yield a minimum penalty of 22.

9.2 SINGLE OPERATION JOB-RELATED
EARLINESS/TARDINESS PENALTIES WITH
MACHINE ACTIVATION COST

There are n jobs available at time zero, each with early and late penalties to be
delivered with a common due date specified by us. There are number of identical
parallel machines that can be activated for an activation cost of D dollars/machine.
The objectives are to determine the optimum number of machines to activate and
the common due date for the jobs on each machine (which may be different from
machine to machine), and to minimize the total of activation cost and late and early
penalties.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 249 — #13

Parallel Processing and Batch Sequencing 249

TABLE 9.11
Sequence Penalties

Sequence Combination Machine Initial Sequence Final Penalty
Number Number Number (Before Forward Pass) (After Forward Pass)
1 1 1 1-2-9-6-5 30

2 7-8-3-4
2 1 2-9-6-5 24

2 1-7-8-3-4
2 1 1 1-7-8-6-5 22

2 2-9-3-4
2 1 7-8-6-5 38

2 1-2-9-3-4
3 1 1 1-2-8-6-5 38

2 7-9-3-4
2 1 2-8-6-5 23

2 1-7-9-3-4
4 1 1 1-7-9-3-4 23

2 2-8-6-5
2 1 7-9-3-4 38

2 1-2-8-6-5
5 1 1 1-2-9-3-4 38

2 7-8-6-5
2 1 2-9-3-4 22

2 1-7-8-6-5
6 1 1 1-2-8-3-4 48

2 7-9-6-5
2 1 2-8-3-4 23

2 1-7-9-6-5

The procedure is simple. Let Pi, Ei, and Li be the processing time and early and late
penalties per unit of time for job i, and then follow the steps given in the following:

1. Take the ratios of Pi/Ei and Pi/Li for each job.
2. Compare all ratio values. If the highest ratio is Pi/Ei, place the corres-

ponding job in the earliest available position in the sequence; if highest
value is associated with Pi/Li, place the associated job in the latest avail-
able position in the sequence. If same job has highest ratios for both ratios
simultaneously, develop two sequences, one by placing job earliest and the
second by placing the job latest in the sequence.

The number of sequences depends on the number of parallel machines. If there are
K parallel machines, then there are at least K sequences developed. In assigning a
job to a sequence, follow the rule stated earlier; in addition, assign the next job to the
machine sequence that has least job time assigned so far.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 250 — #14

250 Production Planning and Industrial Scheduling

3. Determine the common due date on each machine. We can apply the
algorithm described in Chapter 7, or we can make a good approximation
by evaluating penalty at the end of completion time for each job, assuming
that time to be the common due date for all jobs and then selecting the time
with minimum total penalty as the common due date.

If we are allowed to have one common due date per machine, each sequence is evalu-
ated independently. If only one common due date is allowed for all jobs, completion
times for each job on each machine should be used as the common due date.

To determine the optimum number of parallel processors, repeat the preceding pro-
cess till incremental savings are achievable, starting with one processor and increasing
by one in every iteration.

9.2.1 Example

A four-job problem with data is given in Table 9.12. The activation cost for a parallel
machine is $15. We wish to determine the optimum number of parallel machines and
common due date.

The associated Pi/Ei and Pi/Li for each job are as follows (Table 9.13):

9.2.2 Single Machine

Start with one machine. The largest value among the ratios is 17, associated P3/L3
or with job 3Pi/Li. Place job 3 in the last position. Scratch job 3 from further
considerations.

TABLE 9.12
Data for the Problem

Job i Pi Processing Time Ei Early Penalty Li Late Penalty
1 24 3 8
2 30 2 5
3 17 8 1
4 9 5 3

TABLE 9.13
Pi /Ei and Pi /Li Ratios

Job i Pi Processing time Ei Early Penalty Li Late Penalty Pi /Ei Pi /Li
1 24 3 8 8 3
2 30 2 5 15 6
3 17 8 1 2.12 17
4 9 5 3 1.8 3

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 251 — #15

Parallel Processing and Batch Sequencing 251

3

Of the remaining, job 2 has the maximum value for both ratios, namely 15 and 6.
Two partial sequences are developed, assigning job 2 the earliest and latest possible
positions.

2 3 2 3

After job 1 is assigned, the next highest ratio is associated with job 1, again for
both Pi/Eiand Pi/Li factors. Develop two partial schedules for each schedule available
so far.

2 1 3
1 2 3

2 1 3
1 2 3

Because job 4 is the last job to be assigned, place it in the available position in
each sequence.

2 1 4 3
1 4 2 3

2 4 1 3
4 1 2 3

The initial schedules are

2-1-4-3
2-4-1-3
1-4-2-3
4-1-2-3

To determine the common due and penalty dates, let us examine one sequence,
2-1-4-3.

0(2/30)30(1/24)54(4/9)63(3/17)80

By considering completion times of 80, 63, 54, and 30 as the common due dates,
determine the penalties (Table 9.14).

The minimum cost for 2-1-4-3 is 101, with due date of 54. Although we are not
doing it in this illustration, it should be noted that the cost curve has only one minimum
value. Therefore, it is not necessary to evaluate any due dates once the minimum is
obtained. For other sequences, the common due date and penalties are as follows in
Table 9.15.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 252 — #16

252 Production Planning and Industrial Scheduling

TABLE 9.14
Common Due Date Calculations—Single Machine

Due Date Penalty
80 (80 − 30) × 2 + (80 − 54) × 3 + (80 − 63) × 5 + (80 − 80) = 263
63 (63 − 30) × 2 + (63 − 54) × 3 + (63 − 63) + (80 − 63) = 110
54 (54 − 30) × 2 + (54 − 54) + (63 − 54) − 3 + (80 − 54) − 1 = 101
30 (30 − 30) + (54 − 30) × 8 + (63 − 30) × 3 + (80 − 30) × 1 = 341

TABLE 9.15
Common Due Date Costs

Schedule Common Due Date Minimum Cost
2-1-4-3 54 101
2-4-1-3 63 203
1-4-2-3 33 269
4-1-2-3 33 317

9.2.3 Two Machines

Assign first job selected, job 3 to machine 1. Each time a job is placed in the sequence,
the processing time is noted. Scratch job 3 from further considerations.

Machine 1

3/17

The next job selected is job 2. Since both ratios are highest in the respective columns,
job 2 should be placed both at the start and end available positions in the sequence.
It is placed in machine 2 since it has the least processing time assigned so far.

Machine 2

Sequence 1
2/30

Sequence 2
2/30

Next job to schedule is Job 1. Again, it has largest ratios in both columns (after job
3 and 2 are scratched). So, job 1 should be at the beginning and end of schedules.
Machine 1 has the least processing time, and hence job 1 is assigned there.

Machine 1

Sequence 1
1/24 3/17

Sequence 2
1/24 3/17

Job 4 is the last job to be assigned. Assign it to Machine 2 since it has the least
processing time.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 253 — #17

Parallel Processing and Batch Sequencing 253

Machine 2

Sequence 1
2/30 4/9

Sequence 2
4/9 2/30

The sequences to examine are

Machine 1 1–3 0(1/24) 24 (3/17) 41
Machine 2 2–4 0(2/30) 30 (4/9) 39

4–2 0 (4/9) 9(2/30) 39
The penalties are

For One Common Due Date
Due Penalty Total
Date Penalty
41 (41 − 41) + (41 − 24) × 8 + (41 − 39)3 + (41 − 9) × 5 302

(41 − 41) + (41 − 24) × 8 + (41 − 39)5 + (41 − 9) × 3 242
39 (41 − 39) × 1 + (39 − 24) × 3 + (39 − 39) + (39 − 30) × 5 163

(41 − 39) × 1 + (39 − 24) × 3 + (39 − 39) + (39 − 9) × 3 212
30 (41 − 30) × 1 + (30 − 24) × 3 + (39 − 30) × 3 + (30 − 30) 80

(41 − 30) × 1 + (30 − 24) × 3 + (39 − 30) × 5 + (30 − 9) × 5 203
24 (41 − 24) × 1 + (24 − 24) + (39 − 24) × 3 + (30 − 24) × 5 92

(41 − 24) × 1 + (24 − 24) + (39 − 24) × 5 + (24 − 9) × 5 167
9 (41 − 9) × 1 + (24 − 9) × 8 + (39 − 9) × 3 + (30 − 9) × 5 347

(41 − 9) × 1 + (24 − 9) × 8 + (39 − 9) × 5 + (9 − 9) 302

The minimum cost is 80, associated with the due date of 30 and associated sequences:

Machine 1 1–3 0 (1/24) 24 (3/17) 41
Machine 2 2–4 0 (2/30) 30 (4/9) 39

The cost decrease from single machine to two machines is 101−80 = $21. Since
the activation cost of new machine is $15, activate the second machine.

If we were allowed to have two different common due dates, one for each machine,
the minimum cost for each machine would be

Machine Common Due date Penalty

1 41 51
2 39 18

For the total penalty of 51 + 18 = 69, there is much less than one common due date.

Three Machines

For three machines, the resulting sequences are as follows:

Machine 1 4–3 0 (4/9) 9 (3/17) 26

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 254 — #18

254 Production Planning and Industrial Scheduling

Machine 2 2 0 (2/30) 30
Machine 3 1 0 (1/24) 24

With a single common due date, the minimum cost due date is 17 with cost of $114,
while the common due dates for jobs on each machine results in following:

Machine Due Date Penalty

1 9 17
2 30 0
3 24 0

with the total penalty of 17. With an activation cost of $15, it is obvious that we
should go for the third machine if three common due dates are possible. If only one
common due date is allowed, a two-machine solution is optimum.

9.3 NONIDENTICAL PARALLEL PROCESSORS

Now, consider a case where a job may be performed on any of the m available
processors. Because of the differences between the processors, however, the time
requirement for the job may vary from processor to processor. For example, in a
machine shop, out of two machines that can perform the same task, one might be the
“old reliable” while the other is fairly new and therefore comes equipped with the
latest technological improvements. The variations in design and technology might
contribute towards the speed and accuracy, and ultimately the differences in pro-
cessing times, as the work is performed on one of these two machines. We will
illustrate here a procedure to distribute jobs among such nonidentical parallel pro-
cessors to minimize the makespan. In addition, we allow for jobs to arrive at the
processing shop at different times. The procedure is as follows:

9.3.1 Procedure

1. Let T1, T2 . . . , Tm be the times to which processors 1, 2 . . . , m are engaged
or loaded.

2. Determine the maximum time to which any of the processors are loaded.
T max = max(T1, T2, . . . , Tm). Determine all unscheduled jobs available
till Tmax.

3. Develop a table (illustrated in the example) showing jobs from step 2, their
arrival times, processing time (P) for each job on each processor, and the
available time for each processor when it is available for loading the next
job.

4. Determine the completion time (C) for each job listed if it is loaded next
on that processor. It is equal to: maximum of (processor available time,
job arrival time) + process time.

5. Determine the minimum completion time. Mark the associated processor
as the efficient processor in this iteration. If there is more than one job

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 255 — #19

Parallel Processing and Batch Sequencing 255

tied for minimum completion time on the same processor, go to step 6;
otherwise, go to step 7.

6. Calculate penalty for each job. Penalty is defined as: (next efficient com-
pletion time for the job time for the job - completion time on the efficient
processor). Schedule the job that has maximum penalty on the efficient
processor. Go to step 8.

7. Schedule the job on efficient processor.
8. If all bobs are scheduled, stop. Determine the maximum load time from the

processors that gives the minimum value of makespan. If there are some
jobs yet to be scheduled, go to step 2.

Example

Consider a 12-job problem with data as shown in Table 9.16.
Initially, T max = 0. All three processors and six jobs are available at time 0.

Table 9.17 displays the arrival times, processing time (P), and completion time (C)
of these jobs on each processor, if they are loaded at this time.

In the initial table, all processors are loaded simultaneously in this example, but
they can be loaded one at a time following the procedure described before. Load the
least completion time job on each processor if possible. Since only job 1 is a candidate
on P1, assign it to P1. Scratch job 1 from further considerations. On P2 and P3, job
5 is the earliest completer. However, it is more efficient on P2. So load job 5 on P2,
and scratch it from further considerations. There are two candidate jobs, 3 and 4, with
minimum completion time of 4 on P3. Choose one using the maximum penalty rule.

TABLE 9.16
Data for the Problem (Reproduced)

Job i Pi Processing Time Ei Early Penalty Li Late Penalty Pi /Ei Pi /Li
1 24 3 8 8 3
2 30 2 5 15 6
3 17 8 1 2.12 17
4 9 5 3 1.8 3

TABLE 9.17
Data for with 3 Nonidentical Parallel Processors and
12 Jobs

Job number 1 2 3 4 5 6 7 8 9 10 11 12
Arrival time 0 0 0 0 0 0 5 5 8 10 12 13
Processor 1 P1 2 6 5 10 3 8 2 8 4 3 5 1
Processor 2 P2 4 5 6 6 1 6 3 7 1 5 4 3
Processor 3 P3 3 8 4 4 2 5 7 6 6 2 8 2

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 256 — #20

256 Production Planning and Industrial Scheduling

TABLE 9.18
Calculations for T max = 0

Processor
Available Job Number 1 2 3 4 5 6

Arrival time 0 0 0 0 0 0
P C P C P C P C P C P C

Processor 1 P1 0 2* 6 6 5 5 10 10 3 3 8 8
Processor 2 P2 0 4 4 5 5 6 6 6 6 1 1* 6 6
Processor 3 P3 0 3 3 8 8 4 4 4 4** 2 2* 5 5

*Minimum completion times on each processor.

TABLE 9.19
Calculations for T max = 4

Processor
Available Job Number 2 3 6

Arrival Time 0 0 0
P C P C P C

Processor 1 P1 2 6 8 5 7 8 10
Processor 2 P2 1 5 6 7 8 6 7
Processor 3 P3 4 8 12 4 8 5 9

The penalty for job 3 is (5 − 4) = 1 and for job 4 is (6 − 4) = 2. Job 4 has the higher
penalty, so it is chosen to load on P3. The loading on the processors are

P1 0 (1/2) 2
P2 0 (5/1) 1
P3 0 (4/4) 4

The maximum time a processor is engaged is max (2, 1, 4) = 4. Unscheduled
jobs available by time 4 are 2, 3, and 6 (Table 9.18).

The earliest completion time is that of job 2 on P2. Load job 2

P1 0 (1/2) 2
P2 0 (5/1) 1 (2/5) 6
P3 0 (4/4) 4

By time 6, the jobs available are 3, 6, 7, and 8 (Table 9.19).
The least completion time is 7; therefore, load job 3 on P1.

P1 0 (1/2) 2 (3/5) 7
P2 0 (5/1) 1 (2/5) 6
P3 0 (4/4) 4

By time 7, the jobs available are 6, 7, and 8 (Table 9.20).

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 257 — #21

Parallel Processing and Batch Sequencing 257

TABLE 9.20
Calculations for T max = 6

Processor
Available Job Number 3 6 7 8

Arrival Time 0 0 5 5
P C P C P C P C

Processor 1 P1 2 5 7* 8 10 3 8 8 13
Processor 2 P2 6 7 13 6 12 3 9 7 13
Processor 3 P3 4 4 8 5 9 7 12 6 11

TABLE 9.21
Calculations for T max = 7

Processor
Available Job Number 6 7 8

Arrival Time 0 5 5
P C P C P C

Processor 1 P1 7 8 15 2 9 8 15
Processor 2 P2 6 6 12 3 9 7 13
Processor 3 P3 4 5 9* 7 12 6 11

We could choose job 6 or 7 to load at this time. Since they are to be loaded on
different processors, there is no need to calculate penalty values unless we decide to
load 7, since it can be loaded on P1 or P2 with same completion time. Let us select
job 6, since it involves less calculations and load it on P3. The results are

P1 0 (1/2) 2 (3/5) 7
P2 0 (5/1) 1 (2/5) 6
P3 0 (4/4) 4 (6/5) 9

By time 9, we have jobs 7, 8, and 9, yet to be scheduled (Table 9.21).
Jobs 7 and 9 are tied with C = 9. P2 can load both jobs 7 and 9 while in P1 only

job 7 can be loaded. It is therefore, efficient at this stage load job 7 in P1. By the way
job 7 is also most efficient in P1. (Table 9.22 and 9.23).

P1 0 (1/2) 2 (3/5) 7 (7/2) 9
P2 0 (5/1) 1 (2/5) 6
P3 0 (4/4) 4 (6/5) 9

Load job 9 on P2

P1 0 (1/2) 2 (3/5) 7 (7/2) 9
P2 0 (5/1) 1 (2/5) 6 - 8(9/1) 9
P3 0 (4/4) 4 (6/5) 9

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 258 — #22

258 Production Planning and Industrial Scheduling

TABLE 9.22
Calculations for T max = 9

Processor
Available Job Number 7 8 9

Arrival Time 5 5 8
P C P C P C

Processor 1 P1 7 2 9* 8 15 4 12
Processor 2 P2 6 3 9 7 13 1 9
Processor 3 P3 9 7 16 6 15 6 16

TABLE 9.23
Calculations for T max = 9; II

Processor
Available Job Number 8 9

Arrival Time 5 8
P C P C

Processor 1 P1 9 8 17 4 13
Processor 2 P2 6 7 13 1 9*
Processor 3 P3 9 6 15 6 15

TABLE 9.24
Calculations for T max = 9; III

Processor
Available Job Number 8

Arrival Time 5
P C

Processor 1 P1 9 8 17
Processor 2 P2 9 7 16
Processor 3 P3 9 6 15*

Load job 8 on P3.

P1 0 (1/2) 2 (3/5) 7 (7/2) 9
P2 0 (5/1) 1 (2/5) 6 - 8(9/1) 9
P3 0 (4/4) 4 (6/5) 9 (8/6) 15

By time 15, jobs 11 and 12 have arrived (Table 9.24).
Load job 12 on P1. The resulting loading table is shown in Table 9.25.

P1 0 (1/2) 2 (3/5) 7 (7/2) 9 - 13 (12/1) 14
P2 0 (5/1) 1 (2/5) 6 - 8 (9/1) 9

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 259 — #23

Parallel Processing and Batch Sequencing 259

TABLE 9.25
Calculations for T max = 15

Processor
Available Job Number 11 12

Arrival Time 12 13
P C P C

Processor 1 P1 9 5 17 1 14*
Processor 2 P2 9 4 16 3 16
Processor 3 P3 15 8 22 2 17

Processor
Available Job Number 11

Arrival Time 12

P C

Processor 1 P1 14 5 19
Processor 2 P2 9 4 16*
Processor 3 P3 15 8 22

P3 0 (4/4) 4 (6/5) 9 (8/6) 15

Load job 11 on P2.

P1 0 (1/2) 2 (3/5) 7 (7/2) 9 - 13 (12/1) 14
P2 0 (5/1) 1 (2/5) 6 - 8 (9/1) 9 - 12 (11/4) 16
P3 0 (4/4) 4 (6/5) 9 (8/6) 15

All jobs are loaded. The makespan is 16.

9.4 PARALLEL MACHINES IN A FLOWSHOP

It is difficult to build a generalized procedure that gives optimum solution to a prob-
lem of minimization of makespan in a multistage flowshop when there are number
of identical parallel machines at a bottleneck stage. Gupta and Tunc (1997) have
developed a heuristic for a two-stage flowshop, but multistage is difficult.

The heuristic presented here combines and extends thoughts from CDS and
Gupta’s algorithm. Consider first a two-stage problem and parallel machines are
in stage 1. The procedure is simple.

1. Apply Johnson’s rule to obtain the initial sequence.
2. Move the job with the smallest processing time at stage one to the first

position in the sequence.
3. Use the resulting sequence to schedule the jobs.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 260 — #24

260 Production Planning and Industrial Scheduling

TABLE 9.26
Data for Parallel
Flowshop

Jobs Stages

1 2

1 4 1
2 11 7
3 14 6
4 10 11

TABLE 9.27
Makespan Calculations

Sequence Machines

1/1 1/2 2
P C P C P C

1 4 4 1 5
4 10 10 11 21
2 11 21 7 28
3 14 18 6 34

Example

Consider a flowshop with four jobs with two identical parallel machines at stage one.
The processing times are as follows (Table 9.26):

With Johnson’s rule, the sequence is 4-2-3-1. But job 1 has the smallest processing
time in stage one. Move it in front, giving the final sequence of 1-4-2-3. Makespan
calculations are illustrated in Table 9.27, which shows the processing times, P, and
completion times, C, for each job on each machine. The makespan is 34

When multiple parallel machines are in stage 2, the procedure is same as before,
except in step 2 move the job with the smallest processing time in stage 2 to the
front of the sequence. Gupta’s method in this case is very effective, giving the correct
answer each time in every problem tested.

When the number of stages are more than two, the problem becomes more chal-
lenging. One of the solutions from following four alternatives gave on average within
5% of true optimum, obtained by exhaustive enumerations for maximum of eight jobs,
about 85% of the time.

Policy A: Apply the CDS method on total processing times at each stage for
each job to generate the initial sequence. Move the job with the least time
on stage 1 to the front of each sequence to evaluate the makespan.

Policy B: Same as A, except move job with the second smallest time in stage
1 to the front of the sequence.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 261 — #25

Parallel Processing and Batch Sequencing 261

TABLE 9.28
Five stage Flowshop Problem

Jobs Stages

1 2 3 4 5

1 5a 51 1 4 11
2 10b 6 6 9 20
3 12 39 2 19 6
4 18 21 16 16 12
Total 45 117c 25 48 49

a Job with minimum processing time in stage one.
b Job with second smallest time in stage one.
c Bottleneck stage.

TABLE 9.29
Aij and Bij Factor Calculations and Policy A and B Sequences

Job Ai1 Bi1 Ai2 Bi2 Ai3 Bi3 Ai4 Bi4

1 5 11 56 15 57 16 61 67
2 10 20 16 29 22 35 31 41
3 12 6 51 25 53 27 72 66
4 18 12 39 28 55 44 71 65
Sequence 1-2-4-3 2-4-3-1 2-4-3-1 2-1-4-3
Policy A Sequence 1-2-4-3 1-2-4-3 1-2-4-3 1-2-4-3
Policy B Sequence 2-1-4-3 2-4-3-1 2-4-3-1 2-1-4-3

Policy C: Same as A, except calculate the modified processing time for each
job in a stage where multiple processors are present, by dividing the process
time by the number of processors.

Policy D: Same as B with same modification as C.

Example:

Suppose there are two processors planned at stage two (Table 9.28). We wish to
determine the best schedule and makespan. For policies A and B, the Aik and Bik
factors and the corresponding sequences are given in the Table 9.29.

For policies C and D, the Aik and Bik factors and the corresponding sequences are
given in Table 9.30.

Because we have two processors in stage 2, in calculating Aik and Bik factors, the
times in stage 2 for jobs are taken as follows: job 1 51/2 = 25.5, job 2 6/2 = 3, for
job 3 39/2 = 19.5, and for job 4 21/2 = 10.5.

There are three sequences to examine. They are 1-2-4-3, 2-1-4-3, and 2-4-3-1.
For example, the makespan for sequence 1-2-4-3 is calculated as follows. P is the
processing time and C is the completion time (Table 9.31).

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 262 — #26

262 Production Planning and Industrial Scheduling

TABLE 9.30
Aij and Bij Factor Calculations and Policy C and D Sequences

Job Ai1 Bi1 Ai2 Bi2 Ai3 Bi3 Ai4 Bi4

1 5 11 30.5 15 31.5 16 35.5 41.5
2 10 20 13 29 19 35 28 38
3 12 6 31.5 25 335 27 52.5 46.5
4 18 12 28.5 28 44.5 44 60.5 54.5
Sequence 1-2-4-3 2-4-3-1 2-4-3-1 2-1-4-3
Policy C Sequence 1-2-4-3 1-2-4-3 1-2-4-3 1-2-4-3
Policy D Sequence 2-1-4-3 2-4-3-1 2-4-3-1 2-1-4-3

TABLE 9.31
Makespan Calculations for Sequence 1-2-4-3

Job Sequence Machines

1 2/1 2/2 3 4 5

P C P C P C P C P C P C

1 5 5 51 56 1 57 4 61 11 72
2 10 15 6 21 6 63 9 72 20 92
4 18 33 21 54 16 79 16 95 12 107
3 12 45 39 93 2 95 19 114 6 120

Similarly, the makespan for 2-1-4-3 is 124; and for 2-4-3-1, it is 126. The
minimum is for 1-2-4-3.

9.5 BATCH SCHEDULING FOR A LIMITED-CAPACITY,
FIXED-PERIOD PROCESS PROBLEM

We shall now address another problem type that is common in industry. We call this
the “baking problem” because of its similarity to the baking operation. The problem
is described in detail in the following.

Consider a problem of scheduling N jobs for baking, in an oven with limited
capacity, that is, no more than “C” jobs at a time. The term “job capacity” is used in
the same sense as the “unit load” in material handling. If a job is large in terms of
units or in terms of size of the units, the real job can be broken down into number of
jobs, each having the identical characteristics as the real (or parent) job.

Once placed in the oven, a job must be baked continuously for B time periods
(days). A new job cannot be added to the batch while the oven is in operation, even
though the number of jobs in the batch may not have filled the oven to its capacity.
Associated with each job is its known arrival date, that is, the date when the job is
available for baking. Also known is the promised delivery date for the job. If the job

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 263 — #27

Parallel Processing and Batch Sequencing 263

is delayed, then there is a tardiness penalty, proportional to the number of days the
job is delayed.

The problem is to find the optimal schedule for baking that would minimize the
tardiness penalty.

The problem can thus be stated as: minimize the total tardiness subject to the
constraints.

1. The number of jobs scheduled for baking in one batch cannot exceed the
capacity of the oven.

2. Once a baking cycle starts, no new jobs can be added to the batch or any
existing jobs removed from the batch until the batch is completely baked
(i.e., after B days).

3. Each job must be processed exactly once.
4. A job cannot be scheduled for baking before the day of its arrival.

The problem is quite common for processes that require a fixed time interval to com-
plete their operation. The baking operation, for example, is essential in making bread
and other simple products; in manufacturing china, pottery, and bricks; in production
of pharmaceutical products; and in processing microchips for the computer industry.
Laminating and heat treatment operations also require a fixed time process. Determ-
ining when and for which jobs a cupola should be charged in a foundry operation
poses a similar problem of scheduling.

9.5.1 Integer Programming Model (Optional, May Go
directly to 9.5.2)

To illustrate a mathematical approach, we shall first formulate the problem as an
integer programming problem using the following notations:

N : Total number of jobs to be scheduled.
T : Total number of time periods for which the schedule is to be developed or

the planning horizon.
Di: The due delivery time for job i starting from present (in days).
Ji: The arrival time (in days) of job i.
C: Capacity of the oven.
B: Number of time periods (days) each batch must be baked.
Xi: The state of job i in the time period t,

= 1 if baking for job i starts at time t.
0 otherwise
(it implies that Xit = 0 for t < Ji)

Ait : Delay in delivery for job i, if it begins processing at time t (days).

1. Objective Function is to minimize the tardiness penalty, which is given by

Min
T∑

t=1

N∑

i=1

Ait × Xit

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 264 — #28

264 Production Planning and Industrial Scheduling

The explanation of the expression is as follows. Since the penalty for delay
for each job is the same, the total penalty is proportional to the total delay
of all jobs. Tardiness of each job can be determined by checking when the
job is scheduled for baking.

Xit indicates when the job is scheduled for operation. It has a value of
1 if the job i is scheduled for baking in time t. The associated Ait would be
the delay caused in delivery of job i when it starts in period t. This value
can be calculated as

Ait = t + B − Di

where Di is the due delivery time (day) for job i. If Ait is negative, then
there is no delay, and its value is taken as zero.

2. Processing requirements
Each job must be scheduled exactly once during a planning period.

This can be represented as

T∑

t=Ji

Xit = 1 fori = 1, 2, . . . , N

where Ji is the time period or the day when job i arrives for processing.
3. Capacity constraints

The oven cannot hold more than C jobs (its capacity) at any time and
only the jobs that are available at time t can be placed in the oven. This
can be represented as

N∑

i=1

Xit + C × yt <= C fort = 1, 2, . . . , T

yt is an artificial integer variable taking a value of zero or one that is used in
the next expression for continuity of operation. Remember Xit = 0 for the
job i if t < Ji, and thus it need not be included in the above equation.

4. Continuous processing restriction
Each batch must be baked for B days continuously. This can be

formulated as

t+B∑

t=g

yt − B × Z1,g − (B − 1) × Z2,g = 0 forg = 1, 2, . . . , T

Z1,g + Z2,g = 1

Z1,g and Z2,g are artificial variables taking a value of zero or one that ensures
a minimum gap of B days between two batches scheduled for baking.

A sample problem is illustrated in Appendix A.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 265 — #29

Parallel Processing and Batch Sequencing 265

Computationally, even a small problem of scheduling 9 jobs over 12 time periods
has 124 0/1 variables and 41 constraints. The computational time depends on the soft-
ware and computer used, but is substantial. The number of variables and constraints
increases rapidly with an increase in

1. Time period under consideration
2. Number of jobs to be scheduled
3. Baking capacity of the oven

An alternate method must be developed to work with any realistic size problem that
one observes in the industry. Asimple heuristic procedure discussed in the next section
provides a pragmatic and suitable alternative for the problems of this type.

9.5.2 Heuristic Approach

The following are the steps for the heuristic procedure that have been found to be
extremely efficient in solving even a large size problem.

Step 1: Rank the jobs in ascending order of their arrival dates, and within each
arrival date in ascending order of their promised delivery dates.

Step 2: Schedule a job that has not yet been scheduled in a batch based on the
following three conditions:

1. The job has arrived on or before the starting time of the batch
(making the job eligible for scheduling).

2. The job has the earliest promised delivery date of all the jobs that
are eligible for scheduling in the present batch.

3. The batch is not full.

Step 3: We have the best solution if one of the following two conditions is
valid.

1. If the total tardiness in the schedule is zero.
2. If there is some tardiness in the schedule, then each batch, except

perhaps the last one, is filled to the capacity and each has been
scheduled to start as early as possible.

If the best schedule is attainable at this stage, the procedure is terminated.
If not, proceed to step 4.

Step 4: If none of the conditions from step 3 are satisfied, then it may be
possible to improve the solution by delaying the start of a batch that is
not completely filled. Let us define the schedule from step 3 as the master
schedule (or basic schedule) at this point. Check delaying possibility, one
batch at a time, starting from the first batch that is not full. Delaying the start
of an unfilled batch may not necessarily fill the batch completely, but would
fill it with more jobs than what were scheduled earlier. Repeat the following
two steps until no further improvement is possible.

1. If there is a reduction in the total tardiness, use the new schedule
as the master schedule and recheck the first unfilled batch in the
new schedule for delay and so on.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 266 — #30

266 Production Planning and Industrial Scheduling

TABLE 9.32
Scheduling of Jobs in the Oven

Schedule

I II III

Job
Number

Arrival
Date

Promise Delivery
Date St Fin Del St Fin Del St Fin Del

1 1 3 1 3 — 2 4 1 2 4 1
2 1 4 1 3 — 2 4 — 2 4 —
3 1 10 1 3 — 2 4 — 2 4 —
4 2 4 3 5 1 2 4 — 2 4 —
5 4 6 5 7 1 4 6 — 5 7 1
6 4 10 5 7 — 4 6 — 5 7 —
7 4 15 7 9 — 4 6 — 7 9 —
8 5 7 5 7 — 6 8 1 5 7 —
9 5 12 5 7 — 6 8 — 5 7 —
10 5 15 7 9 — 6 8 — 7 9 —
11 5 15 7 9 — 8 10 — 7 9 —
12 5 19 9 11 — 8 10 — 9 11 —
13 6 8 7 9 1 6 8 — 7 9 1

Total tardiness 3 2 3

2. If there is no reduction in the total delay, using the original master
schedule as the base, go to the next unfilled batch and examine
the possibility of delaying it, and so on.

Step 5: From all the schedules developed so far, select the best schedule as one
with minimum total tardiness.

9.5.3 Illustrative Example

Consider a problem where arrival dates and promised delivery dates for the jobs
planned for baking are as given in the first two columns of Table 9.32. In accordance
with step 1 of the procedure, the jobs are arranged in ascending order of arrival date
and within each arrival date in ascending order of the promised delivery dates. In this
data, two jobs have the same arrival and promised delivery dates, namely 10 and 11.
They represent a job with a large production volume, which requires two job loads
in the oven. The capacity of the oven is for four jobs per load, and the baking time is
two days per batch.

Schedule I is developed by allowing the earliest possible start times for each batch.
For example, batch 1 starts at time 1 (with only three jobs available) and finishes at
time 3. At time 3, only one additional job is available; therefore, it is the only job
scheduled in the second batch. Similarly, other batches are developed. Observe that
the jobs are selected to form a batch following step 2 of the procedure. The total
delay in the schedule is three units, and at least one batch, for example, batch 1,

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 267 — #31

Parallel Processing and Batch Sequencing 267

is not completely full. Therefore, there may be some room for improvement in this
schedule.

Schedule II is developed by delaying the start of batch 1 from the previous sched-
ule (master schedule at this point) by 1 day. Now, it can accommodate four jobs.
However, because of the arrival times of the remaining jobs, the next batch can only
accommodate three jobs. The total tardiness in the schedule is 2 days. Since the tardi-
ness in schedule II is less than schedule I, schedule II becomes the master schedule.
Again, the total tardiness is not zero, and there exists a batch, which is not the last
batch, and is filled less than the capacity of oven. Hence, some improvement in the
solution may be possible.

In schedule III, the second batch of the master schedule (schedule II) is delayed
by 1 day. The resulting schedule has the tardiness of 3 days. Since tardiness has not
decreased, schedule II remains the master schedule.

The third batch of the master schedule, that is, the one with start time of 6, has
the oven filled to capacity (jobs 8, 9, 10, and 13). The fourth batch is the last batch,
and it starts as early as possible, even though it is not full. Therefore, no further
improvement in the present master schedule is possible. Schedule II is the optimum.
This solution is the same as the one obtained by analytical means.

9.6 BATCH SCHEDULING FOR LIMITED-CAPACITY
PROCESSORS IN SEQUENCE WITH VARYING JOB
REQUIREMENTS

It is possible to extend further the procedure developed in Section 9.5 by allowing a
number of ovens in sequence, where each job goes from one oven to the next, requiring
different times in each oven. The additional considerations are as follows:

1. All jobs that run in one batch must have same processing time.
2. All jobs have equal importance.
3. A job cannot be processed in the succeeding oven until it is released by the

previous oven. For example, a job cannot be processed in oven 2 until it is
available from oven 1, and so on.

The procedure is a minor modification of the heuristic presented in Section 9.3. For
each variation in the previous oven, all variations in the succeeding oven must be
checked. A policy that gives the optimum result is then selected as the best policy.
This procedure is best explained in Section 9.6.1.

9.6.1 Illustrative Example

Ten jobs will arrive at a heat treatment facility the next week. Each job must be
processed in two heat-treating ovens in sequence. The expected arrival time of each
job, the processing times in each oven, and the promised delivery date are known.
Table 9.33 shows the data, already ranked in ascending order of the job arrival dates,

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 268 — #32

268 Production Planning and Industrial Scheduling

TABLE 9.33
Jobs Arranged in the Ascending Order of Arrival Dates and within It by Due
Dates

Job Arrival Time Oven 1 Process Time Oven 2 Process Time Due Date
1 1 1 1 3
2 1 1 2 4
3 1 2 2 5
4 2 1 1 6
5 2 2 2 6
7 4 2 2 7
6 4 1 2 8
9 5 1 1 7
8 5 2 1 8
10 5 1 1 8

TABLE 9.34
Initial Assignments in Oven 1 and Job Arrival Times in Oven 2

Batch Number Jobs in the Batch Assignment Time Process Time Arrival Time for Oven 2

1 1, 2 1 1 2
2 3, 5 2 2 4
3 4, 6 4 1 5
4 7, 8 5 2 7
5 9, 10 7 1 8

and within it in ascending order of the due dates. Each oven has a capacity for four
jobs at a time.

The initial assignment in the first oven is made using the algorithm in Section 9.3.
The results are shown in Table 9.34. Note that each batch contains only those jobs
that require the same processing times. This is made sure by defining the duration
of a batch as being equal to the duration of the first unassigned job in the list, and
then selecting the unassigned jobs that have the same durational requirement for the
oven. The table also shows the batch (job) arrival times in oven 2, which is the batch
assigned time in oven 1 plus the processing time for that batch in oven 1.

Using the job arrival times from Table 9.33 and the other information from the
problem definition, the initial assignments in oven 2 are as shown in Table 9.35. Again,
the rules for assignments are followed. For example, jobs 1 and 2 are available on day
2, but they have different processing times on the second oven; job 1 is ranked higher
in the initial listing, so it is the one assigned on day 2. It completes its processing on
day 3, the time when it is due, thus causing no delay.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 269 — #33

Parallel Processing and Batch Sequencing 269

TABLE 9.35
Initial Assignments in Oven 2

Batch Number Jobs in the Batch Assignment Time Process Time Due Date Delay
1 1 2 1 3 0
2 2 3 2 4 1
3 3, 5, 6 5 2 5, 6, 8 2, 1, 0
4 4, 8 7 1 6, 7 2, 0
5 7 8 2 6 3
6 9, 10 10 1 8 4, 3

TABLE 9.36
First Improvement in Oven 2

Batch
Number Jobs in the Batch

Assignment
Time

Process
Time

Completion
time Due Dates Delay

1 1 2 1 3 3 0
2 2, 3, 5 4 2 6 4, 5, 6 2, 1, 0
3 4 6 1 7 6 1
4 6, 7 7 2 9 7, 8 2, 1
5 8, 9, 10 9 1 10 8, 7 ,8 3, 2, 2

On day 3, only job 2 is available, so it is scheduled next. It takes 2 days to get
processed, thus making the oven available on day 5.

On day 5, jobs 3, 4, 5, and 6 are available for scheduling. The duration of the
batch is defined by job 3’s duration, namely 2 days. Job 4 has different processing
time, and therefore, batch 3 consists of jobs 3, 5, and 6. The process is continued.
The total delay in this schedule is 16 days.

9.6.2 Improvement Routine

Beginning with the current oven 1 assignment, each possible variation in oven 2 will
be checked. Then, each possible oven 2 variation will be checked for each of the
remaining oven 1 variations.

1. Oven 1 initial assignment
a. Oven 2: Delay job 2. It results in an improvement with the total delay

of 14 as shown in Table 9.36. Since the solution has improved, it
becomes the basic solution for further improvements.

b. Batch 1 in Table 9.27 is delayed. The delay in the schedule is 15.
No improvement.

c. Batch 2 is delayed. It yields no improvement.
d. Batch 3 in Table 9.27 is delayed. The delay in schedule is 17. No

improvement.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 270 — #34

270 Production Planning and Industrial Scheduling

TABLE 9.37
Assignments in Oven 2

Batch Jobs in the Assignment Process Completion Due
Number Batch Time Time Time Dates Delay

1 3 3 2 5 5 0
2 1, 4 5 1 6 3, 6 30
3 2, 5, 7 6 2 8 4, 6, 7 4, 2, 1
4 6 8 2 10 10, 8 0, 2
5 8, 9, 10 10 1 11 8, 7, 8 3, 4, 3

TABLE 9.38
Summary of Remaining Calculations for the Example Problem

Oven 1 Action
Oven 2 Action/Batches Delayed
in Sequence One at a Time Schedule Delay Oven 2 Improvements

Batch 1 is delayed 1 18 New basic (not shown)
2 , 3 19, 26 —

Batch 2 is delayed New basic; Table 9.21 18
1 , 2, 3, 4 22, 24, 21, 24 —

5 14 New basic; Table 9.20
1, 2, 3, 4, 5 23,22,21,24,18

Batch 3 is delayed New basic; Table 9.22 18
1, 2, 3, 4, 5 19, 21, 21, 21, 21

Batch 4 is delayed New basic; Table 9.23 13
1 15
2 12 New basic; Table 9.24

1,2, 14,12

e. Batch 4 in Table 9.27 is delayed. The delay in schedule is 16. No
improvement.

All checks on the basic solution of the second oven are performed. Go to
the first oven.

2. Batch 1 in oven 1 is delayed.

The new initial schedule of oven 2 is given by Table 9.37. The delay is 22.
We now try to improve the assignments of Table 9.37 and continue to apply

the procedure from there on. The entire results are displayed in Table 9.38. Where
necessary, the basic solutions for oven 2 are shown in the supporting Tables 9.39
through 9.43. Each batch in the current basic table is delayed (if possible) in
sequence. If the delay decreases, the corresponding arrangement in oven 2 becomes
the new basic solution, and the batch delaying routine is applied to the new basic
solution.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 271 — #35

Parallel Processing and Batch Sequencing 271

TABLE 9.39
Assignments in Oven 2

Batch Jobs in the Assignment Process Completion Due
Number Batch Time Time Time Dates Delay

1 1 2 1 3 3 0
2 2 3 2 5 4 1
3 3, 5 5 2 7 56 21
4 48 7 1 8 6, 8 20
5 6,7 8 2 10 8, 7 2, 3
6 9, 10 10 1 11 7, 8 4, 3

TABLE 9.40
Assignments in Oven 2

Batch Jobs in the Assignment Process Completion Due
Number Batch Time Time Time Dates Delay

1 1 2 1 3 3 0
2 2 3 2 5 5 1
3 3, 5 5 2 7 5,6 2, 1
4 4, 9 7 1 8 6, 7 2, 1
5 6, 7 8 2 10 8,7 2, 3
6 8, 10 10 1 11 8, 8 3, 3

TABLE 9.41
Assignments in Oven 2

Batch Jobs in the Assignment Process Completion Due
Number Batch Time Time Time Dates Delay

1 1 2 1 3 3 0
2 2 3 2 5 4 1
3 3, 5, 6 5 2 7 5, 6, 8 2, 1
4 4, 9, 10 7 1 8 6, 7, 8 2, 1
5 7 8 2 10 7 3
6 8 10 1 11 8 3

9.7 BATCH SEQUENCING

Now, consider a problem where different part types are manufactured on the same
machine. We define the two parts as belonging to the same part type if the machine does
not require a change in setup when these two parts are produced one after the other in
a sequence. The problem is common in numerically controlled manufacturing where,

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 272 — #36

272 Production Planning and Industrial Scheduling

TABLE 9.42
Final assignments in Oven 2

Batch Jobs in the Assignment Process Completion Due
Number Batch Time Time Time Dates Delay

1 1 2 1 3 5 0
2 1, 4 5 1 6 3, 6 3, 0
3 2, 5, 7 6 2 7 4, 6, 7 4, 2, 1
4 6 8 2 10 10, 8 0, 2
5 8, 9, 10 10 1 11 8, 7, 8 3, 4, 3

TABLE 9.43
Final Assignments in Oven 2

Batch Number Jobs in the Batch Assignment Time Process Time Arrival at Oven 2

1 1, 2 1 1 5
2 3, 5 2 2 4
3 4, 6 4 1 5
4 9, 10 5 1 6
5 7, 8 6 2 8

because of the universal nature of the setup, the same setup may be used to produce
orders from a number of customers. The same is true in the electronic industry and
in printed circuit board manufacturing. Cellular manufacturing also presents similar
conditions. In cellular manufacturing, one or more part families are produced in a
single cell (which may consist of one or more machines) with one setup. Change of
part family may require changeover from present setup to another setup, requiring
considerable time.

The problem can be stated as follows: There are N jobs to be produced on a single
facility. Each job belongs to a part type, and we know the processing time and due
date for each job. Each part type requires a setup, the time for which is known. We
want to develop a schedule that meets the due dates and also minimizes the makespan.

Batch sequencing is a decision problem and not an optimization problem. There
may or may not exist a sequence that meets the due dates of all jobs. We shall discuss
the decision making aspect further in the illustrated procedure.

9.7.1 Procedure and Analysis

The procedure for analysis is best explained by means of an example. Suppose that
we have six jobs for which the data is as given in Table 9.44. Note that we have three
job types, and each type has its own setup time.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 273 — #37

Parallel Processing and Batch Sequencing 273

TABLE 9.44
Data for Batch Sequencing Problem

Job 1 2 3 4 5 6
Process time 2 3 5 5 7 6
Due dates 9 14 16 26 32 42
Job type 1 2 1 3 1 2
Setup time for the job type 3 1 3 2 3 1

The steps of the procedure areas follows:

Step 1: Group the jobs by job types and within each job type arrange the jobs
in the ascending order of the due dates.

Step 2: Construct a row that gives the minimum start time (MST) for each job.
MST is defined as: due date - (process time + setup time).

Step 3: Start the job sequence with a job that has the minimum value of MST.
Calculate the sequence time, that is, the time associated with the sequence
so far.

Step 4: Continue the sequence by assigning the next sequential job from the
same group until either all jobs are assigned or the sequence time exceeds
the MST of an unassigned job in some other group. Let us denote this job
as job K. Go to step 5.

Step 5: If all the jobs are assigned, then stop. If not, remove the last job that
had caused the sequence time to exceed the MST of job K and assign job K
in the sequence instead. Calculate the new value of sequence time, and go
back to step 4.

9.7.2 Application

Because we have setup times associated with each job type, we need to modify the
sequence notation that we have been using so far. We shall display (job number/job
type/setup time/processing time) whenever a new job type is scheduled. If a job
with the same job type as the immediately preceding job is scheduled next, we shall
continue to use the old notation (job number/processing time). The setup time is also
included in our sequence time calculations wherever appropriate.

The application of steps 1 and 2 results in Table 9.45. The minimum MST is
associated with job 1, and we start building our sequence by choosing job 1 first. It
completes the setup and processing at time 5. Next, job 3 is placed since it is the
next job in group type 1. It completes processing at time 10 since it does not need the
additional setup. Job 2 of type 2 has an MST of 10, and hence it is scheduled next.
With setup and processing, the job is completed at time 14. Continuing with the next
job (job 6) from the group type 2 leads to a completion time of 20, which exceeds
the MST value for job 4. Hence, we go back and do not schedule job 6 yet; instead,
we schedule job 4. Since that is the only job in group 3, we go back to the jobs from

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 274 — #38

274 Production Planning and Industrial Scheduling

TABLE 9.45
Application of Step 1 and 2

Type 1 Type 2 Type 3

Job 1 3 5 2 6 4
Process time 2 5 7 3 6 5
Due date 9 16 32 14 42 26
Setup time 3 3 3 1 1 2
MST 4 8 22 10 35 19

TABLE 9.46
Application of Steps 1 and 2

Type 1 Type 2 Type 3

Job 1 3 5 2 6 7 4 8
Process time 2 5 7 3 6 4 5 10
Due date 9 16 32 14 42 43 26 36
Setup time 3 3 3 1 1 1 2 2
MST 4 8 22 10 35 38 19 24

groups 1 and 2 and select a job with the minimum MST, which is job 5. The sequence
is completed by assigning job 6 in the end. The makespan is 38 time units, and no
job is delayed.

0 (1/1|3/2) 5 (3/5) 10 (2/2|1/3) 14 (6/6) 20 exceeds
14 (4/3|2/5) 21 (5/1|3/7) 31 (6/2|1/6) 38

Such nonconflicting assignments are not always possible. For example, suppose
we have two additional jobs, one of type 2 and one of type 3, as given in Table 9.46.

The sequence development up to time 14 (i.e., jobs 1, 3, and 2) is identical to
the previous example. Assignment of job 6 exceeds the MST of job 4, and job 4 is
therefore placed in the next position. Since time 21 is less than the MST values for
all unassigned jobs, we continue in the same group and assign job 8. The sequence
time is now greater than the MST for job 5. So,we back up and assign job 5 instead
of job 8. The completion for job 5 is 31, which exceeds the MST of job 8. In other
words, it is not possible to have both jobs 5 and 8 complete on time. We must make a
decision as to which job is more important to us and complete that job on time, while
realizing that the other job is going to be late.

0 (1/1|3/2) 5 (3/5) 10 (2/2|1/3) 14 (6/6) 20 exceeds
14 (4/3|2/5) 21 (8/10) 31 exceeds

21 (5/1|3/7) 31 exceeds

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 275 — #39

Parallel Processing and Batch Sequencing 275

Suppose that we choose job 8 as the next job to schedule. It completes its
processing at time 31, and there is no unassigned job with an MST of less than
31 except job 5. So, we choose job 5 next, which results in the following.

14 (4/3|2/5) 21 (8/10) 31 (5/1|3/7) 41

However, both jobs 6 and 7 are now late. To avoid three jobs being late (i.e., jobs
5, 6, and 7). Let us check what would happen if we scheduled job 6 after job 8.

14 (4/3|2/5) 21 (8/10) 31 (6/2|1/6) 38 (7/4) 42

It is clear that we can schedule both job 6 and 7 and complete them on time. Job
5 can be placed in the end to give the completion time as shown in the following.

14 (4/3|2/5) 21 (8/10) 31 (6/2|1/6) 38 (7/4) 42 (5/1|3/7) 52

Thus, in all these calculations, we have decisions to make as we schedule the jobs.
What is preferable, delaying one job for a long time or three jobs for a short time is
a situation-dependent question. Factors such as who the customers are and what the
profit margin of each job is may provide the answer.

9.8 SUMMARY

This chapter included sequencing jobs on parallel machines and batch sequencing. We
have seen three different objectives in dividing and sequencing jobs for processing
on identical (parallel) machines. They are (1) all jobs have equal importance and we
wish to minimize the makespan, (2) jobs have priorities indicated by their weights and
we wish to minimize the makespan for each job group formed based on the priorities,
(3) jobs have due dates and penalty values and we wish to minimize the total of early
and late penalties, and (4) where nonidentical processors provide an opportunity for
alternate routing and scheduling.

Batch sequencing is also further divided into three distinct problems. They are: (1)
Forming job batches when the processing facility, can handle only a limited number
of jobs at one time. The jobs may arrive at various times and may have different due
dates. (2) Jobs still arrive at different times and have different due dates, but now
there are number of limited-capacity facilities in sequence. Each facility may require
different processing times, and all jobs must be processed through all the facilities.
The objective in both cases is to minimize the tardiness penalty.

The third variation of batch sequencing we have discussed is that of forming a
sequence to minimize setup times. Jobs may belong to different classes, and each job
requires a setup unless a job from the same class follows the job just completed. The
objective is to find a sequence that best meets the due dates.

All the procedures depend on the successive development of tables.

9.9 PROBLEMS

9.1 A manufacturer needs to place orders for materials to meet its production
requirements. For materials A, B, C, D, E, F, and G, the company has sup-
pliers 1, 2, and 3 that can each supply the materials. Each of the suppliers has

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 276 — #40

276 Production Planning and Industrial Scheduling

the same lead time for each of the materials. From the following data on the
materials and lead times, develop the ordering policy that will yield the best
minimum makespan for the delivery of materials.

Job A B C D E F G
Process time 9 17 14 7 11 13 21

9.2 Develop a departmental schedule for the production manager of a machine shop
that will allow all of the following jobs to be processed in the minimum amount
of time in the punch press department. The department has three identical punch
presses. The data are as follows:

Job 1 2 3 4 5 6 7 8 9 10
Process time 3 9 13 7 5 19 6 15 11 9

9.3 Develop the minimum makespan schedule for the following data, assuming
three machines are to be used in parallel.

Job 1 2 3 4 5 6 7 8 9 10
Process time 10 23 14 6 21 15 8 9 17 14

9.4 The following orders have arrived in the scheduling department of a manufac-
turer and have been assigned priorities as listed.

Job 1 2 3 4 5 6 7 8
Process time 19 9 10 13 20 17 12 14
Priority 2 1 1 2 2 1 2 1

All jobs are to be processed on one of two identical machines (1 and 2). Develop
the schedule that minimizes the makespan.

9.5 Given the following data on jobs to be processed on parallel machines with
known processing times, tardy penalties, and due dates, develop the best
schedule.

Job 1 2 3 4 5 6 7 8
Process time 20 16 13 15 11 8 12 18
Penalty 2 2 1 1 2 1 2 1
Due date 55 44 32 39 24 28 18 20

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 277 — #41

Parallel Processing and Batch Sequencing 277

9.6 In a particular workshop, 10 jobs run through three nonidentical parallel
machines. Their processing times are as follows:

Job 1 2 3 4 5 6 7 8 9 10
Machine 1 10 5 10 9 12 5 10 8 11 13
Machine 2 7 4 5 7 9 4 7 7 9 10
Machine 3 18 12 12 15 19 10 14 9 20 15

Also, run this problem on the computer (program namenonidpp.exe) and check
your results.

9.7 The following nine jobs are to be produced at either of the two available
manufacturing facilities. Knowing that each of the facilities requires the same
processing time for each job, develop the best schedule using the due dates and
tardiness penalties given. (Hint: Only one minimum-cost solution is required.)

Job 1 2 3 4 5 6 7 8 9
Process time 2 9 5 4 8 6 10 3 7
Penalty 1 1 2 2 2 1 1 2 2
Due date 40 18 33 26 21 38 15 29 36

9.8 In Problem 5.7, change the processing time as follows:

Job 1 2 3 4 5 6 7 8 9
Process time 12 15 19 14 18 16 10 13 17

9.9 The following ten jobs are to be processed through a baking oven. The data
include the arrival date and promised delivery date for each. The oven has a
capacity of three jobs with a baking time of 3 days per batch. Develop the best
schedule.

Job 1 2 3 4 5 6 7 8 9 10
Arrival 1 1 2 2 3 4 4 4 5 5
Delivery 3 4 4 5 6 6 7 8 8 10

9.10 The following seven jobs consist of orders for three different part types.
Each part type has a unique setup time associated with it. The corresponding

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 278 — #42

278 Production Planning and Industrial Scheduling

processing times and due dates are given as well. Develop the best schedule
that will meet the due dates and minimize the makespan.

Job 1 2 3 4 5 6 7
Process time 2 3 6 4 5 1 2
Due dates 40 22 14 33 19 27 35
Job type 1 2 3 1 2 2 3
Setup time 2 1 3 2 1 1 3

9.11 Eight jobs need to be scheduled to be processed through two heat treatment
ovens. The arrival times, processing times, and due dates for each are lis-
ted. Each oven has a capacity for three jobs at a time. Develop the best
schedule.

Arrival Time
Oven 1

Processing Time
Oven 2

Processing Time Due Date

Job 1 1 1 2 3
Job 2 1 2 1 4
Job 3 2 2 1 6
Job 4 2 3 2 6
Job 5 2 1 2 5
Job 6 3 2 1 8
Job 7 4 1 2 8
Job 8 4 2 2 7

REFERENCES AND SUGGESTED READINGS

Ashour, S., T.E. Moore, and K.V. Chiu. 1974. “An Implicit Enumeration Algorithm for the
Nonpreemptive Shop Scheduling Problem” AIIE Transaction, 6: 62–72.

Barens, J.W. and L.K. Vanston. 1981. “Scheduling Jobs with Linear Delay Penalties and
Sequence Dependent Setup Costs” Operations Research, 29(1): 146–160.

Bruno, J., and O. Downey. 1978. “Complexity of Task Sequencing with Deadlines, Setup
Times and Changeover Costs” SIAM Journal of Computers, 7(4): 393–404.

Cheng, T.C.E. 1990. “A Note on a Partial Search Algorithm for the Single-Machine Optimal
Common Due Date Assignment and Sequencing Problem” Computers and Operations
Research, 17(3): 321–324.

Cho, Y. and S. Sahani. 1981. Preemptive Scheduling of Independent Jobs with Release
and Due Dates in Operation Flow and Job Shops” Operation Research, 29(3):
511–522.

Crabill, T.B. and W.L. Maxwell. 1969. Single Machine Sequencing with Random Processing
Times and Random Due Dates” Naval Research Logistics Quarterly, 6(4): 549–552.

Emmons, H. 1969. “One Machine Sequencing to Minimize Certain Functions of Job Tardiness”
Operations Research, 17(4): 701–715.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 279 — #43

Parallel Processing and Batch Sequencing 279

Erschler, J., F. Roubellat, and J.P. Vernhes. 1980. “Characterizing the Set of Feasible Sequences
for ‘N’ Jobs to Be Carried Out on a Single Machine” European Journal of Operational
Research, 4: 189–194.

Erschler, J., G. Fontan, C. Merce, and F. Roubellat. 1983. “A New Dominance Concept
in Scheduling ‘N’ Jobs on a Single Machine with Ready Times and Due Dates”
Operations Research, 31(1): 114–127.

Grabowski, J. 1980. “One Two-Machine Scheduling with Release and Due Dates to Minimize
Maximum Lateness” Opsearch, 17(4): 133–154.

Graham, R.L., E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. 1979. “Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey” Annals of
Discrete Mathematics, 5: 287–326.

Graves, S.C. 1981. “A Review of Production Scheduling” Operation Research, 29(4).
Gupta and Tunc. 1997. “Scheduling a two-stage hybrid flow shop with parallel machines at

first stage” Annals of Operations Research, Vol. 69, Springer, Netherlands.
Laxminarayanan, L., L. Lakashmanan, R.L. Papineau, and R. Rochette. 1978. “Optimal Single

Machine Scheduling with Earliness and Tardiness Penalties” Operation Research,
26(6): 1079–1082.

McMahon, G. and M. Florian. 1975. “One Machine Scheduling with Ready Times and Due
Dates to Minimize Maximum Lateness” Operation Research, 23(3): 475–482.

Monma, C.L. and C.N. Potts. 1989. “On the Complexity of Scheduling with Batch Setup
Times” Operations Research, 37(5): 798–804.

Nakamura, N., T. Yoshida, and K. Hitomi. 1978. “Group Production Scheduling for Minimum
Total Tardiness” Part I, AIIE Transection, 10(2): 152–162.

Posner, M.E. 1988. “The Deadline Constrained Weighted Completion Time Problem: Analysis
of a Heuristic” Operations Research, 36(5): 742–746.

Ramasesh, R. 1990. Dynamic Job Shop Scheduling: A Survey of Simulation Research” Omega
International Journal of Management Science, 18(1): 43–57.

Sahni, S. 1979. “Preemptive Scheduling with Due Dates” Operation Research, 27(5): 925–934.
Schrage, L. 1970. “Solving Resource-Constrained Network Problem by Implicit Enumeration-

non-Preemptive case” Operation Research, 18: 263–278.
Sen, T. and R.K. Gupta. 1984. “A State of Art Survey of Static Scheduling Research Involving

Due Dates” The International Journal of Science, 12(1): 67–76.
Sen, T.T. and L.M. Austin. 1980. An Efficient Algorithm for Minimizing Total Tardiness in

the n-job, One Machine Sequencing Problem, Working Paper, College of Business
Administration, Texas Tech. University, Luhbock, TX.

Shwimer, J. 1972. “On the n-Job, One-Machine, Sequence-Dependent Problem with
Tardiness Penalties: A Branch-and-Bound Approach” Management Science, 18:
B301–B313.

Sidney, J.B. 1977. “Optimal Single Machine Scheduling with Earliness and Tardiness
Penalties” Operation Research, 25(7): 62–69.

Srinivasan, V. 1971. “A Hybrid Algorithm for the One-Machine Sequencing Problem to
Minimize total Tardiness” Naval Research Logistics Quarterly, 18: 317–327.

Sule, D.R. and S. Saxena. 1992. “Batch Scheduling for Limited Capacity Fixed Period Process
Problem” Production Planning and Control, 3(1): 47–52.

Tang, C.S. 1990. “Scheduling Batches on Parallel Machines with Major and Minor Setups”
European Journal of Operational Research, 46(3): 171–175.

Unal, A.T. and A.S. Kiran. September 1992. “Batch Sequencing” IIE Transactions, 24(4):
73–83.

Wittock, R.J. 1986. “Scheduling Parallel Machines with Setups” Research Report, IBM
Thomas J Watson Research Center, Yorktown Heights, NY.

Dileep: “44206_c009” — 2007/9/20 — 14:44 — page 280 — #44

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 281 — #1

10 Network-Based
Scheduling

So far, we have analyzed scheduling methods in which jobs are independent of each
other. Advance sequencing of one job is not a prerequisite for follow-up sequencing
of another. There are sets of problems, however, where the order of job sequencing is
important. For example, a product may require processing in three different machines
with a specific sequence of operations, cutting–milling–drilling. Here, the operation
on the cutting machine must be finished before the work on the milling machine can
start, and the job on the milling machine must be completed before processing on
drilling machine can start. These predecessor–successor relationships can often be
made clear by a network representation of the problem, one similar to the critical
path method (CPM) diagram. Furthermore, the analysis similar to the one performed
in CPM is often used to as a guide in making sequencing decisions. We will briefly
review the CPM before illustrating its application in scheduling.

10.1 CRITICAL PATH METHOD

There are two basic elements that comprise a network — activity and event. An activ-
ity is represented by an arrow and an event by a node. An activity is the time (and
resource)-consuming portion of the operation, while a node indicates start or comple-
tion of the activity. The logical connection, indicating the precedence relationships,
of nodes and activities forms a network. The arrowhead of the activity describes the
precedence relationship. For example, in the network shown in Figure 10.1, activity
“a” must be completed before the activity “e” can start, while both activities “c”
and “d” must be completed before the activity “g” can start. Some activities can be
performed simultaneously, for example, activities “a”, “b,” and “c.” The project is
completed when activities leading to the end nodes are completed; in our example,
activities “e,” “f,” and “g.” All the activities “a, b, c...” consume resources, generally
time, shown within parenthesis next to the associated activity. The duration for the
activity I-j is also noted as di−j. Occasionally, an activity is introduced in the net-
work just to show the precedence relationship. Such activity does not consume any
resources and is shown in the diagram by a dotted line. For example, nodes 2 and 3 are
connected with a dotted line (activity h) with the arrowhead on node 3. This indicates
that for activities from node 3 to start (i.e., activities “f” and “d”), both “b” and “a”
must be completed. Activity h consumes no time. There is also a popular convention
where the activities are identified by their start and completion nodes. For example,
activity “a” can also be designated as activity 1-2, indicating that it starts in node 1
and completes in node 2.

281

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 282 — #2

282 Production Planning and Industrial Scheduling

1 A

2

[2] {3}

[3] {3}
[3] {8}[0] {0}

a(2) h(0) e(3)

g(1)

f(5)

d(3)

b(3)

c(2)

4

5

FIGURE 10.1 Critical path diagram.

There are some basic time calculations that can be performed on the nodes and the
activities in the network. These calculations lead us to identify the “critical activities,”
that is, the activities that must start and finish on time for the project to remain on
time. These time elements are

1. Earliest start time from node I, ETi
2. Earliest expected projected completion time (CE)
3. Latest allowable completion time for a node I, LTi
4. Allowable delay in reaching a node I or slack in the node I, Si
5. Allowable delay in the starting or completion of an activity I-j, that is, slack

in the activity Si−j

Earliest start time (ETi): This is the earliest possible time when the processing of
activity(ies) emerging from node I can commence. The activity can only start if all
activities that are immediate predecessors to the activity under consideration (i.e., all
activities leading into node I) have been completed. Thus, ETi for node I is the latest
of the completion times of all the immediate predecessor activities.

Earliest expected project completion time (CE): This is the maximum required time
in the network to complete all jobs.

The earliest start times are obtained by making a forward pass through the network,
starting from the start node and proceeding towards the final node. Each node is
evaluated, and the earliest an activity emerging from the node can start is when all
the activities that are merging in that node are completed. Thus, the earliest start time
of the activity emerging from a node is the maximum of completion times of the
activities incident to the node.

Latest start time from node I, (LTi): This is the latest time that processing of an activity
emerging from node I can commence such that the expected project completion time,
“CE,” is not delayed. This time is calculated by making a backward pass in the
network, starting from the last node and proceeding backward to the start node.
The earliest expected completion time CE is used as the reference point as to when

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 283 — #3

Network-Based Scheduling 283

the project is expected to finish. For each node, the latest time is calculated as the
maximum of time that node can be reached (the event can occur), so that immediately
following activities can be completed by their latest times if they consume their
estimated times.

Slack (S): This is the permissible delay in the completion of a node (arrival at a
node) such that the earliest expected completion time, “CE,” is not delayed. It is the
difference between LTi and ETi for the node. Thus, Si = LTi − ETi. The nodes with
zero slack are identified as critical nodes. If these nodes are delayed from their earliest
completion time, it will delay the entire project.

Slack in the activity I-j (Si-j): Slack in activity I-j is defined as (LT of node j - ET of
node I - the duration of the activity I-j). This is the maximum value that the activity
can be delayed without delaying the entire project. An activity with the zero slack is
a critical activity.

In our example, the ETi and LTi for node I are shown in the figure in [] and
{ }, respectively. The values are also shown in Table 10.1. In forward pass, we
can start from node 1 at time 0. It takes 2 time units to complete activity 1-2 and
therefore the earliest we can start from node 2 is 2. The earliest we can start from
node 3 is the latest of completion times for activities emerging into node 3, that is,
1-3 and 2-3. Since 2-3 does not consume any time, the earliest time for node 3 is,
Max (ET1 + d1−3, ET2 + d2−3) = Max(0 + 3, 2 + 0) = 3. Similarly, the earliest
completion times for node 4 is Max (0 + 2, 3 + 3) = 6, and for node 5 is Max
(2 + 3, 3 + 5, 6 + 1) = 8.

The earliest completion time for end node, that is, node 5, is also the project
completion time CE.

The latest completion times are calculated by following a backward pass. The
latest we wish to complete the project is also the latest completion time for the end
node. Here, LT5 = CE = 8.

To calculate the next LTi, we should proceed backwards to nodes 4, 3, and 2. Both
nodes 2 and 3 each have two emerging activities, and therefore, we cannot calculate
their latest times till the latest times of the nodes where the activities terminate are
known. In his case, for node 2, we must have latest times for nodes 3 and 5 resolved,
and for node 3, the latest times for nodes 5 and 4 must be known. The only node that

TABLE 10.1
Node Calculations

Node
Earliest Start

Time, ETi

Latest Completion
Time, LTi

Slack in
Node, Si

1 0 0 0
2 2 3 1
3 3 3 0
4 6 7 1
5 8 8 0

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 284 — #4

284 Production Planning and Industrial Scheduling

TABLE 10.2
Activity Calculations

Activity Duration
Early Time on
the Tail Node I

Latest Time on
the Head Node j

Slack in
the Activity

1-2 2 0 3 1
1-3 3 0 3 0
1-4 2 0 7 5
2-3 0 2 3 1
2-5 3 2 8 3
3-4 3 3 7 1
3-5 5 3 8 0
4-5 1 6 8 1

can be resolved next is node 4, since the latest time for the end node of the activity
emerging from node 4 is known. The LT3 is obtained by subtracting the appropriate
activity durations from LT5, that is, LT4 = LT5 − d4−5 = 8 − 1 = 7. Since the latest
times for the end nodes for the activities emerging from node 3 are now known, we
can determine LT3 = Min (LT5 − d3−5, LT4 − d3−4) = Min (8 − 5, 7 − 3) = 3.
Other values are shown in Table 10.1 and also in Figure 10.1.

The slack in the node can easily be calculated by subtracting the earliest time from
the latest time at each node. The nodes with zero slack are also nodes on the critical
path, indicating activities between when these nodes must start and complete on time
for the project to remain on time. However, if a node has more than one activity
emerging or terminating in it, not all these activities are necessarily on critical path.
This is where the calculation for slack in the activity becomes important. Only the
activities with zero slack are on critical path. For example, nodes 1, 3, and 5 are on
critical path.

For node 3, the question may be, which activity, 1-3, 2-3 or both are on critical
path? Slack in activity 1-3 is LT3 – ET1 – d1−3 = 3 – 0 – 3 =0 and S2−3 = LT3 – ET2–
d2−3= 3 – 2 – 0 = 1. Only activity 1-3 has zero slack, indicating that is the activity
on critical path. The rest of activity slack calculation results are shown in Table 10.2.
The critical path consist of activities 1-3 and 3-5.

10.2 SCHEDULING A NETWORK OF JOBS ON A
SPECIFIED NUMBER OF PARALLEL PROCESSORS

We have seen in Chapter 9, the challenging nature of the problem when there are n jobs
that may be processed on m identical (parallel) machines. The objective was to develop
a schedule on each machine that would minimize the makespan for completing all jobs.
The problem could be further extended to include predecessor–successor relationships
between some jobs. This means the start of processing of some jobs may depend on
completion of processing of some other jobs. Furthermore, the number of parallel
machines available may be limited in number.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 285 — #5

Network-Based Scheduling 285

7 A1141

[0] {13}

[0] {2}

[0] {0} [4] {4} [13] {13} [18] {30} [33] {45}
5

9 5 154
9

[3] {5} [8] {10}

[18] {18} [30] {30} [45] {45}

1512
10

8

12

[4] {17}

4

3 5

12 8 8

[16] {29} [30] {37} [38] {45}

85

B12

C1355

5

FIGURE 10.2 Job precedence relationships.

Consider the network shown in Figure 10.2. In displaying the sequence-dependent
scheduling problem by a network, the CPM definition of network is slightly modified.
Now, a node represents a job, and the duration of the activity emerging from that node
indicates the processing time for the job. For example, job 1, shown by node 1, takes
4 time units to processes. The figure shows the precedence relationships of all jobs.
For example, job 1 must be completed before job 4 can start. Some jobs have no
other jobs as their predecessor (e.g., jobs 1, 2, and 3). These jobs are called root jobs.
Other jobs havea number of predecessors. For example, job 4 has 1 (job 1), job 7 has
2 (jobs 1 and 4), and job 10 has 6 (jobs 2, 5, 8, 3, 6, and 9). There is no single end
point to the network. The network is completed when all jobs have been processed.
In our example, there are three branches terminating in dummy nodes A, B, and C,
respectively. The path taking the longest time to reach these nodes will define the
makespan for the system.

There are three root jobs, and each has a chain of dependent jobs. If we have three
parallel machines available, then we can assign the jobs in each single branch to one
machine and thus easily resolve the scheduling problem. If there are more than three
machines, because of the precedence relationship within the jobs, we will not be able
to use more than three machines. It is only when the number of machines are less
than the number of root jobs that we get a problem the solution to which is not very
obvious. The procedure to solve such problems is illustrated next.

10.2.1 SOLUTION PROCEDURE

Let us define following terms:

ma = the number of machines available for processing at time Tcur.
na = the number of jobs available for processing at time Tcur.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 286 — #6

286 Production Planning and Industrial Scheduling

Ti = the time till machine I is occupied at the end of the present iteration.
Tcur = The time at which at least one machine is available for loading the

next job.

The candidate job is defined as a job which has all predecessor jobs assigned.
We have also seen that the project completion time, CE would be equal to max-

imum value of completion times of all end jobs, that is, maximum of (ETi of the end
job + the processing time of the corresponding job). In our network terms, it would
be Max (ET11 + 8, ET12 + 15, ET13 + 15).

The steps of the procedure are as follows:

Step 1

1. Mark current time, Tcur = 0, since all machines are available for loading
at time 0.

2. Calculate ETi, LTi for each job (node), along with CE for the network. Also
calculate slack for the candidate jobs. The slack is defined as: LTi − Tcur.

3. Identify the critical jobs that is, nodes with slack = 0.

Step 2

1. Identify candidate jobs and candidate machines that is, jobs and machines
available for processing at Tcur.

2. Calculate the slack available for each candidate job. This is the difference
between LTi for job I and Tcur, that is, Si = LTi −Tcur. This is because Tcur
is also the time at which the candidate machine is available for processing
and the candidate jobs must wait for loading until this time, consuming
any real slack they may have had.

3. Check for critical job(s) if any, among the candidate jobs. These are the
job(s) with zero or negative available slack. Negative slack indicates that
the job is already delayed and will cause a delay in the completion of the
entire network.

Step 3

1. If the number of critical jobs, ncritical > ma the available machines, assign
critical jobs to the machines based on increasing order of negative slack
(i.e., −5 first, −4 next, and so on). If the slacks are equal, then assign
a critical job using the shortest processing rule. The critical job with the
shortest processing time is assigned to the first available machine, the
critical job with the next value of the shortest processing time is assigned
to the second machine, and so on. Go to step 6.

2. If the number of critical jobs ncritical > 0 and less than or equal to ma, the
number of available machines, and na >= ma, give priority to critical jobs,
assign them first using the SPT rule described in step a. For the remaining
machine assignments, go to step 4.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 287 — #7

Network-Based Scheduling 287

3. If, in the jobs available, ncritical = 0 and na > ma, go to step 4.
4. If na = ma, assign one available job to one available machine. Go to step 5.

Step 4

1. Assign an available job “j” on the machine, and determine its effect on the
slack values of the remaining available jobs. This is obtained by subtracting
the processing time of job j from current slack times of all other available
jobs. The resultant value of slack, for each of the available jobs, shows
the possible effect of placing job j on the present machine, if no other
machine is available for other job placement. This quantity measures the
delay for the job. If the value is positive there is no delay, on the other hand
the negative value indicates the amount of delay. If the value is zero, the
job status has changed from noncritical to critical.

2. Perform step “a” for all available jobs.
3. Select for placement, the job that results in the least delay in the schedule.

If there is a tie, select a job that will have the least remaining slack value
if other jobs are placed on machine first.

Step 5: Delete the assigned job and the associated machine from appropriate available
lists. If all the available machines are now assigned, go to step 6. If not go to step 3.

Step 6: If all jobs are assigned, stop. If not, make Tcur = minimum of the completion
times of the jobs being processed at the end of the cycle. If due to the assignment
made, the CE calculated in step 1 is extended, that is, the network can no longer be
completed at the earliest possible time, then go to step 7, otherwise go to step 2 (going
to step 2 starts the next cycle).

Step 7: Recalculate LT for each unassigned job (node) using the present value of CE.
Go to step 2.

10.2.1.1 Illustrated Example

Consider the problem of scheduling 13 jobs with precedence relationships shown in
Figure 10.2. The processing times for the jobs are shown in Figure 10.2 as well as
noted in Table 10.3. Suppose we have two parallel processors to schedule these jobs.

Applying first step, we calculate ET and LT for each job. The values are displayed
in Table 10.3. The present Tcur is equal to zero.

The earliest completion time for the network CE, is 45 time units. Only jobs 1, 2,
and 3 are available jobs since they have no other predecessor jobs; hence na = 3. The
slack values for jobs 1, 2, and 3 are 13, 2, and 0, respectively, since Tcur is zero. Job 3
is critical; it has zero slack, giving ncritical= 1. Both machines 1 and 2 are available
for sequencing, that is, ma = 2.

We start scheduling arbitrarily on the first machine. Using step 3.2, the first
machine is assigned the critical job 3. The machine is occupied for (Tcur+ processing
time of job 3), that is, (0 + 4) = 4. Next, we proceed to machine 2, with jobs 1
and 2. Both jobs are not critical. Based on step 4.1, if 1 is assigned to the machine

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 288 — #8

288 Production Planning and Industrial Scheduling

TABLE 10.3
Early and Late Start Times for
Each Job

Job Duration ET LT

1 4 0 13
2 3 0 2
3 4 0 0
4 12 4 17
5 5 3 5
6 9 4 4
7 8 16 29
8 8 8 10
9 5 13 13

10 12 18 18
11 8 30 37
12 15 30 30
13 15 18 30

the slack in job 2 will reduce to, the present S2 − d1 = 2 − 4 = −2, indicating the
project will be delayed by 2 time units. If job 2 is scheduled first, the slack of job 1
will reduce to the present S1 − d2 = 13 − 3 = 10. The project still remains on time,
and hence schedule job 2 on machine 2. Job 1, since it is not scheduled, becomes
the candidate job. We go to step 6. Since all jobs (there are 13 jobs in total) are not
assigned, we modify the Tcur = minimum of times that each machine is occupied to,
that is, min (0 + 4, 0 + 3) = 3.

Cycle 2
At Tcur = 3, there is one available machine (machine 2) and two available jobs (jobs 1
and 5). According to step 2, the new values for the slacks are S1 = 13−3 = 10, since
the processing of job 1 instead of starting at time zero could not start till time 3 (note
that job 1 is the candidate job), it may consume three units of slack from available
13 units. S5 remains 2 since LT5 = 5 and Tcur = 3 (job 5 can start as early as possible).
None of the jobs are critical, and we are in condition in step 3.3, which directs us to
go to step 4.

1. The assignment is made after checking for probable resulting delay due
to placing each candidate job first. Placing job 1 first, delays job 5 for the
moment, by four time units and since S5 = 2, the network could get late
by two time units (2 − 4 = −2). Putting job 5 first, delays job 1 for the
moment by five time units. Since S1 = 10, the probable resulting lateness
would be zero (the slack is, 10 − 5 = 5, which is positive). Hence job 5 is
scheduled on machine 2. CE remains unchanged.

Tcur = 4, which is the completion time on machine 1 since job 3 get completed first
among the jobs being processed at end of cycle 2.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 289 — #9

Network-Based Scheduling 289

We will now note only the important points in each cycle that goes in decision
making.

Cycle 3

1. Candidate job is 1, and job 6 is the job that becomes available now. Machine
1 is the candidate machine.

2. S1 = 9 instead of the earlier ten time units since Tcur = 4 (or 13 − 4 = 9).
S6 = 0.

3. Thus, among these jobs, job 6 is critical.
4. ncril = 1 and ma = 1. Hence, give priority to the critical job. Job 6 is

scheduled on machine 1. CE remains unchanged. Machine 1 is occupied
till (4 + 9) = 13.

Next, Tcur = 8, the completion time of job 5 since it has the earliest completion
time among the jobs being processed.

Cycle 4

1. Candidate jobs are jobs 1 and 8. Machine 2 is the candidate machine.
2. S8 is equal to two time units, while S1 has been further reduced to five time

units.
3. None of the candidate jobs are critical.
4. ncritical = 0 and na > ma. Hence, the probable total resulting lateness

due to putting each of the candidate jobs first, on the candidate machine,
is calculated before making the assignment. The lateness resulting from
placing job 1 first is two time units, while the same due to placing job 8
first is three time units. Thus, job 1 is scheduled on machine 2. CE remains
unchanged. Machine 2 is occupied till (Tcur+ processing time of job 1)
= (8 + 4) = 12. In cycle 3, machine 2 is occupied till time 13.

The next Tcur = min (12, 13) = 12, the completion time of job 1.

Cycle 5

1. Since job 4 is dependent on job 1, and job 1 was scheduled, job 4 becomes
a candidate job. Job 8 is also a candidate job since it was available in the
previous cycle but was not scheduled. Since both jobs 4 and 8 are candidate
jobs, their present slack times can be calculated as LTi– Tcur. Machine 2 is
the candidate machine.

2. S4 = (17 − 12) = 5 time units and S8 = (10 − 12) = −2. The negative
slack means that, job 8 used up more slack than was available to it. In
other words, job 8 became critical at time 10, when it is available, slack is
reduced to zero and then it is delayed further by two time units when the
job is scheduled on time 12. This will extend the CE by at least two time
units.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 290 — #10

290 Production Planning and Industrial Scheduling

TABLE 10.4
Modified Early, Late, and
Slack Times for Unscheduled
Jobs at Tcur = 12

Job Duration TL
4 12 19
7 8 31
9 5 15
10 12 20
11 8 39
12 15 32
13 15 32

3. ncritical = 1 and ma = 1, that is, ncritical = ma. Schedule job 8 on machine 2.
The new CE is now 45 + 2 = 47 time units. Since the CE has changed,
step 7 must be executed.

4. Tcur = 13, the completion time of job 6.
5. Recalculate the slacks for all unscheduled jobs using the CE = 47. The

results are shown in Table 10.4.

Notice that the status of job 9, which was earlier critical, is now noncritical. This
change brings out the importance of recalculating slacks when CE changes.

[13] {19}

4
12 8 8

7 11 A

[25] {31}

[18] {20}

[13] {51} [18] {32} {47}

[30] {32}

12

12 15
1210

5

5
9 13 C

15

B

{47}

[33] {39} {47}

Cycle 6

1. Tcur = 13.
2. Candidate jobs are jobs 4 and 9, while the available machine is machine 1.
3. S4 = 6 and S9 = 2.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 291 — #11

Network-Based Scheduling 291

4. None of the candidate jobs are critical.
5. ncritical = 0 and na > ma, hence the probable resulting lateness due to

scheduling each job first must be calculated. The slack in job 9 when job 4
is scheduled first is 2 − 12 = −10, that is, a delay of 10 units. The slack in
job 4 when job 9 is scheduled first is 6 − 5 = 1. Hence, job 9 is scheduled
on machine 1CE remains unchanged at 47 time units.

Cycle 7

1. Tcur = 18.
2. Candidate jobs are jobs 4, 10, and 13. The candidate machine is machine

1.
3. Slack available for job 4 = 1, for job 10 = 2, and that for job 13 = 14.
4. None of the candidate jobs are critical.
5. ncritical = 0 and na > ma, hence the probable resulting lateness due to

scheduling each candidate job first, must be calculated. The slacks available
to jobs 10 and 13, when each is scheduled immediately after job 4, are
−10 and 2, respectively. Slacks available to jobs 4 and 13, when each is
scheduled immediately after job 10, are −11 and 2, respectively. Slacks
available to jobs 4 and 10, when each is scheduled immediately after job 13,
are −14 and −13, respectively. Choosing the job that results in the least
probable delay, we schedule job 4 on machine 1. CE remains unchanged
at 47 time units.

Cycle 8

1. Tcur = 20.
2. Candidate jobs are jobs 10 and 13, while the candidate machine is machine

2.
3. Slack available for job 10 is 0 and that for job 13 is 12.
4. Job 10 is the critical job.
5. ncritical = 1 and na = ma, that is, 1. Thus, we schedule job 10 on machine

2.

Cycle 9

1. Tcur = 30.
2. Candidate jobs are jobs 7 and 13. The candidate machine is machine 1.
3. Slack available for job 7 is 1 and that for job 13 is 2.
4. None of the candidate jobs are critical.
5. ncritical = 0 and na > ma. Thus, the probable resulting lateness is calculated

by putting each job first. The slack available to job 13 by putting job 7 first
is −6 time units, while that for job 7 by putting job 13 first is −14. Job 7
is thus scheduled on machine 1.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 292 — #12

292 Production Planning and Industrial Scheduling

Cycle 10

1. Tcur = 32.
2. The candidate jobs are jobs 12 and 13. The candidate machine is machine 2.
3. The available slack for job 12 is 0, and that for job 13 is also 0.
4. Both jobs are critical, and thus ncritical = 2.
5. ncritical = 2, and na > ma. The scheduling decision will thus be based on

the resulting probable delay, that is, resultant slacks by putting each of the
candidate jobs first. In this case, either job results in an available slack of
−15 for the candidate jobs. Making an arbitrary choice, job 12 is scheduled
on machine 2.

Cycle 11

1. Tcur = 38.
2. Candidate jobs are jobs 11 and 13. The candidate machine is machine 1.
3. Available slack for job 11 is 1 and that for job 13 is −6, indicating that the

final completion

Continuing the procedure till all the jobs are scheduled, we have the following
schedules on machines 1 and 2.

Machine 1: Job 3; Job 6; Job 9; Job 4; Job 7; Job 13.
Machine 2: Job 2; Job 5; Job 1; Job 8; Job 10; Job 12; Job 11.

The resulting makespan is 55 time units which is the least possible with two
parallel processors.

[30] {45} {53}

11 A
8

[30] {38} {53}

12 B
15

[30] {38} {53}

13 C
15

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 293 — #13

Network-Based Scheduling 293

10.3 SCHEDULING n JOBS ON m PARALLEL
MACHINES WHEN EACH JOB CAN BE
SCHEDULED ON p MACHINES, “p” BEING A
SUBSET OF m, THAT IS, p ≤ m

Though not directly related to network-based scheduling, one of the variations of the
parallel machine problems discussed in the literature is that of scheduling n jobs on
m parallel machines when some (or all) of the jobs can only be processed on a small
subset of machines “p.” This may be because the external requirements such as tools,
fixtures, or material handling equipment required for the job are only available on
certain machines.

Thus, each job can be processed on p of the m available machines, such that
p ≤ m. Job i can be processed on pi machines, job j can be processed on pj machines
and so on.

Any one of the following relations between pi and pj could exist:

1. pi = pj that is, jobs i and j share the same machines.
2. pi is a subset of pj.
3. pj is a subset of pi.
4. pi and pj are distinct.

10.3.1 SOLUTION PROCEDURE

Step 1: Develop a job–machine matrix showing which job can be processed on which
machines.

Step 2: Calculate the total number of jobs that a machine can process and the
total number of machines on which a job can be processed. This gives the job
and machine flexibility indexes. The more jobs that a machine can process, the
greater is its flexibility. Similarly, the more the number of machines on which
a job can be processed, the greater is its flexibility. The calculation is shown in
Table 10.5.

Step 3: Develop a table as shown in Table 10.6. The table shows the individual job
assignment based on the objective of an even distribution of cumulative jobs among
all machines (the procedure can be easily modified for objective of even distribution
of total processing time on each machine).

Select the current least flexible job and determine the current least flexible machine
on which this job can be assigned. If there is a tie for the least flexible job, break it
based on the minimum value of current least flexible machine index. Schedule the job
selected based on the objective of even distribution of the job load on the machines,
checking in the ascending order of the magnitude of the flexibility of machine index
for the machines where the job can be assigned.

Delete the assigned job from further selection. Enter it in the bottom half of
Table 10.5 as an assigned job. Modify the flexibility index by subtracting the

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 294 — #14

294 Production Planning and Industrial Scheduling

TABLE 10.5
Job-Machine Use Matrix

Job/Machine M1 M2 M3 M4
Job

Flexibility

1 1 1 1 3
2 1 1
3 1 1
4 1 1 2
5 1 1 2
6 1 1 1 1 4
7 1 1 2
Total machine flexibility 4 5 4 2
Jobs assigned/
rem machine flexibility
2 3 5 4 2
3 3 4 4 2
4 3 4 3 1
5 2 3 3 1
7 2 2 2 1
1 1 1 1 1
6 0 0 0 0

TABLE 10.6
Job Assignments

Cumulative Job Assignment
Assign Job to Machine on Machine

Iteration Job 1 2 3 4 1 2 3 4

1 2 x 1 0 0 0
2 3 x 1 1 0 0
3 4 x 1 1 0 1
4 5 x 2 1 0 1
5 7 x 2 2 0 1
6 1 x 2 2 1 1
7 6 x 2 2 2 1

job-machine entry (in this case, 1) for all machines on which this job could have
been processed. The resultant row gives the current value of flexibility index for
the next iteration.

Repeat step 3 of the process till all the jobs are scheduled.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 295 — #15

Network-Based Scheduling 295

10.3.2 ILLUSTRATED EXAMPLE

Schedule seven jobs on four parallel processors with the following job–machine
relationships. The notation indicates that, for example, to process job 1 either machine
1, 2, or 3 can be used.

Job 1: M1, M2, and M3
Job 2: M1
Job 3: M2
Job 4: M3 and M4
Job 5: M2 and M1
Job 6: M1, M2, M3, and M4
Job 7: M2 and M3

The objective is to distribute the job load to four machines as evenly as possible.
The job-machine matrix is shown in Table 10.5. The presence of one in cell Cij

indicates that job i can be processed on machine j.
The least flexible jobs are jobs 2 and 3, each with the job flexibility index

of 1. The flexibility indexes of the machines on which these jobs are performed,
M1 and M2, are 4 and 5, respectively. Since the flexibility index on M1 is smal-
ler, we choose the associated job, job 2, for the first assignment. It is assigned to
machine 1, in Table 10.6. It is noted as the assigned job in Table 10.5, and the
remaining machine flexibility index is modified by subtracting 1 from the flexibility
indexes of the machines on which job 2 could have been assigned, in this case only
machine 1. In iteration 2, job 3 is selected based on job flexibility index and assigned
to machine 2. It is noted in Tables 10.5 and 10.6. In Table 10.5 job assigned/rem
machine flexibility index is further modified. Next, a job from among jobs 4, 5,
and 7, all with a job flexibility index of 2, must be selected. The least current
machine flexibility indexes for each one of these jobs are as follows (iteration 3,
Table 10.5):

For job 4 = Min (4, 2) = 2.
For job 5 = Min (3, 4) = 3.
For job 7 = Min (4, 4) = 4.

The least value is associated with job 4, and hence, we choose job 4 as the next
job in the sequence. Job 4 could be assigned to machine 3 or 4, based on cumulative
assignment so far. It is scheduled on machine 4 since M4 have least flexibility index
(iteration 2, Table 10.6). The machine flexibility indexes for both machines 3 and 4 are
modified since job 4 could have been placed on either of the machines (iteration 4).
Next, between jobs 5 and 7, the minimum machine index for both is 3. We break
the tie randomly and choose job 5 for the assignment. The job could be loaded on
M1 or M2 and, since both machines have the same cumulative frequency so far,
we choose to load on machine 1 based on least machine flexibility index. Again,
the machine flexibility index for both M1 and M2 are modified. Job 7 is similarly
loaded and machine indexes modified. Next, job 1 with the flexibility index of 3

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 296 — #16

296 Production Planning and Industrial Scheduling

is chosen. It could be loaded on machines 1, 2, or 3. Since cumulative loading on
these machines is 2, 2, and 1, respectively, job is loaded on M3 to even out the
loading. Similarly the last job, job 6, could be loaded on all machines but M4 is
chosen to even out the loading among the machines. The final assignments are shown
in Table 10.6.

10.4 ASSEMBLY LINE BALANCING

One of the industrial scheduling problems where the precedence relationships shown
by network play an important role is in assembly line balancing. An assembly line is a
method of production in which the parts are assembled and made into the final product
as the unit progresses from station to station. In order to develop a balanced assembly
line, it is necessary to distribute the total work content of the product among all the
workstations, so that stations can complete their assigned task in approximately the
same time. If the line is perfectly balanced, each station would require identical time
to complete all its assigned tasks. However, such perfect balance is rarely possible,
and the longest station time becomes the cycle time for the assembly line.

The first step in developing an assembly line is to break the total job content into
small task or work elements and determine the precedence relationship among the
task. Such a relationship, shown in a diagram or in a table, indicates which work
elements must be performed before others can start and which work elements can be
worked on simultaneously. Once the precedence relationships are established, the
next step is to distribute the total work content among the stations in a manner that
will give a balance load to each station.

There are a number of methods available for developing a balanced assembly line.
We present here two procedures: (1) largest candidate rule (LCR), and (2) ranked
positional weighted (RPW) method.

Both procedures determine the minimum number of stations necessary to obtain
the desired cycle time. The steps of the procedures are as follows:

10.4.1 LARGEST CANDIDATE RULE

Step 1: List the tasks in descending order of magnitude of task times. Also list the
corresponding immediate predecessor task(s) for each task.

Step 2: Start with the first station, and number the remaining stations consecutively
as we apply step 3.

Step 3: Beginning at the top of the task list, assign the first feasible task to the station
under consideration. Once the task is assigned, all reference to it is removed from
the predecessor task list. A task is feasible only if it does not have any predecessor
or if all the predecessors have been deleted. It may be assigned only if it does not
exceed the cycle time for the station. This condition can be checked by comparing the
cumulative time for all jobs so far assigned to that station, including the task under
consideration, with the cycle time. If the cumulative time is greater than the cycle
time, the task under consideration cannot be assigned to the station. Go to the next
feasible task. If no task is feasible, proceed to step 5.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 297 — #17

Network-Based Scheduling 297

2 2

1 3 6

74

8 9

(0.88)(0.40)(0.42)(0.25)(0.7)

(0.75) (0.25)

(0.33) (0.15)

FIGURE 10.3 Precedence relationships with task times

TABLE 10.7
Task Precedence Relations and
Immediate Predecessors

Task Task time
Immediate

Predecessor(s)

1 0.70 -
2 0.33 1
3 0.25 1
4 0.75 1, 2, 3
5 0.15 2
6 0.42 3
7 0.52 4, 5, 6
8 0.40 6, 7
9 0.88 5, 7, 8

Step 4: Delete the task that is assigned from the first column of the task list. If the list
is now empty, go to step 6; otherwise, return to step 3.

Step 5: Create a new station by increasing the station count by one. Return to step 3.

Step 6: All jobs are assigned, and the present station number reflects the number of
stations required. The procedure also shows the job assignments for each station. The
largest cumulative time for the individual station is the cycle time.

We will illustrate the procedure by applying it to a job that can be broken into
nine tasks. The precedence relationships and task times are displayed in Figure 10.3
and in Table 10.7. Assume we desire a cycle time of 0.95 min or the production rate
of 500/0.95 = 526 units, for a 500-min working shift.

The application of the first step leads to Table 10.8, cycle 1. In the table, the
tasks are ranked in the descending order of their time requirements. Also listed are
their precedence tasks. Initially, the first station cumulative time is zero. A task with

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 298 — #18

298 Production Planning and Industrial Scheduling

TABLE 10.8
Task Ranked in Descending Order of Task Times for LCR

Remaining Immediate Predecessor(s) per Cycle

Task 1 2 3 4 5 6 7 8 9 10
Task
Time

9 0.88 5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8 7, 8 8 - * - -
4 0.75 1, 2, 3 2, 3 2 2 - * - - - - - - - - - -
1 0.7 - * - - - - - - - - - - - - - - - - - -
7 0.52 4, 5, 6 4, 5, 6 4, 5, 6 4, 5 4, 5 5 - * - - - - - -
6 0.42 3 3 - * - - - - - - - - - - - - - -
8 0.4 6, 7 6, 7 6, 7 7 7 7 7 - * - - - -
2 0.33 1 - - - * - - - - - - - - - - - -
3 0.25 1 - * - - - - - - - - - - - - - - - -
5 0.15 2 2 2 2 - - * - - - - - - - -

- : No prerequisites, assignment can be made.
- - : Job has been assigned.

TABLE 10.9
The Task Assignments

Station Task Assigned Task Time
Cumulative Task

Time/Station

1 1 0.70 0.70
3 0.25 0.95

2 6 0.42 0.42
2 0.33 0.75
5 0.15 0.90

3 4 0.75 0.75

4 7 0.52 0.52
8 0.40 0.92

5 9 0.88 0.88

no existing prerequisites or with all the prerequisite being assigned to station(s), is
marked by the “-” symbol.

The procedure begins (cycle 1) by screening from top of the task list in Table 10.8.
Tasks 9 and 4 both have immediate precedence tasks that are yet to be sequenced.
Task 1 can be assigned to the first station since it does not have any precedence task.
The task time is 0.70, which is less than the cumulative time (cycle time = 0.95)
allowed for the station. The task is assigned to the first station in Table 10.9, which
is being developed simultaneously and also indicated by an ∗ in Table 10.8. All

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 299 — #19

Network-Based Scheduling 299

references to task 1 in the precedence list are scratched since task 1 is now assigned.
For convenience, the resulting remaining precedence relations are shown as cycle 2
relationships in Table 10.8. A task that is assigned and is no longer in contention is
shown by - -.

To decide which task to assign next, we go back to the top of the Table 10.8 and
examine the task list along with the cycle 2 precedence relationships. Tasks 9, 4, 7, 6,
or 8 cannot be assigned yet, since they still have the predecessor tasks. Task 2 can now
be assigned, but addition of task time to the present station 1 cumulative time, results
in the increase of cumulative time to 0.70 + 0.33 = 1.03, exceeding the permissible
cycle time of 0.95. Hence, task 2 cannot be assigned to station 1. The next task on the
list with no predecessor(s) is task 3. It can be assigned to station 1 without exceeding
the cycle time, and hence the assignment is made in Table 10.9, and the precedence
list is modified in Table 10.8.

Going back to the top of the list with cycle 3 predecessors list, we see that job 6
can be assigned to the station 1, but this will exceed the cycle time. In fact, no job
can be assigned to station 1, so we must start with a new station, station 2 with the
cumulative cycle time of zero. The procedure is continued till all the tasks are assigned
to stations as shown in Table 10.9.

The actual cycle time for the assembly is the largest cumulative time of any station.
In this case, station 1 has the largest cumulative time of 0.95 and hence 0.95 is the
actual cycle time. Not all stations are completely utilized. For example, station 2
has the work contain of only 0.75 unit within the cycle time of 0.95. An efficiency
measure e indicates how well balanced and utilized an assembly line is. It is defined
as (1 − p) × 100 where p is

p = (Total worker time required/unit) − (Time necessary per unit of job)

Total worker time required/unit

For our example, we have five stations, each manned by one worker, hence the
total worker time required per unit is 5 × 0.95, since one unit is produced every
cycle. The actual time necessary is the sum of all task times. Here, it is equal to 4.4.
Therefore, the efficiency is

e =
[

1 − 5 × 0.95 − 4.4

5 × 0.95

]
× 100 = 92.63%

10.4.2 RANKED POSITIONAL WEIGHT METHOD

In the previous method, the tasks were ranked in the descending order of their mag-
nitude. In this method, they are ranked according to how important they are in
completing all the tasks that depend on them. The importance is measured based
on the RPW of each element, which is the sum of the times for all elements that dir-
ectly follow it in the precedence diagram, plus the time for the particular task itself.
For example, RPW of element 6 is the sum of times for elements 7, 8, and 9 plus the
time for the element 6; that is 0.52 + 0.40 + 0.88 + 0.42 = 2.22.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 300 — #20

300 Production Planning and Industrial Scheduling

TABLE 10.10
Task Ranked in Descending Order of RPW

Remaining Immediate Predecessor(s)

Task RPW 1 2 3 4 5 6 7 8 9 10
Task
Time

1 4.4 0.7 - * - - - - - - - - - - - - - - - - - -
2 3.45 0.33 1 - - * - - - - - - - - - - - - - -
3 3.22 0.25 1 - * - - - - - - - - - - - - - - - -
4 2.55 0.75 1, 2, 3 2, 3 2 - - - * - - - - - - - -
6 2.22 0.42 3 3 - - * - - - - - - - - - - - -
5 1.95 0.15 2 2 2 - - * - - - - - - - - - -
7 1.80 0.52 4, 5, 6 4, 5, 6 4, 5, 6 4, 5, 6 4, 5 4 - * - - - - - -
8 1.28 0.40 6, 7 6, 7 6, 7 6, 7 7 7 7 - * - - - -
9 0.88 0.88 5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8 5, 7, 8 7, 8 7, 8 8 - * - -

- : No prerequisites, assignment can be made.
- - : Job has been assigned.

TABLE 10.11
Task Assignments Using RPW

Station
Task

Assigned Task Time
Cumulative Task

Time/Station

1 1 0.70 0.70
3 0.25 0.95

2 2 0.33 0.33
6 0.42 0.75
5 0.15 0.90

3 4 0.75 0.75

4 7 0.52 0.52
8 0.40 0.92

5 9 0.88 0.88

Once the elements are listed in the descending order of RPW along with their
predecessor elements in the first column as shown in Table 10.10, from there on we
apply the same steps 2–6 as in the previous procedure. The results of the application of
RPW method are given in Table 10.11. The cycle time here is also 0.95, and therefore
the efficiency of this procedure is

e =
[

1 − 0.95 × 5 − 4.4

95 × 5

]
× 100 = 92.63%

We might note that although in this example both procedures result in the same
cycle times, it is not necessarily true in all examples.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 301 — #21

Network-Based Scheduling 301

10.4.3 CYCLE TIME LESS THAN TASK TIME

Now, suppose the required cycle time is less than task time of one or more tasks, the
previous assignments are then not possible. One way to develop an assembly line is
to try to reexamine the tasks that exceed the cycle time and see if they can be further
divided so that each subtask requires less than cycle time. Another way is to .develop
parallel stations in the assembly line, where each station performs the same task.
Thus, for example, if we have two parallel stations each taking t time units, we have
two units produced in that time or we can have t/2 as the cycle time.

Suppose in the previous data the cycle time is 0.6 min. Tasks 9, 4, 1 cannot be
in 0.6 time units and must have at least two parallel stations for each task. Apply
the same logic as longest candidate rule or RPW methods with one modification.
Assign sufficient parallel work centers at each stage, if needed, to accommodate the
first assignable task in the list, the one without any precedence task remaining. For
example, the first task in the list that can be assigned in following table using LCR
is task 1. It requires 0.7 min. The way to archive that time is to have two parallel
stations, each with 0.6 min. Similar analysis leads to assignments shown in the tables.

Remaining Immediate Predecessor(s) per Cycle

Task Task Time 1 2 3 4 5 6 7 8 9 10

9 0.88 5, 7, 8 5, 7, 8 5, 7, 8 7, 8 7,8 7, 8 7, 8 8 * - -
4 0.75 1, 2, 3 2, 3 3 3 -* - - - - - - - - -
1 0.7 -* - - - - - - - - - - - - - - - - - -
7 0.52 4, 5, 6 4, 5, 6 4, 5, 6 4, 6 4, 6 6 * - -* - - - -
6 0.42 3 3 3 3 - - - * - - - - - - - -
8 0.4 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7 7 * - - - -
2 0.33 1 -* - - - - - - - - - - - - - -
3 0.25 1 - - * - - - - - - - - - - - -
5 0.15 2 2 * - - * - - - - - - - -
Task 1 2 5 3 4 6 7 8 9
Assignments

- : No prerequisites, assignment can be made.
- - : Job has been assigned.

Station

Number of
Parallel
Centers

Time Available
At the Center

Task
Assigned

Task
Time

Cumulative Task
Time/Station

1 2 1.2 1 0.70 0.70
2 0.33 1.03
5 0.15 1.18

2 1 0.6 3 0.25 0.25

3 2 1.2 4 0.75 0.75
6 0.42 1.17

4 1 0.6 7 0.52 0.52

5 1 0.6 8 0.40 0.40

6 2 1.2 9 0.88 0.88

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 302 — #22

302 Production Planning and Industrial Scheduling

10.5 MIXED-MODEL ASSEMBLY LINE BALANCING

A mixed model assembly (MMA) line is an assembly line on which number of similar
products and/ or number of different models of an entity, are manufactured on the
same line during the course of a day. This is in contrast to a single product assembly
line where the line is responsible for only one product. In MMA, like operations for
each model are assigned to the same worker. Thus, he/she may work on different
models, but the job contained in the task(s) requires the similar job skills. MMA
may be useful in situations where the demands for different models are fairly constant
over a long run; however, there may be slight daily variations in production needs.
The daily irregularity can best be handled by having workers work on a single line
that produces various models. Workers are familiar with the work content of various
products and can adjust their times between models to compensate for the demand
variations. A unique assembly line devoted to each model may not be able to handle
such production changes without pain.

We should be aware that due to design differentials, the work elements (or tasks)
necessary to build one model may or may not be essential to build another model.
There may even be some variations in the similar tasks, requiring varying task times
in different models. Generally though, there are many common elements between the
models (requiring the same skills and knowledge base) to make the development of
a MMA line feasible.

The problem of designing an MMA line can be approached in two stages: (1) bal-
ancing and (2) scheduling. In balancing, we determine which products or models
should be grouped together, and in scheduling, we design the assembly line for that
group. Balancing is a decision process based on our knowledge and judgement of
the problem. It may also be influenced by the number of assembly lines we expect to
develop. Ultimately, it is possible to compare the performances of different balanced
groups and then make the appropriate selection. The procedure is explained while
simultaneously solving an example.

10.5.1 PROCEDURE AND AN ILLUSTRATIVE EXAMPLE

Consider a diesel engine factory that manufactures air- and water-cooled versions
of diesel engines. The air-cooled engines known as the “VA” series, are available in
4-cylinder, 6-cylinder, and 6-cylinder turbo-charged models, namely VA4, VA6, and
VA6 TC. Similarly, the water-cooled engines, known as the “VW” series, are avail-
able in 2- and 3-cylinder models, namely VW2 and VW3. The production required
per shift of these diesel engines is VA4—2 units, VA6—3 units, VA6 TC—1 unit,
VW2—2 units, and VW3—2 units. The technical requirements to build the various
models are in the precedence relationship tables (displayed later). The various tasks
involved in assembling one unit of a model and the associated times in minutes, are
as shown in Table 10.12.

The total time necessary to produce the required production of each model is 2
(271) + 3(246) + 1(437) + 2(464) + 2(526) = 3697 min per shift. Assuming the
total available time per shift to be 500 min per operator, theoretically the minimum

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 303 — #23

Network-Based Scheduling 303

TABLE 10.12
Tasks and Associated Times in Minutes

Task VA4 VA6 VA6 TC VW2 VW3

1 88 65 68 58 60
2 0 0 6 6 6
3 0 0 125 100 158
4 7 7 18 21 21
5 14 14 25 25 35
6 0 0 30 34 30
7 13 13 13 11 11
8 48 50 48 88 87
9 67 63 70 87 84

10 34 34 34 34 34

Total 271 min 246 min 437 min 464 min 526 min

number of operators needed to satisfy the production is 3697/500 = 7.39, that is, 8.
Theoretical efficiency is 3697/(8 × 500) = 92.42%.

The first step is that of grouping the products into cohesive groups so that
an assembly line for each group can be developed. Some guidelines for grouping
may be

1. Models requiring exactly the same tasks should be grouped together
2. The groups should be well balanced as regards the work content.

“How many groups should one form?” will depend on how many mixed-mode
assembly lines we wish to develop and how similar the products are. Each group will
be processed in one assembly line. We could try grouping different models together
and selecting the number that gives the most efficiency and is the most practical. For
the problem under consideration, the models are grouped based on the similarity of
tasks involved. Considering the limited number of models and the total workload of
only 2417 min, dividing the jobs in further smaller groups was thought unnecessary.
Accordingly, engine models VA4 and VA6 formed Group 1, while models VA6 TC,
VW2, and VW3 formed Group 2. (As mentioned earlier, the effects of forming groups,
in ways other than the one chosen here are discussed in the sections which follow.).
Thus, we have two groups:

Group 1—models VA4 and VA6
Group 2—models VA6 TC, VW2, and VW3

Step 2: For each group, list the tasks associated total time requirements for the planned
production per shift, that is, the number of units produced per shift × time required
per unit and the cumulative total of time for the task.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 304 — #24

304 Production Planning and Industrial Scheduling

TABLE 10.13
Task, Total Time, and Cumulative
Time List for Group 2

Task VW2 VW3 VA6 TC Total

1 116 120 68 304
2 12 12 6 30
3 200 316 125 641
4 42 42 18 102
5 50 70 25 145
6 68 60 30 158
7 22 22 13 57
8 176 174 48 398
9 174 168 70 412

10 68 68 34 170

Total 928 1052 437 2417

TABLE 10.14
Task, Total Time, and Cumulative
Time List for Group 1

Task VA4 VA6 Total

1 176 195 371
2 0 0 0
3 0 0 0
4 14 21 35
5 28 42 70
6 0 0 0
7 26 39 65
8 96 150 246
9 134 189 323

10 68 102 170

Total 542 738 1280

For our example, Tables 10.13 and 10.14 show the results for groups 1 and 2,
respectively.

Step 3: Form workstations using either LCR or RPW method assuming available
cycle time to be equal to shift time. This is because, in general, no two models are
expected to have the same workload (in minutes) as regards assembly per unit. This
feature of the MMA Line does not allow us to calculate the cycle time per unit by
dividing the available time by the required production as is done in the models for
the single-model assembly line.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 305 — #25

Network-Based Scheduling 305

TABLE 10.15
Group 1: Models VA4 and VA6
Precedence Relationships

Task
Immediate
Predecessor Time (Minutes)

1 - 371
9 8, 5 323
8 7 246

10 9 170
5 4 70
7 1 65
4 1 35

TABLE 10.16
Workstation Formation for Group 1

Workstation
Tasks

Assigned
Number of

Operators Needed
Loading

Efficiency (%)

1 1, 7, 4 1 94.2
2 8, 5 1 63.2
3 9, 10 1 98.6
Overall 3 85.33

The method of forming workstations for an assembly line may be slightly modi-
fied. Its application in the current context is more of a decision than a rigid rule. Thus,
however, the number of tasks that may be attached to a workstation has a limit; this
limit is entirely a decision of the end-user. This is because the more tasks attached to a
workstation, more is the training required for the operators of that workstation. If we
assume that in pump manufacturing one operator can effectively handle up to four dif-
ferent tasks, then this fact can be used intelligently to improve the loading efficiency
of the various workstations. Whatever the number of tasks attached to a workstation,
the total available time per operator remains fixed, which is 500 min for the current
example, but we can increase the station time by placing more operators per station.
Thus, if a task or a combination of tasks requires time that exceeds the time available
for one worker, we can increase the available time by hiring multiple workers on that
station. For example, if the required task time is 553, we must assign two workers to
the station, giving us 1000 min of time on that station. It may improve the efficiency
if we can add a few more tasks to the station to utilize the excess capacity.

The precedence relationships of the tasks involved for the models in group 1 are
shown in Table 10.15. The resulting workstation formations using LCR are shown in
Table 10.16. Similarly, group 2 results are shown in Tables 10.17 and 10.18.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 306 — #26

306 Production Planning and Industrial Scheduling

TABLE 10.17
Group: Models VW2, VW3, and VA6
TC Precedence Relationships

Task
Immediate
Predecessor Time (Minutes)

3 2 641
9 8, 6 412
8 7 398
1 304

10 9 170
6 5 158
5 3, 4 145
4 2 102
7 3 57
2 1 30

TABLE 10.18
Workstation Formation for Group 2

Workstation
Tasks

Attached
Number of
Operators

Loading
Efficiency (%)

1 1, 2, 3 2 97.5
2 4, 5, 6, 7 1 92.4
3 8, 9, 10 2 98.0
Overall 5 95.96

TABLE 10.19
Summary

Group Models
Number of

Stations
Number of
Operators

Loading
h (%)

1 VA4 and VA6 3 3 85.33
2 VA6 TC, VB2,

and VB3
3 5 95.96

Overall — — 8 90.64

Table 10.19 displays the summary of two groups requirements. It is noted that
even though the number of operators is equal to the theoretical minimum, that is, 8,
the overall loading efficiency as seen in the preceding table is 90.64%, which is the
simple average of the two lines. The actual efficiency is the weighted value, three
operators are working on average of 85% efficiency, while five others are working
with 96% efficiency (with some round-off errors).

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 307 — #27

Network-Based Scheduling 307

TABLE 10.20
Requirements and Efficiencies of the Independent
Assembly Lines

Group Models
Number of

Stations
Number of
Operators

Loading
h (%)

1 VA4 2 2 54.2
2 VA6 2 2 73.8
3 VA6 TC 3 3 29.13
4 VW2 3 3 61.0
5 VW3 3 3 70.13
Overall — — 13 57.65

TABLE 10.21
A Single Assembly Line for All Models

Number of
Stations

Number of
Operators Loading h (%)

5 9 76.47

10.5.2 EFFECTS OF OTHER WAYS OF BALANCING (GROUPING)

10.5.2.1 An Assembly Line for Each Model

With the same production rate for each model, it might be of interest to see what effect
it would have if we develop an assembly line for each individual model. Using the
cycle time of 500 min per station and assuming no operator can be trained for more
than four tasks, we get the final requirements for each model as shown in Table 10.20.

The average efficiency is quite low. The efficiency could be improved by assigning
all ten tasks for model VA6 TC, to a single operator at a single workstation. The
efficiency for the model would then be 87.4% but one can imagine the variety of
training the particular operator would have to undergo. Also, we could improve the
efficiency by assigning five instead of four tasks per operator for model VW2. The
efficiency for the model would then be 92.8%, and the number of operators required
would be two. Even if one was to implement both the preceding modifications, the
number of operators required would be ten, which is greater than eight we had obtained
in Table 10.19 assignments.

10.5.2.2 A Single Assembly Line for All Models

Now, suppose we develop a single assembly line to produce all models simultaneously,
with no more than four tasks per operator as the restriction, we will need nine operators
on five stations as shown in Table 10.21. Again, the efficiency is not as high as the
mixed-mode assembly.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 308 — #28

308 Production Planning and Industrial Scheduling

10.5.3 ADVANTAGES OF THE SUGGESTED APPROACH

The approach that has been suggested here to design MMA lines offers the following
advantages over the conventional methods:

1. The approach is very simple and easy to understand.
2. Operators handle fewer models and fewer tasks, which reduces the training

requirements.
3. Fewer operators handling fewer models and tasks, and improves tractability

and accountability since responsibility is more specific.
4. Responsibility being more specific, quality is expected to improve.
5. The production system becomes more flexible, and thus absenteeism and

breakdowns can be managed effectively.
6. The number of stations required per model is minimized, and thus

managing the production becomes easy.
7. Since models from the various groups are scheduled simultaneously, the

waiting time or idle inventory is reduced.
8. Optimal results as regards number of operators and loading efficiency are

usually achieved.
9. Overall, the production is more organized and easy to control.

10. The suggested approach gives better results as the size of the problem
approaches real-life proportions.

10.5.3.1 Problem Areas

1. The suggested approach may not always result in the minimum possible
manpower required to satisfy production, although the difference in such
instances is usually to the extent of one, two, or three operators.

2. More decisions are required to be made by the management, although this
need not be considered a problem.

10.6 MIXED-MODEL ASSEMBLY—METHOD TO
MINIMIZE STATIONS

The mixed-model assembly (MMA) line balancing technique also presents a two-step
procedure for solving the MMA line balancing problem with parallel workstations
and zoning constraints. The goal is to minimize the number of workstations for a
given cycle time. This method also allows the user to define a limit on the maximum
number of replicas of a workstation and the limiting condition under which the work-
station can be replicated to increase the available total time for performance in that
workstation.

This method has been developed based on the following parameters:

1. The planning horizon has a fixed length, L.
2. A set of similar models, i = 1, 2, 3, N can be simultaneously assembled.
3. The forecast demand, over the planning horizon, for model i is Di.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 309 — #29

Network-Based Scheduling 309

4. The line cycle time, C, is constant for all models considered and can be
computed as follows,

C = L
∑N

i=1 Di

5. The overall proportion of the number of units of model, i, being assembled,
Qi, is then,

Qi =
[

Di∑N
i=1 Di

]
× 100

6. Each model has its own set of precedence relationships, but there is a subset
of tasks common to all the models. The resulting precedence diagrams for
all the models can be combined into one with “K” tasks.

7. The time required to perform task k on model i, Tki, may vary among
models, where k = 1, 2, 3, K and i = 1, 2, 3, N . Zero processing time
implies that a particular task is not required to be performed for that model.

8. A task can be assigned to only one workstation and, consequently, the
tasks that are common to several models need to be performed on the same
workstation.

9. A set of assignment constraints that forbid the assignment of different tasks
to the same workstation is defined. This set of constraints is called zoning
constraint.

10. The average weighted task time, AWTT, for all models is computed from
the given values of Tki, can be computed as follows,

AWTT =
N∑

i=1

K∑

k=1

(Qi × Tki)

11. The limiting value of the maximum number of replications of workstations
possible is user defined. The user may define the minimum task time that
triggers the replication of a workstation. The default value of this minimum
task time is 100% of the cycle time, which indicates that only workstations
performing the tasks whose duration is larger than the cycle time, for at
least one of the models, can be replicated.

10.6.1 PROCEDURE

Step 1: From the available values of L, i, Di, and Tki, compute C using (4). Also
compute AWTT by using (11). Tabulate the list of tasks from the precedence diagram,
in the ascending order of tasks, their immediate precedence relationship task(s), and
average weighted task times (A.W .T .T).

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 310 — #30

310 Production Planning and Industrial Scheduling

Step 2: Beginning with the first task tabulated in step 1, assign task(s) to workstations,
ensuring that the AWTT for task(s) is less than or equal to the line cycle time, C. While
assigning task(s), also consider zoning constraints. Continue assigning tasks until
no more tasks can be assigned to that workstation without violating the precedence
relationship. Increment the workstation index, “WS #,” by 1, each time an assignment
is complete. If a task(s) has an AWTT greater than the line cycle time, replicate the
workstation. The maximum number of replications of a workstation possible is limited
to the user-defined limiting value. This step terminates when the final task from the
precedence diagram has been feasibly assigned. The sum of all the workstations
(including replicas) is the total number of workstations required for completing all
the tasks.

10.6.2 NUMERICAL ILLUSTRATION

Data from published literature is used to illustrate a numerical example. The data is
shown in Table 10.22. The example has two models and 25 tasks. In addition, the
following parameters are also considered:

1. The models 1 and 2 are simultaneously assembled in a line and over a
planning horizon, L, of 480 time units. The demand of model 1, D1, is
20 units, and the demand of model 2, D2, is 28 units. Thus, Q1, which
represents the proportion of number of units of model 1 being assembled,
is 42% (20/(20 + 28) × 100), and Q2, which represents the proportion of
number of units of model 2 being assembled, is 58% (28/(20+28)×100).

2. Tasks 9 and 10 cannot be processed on the same workstation.
3. Only workstations performing tasks with a processing time greater than

the line cycle time can be replicated.
4. The maximum number of replicas of a workstation is limited to two

replicas.

10.6.2.1 Solution

Step 1: Computing line cycle time and AWTT
Using eq (4) line cycle time, C, is computed as,

C = 480

(20 + 28)
= 10

which remains constant.
From the task times for each model enumerated in Table 10.22 and calculated

values of Q1 and Q2, the average weighted task times (AWTT) are calculated using (11)
and enumerated in Table 10.23. Sample calculations for AWTT for six tasks are also
shown.

Task 1: 0 (0.42) + 2(0.58) = 1.2
Task 2: 7.7 (0.42) + 7.7(0.58) = 7.7

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 311 — #31

Network-Based Scheduling 311
TA

B
LE

10
.2

2
D

at
a

fr
om

V
S:

Pr
oc

es
si

ng
Ti

m
es

fo
r

M
od

el
1

an
d

2,
an

d
Im

m
ed

ia
te

Pr
ec

ed
en

ce

Ta
sk

(k
)

1
2

3
4

5
6

7
8

9
10

11
12

13

T
k1

0
7.

7
7.

3
15

.0
8.

8
6.

2
3.

6
0

6.
6

2.
5

5.
5

7.
1

5.
9

T
k2

2.
0

7.
7

7.
3

15
.0

8.
8

0
0

2.
0

6.
6

2.
5

5.
5

7.
1

5.
9

Im
m

ed
ia

te
pr

ec
ed

en
ce

—
—

1
3

3
3

3
4,

5
5

2,
6

5,
6

8,
9

11

Ta
sk

(k
)

14
15

16
17

18
19

20
21

22
23

24
25

T
k1

1.
3

5.
5

1.
9

3.
7

9.
4

1.
3

0
2.

0
4.

7
9.

6
4.

1
12

.5
T

k2
0

5.
5

2.
0

0
9.

4
1.

3
9.

0
2.

0
4.

7
8.

2
3.

7
0

Im
m

ed
ia

te
pr

ec
ed

en
ce

9
12

,1
3

10
,1

3
16

16
14

,1
8

7,
18

17
21

15
,1

9,
21

20
,2

2,
23

24

TA
B

LE
10

.2
3

Ta
sk

(s
),

A
W

TT
,a

nd
Im

m
ed

ia
te

Pr
ec

ed
en

ce

Ta
sk

(k
)

1
2

3
4

5
6

7
8

9
10

11
12

13

AW
T

T
1.

2
7.

7
7.

3
15

8.
8

2.
6

1.
5

1.
2

6.
6

2.
5

5.
5

7.
1

5.
9

Im
m

ed
ia

te
pr

ec
ed

en
ce

—
—

1
3

3
3

3
4,

5
5

2,
6

5,
6

8,
9

11

Ta
sk

(k
)

1 4
1 5

1 6
17

1 8
1 9

2 0
2 1

2 2
2 3

2 4
2 5

AW
T

T
0.

5
5.

5
2.

0
1.

6
9.

4
1.

3
5.

2
2.

0
4.

7
8.

8
3.

9
5.

3
Im

m
ed

ia
te

pr
ec

ed
en

ce
9

12
,1

3
10

,1
3

16
16

14
,1

8
7,

18
17

21
15

,1
9,

21
20

,2
2,

23
24

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 312 — #32

312 Production Planning and Industrial Scheduling

TA
B

LE
10

.2
4

Ta
sk

(s
),

A
W

TT
,W

or
ks

ta
ti

on
In

de
x

an
d

N
um

be
r

of
W

or
ks

ta
ti

on
s

W
S

#
1

2
3

4
5

6
7

8
9

10
11

Ta
sk

(s
)

1,
2

3
4,

6,
7

5
9

8,
10

,1
1

12
,1

3,
14

,1
5

16
17

,1
8,

19
,2

0,
21

22
,2

3,
24

25
AW

T
T

8.
9

7.
3

19
.1

8.
8

6.
6

9.
2

19
.0

2.
0

19
.5

17
.4

5.
3

N
um

be
r

of
W

or
ks

ta
tio

ns
1

1
2

1
1

1
2

1
2

2
1

15

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 313 — #33

Network-Based Scheduling 313

Task 3: 7.3 (0.42) + 7.3(0.58) = 7.3
Task 4: 15 (0.42) + 15(0.58) = 15
Task 5: 8.8 (0.42) + 8.8(0.58) = 8.8
Task 6: 6.2 (0.42) + 0(0.58) = 2.6

Step 2: Assignment of tasks
Beginning with the first task in Table 10.23, assign task(s) to workstations such

that AWTT is less than or equal to C = 10. Tasks 1 and 2 can be combined and
assigned to WS # 1 since the sum of AWTT associated with them is less than the
line cycle time, C = 10. Similarly, assign the remaining task(s) listed in Table 10.23
maintaining precedence relationships. Task 3 is assigned to WS # 2. Tasks 4, 6,
and 7 assigned to WS # 3 have a combined AWTT almost twice that of C. Therefore,
WS # 3 is replicated confirming to the user-defined limit on the maximum number
of replications allowed, being 2. Task 5 is assigned to WS # 4. Due to the zoning
constraint forbidding Tasks 9 and 10 from being assigned to the same workstation,
Task 9 is assigned to WS # 5. Tasks 8, 10, and 11 are combined and assigned to WS
6. Tasks 12, 13, 14, and 15 are assigned to WS # 7, which is replicated. Task 16 is
assigned to WS # 8. Tasks 17, 18, 19, 20, and 21 are assigned to WS # 9, which is
replicated. Tasks 22, 23, and 24 are assigned to WS # 10, which is replicated. Task 25
is assigned to WS # 11.

The sum of all the WS # including replicas is the total number of workstations
required, in this case, 15 (Table 10.24).

Line cycle time, C = 10.

10.7 NETWORK SCHEDULING WITH RESOURCE
CONSTRAINT

So far, we have been assuming that the completion of a project on time is the major
consideration in scheduling. We determined the activities on critical path and sugges-
ted that each of these operations must start and complete on time for the project to
finish in minimum possible time. This is achievable when the resources are not lim-
ited. However, when the resources are limited, the starting of an activity may depend
not only on the precedence relationships (i.e., completion of precedence activities),
but also on availability of the resources.

Besides time, the resources required for an operation may include manpower,
material, capital, and/or working space. Resources such as manpower and working
space may be renewable. For example, after the completion of an activity, men
working on that activity may be released and may be used by the operations that
follow. Recourse such as money may not be renewable, that is, once spent, it is not
available. The additional money may be obtained from different sources (such as bank
loans and product sales) at different time periods to complete the project. There are two
additional variations in the way the activities may be performed. In non-preemptive
mode, the activities once started cannot be interrupted till they are completed, while
in the preemptive mode, the activities may be stopped and restarted at any stage of
completion.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 314 — #34

314 Production Planning and Industrial Scheduling

TABLE 10.25
Heuristic Rules for Resource Scheduling

Rule Description

MINSLK Select the activity with minimum slack.
ACT Select the activity based on maximum value of the critical path (CP). The CP for each

activity is calculated by imagining the tail node of the activity as the starting node of the
network.

MINLFT Select the activity with minimum latest completion time(finish time) on the tail.
RAN Randomly select an activity.
SA Select the shortest duration activity first.
LA Select the activity with longest duration.
GRD Select the activity with largest ratio of recourse per unit time.
SRD Select the activity with smallest ratio of recourse per unit time.

We shall discuss here most commonly faced non-preemptive, renewable single-
resource constraint problem: such as that of manpower limitation. There is no single
heuristic rule that guarantees an optimum solution for each problem. Authors have
suggested different rules that work good for one set of problems than other. Table 10.25
list a number of such rules. Within each rule, another rule may be used for breaking
ties. For example, after applying the MINLFT rule, if there is still a tie for selection
of activities, then the SA rule may be used to break the tie.

In the discussion, a node from where an activity emerges is designated as the tail
of the activity, and the node where the activity merges is called the nose of the activity.
The slack in the activity is defined as: latest time on the nose - earliest time on the
tail - activity duration.

10.7.1 ILLUSTRATIVE EXAMPLE

We shall illustrate couple of scheduling rules by applying them to the activities with
the precedence relationship, as shown in Figure 10.4. The first three rows of the
Table 10.26 show the data including the man power required for each activity. The
next four rows in the table illustrate the results of application of activity time (ACT)
rule. The ACT value for each activity is calculated by assuming that the network only
exist from the beginning node of that activity. For example, ACT for activity 2–4 is
the critical path value for the network with node 2 as the starting node. ACT for a
node can also be calculated as LT for the last node - LT for the present node. For
example ACT for all activities starting from node 2 is LT6 − LT2 = 14 − 5 = 9. Let
us assume that we have maximum of five workers available during the project.

Table 10.25 shows the scheduling calculations based on ACT. At time 0, activities
1–2, 1–3, and 1–5 all have anACT value of 14 and have early time equal to the present
start time. These activities also satisfy the precedence relationship and, therefore, are
marked as eligible activities. The following rules are applied in sequence to eligible
activities for placing priorities. The activities are selected based on the priorities until
the resources are consumed or no activity can be assigned.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 315 — #35

Network-Based Scheduling 315

2

3

5

1

5, 3
1, 2

3, 2

4, 2

4, 2

5, 1

6

6, 3

3, 1

ET2 = 5
LT2 = 5

ET3 = 6
LT3 = 9

ET5 = 4
LT5 = 8

ET6 = 14
LT6 14

ET0 = 0
LT0 = 0

ET4 = 9
LT4 = 9

4

FIGURE 10.4 Precedence diagram for resource-scheduling example

TABLE 10.26
Data and Assignment Based on ACT

Activity 1-2 1-3 1-5 2-3 2-4 3-4 3-6 4-6 5-6
Duration 5 3 4 1 4 0 3 5 6
Manpower required 3 2 2 2 2 0 1 1 3
ACT value 14 14 14 9 9 5 5 5 6
T early 0 0 0 5 5 6 6 9 4
T start 0 0 3 5 6 6 6 10 9
T complete 5 3 7 6 10 6 9 15 15

1. An eligible activity having higher ACT value is selected first.
2. If there is a tie in step 1, an eligible activity requiring no recourse has a

higher priority.
3. After step 2 assignment, an activity requiring maximum manpower has the

next higher priority.
4. If there is a tie in rule 3, the tie is broken randomly.

At time 0, since all eligible activities have the same ACT value and rule 2 does
not apply, the priorities are assigned based on rule 3. Assignment of manpower is
made based on the priorities until all the available manpower is utilized.

Activity completion time indicates when additional activities may become eligible
for scheduling and when some of the presently assigned resources are becoming free
for the next allocation. Choose the next imminent event time, that is, time 3 in our
case, to reexamine the network. It is easier to identify the activities that may become
eligible, as we progress through the scheduling process, if along with working on
Table 10.27, we also simultaneously develop the last three rows of Table 10.26 and
visualize the precedence relationships in Figure 10.4. In Table 10.23, T early is earliest

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 316 — #36

316 Production Planning and Industrial Scheduling

TA
B

LE
10

.2
7

Sc
he

du
lin

g
B

as
ed

on
A

C
T

R
el

ea
se

El
ig

ib
le

A
ct

iv
it

ie
s

A
ss

ig
nm

en
ts

St
ar

t
Ti

m
e

A
ct

iv
it

y
M

en
M

an
po

w
er

A
va

ila
bl

e
Ea

rl
y

Ti
m

es
Pr

ec
ed

en
ce

A
C

T
va

lu
e

D
ur

.
M

an
po

w
er

Pr
io

ri
ty

A
ct

iv
it

y
D

ur
.

M
an

po
w

er
R

em
.

M
an

po
w

er

A
ct

iv
it

y
C

om
pl

et
e

Ti
m

e

0
5

1-
2

Y
14

5
3

1
1-

2
5

3
2

5
1-

3
Y

14
3

2
2

1-
3

3
2

0
3

1-
5

Y
14

4
2

3
3

1-
3

2
2

1-
5

Y
14

4
2

1
1-

5
4

2
0

7
5

1-
2

3
3

2-
3

Y
9

1
2

1
2-

3
1

2
1

6
2-

4
Y

9
4

2
2

6
2-

3
2

3
5-

6
Y

6
6

3
2

2-
4

4
2

1
10

2-
4

Y
9

4
2

1
3-

4
0

0
1

6
3-

4
Y

5
0

0
3

3-
6

3
1

0
9

3-
6

Y
5

3
1

4
6

3-
4

0
0

N
o

ch
ec

k
7

1-
5

2
2

5-
6

Y
6

6
3

1
9

3-
6

1
3

5-
6

Y
6

6
3

1
5-

6
6

3
0

15
10

2-
4

2
2

4-
6

Y
5

5
1

1
2-

4
5

1
1

15

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 317 — #37

Network-Based Scheduling 317

TABLE 10.28
Activity Slack Calculation

Activity T Late T Early Duration Slack

1-2 5 0 5 0
1-3 9 0 3 6
1-5 8 0 4 4
2-4 9 5 4 0
2-3 9 5 1 3
3-4 9 6 0 3
3-6 14 6 3 5
4-6 14 9 5 0
5-6 14 4 6 4

time an activity may start, the value obtained during critical path analysis. T start and
T complete times start and completion times of an activity as we make the assignments
in Table 10.25.

The network completed in 15 time units.
It might be interesting to note that at time 5, though the activity 5–6 satisfies

the eligibility based on early start time, the precedence activity, activity 1–5 has not
been completed and, therefore, 5–6 is not eligible. With three men released from just
completed activity 1–2, only one assignment, that to activity 2–3, is possible.

At time 6, we make the first assignment to priority 1 activity, 2–4. Next, 5–6
is eligible and has a priority of 2, but it cannot be started because the remaining
manpower is less than what is needed for the activity. We continue the assignments
by going to the next priority activity 3–4, which requires no resources and is completed
immediately. It is marked as such, and the next evaluation is again done at time 6. At
that point, since no manpower is available, no check on eligible activities is required.

At time 7, only two men are released by the activity 1–5, while three men are
required by only eligible activity 5–6. Therefore, no assignment is made. The schedule
is completed in 15 time periods.

Tables 10.28, 10.29, and 10.30 show the application of minimum slack rule
(MINSLK). It now takes 16 time periods to complete the project. Thus, we see that the
application of different scheduling rules may lead to different schedule completion
times.

The network is completed in 14 time units.

10.7.2 MULTIPLE RESOURCES

If the activities are controlled by the availability of multiple resources, the method for
scheduling essentially follow the same procedure as the one that was illustrated earlier.
In this case, however, it is necessary to check the availability of all resources before an
activity can commence, and when the activity is completed, all the resources assigned
to the activity must be accounted for. Any one or a combination of the heuristics rules
displayed in Table 10.23 may be used in selecting an activity for scheduling, provided

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 318 — #38

318 Production Planning and Industrial Scheduling

TA
B

LE
10

.2
9

Sc
he

du
lin

g
B

as
ed

on
M

IN
SL

K

R
el

ea
se

El
ig

ib
le

A
ct

iv
it

ie
s

A
ss

ig
nm

en
ts

St
ar

t
Ti

m
e

A
ct

iv
it

y
M

en
M

an
po

w
er

A
va

il.
Ea

rl
y

Ti
m

es
Pr

ec
ed

en
ce

D
ur

.
M

an
po

w
er

Sl
ac

k
Pr

io
ri

ty
A

ct
iv

it
y

D
ur

.
M

an
po

w
er

R
em

ai
ni

ng
M

an
po

w
er

A
ct

iv
it

y
C

om
pl

et
e

Ti
m

e

0
5

1-
2

Y
5

3
0

1
1-

2
5

3
2

5
1-

3
Y

3
2

6
3

1-
5

4
2

0
4

1-
5

Y
4

2
4

2
4

1-
5

2
2

1-
3

Y
3

2
6

2
1-

3
3

2
0

7
5-

6
Y

6
3

4
1

5
1-

2
3

3
2-

3
Y

1
2

3
2

2-
4

4
2

1
9

2-
4

Y
4

2
0

1
5-

6
Y

6
3

4
3

7
1-

3
2

3
2-

3
Y

1
2

3
1

2-
3

1
2

1
8

3-
4

N
6

3
4

2
3-

6
N

5-
6

Y
8

2-
3

2
3

3-
4

Y
0

0
3

1
3-

4
0

0
3

8
3-

6
Y

3
1

5
3

5-
6

6
3

0
14

5-
6

Y
6

3
4

2
8

3-
4

0
0

O
n

ch
ec

k
9

2-
4

2
2

3-
6

Y
3

1
5

2
3-

6
3

1
0

12
4-

6
Y

5
1

0
1

4-
6

5
1

1
14

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 319 — #39

Network-Based Scheduling 319

TABLE 10.30
Assignments Based on MINSLK

Activity 1-2 1-3 1-5 2-3 2-4 3-4 3-6 4-6 5-6
Duration 5 3 4 1 4 0 3 5 6
Manpower 3 2 2 2 2 0 1 1 3
Slack 0 6 4 3 0 0 2 0 2
T Early 0 0 0 5 5 6 6 9 4
T Start 0 4 0 7 5 8 9 9 8
T Completion 5 7 4 8 9 8 12 14 14

the activity is eligible and all the resources required by the activity are accessible.
The rules for prioritizing the recourse allocation may also be developed based on
which resources we think are critical.

10.8 SUMMARY

Jobs that have precedence relationships add an additional dimension to scheduling.
Drawing a network makes the visualization and manipulation of such constraints
easier. The CPM illustrates how we can determine the available slack times in jobs and
identify the jobs that are critical. This knowledge is used in developing a scheduling
rule for parallel processors when jobs have precedence constraints. The objective is
to minimize the makespan. We have also seen a procedure for scheduling on parallel
machines when the jobs can only be performed on a limited subset of the available
machines. This may happen because of limited availability of external resources such
as jigs and fixtures.

We have also observed how to develop an assembly line for a single product. If
there are multiple products to be made on the same assembly line, we have suggested
a procedure for grouping the products and for developing the assembly line. The pro-
cedure is called MMA line balancing, which may have a number of advantages over
the single-product assembly line.

10.9 PROBLEMS

10.1 The ten jobs shown in this network have precedence relationships and pro-
cessing times as indicated. Assuming that two parallel processors can be used
to process these jobs, develop the corresponding schedule.

10.2 Develop the schedule for processing the jobs depicted in this network with the
associated precedence relationships and processing times, assuming that two
parallel processors are to be used.

10.3 Schedule eight jobs on four parallel processors with the following job-machine
relationships.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 320 — #40

320 Production Planning and Industrial Scheduling

1
1

2 7

2 57

3

3 5

5 6
4 7 8 X

2 5 8 Y

3 6 10 Z

1

4

6 3

8 3

4 5

5
7 5

6

2

3 8
5

7

A

B

C

6

7

Job 1 2 3 4 5 6 7 8
Machine M3 M2, M4 M1 M1, M2, M1, M3, M3, M4 M1, M3 M1, M2,

M3 M4 M3, M4

10.4 Develop the following seven jobs on three parallel processors with the
job-machine relationships as indicated.

Job 1 2 3 4 5 6 7
Machine M1, M3 M1, M2, M3 M2 M1, M2 M2, M3 M1 M1, M2

10.5 Develop a balanced assembly line for a job that can be broken into ten tasks with
precedence relationships and task times as displayed in the following network.
Assume a desired cycle time of 0.95. Use the LCR.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 321 — #41

Network-Based Scheduling 321

2

0.42

0.65 0.50 0.13

0.75

0.58

0.480.34

0.28

5

8

5

10

0.80

3 6

4 7

1

10.6 Develop the schedule for the network in Problem 6.5 using the RPW method.
10.7 Balance the schedule production for a MMAline given the following data: items

A, B, C, and D are to be produced at quantities 2, 1, 3, and 3, respectively,
per shift; each requires the following times to complete each of eight tasks
necessary to produce the item; grouping of the items is based on task similarity;
sift time per operator is 500 min; an operator can handle up to four tasks.

Tasks A B C D

1 70 65 0 0
2 50 55 90 80
3 60 40 30 30
4 0 0 50 45
5 20 20 0 0
6 10 10 0 0
7 0 0 65 65
8 0 0 25 35

Total 210 190 260 255

The precedence relationships for the two groups are as follows:

Group 1

Tasks
Immediate
Predecessor

1 —
2 1
3 1
5 3
6 2, 3

Group 2

Tasks
Immediate
Predecessor

2 —
3 2
4 2
7 3
8 4,3

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 322 — #42

322 Production Planning and Industrial Scheduling

10.8 Compare the efficiencies achieved in Problem 6.7 with the efficiency achieved
by balancing the same problem using
a. An assembly line for each model
b. A single assembly line for all models

10.9 For the single-resource problem, solve the network when the number of
resources available is seven:
a. Determine the early and late start times for each node.
b. Determine the critical path and its duration.
c. Which of the two methods (ACT or MINSLK) will you use to schedule the

network? Justify your answer.
d. Repeat part c with the number of resources as five.

A B

C D

E G K

I J

L

F H

Activity 1–2 1–3 1–4 2–5 2–3 3–5 3–6 4–7 5–8 6–8 6–7 7–8
Duration 6 8 4 4 4 12 14 6 8 16 2 12
Resources 2 3 3 4 2 3 1 4 2 1 1 3

10.10 Schedule the activity network in the following figure. The duration and num-
ber of resources required for each activity are given on the node links. D is
the duration and R is the number of resources required. The total number of
resources available is five.

2

D = 1
R = 2

D = 5
R = 1

D = 0
R = 0

D = 1
R = 1

D = 2
R = 2

D = 4
R = 2

D = 3
R = 2

D = 3
R = 2

D = 0
R = 0

D = 1
R = 4

D = 3
R = 3

D = 3
R = 3

D = 2
R = 2

6

3

1

4

5 8

9

7

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 323 — #43

Network-Based Scheduling 323

10.11 A stretch of land alongside a major highway needs water pipelines installed.
Solve the resource scheduling problem for the following network, and data by
a. The ACT method
b. The MINSLK method, and compare the two results

1 3 6

4 7

2 5

8

Activity Activity Description Duration Resources

A-B Start job 1 1
B-I Relocate electric 6 4
B-C Excavate 5 3
C-D Install pipe section #1 10 4
D-F Backfill section #1 5 3
D-E Install pipe section #2 12 5
F-H Backfill section #2 8 2
E-G Test Pipe Sections 3 4
H-K Grade and sod 7 3
I-J Install Manhole 3 3
J-K Test relocated electric 2 5
K-L Final inspection 1 2

Resource available: 5.

10.12 For the data in Problem 6.11, consider a two-resource scenario and solve the
problem:

Activity A-B B-I B-C C-D D-F D-E F-H E-G H-K I-J J-K K-L
Resource 1 2 1 2 1 2 1 2 1 1 2 2

type

Resource available: Type 1 = 5, and Type 2 = 4.

Dileep: “44206_c010” — 2007/9/17 — 15:07 — page 324 — #44

324 Production Planning and Industrial Scheduling

REFERENCES AND SUGGESTED READINGS

Atabaksh, H. 1991. “A Survey of Constraint Based Scheduling Systems Using an Artificial
Intelligence Approach” Artificial Intelligence in Engineering, 6(2): 58–73.

Baker, K.R. 1974. Introduction to Sequencing and Scheduling, New York: John Wiley & Sons.
Bard, J.F., A. Shtub, and S.B. Joshi. 1994. “Sequencing Mixed-Model Assembly Lines to

Level Parts Usage and Minimize Line Length” International Journal of Production
Research, 32(10): 2431–2454.

Blazewicz, J., W. Cellary, R. Slovinski, and J. Weglarz. 1986. “Scheduling under Resource
Constraints- Deterministic Models” Annals of Operations Research, 7.

Burns, L., and C.F. Daganzo. 1987. “Assembly Line Job Sequencing Principles” International
Journal of Production Research, 25, 71–99.

Dar-El, E.M. and A. Nadivi. 1981. “A Mixed-Model Sequencing Application” International
Journal of Production Research, 19(1): 69–84.

Du, J. and J.Y.-T. Leung. 1989. “Scheduling Tree-Structured Tasks on Two Processors to
Minimize Schedule Length” SIAM Journal of Discrete Mathematics, 2: 176–196.

Du, J., J.Y.-T. Leung, and G.H. Young. 1991. “Scheduling Chain-Structured Tasks to Minimize
Makespan and Mean Flow Time” Information and Computation, 92: 219–236.

Frostig, E. 1988. “A Stochasitc Scheduling Problem with Intree Precedence Constraints”
Operations Research, 36: 937–943.

Hu, T.C. 1961. “Parallel Sequencing and Assembly Line Problems” Operations Research, 9:
841–848.

Kampke, T. 1989. “Optimal Scheduling of Jobs with Exponential Service Times on Identical
Parallel Processors” Operations Research, 37: 126–133.

Lenstra, J.K. andA.H.G. Rinnooy Kan. 1978. “Computational Complexity of Scheduling under
Precedence Constraints” Operations Research, 26: 22–35.

McCormick, S.T., M.L. Pinedo, S. Shenker, and B. Wolf. 1990. “Transient Behaviour in a
Flexible Assembly System” International Journal of Flexible Manufacturing Systems,
3: 27–44.

McCormick, S.T., M.L. Pinedo, S. Sheker, and B. Wolf. 1989. “Sequencing in an Assembly
Line with Blocking to Minimize Cycle Time” Operations Research, 37: 925–936.

Pinedo, M. 1995. Scheduling-Theory, Algorithms, and Systems, Englewood Cliffs, NJ: Prentice
Hall.

Pinedo, M. and G. Weiss. 1984. “Scheduling Jobs with exponentially Distributed Processing
Times and Intree Precedence Constraints on Two Parallel Machines” Operations
Research, 33: 1381–1388.

Sule, D.R. 1992. Manufacturing Facilities- Location, Planning and Design, 2d ed. Boston:
PWS Publishing.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 325 — #1

11 Job Shop Scheduling

Most scheduling problems associated with n jobs on m machines can be divided into
four broad categories. Job operational flow (processing order) determines the type as
being one of the following.

1. Flow shop
2. Job shop
3. Dependent shop
4. Open or general shop

We have seen flowshop in Chapter 9 and dependent shop in Chapter 10. In flowshop,
the processing order of every job is identical. The arrangement of machines is up
to the planner, and the machines can be placed so that the flow of the jobs through
machines is unidirectional. In job-shop processing, the order of different jobs may
be different, but is fixed and independent of each other. If the processing order of
any one or more jobs depends on other jobs, the shop is called a dependent shop.
A general or open shop is one in which there are no precedence constraints, that is,
jobs can be processed in any order. As with the single-machine problem, variations
in each type exist as setup times, due dates, and arrival dates are included. We shall
study in this chapter a few basic models of job shop, while open shop is discussed in
Chapter 12.

11.1 JOB SHOP

The Job-shop problem is considered important because it reflects the actual oper-
ation for several industries. In a job shop on any given day, we may have several
jobs requiring scheduling, each with a different processing sequence and different
processing times on the machines. Jobs may or may not have the promised delivery
dates, and the solution procedures differ as the objective of scheduling changes.

For an n job m machine scheduling problem, there are (n1)!(n2)! . . . (nm)! theor-
etically possible sequences, where nk is the number of operations to be performed on
machine k; however, not all of them are feasible. The best sequence then must satisfy
the following conditions:

1. One that is technologically feasible, that is, the one that satisfies the
machine precedence constraints.

2. Optimize the effectiveness measure.

Evaluation of all possible combinations is an impossible task even for a moderate-size
problem and, therefore, many heuristic rules are developed by various researchers

325

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 326 — #2

326 Production Planning and Industrial Scheduling

to determine the priority by which a job should be processed. These rules can also
be classified as either static or dynamic, based on when the decisions referred to are
made. In the static (sometimes referred to as global) rule, job priorities are determined
in advance of processing jobs. For example, rules based on due date or arrival time,
such as first come first serve (FCFS), or based on the penalty weight of the jobs,
are all static rules. The priorities remain the same throughout job processing. In the
dynamic (some times referred to as local) rule, on the other hand, the job priorities
may change from machine to machine, based on the status of a predefined condition
that is examined before a job is assigned to the machine. Typically, the job priorities
are calculated for each machine using a rule such as COVERT, which we have seen
in Chapter 6. Dynamic rules, in general, perform better than the static rules. We shall
study some additional rules in this chapter.

Because of the challenging nature of the problem, many researchers have ana-
lyzed job shop and flow shop scheduling. The interest has mainly been in developing
scheduling rules that relate to either in improving shop flow performance or adhering
to the compliance with due dates. Shop flow time is the time a job spends in the shop.
It also indirectly reflects on other shop-related measures such as work in progress,
inventory cost, and how swiftly we can handle the customer’s order. Due-date-related
measures reflect on the tardiness of the jobs, penalty cost and number of jobs tardy.
As with the single-machine problem, researchers have not found a common single
rule that optimizes all goals at the same time since some goals can be conflicting.
For example, shortest processing time (SPT), which gives a preference to a job with
minimum immediate processing requirement, is a simple yet dominant rule used in
reducing shop flow time. The same rule, however, can produce jobs that are very late
if the due dates for the jobs are very tight.

Many dispatching rules exist in both static and dynamic environments. Table 11.1
lists some of them.

TABLE 11.1
Job Shop Dispatching Rules

Code Choose the Job Based On

EDD Earliest due date
FCFS First come first serve
WSPT Highest ratio of weight divided by processing time
LWKR Least work remaining
WLWKR Highest value of weight divided by least work remaining
WTWK Largest value of weight divided by total work remaining
MST With minimum slack time, i.e., due date - present time - process time
OPNDD With earliest operational due date, i.e., due date - present time
Critical ratio Highest value of total remaining time divided by total time until the due date
COVERT Explained in Chapter 6
SCR With smallest critical ratio, remaining allowance divided by work remaining
A/OPN With smallest remaining allowance per remaining operations
S/OPN With smallest slack per remaining operation

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 327 — #3

Job Shop Scheduling 327

Bowmen [6], Manne [16] and Balas [3], and Conway et al. [10] regarded
scheduling as a conventional programming problem and suggested linear program-
ming formulations with integer constraints on its solution. The computational effort
required to solve the problem with these approaches makes them impractical. Also,
the scope of integer programming problems is very limited. Naser [17] developed
the problem of minimizing the mean flow time as a mixed integer programming
model. Then he developed an efficient algorithm based on this formulation to solve
the problem by decomposing it into sub-problems that are easier to solve. He also
compared the performance of a second algorithm based on SPT with the performance
of a mixed-integer programming model. All these models are outside the scope of
this book.

One of the pioneering studies of the effectiveness of dispatching rules in a job
shop situation was published by Conway and Maxwell [8]. They noted that, in a
single-server environment, the smallest processing time (SPT) rule was optimum for
a special type of problem (see Chapter 6). They also found that in a multiple-machine
environment also, the SPT retained the advantage of throughput maximization (under
fairly evenly loaded machines). Elvers [12] studied the performance of ten dispatching
rules over five variations of the SPT due date assignment methods. He showed that
when the due date is set at six times the total processing time or less, the SPT rule
performed the best. Due-date-based rules do not perform well. Similarly, the FIFO
rule performs worse than good-processing-time rules.

Schultz [20] reported results relating to CEXSPT, a new heuristic relating to the
SPT rule in the context of the dynamic job shop. We shall explain this heuristic later
in this chapter.

11.2 JOB SHOP SCHEDULING TO MINIMIZE
MAKESPAN (SPT)

The problem can be stated as follows: There are n jobs, each of which is to be pro-
cessed one at a time on m or less machines. Each job follows a predefined machining
order and has a specified processing time; however, the machine order is random
from job to job. The jobs do not have due dates, and the objective is to minimize
makespan.

The techniques illustrated here have the following assumptions:

1. Assumptions concerning jobs
a. All n jobs are simultaneously available at the beginning of the

planning period.
b. A single job cannot be processed simultaneously by more than one

machine.
c. The processing time for each job is known and is deterministic.
d. Set-up and transportation time is independent of the sequence and

is included in the process time of the jobs.
e. Jobs are processed as soon as possible or as planned.
f. All jobs are of equal importance

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 328 — #4

328 Production Planning and Industrial Scheduling

TABLE 11.2
Data for a Job Shop Example

Job Number Machine Sequence Processing Times

1 1, 3 1, 2
2 2, 3 3, 1
3 3, 1, 2 2, 1, 1
4 1, 2, 3 3, 2, 1
5 3, 1 2, 1

2. Assumptions concerning machines
a. All m machines are available at the beginning of the planning period

and are ready to work on any of the n jobs requiring that machine
for its first operation.

b. At most, one job can be processed on a specific machine at any given
time.

c. There is only one machine of each type in the shop.
3. Other

a. In-process inventory is allowed

11.2.1 SHORTEST PROCESSING RULE

Since the shortest processing rule preforms well under a semi-evenly loaded shop, we
shall illustrate it first by applying it to the data in Table 11.2. The table gives, for each
job, the machines used in its production sequence and the processing time required
on each machine. For example, job 1 requires machines 1 and 3, in that order, and 1
unit of processing time on machine 1 and 2 units of processing time on machine 3.

It is convenient to construct a table such as Table 11.3, displaying for each machine
the jobs needing the machine arranged in SPT order. We refer to this arrangement
as the list for each machine or simply list. In developing the day-to-day schedule
(assuming unit time is a day) in Table 11.4, we shall refer to Table 11.3 frequently.
The table displays for each machine a job and its processing time. For example, 3/1
on machine 1 indicates job 3 requiring 1 day to process on that machine.

At time 1, all machines are available. From Table 11.3, we observe that job 1 is
the first job on the list for machine 1. From Table 11.2, we see that it is also the first
machine required by job 1, and hence, we load job 1 on machine 1 on the first day. On
machine 2, according to the list, job 3 should be loaded, but job 3 requires machine 3
first. Similarly, for the next job from the list, job 4 requires machine 1 first and hence,
cannot be loaded. The next job (job 2) can be loaded on machine 2, and hence, it is
scheduled next. It takes 3 days, and therefore, the machine is busy with job 2 for days 1,
2, and 3. Similar analysis for machine 3 results in loading of job 3 for two time periods.

At time 2, machine 1 is free, and the next job on the list for the machine is job 3.
But, at that time, job 3 is being processed on machine 3 and is not available; therefore,
job 4 is loaded for the next 3 time units.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 329 — #5

Job Shop Scheduling 329

TABLE 11.3
Jobs/Processing Times Arranged
in SPT

Machine 1 Machine 2 Machine 3

1/1 3/1 2/1
3/1 4/2 4/1
5/1 2/3 —
4/3 3/2

5/2

TABLE 11.4
Day-to-Day Schedule: Jobs on Each
Machine

Time Machine 1 Machine 2 Machine 3

1 1 2 3
2 4 2 3
3 4 2 1
4 4 — 1
5 3 4 2
6 — 4 5
7 — 3 5
8 5 — 4

The procedure is now clear. We load (using the list) the first job that can be loaded
which is available and has completed all its precedence processing. If no such job
is available (e.g., machine 2, time 4) then the machine is idle for that period. We
continue day by day planning till all the jobs receive their required processing. We
shall leave it to the reader to verify the schedule. The makespan is 8 days.

The associated Gantt chart is illustrated in Figure 11.1.

11.3 NETWORK APPROACH TO JOB SHOP
SCHEDULING

The precedence relationships in a job shop with no recirculation (i.e., each job pro-
cessed on a machine at most once only) can be represented by a project network.
Here, a node represents a job on a machine and the branch emerging from the node
represents the time required for the job on that machine and the sequence in which the
nodes are connected for a job represents the precedence relationship of the operations.

For example, the data in Table 11.2 is represented by the network shown in
Figure 11.2. Each node represents a specific operation for a job on the machine
indicated. For example, node 1/1 represents operation for job 1 on machine 1. The

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 330 — #6

330 Production Planning and Industrial Scheduling

Machine 1 J1

J2

J3 J1 J2 J5 J4

J4 J3

J4 J3 J5

1 2 3 4 5 6 7 8 9 10

Machine 2

Machine 3

FIGURE 11.1 Gantt chart for a daily schedule using SPT.

FIGURE 11.2 Job shop problem with earliest and latest start times.

processing time is 1 as shown on the arrow coming out of node 1/1. Similarly, node
1/3 represents operation for job 1 on machine 3. Its processing time is 2 units. That
is the end of all processing for job 1, and hence, the arrow ends in the end node,
which is a dummy node. A similar dummy node, a start node, is introduced at the
beginning of the network with branches leading to each job’s first operation with
zero time consumption on each branch. With all jobs similarly drawn, the network is
complete.

Operations belonging to different jobs that are to be processed on the same
machine may be connected to one another by a dotted line. In this example, operations

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 331 — #7

Job Shop Scheduling 331

FIGURE 11.3 Machine 3 solved; Iteration 1.

1/1, 3/1, 4/1, and 5/1 may all be connected by dotted lines (the lines are not shown
on the figure so as not to clutter the figure). Similarly, operations 2/2, 3/2, and 4/2
may be connected. Note that each operation is connected to every other operation on
the same machine with a dotted line. This is to imply that any two operations could
precede one another on this machine. After the job sequence has been established on
the machine, a single solid line would emerge with an arrow pointing to either one
of the two nodes showing the appropriate precedence relationship. For example, in
Figure 11.3, the solid line shows the connection between node 5/3, 3/3, 2/3, 4/3, and
1/3 with the arrowhead showing the precedence on machine 3, job 5 is done first then
job 3 then 2, and so on. All solid arcs (lines with an arrow on one end) emanating
from a node have the processing time displayed by a number on the arc. For example,
again in Figure 11.3, each branch emerging from node 5/3 is given the time that is
equal to the processing time of job 5 on machine 3.

A feasible schedule is the one in which all nodes indicating the operation on a
machine are connected by solid arcs, indicating the job precedence relationship on
that machine. The makespan Cmax of a feasible schedule is the longest path (i.e., the
critical path) from the START node to the END node. The objective is to develop a
feasible schedule with a minimum value for critical path.

11.3.1 THE MODIFIED SHIFTING BOTTLENECK HEURISTIC

One of the successful heuristic for minimizing the makespan in a job shop prob-
lem is the shifting bottleneck heuristic (Adams et al. 1988). In this procedure, each

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 332 — #8

332 Production Planning and Industrial Scheduling

unscheduled machine is considered as the separate single machine, and the machine
that gives the maximum delay in a single job is identified as a “bottleneck machine”
and scheduled first.

We present a procedure here that is a minor modification of the original shifting
bottleneck procedure. In the new procedure, modified shifting bottleneck heuristic
(MODSB), each unscheduled machine is considered as a separate single-machine
problem, and the machine that has the largest maximum tardiness, is designated as
the bottleneck machine and sequenced first. The advantage of MODSB over shifting
bottleneck procedure is, in MODSB, the total delay for jobs arriving at different
times can be determined by using the heuristic from Section 7.15, while the original
shifting bottleneck machine procedure requires solution by branch and bound method
to ascertain the job with maximum delay and hence the bottleneck machine. The
MODSB deviates very little from the final answer obtained by the original shifting
bottleneck procedure.

The procedure for the MODSB heuristic can be described as follows:

Step 1: Let “M” denote the set of all the machines. Let Mr denote the set of all
the machines in “M” for which the sequence of the jobs is already known. Initially,
Mr = 0. The earliest and latest start times are calculated for all the nodes in the
network.

Step 2: All unscheduled machines in set M–Mr are solved separately as a single-
machine problem. All the operations that require services of that machine are being
treated as the jobs in the sense used in single-machine problems. The jobs (oper-
ations) arrive at the machine at different times based on the sequence of previous
operations. The arrival time for a job and its due date are taken directly from the
network. The arrival time “ri” for an operation is the “earliest start time” for the cor-
responding node (operation) determined in step 1. The due date “di” for the operation
is the (minimum of) latest start time(s) of the immediately succeeding node(s). Use the
procedure described in Section 7.15 to develop the optimum single-machine sequence
for each machine. Calculate the tardiness for each machine. This is equivalent to cal-
culating the total penalty, assuming a late penalty of 1 and an early penalty of 0 for
each job.

Step 3: Select the machine that serves as a bottleneck (i.e., the one with the largest
tardiness Tmax, which is also the maximum penalty value). Let us say that this machine
is “k.” The network is now modified by adding solid arcs between nodes (operations)
that are using machine k based on the job sequence that was obtained in step 2 for
machine “k.” Machine “k” would be the new machine that would be added to set Mr,
in step 6.

Step 4: Recompute the earliest and latest start times for the modified network
from step 3 (with the solid arcs added).

Step 5: Before adding machine k to set Mr, a check must be made of all the
machines that presently are in Mr . The check consists of determining if the directed
arcs between operations that were made earlier for each machine are still optimum.
The optimality may have changed due to the sequence of the operations being specified
on machine k.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 333 — #9

Job Shop Scheduling 333

TABLE 11.5
Job Shop Example Data

Jobs Machine Sequence Processing Times

1 1, 3 1, 2
2 2, 3 3, 1
3 3, 1, 2 2, 1, 1
4 1, 2, 3 3, 2, 1
5 3, 1 2, 1

All the machines from set Mr are resequenced one by one to check if there are
any improvements in the makespan (in the first iteration, Mr is zero). This is done by
temporarily removing a machine, say “J,” from the set Mr. The network is modified
by removing the solid arcs connecting operations on machine “J” and solving for
Tmax (maximum tardiness) for this machine, with the modified arrival times and due
dates based on the temporary modification. The new job sequence is determined for
machine J, and solid lines are constructed between the nodes associated with machine
J based on the new sequence. The makespan for the entire network is calculated based
on this new directional lines added for machine J. If the new makespan is less than or
equal to the previous makespan, then the new lines are maintained; if not, the original
operational sequence on machine J is retained. The checking of each machine from
the set Mr completes this step.

Step 6: Add machine k to Mr. If Mr is equal to M, then STOP the procedure,
otherwise go to step 2.

11.3.1.1 Illustrative Example

Consider the same problem that was illustrated with the SPT rule. For convenience,
the data is reproduced in Table 11.5.

Since we are only interested in determining the bottleneck machine(s), the late
and early penalties for all the jobs (l and e), are 1 and 0, respectively.

The data is represented by Figure 11.2, and the CPM procedure is applied to the
network. The numbers within square brackets “[]” represent the earliest start time for
that node or operation. The numbers within flower braces “{ }” represent the latest
start time for that node or operation. The earliest or latest start time for the END node
denotes the makespan Cmax.

For example, for machine 1, (see Figure 11.2) the processing times for jobs 1,
3, 4, and 5 are 1, 1, 3, and 1, respectively, and their arrival times are 0, 2, 0, and 2,
respectively. The due date for operation 1/1 is 4, the latest time for node 1/3, since
there is only one branch leading from 1/1 that goes to the next eminent node 1/3.
Similarly, the due dates for jobs 3, 4, and 5 are 5, 3, and 6, respectively. Initially,
M = {1, 2, 3}.
Iteration 1
In the first cycle, the set Mr is empty; therefore, we have to determine the minimum
tardiness for all the machines in set M. Since we have assigned the tardiness penalty

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 334 — #10

334 Production Planning and Industrial Scheduling

TABLE 11.6
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 2 0 2
di 4 5 3 6
li 1 1 1 1
ei 0 0 0 0

TABLE 11.7
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 3 3
di 5 6 5
li 1 1 1
ei 0 0 0

TABLE 11.8
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 1 3 0 5 0
di 6 6 4 6 5
li 1 1 1 1 1
ei 0 0 0 0 0

of 1/unit of tardiness, for all jobs, minimization of tardiness penalty is equivalent
to the minimization of the tardiness. We will apply the procedure in Section 7.15 to
determine the penalty value for each machine. The data for each machine is obtained
from the CPM application on Figure 11.2. For each machine, the optimum sequence
and total tardiness are shown next (Tables 11.6, 11.7, and 11.8).
Optimal sequence for machine 1: 4-1-3-5; penalty = 0.
Optimal sequence for machine 2: 2-4-3; penalty = 0.
Optimal sequence for machine 3 is 5-3-2-4-1; penalty = 2.

Choose the machine that has the maximum penalty as the bottleneck machine. In
this case, machine 3 has the maximum penalty, so it is the bottleneck machine. Using

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 335 — #11

Job Shop Scheduling 335

TABLE 11.9
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 4 0 2
di 6 7 3 8
li 1 1 1 1
ei 0 0 0 0

TABLE 11.10
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 5 3
di 4 8 5
li 1 1 1
ei 0 0 0

the optimal sequence for the bottleneck machine as the guide for the precedence, we
connect the operations performed on machine 3 by arcs. We also note the processing
time for each operation on the corresponding arc as shown by the modified network
in Figure 11.3. Add machine 3 to Mr. Now, Mr = {3}. Recompute the earliest and
latest start times for the entire network using Figure 11.3. The new Cmax is (8).

Iteration 2
Since M−Mr = {1, 2}, we develop the optimum sequences for machines 1 and 2 that
would minimize the tardiness penalty. The corresponding pi, ri, di values are taken
from Figure 11.3 (Tables 11.9 and 11.10).
Optimal sequence for machine 1: 4-1-3-5; penalty = 0.
Optimal sequence for machine 2: 2-4-3; penalty = 0.

Choose either machine 1 or machine 2 as the bottleneck machine, since they have
the same penalty. Let us choose machine 2 at random. Using the optimum sequence
for machine 2, modify the network as shown in Figure 11.4, by connecting in sequence
the operations associated with machine 2. Recompute the earliest and latest start times
on Figure 11.4. Cmax remains 8.

At this stage, for the application of step 5, Mr = {3}. The optimum sequence
for machine 3 in the last iteration was 5-3-2-4-1, shown by the connected arcs in
Figure 11.4. The network is now modified by removing machine 3 connections (all
solid lines between jobs on machine 3 are removed), as shown in Figure 11.5. Recom-
pute the early and late start times on Figure 11.5. The data from the solution is used
as the input data for machine 3 reevaluation (Table 11.11).

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 336 — #12

336 Production Planning and Industrial Scheduling

FIGURE 11.4 Machine 2 and 3 solved; Iteration 2.

FIGURE 11.5 Machine 2 solved; Machine 3 removed; Iteration 2.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 337 — #13

Job Shop Scheduling 337

TABLE 11.11
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 1 3 0 5 0
di 6 6 4 6 5
li 1 1 1 1 1
ei 0 0 0 0 0

TABLE 11.12
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 4 0 2
di 6 7 3 8
li 1 1 1 1
ei 0 0 0 0

Optimal sequence: 5-3-2-4-1; penalty = 2.
Since we get the same job sequence as before, we join the operations on machine

3 again, and our network remains the same as in Figure 11.4. There is no improvement
(i.e., Cmax is still 8). Add machine 2 to Mr. Now, Mr = {2, 3}.

Iteration 3
Since machine 1 is the only machine left in M-Mr, it is solved for minimum total
penalty. The data for machine 1 is taken from Figure 11.4 (Table 11.12).
The optimal sequence: 4-1-3-5; penalty = 0.

Modify the network as shown in Figure 11.6 by adding solid lines between oper-
ations for machine 1. Recompute the earliest and latest start times. Cmax remains 8.
At this stage, since Mr = {2, 3}, we resequence machines 2 and 3 for minimum total
penalty and check for any improvement. This is done by removing the solid lines
between operations for machine 3 first as shown Figure 11.7 and determining the
minimum penalty for machine 3 from the resulting condition (Table 11.13).
Optimal sequence on machine 3 is 5-3-2-4-1; penalty = 2.

Since the job sequence does not change, the makespan remains 8. We go back to
the original network in Figure 11.6. Now, remove the solid lines between operations
for machine 2 as shown in Figure 11.8. Recompute the earliest and latest start times.
Machine 2 is now solved for minimum penalty using the data for machine 2 from
Figure 11.8 (Table 11.14).
Optimal sequence on machine 2 is 2-3-4; penalty = 0.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 338 — #14

338 Production Planning and Industrial Scheduling

FIGURE 11.6 Machine 1, 2, and 3 solved; Iteration 3.

FIGURE 11.7 Machine 1 and 2 solved; Machine 3 removed; Iteration 3.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 339 — #15

Job Shop Scheduling 339

TABLE 11.13
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 4 3 0 5 0
Di 6 6 4 6 5
li 1 1 1 1 1
ei 0 0 0 0 0

FIGURE 11.8 Machine 1 and 3 solved; Machine 2 removed; Iteration 3.

TABLE 11.14
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 5 3
di 4 8 5
li 1 1 1
ei 0 0 0

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 340 — #16

340 Production Planning and Industrial Scheduling

FIGURE 11.9 Initial network; Machine 1 to be resolved.

Again, the sequence does not change, and the makespan remains 8. We modify
the network as it was in Figure 11.6. All machines are in set Mr so we have achieved
the optimum job sequences for each machine in Figure 11.6. The optimum makespan
Cmax is 8, which is the completion time of the network in Figure 11.6. The sequence
for each machine is obtained by following job—sequence-connecting arcs for that
machine. In our example, the sequences are machine 1, 4-1-3-5; machine 2, 2-4-3;
and machine 3, 5-3-2-4-1. The corresponding machine loadings are as follows.

Machine 1: 0 (4/3) 3 (1/1) 4 (3/1) 5 (5/1) 6
Machine 2: 0 (2/3) 3 (4/2) 5 (3/1) 6
Machine 3: 0 (5/2) 2 (3/2) 4 (2/1) 5 (4/1) 6 (1/2) 8

11.3.2 TWO-STAGE JOB SHOP SCHEDULING HEURISTIC

The next heuristic presented here is developed by Vancheeswaran and Townsend
[1993]. It also has a goal to minimize the makespan of a job shop schedule. This
is a two-stage heuristic; the first stage develops the initial feasible near-optimum
sequence, and the second stage improves it. The procedure starts with network rep-
resentation of all jobs similar to Figure 11.2, shown here as Figure 11.9. There are
two phases to the procedure. In the first phase, the preliminary sequence of jobs on
each machine is established by using an “urgency criteria.” In the second phase, the
sequences may be improved by analyzing the “critical jobs.”

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 341 — #17

Job Shop Scheduling 341

Phase 1
The steps of the phase 1 are as follows:

1. Calculate earliest times of all nodes in the network.
2. Machine-by-machine, calculate the urgency criterion for all the jobs. Start

with machine 1.
Urgency criterion for job i is defined as job remaining/(job done+PTpi)
where

Job remaining = (ESli + PTli) − ESpi

Job done = ESei + PTei

and

ESli = Earliest start time for the last node of job i

PTli = Processing time for the last node of job i

ESpi = Earliest start time for the present node of job i

PTpi = Processing time for the present node of job i

ESei = Earliest start time for the earlier node of job i

PTei = Processing time for the earlier node of job i

3. Arrange jobs based on the descending order of the urgency criterion. This
gives the job sequence on the machine under consideration.

4. Modify the network. This is done by connecting the nodes for the machine
by arcs in the direction shown by the job sequence established in step 4.

5. Recalculate the earliest start times.
6. Choose the next machine and repeat steps 3–7 until all machines are

sequenced.
7. The earliest start time of the END node would be the makespan, and the

job(s) that has its path equal to the earliest start time of the END node would
be the critical job (the job that forms the critical path is the critical job).

Phase 2

1. Draw up the rank matrix. This is done by ranking jobs on a machine
according to their position in the sequence on that machine.

2. For the critical job, determine on which machine it has the highest rank.
3. On this machine, swap the critical job with the job that has one lower rank

in the list.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 342 — #18

342 Production Planning and Industrial Scheduling

TABLE 11.15
Job Shop Example Data

Jobs Machine Sequence Processing Times

1 1, 3 1, 2
2 2, 3 3, 1
3 3, 1, 2 2, 1, 1
4 1, 2, 3 3, 2, 1
5 3, 1 2, 1

4. Redraw the network. Recalculate the earliest start time and hence, the
makespan based on the modification performed in step 4.

The following rules apply thereafter:

1. If the new makespan is lower than the earlier makespan, then this is the
new schedule on the machine where jobs were swapped. Repeat steps 2
through 5.

2. If the new makespan is higher than the present makespan, revert back to
the earlier schedule and repeat steps 2 through 5 with the next highest rank
for the critical job (it need not be on the same machine where the earlier
calculations were made).

3. If the new makespan is higher than OR equal to the present makespan, AND
if the critical job does NOT change, revert back to the earlier schedule and
repeat steps 2 through 5 with the next highest rank for the critical job.

4. If the new makespan is EQUAL to the present makespan, AND if the
critical job CHANGES, keeping this job as the new critical job, repeat
steps 2 through 5. Sometimes, this might result in an infinite loop. If that
happens, the iterations are stopped using one of the following rules:
a. After a fixed number of iterations
b. If the critical job is preformed first on every machine

11.3.2.1 Illustrative Example

We shall continue with the same example as shown earlier in this chapter. The data
has been reproduced here in Table 11.15 for convenience.

Phase 1
The data in Table 11.15 is transferred as a network. The network is shown in
Figure 11.9. Processing times are shown on the links connecting the nodes. Earliest
start times are calculated and shown in square brackets on top of the node.

Urgency criterion for the jobs on machine 1 are calculated as follows:

Job 1: ((1 + 2) − 0)/(0 + 1) = 3.0
Job 3: ((3 + 1) − 2)/(0 + 2 + 1) = 0.66

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 343 — #19

Job Shop Scheduling 343

FIGURE 11.10 Phase 1, Machine 1 resolved; Machine 2 to be resolved.

Job 4: ((5 + 1) − 0)/(0 + 3) = 2.0
Job 5: ((2 + 1) − 2)/(0 + 2 + 1) = 0.33

Arranging the jobs based on the descending order of urgency criteria, we get the job
sequence of 1-4-3-5.

The network is modified by connecting nodes of machine 1 by solid lines, with the
arrows showing the precedence relationship corresponding to the sequence. This is
shown in Figure 11.10. Recalculate the earliest start times for all the nodes as shown
in [] in Figure 11.10. The next step is to calculate the urgency criteria for all the jobs
on the next machine in the order. The urgency criteria calculations for the jobs on
machine 2 are as follows:

Job 2: ((3 + 1) − 0)/(0 + 3) = 1.33
Job 3: ((5 + 1) − 5)/(4 + 1 + 1) = 0.16
Job 4: ((6 + 1) − 4)/(1 + 3 + 2) = 0.50

Arranging the urgency criteria in the descending order, the job sequence for machine
2 is, 2-4-3. The associated modified network is shown in Figure 11.11. The network is
solved, and the earliest start times for all nodes are determined. The urgency criteria
calculations for the next machine, machine 3, are as follows:

Job 1: ((1 + 2) − 1)/(0 + 1 + 2) = 0.66
Job 2: ((3 + 1) − 3)/(0 + 3 + 1) = 0.25

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 344 — #20

344 Production Planning and Industrial Scheduling

FIGURE 11.11 Phase 1, Machines 1 and 2 resolved; Machine 3 to be resolved.

Job 3: ((6 + 1) − 0)/(0 + 2) = 3.50
Job 4: ((6 + 1) − 6)/(4 + 2 + 1) = 0.14
Job 5: ((5 + 1) − 0)/(0 + 2) = 3.0

Arranging the urgency criteria in a descending order, the sequence on machine 3 is
3-5-1-2-4. The modified network is shown in Figure 11.12.

Since the sequences for all machines have been obtained, the earliest start time of
the last node in Figure 11.12 is the makespan. In this case, the makespan is 8. The job
with the longest path, that is, the critical job, is job 4. This is because the last node of
path for job 4 is machine 3 with early time of 7. Add to that the processing time of
job 4 on machine 3, 1 makes the value of critical path 8.

Phase 2
Note: This phase is unnecessary if the critical job is processed first on all machines.
The rank for a critical job is 1.

Draw the rank matrix. This is done by ranking jobs on a machine according to
their sequence. For example, the job sequence for machine 1 is 1-4-3-5. Hence, as
noted in Table 11.16, the rank for job 1 is 1, the rank for job 4 is 2, the rank for job 3
is 3, and so on. Similarly, the ranks are assigned to jobs on other machines.

Pick the highest rank for the critical job. In this case, the critical job is 4, and
the highest rank is 5 on machine 3. On this machine, swap the critical job with
the job with the next lower ranking. In this case, job 4 is swapped with job 2 on
machine 3.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 345 — #21

Job Shop Scheduling 345

FIGURE 11.12 Phase 1, All Machines resolved; Critical job 4; Makespan=8.

TABLE 11.16
Job Ranks on Machines

Machine 1 Machine 2 Machine 3

Job 1 1 — 3
Job 2 — 1 4
Job 3 3 3 1
Job 4 2 2 5
Job 5 4 — 2

Redraw the network (Figure 11.13). Recalculate the earliest start times and the
makespan. In our example, in Figure 11.13, the makespan remains unchanged at 8,
but the critical job changes from job 4 to job 2.The ranking of jobs after swap is
shown in Table 11.17. The highest rank on the critical job (job 2) is 5, on machine
3. The critical job is swapped with the one with the next lower ranking. In this case,
job 4 is swapped with job 2. Earlier, we had swapped jobs 2 and 4, so this swap
should lead us back to the solution in Table 11.16. This is an example of a loop;
therefore, the procedure is stopped with selecting sequences on each machine from
either Table 11.16 or 11.17.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 346 — #22

346 Production Planning and Industrial Scheduling

FIGURE 11.13 Phase 2, Critical job changes; Network changes; Makespan=8.

TABLE 11.17
Job Ranks with Critical Job Swapped

Machine 1 Machine 2 Machine 3

Job 1 1 — 3
Job 2 — 1 5
Job 3 3 3 1
Job 4 2 2 4
Job 5 4 — 2

11.4 JOB SHOP SCHEDULING TO MINIMIZE
TARDINESS

We now have for each job a known promised delivery date. If a job is completed
after its due date, it is considered late. If the job is completed before the due date, it
is considered to be on time. There is no penalty attached for early completion, while
there is a penalty for late completion that is proportional to the amount of delay.

The objective is to determine, for each machine, the job sequence, so that all the
jobs can be completed within the due date. If this is not possible, then the objective is
to complete all the jobs with minimum total delay, that is, minimum sum of positive
deviation for all the jobs from their respective due dates.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 347 — #23

Job Shop Scheduling 347

A number of approaches have been developed to address this problem. Since SPT
has been found to be very effective in minimization of makespan, many approaches for
tardiness minimization try to take advantage of the SPT rule in a due date environment.
The approach is to develop different queues based on some criteria and then select
a job from a specific queue based on SPT. Six-rule (Eilon and Cotterill, 1968, Eilon
and Chowdhury, 1975), for example, develops two queues. A job whose slack time
(calculated as remaining time minus remaining work) is less than a control parameter
U is placed in the priority queue, while others are placed in non-priority queue. A job
is selected from the priority queue based on SPT; however, if no job is available in
the priority queue, then a job from the non-priority queue is selected based on SPT.
A similar logic is employed by Baker and Kanet (1983) in the MOD rule synonym
for modified operation due date. The MOD value for a job on the imminently needed
machine is selected as the larger of two values: original operation due date (explained
later in the chapter) and its earliest operation completion time (calculated as the current
time plus the operation time). For each job, the MOD is calculated on the machine
job needed next in each time period, and a job is processed using the SPT rule on the
MOD values.

The CEXSPT (stands for conditionally expedited by SPT) approach proposed by
Schultz [20] is an efficient strategy to minimize tardiness. The procedure is also not
too difficult to apply, and it is illustrated in the following.

11.4.1 THE CEXSPT RULE

The CEXSPT rule tries to balance between the SPT rule, which may make jobs with
long processing times late, and rules that are directly related to tardiness, which often
gives priority to jobs with large processing times, making a large number of jobs with
small processing times late.

The rule divides jobs available for scheduling on a machine in three queues.

Queue 1 consists of jobs that are late, that is, those jobs that are already behind
schedule.

Queue 2 consists of jobs that are operationally behind schedule. The job is
operationally behind schedule if the present date is past the milestone date
for the particular operation. The milestone date is set by dividing the available
slack equally for all the operations, and then adding the previous operation
time. This gives an indication of the theoretical latest starting date for the
operation, such that the job has a good chance of being on time.

Queue 3 consists of jobs that are ahead of or on time.

The available job selected with the SPT rule from queue 1 is processed next, unless
doing so creates at least one new late job, in which case the available job selected
with the SPT rule from queue 2 is processed next, provided it does not create a new
operationally late job. If it does, then an available job with the SPT rule from queue
3 is processed next. Jobs that are tied with respect to processing time, than select a
job amongst tied jobs, based on operational due date.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 348 — #24

348 Production Planning and Industrial Scheduling

TABLE 11.18
Data for CEXSPT Rule Application

Job Due Date Machine Sequence Processing Time Operational Due Date

1 5 1, 3 1, 2 2, 5
2 10 2, 3 3, 1 6, 10
3 5 3, 1, 2 2, 1, 1 3, 4, 5
4 8 1, 2, 3 3, 2, 1 4, 7, 8
5 15 3, 1 2, 1 8, 15

The CEXSPT rule is illustrated next by applying it to the modified data from
Table 11.2. Table 11.18 shows the data along with the due dates and operational due
dates for the jobs.

An operational due date is the estimated time when an operation should be com-
pleted for a job to remain on schedule. It includes the processing times of all prior
operations on the job, plus the slack time that may have been allowed so far, plus the
processing and slack time for the present operation. Generally, to calculate operational
due date, the total slack (defined as due date - total operational time) is distributed
equally (as far as possible) among the number of operations associated with the
job. For example, for job 2, the total slack is equal to (10 − (3 + 1)) = 6. It is
equally distributed between two operations, giving the operational due date of the
first operation, that is, operation 2 as: process time + slack = 3 + 3 = 6 and of
operation 3 as: previous operational due date + present operation time + slack in the
operation = 6 + 1 + 3 = 10.

It might be of interest to examine operation (job) 3. The due date is 5, and the
total processing time required is 2 + 1 + 1 = 4. Therefore, there is only one unit of
slack in the operation. Assuming we are working in an integer unit, the slack could
be distributed in any one operation. We choose to assign the slack to the first task for
the job, operation 3.

The schedule based on the CEXSPT rule is shown in Table 11.19. The evaluation
part shows the status of different queues Q1, Q2, and Q3 for each machine. The
entries in each queue represent the job in that, along with its required processing time
on the machine. Q1 lists the jobs that are late, Q2 lists the jobs that are operationally
late, and Q3 list the jobs that are operationally ahead or operationally on time.

The second part of the table lists the job schedule on each machine M1, M2,
and M3.

At time 1, jobs 1 and 4 are available for machine 1, job 2 for machine 2, and jobs
3 and 5 for machine 3. They are all ahead of their operational due dates and are placed
in their respective Q3s. All machines are available. A job from each queue is assigned
to the respective machine based on the SPT rule. The procedure is continued for time
2 and 3. At time 4, machine 2 is free, but no job requiring machine is available, and
therefore the machine is idle. At time 5, machine 1 is free, and jobs 3 and 5 can be
processed. The operational due date for job 3 on machine 1 is 4, and therefore the job
is behind schedule. It is, however, not late since the due date for the job is 5. Job 3

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 349 — #25

Job Shop Scheduling 349

TABLE 11.19
Application of CEXSPT

Evaluations

Machine 1 Machine 2 Machine 3 Schedule

Time Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 M1 M2 M3

1 1/1, 4/3 2/3 3/2, 5/2 1 2 3
2 4/3 4 2 3
3 1/2, 5/2 4 2 1
4 4 — 1
5 3/1 4/2 2/1, 5/2 3 4 2
6 5/2 — 4 5
7 3/1 — 3 5
8 5/1 4/1 5 — 4

TABLE 11.20
Job Completion Times and Due Dates

Job 1 2 3 4 5
Completion time 4 5 7 8 8
Due date 5 10 5 8 15

is placed in Q, and that being the only job in Q, is selected next. At time 6, machine
1 is free, but there is no eligible job available. Job 5, which needs machine 1, must
be processed in machine 3 first and cannot be assigned to machine 1. All the jobs
are processed by time 8, giving a makespan of 8. The completion times of the jobs
and their due dates are shown in Table 11.20. The last operation completion time of a
job gives its completion time. The total delay in the schedule is for 2 time units. The
Gantt chart is given in Figure 7.14.

11.4.2 MINIMIZING PENALTY USING MODIFIED SHIFTING

BOTTLENECK PROCEDURE

Consider the same example as shown in Table 11.1, except now we add the due date
and late and early penalties for each job. The data are shown in Table 11.21.

In the example shown in Table 11.1, three additional parameters (due date and late
and early penalties) are introduced with each job. The objective here is to minimize
the total penalty, that is, if the last operation of job i finishes at time T (the sum of TE
of the last operation and its processing time), then its penalty is given by,

If T − Di > 0, then penalty = (T − Di) × Li; else penalty = (Di − T) ∗ Ei, where
Di, Li, and Ei are the due date and late and early penalties for job I, respectively. The
sum of penalties for all the jobs is the total penalty.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 350 — #26

350 Production Planning and Industrial Scheduling

FIGURE 11.14 Illustration of a daily schedule using the CEXSPT rule.

TABLE 11.21
Data for MODSB Penalty Minimization with Due Date and Late and Early
Penalties

Jobs Machine Sequence Processing Times Due date Late Penalty Early Penalty

1 1, 3 1, 2 5 3 1
2 2, 3 3, 1 7 2 1
3 3, 1, 2 2, 1, 1 6 5 2
4 1, 2, 3 3, 2, 1 8 1 4
5 3, 1 2, 1 4 2 1

For example, in Figure 11.15 the last operation for job 1 is on machine 3. It can start
at time 1 (TE) and has a processing time of 2 units. Therefore, its completion time T is
1 + 2 = 3. Since the due date for job 1 is 5, the penalty on this job is (5 − 3)× 1 = 2.

The MODSB procedure is now modified to include different penalties for dif-
ferent jobs. All the steps in the procedure remain the same except for two changes.
When solving individual machines for minimum penalty sequence, the early and late
penalties of corresponding jobs are used. In the example shown in Table 11.21, the
late and early penalties for job 1 are 3 and 1, respectively.

The second modification is associated with calculations of the due date for each
operation. We shall now call this due date an operational due date di for operation I.
These values are only determined once (at the beginning) in the entire procedure.

The operational due dates are determined in the same manner as was described for
the CEXSPT rule. An operational due date is the estimated time when an operation
should be completed for a job to remain on schedule. It includes the processing times
of all prior operations on the job plus the slack time that may have been allowed so
far plus the processing and slack times for the present operation.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 351 — #27

Job Shop Scheduling 351

FIGURE 11.15 Job shop problem with earliest and latest start times (last operations for all
the jobs shown in thick circles).

To calculate the operational due date, the total slack (defined as due date − total
processing time) is distributed equally among the number of operations associated
with the job. For example, for job 2, the total slack is equal to (7 − (3 + 1)) = 3. It
is equally distributed between two operations (1.5 each), giving the operational due
date of the first operation, that is, operation 2 as: process time+slack = 3+1.5 = 4.5
and of operation 3 as: previous operational due date + present operation time + slack
in the operation = 4.5+1+1.5 = 7. Unlike the CEXSPT rule, this method considers
both integer as well as fractional numbers for operational due dates as in this case, that
is, 4.5 and 7 for operations 2 and 3, respectively. Table 11.22 shows the operational
due dates for all the operations.

We now solve the above-mentioned problem based on the modified procedure.

Iteration 1
Initially, the set Mr is an empty set; therefore, we have to solve all the machines
in M for the minimum total penalty. Compute the early and late start times for
the initial network in Figure 11.15. The corresponding values for pi and ri are
taken from Figure 11.15. Operational due dates di are taken from Table 11.22. For
example, for job 1, operation 1, the operational due date is 2 (Tables 11.23, 11.24,
and 11.25).
Optimal sequence on machine 1 is 1-5-3-4; penalty = 6.
Optimal sequence on machine 2 is 2-4-3; penalty = 6.8.
Optimal sequence on machine 3 is 3-5-1-2-4; penalty = 7.3.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 352 — #28

352 Production Planning and Industrial Scheduling

TABLE 11.22
Data Showing Operational Due Dates for the MODSB Penalty
Minimization

Jobs Machine Sequence Processing Times Due date Operational Due Date

1 1, 3 1, 2 5 2, 5
2 2, 3 3, 1 7 4.5, 7
3 3, 1, 2 2, 1, 1 6 2.7, 4.4, 6
4 1, 2, 3 3, 2, 1 8 3.7 ,6.4, 8
5 3, 1 2, 1 4 2.5, 4

TABLE 11.23
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 2 0 2
di 2 4.4 3.7 4
li 3 5 1 2
ei 1 2 4 1

TABLE 11.24
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 3 3
di 4.5 6 6.4
li 2 5 1
ei 1 2 4

TABLE 11.25
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 1 3 0 5 0
di 5 7 2.7 8 2.5
li 3 2 5 1 2
ei 1 1 2 4 1

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 353 — #29

Job Shop Scheduling 353

Choose the machine that has the maximum penalty. In this case, machine 3 has
the maximum penalty, so we choose machine 3. Modify the network by adding solid
lines between operations of machine 3, as shown in Figure 11.16. Recompute the
early and late start times. Cmax is 8. Add machine 3 to Mr. Now, Mr = {3}. The total
penalty for the partial schedule (all jobs have not been processed by all machines) is
9 as shown in the following.

Job Due Date Completion Time Early Penalty Late Penalty

1 5 6 3
2 7 7
3 6 4 4
4 8 8
5 4 5 2

Iteration 2
Since M - Mr = {1, 2}, we solve machine 1 and 2 for minimum total penalty. The
corresponding pi and ri, are taken from Figure 11.16. The corresponding operational
due dates di are taken from Table 11.22.
Optimal sequence on machine 1 is 1-4-3-5; penalty = 8.7.
Optimal sequence on machine 2 is 2-4-3; penalty = 6.8.

FIGURE 11.16 Machine 3 connected; Iteration 1.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 354 — #30

354 Production Planning and Industrial Scheduling

TABLE 11.26
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 2 0 4
di 2 4.4 3.7 4
li 3 5 1 2
ei 1 2 4 1

TABLE 11.27
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 3 3
di 4.5 6 6.4
li 2 5 1
ei 1 2 4

TABLE 11.28
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 1 3 0 6 0
di 5 7 2.7 8 2.5
li 3 2 5 1 2
ei 1 1 2 4 1

Choose machine 1 since it has a higher penalty between machines 1 and 2
(Tables 11.26 and 11.27). Modify the network by adding solid lines between oper-
ations of machine 1, as shown in Figure 11.17. Recompute the early and late start
times. Cmax remains 8, and the total penalty decreases to 7. At this stage, since
Mr = {3}, operations for machine 3 are removed, the network is modified as shown
in Figure 11.17 (i.e., all solid lines between jobs on machine 3 are removed), and
machine 3 is solved to minimize the total penalty (Table 11.28). The data for ri, pi,
are taken from Figure 11.18. Operational due dates di are taken from Table 11.22.
Optimal sequence is 3-5-1-2-4; penalty = 7.3.

Since we get the same job sequence, we join the operations on machine 3 with
solid lines again, and our network remains the same as in Figure 11.17. There is no

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 355 — #31

Job Shop Scheduling 355

FIGURE 11.17 Machines 1 and 3 connected; Iteration 2.

TABLE 11.29
Data for Machine 2

Jobs 2 3 4

pi 3 1 2
ri 0 5 4
di 4.5 6 6.4
li 2 5 1
ei 1 2 4

improvement (i.e., Cmax is still 8, and the total penalty is 7). Add machine 1 to Mr.
Now, Mr = {1, 3}.
Iteration 3
Since machine 2 is the only machine left in M − Mr , it is solved for minimum
total penalty (Table 11.29). The data for machine 2 is taken from Figure 11.16 and
Table 11.22.
Optimal sequence on machine 2 is 2-3-4; penalty = 3.7.

Modify the network by joining with solid lines the sequence of operations of
machine 2, as shown in Figure 11.19. Recompute the early and late start times.
Cmax increases to 9, and the total penalty increases to 8. At this stage, since Mr =
{1, 3} we resequence machine 3 and 1 for minimum total penalty and check for

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 356 — #32

356 Production Planning and Industrial Scheduling

FIGURE 11.18 Machine 1 connected; Machine 3 removed; Iteration 2.

TABLE 11.30
Data for Machine 3

Jobs 1 2 3 4 5

pi 2 1 2 1 2
ri 1 3 0 8 0
di 5 7 2.7 8 2.5
li 3 2 5 1 2
ei 1 1 2 4 1

any improvement. This is done by removing the solid lines between operations for
machine 1 first as shown Figure 11.20. Recompute the early and late start times. Then,
machine 3 is solved for minimum total penalty (Table 11.30). The data for machine
3 is taken from Figure 11.20 and Table 11.22.
Optimal sequence on machine 3 is 3-5-1-2-4; penalty = 8.3.

Since the job sequence does not change, the makespan remains 9 and the total
penalty 8. We modify the network as shown in Figure 11.19. Now, remove the solid
lines between operations for machine 3 as shown in Figure 11.21. Recompute the early
and late start times. Then, machine 1 is solved for minimum penalty (Table 11.31).
The data for machine 1 is taken from Figure 11.21 and Table 11.22.
Optimal sequence on machine 1 is 1-4-3-5; penalty = 8.7.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 357 — #33

Job Shop Scheduling 357

FIGURE 11.19 Machines 1, 2, and 3 connected; Iteration 3 (the last operations for all the
jobs shown in thick circles).

FIGURE 11.20 Machines 1 and 2 connected; Machine 3 removed; Iteration 3.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 358 — #34

358 Production Planning and Industrial Scheduling

FIGURE 11.21 Machines 2 and 3 connected; Machine 1 removed; Iteration 3.

TABLE 11.31
Data for Machine 1

Jobs 1 3 4 5

pi 1 1 3 1
ri 0 2 0 4
di 2 4.4 3.7 4
li 3 5 1 2
ei 1 2 4 1

Again, the sequence does not change; the makespan remains 9, and the total
penalty 8. We modify the network back as shown in Figure 11.19. Finally, compute
the early and late start times. The optimum makespan Cmax is 9, and the optimum
total penalty is 8. Associated Gantt chart is shown in Figure 11.22 and the penalty
calculations are as follows:

Penalty

Due Completed Early Late

Job 1 5 6 3
Job 2 7 7 — —
Job 3 6 6 — —
Job 4 8 9 — 1
Job 5 4 6 4

Total 8

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 359 — #35

Job Shop Scheduling 359

FIGURE 11.22 Gantt chart for MODSB penalty minimization example.

11.4.3 OPTIMIZING TOTAL PENALTY AND MAKESPAN USING

MODSB (DUAL CRITERIA)

The job shop problems that have been discussed so far have focused their objective
on either minimization of total tardiness (penalty) or makespan minimization. Some-
times, we may come across a situation where more than one criterion needs to be
examined simultaneously. For example, in a job shop if there is a penalty associated
with each job being late or early, and there is also a fixed daily overhead cost based
on the makespan, then both total penalty costs as well as the overhead costs become
equally important. In such a case, an optimum mix of the dual criteria is required.

The MODSB procedure described earlier, for both makespan minimization as
well as total penalty minimization, is combined in this section. The objective is to
achieve a good mix of both total penalty as well as makespan.

The procedure remains the same as described for MODSB for penalty minimiz-
ation, except that the due date for the operations (when solving individual machines
for minimum penalty sequence) or operational due date is calculated as the minimum
of equal slack due date (ESD) or network-based due date, which are defined below.

The operational due date obtained when we considered penalty function alone
is now denoted as ESD. The due date that is obtained based on the network when
solving MODSB makespan minimization problem is now called network-based due
date (NBD). Note that the NBD changes every time the network changes, whereas
the ESD remains the same throughout.

Every time a machine is solved for minimum penalty sequence, the NBD is
determined. The operational due dates for all the operations of the machine under
consideration are given by the minimum of either NBD or ESD.

Applying this procedure for the example shown in Table 11.32 gives a makespan
of 36 and a total penalty of 59. The job schedule on each machine is as follows. The
numbers enclosed within parentheses indicate start time for the job.

Machine 1: 6 (5/7) 13 (6/6) 19 (3/3) 22 (4/6) 28
Machine 2: 0 (1/7) 7 13 (5/6) 19 (4/1) 20 28 (3/6) 34
Machine 3: 0 (6/4) 4 (4/3) 7 (2/6) 13 19 (5/1) 20
Machine 4: 0 (3/15) 15 (1/11) 26 (6/3) 29 (4/4) 33 (5/3) 36
Machine 5: 0 (2/3) 3 (5/3) 6 19 (6/15) 24 (3/4) 28 (1/2) 30 33 (4/2) 35

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 360 — #36

360 Production Planning and Industrial Scheduling

TABLE 11.32
Six-Job-Five-Machine Job Shop Data for Dual-Criteria Optimization
Problem

Jobs Machine Sequence Processing Times Due Date Late Penalty Early Penalty

1 2, 4, 5 7, 11, 2 33 11 4
2 5, 3 3, 6 11 4 1
3 4, 1, 5, 2 15, 3, 4, 6 32 1 0
4 3, 2, 1, 4, 5 3, 1, 6, 4, 2 47 2 2
5 5, 1, 2, 3, 4 3, 7, 6, 1, 3 27 1 0
6 3, 1, 5, 4 4, 6, 5, 3 28 4 3

FIGURE 11.23 Illustration of a schedule obtained using MODSB (dual criteria).

Applying the procedure described in MODSB penalty minimization gives a better
total penalty of 54, but the makespan increases to 42. The schedule for each machine
is as follows.

Machine 1: 6 (5/7) 13 (6/6) 19 (3/3) 22 (4/6) 28
Machine 2: 0 (1/7) 7 13 (4/1) 14 26 (3/6) 32 (5/6) 38
Machine 3: 0 (6/4) 4 (2/6) 10 (4/3) 13 38 (5/1) 39
Machine 4: 0 (3/15) 15 (1/11) 26 31 (6/3) 34 (4/4) 38 39 (5/3) 42
Machine 5: 0 (2/3) 3 (5/3) 6 22 (3/4) 26 (6/5) 31 (1/2) 33 38 (4/2) 40

The Gantt chart is given in Figure 11.23.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 361 — #37

Job Shop Scheduling 361

11.5 SUMMARY

Job shop and open shop are the most generalized and complex production systems.
There are a number of heuristic procedures or rules to schedule these systems, and
this chapter illustrates few old and few new approaches. One of the popular rules,
which is also easy to apply, is the SPT rule. The SPT rule is found to perform well in
minimizing makespan for a job shop that is mostly evenly loaded.

There are network-based methods that perform good in minimizing makespan
for an evenly or not so evenly loaded job shop. Two methods are introduced
here. They are: shifting bottleneck heuristic and two-stage scheduling heuristic by
Vancheeswaran and Townsend. Both methods are illustrated by a simple example,
and computer programs are provided on the size mentioned in introduction for larger
size problems.

Just like a single-machine problem, minimization of tardiness in job shop requires
different logic than the one used in the minimization of makespan. Two procedures
are illustrated. The first is the CEXSPT rule, and a new procedure using shifting
bottleneck as the base. Unlike the CEXSPT rule, where all jobs have the same weights
and only tardiness is measured, the new procedure allows different penalty values
for each job and minimizes the total penalty, which includes both the early and late
penalties. Another extension of the shifting bottleneck procedure is introduced that
can work with the dual criteria of makespan and penalty.

11.6 PROBLEMS

11.1 Using the SPT rule, develop a schedule that minimizes makespan for the
following jobs:

Machine
Sequence

Processing
Times

Job 1 2, 3 1, 1
Job 2 3, 1 3, 2
Job 3 1, 2, 3 2, 3, 3
Job 4 2, 1, 3 1, 1, 3
Job 5 1, 3, 2 2, 3, 2

11.2 Using the SPT rule, develop a schedule that minimizes makespan for the
following jobs:

Machine
Sequence

Processing
Times

Job 1 1, 2, 3, 4 1, 3, 5, 4
Job 2 2, 4, 1 6, 2, 4
Job 3 4, 3, 2 5, 1, 2
Job 4 3, 2, 1 3, 4, 1

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 362 — #38

362 Production Planning and Industrial Scheduling

11.3 Using the modified shifting bottleneck heuristic, minimize the makespan for
the jobs given in Problem 11.1. The late and early penalties for the jobs are
1 and 0, respectively.

11.4 Using the modified shifting bottleneck heuristic, minimize the makespan for
the jobs given in Problem 11.2. The late and early penalties for the jobs are
1 and 0, respectively.

11.5 Using the two-stage job shop heuristic by Vancheeswaran and Townsend,
minimise the makespan of the jobs in the following network:

11.6 Using the two-stage job shop heuristic by Vancheeswaran and Townsend,
minimize the makespan of the jobs in the following network:

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 363 — #39

Job Shop Scheduling 363

11.7 Using the CEXSPT rule, develop a schedule to minimize tardiness for the
following jobs:

Due Date
Machine
Sequence

Processing
Time

Job 1 7 2, 3 1, 1
Job 2 15 3, 1 3, 2
Job 3 18 1, 2, 3 2, 3, 3
Job 4 6 2, 1, 3 1, 1, 3
Job 5 23 1, 3, 2 2, 3, 2

Compare your results with those obtained by using the modified shifting
bottleneck heuristic.

11.8 Develop a schedule to minimize tardiness for the jobs listed below using the
CEXSPT rule.

Due Date
Machine
Sequence

Processing
Time

Job 1 21 1, 2, 3, 4 1, 3, 5, 4
Job 2 29 2, 4, 1 6, 2, 4
Job 3 38 4, 3, 2 5, 1, 2
Job 4 10 3, 2, 1 3, 4, 1

Compare your results with those obtained by using the modified shifting
bottleneck heuristic.

11.9 M/s Smith & Co. manufactures jobs to specifications at its factory. Its
machinery includes a milling machine, a lathe, and a radial drilling machine.
As of the current quarter, the company has either completed all orders or
intends to do so by the end of the quarter. The marketing department has been
working with current customers and has identified a total of four jobs that
will have a constant demand for at least two years. In view of the promising
trend, product development suggests replacing the lathe (still in good condi-
tion) with a new CNC lathe so as to reduce the makespan. With the help of the
data given in the following table, make your recommendation as to whether
the company should replace the lathe. Solve this case using the two-stage job
shop scheduling heuristic.

Sequence of Operations
Processing

Time

Job 1 Turning, milling, drilling 5, 7, 2
Job 2 Turning, milling 6, 6
Job 3 Milling, drilling, turning 4, 8, 5
Job 4 Drilling, milling 5, 6

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 364 — #40

364 Production Planning and Industrial Scheduling

Processing times for the jobs on the new CNC lathe are estimated to be job 1, 4;
job 2, 5; and job 3, 5.

11.10 Lock Fasteners Co. manufactures fasteners on a mass scale. Its machinery
includes a multispindle drilling machine, a milling, a lathe, and an SPM
(special purpose machine) for thread cutting. Because of diminishing market
demands, the company has decided to manufacture only per order. This has
brought in an excess capacity of 25 minutes per cycle. One of its customers
has two assembly lines. Line 1 needs jobs 1, 3, and 4, and line 2 needs
jobs 2, 5, and 6. Lock Fasteners can feed either one of the lines. For every
minute beyond the available 25 minutes, there is a penalty of $1.25 per minute
accounting for overtime and other expenses. If the company does not take up
the order, it stands to lose $0.40 per minute from idle time costs. Make your
recommendations as to whether Lock Fasteners should take up the order, and
if they have to take up an order, which line should they feed? Solve this
problem using the modified shifting bottleneck heuristic.

Sequence of Operations
Processing

Time

Job 1 Milling, drilling, threading 10, 5, 9
Job 2 Turning, drilling, threading 7, 4, 10
Job 3 Drilling, milling 7, 12
Job 4 Drilling, milling, threading 7, 8, 12
Job 5 Milling, turning, drilling 8, 5, 12
Job 6 Drilling, threading 7, 5

11.11 Visor Industries has recently started a small project that involves an extensive
market survey. There are four salespeople on the team taking charge of four
different subprojects. Each salesperson has a set of customers. Because of
vicinity and other prioritizing criteria, the salespeople conduct business per
the following schedule:

Salesperson 1 Sector 1, Sector 3, Sector 2
Salesperson 2 Sector 2, Sector 1, Sector 3
Salesperson 3 Sector 1, Sector 3
Salesperson 4 Sector 3, Sector 2, Sector 1

Although they may discuss different business, there cannot be two salespeople
at any one sector. They use company vans to go from the home office to a
sector and back. If a salesperson wants to go to a sector, he or she must use the
van scheduled for that particular sector. The vans are scheduled as follows:

Van A To and from Sector 1
Van B To and from Sector 2
Van c To and from Sector 3

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 365 — #41

Job Shop Scheduling 365

The salespeople’s time is spent as shown:

Sector #1 Sector #2 Sector #3

One-Way
Travel Time

Time Spent
on Business

One-Way
Travel Time

Time Spent
on Business

One-Way
Travel Time

Time Spent
on Business

Salesperson 1 10 30 7 20 12 10
Salesperson 2 12 20 8 20 15 25
Salesperson 3 8 30 5 15 10 20
Salesperson 4 10 22 5 12 10 30

Identiy a feasible and efficient way to schedule these salesperson on the
sectors. (Hint: Salesperson = Jobs; Sectors = Machines; Operation time =
Total travel time + Business time.)

REFERENCES AND SUGGESTED READINGS

Adams, J., Balas, E., and D. Zawack. (March 1988). “The Shifting Bottleneck Procedure for
Job Shop Scheduling,” Management Science, 34 (3), 391–401.

Anderson, E.J., and J.C. Nyirenda. (1990). “Two New Rules to Minimize Tardiness in a Job
Shop,” International Journal of Production Research, 28, 2277–2292.

Baker, K.R. (1984). “Sequencing Rules and Due-Date Assignments in a Job Shop,”
Management Science, 30, 1093–1104.

Baker, K.R., and J.J. Kanet. (1983). “Job Shop Scheduling with Modified Due-Dates,” Journal
of Operations Management, 4,11–21.

Balas, E. (November 1969). “Machine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm,” Operations Research, 17, 941–957.

Bowman, F.H. (1959). “The Schedule-Sequencing Problem,” Operations Research, 7,
621–624.

Carlier, J. (1982). “The One Machine Sequencing Problem,” European Journal of Operations
Research, 11, 42–47.

Conway, R.W. (1965). “Priority Dispatching and Job Lateness in a Job Shop,” Journal of
Industrial Engineering, 16(4), 228–237.

Conway, R.W., Maxwell, W.L., and L. Miller. (1967). Theory of Scheduling, Addison-Wesley,
Reading, MA.

Eilon, S., and I.G. Chowdhury (1976). “Due Dates in Job Shop Scheduling,” International
Journal of Production Research, 14 (2), 223–237.

Eilon, S., and D.J. Cotterill. (1968). “A Modified SI Rule in Job Shop Scheduling,”
International Journal of Production Research, 7, 135–145.

Eilon, S., and R.M. Hodgson. (1967): “Job Shop Scheduling with Due Dates,” International
Journal of Production Research, 6, 1–13.

Elvers, D.A. (1973). “Job Shop Dispatching Using Various Due Date Setting Criteria,”
Production and Inventory Management, 14(4), 62–69.

Manne, A.S. (1960). “On the Job-Shop Scheduling Problem,” Operations Research, 8,
219–223.

Muth, J.F., and G.L. Thompson. (1963). “Industrial Scheduling,” Prentice Hall, Englewood
Cliffs, NJ.

Dileep: “44206_c011” — 2007/9/17 — 15:08 — page 366 — #42

366 Production Planning and Industrial Scheduling

Nasr, N., and E.A. Elsayed, (1990). “Job Shop Scheduling with Alternative Machines,”
International Journal of Production Research, 28(9), 1594–1609.

Schultz, C.R. (1989). “An Expediting Heuristic for the Shortest Processing Time Dispatching
Rule,” International Journal of Production Research, 27, 31–41.

Spachis, A.S., and J.R. King. (1979). “Job Shop Scheduling Heuristics with Local Neighbor-
hood Search,” International Journal of Production Research, 17(6), 507–526.

Vancheeswaran, R., and M.A. Townsend. (1993). “TwoStage Heuristic Procedure for
Scheduling Job Shops,” Journal of Manufacturing Systems, 12 (4), 315–325.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 367 — #1

12 Open-Shop Scheduling

Open shop is the processing of jobs where there is no definite sequence of operations
that a job must follow. As long as all the operations needed for the job are done, the
job is done. This gives much flexibility in scheduling, but also makes it difficult to
develop rules that gives an optimum sequence for every problem.

12.1 MINIMIZE MAKESPAN: TWO-MACHINE
PROBLEM

A simple rule that has proven to give optimum results for two-machine open-shop
problems is given by Pinedo (1995). The rule is called “longest alternate processing
time first” (LAPT) rule. According to LAPT rule, whenever a machine is available,
apply the appropriate job selection procedure: for machine 1, select the job with the
largest processing time on machine 2 and for machine 2 select the job with the largest
processing time on machine 1.

For example, consider the two-machine open-shop problem for which the data
is given in Table 12.1. The total times required on machine 1 and 2 are 20 and 13,
respectively, with the maximum of 20. The maximum time for the jobs is associated
with job 2 and is equal to 13. Therefore, the makespan cannot be less than the
maximum of 20 and 13, that is, 20.

Job 1

Any job can be processed on any machine in any sequence

Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

Lathe
Milling

machine

Drilling
M/C

Slotting
M/C Grinding

machine

FIGURE 12.1 Scheduling for open shop scheduling.

367

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 368 — #2

368 Production Planning and Industrial Scheduling

TABLE 12.1
Data for an Open-Shop Problem

Machines

Jobs 1 2 Total Time Required for Jobs

1 2 3 5
2 5 8 13
3 6 2 8
4 7 0 7
Total time
on machine 20 13

Based on the data, the sequence of operations in machine 1 and 2 should be as
follows, if the jobs are available for processing when the machines are free.

Machine 1: 2-1-3-4
Machine 2: 4-3-2-1

The jobs are placed in the sequence on each machine using the descending order
of processing times in the other machine. For example, on machine 2, the descending
order of processing times is 8, 3, 2, and 0. The corresponding sequence of jobs on
machine 1 is 2-1-3-4.

Based on the sequence, the jobs are scheduled if they are available. Since machine
1 has the largest time requirement, that is, it is bottleneck machine, it is sequenced first.
A time-job diagram (Gantt chart) helps in identifying availability or non-availability
of a job when they are suppose to be scheduled. The time is displayed on x-axis, and
the numbers between two bars and on the top of the line display the job number.

In the data, job 4 has the largest processing time on machine 1 but it does not
require processing on machine 2. So the next job with the largest processing time on
machine 1, that is, job 3, is selected as the first job on machine 2. The processing
of job 2 is completed at time 3. The next job in the sequence is job 2. The job is
presently being processed on machine 1 and is not available; therefore, the next job
in the sequence, job 1, is selected. The entire schedule is displayed in Figure 12.2, as
well as in Table 12.2 (the numbers in the parenthesis indicate the completion times
of the jobs).

12.2 MINIMIZE MAKESPAN: MULTIPLE-MACHINE
PROBLEM

In the case of a multiple machines (including two machines), scheduling jobs based
on the longest total processing time (LTPT) rule, described next, leads to schedule
that provides minimum makespan. The minimum makespan still cannot be less than

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 369 — #3

Open-Shop Scheduling 369

Machine 1

Machine 2

0

3

0 2 5 13

1 2

5 7 13 20

4312

FIGURE 12.2 Gant charts for scheduling on two machines.

TABLE 12.2
Solution to the Two-Machine Problem

Machines

Jobs 1 2

2 (5) 3 (2)
1 (7) 1 (5)
3 (13) 2 (13)
4 (20) —

TABLE 12.3
Job-Machine Table (Iteration 1)

Machines Time When Job Is Available
for Next Assignment (TJA-Next)

1 2 3 4 Job Total

Jobs 1 7 5 2 5 19 7
2 7 1 8 8 24 8
3 6 2 4 8 20 8
4 2 8 9 5 24 0
5 2 1 6 3 12 0
6 6 3 7 3 19 0

Time when machine is 7 0 8 8
available for next
assignment(TMA-next)

the maximum of either maximum processing time on any machine or the maximum
time required for a job.

The steps of LTPT procedure are as follows:

Step 1: Construct a job-machine table as shown in Table 12.3. The table shows the
processing time of each job on each machine it uses. Calculate the total processing
time for each job by summing the processing times on the associated machines.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 370 — #4

370 Production Planning and Industrial Scheduling

TABLE 12.4
Work Table I

First Half Second Half

Machines TJA-Next Minimum Time When Jobs Can
be Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 – 5 2 5 12 7 − 7 8 8
2 7 1 − 8 16 16 8 8 − 8
3 6 2 4 − 12 12 8 8 8 −
4 2 8 9 5 24 8 8 0 8 8
5 2 1 6 3 12 0 7 0 8 8
6 6 3 7 3 19 0 7 0 8 8

TMA-next 7 8 12 16

Step 2: Select the job with the maximum total processing time. Schedule that job on
the machine on which it has the largest processing time, if the machine is available.
If the machine is not available, go to the next job in descending order of the total
processing time. Repeat the step for all jobs. Once the jobs have been assigned, find
the time when the jobs will be available for the next assignment on the remaining
machines. This will be the processing time for the jobs on the machines on which they
have been assigned. If a job has not been assigned, this time will be zero. Similarly,
find the time when the machine is free to accommodate the next job assigned to it.
This will be the processing time for the job that has been assigned on that machine.
If no job has been assigned to a machine, this time will be zero. These values are
recorded in the job-machine table.

Step 3: Develop a new work table by eliminating the processing times for the jobs
from the machines on which they have been assigned and recording other processing
times as shown in Table 12.4. Record the total of remaining time of processing (RTP)
still required for each job. This new table should also include the minimum time
when the jobs can be placed on the machines on which they are yet to be assigned.
Suppose a particular job i is to be assigned on machine k, then the minimum time
when job i can be placed on machine k, will be Max {time when job i is available,
time when machine k is free}. The values for these comparisons are obtained from
the last column and last row of job-machine table (Table 12.3) for the first iteration
and immediate previous work table in the successive iterations. Record these entries
in the second half of the work table associated with when the jobs can be placed on
the machines (e.g., Table 12.4).

Step 4: Select the job with the maximum remaining total processing time. For that
job, find the minimum time when it can be placed on the machines. Check whether
this is also the minimum time when the machine can be assigned to a job. This is

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 371 — #5

Open-Shop Scheduling 371

equivalent to checking each row and each column of the second half of the work
table and checking to see if the minimum for both is the same element. If yes, then
assign that job to the machine. Continue the check for the job with the next highest
remaining processing time by repeating step 4. Go to next step when all the jobs with
positive value for RCT are examined.

Step 5: Once all the possible assignments are made, find the time when the jobs will
be available for assignment on the remaining necessary machines (TJA-next). This
can be obtained as follows:

If a job has been assigned in the current iteration, this time will be the sum of
the processing time for the job on the machine on which it has been assigned and
the corresponding minimum time when the job can be placed on that machine. This
requires looking at the data points in both halves of the work table as will become
clear from the illustrative example.

If the job has not been assigned in the current iteration, this time will be the same
as in the previous iteration. This data is obtained from the previous work table (use
job-machine table for the first iteration).

The data is recorded in the central column in the work table that separates the two
halves of the table.

Step 6: Find the time when the machine will be free to accommodate the next job
assigned to it (TMA-next). This can be obtained as follows:

1. If a job has been assigned to the machine in the current iteration, this time
will be the sum of the processing time for the job on that machine and the
time when the job was placed on that machine.

2. If a job has not been assigned to the machine in the current iteration, this
time will be the same as in the previous iteration.

Step 7: Repeat steps 3–7 until all the jobs have been assigned.

12.2.1 ILLUSTRATIVE EXAMPLE

Consider an open-shop problem of scheduling six jobs on four machines. The pro-
cessing time for each job on each machine is given in the job-machine Table 12.3.
We wish to develop a sequence of operation on each machine that will minimize the
makespan for all six jobs.

The total processing time for each job is indicated in the column job total.
Similarly, the total processing time required on each machine is indicated by row
Machine Total. The makespan cannot be less than 36, the maximum of these numbers.
The sequencing procedure is illustrated next, as we follow the iterations.

Iteration 1: Select either job 2 or 4 since both have the maximum total processing
time. In our example, let us select job 2 arbitrarily. We can assign job 2 to either
machine 3 or 4 since it has the largest processing times on these machines. We again
assign the job 2 arbitrarily on machine 3. The next job to sequence is job 4. It also has
the largest processing time on machine 3, but since that machine is already assigned,

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 372 — #6

372 Production Planning and Industrial Scheduling

we move to the next job, Job 3. It can be assigned to machine 4. Continuing the
procedure, the only other job that can be assigned is job 1 to machine 1.

Next, we find the time when the jobs are available for the next assignment. Since
jobs 1, 2, and 3 are presently assigned on machines 1, 3, and 4, respectively, their
available time is the processing time for those jobs on the corresponding machines.
The remaining jobs are not assigned to any machines presently, and therefore, they
are available right now, at time zero. These values are recorded in the last column of
Table 12.3.

Now, we find the time when the machines are free to accommodate the next job
assignment. Since machines 1, 3, and 4 are loaded with jobs 1, 2, and 3, respectively,
this time is the processing time for those jobs on the corresponding machines, or 7,
8, and 8 for machines 1, 3, and 4, respectively. Since, machine 2 is not loaded with
any job yet, it is available at time zero. These values are recorded in the last row of
Table 12.3.

Iteration 2: Develop the work table, Table 12.4. Note, the column TJA-next defines
when job will be available to the next table calculations and entries are determined
at the end or completion of first and second half of the present table. The column
TJA-next is shown in the center because it uses information from first and second
halves of the table. The entries in the first half of the table are the processing times of
the jobs on the machines that are yet to be processed. These are obtained by eliminating
the processing times for the jobs that have already been placed on the machines in the
previous iteration. In this case, we eliminate the processing times for jobs 1, 2, and 3
from machines 1, 3, and 4, respectively. The remaining total processing time for each
job is obtained and displayed in the column RTP (remaining total processing time).

Next, we construct the second half of Table 12.4. These entries display the min-
imum time when the jobs can be placed on machines. Suppose we want to assign job
2 on machine 1. The minimum time when job 2 can be assigned to machine 1 is Max
{time when job 2 is available, time when machine 1 is free}, which is Max {8, 7},
which is 8. Both these values are obtained from the entries in the last column and last
row of Table 12.3. Thus, the minimum time when job 2 can be assigned to machine
1 is 8. This is the entry in the second half of the table under M3 (machine 3) and row
for job 2. Similarly, we find the minimum times when the other jobs can be placed
on the machines and record the data appropriately in the table.

Select job 4 since it has the maximum total remaining processing time of 24. The
minimum time when it can be placed on the machines is 0, the time on M2 in the
second half of the table for job 4. Also, the minimum time when machine 2 can be
assigned to any job is 0 (the minimum value in column M2). Since these two values
are equal, assign job 4 to machine 2. Indicate it by bolding the associated numbers
in both halves of the table. Check for the next job, that is, job 6. The minimum time
when it can be placed on a machine is 0, that is, the time on M2. But machine 2 is
already assigned to job 4, and therefore, we cannot assign job 6 to it. Similarly, we
check for the other jobs and find that job 2 may be assigned to machine 4 and job 3
to machine 3.

Now, we must find the time when the jobs are available for the next assignment.
Since jobs 2, 4, and 3 have been assigned in the current iteration, this time will be the

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 373 — #7

Open-Shop Scheduling 373

TABLE 12.5
Work Table II (Iteration 3)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 — 5 2 5 12 13 — 8 12 16
2 7 1 — — 8 16 16 16 — —
3 6 2 — — 8 12 12 12 — —
4 2 — 9 5 16 8 8 — 12 16
5 2 1 6 3 12 0 7 8 12 16
6 6 3 7 3 19 13 7 8 12 16

TJM-next 13 13 12 16

sum of the processing time for these jobs on the machines on which they have been
assigned, and the corresponding minimum time when these jobs can be placed on
those machines. The numbers are obtained by looking at bold entries on both halves
of the table. For example, this time for job 2 is 8+8 = 16, for job 4 is 8+0 = 8, and
for job 3 it is 4 + 8 = 12. For the other jobs that are not assigned in this iteration, that
is, jobs 1, 5, and 6, these times are the same as in the previous iteration. The times
are noted in the central or TJA-next column of Table 12.4.

Now, find the time when each machine will be free to accommodate the next job.
Since machines 2, 3, and 4 have been loaded with jobs 4, 3, and 2, respectively,
this time is the sum the processing time for those jobs on these machines and the
corresponding minimum time when the jobs can be placed on those machines. Thus,
the time is 8 + 8 = 16 for machine 4, 4 + 8 = 12 for machine 3, and 8 + 0 = 8 for
machine 2. For the other machines on which assignments are not made in the current
iteration, the times remain the same as in the previous iteration. All the values are
recorded in the last row or TMA-next row, of the first half of Table 12.4.

Iteration 3: Develop work Table 12.5. Again, we eliminate the processing times for
the jobs assigned in the previous iteration, that is, jobs 2, 3, and 4 from machines 4,
3, and 2, respectively. The remaining total processing time for each job is obtained
and displayed in the column RTP.

Next, we construct the second half of Table 12.5. These entries display the min-
imum time when the jobs can be placed on the machines. Suppose we want to assign
job 4 on machine 3. The minimum time when job 4 can be assigned to machine 3
will be Max {time when job 4 is available, time when machine 3 is free}, which is
Max {8, 12}, which is 12. Both of these values are obtained from the entries in the
last column (TJA-next column) and last row (TMA-next) of Table 12.4. Thus, the
minimum time when job 4 can be assigned to machine 3 is 12. This is the entry in the

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 374 — #8

374 Production Planning and Industrial Scheduling

second half of the table under M3 (machine 3) and row for job 4. Similarly, we find
the minimum time when the other jobs can be placed on the machines and record the
data appropriately in Table 12.5.

Select job 6 since it has the maximum total processing time of 19. The minimum
time when it can be placed on the machines is 7, the time on M1 in the second half of
the table for job 6. Also, the minimum time when machine 1 can be assigned to any
job is 7 (the minimum value in column M1). Since these two values are equal, assign
job 6 to machine 1, indicate it by bolding of associated numbers in both halves of the
table. Check for the next job, that is, job 4. The minimum time when it can be placed
on a machine is 8, that is, the time on M1. But machine 1 is assigned to job 6, and
hence job 4 cannot be placed on machine 1. Similarly, we check other jobs and find
that job 1 can be assigned to machine 2 and job 6 can be assigned to machine 1.

Now, we must find the time when the jobs are available for the next assignment.
Since jobs 1 and 6 have been assigned in the current iteration, this time will be the
sum of the processing time for these jobs on the machines on which they have been
assigned and the corresponding minimum time when these jobs can be placed on those
machines. The numbers are obtained by looking at bold entries on both halves of the
table. For example, this time for job 1 is 5 + 8 = 13, and for job 6 it is 6 + 7 = 13.
For the other jobs that are not assigned in this iteration, these times are the same as
in the previous iteration. The times are noted in TJA column of the table.

Now, find the time when the machines will be free to accommodate the next
job assigned to them. Since machines 2 and 1 have been loaded with jobs 1 and
6, respectively, this time is the sum of the processing time for those jobs on these
machines and the corresponding minimum time when the jobs can be placed on those
machines. This time is 5 + 8 = 13 for machine 2, and 6 + 7 = 13 for machine 1. For
the other machines, on which assignments are not made in the current iteration, the
time remains the same as in the previous iteration. All the values are recorded in the
TMA-next row of the first half of the table.

Iteration 4: Develop the work table, Table 12.6. As done in the previous iteration, we
eliminate the processing times for jobs 1 and 6 from machines 2 and 1, respectively.
The remaining total processing time for each job is obtained and displayed in the
column RTP.

Next, we construct the second half of the Table 12.6. Again, these entries display
the minimum time when the jobs can be placed on the machines. Suppose we want to
assign job 2 on machine 1. The minimum time when job 2 can be assigned to machine
1 will be Max {time when job 2 is available, time when machine 1 is free}, which
is Max {16, 13}, which is 16. Both of these values are obtained from the entries in
the TJA-next and TMA-next of Table 12.5. Thus, the minimum time when job 2 can
be assigned to machine 1 is 16. This is the entry in the second half of the table under
M1 (machine 1) and row for job 2. Similarly, we find the minimum time when the
other jobs can be placed on the machines and record the data appropriately in the
table.

Select job 4 since it has the maximum remaining total processing time of 21. The
minimum time when it can be placed on a machine is 12, the time on M3 in the second
half of the table for job 4. Also, the minimum time when machine 3 can be assigned

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 375 — #9

Open-Shop Scheduling 375

TABLE 12.6
Work Table III (Iteration 4)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 — — 2 5 7 13 — — 13 16
2 7 1 — — 8 16 16 16 — —
3 6 2 — — 8 19 13 13 — —
4 2 — 9 5 16 21 13 — 12 16
5 2 1 6 3 12 0 13 13 12 16
6 — 3 7 3 13 16 — 13 13 16

TJM-next 19 16 21 16

to any job is 12 (the minimum value in column M3). Since these two values are equal,
assign job 4 to machine 3; indicate it by bolding of associated numbers in both halves
of the table. Check for the next job, that is, job 3. The minimum time when it can be
placed on a machine is 13, that is, the time on M1 or M2. Also, the minimum time
when machine 1 can be assigned to any job is 13 (the minimum value in column M1).
Since these two values are equal, assign job 3 to machine 1. Similarly, we check for
the other jobs and find that only job 6 can be assigned on machine 2.

Now, we must find the time when the jobs are available for the next assignment.
Since jobs 3, 4, and 6 have been assigned in the current iteration, this time will be
the sum of the processing time for these jobs on the machines on which they have
been assigned and the corresponding minimum time when these jobs can be placed
on those machines. The numbers are obtained by looking at bold entries on both
halves of the table. For example, this time for job 3 is 6 + 13 = 19, for job 4 it is
9 + 12 = 21, and for job 6 it is 3 + 13 = 16. For the other jobs that are not assigned
in this iteration, these times are the same as in the previous iteration. The times are
noted in the TJA-next column of the table.

Now, find the time when the machines will be free to accommodate the next job
assigned to them. Since machines 1, 2, and 3 have been loaded with jobs 3, 4, and
6, respectively, this time is the sum of the processing time for those jobs on these
machines and the corresponding minimum time when the jobs can be placed on those
machines. This time is 6 + 13 = 19 for machine 1, 3 + 13 = 16 for machine 2, and 9
+12 = 21 for machine 3. For the other machines, on which assignments are not made
in the current iteration, the time remains the same as in the previous iteration. All the
values are recorded in the TMA-next row of the first half of Table 12.6.

By now, the reader is used to the construction of tables and the decision making
process. From here on, we display only the final table in each iteration and the
decisions made in the iteration (Tables 12.7 through 12.10).

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 376 — #10

376 Production Planning and Industrial Scheduling

TABLE 12.7
Work Table IV (Iteration 5)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 — — 2 5 7 13 — — 21 16
2 7 1 — — 8 17 19 16 — —
3 — 2 — — 2 19 — 19 — —
4 2 — — 5 7 21 21 — — 21
5 2 1 6 3 12 19 19 16 21 16
6 — — 7 3 10 16 — — 21 16

TMA-next 19 17 21 19

TABLE 12.8
Work Table V (Iteration 6)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 — — 2 5 7 13 — — 21 19
2 7 — — — 7 26 19 — — —
3 — 2 — — 2 19 — 19 — —
4 2 — — 5 7 21 21 — — 21
5 2 1 6 — 9 20 19 19 21 -
6 — — 7 3 10 22 — — 21 19

TMA-next 26 20 21 22

Iteration 5: Assign job 2 to machine 2 and job 5 to machine 4.

Iteration 6: Assign job 2 to machine 1, job 5 to machine 2 and job 6 to machine 4.

Iteration 7: Assign job 3 to machine 2, job 4 to machine 4, job 4 and job 5 to machine 3.

Iteration 8: Assign job 1 to machine 4, job 5 to machine 1, and job 6 to machine 3.

Iteration 9: Since job 1 to machine 3 and job 4 to machine 1.

Results: Total makespan = 36 and total idle time of machines = 3.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 377 — #11

Open-Shop Scheduling 377

TABLE 12.9
Work Table VI (Iteration 7)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 v — 2 5 7 13 — — 21 22
2 — — — — — 26 — — — —
3 — 2 — — 2 22 — 20 — —
4 2 — — 5 7 27 26 — — 22
5 2 — 6 — 8 27 26 — 21 —
6 — — 7 — 7 22 — — 22

TMA-next 26 22 27 27

TABLE 12.10
Work Table VII (Iteration 8)

First Half Second Half

Machines TJA-Next Time When Jobs Can be
Placed on Machines

1 2 3 4 Total M1 M2 M3 M4
(RTP)

Jobs 1 — — 2 5 7 32 — — 27 27
2 — — — — — 26 — — — —
3 — — — — — 22 — — — —
4 2 — — — 2 27 27 — — —
5 2 — — — 2 29 27 — — —
6 — — 7 — 3 32 — — — 27

TMA-next 29 22 34 27

Sequence on machine 1: 1 - 6 - 3 - 2 - 5 - 4 with idle time = 1 and total time
of 31.

Sequence on machine 2: 4 - 1 - 6 - 2 - 5 - 3 with idle time = 2 and total time
of 22.

Sequence on machine 3: 2 - 3 - 4 - 5 - 6 - 1 with idle time = 0 and total time
of 36.

Sequence on machine 4: 3 - 2 - 5 - 6 - 4 - 1 with idle time = 0 and total time
of 32.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 378 — #12

378 Production Planning and Industrial Scheduling

Machine 1 J1

J4

J2

J3 J2

8 16 19 22 27 32

J5 J6 J4 J1

8 12 21 27 34 36

J3 J4 J5 J6 J1

8 13 16 17 19 20 22

J1 J6 J2 J5 J3

J6 J3 J2

0 5

7 13 19 26 27 29 31

10 15 20 25 30 35

J5 J4

Machine 2

Machine 3

Machine 4

FIGURE 12.3 The two-machine flowshop model.

12.3 MINIMIZATION OF TOTAL TARDINESS–OPEN
SHOP (MTT-OP)

In the previous section, we discussed a method to minimize the makespan in an open-
shop scheduling. In this section, we will modify the procedure to minimize the total
tardiness in the schedule, given the due date for each job.

12.3.1 SOLUTION PROCEDURE

The procedure is divided into two sections. The initial assignment phase is only
applied once, while the subsequent assignment phase is repeated till all the jobs are
scheduled. Most of the steps in the subsequent assignment phase are similar to the
steps in Section 12.2.

The main objective is to complete the jobs before the deadlines (due dates) so as
to minimize the total tardiness. The procedure is explained by applying it to the data
shown in Table 12.11.

12.3.2 INITIAL ASSIGNMENT

Step 1: Construct a job-machine table as shown in Table 12.12. The table shows the
processing time for each job on the required machine and the due date for each job
(data from Table 12.11). Calculate the total processing time for each job by adding the
processing times on the associated machines. Similarly, calculate the total processing
time on each machine for the jobs that require that machine. Find the slack for each
job by subtracting the total processing time for that job from its due date.

Step 2: An important point to note is that we apply this step only to as many jobs as
there are machines (exception being the Special Cases in Section 12.3.3). In other

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 379 — #13

Open-Shop Scheduling 379

TABLE 12.11
Job-Machine Table (iteration 1)

Machines Job Total Due Date Stack TJA-Next

1 2 3 4

Jobs 1 7 6 9 7 29 40 11 0
2 4 3 1 — 8 15 7 4
3 5 7 — 6 18 25 7 6
4 8 3 2 — 13 21 8 2
5 — 9 1 3 13 18 5 9
6 4 6 3 — 13 24 11 0

Machine total 28 34 16 16
TMA-next 29 22 34 27

TABLE 12.12
Work Table I (Iteration 2)

First Half Second Half

Machines
Job Total

(RTP)
Due
Date Stack TJA-Next Minimum Time When Jobs

Can be Placed on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 7 6 9 7 29 40 11 0 4 9 2 6
2 — 3 1 — 4 15 11 5 — 9 4 —
3 5 7 — — 12 25 13 6 6 9 — —
4 8 3 — — 11 21 10 12 4 9 — —
5 — — 1 3 4 18 14 12 — — 9 9
6 4 6 3 — 13 24 11 0 4 9 2 —

Machine total 24 25 14 10
TMA-next 12 9 5 12

words, if there are n jobs and m machines with n > m, then we apply step 2 to only
m jobs.

Select a job using following priority rules:

1. Select the job with the minimum slack.
2. If more than one job have the same slack, select the one which has the

earliest due date.
3. If more than one job have the same slack and the same due date, select

randomly any one of these jobs.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 380 — #14

380 Production Planning and Industrial Scheduling

12.3.3 SPECIAL CASES

1. If there is a tie when selecting the mth job using rule 1, then one must
select all the tied jobs even if the total number of selected jobs exceed m.
Then, among the tied jobs, select the one with the earliest due date (rule
2), assign it to a machine and then move to the next phase, that is, step 3.
If the selected job cannot be assigned, go to the next phase.

2. If there is a tie when selecting the mth job using the above step, then we
must select all the tied jobs even if the total number of selected jobs exceeds
m. Make a random selection among the tied jobs (rule 3). If the selected
job cannot be assigned to a machine, select another tied job. If none of the
tied jobs can be assigned, go to the next phase.

Once the job has been selected, schedule that job on the machine on which it has
the largest processing time, if the machine is available. If the machine is not available,
select the machine on which the job has the next largest processing time. Repeat this
procedure till that job is assigned to a machine. If at any point, no machine is available
for assigning the selected job, move to the next job. Repeat this step for the selected
m jobs.

Once all the m jobs have been assigned, find the time when all the jobs will be
available for next assignment on the remaining machines. This procedure is similar
to the one in described in Section 12.2.

12.3.4 SUBSEQUENT ASSIGNMENTS

Step 3: Develop a new work table as per step 3 described in Section 12.2. The only
difference between this table and the one in Section 12.2 is the addition of the slack
column as shown in Table 12.2. The slack for each job is calculated by subtracting
the job total for each job from its due date. This value is then recorded in the slack
column for that particular job.

Step 4: For the next iteration, select the next job with the minimum slack as per
the rules mentioned in step 2. For that job, find the minimum time when it can be
placed on the machines and assign the job to that machine. If there are more than two
machines on which the job can be assigned, place the job on the machine on which
it has the largest processing time. If the machine is not available for the assignment
to be made, place the job on the machine on which it has the next largest processing
time. If no machines are available, move to the next job by selecting the job with the
next lowest slack and repeating step 4.

Step 5: Once all the possible assignments are made, find the time when the jobs will
be available for next assignment by following the same procedure as in step 5 of
Section 12.2.

Step 6: Find the time when the machine will be free to accommodate the next job by
following the same procedure as in step 6 of Section 12.2.

Step 7: Repeat steps 3–6 till all the jobs are assigned.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 381 — #15

Open-Shop Scheduling 381

12.3.5 ILLUSTRATIVE EXAMPLE

Consider an open-shop problem in which six jobs have to be assigned on four
machines. The processing time for each job on each machine and the due date for each
job are given in the job-machine table, Table 12.11. We wish to develop a sequence
of operation on each machine that will minimize the total tardiness. The total pro-
cessing time for each job is indicated in the column job total. Similarly, the total
processing time required on each machine is indicated by the column machine total.
The sequencing procedure is illustrated next, as we follow the iterations.

Iteration 1: Calculate the slack for each job by subtracting the job total for each job
from its due date. The value is entered in the under the slack column of Table 12.11.

As stated in step 2, we can apply step 2 to only as many jobs as there are machines.
In this case, there are 4 machines and hence, we can apply step 2 to only 4 jobs. As
per step 2, select the job with the lowest slack from Table 12.11. Job 5 with a slack of
5 is selected. We assign job 5 to machine 2, on which as it has the largest processing
time of 9. Now, we select the job with the next lowest slack. There are two jobs, job
2 and 3, which satisfy this criterion. Between these two, we should select the one that
has the earliest due date. We select job 2 with a due date of 15. Job 2 is assigned to
machine 1 as it has the largest processing time of 4 on that machine. Job 3 is selected
next. Job 3 has the largest processing time on machine 2. But machine 2 is occupied
by job 5, and so we cannot assign job 3 to machine 4. We check whether the machine
on which job 3 has the next largest processing time is free. We find that machine 4 is
free for assignment and so we assign job 3 to it. Job 4 has the next lowest slack of
8. The machines on which it has the largest processing time of 8, that is, machine 1,
and on which it has the next largest processing time of 3, that is, machine 2, both are
occupied by jobs 1 and 2, respectively. So, we cannot assign job 4 to either of them.
Job 4 has the next largest processing time of 2 on machine 3 and, since this machine
is free, we assign job 4 to it. We have checked for four jobs and hence we stop here.

Next, we find the time when the jobs are available for next assignment. Jobs 2, 3,
4, and 5 being presently assigned on machines 1, 4, 3, and 2, respectively, the time
when they are available for next assignments are the processing time for those jobs
on the corresponding machines, or 4, 6, 2, and 9 for jobs 2, 3, 4, and 5, respectively.
The remaining jobs are not assigned to any machines presently, and therefore, they
are available right now, at time zero. These values are recorded in the last column of
Table 12.11.

Next, we find the times when the machines are free to accommodate the next job
assignment. Machines 1, 4, 3, and 2 are loaded with jobs 2, 3, 4, and 5, respectively,
in this iteration and hence these times are the processing times for those jobs on the
corresponding machines, or 4, 6, 2, and 9 for machines 1, 4, 3, and 2, respectively.
These values are recorded in the last row of Table 12.11.

Iteration 2: Develop a work table, Table 12.12, in the same way as we did in Section
12.2. The entries in the first half of the table are the processing times of the jobs on
the machines on which they are yet to be processed. The entries in the second half of
the table display the minimum time when each job can be placed on each machine.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 382 — #16

382 Production Planning and Industrial Scheduling

Select the job with the lowest slack. We select job 4 with a slack of 10. The
minimum time when job 4 can be placed on a machine is 4, the time on machine 1.
So assign job 4 to machine 1. Select the jobs with the next lowest slack. In this case,
there are three jobs; jobs 1, 2, and 6 with the lowest slack of 11. Among them, we
select the job with the earliest due date, in this case, job 2. The minimum time when
job 2 can be placed on a machine is 3, which is the time on machine 3. We assign
job 2 to machine 3. We select the next lowest slack. Again, we have two jobs with
the same slack of 11. Between them, we select job 6, which has the earliest due date.
The minimum time when it can be placed on the machines is 2, the time on M3 in the
second half of Table 12.12 for job 6. But machine 3 is loaded with job 2, and hence
we cannot assign job 6 to machine 3. We now select job 1 with a slack of 11. The
minimum time when job 1 can be placed on a machine is 2, the time on machine 3.
But machine 3 is occupied, so we cannot assign job 1 to it. We select the next job,
job 3 with a slack of 13. The minimum time when job 3 can be placed on machines
is 6, the time on machine 1. But machine 1 is occupied by job 4, and so it cannot
accommodate job 3. The next job to be selected is job 5. The minimum time when
it can be placed on machines is 9, the time on machines 3 and 4. Between them, we
select the machine on which it has the largest processing time. Job 5 has the largest
processing time of 3 on machine 4, and so we assign job 5 to machine 4.

Once the jobs are assigned to the machines, we must find the time when the jobs
are available for the next assignment. Since jobs 2, 4, and 5 have been assigned in
the current iteration, this time will be the sum of the processing time for these jobs on
the machines on which they are assigned and the corresponding minimum time when
these jobs can be placed on those machines. The numbers are obtained by looking at
bold entries on both halves of the table. For example, this time for job 2 is 1 + 4 = 5,
for job 4 is 8 + 4 = 12, and for job 5 is 3 + 9 = 12. For the other jobs that are not
assigned in this iteration, these times are the same as in the previous iteration. The
times are noted in the central column TJA-next column of the Table 12.12.

Now, find the time when the machines will be free to accommodate the next job
assigned to them. Since machines 3, 1, and 4 have been loaded with jobs 2, 4, and
5, respectively, this time is the sum of the processing time for those jobs on these
machines and the corresponding minimum time when the jobs can be placed on those
machines. This time is 1 + 4 = 5 for machine 3, 8 + 4 = 12 for machine 1, and 3 + 9
= 12 for machine 4. For the other machines, on which assignments are not made in
the current iteration, the time remains the same as in the previous iteration. All the
values are recorded in the last row of the first half of the Table 12.12.

Iteration 3: Following steps 3–6 and as shown in iteration 2, we assign job 2 to
machine 2 and job 6 to machine 3 (Table 12.13).

Iteration 4: Following steps 3–6 and as shown in iteration 2, we assign job 1 to
machine 3, job 3 to machine 2 and job 6 to machine 1 (Table 12.14).

Iteration 5: Following steps 3–6 and as shown in iteration 2, we assign job 1 to machine
4, job 3 to machine 1, job 4 to machine 2, and job 5 to machine 3 (Table 12.15).

Iteration 6: We assign job 1 to machine 1 and job 6 to machine 2 (Table 12.16).

Iteration 7: We assign job 1 to machine 2 (Table 12.17).

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 383 — #17

Open-Shop Scheduling 383

TABLE 12.13
Work Table II (Iteration 3)

First Half Second Half

Machines Job Total Due Date Stack TJA-Next Minimum Time When
(RTP) Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 7 6 9 7 29 40 11 0 12 9 5 12
2 — 3 — — 3 15 12 12 — 9 — —
3 5 7 — — 12 25 13 6 12 9 — —
4 — 3 — — 3 21 18 12 — 9 — —
5 — — 1 — 1 18 17 12 — — 12 —
6 4 6 3 — 13 24 11 8 12 9 5 —

Machine total 16 25 13 7
TMA-next 12 12 8 12

TABLE 12.14
Work Table III (Iteration 4)

First Half Second Half

Machines Job Total Due Date Stack TJA-Next Minimum Time When
(RTP) Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 7 6 9 7 29 40 11 17 12 12 8 12
2 — — — — — 15 — 12 — — — —
3 5 7 — — 12 25 13 19 12 12 — —
4 — 3 — — 3 21 18 12 — 12 — —
5 — — 1 — 1 18 17 12 — — 12 —
6 4 6 — — 10 24 14 16 12 12 — —

Machine total 16 22 10 7
TMA-next 16 19 17 12

Results: Total makespan = 37, and total penalty = 5.

Sequence on machine 1: 2 - 4 - 6 - 3 - 1 with idle time = 3.
Sequence on machine 2: 5 - 2 - 3 - 4 - 6 - 1 with idle time = 3.
Sequence on machine 3: 4 - 2 - 6 - 1 - 5 with idle time = 2.
Sequence on machine 4: 3 - 5 - 1 with idle time = 8.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 384 — #18

384 Production Planning and Industrial Scheduling

TABLE 12.15
Work Table IV (Iteration 5)

First Half Second Half

Machines Job Total Due Date Stack TJA-Next Minimum Time When
(RTP) Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 7 6 — 7 22 40 18 24 17 19 — 17
2 — — — — — 15 — 12 — — — —
3 5 — — — 5 25 13 24 19 — — —
4 — 3 — — 3 21 18 22 — 19 — —
5 — — 1 — 1 18 17 18 — — 17 —
6 — 6 — — 6 24 18 16 — 19 — —

Machine total 12 15 1 7
TMA-next 24 22 18 24

TABLE 12.16
Work Table V (Iteration 6)

First Half Second Half

Machines Job Total Due Date Stack TJA-Next Minimum Time When
(RTP) Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 7 6 — — 13 40 27 31 24 24 — —
2 — — — — — 15 — 12 — — — —
3 — — — — — 25 — 24 — — — —
4 — — — — — 21 — 22 — — — —
5 — — — — — 18 — 18 — — — —
6 — 6 — — 6 24 18 28 — 22 — —

Machine total 7 12 — — —
TMA-next 31 28 18 24

Job 1 is early by 3.
Job 2 is early by 3.
Job 3 is early by 1.
Job 4 is late by 1.
Job 5 is on time.
Job 6 is late by

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 385 — #19

Open-Shop Scheduling 385

TABLE 12.17
Work Table VI (Iteration 7)

First Half Second Half

Machines Job Total Due Date Stack TJA-Next Minimum Time When
(RTP) Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 — 6 — — 6 40 34 37 — 31 — —
2 — — — — — 15 — 12 — — — —
3 — — — — — 25 — 24 — — — —
4 — — — — — 21 — 22 — — — —
5 — — — — — 18 — 18 — — — —
6 — — — — — 24 — 28 — — — —

Machine total — 6 − —
TMA-next 31 37 18 24

Machine 1 J2

J5

J4

J3

6 9 12 17 24

J5 J1

2 4 5 8 17 18

J2 J6 J1 J5

J2

9 12 19 22 28 31 37

J3 J4 J6 J1

J4

4 12 16 19 24 31

J6 J3 J1

0 5 10 15 20 25 30 35

Machine 2

Machine 3

Machine 4

FIGURE 12.4 Gantt chart for the problem illustrated in section 12.3

12.3.6 SPECIAL CASES

12.3.6.1 Special Case 1 (Example)

Consider an open-shop problem in which four jobs are to be assigned on three
machines. The processing time for each job on each machine and its due date are
given in the job-machine table, Table 12.18. The job total and slack for each job
are found and entered in the table. We wish to develop a sequence of operation on

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 386 — #20

386 Production Planning and Industrial Scheduling

TABLE 12.18
Job-Machine Table

Machines Job Total Due Date Slack Time When Job
Is Available for

Next Assignment
1 2 3

Jobs 1 2 7 — 9 14 5 0
2 3 — 7 10 15 5 0
3 4 6 1 11 14 3 4
4 2 5 — 7 10 3 5

Machine Total 11 19 8
TMA-next 4 5 0

each machine that will minimize the total tardiness. The sequencing procedure is
illustrated.

As there are three machines, only three jobs can be selected. There is a tie between
jobs 3 and 4 when selecting the jobs with the smallest slack. Break this tie by selecting
job 4, which has earlier due date, and by assigning it to machine 2 on which it has
the largest processing time. Then, select job 3. It cannot be assigned to machine 2,
on which it has the largest processing time since that machine is not free. Assign it
on machine 1, on which it has the next largest processing time. Already, 2 jobs have
been selected and only one more selection can be made. But, there are two jobs (jobs
1 and 2) with the same slack. In such a case, both the tied jobs have to be selected,
which is contradicting the previous statement since the total number of jobs selected
becomes four, which is greater than the maximum number allowed, that is, 3. In such
a special case, screening of all the tied jobs is allowed. However, only one would be
checked further, since we only have one more possible assignment. Applying rule 2
of step 2 between the tied jobs, select the job with the earliest due date. In this case,
select job 1. This job cannot be assigned to either machine 1 or machine 2 since both
the machines are occupied. And since it does not require machine 3, job 1 remains
unassigned in the initial assignment. The initial assignment ends here since 3 jobs
have been checked.

The subsequent assignments are made in the same way as explained in the
illustrative example (Section 12.3). The final solution to this problem is given below.

Total makespan = 18 and total penalty = 4.

Sequence on machine 1: 3 - 1 - 4 - 2 with idle time = 0.
Sequence on machine 2: 4 - 3 - 1 with idle time = 0.
Sequence on machine 3: 2 - 3 with idle time = 4.
Job 1 is late by 4.
Job 2 is early by 4.
Job 3 is early by 2.
Job 4 is early by 2.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 387 — #21

Open-Shop Scheduling 387

TABLE 12.19
Job-Machine Table

Machines Job Total Due Date Slack Time When Job
Is Available for

Next Assignment
1 2 3

Jobs 1 2 8 — 10 14 4 0
2 3 — 7 10 14 4 7
3 4 6 1 11 14 3 4
4 2 5 — 7 10 3 5

Machine Total 11 19 8
TMA-next 4 5 7

12.3.6.2 Special Case 2 (Example)

Modify the previous example for this case. Change the processing time of job 1 on
machine 2 is 8 instead of 7. Also change the due date of job 2 from 14 to 15. The new
table is shown below (Table 12.19).

As there are only three machine, we can select only three jobs. There is a tie
between jobs 3 and 4 when selecting the jobs with the lowest slack. Break this tie, by
selecting job 4 with earliest due date and assigning it to machine 2 on which it has
the largest processing time. Then, select job 3. It cannot be assigned to machine 2 on
which it has the largest processing time since that machine is not free. Assign it on
machine 1 on which it has the next largest processing time. Already 2 jobs have been
selected, and only one more selection can be made. Now, there are two jobs (jobs 1
and 2) with the same slack and due date. In such a case, both the tied jobs have to be
checked. Applying rule 3 or step 2, select any tied job randomly. Suppose we select
job 1. This job cannot be assigned to either machine 1 or machine 2 since both the
machines are occupied. In a normal case, we should stop here since as many jobs as the
number of machines have been checked. But in this case, since the third assignment
was based on random selection between the tied jobs, and since the selected job could
not be assigned; we could select the other tied job, in this problem, job 2. This job
can be assigned to machine 3 on which it has the largest processing time. Thus, the
initial assignment is complete.

The subsequent assignments are made in the same way as explained in the
illustrative example (Section 12.3). The final solution to this problem is given below.

Total makespan = 20, and total penalty = 6.

Sequence on machine 1: 3 - 1 - 4 - 2 with idle time = 0.
Sequence on machine 2: 4 - 1 - 3 with idle time = 1.
Sequence on machine 3: 2 - 3 with idle time = 0.
Job 1 is on time.
Job 2 is early by 3.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 388 — #22

388 Production Planning and Industrial Scheduling

TABLE 12.20
Job-Machine Table

Machines Job Due Slack Weights Weight Time When Job
Total Date Slack Is Available for

Next Assignment
1 2 3 4

Jobs 1 4 3 1 7 15 15 0 3 0 7
2 5 7 — 6 18 25 7 0 M 0
3 8 3 2 v 13 21 8 6 1.33 8
4 — 9 1 3 13 18 5 0 M 0
5 4 6 3 — 13 24 11 2 5.50 6

Machine Total 21 28 7 16
Time when machine is 8 6 0 7
free for next
assignment

Job 3 is late by 6.
Job 4 is early by 2.

12.4 MINIMIZATION OF TOTAL WEIGHTED
TARDINESS PENALTIES–OPEN SHOP (MTWT-OP)

Heuristic in Section 12.3 (MTT-OP) can be extended to accommodate weighted tardi-
ness penalties, that is, each job has a different penalty for finishing late. An example
has been illustrated for such a problem.

The steps of the procedure are as follows:

12.4.1 INITIAL ASSIGNMENT

Step 1: Following the same steps as in MTT-OP (Section 12.3), construct a job-
machine table as shown in Table 12.20. The table shows the processing time for each
job on the required machine, the due date, and the tardiness penalty for each. Calculate
the total processing time for each job and the total processing time on each machine
for the jobs that require that machine. Find the slack for each job by subtracting the
total processing time for that job from its due date. Then find the weighted slack for
each job by dividing the slack for each by its tardiness penalty. For jobs with zero
tardiness penalties, assign a large value M as their weighted slack.

Step 2: Follow the same procedure explained in step 2 of MTT-OP. The only difference
is that, in this case, jobs are selected on the basis of lowest weighted slack first instead
of the lowest slack first, as was done in MTT-OP. (Note: Jobs with zero tardiness
penalty are not assigned in the initial assignment.)

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 389 — #23

Open-Shop Scheduling 389

TABLE 12.21
Work Table I (Iteration 2)

First Half Second Half

Machines Job Due Slack Weights Weight TJA- Minimum Time When
Total Date Slack Next Jobs Can be Placed

on Machines
1 2 3 4 M1 M2 M3 M4

Jobs 1 4 3 1 — 8 15 7 3 2.33 10 8 7 7 —
2 5 7 − 6 18 25 7 0 M 0 8(13) 6(13) — 7(13)
3 — 3 2 — 5 21 16 6 2.67 8 — 8 8 —
4 — 9 1 3 13 18 5 0 M 1 — 6(15) 0(1) 7(10)
5 4 — 3 — 7 24 17 2 8.5 6 8 — 6 —

Machine total 13 22 7 9
TMA-next 8 10 1 7

12.4.2 SUBSEQUENT ASSIGNMENTS

Step 3: Develop a new work table as per step 3 of MTT-OP. The only difference
between this table and the one in for MTT-OP is the addition of the weighted slack
column, as shown in Table 12.21. The present slack for each job is calculated by
subtracting the present job total time for each job from its due date. This value is then
recorded in the slack column for that particular job. The weighted slack is calculated
by dividing the slack by the tardiness penalty, and the value is placed under the
weighted slack column. For the jobs that have a zero tardiness penalty, find the time
when the jobs can be placed on the machines and also find the time when the jobs
will be free for the next assignment if they are to be placed on these machines in the
current iteration. The latter time is the sum of the time when the job can be placed on
the machine and the processing time of the job on that machine. The value is placed
in parentheses.

Step 4: Select the job with the minimum weighted slack. For that job, find the min-
imum time when it can be placed on the machines. Check if this time is less than
the parentheses value of the jobs (with zero tardiness penalty) on that machine. If so,
assign the selected job to that machine. If not, the selected job cannot be assigned in
that iteration. If there are more than two machines on which the selected job can be
assigned, place the job on the machine on which it has the largest processing time.
If that machine is not available for assigning the selected job, place the job on the
machine on which it has the next largest processing time. If no machines are available,
move to the next job by selecting the job with the next lowest slack and repeating
step 4. Once all the jobs, with tardiness penalty greater than zero are assigned, select
the jobs with zero tardiness penalty. If more than one job has zero tardiness penalty,
select the job with earliest due date. Find the minimum time when the job can be

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 390 — #24

390 Production Planning and Industrial Scheduling

placed on a machine. For that machine, check if the parentheses value of that job is
less than the time when jobs (with penalty value greater than zero) can be placed on
that machine. If so, assign the job to that machine. If not, the job (with zero penalty)
cannot be assigned in this iteration.

Step 5: Once all the possible assignments are made, find the time when the jobs will
be available for the next assignment by following the same procedure as in step 5 of
the MTT-OP.

Step 6: Then, find the time when the machine will be free to accommodate the next
job by following the same procedure as in step 6 of MTT-OP.

Step 7: Repeat steps 3–6 till all the jobs have been assigned.

12.4.3 ILLUSTRATION EXAMPLE

The example problem in Section 12.3 is modified to include the weighted penalty
for each job and is shown in the job-machine table, Table 12.20. Our aim is to
develop a sequence of operation on each machine that will minimize the weighted
total tardiness penalties. The sequencing procedure is illustrated next, as we follow the
iterations.

Iteration 1 (Initial Assignment): Find the slack for each job by subtracting its due
date from its job total. The values are entered under the slack column of Table 12.20.
Find the weighted slack for each job by dividing its slack by its weighted penalty.
Jobs having a zero tardiness penalty value are assigned an extremely high weighted
slack of M. The resulting values are entered under the weighted slack column of
Table 12.20.

Since there are only four machines, only four jobs can be selected. Select the job
with the lowest weighted slack. In this case, select job 1. Assign it to machine 4,
on which it has the largest processing time of 7. Select the job with the next lowest
weighted slack. Job 3 is selected and assigned to machine 1, on which it has the
largest processing time. Job 5 is selected next and assigned to machine 2. Until now,
three jobs are selected and assigned. One more job remains to be selected. But there
are no more jobs with a penalty value associated with them. So, we stop our initial
assignment here. (Note: Jobs 2 and 4 should not be assigned in the initial assignment
since there is no tardiness penalty value associated with them.)

As done in MTT-OP, we calculate the time when the machine is free and the time
when the job is free for the next assignment.

Iteration 2: Similar to the MTT-OP, in this iteration, first eliminate the processing
times for the jobs on the machines on which they have already been assigned and
develop the work table as shown in Table 12.21. Then calculate the job total, machine
total, slac,k and weighted slack for each job, and place it under the corresponding
column/row. Next, find the minimum time when jobs can be placed on machines. This
is also similar to the procedure followed in the previous method. The only difference
arises in case of jobs with weighted slack of M. Besides calculating the minimum
time when these jobs can be placed on machines, also find the time when these jobs

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 391 — #25

Open-Shop Scheduling 391

will get free for the next assignment in case they are assigned on the machines in this
iteration. The values in the parentheses depict the times. For example, for job 2, the
minimum time when job 2 can be placed on machine 1 is 8. In case this job is assigned
to machine 1 in this iteration, the time when job 2 will be free for the next assignment
will be the sum of the minimum time when job 2 can be placed on machine 1 and
the processing time of job 2 on machine 1, that is, 8 + 5 = 13. This value is placed in
parentheses.

Select job 1, which has the lowest weighted slack. The minimum time when job
1 can be placed on machines is 7, the time on machines 2 and 3. Try to assign job 1
on machine 2 since it has a larger processing time on that machine. Before assigning
job 1 on machine 2, check whether the minimum time when job 1 can be placed on
machine 2, that is, 7 is less than the parentheses value on machine 2 for jobs with
weighted slack of M. In this case, 7 is less than both 13 for job 2 and 15 for job 4.
So assign job 1 to machine 2. Next, select job 3 with the next lowest weighted slack.
The minimum time when three can be placed on a machine is 8; the time on machines
2 and 3. Machine 2 has already been assigned job 1. So, select machine 3. Check
whether the minimum time when job 3 can be placed on machine 3, that is, 8 is less
than the parentheses value on machine 3 for jobs with weighted slack of M. In this
case, 8 is greater than 1 for job 4. So we cannot assign job 3 in this iteration. Select
the next job. The minimum time when the selected job 5 can be placed on machine
is 6, the time on machine 3. But this 6 is also less than 1, the parentheses value of
job 4 on machine 3; so job 5 cannot be assigned. Since there are no more jobs with a
tardiness penalty value, check for jobs with weighted slack of M. There are two jobs
with weighted slack of M, jobs 2 and 4. Select the one with the earlier due date. Job
4 is selected. The minimum time when job 4 can be placed on machine is 0, the time
on machine 3. Also, the parentheses value of job 4 on machine 3 is less than the time
when jobs with weighted penalty can be placed on machine 3. So we assign job 4
on machine 3. Now, select job 2. The minimum time when this job can be placed on
machine is 6, the time on machine 2. But machine 2 is occupied; so job 2 cannot be
assigned in this iteration. Thus, in this iteration, job 1 is assigned on machine 2 and
job 4 on machine 3.

Once the assignment is done, find the time when the jobs are free for next assign-
ment and when the machines get free. This is done by following the same procedure
described in MTT-OP (Table 12.22 through 12.25).

Iteration 3: Following the same procedure as in iteration 2, in this iteration, we assign
job 1 to machine 1, job 3 to machine 3 and job 4 to machine 4.

Iteration 4: In this iteration, we assign job 1 to machine 3, job 2 to machine 4, and
job 3 to machine 2.

Iteration 5: In this iteration, we assign job 4 to machine 2 and job 5 to machine 1.

Iteration 6: In this iteration, we assign job 2 to machine 1 and job 5 to machine 3.

Iteration 7: In this iteration, we assign the last job remaining, job 2, to machine 2.

Results: The final solution to this problem is given in the following.
Total makespan = 30 and total penalty = 0.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 392 — #26

392 Production Planning and Industrial Scheduling

TABLE 12.22
Work Table II (Iteration 3)

First Half Second Half

Machines Job Due Slack Weights Weight TJA- Minimum Time When
Total Date Slack Next Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 4 — 1 — 5 15 10 3 3.33 14 10 — 10 —
2 5 7 — 6 18 25 7 0 M 0 8(13) 10(17) — 7(13)
3 — 3 2 — 5 21 16 6 2.67 10 — 10 8 —
4 — 9 — 3 12 18 6 0 M 10 — 10(19) — 7(10)
5 4 — 3 — 7 24 17 2 8.5 6 8 — 6 —

Machine total 13 19 6 9
TMA-next 14 10 10 10

TABLE 12.23
Work Table III (Iteration 4)

First Half Second Half

Machines Job Due Slack Weights Weight TJA- Minimum Time When
Total Date Slack Next Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 — — 1 — 1 15 14 3 4.67 15 — — 14 —
2 5 7 — 6 18 25 7 0 M 16 14(19) 10(17) — 10(16)
3 — 3 — — 3 21 18 6 3.0 13 — 10 — —
4 — 9 — — 9 18 9 0 M 10 — 10(19) — —
5 4 — 3 — 7 24 17 2 8.5 6 14 — 10 —

Machine total 9 19 4 6
TMA-next 14 13 15 16

Sequence on machine 1: 3 - 1 - 5 - 2 with idle time = 2.
Sequence on machine 2: 5 - 1 - 3 - 4 - 2 with idle time = 2.
Sequence on machine 3: 4 - 3 - 1 - 5 with idle time = 14.
Sequence on machine 4: 1 - 4 - 2 with idle time = 0.
Job 1 is on time.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 393 — #27

Open-Shop Scheduling 393

TABLE 12.24
Work Table IV (Iteration 5)

First Half Second Half

Machines Job Due Slack Weights Weight TJA- Minimum Time When
Total Date Slack Next Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 — — — — 0 15 — 3 — 15 — — — —
2 5 7 — — 12 25 13 0 M 16 16(21) 16(23) — —
3 — — — — 0 21 — 6 — 13 — — — —
4 — 9 — — 9 18 9 0 M 22 — 13(22) — —
5 4 — 3 — 7 24 17 2 8.5 18 14 — 15 —

Machine total 9 16 3 —
TMA-next 23 22 15 16

TABLE 12.25
Work Table V (Iteration 6)

First Half Second Half

Machines Job Due Slack Weights Weight TJA- Minimum Time When
Total Date Slack Next Jobs Can be Placed

on Machines

1 2 3 4 M1 M2 M3 M4

Jobs 1 — — — — 0 15 — 3 — 15 — — — —
2 5 7 — — 12 25 13 0 M 23 18(23) 22(29) — —
3 — — — — 0 21 — 6 — 13 — — — —
4 — — — — 0 18 — 0 — 22 — — — —
5 — — 3 — 3 24 21 2 10.5 21 — — 18 —

Machine total 5 7 3 —
TMA-next 23 22 21 16

Job 2 is late by 5.
Job 3 is early by 8.
Job 4 is late by 4.
Job 5 is early by 3.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 394 — #28

394 Production Planning and Industrial Scheduling

Machine 1 J3 J5 J2

J5 J1 J3 J4 J2

J4 J3 J1 J5

J1

7 10 16

J4 J2

1 8 10 14 15 18 21

6 7 10 13 22 23 30

8 10 14 18 23

J1

0 5 10 15 20 25 30

Machine 2

Machine 3

Machine 4

FIGURE 12.5 Gantt chart for the problem illustrated in section 8.4

12.5 SUMMARY

Scheduling in an open-shop problem presents a great challenge. There is much flex-
ibility in job-machine assignment, and therefore, with proper planning, the idle or
nonproductive times on the machines, could be reduced if not eliminated. However,
because there are a large number of job-machine combinations that can be a part of
possible solutions, it is almost impossible to evaluate all alternatives. The chapter
presents Pinendo’s rule, which gives an optimum makespan when there are only two
machines in the open shop. An heuristic to minimize the makespan when we have
multiple machines is also presented. The heuristic was tested with Pinendo’s rule,
and it produced optimum solution for every two-machine problem that was tested.

There are two additional heuristics that are presented in the chapter. The first
minimizes the total tardiness, and the second minimizes the total of weighted tardiness
penalties. Both are simple to apply and provide good results. The computer programs
for the methods are included on the diskette provided.

12.6 PROBLEMS

12.1 Develop a schedule for the following two-machine open job shop job data using
the LAPT rule.

Job 1 Job 2 Job 3 Job 4

Machine 1 1 4 9 3
Machine 2 5 7 1 2

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 395 — #29

Open-Shop Scheduling 395

12.2 In an automobile manufacturing plant, six parts are to be processed on
four machines. All six parts are independent of each other and can be pro-
cessed on any machine required by them at any time. In other words, this
is a job shop scheduling problem. Find the minimum makespan for pro-
cessing all the jobs on all the machines required by them. The data are as
follows:

Machine A Machine B Machine C Machine D

Job 1 7 6 9 7
Job 2 4 3 1 —
Job 3 5 7 — 6
Job 4 8 3 2 —
Job 5 — 9 1 3
Job 6 4 6 3 —

12.3 Consider the open-shop problem with six jobs having the following processing
times:

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

Machine 1 10 7 3 1 12 6
Machine 2 6 9 8 2 7 6

Find the minimum makespan for processing the jobs on the machines by
using
a. The LAPT method
b. The LTPT method

12.4 The six jobs in Problem 12.2 are scheduled to be completed by certain due
dates. The due dates for each job are as follows:

Job 1 2 3 4 5 6
Due date 40 15 25 21 18 24

Each job will bear a tardiness penalty equal to the number of days by which
it is late. Find a schedule for all jobs on all the machines required by them such
that the total tardiness penalty is minimized.

Dileep: “44206_c012” — 2007/9/17 — 15:10 — page 396 — #30

396 Production Planning and Industrial Scheduling

12.5 In an open-shop, five jobs are to be processed on three machines. Find a sched-
ule that minimizes the total tardiness. Consider unit late penalties. The data are
as follows:

Machine A Machine B Machine C Due Dates

Job 1 0 8 6 18
Job 2 4 1 8 20
Job 3 6 5 1 14
Job 4 4 7 0 18
Job 5 2 9 8 27

12.6 In Problem 12.5, jobs are assigned different tardiness penalty values:

Job 1 2 3 4 5
Late penalty value 2 3 7 5 1

Find a schedule to minimize the total weighted tardiness.
12.7 Using the same data as in Problem 12.6, except that jobs 2 and 4 carry no penalty

for finishing late, find a schedule to minimize the total weighted tardiness.

REFERENCES AND SUGGESTED READINGS

Adiri, I. and N. Amit. September 1983. “Route Dependent Open Shop Scheduling” IIE
Transactions, 15(3): 231–234.

Atwater, F.S., L.L. Bethel, G. Smith, and H.A. Stackman. 1959. Essentials of Industrial
Management, 2d ed., New York: McGraw-Hill.

Choo, Y. and S. Sahni. May-June, 1981. “Preemptive Scheduling of Independent Jobs with
Release and Due Times on Open, Flow and Job Shops” Operations Research Journal,
29(3): 511–522.

Conway, R.W., W.L. Maxwell, and L.W. Miller. 1967. Theory of Scheduling, Reading, MA:
Addison-Wesley.

Gonzalez, T. and S. Sahni. 1976. “Open Shop Scheduling to Minimize Finish Times” Journal
of the Association for Computing Machinery, 23: 665–679.

Liu, C.-Y. and R.L. Bulfin. July-August, 1988. “Scheduling Open Shops with Unit Execution
Times to Minimize Functions of Due Dates” Operations Research Journal, 14(3):
257–264.

Lin, H.-F., C.-Y. Liu, and P.-Y. Liu. 1955. “A Heuristic Approach to the Total Tardiness in Non-
Preemptive Open-Shop Scheduling” International Journal of Industrial Engineering,
2: 25–33.

Pinedo, M. 1955. Scheduling: Theory, Algorithms, and Systems, Englewood Cliffs, NJ:
Prentice Hall.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 397 — #1

13 Manpower Scheduling

Every organization needs manpower to function, regardless of how automated the
operations are. The manpower requirement may vary considerably, however, depend-
ing on the type of service provided and the demand for such services. Some production
facilities, for example, have highly seasonal demands (e.g., toys at Christmas, lawn
mowers in summer) and may employ workers, which is also very seasonal. Other
organizations have fairly uniform demand throughout the year and may have more
or less a constant workforce. In a few organizations, the demand may vary from day
to day (in a hospital, for example, the number of nurses required on a given day of
the week may depend on days the operations are planned during the week) or even
from hour to hour within a day (the number of employees on checkout counters in a
supermarket may vary by time of the day and by the day of the week).

Even the employees have variations among them and may be further divided into
classes. Some class of employees, such as purchasing agents, are required only on a
day shift, while others, such as production workers, are required on all three shifts
in a 24-hr-per-day operation (steel mills, refineries, and hospitals). We concentrate
here on manpower scheduling problems associated with businesses that work 7 days
a week. The examples include organizations such as telephone and cable TV stations,
restaurants, fast-food places, grocery stores, and supermarkets. The employees work
a standard 40 hr or 5 days a week and get two consecutive (if possible) days off.
The objective is to develop a schedule that satisfies the daily requirements and, at the
same time, employ a minimum number of workers.

The manpower scheduling problem has become more prominent with changing
lifestyles. With the aid of an information highway, a growing portion of the population
is preferring to work flexible hours. Organizations, especially service institutions,
must respond to demands that are no longer restricted to the business hours of 8:00
AM to 5:00 PM. Thus, the purpose of employee scheduling is to ensure that employees
are working at the time when they are needed and are meeting customer demands
for goods and/or services. Employee scheduling is necessary to utilize manpower
effectively and efficiently. Some simple but effective algorithms have been developed
to produce optimal manpower schedules. The generally preferred linear programming
models for such problems, rather than the alternatives, are effective and give near-
optimal solutions with considerable less effort and time.

In the following sections, we present a number of algorithms that work for specific
scheduling problems. These may be classified according to the following criteria:

• On off-day pattern-examples: consecutive days off, weekdays off, noncon-
secutive days off

• The workforce, that is, homogeneous or heterogeneous
• Varying daily workforce requirement

397

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 398 — #2

398 Production Planning and Industrial Scheduling

A few terms commonly used in employee scheduling may need further clarification.
These are

1. Homogeneous workforce: The workforce is considered to be homogen-
eous when the number of available hours of each worker is the same and
workforce requirement remains constant throughout the shift. Examples:
most full-time employees in manufacturing industries fall in this category.

2. Heterogeneous workforce: The workforce is considered to be heterogen-
eous when the available hours vary from one employee to another, and/or
the workforce requirement varies within a shift. Examples: fast-food res-
taurants. Scheduling with a heterogeneous workforce is referred to as tour
scheduling.

3. Work stretch: It is defined as the number of days an employee is scheduled
to work without any off-days in-between. Normally, the work stretch is 4
or 5 days in duration.

In every employee schedule, legal requirements and labor/management agreements
prescribe permissible days-on and days-off. Usually, 40 hr of work is translated into
a permissible work stretch of 5 days, so that every employee is given 2 days off in
a week. The scheduling problem involves planning days-on and days-off for each
worker, and still meeting the daily minimum manpower requirement of the organi-
zation.

If the total number of workers employed is W and if each person works 5 days a
week, then we have 5 × W workdays available in a week. If the number of workers
required on day i is ri, i = 1, 2, …, 7, then the weekly requirement is �ri. For a
schedule to be feasible, one condition is that the weekly manpower available be at
least equal to the total manpower required, or 5 × W >= �ri. If 5 × W is strictly
greater than �ri, then we have excess of manpower available, and the difference
between what is available and what is required is called slack. The second condition
for the schedule to be feasible is that for any given day the manpower available
must be equal to or greater than the manpower required on that particular day. The
efficiency of the schedule is defined as: (the total employee workdays required in a
week)/(the total employee workdays available in a week).

13.1 CONSECUTIVE DAYS-OFF SCHEDULING

Tibrewala, Philippe, and Browne (1972) (TPB) developed an efficient algorithm for
generating a schedule that gives every employee 2 consecutive days off per week.
In addition, the requirement may change from day to day. We describe here their
algorithm with a few changes using following notations.

Notations
ri = requirements for the i-th day in the cycle, i = 1, 2, 3, 4, …, 7.
sk = number of men idle for the pair of days (k, k + 1). Initially all sk’s are set

to zero.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 399 — #3

Manpower Scheduling 399

TABLE 13.1
Number of Workers off Each Day of the Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

s7 + s1 s1 + s2 s2 + s3 s3 + s4 s4 + s5 s5 + s6 s6 + s7

Procedure

Step 1

1. Choose 2 consecutive days (k, k + 1) for each value of k, k = 1, 2, …, 7.
Since the same demand pattern repeats itself each week, the demand for
k = 8 is also the demand for k = 1. Determine the maximum demand in
each pair. We get seven values, one from each pair. Determine the minimum
of these seven values, and call it m. Determine the pair and associated k,
from which m is selected.

2. If (k, k + 1) is not unique, choose, from among the tied ones, the pair that
has a minimum sum of the requirements.

3. If (k, k + 1) is still not uniquely determined, select any pair among the tied
ones, such that (k − 1, k) is not member of the set of tied pairs (illustrated
in example).

4. If there is no such pair, then all ri must be equal, in which case any pair (k,
k + 1) can be chosen.

Step 2: Increase by 1 the value of sk for k chosen in step 1, and decrease by 1, all ri’s,
except for i = k and k + 1.

Step 3: Repeat steps 1 and 2 until all requirements are satisfied, that is, until all ri

values as modified in step 2 are reduced to zero.
The value of each slack, si resulting from the procedure indicates the workers off

on 2 consecutive days i and i + 1. The total number of workers off on a given day
i, is given by the sum of two slack values, as shown in Table 13.1. Also, the total
workforce W , is equal to the sum of all slack values, that is,

W = s1 + s2 + s3 + s4 + s5 + s6 + s7

13.1.1 Illustrative Example

The requirement for each day of the week is as given in Table 13.2. We wish to
develop an efficient schedule that gives two consecutive days off to each worker.

The procedure is displayed in Table 13.3. The daily requirements ri (i = 1, 2,
3, …, 7) are shown in column 2 (iteration 1). The maximum value of the worker
requirement in the first pair, that is, with k = 1, is Max (6, 8) = 8. Similarly, the
maximum value in the next pair, that is, k = 2, is Max (8, 10) = 10. Proceeding in
the same manner, maximum value in the last pair is the evaluation between Sunday

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 400 — #4

400 Production Planning and Industrial Scheduling

TABLE 13.2
Daily Worker Requirement

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Requirements 6 8 10 7 12 4 2

TABLE 13.3
Application of TPB Algorithm

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13

r1 6 5 4 3 3 2 2 1 1 0 0 0 0
r2 8 7 6 5 4 3 2 1 1 0 0 0 0
r3 10 9 8 7 6 5 4 3 2 1 0 0 0
r4 7 6 5 4 3 2 1 0 0 0 0 0 0
r5 12 11 10 9 8 7 6 5 4 3 2 1 0
r6 4 4 4 4 3 3 2 2 1 1 0 0 0
r7 2 2 2 2 2 2 2 2 1 1 0 0 0

k 6 6 6 7 6 7 6 1 6 1 6 6
Case a a c a c a c a c a c c

s1 = 2; s2 = 0; s3 = 0; s4 = 0; s5 = 0; s6 = 8; s7 = 2; W = 12.

and Monday requirements, that is, between 2 and 6, the maximum value is 6. If we
list these seven values, they are 8, 10, 10, 12, 12, 4, and 6. The minimum among these
is 4; therefore m = 4. The pair where this value is associated has k = 6, which is
noted in the row denoted by k. The condition from step 1 that made us choose k = 6
value is condition a which is noted in the row marked Case. All ri’s are decreased by
one except for the pair with k = 6, and the values are displayed in the next column,
which form the data for iteration 2. The procedure continues in each iteration. Next,
we describe one sample iteration of interest.

Iteration 3 shows how step 1.3 may be applicable. The maximum value in each
pair is 6, 8, 8, 10, 10, 4, and 4, respectively. The minimum among these is four
associated with two pairs, one with k = 6, and other with k = 7. To break the tie, we
apply step 1.2. The sums of the current requirements (data from iteration 3) for the
associated pairs are 4 + 2 = 6 and 2 + 4 = 6, respectively. Again, we have a tie, so
we go to step 1.3. The elements (k −1, k) for each pair are (10, 4) for k = 6 and (4, 2)
for k = 7. The pair (10, 4) is not the member of tied pair as against (4, 2) is, (again a
pair that was tied in step 1.1), and hence k = 6. The requirements for all days except
6 and 7 are reduced by 1 to form the next cycle data.

The sk’s can be easily obtained from Table 13.3 by adding the number of times k
has a value that is equal to i. For example, k has value of 6 in iterations 1, 2, 3, 5, 7,
9, 11, and 12; hence s6 = 8. The total workers required is the sum of all si’s, which

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 401 — #5

Manpower Scheduling 401

TABLE 13.4
Daily Availability and Requirements Based on the Schedule

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Workers off 4 2 0 0 0 8 10
Workers on 8 10 12 12 12 4 2 60
Workers required 6 8 10 7 12 4 2 49

is 12. The scheduling efficiency is 49/60 = 0.817 or 81.7%. Table 13.4 shows the
summary describing how many workers are working and are off on each day.

13.2 ROTATING DAYS (WEEKENDS) OFF

In the previous section, we presented an algorithm that gives each worker two con-
secutive days-off during a week. In this section, we present a method that gives two
specific days off, namely weekends, to as many workers as possible, but then gives
some workers nonconsecutive days off to keep the total workforce, W , in a reason-
able limit. Such a policy maintains high efficiency of the schedule and satisfies the
common need to have weekends off.

The arrangement can be made fair to all workers by rotating each employee
through the program rather than assigning him/her with a fixed time slot. In the
schedule, where some workers are assigned weekends off while others are assigned
nonconsecutive days off, a fixed schedule for an employee indicates preferential
treatment while the rotating schedule creates equality. On a rotating schedule, all
employees eventually work through each time slot with associated on and off days.

The algorithm presented here is developed by Burns and Carter (1985) (BC). It
has the following characteristics:

1. The number of employees required each day of the week can vary.
2. The algorithm solution meets the following constraints:

a. Each employee works exactly 5 days per week.
b. Each employee has every other weekend off (or each worker is given

at least A out of every B weekends off).
c. No one works more than 6 consecutive days.

The algorithm starts by determining the minimum number of employees, W ,
needed to satisfy the weekly requirements. W is calculated based on three lower
bounds set as follows:

1. Weekend constraint (L1): the number of employees available each week-
end must be sufficient to meet the maximum weekend demand. Also, an
employee who works on one weekend must have following weekend off.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 402 — #6

402 Production Planning and Industrial Scheduling

Hence,
W >= 2n

where, n = maximum weekend demand.
2. Total demand constraint (L2): the total number of employees must be

sufficient to meet the total weekly demand.
Total weekly demand

Workforce W ≥
[

1

5

7∑

l=1

ni

]

when [] is the higher integer value of the resultant.
3. Maximum daily demand constraint (L3): The number of employees must

be sufficient to meet the maximum demand on any day.

W = Max{ni}, i = 1, 2, 3, . . . , 7.

Procedure
The Burns and Carter algorithm considers a span of B weeks (2 weeks, in our

case), to design A (one, in our case) weekends off for each employee. More often
than not, we are looking at scheduling multiple weeks. The steps of the procedure are
as follows:

Step 1: Compute the minimum workforce. Calculate the three bounds L1, L2, and L3,
as shown earlier. The minimum workforce (W) required is the maximum of these
three values.

Step 2: Schedule the weekends off. We need at least n (a maximum requirement on any
1 day during the weekend) workers to work on any day during the weekend, so the
remaining (W − n) workers can be given the weekend off. Assign the first weekend
off to the first (W − n) workers, assign the second weekend off to the next (W − n)
workers, and continue this process until repetition occurs.

Step 3: Determine the additional off-day pairs. For any week, each employee must
have exactly 2 days off. Since we have already assigned (W −n) Sundays and (W −n)
Saturdays off to some employees, we must assign an additional 2n days off to other
employees, so that all W workers will have exactly 2 days off in a week. To do
this, calculate the surplus of employees during the weekday by subtracting the daily
requirement from W , chosen in step 1. That is,

Surplus Sj = W − nj, where nj = daily requirements Monday through Friday
(j = 2, 3, …, 5).

Since we have n workers available on the weekend, the weekend surplus is
obtained by subtracting the daily requirements on Saturday and Sunday from the
maximum requirement(s) on any day during the weekend. This daily surplus is used
to determine which days some workers can be off (2n days, as stated in the earlier
step) as required.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 403 — #7

Manpower Scheduling 403

TABLE 13.5
Employee Categories for BC Algorithm

Category Weekend 1 Week 1 Weekend 2

Type T1 Off (No off days needed) Off
Type T2 Off (1 off days needed) On
Type T3 On (1 off days needed) Off
Type T4 On (2 off days needed) On

TABLE 13.6
Daily Requirements

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Requirements 2 6 8 10 7 12 4

Next, iteratively construct a list of n pairs of off days (numbered from 1 to n) as
follows:

1. Choose day k such that Sk = Max {Sj}
2. Choose any i! = k such that Si > 0. If Si = 0 for all i! = k, set i = k.
3. Add the pair {k, i} to the list and decrease Si and Sk by 1.
4. Repeat this procedure n times.

Step 4: Assigning off-day pairs in week 1. In week 1, employees will fall into one of
four categories, depending on the weekends off at the beginning and end of the week,
as shown in Table 13.5.

Each weekend, we have n employees working, therefore |T2|ggT3|. This identity
allows us to pair a T2-type employee with a T3-type employee. If the T2 employee
gets the “earliest” day off, then the associated T3 employee gets the “latest” day off.
In this way, each employee of type T4 gets 2 days off, and each one with T2 and T3
gets 1 day off during Monday through Friday, as required.

The following numerical example illustrates this algorithm.

13.2.1 Illustrative Example

We illustrate the application of Burns and Carter algorithm by applying it to the
same data as used in TDK algorithm. For convenience, the data from Table 13.2 are
reproduced in Table 13.6, with the week starting on Sunday. Our objective is to give
each employee one weekend off in the work stretch of 2 weeks.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 404 — #8

404 Production Planning and Industrial Scheduling

TABLE 13.7
Assigning Weekends and Weekdays Off

Empl. S S M T W T F S S M T W T F S S

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0

The first step is to calculate the minimum workforce (W) required within the three
constraints (L1, L2, L3):

Weekend constraint: W >= 2n = 2 × 4 = 8.
Total demand constraint

Workforce W ≥
[

1

5

7∑

1

ni

]
= �49/5� = 10

Maximum daily demand constraint: W = 12
We choose W as the maximum value of the three values, and hence W = 12.
Next, we apply step 2, and start to create an employee schedule for each of 12

employees over a 2-week period as shown in Table 13.7. The table has 12 rows;
one for each employee and 14 columns; one for each day in a 2-week period (we
have shown 16 columns to show following weekend assignment). Since we require a
maximum of four workers on the weekend (maximum demand on weekend), another
12 − 4 = 8 can be given weekends off. Thus we assign employees 1 through 8,
the first weekend off (shown by 0), employees 9 through 4 (next 8 employees, in
rotation), second weekend off, 5 through 12, the third weekend off, and so on.

Next, we must decide how to give an additional 4 × 2 = 8 days off during
the week. For this, we must decide on four “pairs.” The calculations are shown
in Table 13.8. We start by calculating the surplus of workforce for each day. For
Monday through Friday, it is obtained by subtracting the daily requirement for each
day from the theoretical minimum workforce, that is, W , which is 12, and for the
weekend by subtracting the weekend requirement from the maximum requirement
of 4, during the weekend. These values are shown in Table 13.8 for the first four
iterations.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 405 — #9

Manpower Scheduling 405

TABLE 13.8
Surplus Calculation and Pair Determination

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Iteration Requirements (2) (6) (8) (10) (7) (12) (4)

1 Surplus 2 6 4 2 5 0 0
Pair 1 1 1

2 Surplus 2 5 4 2 4 0 0
Pair 2 1 1

3 Surplus 2 5 3 2 3 0 0
Pair 3 1 1

4 Surplus 2 4 2 2 3 0 0
Pair 4 1 1

Surplus 2 3 2 1 3 0 0

Select the 2 days that have maximum surplus, and form it as the first pair. Here,
Monday and Thursday are selected as the elements of the first pair since they have
the maximum surplus. In order to decide the next pair, reduce the surplus on this pair
(Monday and Thursday) by 1 employee and again (in the second iteration) select a
pair of days with maximum surplus but not the same pair if possible, that was chosen
before. So, we have chosen 4 and 4 pair (Tuesday, Thursday) rather than 5 and 4 pairs
(if we had chosen 5 and 4 pairs, we still get a solution to the problem; it will just
be different from what is illustrated). Continue this process until we have four (since
n = 4) pairs.

The following step shows assigning additional days off.
Since employees 1 through 4 have both weekends off, they belong to type T1.

Employees 5 through 8 belong to type T2 since they have the first weekend off and
work during the second weekend. Employees 9 through 12 are type T3 since they
work the first weekend and have the second weekend off. We do not have any type
T4 employees.

Since each employee must have 2 days off in a week, we have to assign additional
days off to employees 5 through 12, that is, to type T2 and type T3 employees (type T1
employees already have 2 days off in a week, so they do not need any additional days
off). In the previous step, we have developed four pairs. In pair 1, we have Monday
and Thursday as the pair. The decision is as follows: if a type T2 (T3) employee
is given Monday off, then a type T3 (T2) employee should be given Thursday off.
Following the same rule, their assignments are made and displayed in Table 13.9 and
also in Table 13.10. The arrows in Table 13.9 indicate the pair of days off matched with
the employees, number 9 employee with number 5, number 10 with number 6, and
so on. It should be noted that in week 2, type 1, 2, and 3 employees are not the same
as those in week 1, and the assignment changes. The assignments are shifted by four,
the maximum weekend requirement. Employee number 5 is matched with number 1,
number 6 with number 2, and so on. After a number of weeks, the assignments will
repeat, forming a cycle. The scheduling efficiency is 98/120 = 0.8167 or 81.67%.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 406 — #10

406 Production Planning and Industrial Scheduling

TABLE 13.9
Assigning Weekends and Weekdays Off

1
2
3
4
5
6
7
8
9
10
11
12

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0

0
0

0

0
0

0

0
0

0
0

0

0
0

0

Employee S S S SM T M T M T W TF S SF

TABLE 13.10
Non-Weekend Days Off

Employee Employee Number in T2 and Employee Number in T3 and
Number Days Off His/Her Day Off in Week 1 His/Her Day Off in Week 1

1 M, Th 9, Monday 5, Thursday
2 T, Th 10, Tuesday 6, Thursday
3 M, T 11, Monday 7, Tuesday
4 M, W 12, Monday 8, Wednesday

13.3 MONROE’S ALGORITHM

Monroe (1972) developed a simple algorithm in 1972 that is still quite popular. The
algorithm tries to give 2 consecutive days off (not necessarily the weekends as in BC)
with least number of workers, W . If it is not possible, then we have three choices:

1. See if the daily requirements can be modified by shifting the portion of
requirements from 1 day to another, so that W workers can be given two
consecutive days off.

2. Increase the number of workers in excess of W , so that we are able to give
two consecutive days off.

3. Give nonconsecutive days off to some workers.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 407 — #11

Manpower Scheduling 407

Procedure
The basic procedure is described in the following steps.

Step 1: Calculate the theoretical minimum number of employees (W) needed as
W = Max [T /5, nj]
where T = sum of the daily requirements.
nj = Maximum number of employees required on any day.
W must be an integer. If T /5 is not an integer, round it up to the higher integer.

The additional capacity thus created may be used to increase the worker assignments
for the days having highest workload per man.

Step 2: For each day, calculate the required days off (RDO) by subtracting each day’s
requirement from W .

Step 3: Construct consecutive day pairs such as MT (Monday–Tuesday), TW
(Tuesday–Wednesday), WT (Wednesday–Thursday),, SS (Saturday–Sunday),
SM’ (Sunday and Monday of the next week), and M’T’ (Monday–Tuesday of the
next week). Assign about half of the Tuesday’s RDO to an MT pair. Assign the
remaining RDOs to consecutive day pairs in the manner shown in step 4.

Step 4: Subtract the MT pair value from Tuesday’s RDO and assign the remaining
value to the TW pair. Subtract TW assignment from Wednesday’s RDO, and assign
the remaining value to WT pair; continue this procedure until we have assigned a
value to M’T’ pair.

Step 5: If M’T’ value is equal to MT value, and all assignments are positive, go to
step 6. If they are not equal, or if some trial values are negative, a second iteration is
needed (if the second iteration was performed, go to step 7). The initial assignment
for the second iteration to MT pair is the average value of MT and M’T’ values in
the first iteration. Apply the procedure from step 4 to get the assignments for the
remaining pair of days. At this point, if there is a solution to the problem without
further modification, then the MT value is equal to the M’T’ value, and the values for
the all day pairs are positive go to step 6. If this is not the case, go to step 7.

Step 6: The numbers assigned in the first trial, if feasible (from top of step 5) or of
needed the second trial, indicate the number of workers off on two consecutive days
as indicated by the pair.

Step 7: We come to this step only because the solution is not feasible at this point. Let
n be the largest negative number in the second trial. There are three ways that may
make the solution feasible:

1. Shift the RDOs between days so that when steps 1 through 6 are applied
again there is a feasible solution. It may be accomplished if we can increase
by n, RDO for a day in the pair where there is the maximum negative
value in the second iteration and decrease a positive RDO by equal amount
without making it negative.

2. Increase the number of workers by n.
3. Develop a sequence where there are some nonconsecutive days off. This

number should, however, be minimum, and the minimum is n. Assign n

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 408 — #12

408 Production Planning and Industrial Scheduling

TABLE 13.11
Daily Requirements for Example II

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Requirements 5 4 3 5 5 4 3

TABLE 13.12
Application of Monroe’s Algorithm to Example II

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday Next
Mond
M’

Requirements 5 4 3 5 5 4 3 5
Excess 1
Total 5 4 4 5 5 4 3 5
RDOs 1 2 2 1 1 2 3 1
required
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 0 1 1 2 −1
Second trial 0 2 0 1 0 2 1 0

nonconsecutive pairs of RDOs, where n is the largest negative number in
the final pairs. One day of each nonconsecutive pair must be assigned to
the day of the week with the largest number of RDOs.

13.3.1 Illustrative Example II

A repair facility that works 7 days a week has the daily worker requirements as shown
in Table 13.11. Wednesday has been typically a slow day, and only three workers
are scheduled on that day. We wish to develop the worker schedule that gives two
consecutive days off to each worker.

The application of Monroe’s algorithm is displayed in Table 13.12. The total of
the daily requirements for a week is 29. Since each person is available to work 5 days
per week, we need a minimum of [29/5] = 6 workers (the notation [a/b] indicates the
next higher integer value of the division a/b, if the division results in a noninteger).
All of the daily requirements are less than 6; therefore, set W = 6. The total workdays
available with six workers are 6 × 5 = 30. Hence, there is one extra working day
available. We assign that to the day with minimum manpower on the assumption that
work load per person on that day would be the highest and assignment of an additional
worker will alleviate this overload.

Table 13.12 displays all days of the week plus Monday of the next week. The
Monday of the next week is essential since, in developing consecutive day pairs, we

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 409 — #13

Manpower Scheduling 409

go from MT of the present week to M’T’ of the next week, giving eight pairs of
days in total. The daily requirements are noted, and the excess man–day available
is assigned to Wednesday, since that is the day where the requirement is minimum.
The total number of workers to be allocated per day is noted in the row called total.
Each day’s RDOs are determined by subtracting the daily total from W . For example,
Monday’s RDO is (6 − 5) = 1. The next row denotes the pair of consecutive days.

All allocations in the first and second trial must be integers. The allocation to MT
in the first trial is half of Tuesday’s RDO (if the Tuesday’s RDO is odd, assign only
the integer portion of the division). The successive allocations to the pairs are found
by subtracting from the next day’s RDO the allocation made to the preceding pair.
For example, TW allocation is RDO for Tuesday—allocation to MT, which is equal
to 2 − 1 = 1. Similarly, Wednesday’s allocation is (RDO for W – TW allocation) =
(2 – 1) = 1. The allocations in the first trial are complete when an allocation to M’T’
is made.

Again, the second trial allocation starts with MT allocation. However, this value
now should be half of the assignments for MT and M’T’ in trial 1 (if the division is
not an integer, take the integer portion of the division). Other values for the pairs are
calculated applying the same rule that we have used in trial 1. For example, the TW
assignment is: (RDO for Tuesday – MT assignment in the second trial) = (2 – 0) = 2.

Complete the allocation to all pairs including M’T’. If there are no negative values
and if the MT allocation is the same as the M’T’ allocation, then we have a solution.
The value associated with each pair in the second trial indicates the number of workers
off on those 2 consecutive days. For example, two workers are off on Tuesday and
Wednesday, one worker is off on Thursday and Friday, and so on. It is interesting
to note that in total three workers are off on Sunday, two from the Saturday–Sunday
pair and one from the Sunday–Monday pair.

13.3.2 Illustrative Example III

Suppose now the daily requirements are slightly modified, as shown in Table 13.13.
The application of Monroe’s algorithm (shown in Table 13.13) results in an infeasible
solution since the second trial assignments are negative. There are three ways to
obtain a feasible solution, as shown in Tables 13.14, 13.15, and 13.16.

13.3.3 Realignment of a worker

Table 13.14 shows the analysis when one worker is realigned. Only one worker
is chosen for realignment since the maximum negative value in the second trial in
Table 13.13 is −1. Monday requirement is decreased by one, since Monday (MT pair
under M) was one of the days in Table 13.13 that shows −1 assignment in the second
trial. To compensate for decreasing the requirement of Monday, we increase the
requirement for Sunday, since Sunday has the least requirement. The Table 13.14
shows that we do have a feasible solution. Thus, if it is possible to realign the
requirements, then solution may be feasible.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 410 — #14

410 Production Planning and Industrial Scheduling

TABLE 13.13
Data and Solution of Example III

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Next
Mond
M’

Weekly
Total

Requirements 5 4 3 5 4 5 3 5 29
Excess 1
Total 5 4 4 5 4 5 3 5 30
RDOs 1 2 2 1 2 1 3 1
Required
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 0 2 −1 4 −3
Second trial −1 3 −1 2 0 1 2 −1

TABLE 13.14
Realign Working/RDO Distribution

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Next
Mond
M’

Weekly
Total

Requirements 4 4 3 5 4 5 4 4 29
Excess 1
Total 4 4 4 5 4 5 4 4 30
RDOs 2 2 2 1 2 1 2 2
Required
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 0 2 −1 3 −1
Second trial 0 2 0 1 1 0 2 0

13.3.4 Increasing the Workforce

Another way to obtain feasibility is by increasing the workforce by an amount that
equals the maximum negative value in the second trial. In our case, it is −1, so we
increase W from 6 to 7. But, by doing so, we have created five additional man–
workdays. Assign them, one per day, to the days with the least initial requirements, as
shown in Table 13.15. RDOs per day are now W = 7 minus the daily requirement. All
the calculations of Monroe’s algorithm are shown in Table 13.15. The final feasible
solution is again given by the second trial numbers.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 411 — #15

Manpower Scheduling 411

TABLE 13.15
Add Extra Worker

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Next
Mond
M’

Weekly
Total

Requirements 5 4 3 5 4 5 3 5 29
Excess 1
Extra worker 1 1 1 1 1
Total 5 5 5 6 5 5 4 5 35
RDOs 2 2 2 1 2 2 3 2
Required
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 0 2 0 3 −1
Second trial 0 2 0 1 1 1 2 0

TABLE 13.16
Assigning Nonconsecutive Days Off

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Next
Mond
M’

Weekly
Total

Requirements 5 4 3 5 4 5 3 5 29
Excess 1
Total 5 4 4 5 4 5 3 5 30
RDOs 1 2 2 1 2 1 3 1
Required
Nonconsecutive 1 1
Remaining
RDO
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 0 1 0 2 −1
Second trial 0 2 0 1 0 1 1 0

13.3.5 Assigning Nonconsecutive Days Off

We can resolve the non-feasibility in Table 13.13 by giving one employee (maximum
negative number in second trial in Table 13.13) nonconsecutive days off. Table 13.16
shows the results. Nonconsecutive days are given (as far as possible) to the days
where RDOs are maximum. The feasible solution is obtained.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 412 — #16

412 Production Planning and Industrial Scheduling

13.4 TOUR SCHEDULING

So far, we have seen manpower scheduling, where the workforce has been a homo-
geneous group. In this section, we discuss the scheduling of workers that form a
heterogeneous group. This is especially true in service industries such as fast-food
places where the daily working hours are typically longer than 8, but not neces-
sarily long enough to accommodate two or three full shifts. In addition, manpower
requirements may vary from day to day and even from hour to hour.

We discuss here a simple algorithm developed by Bechtold and Showalter. We
assume that each worker works for 8 hr with a 1 hr break for lunch, which is unpaid
(thus, the shift is 9 hr long). We may have multiple shifts, each starting at a different
time of day, to cover longer than 8 hr of operation.

Define for each day

rt = The number of employees required during the tth time period
xt = The number of employees assigned to the shift beginning in hour t
s = The number of possible shifts in each operating day
h = The number of hours in each operating day
n = The number of hours worked in each shift prior to the 1-hr meal break

13.4.1 Procedure

Phase I: Daily Schedule

In phase I, we develop the daily schedule for each shift. The procedure examines
each day independently. For each day, we determine the number of workers to start
on each shift, by applying the following steps.

Step 0: Initialize the number of employees starting in any shift by setting all shift
assignments to zero, that is, set xi = 0 for t = (1 to s).

Step 1: Set the first shift assignment to the first hour by requirement. Since these
workers are working till their meal time and then taking a 1-hr break and working
again, for the total of 8 hr, reduce the corresponding hour’s requirements by the first
hour’s requirement (minimum being 0) for the hours where the workers are working.

That is,
xt = r1 and rt = Max (rt − r1, 0) for t = (1 to n) and for t = n + 2 …., 9.

Step 2: Set the workers starting on the last shift equal to the requirement of the last
hour of operation. This is because, for the schedule to be feasible, at least the last
shift must cover the last hour of the workday. Reduce the manpower requirement for
the hours where these people will be working, by the last hour’s requirement (the
minimum value for the result is zero).

That is,
xs =rh and rt =max(rt − rh, 0) for t = s …, s + n − 1 and for t = s + n + 1. . .h.

Step 3: If the requirements for all hours are reduced to zero, stop; we have a schedule.
If not go to step 2.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 413 — #17

Manpower Scheduling 413

TABLE 13.17
Weekly Demand Requirements (in Number of Employees)

Hours of
the day

Days of the Week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 3 4 4 4 2 4 1
2 5 3 3 5 5 4 3
3 4 2 5 3 4 5 4
4 5 4 2 2 5 3 5
5 2 1 1 5 4 2 3
6 5 5 4 3 5 4 2
7 1 3 3 4 3 5 4
8 4 2 5 3 2 1 1
9 5 5 2 2 4 4 5
10 3 1 1 4 2 3 2
11 5 4 4 1 5 2 4
12 1 3 3 1 1 4 3

That is,
if rt = 0 for 1 ≤ t ≤ h, stop. Otherwise continue.

Phase II: Weekly Schedule

Phase II requires application of an algorithm to develop a weekly schedule. We
will apply Monroe’s algorithm to get the weekly days on and off routine for each
shift.

13.4.2 Illustrative Example

The daily requirements on an hourly basis for a restaurant that is open 12 hr a day
is shown in Table 13.17. The restaurant is situated in a business district and attracts
customers mainly on weekdays, and night times on weekends. There are four possible
shifts A, B, C, and D, starting on hour 1, 2, 3, and 4, respectively, to which a
full-time employee can be assigned. Each employee works 4 hr, takes 1 hr break,
and then works the remaining 4 hr. We wish to develop the hiring policies for the
restaurant.

We illustrate the application of the algorithm by applying it to Monday’s require-
ments. They are replicated in row 1 of Table 13.18. By following step 1, the three
employees required in the first hour of the day (shown in bold letters in row 1) are
assigned to the earliest daily work schedule A (shown in row 2 column A). These
workers are working for first 4 hr, taking 1 hr off, and then working again for the next
4 hr. This fact is also noted in row 2. The remaining demand for each hour (row 3) is
calculated by subtracting from row 1 the assigned number of employees in the hours
that are worked as shown in row 2.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 414 — #18

414 Production Planning and Industrial Scheduling

TABLE 13.18
Phase I Application to Monday Daily Shift Schedule Requirements

Hours of Day Shift Schedule

1 2 3 4 5 6 7 8 9 10 11 12 A B C D

1. Number required 3 5 4 5 2 5 1 4 5 3 5 1
Number assigned 3 3 3 3 0 3 3 3 3 0 0 0 3

2. Number required 0 2 1 2 2 3 0 1 2 3 5 1
Number assigned 0 0 0 1 1 1 1 0 1 1 1 1 1

3. Number required 0 2 1 1 1 2 0 1 1 2 4 0
Number assigned 0 2 2 2 2 0 2 2 2 2 0 0 2

4. Number required 0 0 0 0 0 2 0 0 0 0 4 0
Number assigned 4 4 4 4 0 4 4 4 4 4

5. Number required 0 0 0 0 0 0 0 0 0 0 0
Employees assigned
to shift schedule 3 2 4 1

TABLE 13.19
Employee Daily Shift Schedule Assignment

Day of Week

Shift Schedule Monday Tuesday Wednesday Thursday Friday Saturday Sunday

A 3 4 4 4 3 5 4
B 2 0 0 4 2 0 0
C 4 0 1 0 0 0 0
D 1 4 3 1 5 4 4

Next is the application of step 2. One employee is required in the last hour of the
day (shown in bold letters in row 3), and is assigned to the last daily work schedule,
D. The employees still required (shown in row 3) each hour are calculated and shown
in row 5.

Continual application of step 4 gives the results in row 9, at which point the
remaining requirements are zero. The total number of employees scheduled to each
shift for Monday is shown at the right-hand corner of Table 13.19. Similarly, the daily
shift schedules for Tuesday through Sunday are developed, and the results are shown
in Table 13.20. The numbers in the table show the number of workers that will start
each shift on each day of the week.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 415 — #19

Manpower Scheduling 415

TABLE 13.20
Phase II Application On-Off Days for Shift Schedule A

Days Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Next
Mond
M’

Requirements 3 4 4 4 3 5 4 5
Excess 2 1
Total 5 4 4 4 4 5 4 5
RDOs 1 2 2 2 2 1 2 1
Required
Consecutive MT TW WTh ThF FS SS SM′ M′T′
day pairs
First trial 1 1 1 1 1 0 2 −1
Second trial 0 2 0 2 0 1 1 0

TABLE 13.21
Phase II Application On-Off Days for Shift Schedule A

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Monday to schedule 3 2 5 4 2 5 3 4 4 2 1 1
Full time 1 1 1 1 1 1 1 1 1
Remain 2 1 4 3 2 4 2 3 3
Part time 2 2 2 2
Remain 0 0 2 1 2 4 2 3 3 2 1 1
Full time 1 1 1 1 0 1 1 1 1
Remain 0 0 2 0 1 3 1 3 2 1 0 0
Part time 1 1 1 1
Remain 2 0 1 3 0 2 1 0 0 0
Full time 1 1 1 1 0 1 1 1 1
Remain 1 0 0 2 0 1 0 0 0
Part time 1 1 1 1
Remain 0 0 0 1 0 1 0 0 0 0
Part time 1 1 1 1
Remain 0 0 0 0 0 0 0 0 0 0

Phase II

The next step is to determine for each shift the worker schedule over the 7-day
period so that each worker works 5 days and is off for 2 days. We can apply Monroe’s
algorithm to obtain a workers on-off schedule. Table 13.21 shows one such schedule;
this one is specific to the shift schedule A. Here, we have six workers being assigned
to shift A. Similar calculations with other shifts will determine the workers needed

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 416 — #20

416 Production Planning and Industrial Scheduling

for each shift, and thus we can determine the total of all workers needed to satisfy the
present requirements shown in Table 13.17.

13.4.3 Other Variations

In the previous section, it is presumed that either there is only one type of task,
and every employee is capable of performing this task or if there are multiple tasks
necessary for the job, all the workers are capable of performing any assigned task. We
also assumed that all workers are full-time workers. In some service organizations,
the workers must be treated individually for two reasons. First, the workers may be
full-time or part-time workers, varying the hours of the day and days of the week
that they are available. Second, workers differ in the tasks they are qualified to
perform. In a fast-food restaurant, for example, we may have cooks, cashiers, servers,
and cleaners as the major classification of the tasks. Different workers can perform
different combinations of the tasks. Some workers can be cooks and cleaners, while
others can be cashiers, servers, and cleaners. The scheduling of such a problem is
also referred to as tour scheduling.

Consider a problem where we can employ part-time workers who can work 4 hr at
a time as long as there is one full-time worker to supervise two part time employees.
Part time employees of course cost less and are therefore preferred, plus they are
available any time we need them as long as they work for 4 hr in a stretch. The
example illustrates the application of tour scheduling algorithm.

In some organizations, especially in the health care industry where critical short-
ages in a specialized area may exist, it is common to have a shift of 12 hr with the
employee working 3 days on and 4 days off in one week and 4 days on and 3 days
off in the second week. Many algorithms exist to assign days on and off for such a
situation.

13.5 THREE CONSECUTIVE DAYS OFF

Now consider a problem where we want to give 3 consecutive days off using as few
workers as possible. Again, list the daily requirements in a table. The remaining steps
of the procedure are as follow:

Step 1: Calculate the theoretical minimum number of employees W needed as:

W = [Max(T/4, nj)]
where T is the sum of the daily requirements for a week, and nj is the maximum number
of employees required on the day. We divide T by 4 here because an employee is only
working 4 days a week. W must be an integer. If T /4 is not an integer, round it to the
next higher integer.

Step 2: Calculate the RDO by subtracting each day’s requirement from W .

Step 3: Construct three consecutive day triplets such as SMT (Sunday–Monday–
Tuesday), MTW (Monday–Tuesday–Wednesday), …, SSM (Saturday–Sunday–
Monday), and SSM’ (Saturday–Sunday–next Monday).

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 417 — #21

Manpower Scheduling 417

Step 4: Let ak = the number of workers who are off on three consecutive days, k − 1,
k, and k + 1. For example, for k = 1 workers are off on SMT, for k = 2, they are off
on MTW.

Assign four consecutive members of ak as a group. For example, the first group
is a1, a2, a3, and a4, and the second group is a2, a3, a4, and a5, and so on. If the value
of k exceeds 7, then go back in the loop to start from 1. For example,

a6, a7, a1, and a2
For each group, set the difference between first and last element a’s equal to

difference between RDO for second and third element.
Thus, we have,

In the group 1, g1 = {a1, a2, a3, a4}, set a1 − a4 = RDO2 − RDO3
In the group 2, g2 = {a2, a3, a4, a5}, set a2 − a5 = RDO3 − RDO4
In the group 3, g3 = {a3, a4, a5, a6}, set a3 − a6 = RDO4 − RDO5
In the group 4, g4 = {a4, a5, a6, a7}, set a4 − a7 = RDO5 − RDO6
In the group 5, g5 = {a5, a6, a7, a1}, set a5 − a1 = RDO6 − RDO7
In the group 6, g6 = {a6, a7, a1, a2}, set a6 − a2 = RDO7 − RDO1
In the group 7, g7 = {a7, a1, a2, a3}, set a7 − a3 = RDO1 − RDO2

From the preceding, it follows that:

a1 = a4 + (RDO2 − RDO3)

a2 = a5 + (RDO3 − RDO4)

a3 = a6 + (RDO4 − RDO5)

a4 = a7 + (RDO5 − RDO6)

a5 = a1 + (RDO6 − RDO7)

a6 = a2 + (RDO7 − RDO1)

a7 = a3 + (RDO1 − RDO2)

From these relationships, we can then develop equations such as

a1 = a2 + x2 = a3 + x3 = a4 + x4 = a5 + x5 = a6 + x6 = a7 + x7

where xi is some constant based on the preceding relationships.
Set min {ak} equal to an integer number starting with 0 and increasing by 1, and

solve for remaining ai’s, so that the sum of ai = W , if possible.
If

∑
ak = W then the solution is optimal. Stop.

Step 5.
If

∑
ak > W , then answer is infeasible. There are two ways to resolve this

infeasibility.

1. Add an extra worker.
2. Assign nonconsecutive days to one worker.

Both approaches are illustrated by an example later.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 418 — #22

418 Production Planning and Industrial Scheduling

TABLE 13.22
Initial Table

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 4 3 5 5 4 3 29
Excess 1 1 1 32
Total 5 4 4 5 5 5 4
RDO 3 4 4 3 3 3 4
Day pair SMT MTW TWT WTF TFS FSS SSM′
ak a1 a2 a3 a4 a5 a6 a7
Counter 1 2 3 4 5 6 7

Example

Consider the following data. In Table 13.22, based on the daily requirements, we
can calculate W as

W = max (29/4, 5) = 8 and, therefore, workdays available with 8 workers =
8 × 4 = 32. The remaining table is completed by first assigning excess to days with
the smallest requirements.

Applying step 4 (work with counter if it is more convenient)

In the group 1, g1 = {a1, a2, a3, a4}, set a1 − a4 = RDO2 − RDO3 = 0
In the group 2, g2 = {a2, a3, a4, a5}, set a2 − a5 = RDO3 − RDO4 = 1
In the group 3, g3 = {a3, a4, a5, a6}, set a3 − a6 = RDO4 − RDO5 = 0
In the group 4, g4 = {a4, a5, a6, a7}, set a4 − a7 = RDO5 − RDO6 = 0
In the group 5, g5 = {a5, a6, a7, a1}, set a5 − a1 = RDO6 − RDO7 = −1
In the group 6, g6 = {a6, a7, a1, a2}, set a6 − a2 = RDO7 − RDO1 = 1
In the group 7, g7 = {a7, a1, a2, a3}, set a7 − a3 = RDO1 − RDO2 = −1

Hence,

a1 = a4
a2 = a5 + 1
a3 = a6
a4 = a7
a5 = a1 − 1
a6 = a2 + 1
a7 = a3 − 1

Therefore,

a1 = a4 = a7 = a3 − 1 = a6 − 1 = a2 = a5 + 1
Or a1 = a2 = a3 − 1 = a4 = a5 + 1 = a6 − 1 = a7

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 419 — #23

Manpower Scheduling 419

TABLE 13.23
Solution to Example 1

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 4 3 5 5 4 3 29
Excess 1 1 1 32
Total 5 4 4 5 5 5 4
RDO 3 4 4 3 3 3 4
Day triplet SMT MTW TWT WTF TFS FSS SSM′
Workers off
a1 = 1 1 1 1
a2 = 1 1 1 1
a3 = 2 2 2 2
a4 = 1 1 1 1
a5 = 0 0 0 0
a6 = 2 2 2 2
a7 = 1 1 1 1
Total workers off 3 4 4 3 3 3 4

TABLE 13.24
Data for Example 2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 7 8 6 10 10 4 50
Excess 1 1 2
Total 6 7 8 6 10 10 5
RDO 7 6 5 7 3 3 8
Day pair SMT MTW TWT WTF TFS FSS SSM
ak a1 a2 a3 a4 a5 a6 a7

Since no assignment can be negative, set Min {ak} = 0. By observation, it is clear
that a5 should have the least value. Hence, set a5 = 0, and solving for others, we get
a1 = 1, a2 = 1, a3 = 2, a4 = 1, a5 = 0, a6 = 2, and a7 = 1. Sum of ai, which is the number
of workers required, is 1 + 1 + 2 + 1 + 0+ 2 + 1 = 8, and matches the initial value of
W , and hence we have a feasible solution (Table 13.23).

Note that the total number of workers off on any day matches with the RDO for
that day, and hence it is an optimum solution.

Example 2

Consider now another example with the requirements as shown in the Table 13.24.

T = Max(50/4, 10) = 13

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 420 — #24

420 Production Planning and Industrial Scheduling

Iteration 2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 7 8 6 10 10 4 50
Excess 2 1 3 6
Total 7 7 8 7 10 10 7
RDO 7 7 6 7 4 4 7
Day pair SMT MTW TWT WTF TFS FSS SSM
ak a1 a2 a3 a4 a5 a6 a7

Workdays available with 13 workers = 13 × 4 = 52. Excess = 52 – 50 = 2.
Applying step 4,

In the group 1, g1 = {a1, a2, a3, a4}, set a1 − a4 = RDO2 − RDO3 = 1
In the group 2, g2 = {a2, a3, a4, a5}, set a2 − a5 = RDO3 − RDO4 = −2
In the group 3, g3 = {a3, a4, a5, a6}, set a3 − a6 = RDO4 − RDO5 = 4
In the group 4, g4 = {a4, a5, a6, a7}, set a4 − a7 = RDO5 − RDO6 = 0
In the group 5, g5 = {a5, a6, a7, a1}, set a5 − a1 = RDO6 − RDO7 = −5
In the group 6, g6 = {a6, a7, a1, a2}, set a6 − a2 = RDO7 − RDO1 = 1
In the group 7, g7 = {a7, a1, a2, a3}, set a7 − a3 = RDO1 − RDO2 = 1

Furthermore,

a1 = a4 + 1
a2 = a5 − 2
a3 = a6 + 4
a4 = a7
a5 = a1 − 5
a6 = a2 + 1
a7 = a3 + 1

Thus,

a1 = a4 + 1 = a7 + 1 = a3 + 2 = a6 + 6 = a2 + 7 = a5 + 5
a1 = a2 + 7 = a3 + 2 = a4 + 1 = a5 + 5 = a6 + 6 = a7 + 1

Therefore,
ak = {7, 0, 5, 6, 2, 1, 6};

∑
ak = 27 >= 13, and the solution is infeasible.

a. Add an extra worker(s)
One alternative is to add an extra worker. Start a new iteration with W = 14 and

T = 14 × 4 = 56. Excess = 6. Distribute the excess to the days where requirements
are in the smallest amount, so that the overall total from day to day is as uniform as
possible.

Iteration 2

From the table we get,

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 421 — #25

Manpower Scheduling 421

Nonconsecutive days: Iteration 2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 7 8 6 10 10 4 50
Excess 1 1 2
Total 6 7 8 6 10 10 5
RDO 7 6 5 7 3 3 8
Nonconse 1 1 1

6 6 5 6 3 3 7
Day pair SMT MTW TWT WTF TFS FSS SSM
ak a1 a2 a3 a4 a5 a6 a7

a1 = a4 + 1, a2 = a5 – 1, a3 = a6 + 3, a4 = a7, a5 = a1 – 3, a6 = a2, and a7 = a3
And further,
a1 = a4 + 1 = a7 + 1 = a3 + 1 = a6 + 4 = a2 + 4 = a5 + 3
a1 = a2 + 4 = a3 + 1 = a4 + 1 = a5 + 3 = a6 + 4 = a7 + 1
Therefore,
ak = {4, 0, 3, 3, 1, 0, 3};

∑
ak = 14 = W , and the solution is feasible.

13.5.1 Assign Nonconsecutive Days Off

The second alternative is to give at least one employee nonconsecutive days off. In
our table, nonconsecutive days off are given to the days where RDOs are maximum.

Iteration 2

Since one of the workers is assigned to have nonconsecutive days off, the number
of the workers left is W = 12.

From the table, we get,
a1 = a4 + 1, a2 = a5 − 1, a3 = a6 + 3, a4 = a7, a5 = a1 − 4, a6 = a2 + 1 and

a7 = a3
So, a1 = a4 + 1 = a7 + 1 = a3 + 1 = a6 + 4 = a2 + 5 = a5 + 4
Or a1 = a2 + 5 = a3 + 1 = a4 + 1 = a5 + 4 = a6 + 4 = a7 + 1
Therefore, ak = {5, 0, 4, 4, 1, 1, 4}. ∑ ak = 19 ≥ W , and the solution is infeasible.
Assign one more worker non consecutive day off.

Iteration 3

Since two workers are assigned nonconsecutive days off, the remaining workers
are W = 11.

From the table, we get,
a1 = a4, a2 = a5, a3 = a6 + 2, a4 = a7, a5 = a1 − 3, a6 = a2, and a7 = a3 + 1
So, a1 = a4 = a7 = a3 + 1 = a6 + 3 = a2 + 3 = a5 + 3
Or a1 = a2 + 3 = a3 + 1 = a4 = a5 + 3 = a6 + 3 = a7
Therefore, ak = {3, 0, 2, 3, 0, 0, 3},

∑
ak = 11 = W , and the solution is feasible.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 422 — #26

422 Production Planning and Industrial Scheduling

Nonconsecutive days: Iteration 3

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

From iteration 2: 6 6 5 6 3 3 7
1 1 1

6 5 5 5 3 3 6
Day pair SMT MTW TWT WTF TFS FSS SSM
ak a1 a2 a3 a4 a5 a6 a7

13.5.2 Special Case and Further Discussion

What happens if the number of workers required for each day does not change. Let
us consider the following cases and get a further understanding of the definition of
the problem.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total

Required 5 5 5 5 5 5 5 35
Excess 1 1
Total 5 6 5 5 5 5 5
RDO 4 3 4 4 4 4 4
Day pair SMT MTW TWT WTF TFS FSS SSM

The solution is ak = {1, 1, 1,2 , 1, 1, 2};
∑

ak = 9 = W , and the solution is
feasible.

Similarly, for other constant requirements, the following table summarizes the
results.

For MOD (R/4) = 0.

Required
Workers/day

Total
RequirementW a1 a2 a3 a4 a5 a6 a7

R1 = 4 W1 = 7 1 1 1 1 1 1 1
R2 = 8 W1 = 14 2 2 2 2 2 2 2
R3 = 12 W3 = 21 3 3 3 3 3 3 3
… … … … … … … … …
Rn = 4 + 4n Wn = 7 + 7n n + 1 n + 1 n + 1 n + 1 n + 1 n + 1 n + 1

For n = 0, 1,2, ….

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 423 — #27

Manpower Scheduling 423

For MOD (R/4) = 1.

Required
Workers/day

Total
RequirementW a1 a2 a3 a4 a5 a6 a7

R1 = 1 W1 =2 0 0 0 1 0 0 1
R2 = 5 W2 =9 1 1 1 2 1 1 2
R3= 9 W3 =16 2 2 2 3 2 2 3
… … … … … … … … …
Rn = 1 + 4n Wn = 2 + 7n n n n n + 1 n n n + 1

For n = 0, 1,2, ….

MOD (R/4) = 2.

Required
Workers/day

Total
RequirementW a1 a2 a3 a4 a5 a6 a7

R1 = 2 W1 = 4 1 0 0 0 1 1 1
R2 = 6 W1 = 11 2 1 1 1 2 2 2
R3 = 10 W3 = 18 3 2 2 2 3 3 3
… … … … … … … … …
Rn = 2 + 4n Wn = 4 + 7n n + 1 n n n n + 1 n + 1 n + 1

For n = 0, 1,2, ….

MOD (R/4) = 3.

Required
Workers/day

Total
RequirementW a1 a2 a3 a4 a5 a6 a7

R1 = 3 W1 = 6 1 0 1 1 1 1 1
R2 = 7 W1 = 13 2 1 2 2 2 2 2
R3 = 11 W3 = 20 3 2 3 3 3 3 3
… … … … … … … … …
Rn = 3 + 4n Wn = 6 + 7n n + 1 n n + 1 n + 1 n + 1 n + 1 n + 1

For n = 0,1,2, ….

From the previous tables, we can notice that when the daily requirement, R, goes
up by 4, the number of workers needed, W , goes up 7.

13.6 SUMMARY

Employee scheduling is an important aspect of industrial scheduling. For industries
working 5 days a week, with one, two, or three shifts and no employee rotations,

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 424 — #28

424 Production Planning and Industrial Scheduling

employee scheduling may not be a challenge. Each shift may be viewed independently
with constant employee requirements, and a fixed schedule may be developed. The
weekends are naturally off for all employees.

This is not the case when an industry works 7 days a week and the requirements
change from day to day from hour to hour. It is somewhat difficult to develop a
schedule that employs minimum personnel and still meets the legal and contractual
terms. These may include situations where employees work 40 hr a week, or must
have 2 consecutive days off in a week or at least have 1 weekend off in the work span
of 2 weeks. This chapter illustrates some of the popular and effective methods that
are available to achieve these objectives.

13.7 PROBLEMS

13.1 As the maintenance supervisor, your responsibilities include developing the
employee schedule for the maintenance department. When you became the
maintenance supervisor, the department was already using a scheduling sys-
tem whereby each maintenance technician worked 5 days per week, had every
other weekend off, and did not work more than 6 consecutive days. You are
using the same system and must generate the next schedule. Generate this
schedule given the following daily requirements:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 6 7 5 7 8 4 3

13.2 Using the TPB algorithm, develop an efficient schedule that gives 2 con-
secutive days off to each worker, if the daily worker requirements are as
follows:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 6 7 5 7 8 4 3

13.3 Using the same method as in Problem 13.2, develop a schedule for the
following data:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 2 8 9 7 11 10 3

13.4 Using BC algorithm, develop a schedule for the following data with the
objective of giving each employee one weekend off in a period of 2 weeks:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 6 8 10 12 4 5 3

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 425 — #29

Manpower Scheduling 425

13.5 Develop a schedule for the following data to give each employee a minimum
of one weekend off every 2 weeks using the BC algorithm.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 2 8 9 7 11 10 3

13.6 Develop a schedule for the following data that gives two consecutive days off
to each employee. Use Monroe’s algorithm; Also develop schedule when we
need 3 consecutive days off.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 5 7 9 11 6 8 4

13.7 Using Monroe’s algorithm, develop a schedule for the following data:Also
develop schedule when 3 consecutive days off are required.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Requirements 3 6 8 10 12 4 5

13.8 The data given in the following table indicate the hourly requirements on a
daily basis for a fast-food restaurant open 12 hr a day, 7 days a week. There
are four possible shifts: A, B, C, and D, starting at hours 1, 2, 3, and 4,
respectively. Develop the hiring policies for the restaurant.

Hours
of Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 3 3 4 3 2 4 2
2 3 3 3 4 4 4 2
3 4 5 4 4 5 4 3
4 5 5 6 5 6 6 4
5 5 4 4 4 6 6 4
6 4 4 5 5 5 4 4
7 2 2 3 3 3 4 2
8 2 1 2 1 3 3 1
9 3 4 3 2 4 4 2
10 6 5 4 4 6 5 3
11 6 6 5 5 6 6 5
12 4 5 5 5 6 6 4

13.9 Given the following daily requirements forABC Company, develop the sched-
ule for a weekly pattern of 5 days with rotating weekends off. The company
wants its maximum workforce requirement in any week to be W = 14.
a. Find the manpower requirement for Monday.
b. Using the BC algorithm, develop a schedule.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 426 — #30

426 Production Planning and Industrial Scheduling

c. Develop a schedule using Monroe’s algorithm.
d. Calculate the scheduling efficiency of both methods.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

x 10 14 11 13 7 6

13.10 City sanitation department needs the following number of employees each
week:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

23 30 22 25 26 21 0

There is no waste collection on Sunday, so no workers work on Sundays.
Develop an employee schedule using the TPB algorithm, and calculate your
scheduling efficiency. Note that each employee should get at least 2 days off
per week.

13.11 Employee requirement for a fast-food restaurant is based on sales volume,
which varies from day to day during a week. Past records show that one
employee can handle sales of $150 in any one shift. Assuming that the sales
volume is same for all the shifts, determine the minimum number of employees
required on each day based on the following sales volume:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Sales volume ($) 1500 1800 1350 1175 1475 1640 1050

Develop the schedule for a work pattern of 5 days on, with consecutive days
off. Use (1) TPB, (2) BC, and (3) Monroe’s algorithms.

13.12 The working hours for a restaurant are 8 am to 5 pm. There are two possible
shifts during these working hours; the hourly employee requirement is shown
in the following table. Each employee works for 8 hr with a 1-hr lunch break.
Develop a schedule using Bechtold and Showalter MSSH algorithm.

Hours of
Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 3 2 4 1 3 2 1
2 3 2 4 1 3 2 1
3 5 2 7 5 3 4 5
4 5 6 7 5 3 4 5
5 5 6 7 5 5 6 5
6 4 6 6 7 6 6 7
7 4 4 6 7 6 8 7
8 5 4 6 5 6 8 6
9 5 4 5 5 7 8 6

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 427 — #31

Manpower Scheduling 427

13.13 The daily requirements on an hourly basis for a restaurant that is open 12 hr
a day are shown in the following table. There are four shifts A, B, C, and D.
Develop a schedule using Bechtold and Showalter MSSH algorithm.

Hours of
Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 4 2 3 1 2 2
2 2 4 2 3 1 2 2
3 5 4 2 3 4 4 3
4 5 6 6 5 4 4 3
5 7 6 6 5 5 3 6
6 7 6 6 5 5 3 6
7 7 5 5 6 7 4 6
8 4 5 5 6 7 4 4
9 4 5 5 6 3 5 4
10 4 4 7 4 3 5 5
11 5 4 7 4 2 3 5
12 5 4 7 4 2 3 5

REFERENCES AND SUGGESTED READINGS

Alfares H.K 2003 “Four-Day Workweek Scheduling with two or three Consecutive Days off”,
Journal of mathematical modeling and Algorithms, Vol 2, Number 1, 2003 pp 67–80

Bailey, J. 1985. “Integrated Days-Off and Shift Personnel Scheduling” Journal of Computers
and Industrial Engineering, 9(4): 395–404.

Baker, K.R. 1974. “Scheduling a Full-Time Workforce to Meet Cyclic Staffing Requirements”
Management Science, 20(12): 1561–1568.

Baker, K.R., R.N. Burns, and M.W. Carter. 1979. “Staff Scheduling with Day-Off and
Workstretch Constraints” AIIE Transactions, 11(4): 286–292.

Baker, K.R. and M.J. Magazine. 1977. “Workforce Scheduling with Cyclic Demands and
Day-Off Constraints” Management Science, 24(2): 161–167.

Bechtold, S.E. 1981. “Workforce Scheduling for Arbitrary Cyclic Demands” Journal of
Operations Management, 1(4): 155–167.

Bechtold, S.E. and M.J. Showalter. 1987. “A Methodology for Labor Scheduling in a Service
Operating System” Decision Sciences, 18(1): 89–107.

Burns, R.N. and M.W. Carter. 1985. “Workforce Size and Single Shift Schedules with Variable
Demands” Management Sciences, 31(5): 599–607.

Emmons, H. 1985. “Workforce Scheduling with Cyclic Requirements and Constraints on Days
Off, Weekends Off, and Workstretch” IIE Transactions, 17(1): 8–16.

Wang James 2005, “On 4 days on 3 days off schedule”, Louisiana Teen term paper.

Dileep: “44206_c013” — 2007/9/17 — 15:12 — page 428 — #32

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 429 — #1

14 Industrial Sequencing I:
Scheduling on
NC Machines

So far, we have been studying scheduling in somewhat generalized terms. In the
next two chapters, we present heuristics that are much more application specific.
In some instances, we may be faced with a problem for which no “ready made”
heuristic is available. In next few chapters present cases of how we might think
through the problems to get good sequencing rules, even though at the first glance
the problem may seem to be overwhelming. In developing such procedures, we
may have to depend on the techniques that we learned somewhere else. Our ability to
transfer knowledge from one field to another is very helpful in constructing sequencing
rules.

One such area is the group technology. Group technology techniques have been
used in manufacturing to develop cohesive manufacturing cells. Parts with com-
mon characteristics are grouped together and produced in a single cell, so that the
same machines, jigs, and fixtures can be used to produce the parts. For example,
for 1000 parts produced in the plant, perhaps 20 groups can be formed, each group
needing machines specific to produce the products assigned to the group. There are
many algorithms to form machine groupings and assign components, but we shall
use a simple procedure called tabular approach (Sule -89) in Figure 14.1.

14.1 TABULAR APPROACH IN GROUP FORMING

The method starts with a 0-1 table called machine component matrix table. This table
shows the machine that each component (e.g., part or job) needs in its production;
1 indicating the use of the machine and 0 or blank indicating nonuse of the machine.
For example, in Table 14.1, there are 20 jobs produced using seven machines. Job 1
needs machines 3 and 4 in its production, whereas job 5 needs machines 1, 2, 5, and 7,
and so on.

There are a number of steps in the group forming procedure. They are stated next
and are illustrated later by their application.

Step 1: Develop a machine-to-machine relationship table. A machine-to-machine
relationship table indicates the number of jobs that require both machines (note the
jobs may not necessarily be processed in sequence on these machines). The table
is developed by observing the machine-components matrix in which “1” indicates
the use of the machine and a blank or “0” indicates nonuse of the machine in pro-
cessing a specific job. Comparing the columns for any two machines and counting

429

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 430 — #2

430 Production Planning and Industrial Scheduling

Group 1 Group 2

M/C

Group 3
M/C 3

M/C 5

M/C 2 M/C 6

Job 1 Job 2 Job 8Job 7Job 6Job 5Job 4Job 3

M/C 5

M/C 4

M/C 1

FIGURE 14.1 Group technology in scheduling.

TABLE 14.1
Machine-Component Matrix

Job
(Component)

Machine

1 2 3 4 5 6 7

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1 1 1
6 1 1 1
7 1
8 1
9 1 1 1

10 1
11 1 1
12 1 1 1 1
13 1 1
14 1 1
15 1 1
16 1
17 1 1
18 1 1
19 1 1 1 1
20 1 1 1

the number of times “1” appears common in these two columns indicates the number
of jobs requiring the corresponding two machines. Note that the machine-to-machine
relationship table is symmetrical about the diagonal, and therefore, only the elements
above or below the diagonals are needed.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 431 — #3

Scheduling on NC Machines 431

Step 2: Pick the largest element in machine-to-machine table and designate it as the
present value of relationship counter (RC).

Step 3: Define a value of minimum percentage. A measure of effectiveness of joining
a component to a group consisting of other components is defined by the analyzer
at the beginning of the problem; for example, 50% (or P = 0.5). It states that, in
the group forming process, the closeness an entering machine must have with all the
existing machines within a group in order for the entering machine to join that group.
Based on the percentage value an analyzer chooses, the solution may have different
number of cells. As we shall see later, some machines may be duplicated, that is, they
may be part of more than one group. How many times the machines are duplicated
may also be influenced by the value of the percentage. Note that this percentage,
designated as P, is only defined once during the process of finding a solution to the
problem.

There is one distinct advantage in this procedure. We might subject the same
machine to machine data to different values of P and perhaps obtain some alternate
solutions that could be evaluated further.

Step 4: Starting with the first row, examine each row for an elemental value that
equals RC.

Step 5: If none of the associated machines in the row and column are already in a
group, then form a group consisting of these two machines and go to step 7. If both
machines are already assigned to the same group, ignore the observation and go to
step 7. If one of the machines in the pair is in a group and the other one has not been
assigned yet, go to step 6a. If both machines are assigned, but to different groups,
go to step 6b.

Step 6a: Calculate the “closeness ratio” (CR) of the entering machine with each
group that has already been formed. A CR is defined as the ratio of the total of all
relationships the entering machine has with the machines that are currently in the
group to the total number of machines that are presently assigned to that group.

The entering machine is placed in a group that has the maximum closeness ratio
(MCR), as long as this maximum is greater than or equal to the “minimum threshold
value” (MTV), calculated as P multiplied by the present value of RC. If the value
of MCR is less than MTV, then a new group is formed, consisting of two machines
having the relationship value that equals the present value of RC. Go to step 7.

Step 6b: Duplication of one or more machines is suggested. There are two possible
alternatives, and they are checked sequentially in the order of importance. The first
alternative is to duplicate one additional machine of either type (for illustrative pur-
poses, designate the machines in the pair as machine A and machine B), and place it in
the appropriate cell, and the second alternative is to duplicate both machines, one of
each type, and form a new group or place the appropriate one in each of the existing
groups. The following rules are suggested:

1. Calculate the effect of duplicating one machine. Check machine A as the
entering machine for the groups where machine B exists and B as the enter-
ing machine for the groups where A exists. Determine the MCR, from all

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 432 — #4

432 Production Planning and Industrial Scheduling

the groups that are checked and note the associated group and entering
machine.

2. If MCR > RC × P, the noted machine is duplicated and assigned to the
associated group. Go to step 7.

3. If the MCR in the previous calculation was less than RC × P, a check
must be made to see if both machines should be duplicated. From the
previous calculations determine the MCR for the groups where A is the
entering machine (MCRA) and the MCR for the groups where B is
the entering machine (MCRB). Calculate the index value as maximum
RC × P/2. If both MCRA and MCRB are greater than the index value
and |MCRA − MCRB| < P × RC/2, duplicate both machines and place
each in an appropriate group. If either MCRA or MCRB is greater than
the index value, regardless of the value of |MCRA − MCRB|, form a new
group consisting of machines A and B. Go to step 7.

4. If none of the preceding conditions exist, ignore this observation and go to
step 7 since the contribution of any duplicating component in improving
the efficiency of grouping is very limited.

Step 7: Check to see if all machines are assigned to groups. If they are, go to step 9;
otherwise continue.

Continue the check of the machine-to-machine table with the present value of RC
proceeding sequentially in rows. If an element is found that is equal to the present
value of RC, go to step 5. If no such element is found, go to step 8.

Step 8: Reduce the value of RC to the next value in its descending order of magnitude
and return to step 5.

Step 9: Assign each job to an appropriate group. This is accomplished by examining
each job and assigning it to a group that has the most machines it needs.

Example

We shall illustrate the procedure by applying it to the data in Table 14.1. The machine-
to-machine matrix for the data is shown in Table 14.2. For example, the entry in row 1

TABLE 14.2
Machine-to-Machine Table

Mac/Mac 1 2 3 4 5 6 7

1 — 3 2 1 3 0 3
2 — 0 0 3 1 5
3 — 5 0 0 0
4 — 0 0 0
5 — 1 5
6 — 5
7 —

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 433 — #5

Scheduling on NC Machines 433

column 3 is obtained by comparing columns 1 and 3 of Table 14.1 and counting the
number of jobs requiring both machines, namely 2, machines 11, and 20.

To begin the grouping procedure, let the value of P be set to 0.5, a percentage
chosen arbitrarily (step 3).

Iteration 1: The maximum value among the elements in Table 14.2, that is, RC is 5.
The first value of 5 is associated with machines 2 and 7, and, therefore, they are joined
together to form the first group, G1 (step 5).

Iteration 2: Machines 3 and 4 also have five relationships. Since none of these
machines are already in a group, a new group is formed consisting of machines 3
and 4. Thus, we have in G1: 2, 7, and in G2: 3, 4.

Iteration 3: With RC = 5, there exists a relationship between machines 5 and 7 (from
now on, relation is simply expressed as –, e.g., 5–7). Machine 7 already belongs
in group 1, and therefore machine 5 becomes the entering variable, and step 6a is
applied. The associated calculations are shown in Table 14.3. Note the relationship
of the entering machine 5 is checked with the machines in all groups that are formed
at this time. The total for each group indicates the total number of machines in that
group and the total of associated relationship numbers. The critical ratio for group 1
is 8/2 = 4, while that for group 2 is 0/2 = 0. The maximum of these numbers is the
value of the maximum critical ratio (MCR). The MTV is calculated by multiplying
the present value of the RC, which is 5 by the percentage value (P) defined initially
by us.

RC = 5: Relationship: 5–7

Since MCR > MTV (4 > 2.5), join machine 5 to G1. Thus, we have G1: 2, 7, 5,
and G2: 3, 4.

Iteration 4: RC = 5, 6–7.

1. Machine 7 is in group 1, and machine 6 is the entering machine.
The corresponding calculations are shown in Table 14.4.

TABLE 14.3
Check for Entering Machine 5

Entering
Machine

Existing Groups

G1: Machines Relation G2: Machines Relation MTV

5 2 3 3 0 5 × 0.5 = 2.5
7 5 4 0

Total 2 8 2 0
CR 8/2 = 4 0/2 = 0
MCR 4

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 434 — #6

434 Production Planning and Industrial Scheduling

TABLE 14.4
Check for Entering Machine 6

Entering
Machine

Existing Groups

G1: Machines Relation G2: Machines Relation MTV

6 2 1 3 0 5 × 0.5 = 2.5
7 5 4 0
5 1

Total 3 7 2 0
CR 7/3 = 2.3 0/2 = 0
MCR 2.3

TABLE 14.5
Check for Component 1

Existing Groups

Entering
Machine

G1:
Machine Relation

G2:
Machine Relations

G3:
Machine Relations MTV

1 2 3 3 2 6 0 3 × 0.5 = 1.5
7 3 4 1 7 3
5 3

Total 3 9 2 3 2 3
CR 9/3 = 3 3/2 = 1.5 3/2 = 1.5
MCR 3

Since MCR < MTV (2 < 2.5), machine 6 cannot be joined to G1. Therefore,
we form a new group consisting of machines 6 and 7 (step 6a). We now have three
groups, namely G1: 2, 7, 5; G2: 3, 4, and G3: 6, 7. Since all the machines are not yet
assigned to groups, we continue the process.

Iteration 5. RC = 3, 1–2.

2. There are three groups to check now. The calculations are similar to the
ones shown in Table 14.4. The details are shown in Table 14.5.

Since MCR > MTV (3 > 1.5), machine 1 is joined to group 1. The present
assignments are as follows:

G1: 2, 7, 5, 1; G2: 3, 4, and G3: 6, 7.

All the machines are now assigned to groups. We, therefore, proceed to the job
assignment phase, step 9 of the procedure.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 435 — #7

Scheduling on NC Machines 435

TABLE 14.6
Job Assignments

Group Machines Jobs

1 2, 7, 5, 1 4, 5, 6, 8, 9, 10, 11, 12, 13, 19
2 3, 4 1, 2, 3, 7, 15, 16, 20
3 6, 7 14, 17, 18

Step 9 of the procedure calls for assigning jobs to groups. Assign a job to a
group based on the common machines. A group that has the most number of common
machines with the machines needed by the job is the group to which the job is
assigned. For example, job 6 needs machines 2, 6, and 7. Group 1 has the most
machines common with it, namely, machines 2 and 7, and therefore, job 6 is assigned
to group 1. The results are displayed in Table 14.6.

A computer program for an IBM-PC compatible machine is provided on the
web site. The program can solve problems of any reasonable dimension.

14.2 JOB SEQUENCING TO MINIMIZE TOOL
CHANGEOVERS IN FLEXIBLE MANUFACTURING
SYSTEMS

A combination of group technology and heuristic is used for scheduling N jobs on
a single machine with automatic tool changer (ATC). The problem is prominent in
flexible manufacturing systems where the efficiency in operation is in part, obtained
by the use of ATC. However, the complications associated with an ATC makes the
existing single-machine scheduling algorithms unworkable.

To process a job on a machine may require multiple tools. An ATC, like chuck
on a lathe, has the ability to change tools quickly and automatically. A chuck, for
example, may have six faces, each holding a tool needed for the job. It can rotate
quickly, contacting the necessary tool on the job when required.

An ACT allows for processing of jobs/parts in random sequence, to adjust for
in-process and/or finished inventory and to respond, if necessary, to demand changes.
ATC allows the job to be processed in any sequence by loading on the machine the
required tools for the job. Yet, it may require about 4 min to make a tool change and
associated adjustments, if a tool is to be replaced on the tool changer itself. If the jobs
are available at the beginning of the processing, it is possible to reduce the makespan
by arranging these jobs in a sequence that would minimize the total tool changes.

14.2.1 ASSUMPTIONS AND PROBLEM STATEMENT

The assumptions of the problem are as follows:

1. All jobs are available at the beginning of the planning period with known
tool requirements.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 436 — #8

436 Production Planning and Industrial Scheduling

2. The maximum number of tools required by any job is at the most equal to
the capacity of the tool magazine.

3. Any tool can be placed in any position on the tool magazine (Figure 14.2).

Consider, for example, the same problem that is illustrated in Bard. The data is
shown as a job-tool matrix in Table 14.7. Here, “1” indicates the use of a tool in
production of a job, while a blank indicates the non use of the tool. The tool magazine

Tool no. 9

Tool no. 7

Tool no. 8

Tool no. 12Tool no. 16

Tool no. 1

Tool no. 11

Job 4 Job 1 Job 2

Job 3
Work piece

holder

Automatic
tool-changing
mechanism

Guideways

Tool

Tool no. 3

Tool no. 2

Tool no. 6

Tool no. 5

Tool no. 10

Tool no. 14

Tool no. 13

Tool no. 15

1

2
3

4

5

6

7

8

Octagonal
turret

FIGURE 14.2 Turret lathe with automatic tool-changing mechanism.

TABLE 14.7
Job-Tool Matrix

Tools

Job 1 2 3 4 5 6 7 8 9

1 1 1 1 1
2 1 1
3 1 1 1
4 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1 1

10 1 1

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 437 — #9

Scheduling on NC Machines 437

has capacity to set four tools at a time. The objective is to develop a job sequence that
would minimize the total tool changeovers in processing all jobs.

14.2.2 SOLUTION PROCEDURE

The solution procedure has 13 steps. We use group technology concepts first to develop
cohesive groups of jobs and tools and then to develop another heuristic proced-
ure to sequence these groups and jobs so that we have minimum tool changeovers.
The details are as follows:

Step 1: Pre-sort job-tool matrix by planning a job j2 immediately after a job j1 if
the tools required for job j2 are the same or subset of tools required for job j1. Such
scheduling requires no tool change and we can reduce the dimension of the problem
by ignoring job j2 in the remaining procedure by assuming that when j1 is planned,
all its sub-jobs, such as job j2, would immediately follow.

Step 2: Using the job-tool matrix, apply the modified tabular method for tool grouping
(here, tools are the machines). The method described in Section 14.1 is modified in one
aspect. A group is fathomed, that is, not allowed any more tools, when it contains the
number of tools equal to the maximum number of tools allowed on the tool changer.
The tools forming a group are called the group tools for that group.

Step 3: Assign a job to a group based on number of common tools between group tools
and tools required for the job. A group that has the most number of tools common
with the job is the group to which the job is assigned.

The first three steps form the tool grouping, so that in a group there are no more
tools than the maximum capacity of the tool magazine. The next steps are to develop
further sequencing.

Step 4: Find the total number of times each tool is used in processing all the jobs
that need scheduling.

Step 5: Find the total number of times each tool is used in each group for processing
jobs assigned to that group.

Step 6: Construct a planning table and a scheduling table as described next. The
planning table is used to determine which tool to replace, if any, as the jobs are
scheduled in the scheduling table.

Step 7: Develop the planning table (as illustrated in Table 14.10 for the example
problem). Construct, for each tool, three columns. The first column, marked as U,
indicates if the tool is used by the job. The second column, designated as G, indicates
the remaining times the tool will be used in production of the remaining jobs from
the presently scheduled group. The third column, denoted as T, indicates the total
number of times the tool will be used in processing all the remaining jobs (from the
group that is presently being scheduled as well as all the groups that still remained to
be scheduled).

When a job is assigned in the scheduling table, it is also recorded in the planning
table. For each tool, the three columns are adjusted as necessary to reflect its use or

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 438 — #10

438 Production Planning and Industrial Scheduling

non use in the production of the job. If the tool is used, the corresponding tool
frequencies in columns G and T are reduced by one, indicating one less remaining
job that would use the tool in the presently scheduled group as well as in the jobs that
are still remained to be scheduled.

Step 8: Select a start group and mark it in the planning table by creating a row for
the group. Enter in that row, in columns G and T for each tool, the cumulative times
each tool is needed for processing the jobs in that group as well as for processing all
jobs from all groups. Pick from the group a job that has the maximum tools common
to the group tools. If there are multiple jobs that satisfy this condition, choose one
of them at random. Place it in the scheduling table. This is done by recording job
and associated tools in the table (Table 14.11 illustrates the scheduling table for the
example problem).

Step 9: Find a new job to schedule from the group that is being worked on
(if no job is available, go to step 11). This is done by comparing the tools required for
the new job with the ones presently available in the tool magazine (i.e., tools required
for the previous job) and selecting a job that has most tools in common. If there is
a tie, select the job that requires least tool changes. Enter it in the scheduling table,
and mark the common tools. If the new job requires tools that are not presently in the
magazine, a question arises as to which tools from the magazine must be replaced.
This is where the information from the planning table is used. The following two
rules are applied.

1. Replace only the number of tools that must be replaced to allow the
production of the new job.

2. Replace a tool that is least frequently used in production of the remaining
jobs from that group (the data given in G column for each tool). If there
is a tie, break it based on the least used frequency for the remaining jobs
(data in T for each tool). If there is still a tie, break it randomly.

Step 10: Assign new tools in appropriate positions for the new job in the scheduling
table. Modify the planning table data to reflect the completion of scheduling for the job
by modifying, as necessary, the columns for each tool. Also cross out the scheduled
job from the group to reflect its assignment in the scheduling table. Go back to
step 9.

Step 11: Since all the jobs in the previous group have been scheduled, remove the
group from further consideration. If all the groups are scheduled, go to step 12. If a
new group must be selected for scheduling, compare the tool requirements for the
new group (group tools) with the tools that are presently in the magazine (last line of
the scheduling table) and select a group that has most common tools with it. If there
are more groups than one that meet this condition, break the tie based on jobs within
these groups. Select a group that has a job that requires the most tools from the tools
presently in the magazine. Create a row in the planning table for the selected group,
and enter, for each tool, the associated cumulative tool use for the group and remaining
cumulative tool use for all jobs, in columns G and T, respectively. Go to step 9.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 439 — #11

Scheduling on NC Machines 439

Step 12: After all the groups and jobs have been scheduled, compare the successive
rows of the scheduling table to find out the tool changes required in this schedule.

Step 13: Repeat steps 7 through 12 by making another group as the starting group for
the procedure. If each group has been used as the start group, stop and choose the
schedule that gives minimum tool changes.

14.2.3 ILLUSTRATIVE EXAMPLE

Consider the data in Table 14.7. The tool magazine has the maximum capacity of 4.
Applying step 1 reveals that jobs 2 and 10 are subsets of job 6 and jobs 4 and 5 are
subsets of job 9. Therefore, jobs 2 and 10 are scheduled immediately after job 6 and 4,
and job 5 immediately after job 9. Take off the jobs 2, 10, 4, and 5 from the data set
for the remaining steps of the procedure.

Applying the steps 2 and 3 results in three groups with tool-job assignments, as
shown in Table 14.8.

The application of step 4 gives Table 14.9, showing frequency of each tool used
by all jobs and also by the jobs assigned in each group. Note that the total tool use
for all jobs must equal the sum of tool use in all groups, since the jobs are distributed
in groups.

Select one group, say group 1, to start the process. Start the planning table,
Table 14.10, by drawing 9 columns for 9 tools and 3 subcolumns within each column
to indicate use, cumulative group frequency, and cumulative job frequency for each
tool. The columns are designated as U, G, and T, respectively.

TABLE 14.8
Tool Groupings and Job Assignments

Group
Tools Assigned
to the Group

Jobs Assigned
to the Group

1 1, 3, 5, 7 3, 6, 7
2 2, 5, 8, 9 1, 8
3 4, 6 9

TABLE 14.9
Frequency of Tool Use

Tools

1 2 3 4 5 6 7 8 9

All jobs 2 2 3 1 4 2 3 2 2
G1 2 0 3 0 2 1 1 1 0
G2 0 2 0 0 2 0 1 1 1
G3 0 0 0 1 0 1 1 0 1

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 440 — #12

440 Production Planning and Industrial Scheduling

TA
B
LE
14
.1
0

Pl
an
ni
ng
Ta
bl
e

To
ol
s

1
2

3
4

5
6

7
8

9

Jo
b

U
G

T
U

G
T

U
G

T
U

G
T

U
G

T
U

G
T

U
G

T
U

G
T

U
G

T

G
R

1
2

2
0

2
3

3
0

1
2

4
1

2
1

3
1

2
0

2
3

x
1

1
x

2
2

x
1

3
7

x
0

0
x

1
1

x
0

2
6

x
0

0
x

0
2

x
0

1
x

0
1

G
R

2
0

0
2

2
0

0
0

1
2

2
0

1
1

2
1

1
1

2
1

x
1

1
x

1
1

x
0

1
x

0
0

8
x

0
0

x
0

0
x

0
1

G
R

3
0

0
0

0
0

0
1

1
0

0
1

1
1

1
0

0
1

1
9

x
0

0
x

0
0

x
0

0
x

0
0

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 441 — #13

Scheduling on NC Machines 441

TABLE 14.11
Scheduling Table

Tools in the Tool

Tool
Changes

Magazine Positions

Group Job 1 2 3 4

GR1 3 1 3 5
7 1 3 5 7
6 6 3 5 8 2

GR2 1 2 7 5 8 2
8 2 7 5 9 1

GR3 9 6 7 4 9 2

Total tool changes 7

Since group 1 is chosen for scheduling, the first row of the planning table, GR1,
is filled with the appropriate cumulative tool use data for the group and for all jobs.
The tools assigned to the group, that is, group tools, are 1, 3, 5, and 7. The jobs that
have the most common tools to the group tools are jobs 3 and 7, each having three
tools in common. Choose one of these two jobs at random, say job 3, to schedule as
the first job. Enter the job in the scheduling, Table 14.11, and in planning table and
modify the columns U, G, and T for each tool as appropriate.

To pick the next (and subsequent) job to schedule, select a job from the group that
requires most common tools with the present arrangement. Both jobs 6 and 7 have two
tools common. Break the tie by choosing the job that requires the least tool changes.
Here, it is job 7 that requires one tool change as against job 6, which requires two
tool changes. Job 7 is, therefore, scheduled in the second place, and the planning and
scheduling table modified accordingly. By the way, since the first job, job 3 requires
only three tools (with magazine capacity of 4), and the following job, job 7, requires
a tool (tool 7) that is not required by job 3; tool 7 would be placed in the forth position
of the tool magazine when job 3 tools are set to avoid an unnecessary changeover.

After scheduling the last job from group 1, that is, job 6, the tool magazine has in it
tool numbers 6, 3, 5, and 8. Group 2 listing has the most common components with it,
namely 5 and 8, and therefore group 2 is scheduled next. In Planning Table 14.10, for
the associated row marked by GR2, the group 2 frequencies for all tools are inserted
in their respective G columns. Also, the last modified entries for T columns from the
previous group are rewritten in GR2 row for associated T columns.

Jobs 8 and 1 from group 2 have, respectively, 2 and 1 tools common with the
present arrangement. Therefore, job 1, with the largest common components, is
selected next for scheduling. The tools required for job 1 are 2, 7, 5, and 8, of which
5 and 8 are already in the magazine. Tools 6 and 3 are replaced by tools 2 and 7,
respectively.

Job 8 requires tools 2, 5, and 9, of which 2 and 5 are already in the tool
magazine. To determine whether tool 7 or 8 should be replaced by tool 9, check in

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 442 — #14

442 Production Planning and Industrial Scheduling

TABLE 14.12
Number of Tool Changes Using Different Starting
Group

Start Group 2 Start Group 3

Job Tools Changes Job Tools Changes

1 2 5 7 8 9 4 6 7 9
8 2 5 9 8 1 6 3 6 5 8 3
6 3 5 6 8 2 3 3 1 5 8 1
3 3 5 6 1 1 7 3 1 5 7 1
7 3 7 6 1 1 1 2 8 5 7 2
9 4 7 6 9 2 8 2 8 5 9 1

Total tool changes 7 Total tool changes 8

the planning table, the remaining group frequencies for tool 7 and 8. Both G values
are zero. Next, check the remaining frequencies for the entire job, that is, T values.
Tool 7 has T = 1, while tool 8 has T = 0. Hence, tool 8 is replaced by
tool 9.

The procedure is continued until all groups and jobs are scheduled. The final
schedule is displayed in Table 14.11. It requires seven tool changes.

Similarly, starting the procedure with group 2 results in the following job
sequence: 1, 8, 6, 3, 7, and 9, with seven tool changes. Starting with group 3 results
in 9, 6, 3, 7, 1, and 8 as the job sequence with eight tool changes. The tools in the tool
magazine are shown in Table 14.12. A minimum of seven tool changes are necessary
to process all jobs.

Here, we studied a method for sequencing N jobs on a machine equipped with
an ATC, the objective being to minimize the makespan for the jobs by minimizing
the tool changes. The procedure divides the problem into three phases following
three different trends of thoughts. In the first phase (i.e., step 1), the dimension
of the problem is reduced by permitting only those jobs that are not the subset of
any other job to proceed further for planning. The second phase (steps 2 and 3)
applies the principles of group technology to develop groups with similar jobs. The
third phase (steps 4 through 13) sequences jobs and identifies the position for tool
change that minimizes the total tool changeovers. The illustrative example shows the
simplicity of the procedure, making it appealing to the end user. The procedure has
been computerized and is included on the website provided.

14.3 HEURISTIC TO MINIMIZE THROUGHPUT TIME
ON AN NC MACHINE

The problem discussed here is that of scheduling n jobs on an automated machine,
such as a numerically controlled milling machine, equipped with a turret that can
hold a number of tools, one on each of its faces (quite often, the chuck has

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 443 — #15

Scheduling on NC Machines 443

eight faces). The objective is to minimize makespan to complete all jobs. The
machine is capable of changing cutting tools rapidly by rotating the turret and bringing
the right tool in contact with the surface of the work piece. Such a set-up may be viewed
as similar to a machine equipped with an ATC. Similar to an automatic chuck, an ATC
can hold a number of tools (based on the capacity of the tool magazine), and there-
fore we can perform multiple sequential operations without stopping the machine for
a tool change.

At first glance, above problem seems to be that of scheduling n jobs on a single
machine, and we may try to utilize one of the numerous single-machine sequencing
algorithms [2] to optimally (or near optimally) sequence the jobs. But single-machine
scheduling methods do not apply to a machine equipped with an ATC. Since the job
holding fixture on an NC machine is generally universal, that is, same fixture can
hold different jobs, the majority of time associated with a job setup is due to the time
taken in changing the tool(s). Therefore, to minimize makespan for a fixed set of
jobs, one must schedule jobs in such a manner as to minimize the total tool changes.
We shall categorize such tool change as an external tool change since a new tool(s) is
fetched and installed on the chuck. This problem then is similar to the ATC problem
discussed in Section 14.2.

However, it is possible to further improve the performance on throughput time
if attention is also given to the positions of the tools on the turret. Rotation of a
turret to the “right” position takes time. If the tools demanded by two consecutive
operation for a job are in two sequential positions on the turret, it would take less
time to process a unit than if the tools are further apart. This difference could quickly
add up, depending on the number of units (demand) processed for each job. We shall
designate changing of the tool positions of the tools that are presently on the turret as
the internal tool changes.

Before a new job begins, a decision must be made as to which tools should be
installed in which positions on the turret. Furthermore, if the tools from the previous
job could also be used for the new job then the decision may also include whether to
adjust the positions of the tools. The tools required for any two consecutive operations
in the new job may not be presently adjacent to each other.

There are two time factors that must be considered: one associated with tools
and the other with jobs. For tools, it is necessary to know how long it takes to
exchange the tools externally (removing an old tool and replacing it with a new
tool that is presently not on the turret) and internally (changing the positions of two
tools that are presently on the turret).When the tools are internally interchanged,
there are two time elements that influence the time for the exchange: a fixed time
associated with the procedure itself and a time that depends on the number of
tools and positions to be interchanged. In a double swap, two tools presently on
the turret are exchanged, while in a single swap, a tool is moved to an empty
position.

For each job, we may have to establish the amount of additional time that
would be required, if the tools necessary for sequential operations are not adja-
cent to each other. To process a job, each unit within the job must be subjected
to the necessary tools. This may mean rotating the turret through a number of
positions where the appropriate tool is located. In a job where a large number of

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 444 — #16

444 Production Planning and Industrial Scheduling

units are processed, the total rotation time due to nonoptimum positioning of the
tools could be more than the time it would take to interchange tools in adjacent
positions.

14.3.1 PROBLEM DEFINITION AND ASSUMPTIONS

The objective is to develop a job sequence and tool arrangement on the turret for
each job, so as to minimize the overheads associated with processing all jobs. Since
the process times (metal-cutting times) are constant, this objective would also lead
to minimization of the throughput time or makespan for the fixed set of jobs. The
following assumptions are made in developing the procedure:

1. All n jobs are available at the beginning of planning period, with known
tool requirements.

2. The number of units to be processed in each job i (i.e., demand for job i),
di, is known.

3. The maximum number of tools, ei, required for a job i is less than or equal
to the capacity Z of the turret.

4. A fixed time of F is required to transport a tool from the magazine and
place it in any position on the turret or remove a tool from the turret and
place it in the magazine. Ti are the number of such transfers for job i. This
is also noted as an external tool change.

5. The time necessary to change positions of any two tools that are presently
on the turret in locations m and k is a linear function: A + Bt1

mk, where t1mk
is the number of turret turns that these two locations are apart in l-th
double-tool swap. A and B are two constants.

If a tool that is presently on the turret in position “u” is moved to an empty position
“v” on the turret, then the time required is, G + Htq

uv, where G and H are constants.
tquv is the number of turret turns that locations u and v are apart in q-th single-tool
swap. Both of these are noted as internal tool changes, and generally G < A and
H ≤ B.

6. The time necessary to turn the turret between tool use is KCij, where Cij
is the number of turret turns required to go from tool position in operation
j – 1 to tool position in operation j, for job i. K is a constant.

7. It takes a fixed time of “R” units to go from last tooling position of the
previous job to the first tooling position of the next job. Also it takes
Li units to go from the last tool position to the first tool position of the
same job.

8. If some tools are to be removed from the turret and new tools are
to be placed, the sequence of operation is: remove the tools first,
make turret tool interchanges if necessary and then place the new
tools.

9. Job setup time is shorter than the tool change time.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 445 — #17

Scheduling on NC Machines 445

Mathematically, the problem could be stated as follows: Develop a job sequence
and tool arrangement on the turret for each job so as to minimize.

R(n − 1) +
n∑

{i=1}
FTi +

n∑

{i=1}

mi∑

{m=0}
(A + Btm

lk) +
n∑

{i=1}

qi∑

{q=0}
(G + Htq

lk)

+
n∑

{i=1}

ei∑

{j=1}
KCijdi +

n∑

{i=1}
Li(di − 1)

where mi and qi are the number of double and single swaps for job i,
respectively.

Each term in the preceding expression represents a time factor if the appropriate
action (tooling position change, external tool change, double swap, single swap,
number of turns of turret, return to tool position after each unit) is applicable for
the job, if not the value of the term is zero. The number of alternatives available
is n!(ZCei), which makes the problem NP complete, and hence the following heuristic
method is suggested for its solution.

14.3.2 HEURISTIC PROCEDURE AND ITS APPLICATION

The heuristic procedure suggested here requires evaluation of two alternative
approaches and selecting the best between them. In the first alternative, the initial tool
arrangement on the turret is optimized with respect to a job with the largest demand,
and other jobs are chosen to minimize the internal tool changes. This approach may
result in more than minimum external tool changes. In the second alternative, the
initial job sequence is developed to minimize the external tool changes by first apply-
ing the procedure described in Section 14.2, and internal tool changes are made to
further optimize the results. Here, the time for the internal tool changes may be more
than what is possible with alternative one. Depending on the times associated with
external and internal tool changes, one alternative may provide better results than the
other for a specific set of data.

The steps of the heuristic procedure are illustrated by simultaneously applying
them to a numerical example. The turret can hold a maximum of Z number of tools.
For illustration purposes, we will assume that Z is 8 in our example. There are six
jobs, and Table 14.13 shows their tool requirements and demands.

The following data is in relative time units:

F = Time required to transport a tool between magazine and turret (remove
or place a tool) = 500 units

Time necessary to change tools in two positions (double tool swap) =
280 + 10tmk

Time necessary to move a tool an empty position (single-tool swap) =
100 + 10tmk

Time for one turret (turn to go from one tool position to next sequential
position) = 1

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 446 — #18

446 Production Planning and Industrial Scheduling

TABLE 14.13
Tool Use Data for Jobs

Tools Used (Tool Numbers)
Job # in Sequence Demand

1 8 9 1 6 7 5 10 11 30
2 8 5 4 100
3 6 9 7 10 2 5 500
4 8 6 1 7 11 3 500
5 8 1 4 10 5 6 10
6 6 9 7 5 500

TABLE 14.14
Distances (Turns) between Turret Positions

Turret
Position 1 2 3 4 5 6 7 8

1 — 1 2 3 4 3 2 1
2 1 — 1 2 3 4 3 2
3 2 1 — 1 2 3 4 3
4 3 2 1 — 1 2 3 4
5 4 3 2 1 — 1 2 3
6 3 4 3 2 1 — 1 2
7 2 3 4 3 2 1 — 1
8 1 2 3 4 3 2 1 —

Since the turret is octagonal, the minimum turns require to go from one position
to any other position, assuming the turret can move either clockwise or anticlockwise
directions, are given in the Table 14.14.

Mathematically, such distance between location I and j could be expressed as
dij = dji = min (|I − j|, |I − j + n|). Installation of new tools may result in a few
rotations of the turret. Since the location of the final position after these rotations is not
known in advance, it is assumed it takes four units, that is, the maximum possible, to
go from the resultant position to the initial tool position of the next job. It is important
to realize that this condition occurs only once per job.

14.3.3 ALTERNATIVE 1: START WITH A JOB HAVING
THE LARGEST DEMAND

14.3.3.1 Discussion of the Procedure

There are five steps in the procedure. They are explained in conjunction with their
applications to the illustrative example.

Step 1: Similar to the procedure in Section 14.2, start a planning table. The planning
table (Table 14.15 shows the completed planning table for our example) consists of

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 447 — #19

Scheduling on NC Machines 447

TA
B
LE
14
.1
5

Pl
an
ni
ng
Ta
bl
e 1

2
3

4
5

6
7

8
9

10
11

T o
o l

U
F

U
F

U
F

U
F

U
F

U
F

U
F

U
F

U
F

U
F

U
F

In
iti

al
fr

eq
.

3
1

1
2

5
5

4
4

3
3

2

Jo
bs

3
3

x
0

1
2

x
4

x
4

x
3

4
x

2
x

2
2

6
3

0
1

2
x

3
x

3
x

2
4

x
1

2
2

2
3

0
1

x
1

x
2

3
2

x
3

1
2

2
5

x
2

0
1

x
0

x
1

x
2

2
x

2
1

x
1

2
1

x
1

0
1

0
x

0
x

1
x

1
x

1
x

0
x

0
x

1
4

x
0

0
x

0
0

0
x

0
x

0
x

0
0

0
x

0

N
ot

e:
U

=
To

ol
us

ed
;F

=
R

em
ai

ni
ng

jo
b

fr
eq

ue
nc

ie
s.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 448 — #20

448 Production Planning and Industrial Scheduling

a log of all tools and their use and non-use frequencies. For each tool, note the total
number of times the tool is used in processing all jobs in the initial frequency row.
As a job is scheduled, for each tool utilized in the job, the corresponding tool use
frequency is reduced by one. The resultant (the value under F) for each tool therefore
reflects the number of yet-to-be-scheduled jobs that would require the associated tool.
If, to process a job, a tool needs to be removed and another placed on the turret, the
tool with minimum current tool use frequency is chosen for removal. If there is a tie,
it is broken in a random manner. Also necessary is a tool line for each job. It indicates
the tool placement in each position (jaw) of the turret while processing the job. As a
job is scheduled, the tool arrangement may change to reflect the optimization. This
is explained in the following steps.

Step 2: To start scheduling, select a job with maximum demand. In case of a tie, select,
from the tied jobs, the job that requires the most tools. If there is still a tie, obtain
from planning table the total frequency for the tools used by the job, and determine
the sum of these frequencies. Select the job that had the maximum frequency. If there
is still a tie, break it randomly.

Load the tools necessary for the job in the consecutive positions on the turret in
the same order as they are required for the job. Record the tool use in the planning
table and in the tool line for the job. Calculate the time required for the job.

In our example, the maximum demand is associated with jobs 3, 4, and 6. Since
there are ties, determine the job that needs the maximum tools. Tool requirements for
jobs 3, 4, and 6 are 6, 6, and 4, respectively. Since there again is a tie between jobs 3
and 4, break the tie with regard to the total use of the tools. For job 3, tools 6, 9, 7, 10,
2, and 5 are used. Their total frequency from the planning table (Table 14.15 initial
frequency row) is: tool 6 is used five times, tool 9 is used three times, tool 7 is used
four times . . . , giving 5 + 3 + 4 + 3 + 1 + 5 = 21. Similarly, for job 4, the total tool
use frequency is 4 + 5 + 3 + 4 + 2 + 1 = 19. Since job 3 has the maximum total
tools used frequency, it is scheduled first.

Job 3 is noted in the planning table, and tool-use frequencies for tools 6, 9, 7,
10, 2, and 5 are reduced by one. The tools required for job 3 are arranged in the
sequential order on the turret as shown by the tool line for job 3 in the first row of
Table 14.17.

The total time in processing a job consists of three factors. First is the time
necessary to place all new tools on the turret. The second factor is associated with the
time for processing a unit. For each unit processed, the time to change the position
of the turret to get to the next tool (rotate the turret) is calculated. The third factor
is associated with initialization of the tool position for processing the next unit. In
some cases, when a setup for a new unit is required, this time may be considered
as a part of the setup time. In our example, we shall include the rotation time from
last tool use of the previous unit to the first tool use of the next unit as a part of total
idle time.

Hence, we have the total processing time for job 3 = 500 × 6 + 500(1 + 1 +
1 + 1 + 1) + 499 × 3 = 6997. The values in the preceding equation are derived as
follows: There are six tools placed on the turret, each requiring 500 time units. The
total units produced in job 3 are 500, the distances between successive tool positions

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 449 — #21

Scheduling on NC Machines 449

for the job is 1 time unit each. To turn the chuck back from position 6 to position 1
after the completion of a unit takes 3 time units (from Table 14.14) for 499 units.

For the sake of keeping the procedural steps together, in the following discussion,
the entire procedure is first explained before continuing its application to the example
problem.

Step 3: Compare tool requirements for each job with the tools that are presently on
the turret. Determine the number of common tools and also the number of new tools
(outside tools) that a job needs. Select for loading, the job requiring the least number
of outside tools. If there is a tie, break it by selecting the job that has the most number
of common tools. If there still is a tie, select the job having the maximum demand.
If there is still a tie, break it randomly.

Step 4: For the job selected, determine the parameter “P” as explained next.
Suppose the operation with a tool located in position j – 1 has just been completed.
However, the tool required for the next sequential operation is located in position k
on the turret. The turret-turning time would be minimum if this tool could be placed
in position j (the minimum of one turret turn to go from position j – 1 to j cannot
be avoided). But that may mean taking out the tool that presently is in location j
and interchanging it with the tool in location k. Recall that to interchange any two
tools the time required is given by A + Btjk. If the tools are to be interchanged,
there must be associated savings when the job is processed. This savings is due to
the reduction in turret turns when processing a unit. The additional cost (over and
above the time necessary to go from position j – 1 to position j) for turret turns is
given by KCjk, where Cjk is the distance (in terms of turns) between positions j and
k on the chuck and K is constant. For a job with demand di, the additional cost of
turret turns is (KCjk)di. If by making tool interchange the turret turn time can be
reduced, then the tool change may be desirable. At minimum, the increase in the time
due to tool interchange should be equal to decrease in time in turret turns, that is,
A + Btjk ≤ (KCjk)di.

Substituting the data from the example, this becomes: 280 + 10tjk ≤ 1 × Cjkdi.
For each job, the demand is known. In determining whether to interchange

tools or not, we can evaluate the preceding inequality for the known positions
j and k. If the left-hand side is less than the right-hand side, tools should be
switched.

It is more convenient, however, to approximate the value for minimum allowable
tool separation index “P” for the job. The minimum cost, that is, value of the LHS is
when tjk = 1, that is, the next required tool is in location j + 1 rather than j. Thus,
the minimum value of the LHS is 280 + 10 = 290. Using actual demand, determine
the minimum number of positions P; the two subsequent tools should be apart to
justify the tool change. This is obtained by solving the following inequality for the
smallest value of P.

290 ≤ 1 × P × di

If tool separation is less than P, do not interchange, if more than P, interchange.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 450 — #22

450 Production Planning and Industrial Scheduling

Step 5: Calculate the processing time for the job that is loaded. Remove it from
yet-to-be-scheduled list. Go back to step 3 if there exists any job yet to be scheduled.
If all jobs are scheduled, calculate the total tool change, tool turn and other processing
times.

14.3.3.2 Applications of Steps 3 through 5 to
the Illustrative Example

Job 3 has been loaded (end of step 2). To select the next job in the sequence, determine
tools that are the common ones and tools that are presently not on the turret (outside
tools) for the jobs yet to be scheduled. Table 14.16 shows the details.

Job 6 has the least number of outside tools and hence it is scheduled next, and
the planning table is modified. With a demand of 500 units, the P value is obtained
by, 290 ≤ 500P, or P = 1. That is, all tools required for job 6 must be in sequential
order. The current tool arrangement and the required tool arrangement for job 6 are
shown in Table 14.7.

Hence, interchange tools 10 and 5 from positions 4 and 6, respectively. The tool
line for job 6 is shown in the second line of Table 14.17. The time necessary to
complete the job is, 4 + (280 + 10 × 2) + 500 × (1 + 1 + 1) + (499 × 3) = 3301.

The terms in the above equation are for times necessary for tool initialization for
the first unit after new tool arrangements, tool exchange, sequential processing, and
reinitialization of the tool position from fourth position to the first after completion
of each unit.

To determine the next job to sequence, develop Table 14.18, indicating the tools
common and outside to the tools presently on the turret.

Since job 2 needs the least outside tools, load job 2 next. Enter the data in the
planning table, and modify the tool frequencies for the tools used by job 2.

To determine P for the job that has a demand of 100 units, we have: 290 ≤ 100P,
or P = 3.

TABLE 14.16
Job Selection for Second Position

Jobs yet to be scheduled 1 2 4 5 6
Common tools 5 1 2 3 4
Outside tools 3 2 4 3 0

TABLE 14.17
The Current Tool Arrangement: After Job 3

Turret Position

1 2 3 4 5 6 7 8

Current tools 6 9 7 10 2 5
Job 6 requirement 6 9 7 5

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 451 — #23

Scheduling on NC Machines 451

TABLE 14.18
Common and Outside Tools for
Jobs after Job 6

Jobs yet to be scheduled 1 2 4 5
Common tools 5 1 2 3
Outside tools 3 2 4 3

TABLE 14.19
Current Tool Arrangement after Job 6

Turret position 1 2 3 4 5 6 7 8
Tool 6 9 7 5 2 10

TABLE 14.20
Final Job Sequence and Tool Arrangement

Job
Sequence

Turret Positions and Tool Placement

1 2 3 4 5 6 7 8

3 6 9 7 10 2 5
6 6 9 7 5 2 10
2 6 9 8 5 4 10 7
5 6 9 8 5 4 10 7 1
1 6 9 8 5 11 10 7 1
4 6 8 9 5 3 11 7 1

Tools required for jobs 2 are 8, 5, and 4, and the present tool arrangement is shown
in Table 14.19.

Since only tool 5 is presently on the turret, the other two tools would have to
be brought in. Tool 8 could be placed in location 7; however, the distance between
locations 4 and 7 is 3 units, which is equal to the present value of P, and therefore
a tool switch would have to be made.

According to the planning table, tool 7 still has use, while tool 2 is not used for
any of the remaining jobs. Therefore, the least time-consuming alternative is to move
tool 7 from position 3, to an empty position 7, bring in tool 8 in position 3 and remove
tool 2 and replace it with tool 4. The corresponding tool arrangement is displayed in
the third row of Table 14.20.

The corresponding time requirement is 4 + 3 × 500 + 100 + 10 × 4 +
100(1 + 1) + 99 × 2 = 2042.

The process is repeated until all jobs are scheduled. For the sake of completeness,
the results of the steps are tabulated below in Table 14.21.

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 452 — #24

452 Production Planning and Industrial Scheduling

TABLE 14.21
Summary of Remaining Scheduling

Next Job P Action Taken Time Cost

5 30 None 4 + 500 × 1 + 10(3 + 3 + 1 +
2 + 3) + 9 × 2 = 642

1 10 Remove tool 4, replace tool 11 4 + 2 × 500 + 30(1 + 2 + 1 +
2+3+2+1)+29×2 = 1422

4 1 Remove tool 10, move 11 to
pos 6, bring tool 3 in position 5,
interchange tool 8 and 9

4 + 2 × 500 + (280 + 10) +
(100 + 10) + 500(1 + 1 + 1 +
1 + 1) + 1499 × 3 = 5401

Since all jobs are done, remove all tools from the chuck. The time required is
8 × 500 = 4000.

The total time to process all jobs is 6997 + 3301 + 2042 + 642 + 1422 + 5401 +
4000 = 23805.

14.3.4 ALTERNATIVE 2: MINIMIZE THE EXTERNAL TOOL CHANGES

The steps involved in the second alternative are as follows:

Step 1: Determine the minimum tool change sequence using Section 14.2 method
(this would have been the solution when only the external tool changes are
minimized).

Step 2: Apply steps 4 and 5 from alternative 1 for each job in the sequence obtained
in step 1.

Using step 1 (we leave the calculations to the reader), the minimum external tool
change sequence is jobs 3, 6, 2, 5, 1, and 4. Since the job sequence is same as
alternative 1, the resulting time is also equal in this case. It is interesting to note that
without the internal tool changes, that is, applying only step 1 of the alternative 2,
the preceding job sequence would have resulted in 26,721 time units.

14.3.5 SELECT THE BEST ALTERNATIVE

In this example, the time and sequence associated with alternatives 1 and 2 are the
same. Hence, select the associated job sequence and tool arrangement as the best.

14.3.5.1 Further Comments

As mentioned earlier, the first alternative tries to minimize internal tool changes
(tool changes on the turret), while the second alternative minimizes the external tool
changes (tool changes from turret to tool magazine). Depending on the time values,
one alternative may be better than the other for a given example. For instance, suppose
the time factors are as follows: time for external tool change 300, time for two tool

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 453 — #25

Scheduling on NC Machines 453

TABLE 14.22
New Demands

Job 1 2 3 4 5 6
Demand 500 50 100 30 10 400

interchange 200 + 75tmk, and time for one tool exchange 150 + 75tmk. Furthermore,
suppose the demands for different jobs are given in Table 14.22.

With the same remaining data as in the previous example, alternative 1 results in
job sequence of 1, 6, 3, 5, 2, and 4, with a time requirement of 15,842 units, while
the alternative two results in the sequence 3, 6, 2, 5, 1, and 4 with 16,165 units of
time. This is despite the fact that alternative 1 has four external tool changes while
alternative 2 has only three external tool changes. We shall leave it to the reader to
check these calculations in detail.

This section illustrates the need for developing not only the job sequence but
also the tool arrangement on the turret when the jobs are scheduled to minimize the
makespan.

14.4 SUMMARY

This is the first chapter to discuss specific situations where good solutions can be
developed by using application-specific heuristic or a combination of heuristics and
decision rules. In the first section, the tabular approach to group technology is
explained for instances where parts with common characteristics are grouped together
for production in machine cells. Section two presents a method of scheduling jobs
on a single machine with an ATC. This 13-step method uses a combination of group
technology and heuristic for schedule development. In the last section, a heuristic is
developed to schedule jobs to minimize throughput time on an NC machine. All these
methods lead to optimization of plant operations.

14.5 PROBLEMS

14.1 Using the tabular approach, develop the machine groups for the following data.
Also make the job assignments to the machine groups.

Machine

Job 1 2 3 4 5 6

1 1 1
2 1 1
3 1 1 1
4 1 1
5 1 1 1

(Continued)

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 454 — #26

454 Production Planning and Industrial Scheduling

Continued

Machine

Job 1 2 3 4 5 6

6 1 1 1
7 1 1 1
8 1 1
9 1 1

10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1
16 1 1

14.2 The data for 20 jobs that are to be produced on seven machines are given in
the following table. Develop machine groups, and indicate job assignments to
groups. Also, indicate any machine duplications.

Machine

Job 1 2 3 4 5 6 7

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1 1
8 1 1 1
9 1 1 1 1

10 1 1 1
11 1 1 1
12 1 1 1 1
13 1 1 1
14 1 1
15 1 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 455 — #27

Scheduling on NC Machines 455

14.3 A CNC machine center uses an ATC to speed up the time for setup due to
tool changes. The following ten jobs are to be processed on the machine
center, which has an ATC capacity of four tools. Develop the sequence
that will minimize the number of tool changes and thus the makespan
as well.

Tools

Job 1 2 3 4 5 6 7

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1 1
8 1 1 1
9 1 1

10 1 1

14.4 Given the following data on the number of jobs to be processed and their
requirements for tools using an automatic tool charger with four heads, develop
a schedule to minimize tool changeover and makespan.

Machine

Job 1 2 3 4 5 6 7

1 1 1
2 1 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

10 1 1
11 1 1

Dileep: “44206_c014” — 2007/9/17 — 15:13 — page 456 — #28

456 Production Planning and Industrial Scheduling

14.5 Determine the schedule and minimum throughout time for the data in
Table 10.11 if the demands are changed as indicated in the following:

Job Demand

1 100
2 100
3 400
4 500
5 400
6 50

REFERENCES AND SUGGESTED READINGS

Bard, J.F. 1988. “A Heuristic for Minimizing the Number of Tool Switches on a Flexible
Machine” IIE Transactions, 20: 382–391.

Potts, C.N. and L.N. Van Wassenhove. 1991. “Single Machine Tardiness Sequencing Heuristic”
IIE Transactions, 23: 346–354.

Sule, D.R. 1989. “A Systematic Approach for Machine Cell Formation in Cellular
Manufacturing” Proceedings, International Industrial Engineering Conference,
Toronto, pp. 619–624.

Sule, D.R. 1993. “Job Sequencing to Minimize Tool Changeover in Flexible Manufacturing”
International Journal of Production Planning and Control, 4: 46–53.

Sule, D.R. 1994. Manufacturing Facilities: Location, Planning and Design, 2d ed., Boston:
PWS Publishing.

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 457 — #1

15 Industrial Sequencing II:
Electronic Assemblies:
Component Tape
Assemblies on
a Sequencer

Products made with electronic components play a major role in our everyday life. Most
of the products use a printed circuit board (PCB) or printed circuit pack (PCP) to store
and carry out instructions. This and the next chapter discuss examples of sequencing
in electronic manufacturing, first in forming component tapes for robotics insertion
machines, and second in producing PCBs using a feeder-type machine.

There are two ways of securing components on the board in PCB production, using
surface mount technology or using insertion through-hole technology. In both cases,
an appropriate component must be placed in the right position on the board and then
either soldered or otherwise connected to the board. Typically, PCBs have hundreds
of different components. They are installed on the board by either a robotic insertion
machine or by a feeder-type machine. In the feeder-type machine, a head picks a
component in its slot as it appears on the input tape. It then inserts the component in
the appropriate position on the board as programmed in its computer. In the feeder-
type machine, each input tape is made up of only one type of component. The head
of the machine may have more than one slot (similar to our hand and fingers), each
slot picking up a component from separate tapes. The head then can make a stroke on
the board, moving in X–Y coordinates and placing each component from each slot in
appropriate position before returning back to load for the next stroke. We will study
the feeder-type machines in the next chapter. In this chapter, we will concentrate on
the robotic insertion process.

In a robotic insertion machine, the robot picks a component from its input tape
and places it in the position specified by the computer and then return and picks up
the next component in the sequence from the tape and continues on the next cycle.
The input tape has many different components on it as the robotic arm can pick
and place each type of component in the right place. Since there may be hundreds
of different components installed on each PCB, it is important that each input tape
supplied to each robotic arm, have components in the right sequence. The assembling
of an input tape is done on a machine called the sequencer. In this chapter, we shall

457

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 458 — #2

458 Production Planning and Industrial Scheduling

develop a sequencing procedure for a sequencer. We present a real-life example to
illustrate the dimension of the problem.

15.1 A HEURISTIC PROCEDURE FOR
TAPE ASSEMBLING ON A SEQUENCER

In an article, Fathi and Taheri (1989) describe the operation of a sequencer (or sequen-
cing machine) in PCP (board) manufacturing. A sequencer is used in the preliminary
step to arrange the components on an output tape (which is the input tape on the inser-
tion machine). Each output tape contains the proper set of components in a sequence
to assemble a certain type of PCP. Since component types, their number, and their
sequence may change from one PCP to another, a unique tape is required for each slot
of the insertion machine in each PCP assembly. As a result, at times, such an output
tape is simply referred to as a “PCP” for convenience.

Similar to an insertion machine, a sequencer also has a feeding mechanism called
a dispenser, which has slots known as dispensing heads. Each dispensing head may be
loaded with an input tape consisting of the same components. The sequencer takes
the required components from the dispensing heads and assembles them to form an
output tape (PCP).

Figure 15.1 shows a four-head sequencer. Input tapes consist of components 1,
2, 3, and 4. The output tape (PCP) consists of these four components in the sequence
that the robot will use in making a PCB that has components 1, 2, 3, and 4. To produce
another PCB with, for example, components 1, 2, and 5, a new PCP tape will have
to be made on the sequencer. To produce such a tape will need component tapes 1, 2,
and 5 as the input tapes on the sequencer. This necessitates changing of either input
tape 3 or 4 to input tape 5, thus requiring one changeover. We want to minimize such
changeovers in production of a set of PCP.

Sequencer

1

1

3

3

3

3

3

3

3

5

5

5

5

9

9

9

9

9

7

7

7

7

2

7

7

2

2

8

8

8

8

6

6

6

6

6
2 9 963 3 23

Output tape
(PCP)

Input tape (component)

FIGURE 15.1 Scheduling a sequencer to produce PCPs.

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 459 — #3

Electronic Assemblies: Component Tape Assemblies on a Sequencer 459

Every change in an input tape on a sequencer requires stopping and adjusting the
machine, resulting in the associated downtime. The problem then may be stated as
follows.

15.1.1 PROBLEM STATEMENT

There are M types of output tapes to be produced, each with a different demand.
There are N sets of distinct components available, each on a tape called an
input tape. To avoid the confusion between output tape and input tape, an input
tape, since it holds a specific type of component, is referred to as a “component,” and
an output tape as a PCP from now on. The components are loaded on a dispensing
head of a sequencer during the production of a PCP. There are C dispensing heads
on a sequencer on which the components can be installed (generally C � N). There
may be as many as L sequencers, independent of each other, that are available to
produce the necessary PCPs in the quantities required. The problem is to develop the
component loading schedule for each sequencer that minimizes the total changeovers
and also results in a balanced load on each sequencer.

Consider an illustrative example. Table 15.1 shows the data for 45 PCPs that are
to be produced using 20 components. Here, “1” represents the use of a component in
the production of a PCP and a “blank” the nonuse of the component. Table 15.1 also
shows the demand for each PCP. There are two sequencers, each with seven heads.
We might notice that each PCP requires no more than seven components. The problem
is to determine which PCPs should be produced on which sequencer, and then to
develop the detailed production schedule such that it would minimize the number
of component changeovers and also allow the work to be as evenly distributed as
possible, between the two sequencers.

15.1.2 SOLUTION PROCEDURE

The solution procedure is divided into two phases. In the first phase, using the concept
of group technology, similar components are grouped together. PCPs assigned to the
group can then be produced mainly by using the components from the group. We shall
call this phase I of the solution procedure. Since the concepts and procedure for group
forming was illustrated in Chapter 14, we shall assume the reader is familiar with the
procedure.

Once the components and PCPs are grouped, the next step is to develop a proced-
ure for sequencing. There are two questions that need to be answered. First, which
components should be placed on which head of the sequencer to produce a scheduled
PCP, and second, which of the remaining PCPs should follow the present PCP that
has just completed its production. To answer these questions, phase II procedure is
suggested.

As we proceed through the procedure, the reader will observe that there are some
similarities between the approach taken here and the one we studied in Chapter 14
in NC machine sequencing problem. We first start by application of group techno-
logy to make coherent groups of components, and then we develop planning and
scheduling tables to direct us in scheduling. However, due to the large number of

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 460 — #4

460 Production Planning and Industrial Scheduling

TA
B
LE

15
.1

C
om

po
ne
nt
s
U
se
d
in

Ea
ch

PC
P
an
d
th
e
PC

P
D
em

an
d

C
om

po
ne
nt
s

PC
P

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

D
em

an
d

1
1

1
1

1
10

0
2

1
1

1
1

1
50

3
1

1
1

1
20

0
4

1
1

1
1

1
15

0
5

1
1

1
1

1
1

75
6

1
1

1
1

1
1

80
7

1
1

1
1

1
1

1
15

0
8

1
1

1
1

1
1

20
0

9
1

1
1

1
1

55
10

1
1

1
1

1
12

5
11

1
1

1
1

1
1

1
90

1 2
1

1
1

1
1

65
13

1
1

1
1

12
0

14
1

1
1

1
1

15
0

15
1

1
1

1
1

17
0

1 6
1

1
1

1
1

6 5
17

1
1

1
1

1
10

5
18

1
1

1
1

1
12

0
1 9

1
1

1
1

1
85

20
1

1
1

1
1

50

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 461 — #5

Electronic Assemblies: Component Tape Assemblies on a Sequencer 461
21

1
1

1
1

1
10

0
22

1
1

1
1

1
11

0
23

1
1

1
1

1
18

5
24

1
1

1
1

1
16

0
25

1
1

1
1

1
75

26
1

1
1

1
1

75
27

1
1

1
1

90
28

1
1

1
1

1
10

0
29

1
1

1
1

1
85

30
1

1
1

1
1

95
31

1
1

1
1

1
10

0
32

1
1

1
1

1
50

33
1

1
1

1
1

15
0

34
1

1
1

1
1

1
14

5
35

1
1

1
1

95
36

1
1

1
1

1
15

0
37

1
1

1
1

1
20

0
38

1
1

1
1

1
18

0
39

1
1

1
1

1
17

0
40

1
1

1
1

1
14

0
41

1
1

1
1

1
80

42
1

1
1

1
1

10
0

43
1

1
1

1
1

1
12

0
44

1
1

1
1

1
15

0
4 5

1
1

1
1

1
1

7 5

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 462 — #6

462 Production Planning and Industrial Scheduling

components involved, the planning table is constructed slightly differently. Also,
since we may have more than one sequencer, the decisions as to which group of
components should be scheduled on which sequencer become critical.

15.1.3 PHASE II: SCHEDULING

There are a number of steps in phase II of the procedure. These steps are
explained next.

Step 1: Calculate the ideal load or capacity for each sequencer. This is done by
dividing the total load (i.e., sum of demand for each PCP) by the number of sequencers
available. When a PCP is scheduled on the sequencer, the available capacity of the
sequencer is decreased by the demand associated with the PCP. The problem could be
examined by following either of the two approaches stated in the following:

The first approach or approach A: once a group is assigned to a sequencer, load
all the PCPs from the group onto that sequencer. The next group (phase I
may result in multiple groups), however, is only loaded on the sequen-
cer if the capacity still exists. This alternative gives minimum component
changeovers.

The second approach or approach B: load a new PCP only if the capacity is
still available on the sequencer. This alternative gives a more balanced load
on each sequencer.

Step 2: Assign component groups that are most diverse from each other (with the
least number of common components) to different sequencers.

Development of loading pattern for PCPs on a sequencer is carried out by using
two tables—a planning table and a loading table. The information from the planning
table is used to decide how to change the components on the sequencer, while the
loading table indicates the sequence of loading of the PCPs and actual component
positions on the sequencer. The details are explained in the following steps.

Step 3: Develop a planning table and a scheduling table for a sequencer as follows:
Planning table. This table consists of component listings for the PCPs associated

with the group that is presently assigned to the sequencer. The table is divided into two
sections. The first contains components within the group, while the second section
contains components required by PCPs that are external to the group.

Recall that there are only a finite number of heads on each sequencer and, because
of the group-fathoming process in the grouping procedure, no group has a number of
components that exceed this number. In each sequencer’s planning table, therefore,
the first section consists of components that belong to the group.

The second part of the table is associated with the components that are external to
the group and is constructed gradually. For each PCP that is in the group, a recording
is made of the components that are already in the table. The components that are
not presently in the table but are required for the scheduled PCP are inserted in the
second part.

For clarity of presentation, these steps are explained with a small example.
Suppose the group components consists of components 11, 2, 13, 8, 5, 9, and 6

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 463 — #7

Electronic Assemblies: Component Tape Assemblies on a Sequencer 463

TABLE 15.2
A PCP Group and its
Components

PCP Components

1 11, 2, 13, 8, 5, 9, 17
2 11, 5, 6
3 13, 8, 9, 6, 15, 3
4 11, 2, 8, 9, 17
5 11, 2, 8, 5, 6, 15

TABLE 15.3
Illustrative Planning Table for the Data in Table 15.2

Components
Components Within Group Outside Group

PCP 11 2 13 8 5 9 6 17 15 3 4

1 x x x x x x x
2 x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x

Imp 1 4 3 2 4 3 3 3 2 2 1 1
Imp 2 3 2 1 3 2 2 3 1 2 1 1
Imp 3 2 1 1 2 2 1 3 0 2 1 1

for a seven-head sequencer, and there are five PCPs that belong to this group, each
requiring components as shown in Table 15.2.

In the planning table (Table 15.3), the group components are noted in the first
part of the table. Components outside the group are then listed one at a time,
as explained next.

For the first PCP, the required components are 11, 2, 13, 8, 5, and 9, of which 11,
2, 13, 8, 5, and 9 are the same as the components within the group. They are recorded
in the first part of Table 15.3 by marking the corresponding “x”s. The component 17
is not from within group components. It also has not been recorded yet as needed
outside group component. Therefore, it is entered into the second part of the table,
components outside group, and marked as being used by PCP 1. The other four PCPs
in our example are similarly recorded. Note in recording PCP 4, that component 17
is already in the table and, therefore, is merely marked by “x” as also being used
by PCP 4.

Next, we calculate the number of times each component is used in loading on
the sequencer all PCPs from this group. This is simply done by adding x’s in each

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 464 — #8

464 Production Planning and Industrial Scheduling

column of the planning table. The sum is shown as Imp 1 row (importance row)
in Table 15.3 (other Imp rows are explained later). These numbers give the present
relative importance of each component in loading the remaining PCPs from that
group. The higher the number, the more often that component will be used in assem-
bling the PCPs that are yet to be built. This information is used in developing the
loading table, specifically, to determine which of the presently assigned components
on the sequencer should be replaced, if need be. The details are shown in the loading
table discussion.

The Imp row is continuously updated as a PCP is taken out from the planning
table and scheduled into the loading table. Thus, we have Imp 1, Imp 2, Imp 3, etc.

For example, the present relative importance of each component in scheduling the
five PCPs is given by Imp 1. If PCP 1 is scheduled in the loading table, it is no longer
in the planning stage. The components associated with PCP 1 are then taken off from
the total, giving the new values shown as Imp 2 row. Thus, in this instance, the
relative importance of component 11 is reduced from 4 to 3, that of component 2
from 3 to 2, etc.

Loading table. This table is used to determine how to load the components on the
sequencer. In particular, it determines which component should be placed on which
head of the sequencer. This is a complex process since loading of each PCP may
require modification in one or more of the dispensing head’s component assignment.
To decide the position of the changeover, the information obtained from the planning
table is very useful.

To start, load the sequencer with a PCP having the largest number of common
components with the initial component listing of the group. If there is a tie, load
the component that requires the least number of changes from the present compon-
ent arrangement. Select and load the PCP and corresponding components on the
sequencer and modify the importance row of planning table accordingly.

In our example PCP 1 has six components common to the group, and this is the
largest common component number for any PCPs in this group. Load PCP 1 on the
loading table as displayed in Table 15.4a. The table shows the components assigned
to each head of the sequencer.

The modified importance row is shown as Imp 2 in the planning table.

Step 4: Before loading the next PCP, check if approach A or B from step 1 is to be
followed. For approach A, if all the PCPs from the present group are not yet loaded,
go to step 5. If all the PCPs from the present group are assigned, the next group is
only loaded if the capacity is still available on the sequencer. If such is the case, go to
step 6. Otherwise, the present sequencer is loaded to its maximum allowable capacity.
Start the scheduling process on the next sequencer, if there is one, by going back to

TABLE 15.4a
Illustrative Loading Table: First PCP Loading

Head 1 2 3 4 5 6 7
PCP 1 11 2 13 8 5 9 17

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 465 — #9

Electronic Assemblies: Component Tape Assemblies on a Sequencer 465

step 3. If all the sequencers are loaded, stop; we have the optimum solution to the
problem. Go to step 7.

If the second approach is to be followed, check to see if the sequencer capacity
has been exceeded; if it has, stop loading on the present sequencer. Remove from
the group the PCPs that are already loaded so far, thus retaining the group with only
non-assigned PCPs from that group, and go to the next sequencer, that is, go to the
beginning of step 3. Otherwise, go to step 5 to continue loading the present group.
If the present group is completely loaded and there still exists a capacity on the
sequencer, go to step 6 to load a new group. Again, if all sequencers are loaded,
we have the optimum solution. Stop, and go to step 7.

Step 5: Compare the components necessary for all unloaded PCPs in the group, with
the components presently on the sequencer (last line of the loading table). Select
a PCP that has the most common components with it as the next PCP for loading.
If the selected PCP needs a few components that are not presently on the sequencer,
then the sequencer also has a few components that are not used by the scheduled PCP.
This is the case because the initial problem statement indicates that no PCP requires
the number of components that are more than the number of heads on the sequencer.
A few of these immediately nonusable components would have to be removed from
the sequencing head to make the room for the required components. To that end,
select for replacement from the components that are not used, those components that
are of least importance, as suggested by the latest importance row in the planning
table. Replace only the minimum necessary that would permit the production of the
new PCP.

Once the PCP is scheduled and entered into the loading table, remove it from the
planning table. Modify the importance row, and select the next PCP to load, following
the procedure described earlier, returning to step 4.

In our example, suppose capacity is still available on the sequencer. PCP 4 has
the most number of common components with the present state of the sequencer,
which has components 11, 2, 13, 8, 5, 9, and 17 on it. Hence, PCP 4 is loaded next.
It requires no outside component; therefore, no replacement is needed. The result is
shown in Table 15.4b.

The next PCP to load is number 5 (assuming capacity exists), since it has the
most, that is, four components, common to the present sequencer assignment. It does
have a requirement for two components, 6 and 15, that are presently not on the
sequencer. To determine where the components 6 and 15 should be loaded, examine
the current Imp row, that is, Imp 3. Component 17 has the least value that is, 0, and
therefore it would be replaced by component 6 or 15. We choose 6 randomly. The next

TABLE 15.4b
Illustrative Loading Table: Second PCP Loading

Head 1 2 3 4 5 6 7
PCP 1 11 2 13 8 5 9 17
4 x x x x x

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 466 — #10

466 Production Planning and Industrial Scheduling

TABLE 15.4c
Illustrative Loading Table: Third PCP Loading

Head 1 2 3 4 5 6 7
PCP 1 11 2 13 8 5 9 17
4 x x x x x
5 x x 15 x x 6

TABLE 15.4d
Equivalent Illustrative Loading Table: Third PCP
Loading

Head 1 2 3 4 5 6 7
PCP 1 11 2 13 8 5 9 17
4 11 2 13 8 5 9 17
5 11 2 15 8 5 9 6

least value is associated with component 13, which would be replaced by 15. The
associated results are shown in Table 15.4c.

Thus, the sequencer now has components 11, 2, 15, 8, 5, 9, and 6 on it. It might be
more convenient to display the loading table by merely indicating the component
assignment on each head as each of the PCPs is loaded. Thus, Table 15.4d is an
equivalent form of the Table 15.4c.

A new Imp row would be constructed and the procedure continued.

Step 6: When all the PCPs in the group are loaded, and there is still some capacity
left in the sequencer, choose the next group to load, such that the initial component
listing of the new group has the highest number of common components with the latest
arrangement on the sequencer (the last line of the loading table). Go to step 3. If all
the groups are completely loaded, stop. We have the desired loading pattern on all
sequencers. Go to step 7.

Step 7: Check the successive rows of the loading table(s) to determine the total
changeovers required for the schedule.

15.1.4 SOLUTION TO THE EXAMPLE PROBLEM

We shall now illustrate the entire procedure by applying it to the data shown in
Table 15.1. Utilizing the first phase of the procedure results in six groups. Each
group’s components and associated PCPs are shown in Table 15.5.

Applying step 1 of phase II results in the determination of the ideal load for each
sequencer. This is a total load of 5184 being distributed between two sequencers,
or 2592 per sequencer. The least number of common components between any two
groups is 1, and that occurs between groups 2 and 6. Therefore, group 2 could be

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 467 — #11

Electronic Assemblies: Component Tape Assemblies on a Sequencer 467

TABLE 15.5
Component Groups and PCPs Assigned to Each Group

Group Components PCP

1 1, 2, 4, 5, 8, 9, 11 1, 2, 4, 9, 12, 14, 20, 22, 25, 26, 28, 31, 34, 38, 45
2 7, 8, 9, 10, 11, 14, 16 3, 5, 6, 7, 13, 15, 19, 23, 27, 30, 36, 40
3 4, 5, 6, 7, 9, 11, 12 16, 21, 32, 37, 39, 43
4 4, 5, 9, 11, 12, 13, 14 17, 33, 44
5 5, 9, 14, 15, 16, 17, 18 8, 10, 18, 24, 29, 35, 42
6 1, 11, 12, 13, 17, 19, 20 11, 41

TABLE 15.6
Planning Table

Components Within Group Components Outside Group

PCP 7 8 9 10 11 14 16 4 6 15 5 12 18 17 20 3

3 x x x x
5 x x x x x x
6 x x x x x x
7 x x x x x x x

13 x x x x
15 x x x x x
19 x x x x x
23 x x x x x
27 x x x x
30 x x x x
36 x x x x x
40 x x x x x

Imp 1 6 8 4 6 7 9 5 1 4 3 2 2 1 1 1 1
Imp 2 6 7 4 5 6 8 4 1 4 2 2 2 1 1 1 1
Imp 3 6 6 4 4 6 7 3 1 4 2 2 1 1 1 1 1
Imp 4 6 6 3 4 5 6 2 1 4 1 2 1 1 1 1 1

loaded on the first sequencer, and group 6 on the second. For the first sequencer
with group 2 PCPs, we can construct a planning table, shown here as Table 15.6.
PCP number 6 has the highest number of common components with the initial group
listing; therefore, it is shifted to the loading table. Table 15.7a shows part of the
loading table for discussion, while the complete table is illustrated as Table 15.7b.

The next step is to recalculate the totals for group 2 after removing PCP 6 from the
planning table. The results is shown as Imp 2 row in Table 15.6. There are 2512 units of
capacity still available on the sequencer, hence another PCP is scheduled. Look for the
PCP that has the highest number of common components with the latest arrangement,
that is, PCP 6. The planning table points to PCP 7 and PCP 15 having the same

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 468 — #12

468 Production Planning and Industrial Scheduling

TABLE 15.7a
Partial Loading (Scheduling) Table

Sequencer I: Head

PCP 1 2 3 4 5 6 7

6 8 10 11 14 15 16 —
15 8 10 11 14 15 16 12
23 8 10 11 14 15 16 9

TABLE 15.7b
Load-Based Scheduling for Sequencer 1

Components on Slot
Cumulative

PCP Load Load 1 2 3 4 5 6 7 Changeovers

6 80 80 8 10 11 14 15 16 — 0
15 170 250 8 10 11 14 15 16 12 0
23 185 435 8 10 11 14 15 16 9 1

3 200 635 8 10 11 14 7 16 9 1
19 85 720 8 10 11 14 7 6 9 1

5 75 795 8 10 4 14 7 6 9 1
27 90 885 8 10 11 14 7 6 9 1
40 140 1025 8 10 11 14 7 6 3 1
30 95 1120 8 10 11 14 17 6 20 2
13 120 1240 8 10 11 14 16 6 18 2
36 150 1390 8 10 5 14 16 6 7 2

7 150 1540 8 10 5 14 12 6 15 2
16 65 1605 8 4 7 14 12 6 15 2
32 50 1655 11 4 7 3 12 6 15 2
37 200 1855 11 4 7 13 12 6 15 1
39 170 2025 9 4 7 13 12 6 15 1
21 100 2125 9 4 7 18 12 6 17 2
43 120 2245 10 4 14 19 12 6 17 3
24 160 2405 10 18 14 19 5 6 17 2
10 125 2530 16 18 14 19 5 15 17 2
18 120 2650 16 18 20 19 5 15 17 1

number (4) of common components. As PCP 15 requires fewer changes in the present
arrangement than PCP 7, it is selected next. This requires 0 changeovers. Recalculate
the importance row, removing PCP 15 to the loading table (Imp 3 row). There is still
capacity available on the sequencer. Following the procedure, the next PCP to load
is PCP 23, which requires just one changeover. The candidate for the component
replacement is a component presently on the sequencer that is of least importance,
in this case component 12. Continue applying the procedure in a similar manner until

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 469 — #13

Electronic Assemblies: Component Tape Assemblies on a Sequencer 469

TABLE 15.7c
Load-Based Scheduling for Sequencer 2

Components on Slot
Cumulative

PCP Load Load 1 2 3 4 5 6 7 Changeovers

11 90 90 17 5 1 19 11 12 13 0
41 80 170 17 20 1 19 11 12 15 2
33 150 320 17 9 16 19 11 12 13 3
44 150 470 14 4 3 19 11 12 13 3
17 105 575 14 4 5 8 11 12 13 2

9 55 630 1 4 5 8 11 12 13 1
28 100 730 1 4 5 8 11 12 13 0

4 150 880 1 4 5 8 11 2 7 2
38 180 1060 1 4 5 8 11 2 7 0
14 150 1210 1 4 5 8 15 2 7 1
22 110 1320 1 4 5 8 3 2 7 1

1 100 1420 1 4 5 8 3 2 7 0
2 50 1470 1 4 5 8 3 2 6 1

31 100 1570 1 4 5 8 3 2 9 1
12 65 1635 1 10 5 8 3 2 9 1
45 75 1710 1 10 5 8 18 2 9 1
20 50 1760 6 10 5 8 11 2 9 2
25 75 1835 13 10 5 8 11 2 9 1
34 145 1980 12 10 5 16 11 2 9 2
26 75 2055 1 10 15 17 4 2 9 4

8 200 2255 18 10 15 17 3 5 9 3
42 100 2355 18 16 15 17 3 5 9 1
35 95 2450 18 16 15 17 6 5 9 1
29 85 2535 18 10 15 17 20 11 9 2

the sequencer is filled to close to 2592 tape capacity. In this case, the closest possible
capacity is either 2530 or 2650. Here, we choose to load the sequencer to the capacity
of 2650. Counting the number of changeovers from Table 15.7b, we note the schedule
has a total of 30 changeovers.

The loading on the second sequencer starts with group 6 PCPs. Since the details
of the procedure are the same, the particulars are not described here. The results are
shown in Table 15.7c.

The total load on the second sequencer is 2535, with 34 changeovers for the
schedule. Thus, the number of changeovers necessary to complete the production of
all PCPs is 30 + 34 = 64.

When the objective is to minimize the changeovers while maintaining as even
a distribution of load as possible, that is, following alternative 2 from step 3, the
resulting sequences and load distributions are obtained as shown in Tables 15.8a
and 15.8b. The load on sequencer 1 is 3130 with 35 changeovers and for sequencer 2
is 2055 with 28 changeovers for the total of 63 changeovers. As expected, this
policy has reduced the total changeovers by 1 from the previous policy; however,

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 470 — #14

470 Production Planning and Industrial Scheduling

TABLE 15.8a
Group Base Scheduling on Sequencer 1

Components on Slot
Cumulative

PCP Load Load 1 2 3 4 5 6 7 Changeovers

6 80 80 8 10 11 14 15 16 — 0
15 170 250 8 10 11 14 15 16 12 0
23 185 435 8 10 11 14 15 16 9 1

3 200 635 8 10 11 14 7 16 9 1
19 85 720 8 10 11 14 7 6 9 1

5 75 795 8 10 4 14 7 6 9 1
27 90 885 8 10 11 14 7 6 9 1
40 140 1025 8 10 11 14 7 6 3 1
30 95 1120 8 10 11 14 17 6 20 2
13 120 1240 8 10 11 14 16 6 18 2
36 150 1390 8 10 5 14 16 6 7 2

7 150 1540 8 10 5 14 12 6 15 2
16 65 1605 8 4 7 14 12 6 15 2
32 50 1655 11 4 7 3 12 6 15 2
37 200 1855 11 4 7 13 12 6 15 1
39 170 2025 9 4 7 13 12 6 15 1
21 100 2125 9 4 7 18 12 6 17 2
43 120 2245 10 4 14 19 12 6 17 3
24 160 2405 10 18 14 19 5 6 17 2
10 125 2530 16 18 14 19 5 15 17 2
18 120 2650 16 18 20 19 5 15 17 1
29 85 2735 16 18 20 11 5 15 17 1
42 100 2835 16 18 20 9 5 15 17 1

8 200 3035 10 18 3 9 5 15 17 2
35 95 3130 6 18 3 9 5 15 17 1

TABLE 15.8b
Group-Based Scheduling for Sequencer 2

Components on Slot
Cumulative

PCP Load Load 1 2 3 4 5 6 7 Changeovers

11 90 90 17 5 1 19 11 12 13 0
41 80 170 17 20 1 19 11 12 15 2
33 150 320 17 9 16 19 11 12 13 3
44 150 470 14 4 3 19 11 12 13 3
17 105 575 14 4 5 8 11 12 13 2

9 55 630 1 4 5 8 11 12 13 1
28 100 730 1 4 5 8 11 12 13 0

4 150 880 1 4 5 8 11 2 7 2

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 471 — #15

Electronic Assemblies: Component Tape Assemblies on a Sequencer 471

TABLE 15.8b
Continued

Components on Slot
Cumulative

PCP Load Load 1 2 3 4 5 6 7 Changeovers

38 180 1060 1 4 5 8 11 2 7 0
14 150 1210 1 4 5 8 15 2 7 1
22 110 1320 1 4 5 8 3 2 7 1

1 100 1420 1 4 5 8 3 2 7 0
2 50 1470 1 4 5 8 3 2 6 1

31 100 1570 1 4 5 8 3 2 9 1
12 65 1635 1 10 5 8 3 2 9 1
45 75 1710 1 10 5 8 18 2 9 1
20 50 1760 6 10 5 8 11 2 9 1
25 75 1835 13 10 5 8 11 2 9 1
34 145 1980 12 10 5 16 11 2 9 2
26 75 2055 1 10 15 17 4 2 9 4

this has happened at the expense of some unevenness in the load distribution on the
sequencers.

15.2 SUMMARY

An efficient method for PCP distributing and processing on sequencers is presented
in this chapter. The procedure is important since changeover times can contribute
considerably to the overall operation times of the sequencers, and any reductions in
these times provide improvement in the productivity. The new method is shown to be
more effective than the one presently available in public literature. This methodology
should help in cost reduction and more efficient management in the electronic industry.

15.3 PROBLEMS

15.1 Determine which PCPs should be produced on which sequencer and develop
the production schedule for the data given in Table 15.1 if the PCP demands
are changed according to the following:

PCB Demand PCB Demand PCB Demand

1 20 16 115 31 180
2 40 17 130 32 185
3 60 18 195 33 205
4 210 19 155 34 70
5 80 20 105 35 80

(Continued)

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 472 — #16

472 Production Planning and Industrial Scheduling

Continued

PCB Demand PCB Demand PCB Demand

6 65 21 100 36 170
7 45 22 50 37 190
8 125 23 35 38 100
9 180 24 165 39 200

10 170 25 115 40 60
11 110 26 35 41 130
12 50 27 95 42 105
13 190 28 130 43 95
14 70 29 145 44 205
15 75 30 135 45 95

15.2 Given the following data on components and PCPs, determine which PCPs
should be produced on which sequencer, and develop the schedule knowing
two sequencers are available, each with five heads.

Components

PCP 1 2 3 4 5 6 7 8 9 10 11 12 Demand

1 1 1 75
2 1 1 1 90
3 1 1 1 1 1 1 60
4 1 1 1 1 150
5 1 1 1 1 135
6 1 1 1 40
7 1 1 1 1 90
8 1 1 1 1 80
9 1 1 1 145

10 1 1 1 1 100
11 1 1 1 55
12 1 1 1 1 65
13 1 1 1 1 135
14 1 1 1 1 1 175
15 1 1 1 1 1 80
16 1 1 1 1 45
17 1 1 1 1 1 85
18 1 1 1 1 115
19 1 1 1 1 1 130
20 1 1 1 95

15.3 Make the PCP determination and develop a schedule using data from Problem
15.2 if the sequencers each have six heads.

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 473 — #17

Electronic Assemblies: Component Tape Assemblies on a Sequencer 473

15.4 Change the demand in Problem 15.2 to those following and make the new PCP
determinations and schedule.

PCP Demand PCP Demand

1 250 11 35
2 70 12 90
3 150 13 165
4 50 14 205
5 195 15 155
6 275 16 120
7 135 17 220
8 65 18 190
9 115 19 245

10 215 20 140

REFERENCES AND SUGGESTED READINGS

Bridges, R.O. 1977. “Sequencing of Components for Automatic Assembly on Printed Wiring
Boards” Western Electric Engineer, 21(14).

Fathi, Y. and J. Taheri. 1989. “A Mathematical Model for Loading the Sequencers in a Printed
Circuit Pack Manufacturing Environment” International Journal of Production
Research, 27(8): 1305–1316.

Richerson, F.K. 1976. “Computer Program Controls Component Sequencer Costs” Assembly
Engineering, 24(24).

Sabah, U.R., Edward, D.M., and S.-D. Faruqui. 1985. “An Integer Programming Application
to Solve Sequencer Mix Problems in Printed Circuit Board Production” International
Journal of Production Research, 23(3): 543–561.

Sule, D.R. “A Systematic Approach for Machine Grouping in Cellular Manufacturing”
Proceedings of the International Industrial Engineering Conference, 1989, Toronto,
pp. 619–624.

Dileep: “44206_c015” — 2007/9/17 — 15:14 — page 474 — #18

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 475 — #1

16 Industrial Sequencing III:
Sequencing Feeder for
Component Tape
Assembly

The production of printed circuit board (PCB) requires the assembling of various
electrical and electronic components at specific locations on the circuit board. The
components are discrete devices such as resistors, capacitors, diodes, transistors,
and/or connectors.

Modern PCB production utilizes computerized machines to insert components
using one of two processes. The first is called the automated insertion process, in which
the machines have insertion heads, each of which can be loaded with one type of
component. Typically, motions in the x and y directions are obtained by either allowing
heads to move or the table with the PCB to move. These automatic insertion machines
are also referred to as feeders. Figure 16.1 displays a sketch of a feeder used in our
discussion.

The other process is called the robotic insertion process. Robots are more flexible
because they can insert any component at any location on the board. In this process,
the components arrive on a sequenced tape, so that the robotic arm has only to pick
and place each component in its place. The sequenced tape, which is also called
an output tape, is assembled by a machine called a sequencer, as we have seen in
Chapter 15.

The procedure illustrated here is for a feeder-type machine. An example problem
consisting of a machine with six slots (heads) is used to illustrate the procedure. In this
machine, each slot can hold one component. A number of units of a single component
type are packed on one tape. Thus, once a tape is attached to a slot, it essentially
determines the component type that is assigned to the slot. All slots are mounted on
an arm called the dispenser that moves as a single unit. Initially, the dispenser is at
the home position (i.e., 0-0 coordinates). From here, the dispenser moves forward
so that an appropriate slot is over the first location on the board where a component is
to be inserted, and infuses the component from the slot. It then moves directly to the
next location under the new slot and inserts another component there. Movements
in the horizontal and vertical directions are made simultaneously by the arm. This
procedure continues, and when all the assigned slots have placed their components,
the arm (and therefore all slots) moves back to the home position. This signifies the
end of a stroke. Each slot may then pick up one more component from the tape and

475

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 476 — #2

476 Production Planning and Industrial Scheduling

Component
locations

•

x

y

5

10

51

20

25

3030

5 10 15 20 25 30 35 40

35

40 Dispenser
arm

Insertion
head (slot)

•

• • • 10

•

•

•

•

0
0

30

FIGURE 16.1 Automatic insertion machine (feeder).

set out on the next stroke. The procedure continues until all the locations designated
to the feeder have been assigned the appropriate components.

Multiple boards are processed as a batch, one after another. However, each board
may require only a subset of all the components that have been placed on the feeder.
This is because the setup time for the feeder can be very large compared to the
processing time. One common practice, therefore, is to group similar boards in a
batch and setup the feeder so that there is no changeover required in processing these
boards.

The insertion machine may have further restriction on the movement of the slots.
The slots can access the locations anywhere along the y (vertical) direction, but
are restricted along the x (horizontal) direction, as illustrated in Figure 16.2. This
complicates the scheduling process.

16.1 PROBLEM DESCRIPTION

The total time taken for insertion consists of two controllable factors. The first is
the number of strokes utilized, and the second is the inter-board movement of the
arm in each stroke. In insertion machines, the stroke length, that is, going from the
home position to the board and then coming back to the home position, is a dominating
factor in the total distance traveled by the arm. Any reduction in the number of strokes
used to insert all components contributes much more to the reduction in the total time
than optimizing board travel pattern. Therefore, emphasis is placed on reducing the
number of strokes.

The objective then is to minimize the number of strokes required to complete the
placement of all components on a batch of PCBs. In order to minimize the number of

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 477 — #3

Sequencing Feeder for Component Tape Assembly 477

5 10 15 20 25 403530Scale

Slot 1

Slot 2

Slot 6

Slot 3

Slot 4

Slot 5

FIGURE 16.2 Reach of the slots along the x direction.

strokes, each slot must be loaded with the correct component. It is also necessary to
assign the location that each slot is required to serve in each stroke.

Exhaustive enumeration of the component assignment problem is almost
impossible. For example, in a feeder with 20 slots, and 5 distinct components, the
number of ways the components can be assigned to slots is 520 (9.537 × 1013). Only
a small percentage of these are feasible solutions. On a Sparc Station (Unix operat-
ing system), it takes days to solve such a problem exhaustively. Therefore, a means
must be found to reduce the computational time and provide good results. A heuristic
solution presented in the following gives good solution (usually an optimum solution)
with dramatic savings in computational times.

The input to the problem consists of information about the components on the
board(s) and information on the feeder. For each component on the board, the data
consists of:

1. The component type.
2. The x and y coordinates on the board where the insertion should be made.

Information about the feeder includes:

1. The number of slots on the feeder (in our example, 6).
2. The reach of each slot in the x direction (y direction reach is not necessary

since all the slots can reach all locations in the y direction).

The boards are grouped as a batch, and the entire batch is processed on the same
setup. Therefore, if the total number of distinct components exceeds the number of
slots available, the result is an infeasible solution.

In brief, the problem has the following settings:

1. Every location is accessible to at least one slot on the feeder.
2. There is no change in the setup while processing a group of boards. There-

fore, the total number of distinct component types is always less than the
total number of slots available.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 478 — #4

478 Production Planning and Industrial Scheduling

3. There is no restriction on the reach of the slots in the y direction. However,
there are restrictions on slots travel in the x direction.

4. Each slot can carry only one component type.

16.2 HEURISTIC PROCEDURE

The heuristic has three stages. The details of each stage are described in associated
sections:

First, it may be useful to get an overview of each stage.

1. Develop basic component assignments to slots: We make an allocation of
component tapes to the slots so that all locations on all the boards can be
assembled using a minimum number of slots. The purpose is to have as
many empty slots as possible and still get a feasible solution so that there
is an opportunity to reduce in the number of strokes in the improvement
stage.

2. Assignment stage: The assignment of locations from the boards to the slots
with component tapes is done in this stage. It generates the stroke sequence,
that is, the order in which the locations are visited, and the appropriate com-
ponents are inserted. First, the priorities for all the locations are calculated,
and then each is assigned to a slot based on the priority level and distance
from the slot.

3. Improvement stage: With application of the previous two stages, the assign-
ment of locations is complete, but the solution may not be optimal. The
empty slots may be assigned specific components to further reduce the
strokes. To maximize the improvement, a measure is developed that
determines a savings in the number of strokes that may result by adding
an additional slot to a particular component. This measure is used to find
the most efficient way to utilize the empty slots.

Next, each stage of the heuristic procedure is described in detail. An example is solved
simultaneously to explain the procedure. The batch consists of two boards. Table 16.1
shows the x position of each location on each board as well as the component type
needed in that position. Table 16.2 shows data concerning the feeder, in particular,
the data on reach of the slots. The home positions indicate the positions of the slots
when the dispenser is at rest. L-reach and R-reach indicate possible travel in the left
and right directions of the x axis (Figure 16.3).

16.2.1 DEVELOPING BASIC COMPONENT ASSIGNMENTS

TO THE SLOTS

At the start of the allocation procedure, all slots on the feeder are empty, which means
that no component tape has been assigned to any of the slots. At this stage, all the slots
are also unblocked. Blocking is done to reserve a slot for critical location, such as a
location that can be reached by only a particular slot.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 479 — #5

Sequencing Feeder for Component Tape Assembly 479

TABLE 16.1
x and y Locations and Component Types on
Each Board

Board 1 Board 2

Location x y Type x y Type

1 5 40 1 10 40 3
2 25 35 3 25 40 1
3 20 30 2 10 35 2
4 10 20 1 15 30 2
5 35 20 1 20 30 3
6 15 15 2 5 25 2
7 5 10 1 35 25 1
8 10 5 1 15 20 2
9 20 5 3 30 15 1

10 30 5 1 5 10 1

TABLE 16.2
Slots’ Home Positions and Left and Right Reach
Coordinates

Slot
Number L-Reach R-reach Home x Home y

1 0 15 7.5 0
2 5 20 12.5 0
3 10 25 17.5 0
4 15 30 22.5 0
5 20 35 27.5 0
6 25 40 32.5 0

Step 1: Prepare a table that shows the maximum number of locations of each com-
ponent type (all boards included) that every slot can reach. Table 16.3 is the result for
the data.

Start the analysis in step 2 with the first component location on the first board.

Step 2: For each location on the board, check if any of the slots presently carry a
component type that is the same as required in this location (in the first case, there is
none) and if the associated slot can reach the location.

a. If the conditions in step 2 are satisfied, it means the present location can be
assembled by the existing slot/component allocation. Make the assignment
to the existing slot that has the maximum frequency for the associated
component type. Go to step 3.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 480 — #6

480 Production Planning and Industrial Scheduling

Scale 5 10 15 20 25 30 35 40

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6
Location

Board 1
1

• 1

2 • 3

3 • 2

4 • 1

5 • 1

6 • 2

7 • 1

8 • 1

9 • 3

10 • 1

Board 2
1

• 3

2 • 1

3 • 2

4 • 2

5 • 3

6 • 2

7 • 1

8 • 2

9 • 1

10 • 1

2

1

3

4

5

6

FIGURE 16.3 Locations on the boards with respect to slot reach and component assignment
on the slots.

For the first location, all the slots are unassigned. Slot numbers 1 and 2
can reach component location 1 and can cover 5 and 5 locations, respect-
ively, of component type 1 (refer Tables 16.1, 16.2, and 16.3). Therefore,
assign component type 1 to slot 1 (shown in Table 16.4). In case of a tie, the
heuristic chooses the first of these slots. The column under final assignment
indicates the component types that are allocated to each slot. For example,
the first row has an arrangement of 100,000 (0 is left blank in Table 16.4 for
ease of reading). This means amongst all slots from 1 to 6, only slot 1 has
component 1 assigned and others are blank or have no component assigned.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 481 — #7

Sequencing Feeder for Component Tape Assembly 481

TABLE 16.3
Number of Locations that a Slot Can
Reach

Slots

1 2 3 4 5 6
Component
Type

1 5 5 3 3 5 5
2 5 6 5 4 1 0
3 1 3 4 3 3 1

TABLE 16.4
Slot Allocations

Assignments Initial Assignment of
Component to Slots Component Type to a Slot

Board Location Type Old New Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

1 1 1 1 1
2 3 3 3
3 2 4 2
4 1 1 1 1
5 1 5
6 2 4 2
7 1 1 1
8 1 1 1
9 3 3 3

10 5 5 1

2 1 3 3 3
2 1 5 1
3 2 2 2
4 2 2 2
5 3 3 3
6 2 2 2
7 1 5 1
8 2 2 2
9 1 5 1

10 1 1 1

b. If similar components are on the feeder but associated slots cannot reach
the current location, then search among the empty slots, and allocate the
component type associated with the location to the slot that can reach a
maximum number of locations of the same component type.

For example, although location 5 on board 1 needs component type 1,
it cannot be reached by slot 1 (the only slot with type 1 assigned so far).

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 482 — #8

482 Production Planning and Industrial Scheduling

Thus, assign a new slot. Slot numbers 5 and 6 can reach component loc-
ation 5 and can cover 5 and 5 component locations of component type 1,
respectively. Thus, assign component type 1 to slot 5, since slot 5 is the
first of the slots.

c. If the component type is not on the feeder, select the slot that can reach the
maximum number of locations of the same component type. For example,
location 2 on board 1 needs component type 3. Component type 3 is not
currently on the feeder. Slots 1, 2, 3, and 4 can reach location 2 and can
cover 1, 3, 4, and three locations of type 3, respectively. Thus, assign
location 2 to slot 3 by assigning component type 3 to slot 3.

d. If none of the empty slots can reach component location and all slots that
are filled with some other component type, this is a critical location. Then,
from the slots that have already been allocated but unblocked, select the
slot that is within reach of the component location under consideration
and has the highest density for the component type under consideration
(Table 16.3) and make the assignment. Block this slot. Reset all the
unblocked slots to empty slots and go to step 2.

Step 3: Check if all locations under consideration have been examined. If yes, go to
the next board; start with component location 1 and return to step 2. If not, go to the
next component location on the present board and repeat step 2.

Step 4: Check if all locations on all boards have been checked and found feasible.
If yes, then a feasible solution has been reached. If not, then the problem is infeasible
with the present number of slots. An alternative is to make the problem feasible
by reducing the variety of components in the batch (by perhaps choosing a different
board combination). If it is not possible, then the remaining components from the
batch would need additional setup. Applying steps 1 through 4 results in the solution
displayed in the first part of the Table 16.4 for board 1.

In a similar manner, work out initial feasible assignments for other boards by
repeating steps 2–4.

The results for two boards are shown in Table 16.4.
The final component assignment on the feeder can also be tabulated as shown in

Table 16.5. This is the basic solution. A zero indicates that no component is assigned
to the associated slot.

TABLE 16.5
A Feasible Solution

Slot 1 2 3 4 5 6
Component type 1 2 3 2 1 0
Board 1: accessible locations 1, 4, 7, 8 2, 9 3, 6 5, 10
Board 2: accessible locations 10 3, 4, 6, 8 1, 5 2, 7, 9

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 483 — #9

Sequencing Feeder for Component Tape Assembly 483

16.2.2 DEVELOPING THE INITIAL ASSIGNMENT

This phase is divided into three parts: calculations of initial priority, location
assignment, and smoothing of the assignments.

16.2.2.1 Calculation of Priorities for Locations

The priorities are calculated in order to give preference to the critical locations, that
is, those locations that are accessible by only one slot.

Step 1: Start with the first location on the first board.

Step 2: Calculate the priority level of the location as the number of slots allocated with
a similar component type that can reach the present location. For example, component
location 1 on board 1 has a priority of 1. This means that only one slot can reach that
location.

Step 3: Go to the next location and repeat step 2 until priorities for all locations
on the present board are determined. Table 16.6 shows the priorities (P) for all the
locations (L) on the boards.

Step 4: Repeat step 2 and 3 until all the boards in the batch have been analyzed.

16.2.2.2 Location Assignments

In this phase, the locations on the board are assigned to the slots. It may take more than
one stroke to place a component in all locations. We start with the stroke value of 1.
For a new board, all the locations are initially unassigned. Set the location priority
to 1 (the location with priority 1 must be assigned to the first accessible slot, while
a location with higher priority can be accessed by more than one slot, and is hence
checked later).

Step 1: Start with the first allocated slot.

Step 2: Check if the component assigned to the slot is required on the board. If yes,
proceed to step 3; if not, select the next assigned slot and go back to the top of step 2.
If all the slots are examined, select a new board and go to step 1.

Step 3: List all the locations with present priority level that can be reached by the slot
and require the same component as is in the slot. If there are such locations, go to
step 4. If there are no locations with present priority level, but there is a location(s) that
requires the component but has a higher priority level(s), then increase the priority

TABLE 16.6
Priority Levels

Location 1 2 3 4 5 6 7 8 9 10
Board 1: AI 1 1 2 1 2 2 1 1 1 1
Board 2: AI 1 2 2 2 1 2 2 2 2 2

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 484 — #10

484 Production Planning and Industrial Scheduling

level by 1 and go back to the top of step 3. If there are no locations requiring the
component, discontinue examining the slot, go to next slot in the sequence and go back
to step 2. If all the slots are examined, select a new board and go to step 1. If all the
boards are examined go to the step called smoothing the assignment.

Step 4: The location assignment is made on the basis of the shortest distance between
location and the present position of the slot. The distance is calculated using the
distance formula (even though its not shown in our tables, the y coordinates of the
positions are known).

d =
√

(x − x1)2 + (y − y1)2

Calculate the distance(s) between location(s) listed in step 3 and the present position
of the slot. Assign location to the slot based on shortest distance. Go to the next slot
and back to step 2. If all the slots are examined and the board still has unassigned
locations, increase stroke value by 1 and go to step 1.

In our example, start with the first board. The board requires components 1, 2,
and 3 only.

Start with the first slot that has been allocated a component type required for the
board. The initial value of the stroke is 1, and the location priority is 1. Slot 1 has
component 1 as required for board 1. There are no locations with component type 1
and priority 1 within reach of slot 1.

Increment the priority level by one to two. There are four locations of priority 2
and component type 1 that can be covered by slot 1. Using equation 1, calculate the
distances of locations from the home position of slot 1. The values are displayed in
the Table 16.7, and the calculations are displayed in Table 16.7a.

Select the location nearest to the slot’s present position. In our example, the
locations 1, 4, 7, and 8 are at distances of 40.08, 20.16, 10.31, and 5.59, respectively.
Thus, assign component location 8 to slot 1 on stroke 1.

Since the dispenser moves as one unit to any location, the slots are all at the
new position, and the next location will be accessed from this position. Hence, it is
necessary to calculate the new relative positions for the next slot (calculate positions
for the next slot that has been assigned a component type, and repeat steps 6 and 7).
In the example problem, the next slot after slot 1, which carries a component type
that is required by board 1, is slot 2. The new position for slot 2 is the location of
slot 1 + the distance between slot 1 and 2, that is, x coordinate of component location
8 + 5 (distance between neighboring heads). Thus, the new x position of slot 2 is
10 + 5 = 15. y coordinate is the same as the y coordinate of the location 8. Slot 2
can reach locations 3 and 6 (locations with priority 2) at a distances of 25.49 and 10,
respectively. Assign the board location 6 to slot 2.

Repeating the procedure for all boards results in Table 16.8, which shows the initial
assignment with the basic feasible solution. Row 1 indicates the slots on the dispenser.
Row 2 indicates the component types that are assigned to the corresponding slots.
Below row 2 are the two matrices corresponding to the two boards. The elements of
the matrices are the location numbers (from Table 16.1).

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 485 — #11

Sequencing Feeder for Component Tape Assembly 485

TABLE 16.7
Location Assignment

Board Stroke Slot
Component

Type
Component
Location

Distance
from Slot Priority

Location
Allotted

1 1 1 1 1 40.08 2
4 20.16 2
7 10.31 2
8 5.59 2 8

2 2 3 25.49 2
6 10 2 6

3 3 2 20.62 1
9

4 2 3 2
5 1 5 14.14 2 5

10 25.50 2

2 1 1 1 40.08 2
4 20.16 2
7 10.31 2 7

3 3 2 2
5 1 10 10

3 1 1 1 40.08 2
4 20.16 2 4

4 1 1 1 1

2 1 1 1 10 10
2 2 3 25.49 2

4 20 2
6 18.03 2
8 10 2 8

3 3 1 22.36 1
5 10 1 5

4 2 4 4
5 1 2 11.18 2 2

7 15.81 2
9 18.02 2

2 2 2 3 35.09 2
6 26.10 2 6

3 3 1 1
5 1 7 18.02 2 7

9 26.93 2

3 2 2 3 3
5 1 9 9

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 486 — #12

486 Production Planning and Industrial Scheduling

TABLE 16.7a
Location Distance Calculation

Present Component
Location Location

Board Slot x1 y1 Component x2 y2
d =

√
(x1− x2)2

+ (y1− y2)2

1 1 7.5 0 1 5 40 40.08
4 10 20 20.16
7 5 10 10.31
8 10 5 5.59

2 15 5 3 20 30 25.49
6 15 15 10

3 20 15 2 25 35 20.62
9 20 5 10

5 25 30 5 35 20 14.14
10 30 5 25.5

1 7.5 0 1 5 40 40.08
4 10 20 20.16
7 5 10 10.31

2 2 15 10 3 10 35 25.49
4 15 30 20
6 5 25 18.03
8 15 20 10

3 20 20 1 10 40 22.36
5 20 30 10

5 20 30 2 25 40 11.18
7 35 25 15.81
9 30 15 18.02

2 12.5 0 3 10 35 35.09
6 5 25 26.10

5 20 40 7 35 25 18.02
9 30 15 26.93

TABLE 16.8
Initial Location Assignments to Slots for Each Stroke

Slot 1 2 3 4 5 6
Component 1 2 3 2 1 —

Board Stroke
1 1 8 6 9 3 5 —

2 7 — 2 — 10 —
3 4 — — — — —
4 1 — — — — —

2 1 10 8 5 4 2 —
2 — 6 1 — 7 —
3 — 3 — — 9 —

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 487 — #13

Sequencing Feeder for Component Tape Assembly 487

16.2.3 SMOOTHING THE ASSIGNMENT

In this stage, if possible, the locations are distributed evenly among the slots carrying
the same component type. This may reduce the number of strokes necessary, using
the present slot allocation.

Step 1: Start with board 1.

Step 2: Note the component types on the board and arrange them in ascending order.
Start with the first component type on the present board. Board 1 has component
types 1, 2, and 3. So, start with component type 1.

Step 3: Find a, the number of component locations of the above component type.
In this case, there are six locations on board 1 requiring component type 1. This
number may be determined by counting all the locations in board 1 assigned to the
slots 1 and 5.

Step 4: Find b, the number of slots that carry the same component type.
The number of slots having component type 1 is 2 (i.e., slots 1 and 5).

Step 5: Divide a by b and round to the next highest integer. This gives the theor-
etical number of strokes required by the component type, based on the present slot
assignments.

In our case, the number of strokes required for component type 1 on board 1 is
6/2 = 3.

Step 6: Check if the number of strokes for all slots with the component type under
consideration is less than or equal to the theoretical number from step 5.

a. If yes, then consider the next component type and go on to step 7.
b. If not, then arrange the slots of the component type under consideration

in the ascending of number of locations assigned. The objective is to shift
locations from slots having more strokes than the theoretical value to slots
having less strokes than the theoretical value. For example, for component
type 2 (on board 2), the theoretical number of strokes is 2, and slots 2 and 4
have three and one strokes assigned, respectively. Thus, smoothing may
be possible. Arranging the slots in the ascending order of the number of
locations assigned results in the sequence 4, 2.

i. Start with slot with minimum location assignment (Mincl), This is the
slot to which other locations may be transferred. In this case, start with
slot 4.

ii. Select the slot having maximum component locations (Maxcl), This is
the slot from which component locations are to be transferred. In this
case, slot 2.

iii. Check if slot Mincl can take up any component locations from Maxcl.
If possible, transfer components till the number of component loca-
tions on Mincl reach the theoretical stroke value or no further transfers
are possible. In our example, component location 8 is transferred from
slot 2 to slot 4.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 488 — #14

488 Production Planning and Industrial Scheduling

TABLE 16.9
Smoothing Technique for Board 1

Original Solution Smooth Solution

Board
Component

Type Slot(s)
Stroke
Assigned

Reallocate
to Slot

Reallocate
from Slot

Component
Location

1 1 1 4 Not required
5 2

2 2 1
4 1

3 3 2

2 1 1 1
5 3

2 2 3 4 2 8
4 1

3 3 2

iv. Select the slot with the next highest number of strokes (continuing
until a level above the present Mincl is reached), as new Maxcl. Repeat
step 3.

v. Select the slot having next lowest number of strokes as the new Mincl,
and repeat steps 2, 3, and 4. Continue until all the slots have been
considered.

Step 7: Repeat steps 3–6 until all component types have been analyzed. The results
of steps 3–6 are shown in Table 16.9.

Step 8: Repeat steps 3–7 for all boards.

The solution at the end of this section is presented in Table 16.10. The table shows
the location assignments with the feasible solution. Row 1 indicates the slots on the
dispenser. Row 2 indicates the component types that are assigned to the corresponding
slots. Below row 2 are the two matrices corresponding to the two boards. The elements
of the matrices are the location numbers from Table 16.1.

16.2.4 IMPROVING THE ASSIGNMENT

In this section, the empty slots are utilized to optimize the solution obtained from
the previous section, that is, the smooth solution. The slots are dedicated to those
component types that result in the maximum stroke reduction. This is achieved in
two stages.

In the first stage, a check is made to determine the number of strokes that may be
reduced from each board, along with the number of slots that must be dedicated to
achieve this reduction. In the second stage, a check is made to see if it is physically
possible to implement the improvement suggested in the first stage. The two stages

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 489 — #15

Sequencing Feeder for Component Tape Assembly 489

TABLE 16.10
Smooth Location Assignment to Slots for Each Stroke

Slot 1 2 3 4 5 6
Component 1 2 3 2 1

Board Stroke
1 1 8 6 9 3 5 —

2 7 — 2 — 10 —
3 4 — — — — —
4 1 — — — — —

2 1 10 6 5 4 2 —
2 — 3 1 8 7 —
3 — — — 9 —

are repeated until no more empty slots are available or no further improvements can
be made.

Step 1: Start with the first board.

Step 2
Calculate (B), the number of empty slots available. If B = 0, go to step 4.
Determine the distinct component (DC) types that appear in the last stroke (LS)

of the board.
For example, only component type 1 on board 1 is in the last stroke, that is,

stroke 4 (LS = 4). So DC = {1}.
Keep decreasing the number of strokes by one until there exist a component type

that does not belong to DC, in the last stroke for the board. This is defined as the next
level of strokes (NS). For example, on board 1, component types 3 and 5 are present
at stroke 2, and do not belong to set DC. Therefore, the NS = 2.

a. If the number of distinct components in the last stroke LS is more than the
number of empty slots available, no improvement is possible on this board.
Theoretically, there can be no improvement unless we allocate at least one
slot more for each distinct element of DC. Go to step 4.

b. If the number of elements in DC is less than or equal to the number of
empty slots, then there is a possibility of improvement.

Step 3

1. Start with the first component of set DC. Assume an allocation of an
additional head for this component type. Let Hi represent the number of
additional slots for component type i, in set DC. In the present example,
component 1 will get an additional slot hence, H1 = 1 for board 1.

2. Calculate t, the total number of locations assigned to all the slots carrying
this component type, and which the number of strokes required is presently

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 490 — #16

490 Production Planning and Industrial Scheduling

greater than NS. In our example, NS is 2 (step 2. iii) and slot 1 has four
locations assigned and, therefore, require four strokes. Hence, t = 4.

3. Calculate d, the total number of slots that meet the criteria in [2]. So, d = 1
(slot 1).

4. Divide t by (d + Hi) (rounding off to the next higher integer) to find the
new level of strokes for the component type i, Ti. In our case, the new level
of strokes T1 for the component type 1 is 2 (i.e., 4/2 = 2; round off to the
next higher integer if required).

5. Repeat 1–4 for all components in DC.
6. Select the maximum value of Ti among all the elements in DC, and call it

MTi. There is only one value of Ti, which is 2, and hence MT1 = 2.
• If MTi is equal to the LS:

a. If additional empty slots are available, that is, B > 0, then tentatively
allocate one more slot to the component type associated with Mti,
that is, Hi = Hi + 1, recalculate the number of empty slots, and
repeat steps 2 through 6.

b. If no additional slots are available, then no further improvement is
possible on this board. Go to step 4.

• If MTi is less than LS:
a. Also, if MTi is less than or equal to NS, then the possible

improvement is the difference between LS and NS. Go to step 4.
In our example, MT1 is 2 and NS is 2, and since they are equal,

the possible improvement is LS − NS = 4 − 2 = 2 strokes. The
calculations are shown in the following. The values of t and d are
indicated and also MTi, which is the number of strokes for the com-
ponent type indicated, after the additional slots have been tentatively
added.

Board 1. Comp type 1, t = 4, d = 1, additional slots
required = 1, Ti = 2. MTi = 2.

Repeating the steps 2 through 6, no further improvement is
possible at this stage for board 1.

b. If MTi is greater than NS, then the improvement is the difference
between the LS and the MTi. Repeat steps 2 through 6 by tentat-
ively adding one additional slot for the component type associated
with MTi.

Step 4: Repeat steps 2 and 3 for all the boards.
Steps are applied to the boards. For board 2, MTi is 2 and LS is 3. Therefore, the

number of strokes that can possibly be reduced is 1 (3 − 2). Calculations are shown
in Table 16.11 for both boards.

Step 5: By now, all the boards have been examined for possible improvement.
Determine an index as follows:

Improvement per slot (IPS) per board = improvement possible on the board/total
number of additional slots dedicated to the board. Therefore, the IPS for board j

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 491 — #17

Sequencing Feeder for Component Tape Assembly 491

TABLE 16.11
Application of Steps 1 and 2

Comp. Type t d

Additional
Slots

Required Ti MTi

Board 1 1 4 1 1 2 2
Board 2 1 3 1 1 2 2

TABLE 16.12
Establishment of Board Priorities

Board
Distinct Component(s)

Type in the Last Stroke, DC Priority

1 1 1
2 1 1

by adding k slots is defined as impro[j][k] = x, where x is the number of strokes
saved. In the example, for board 1, the improvement possible by allocating one
additional slot is 1. The following IPS values are obtained for all the boards.

impro[1][1] = 2/1 = 2.

impro[2][1] = 1/1 = 1.

Step 6: Calculate the priority for each board as the number of distinct components
that are common between the DC sets of all the boards. In this case, the DC sets and
priority rating of all boards are displayed in Table 16.12.

Board 1 has component type 1 in the final stroke, which also appears in the final
stroke of board 2; therefore, it has a priority level of 1. Board 2 has component type 1
in common with board; therefore, it has a priority of 1.

Step 7
Arrange the IPS in the decreasing order.

1. If two boards have the same IPS, then:
(i) If the requirement on the additional slots is the same, preference is

given to the higher priority level. If there is a tie at the priority level
also, then select the first board from the list.

(ii) If the additional slots requirement is different, then give preference
to the board with fewer additional slots requirement.

Step 8: Start with the highest level of improvement possible (IPS). In this case, board 1
has the highest IPS of 2. The associated additional slot requirement is 1, and priority
level is also 1. Therefore, we start with the first board, board 1.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 492 — #18

492 Production Planning and Industrial Scheduling

Step 9

1. Begin with the first component type in Hi for the board associated with
the highest value of IPS. In our example, it is component type 1 on
board 1.

2. Considering only the locations that have this component type on those slots
that are present in the last stroke (LS), find an empty slot that can reach the
maximum number of these locations.
a. If it is not possible to find a slot that can reach the component locations

under consideration, then improvement is not possible on this board.
Go to step 2 of the improvement stage. In this example, the only location
(location 1) in the last stroke cannot be reached by the only empty slot
(slot 6). Therefore, go to step 2 of the improvement stage.

b. If it is possible to do so, then improvement is possible. In the example,
for board 2, empty slot 6 can reach a total of three locations of
component type 1. Therefore, select slot 6 for allocation.

3. Check if the number of additional slots allocated equals the number of
additional slots required (Hi)
a. If this matches, then allocate this component type on the selected slot.

As H1 for board 1 is 2 and 1 slot has already been allocated, no further
slots are required.

b. If it does not match, then repeat step 2, excluding the slots selected up
till now.

4. Take the next distinct component type from DC and repeat substeps 2
and 3 in step 9. In the example, for both boards 1 and 2, there is only
one component type present in the last stroke. The final allocation at this
stage is

Board 1, number of additional slots selected = 0.

Board 2, number of additional slots selected = 1, which is slot 6.

Step 10: At this stage, although the additional slots have been assigned for alloca-
tion, it is not known whether it will actually result in the savings predicted. This is
because, the additional slots allocated may not be able to place enough locations of the
component type to result in the stroke reduction. Therefore, reassign only compon-
ent locations for the board under consideration using the assignment and smoothing
routine, while retaining the original component-slot allocation with the addition of
new slots as determined in the previous steps for the selected component assignments.
Check if the total number of strokes reduces. In our example for board 2, one addi-
tional slot has been assigned, which is slot 6 for component type 1. The new solution
is displayed in Table 16.13.

16.2.5 CHECK FOR IMPROVEMENT

1. If there is no reduction in the total number of strokes, then improvement
is not possible.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 493 — #19

Sequencing Feeder for Component Tape Assembly 493

TABLE 16.13
Improved Solution to Board 1

Slots 1 2 3 4 5 6
Component 1 2 3 2 1 1
Stroke 1 10 6 5 4 2 7
Stroke 2 — 3 1 8 9 —

2. If there is a reduction in the total number of strokes, then compare the reduc-
tion in the number of strokes with the savings predicted in the improvement
stage.
a. If they are equal, make the solution permanent. In the example, the

new assignment for board 2 required only 2 strokes, and the previous
assignment required 3 strokes, resulting in a saving of 1 stroke. Also,
this equals the savings predicted, so make the solution permanent.

b. If they are not equal, then check if the saving is higher than the next
value of IPS calculated in step 7, and if so, make the present solution
permanent. For example if the reassignment results in the saving of
2 strokes when the IPS value predicted a saving of 4 strokes. So, con-
dition a is not satisfied, and we go to condition b. Now, if the next value
of IPS is 1 stroke, then it would be better to maintain the reassignment,
as savings of 2 strokes is higher than the next level of IPS which is
1 stroke.

c. If (b) is not valid, then discard the allocation of the additional slots and
repeat step 9 for the next level of IPS.

As all the required number of slots have been assigned, a solution may be possible.

Step 1: In this step, the values of IPS are adjusted since some component types may
have been allocated in the previous step. If an assignment at step 10 has been made
permanent, then from the remaining values of IPS

1. Choose the next level of IPS, which is the next board to be selected for
improvement.

2. Search for the same component types as those allocated in step 10. If a same
component type is found, then compare the number of additional slots that
would be required for the present value of IPS (determined in step with the
slots allocated for the associated component type in step 10.
a. If the additional slots required are less than or equal to the slots assigned

for the component type in step 10, then discard this particular compon-
ent type from further consideration for IPS and reduce the additional
slot requirement proportionally. This would mean adjusting the k value
in impro[j][k].

b. If not, then reduce the additional slot requirement for the component
type in IPS by the number of slots allocated.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 494 — #20

494 Production Planning and Industrial Scheduling

TABLE 16.14
The Final Solution

Slot 1 2 3 4 5 6
Component 1 2 3 2 1 1

Board Stroke
1 1 8 3 9 6 10 —

2 7 — 2 — 5 —
3 4 — — — — —
4 1 — — — — —

2 1 10 6 5 4 2 7
2 — 3 1 8 9 —

3. Repeat step 12.2, taking the next level of improvements IPS, till all levels
of improvement have been evaluated .

4. Also, delete those values of improvements from consideration that require
more number of slots than presently available.

Step 2: Repeat steps 9 and 10 and step 1 of the improvement routine till all levels of
improvements are evaluated.

In the example, only board 2 could have an improvement because the additional
slot could not reach any components for board 1, which would have resulted in
a reduction of the number of strokes.

Step 3
Check if the there are any empty slots available.

1. If yes, and if there was at least one new assignment made at step 10, then
go to step 1 (improvement routine). If there was no new assignment made,
then no further improvement is possible.

2. If no, then the assignment is over.

The final improved solution is shown in Table 16.14. The solution results in 6 strokes
as compared to 7 in the smoothing assignment of Table 16.10.

16.3 PROBLEMS

16.1 Solve the problem illustrated in this chapter if the component types are changed
as indicated:

Location 1 2 3 4 5 6 7 8 9 10
Board 1 2 3 2 3 1 2 2 1 3 1
Board 2 1 1 2 2 3 3 2 3 1 2

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 495 — #21

Sequencing Feeder for Component Tape Assembly 495

16.2 Using the method presented in the chapter, solve the sequencing problem with
the following data, assuming that a feeder having six slots is to be used.

Board 1 Board 2

Location x y Type x y Type

1 5 30 3 20 30 1
2 25 30 2 30 30 2
3 10 25 1 5 25 3
4 15 25 1 20 25 3
5 30 25 2 25 25 2
6 20 20 2 15 20 1
7 35 20 3 30 20 2
8 5 15 1 35 20 1
9 25 15 3 5 15 1

10 15 10 2 15 15 1
11 25 10 3 35 15 3
12 30 10 1 20 10 2

Slot
Number L-Reach R-reach Home x Home y

1 0 15 7.5 0
2 5 20 12.5 0
3 10 25 17.5 0
4 15 30 22.5 0
5 20 35 27.5 0
6 25 40 32.5 0

16.3 Solve Problem 16.2 if the component types are changed as follows:

Location 1 2 3 4 5 6 7 8 9 10 11 12
Board 1 3 1 2 2 1 3 1 1 3 2 2 3
Board 2 2 1 3 2 3 1 1 2 2 3 1 3

REFERENCES AND SUGGESTED READINGS

Ahmadi, J., S. Grotzinger, and D. Johnson. 1988. “Component Allocation and Partitioning for
a Dual Delivery Placement Machine” Operations Research, 36(2): 176–191.

Ball, M.O. and J.M. Magazine. 1988. “Sequencing of Insertions in Printed Circuit Assembly”
Operations Research, 36(2): 192–201.

Carmon, T., O.Z. Maimon, and M.E. Dar-el. 1989. “Group Setup for PCB Assembly”
International Journal of Production Research, 27(10): 1795–1810.

Dileep: “44206_c016” — 2007/9/17 — 15:15 — page 496 — #22

496 Production Planning and Industrial Scheduling

Cunningham, P. and J. Brown. 1986. “A Lisp Based Heuristic Scheduler for Automatic Inser-
tion in Electronics Assembly” International Journal of Production Research, 24(6):
1395–1408.

Fathi, Y. and J. Taheri. 1989. “A Mathematical Model for Loading the Sequencers in a
Printed Circuit Pack Manufacturing Environment” International Journal of Production
Research, 27(8): 1305–1316.

Maimon, O.Z. 1991. “Grouping Methods for PCB Assembly” International Journal of
Production Research, 29(7): 1379–1390.

Randhwa, U.S., D.E. McDowell, and S. Faruqui. 1985. “An Integer Programming Applica-
tion to Solve Sequencer Mix Problems in PCB Production” International Journal of
Production Research, 23(3): 543–552.

Sule, D.R. 1992. “A Heuristic Procedure for Component Scheduling in Printed Circuit Pack
Sequencer” International Journal of Production Research, 30(5): 111–118.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 497 — #1

17 Industrial Sequencing IV:
Scheduling in Flexible
Manufacturing

Two topics are discussed in this chapter. The first is, how to schedule groups for
processing in flexible flow shop manufacturing when there are group-dependent setup
times and the objective is to minimize the make span. The second topic discussed is
how to assign tasks to robots in automated robot assembly operation.

17.1 A CDS-BASED, TWO-PHASE ALGORITHM FOR
GROUP SCHEDULING WITH
GROUP-DEPENDENT SETUP TIMES

17.1.1 INTRODUCTION

A flow shop consists of n jobs to be processed on m machines where all jobs have the
same processing sequence on the machines. The processing time for the ith job on
the jth machine is given by Pij. The setup time for the ith job on the jth machine is
given by Sij.

Here, we deal with a generalized flow shop where the jobs are grouped into
g groups such that all jobs in the group have a common setup on each machine. Once
a group is setup on a machine, all jobs in the group must be processed before the next
group is set up. Jobs may or may not utilize all machines on the shop floor. However,
a job follows the same sequence as all other jobs on the machines that it does utilize.

A Campbell Dudek Smith (CDS)-based algorithm is presented to solve the group
scheduling problem in this generalized flow shop. The objective is the minimization
of makespan.

17.1.2 HEURISTIC

The procedure comprises of two phases and is outlined in the following:

17.1.2.1 Phase I: Preliminary Sequence

1. Apply the CDS algorithm to sequence jobs within each group independently
to obtain the internal job sequences. Setup times are disregarded in this step.
The shortest processing time (SPT) rule is used to break ties in generating
the sequences.

2. Select and designate the minimum makespan for each group as M ′g.

497

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 498 — #2

498 Production Planning and Industrial Scheduling

3. Plot the machine timelines for each group independently on a Gantt chart.
Machine timelines for each group start at time 0 in this step. Setup for each
machine is performed at time 0, and jobs are then loaded as per the selected
sequence.

4. From the machine timelines plotted in step 3, mark the total time required
by each group g on each machine j. Designate this as Tgj. Tgj includes the
idle times for the machines and the wait times between machines for the
jobs.

5. Apply the CDS algorithm to obtain the external group sequence. In this
step, the Pij values in the conventional CDS table are replaced by the
Tgj values.

6. Plot the overall machine timelines on a Gantt chart for each machine, using
external group sequence obtained in step 5. Designate this as the current
solution and designate this as the current makespan, Mc.

17.1.2.2 Phase II: Makespan Reduction by Minimizing
the Machine Idle Time

1. Identify the machine on which the makespan is realized. Designate this as
the critical machine.

2. Examine the sequence for idle time on the critical machine. Designate all
the jobs on the critical machine occurring after the first idle period on that
machine as the critical jobs.

3. For each job that has been sequenced after the first idle period on the critical
machine, trace back the job schedule on the preceding machines and mark
any slack, if available.

4. Continue tracing back the job schedule on preceding machines until you
reach a machine on which there is no slack available.

5. Identify bottleneck jobs on this machine. It may be possible to safely delay
these jobs and schedule them after the critical jobs to try and reduce the
makespan. If bottleneck jobs exist, go to step 6. If no such jobs are avail-
able, then the current makespan is the minimum makespan and the current
sequence is the optimum sequence for the problem.

6. This step requires a minimum number of passes that equals the number
of bottleneck jobs. In each pass, one of the bottleneck jobs is sequenced
after the critical jobs on the earliest machine that has zero slack. The total
makespan is calculated. If the makespan is less than Mc, the new sequence
is designated as the current solution and the value of Mc is updated to the
new value.

17.1.3 ILLUSTRATIVE EXAMPLE

Consider the following example with three groups and five machines, the data for
which is provided in Table 17.1.

Since it is a flow shop, all the jobs follow the machine routing: 1-2-3-4-5. Where
the jobs do not utilize all the machines, the rest of the routing is still preserved.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 499 — #3

Scheduling in Flexible Manufacturing 499

TABLE 17.1
Example Data: Time required by each Job on each Machine

Machine

Job j 1 2 3 4 5

Group I 1 0 0 0 24 0
2 51 70 64 69 0
3 0 88 9 0 0

Group II 1 66 42 0 92 33
2 1 98 95 0 0
3 66 94 98 0 0
4 0 10 0 45 42
5 0 0 0 88 32

Group III 1 0 86 52 35 76
2 0 0 0 43 0

Setup time per group Group I 2 20 2 14 27
Group II 45 74 82 80 55
Group III 18 23 38 59 91

TABLE 17.2
Data for Step 1: Group I Jobs without Setup Times

Machine

Job j 1 2 3 4 5

Group I 1 0 0 0 24 0
2 51 70 64 69 0
3 0 88 9 0 0

17.1.3.1 Phase I: Preliminary Sequence

The algorithm starts by considering each group separately and applying the CDS
algorithm to obtain the internal sequence for each group.

Consider group I separately as shown in Table 17.2. The processing times are
listed, and the setup times are ignored in this step. We apply the CDS algorithm to
sequence the jobs in this group.

The four subproblems generated in the CDS algorithm are listed in Table 17.3.
Here, the processing times are calculated as follows:

A1j = P1j B1j = P5j
A2j = P1j + P2j B2j = P5j + P4j
A3j = P1j + P2j + P3j B3j = P5j + P4j + P3j
A4j = P1j + P2j + P3j + P4j B4j = P5j + P4j + P3j + P2j

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 500 — #4

500 Production Planning and Industrial Scheduling

TABLE 17.3
CDS Subproblems for Group I

Machine

Job j A1j B1j A2j B2j A3j B3j A4j B4j

1 0 0 0 24 0 24 24 24
2 51 0 121 69 185 133 254 203
3 0 0 88 0 97 9 97 97

In subproblem 1, S1, with machines A1 and B1, both job 1 and 3 have the lowest
processing time on machine A1. To break the tie, we examine their processing times
on machine B1, and we shall use the SPT rule to break the tie. However, they also
have the same processing time on machine B1. The tie is then broken arbitrarily. Job 1
is placed in the first position, and job 3 is placed in the last position. Job 2 is placed
in the middle. The complete sequence generated is 1-2-3.

The sequences yielded by the other three sub-problems are as follows:

S2: 1-2-3
S3: 3-2-1
S4: 1-2-3

The makespan is calculated for each sequence, and the sequence with the min-
imum makespan is marked as selected. In this case, the selected sequence, with the
minimum makespan, is sequence 1-2-3. The corresponding minimum makespan is
designated as M′1, for group I, and is M′1 = 254.

We now plot the machine timelines for the selected sequence for group I. The
setup times are included in the timelines. Setup for each machine starts at time 0.
The Gantt chart is shown in Figure 17.1.

Similarly, the group internal sequences and machine timelines for groups II and III
are shown on Gantt charts in Figures 17.2 and 17.3, respectively.

Generation of external group sequence
From the Gantt charts, we note the total time required by each group, g, on each
machine, j, as Tgj. The Tgj values include the setups and the idle times on each
machine. These Tgj values are tabulated in Table 17.4.

We are now ready to obtain the external group sequence. The Tgj values listed
in Table 17.4 are treated as if they were processing times for individual jobs on the
machines. The CDS algorithm is applied directly to the values in Table 17.4. The
sequence with the minimum makespan is chosen as the external group sequence.

Table 17.5 lists the CDS subproblems and the sequences obtained for each
subproblem.

We see that all the subproblems yield the same sequence, 3-2-1. Hence, this
is accepted as the external group sequence, and the Gantt chart is plotted. This is
designated as the current solution and the makespan, Mc = 657. The Gantt chart
is shown in Figure 17.4.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 501 — #5

Scheduling in Flexible Manufacturing 501

Group I - Internal job sequence: J1-J2-J3

Machine 5

Machine 4

Machine 3

Machine 2

Machine 1
0

0

0

0

0

S1

S1 J2

123 187 211 220

J3

S1

20 53

S1 J2

2 53

123 211

J2 J3

14 38 187 256

J1 J2

FIGURE 17.1 Group I; internal job sequence and machine timelines.

0

0

0

0

0
45

S2 J1 J3 J2

S2

S2

82 271 369 464

J3

J2J3J1J4

74 84 111 153 177 271 369

J2

S2

S2

55 168 200 213 255 305 338

Machine 5

Machine 4

Machine 3

Machine 2

Machine 1

J5

J5

80 J68 213 305

J4 J1

J4

Group II - Internal job sequence: J5-J4-J1-J3-J2

J1

111 177 178

FIGURE 17.2 Group II; internal job sequence and machine timelines.

17.1.3.2 Phase II: Makespan Reduction by Minimizing
the Machine Idle Time

The machine on which the makespan is realized is machine 4. This is designated as
the critical machine. The first idle period on the machine occurs from time T = 102 to
T = 161. All the jobs that have been sequenced after this idle period are designated
as critical jobs. Thus, the critical jobs are G3/J1, G2/J5, G2/J4, G2/J1, G1/J1,
and G1/J2.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 502 — #6

502 Production Planning and Industrial Scheduling

Group III - Internal job sequence: J2-J1

Machine 5

Machine 4

Machine 3

Machine 2

Machine 1
0

0

0

0

0

S3

S3 J2

S3

38 109 161

J1

S3

23 109

J1

59 102 161 196

J1

J1

19691 272

FIGURE 17.3 Group III; internal job sequence and machine timelines.

TABLE 17.4
Processing Times for Groups on Machines

Machine

Group 1 2 3 4 5

I 53 211 220 256 0
II 178 369 464 305 338
III 0 109 161 196 272

TABLE 17.5
CDS Subproblems to Find External Group Sequence

CDS Equivalent Machine

Group A1 B1 A2 B2 A3 B3 A4 B4

I 53 0 264 256 484 476 740 687
II 178 338 547 643 1011 1107 1316 1476
III 0 272 109 468 270 629 466 738
Sequence 3-2-1 3-2-1 3-2-1 3-2-1

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 503 — #7

Scheduling in Flexible Manufacturing 503

We start with the first critical job in the sequence: G3/J1. This job is processed
from T = 161 to T = 196 on the critical machine. We now trace the schedule for
this job on the preceding machines. This is given by:

Machine 3: T = 109− 161
Machine 2: T = 23− 109

Since the period T = 0 to T = 23 on machine 2 is used for setup for group 3, it is
obvious that there is no slack available on this job and G3/J1 cannot be moved any
earlier on machine 4. Similarly, we find that G2/J5, G2/J4, G2/J1, and G1/J1 also
cannot be moved.

The precedence schedule for G1/J2 is as follows:

Machine 1: T = 180− 231
Machine 2: T = 447− 517
Machine 3: T = 524− 588
Machine 4: T = 588− 657

We see that slack is available between machines 1 and 2 and between machines 2
and 3. G1/J2 is delayed because of G2/J3 and G2/J2 on machine 3. These jobs are
in turn delayed because of G2/J1 on machines 1 and 2. If G2/J1 is sequenced after
G2/J3 and G2/J2, the overall makespan is not affected. The idle period from T = 539
to T = 588 accommodates the delay in G2/J1. Thus, G2/J1 is the bottleneck job.
Accordingly, we now change our internal sequence for group 2 from J5-J4-J1-J3-J2
to J5-J4-J3-J2-J1. The new Gantt chart is shown in Figure 17.5. The new makespan
is 650.

Once again, the machine on which the makespan is realized is machine 4. This
is designated as the critical machine. The first idle period on the machine occurs
from time T = 102 to T = 161. All the jobs that have been sequenced after this
idle period are designated as critical jobs. Thus, the critical jobs are G3/J1, G2/J5,
G2/J4, G2/J1, G1/J1, and G1/J2.

We repeat the procedure as before to identify any further potential reduction in
makespan. We see that we are constrained by the requirement that all jobs within a
group have a common setup. Thus, we are allowed to shuffle the sequence of jobs
within a group, but we may not have more than one setup for any given group. Further,
since we have already verified during the generation of the external sequence that the
group sequence 3-2-1 yields the minimum overall makespan, we cannot change the
external sequence at this stage.

Hence, the optimum makespan is 650, and the current solution is the optimum
solution.

17.1.4 RESULTS

This CDS-based algorithm is compared with a modified Nawaz Enscore and Ham
algorithm (NEH) and with a genetic algorithm (GA), all of which solve the same
problem.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 504 — #8

504 Production Planning and Industrial Scheduling

0

S
3

S
3

S
3

S
3

23 S
2

45
11

1
17

7
 1

78
 1

80
23

1

G
2/

J1
G

2/
J3

G
2/

J2
 S

1
G

1/
J2

10
9

18
3

 1
93

23
5

32
9

42
7

44
7

51
7

60
5

G
3/

J1
S

2
G

2/
J4

G
2/

J1
G

2/
J3

G
2/

J2
G

1/
J2

G
1/

J3
S

1

38
10

9
16

1
24

3
32

9
42

7
52

2
 5

24
58

8
60

5
 6

14

G
3/

J1
G

2/
J3

G
2/

J2
G

1/
J2

G
1/

J3
S

1
S

2

G
3/

J2

59
10

2
16

1
19

6
27

6
36

4
40

9
50

1
51

5
53

9
58

8
65

7

G
3/

J1
G

2/
J5

G
2/

J4
G

2/
J1

S
1

G
1/

J1
G

1/
J2

S
2

G
3/

J1
G

2/
J5

E
xt

er
na

l g
ro

up
 s

eq
ue

nc
e:

 G
3-

G
2-

G
1

G
2/

J4
G

2/
J1

M
ac

hi
ne

 5

M
ac

hi
ne

 4

M
ac

hi
ne

 3

M
ac

hi
ne

 2

M
ac

hi
ne

 1

S
2

91
19

6
27

2
32

7
36

4
39

6
 4

09
45

1
50

1
53

4

0 0 0 0

FI
G

U
R

E
17

.4
Pr

el
im

in
ar

y
se

qu
en

ce
.

0

S
3

S
3

S
3

S
3 23 S

2

45
11

1
11

2
17

8
10

0
23

1

G
2/

J3
G

2/
J2

G
2/

J1
S

1
G

1/
J2

10
9

18
3

 1
93

28
7

38
5

42
7

44
7

51
7

60
5

G
3/

J1
S

2
G

2/
J4

G
2/

J3
G

2/
J2

G
2/

J1
G

1/
J2

G
1/

J3
S

1

38
10

9
16

1
24

3
28

7
38

5
48

0
48

2
51

7
58

1
60

5
 6

14

G
3/

J1
G

2/
J3

G
2/

J2
51

G
1/

J2
G

1/
J3

S
2

G
3/

J2

59
10

2
16

1
19

6
27

6
36

4
40

9
42

7
51

9
53

3
55

7
58

1
65

0

G
3/

J1
G

2/
J5

G
2/

J4
G

2/
J1

S
1

G
1/

J1
G

1/
J2

S
2

G
3/

J1
G

2/
J5

G
ro

up
 II

 -
 In

te
rn

al
 s

eq
ue

nc
e:

 J
5

-
J4

 -
 J

3
-

J2
 -

 J
1

G
ro

up
 II

I -
 In

te
rn

al
 s

eq
ue

nc
e:

 J
2

-
J1

G
ro

up
 I

-
In

te
rn

al
 s

eq
ue

nc
e:

 J
1

-
J2

 -
 J

3

E
xt

er
na

l g
ro

up
 s

eq
ue

nc
e:

 G
3

-
G

2
-

G
1

G
2/

J4
G

2/
J1

M
ac

hi
ne

 5

M
ac

hi
ne

 4

M
ac

hi
ne

 3

M
ac

hi
ne

 2

M
ac

hi
ne

 1

S
2

91
19

6
27

2
32

7
36

4
36

9
 4

09
45

1
51

9
55

2

0 0 0 0

FI
G

U
R

E
17

.5
Fi

na
ls

eq
ue

nc
e.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 505 — #9

Scheduling in Flexible Manufacturing 505

TABLE 17.6
Results

Metric
CDS based
Algorithm

Genetic
Algorithm (GA)

Modified Nawaz,
Enscore, Ham (NEH)

Makespan 650 650 650

Buffer capacities
Machine 1 1 1
Machine 2 4 4
Machine 3 1 1
Machine 4 1 1

Machine idle time 507 507

The CDS algorithm yields the same makespan as NEH and GA for the problem
instance cited. The GA also measures the buffer capacity required and the job waiting
times for the optimum schedule. While the buffer capacity is a valid statistic, it is
suggested here that once the overall makespan has been minimized, the job waiting
time is only of secondary importance. Hence, the algorithm does not address this
statistic and it is not included in the comparison. It is suggested here that the machine
idle time is a better indicator of the efficiency of the algorithm since a smaller machine
idle time would indicate that the machine is freed earlier. The proposed algorithm
yields the same machine idle times as the GA. The proposed algorithm also yields
the same buffer capacities as the GA. The results are summarized in Table 17.6.

17.2 MULTIPLE ROBOT IN ASSEMBLY OPERATIONS

In number of automated cells, especially in electronic assemblies, two robots operate
simultaneously to assemble a unit. They work in the same work area on the product
while collecting parts from their respective part storage areas. The objective is to
assign tasks (parts) to each robot such that they do not collide with each other while
completing the assembly in the shortest possible time. Generally, tasks are independ-
ent of each other and can be performed in any sequence. The assembly is complete
when all the tasks are done (Figure 17.6).

There are two observations in the problem. Collision of robots can be avoided if
we prevent them from being in the same work area (or work envelope) at the same
time, and assembly operation would be completed earliest if the ideal time in the
work area is as small as possible.

We can divide the robot time needed for each component into two parts—one
outside the work area, and the second, inside the work area. The outside work area
time includes traveling from outside the work envelope to reach for the part, grabbing
the part, lifting it, and bringing it back to the work area envelope. The inside time
includes moving inside the work envelope to the work area from assembling the
part to the work piece, releasing the grip and clearing the work piece and traveling
back to the edge of the work envelope. So, for each part to be assembled on a product,

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 506 — #10

506 Production Planning and Industrial Scheduling

Outside
work
area Outside work

area
for robot 1

Robot 1
Robot 2

Inside
work
area

Outside work
area for
robot 1Outside

work
area

FIGURE 17.6 Two robots in work area.

the time required to perform all the tasks outside the work envelope are denoted as
an outside task time, and the sum of the times needed for all the tasks inside the work
envelope are called inside task time.

As there are multiple components to be assembled to make the final product, and
we want to minimize the idle time in the work area, one observation is obvious. The
outside time element for the next planned task should be less than or equal to the inside
time value for the present task that is in the work area. In such case, the alternate
robot will be waiting to enter the work area while the present robot is completing its
assignment, and the work area will have no idle time.

Robotic assembly operations are performed on continuous basis for a long period
of time. Once one product is made, the same cycle repeats itself, and therefore, we
can start planning with any task in the list and complete all other tasks. The next cycle
will repeat itself, starting with the initial task chosen.

The procedure for assigning the tasks between two robots is as follows.

1. List all tasks (elements) in the assembly, listing for each outside time and
inside time. The sum of outside and inside times is the assembly time or
the time for the robot to perform the task.

2. Select any task as the first task for the sequence to be formed. Place this task
at the beginning and again at the of the sequence that we are developing.

3. The subsequent assignments are done alternately in forward and backward
directions of the sequence.

In the forward direction, observe the inside time for the task that is presently in the
work area. Select the next task in the sequence such that its outside time is equal to
or as close as possible but less than the observed inside time. This guarantees no idle
time at the work center. Remember that the tasks are assigned to alternate robots and,

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 507 — #11

Scheduling in Flexible Manufacturing 507

hence, if outside time of the immediately preceding task is larger than the inside
time for the next task, then there is idle time in the work area, leading to a delay in
completion of the assembly. If no such element can be found, then select a component
that has minimum positive deviation (difference between outside time of the next task
and inside time of the present task), which is a part of the total idle time in the system.

In the backward direction, we reverse the procedure. Start with the same initial
task (it is the first task for the next assembly). Note the outside time of the present
task. Select the next task whose inside time is equal to or minimally larger than the
selected outside time. If no such task is found, then choose the one with least negative
difference.

When both sequences merge in the center, if we have even number of tasks in
the system then we will have two task left that are yet to be placed. We can develop
two independent competed sequences. First, when out of two remaining tasks, a task
is chosen following the forward sequence, and the last task is assigned and in the
second sequence, a task is chosen following backward sequence, and the remaining
is assigned. From these two sequences, choose the one that gives minimum work area
idle time, as the best sequence.

When total number of tasks are odd, there is only one task that can be placed in
the middle of the sequence, and two sequences are not formed.

Sometimes, the choice of the next task is not very clear. We may have to try
possible alternatives and select the one that crates a minimum idle time in the entire
sequence.

17.2.1 ILLUSTRATIVE EXAMPLE

Suppose we have nine tasks within the assembly and two robots performing the
operations.

Task 1 2 3 4 5 6 7 8 9
Inside time 2.9 3.6 6.3 2.8 1.3 4.2 5.0 4.0 4.2
Outside time 3.0 1.2 4.2 3.8 2.0 4.6 3.2 1.5 2.8

Choose a task, say task 1, and assign it to start and end of the sequence.

Start of Sequence End of Sequence

Task 1 1
Inside time 2.9 2.9
Outside time 3.0 3.0
−→ Forward direction ←− Backward direction

The next task selected in forward direction is task 9, with outside time of 2.8, just
smaller than the inside time of task 1. The task selected in the backward direction is
task 2 with inside time of 3.6, just larger than the outside time of task 1. The idle time

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 508 — #12

508 Production Planning and Industrial Scheduling

for task 9 is = max{0, (outside time for task 9 − inside time of task 1)} = 0. And,
for task 1 in backward direction, the idle time = max(0, 3− 3.9) = 0.

Start of Sequence End of Sequence

Task 1 9 2 1
Inside time 2.9 4.2 3.6 2.9
Outside time 3.0 2.8 1.2 3.0
Idle time 0 0
−→ Forward direction ←− Backward direction

Continuing in similar manner, the next task assignments are 3 and 5, respectively.

Start of Sequence End of Sequence

Task 1 9 3 5 2 1
Inside time 2.9 4.2 6.3 1.3 3.6 2.9
Outside time 3.0 2.8 4.2 2.0 1.2 3.0
Idle time 0 0 0 0
−→ Forward direction ←− Backward direction

Continuing in similar manner, the final sequence is as follows:

Start of Sequence End of Sequence

Task 1 9 3 6 7 8 4 5 2 1
Inside time 2.9 4.2 6.3 4.2 5.0 4.0 2.8 1.3 3.6 2.9
Outside time 3.0 2.8 4.2 4.6 3.2 1.5 3.8 2.0 1.2 3.0
Idle time 0 0 0 0 0 0 0 0 0
−→ Forward direction ←− Backward direction

Since this sequence has the zero total idle time, it is an optimum sequence.
At times, we may have to try a few alternatives if it is suspected that one may reduce
the idle time. For example, in choosing task 2 before task 1 in the backward direction,
with the outside time of 3.0, we had a choice to select task 2 with 3− 3.6 difference
between outside and inside times or task 4 with 2.8 units of inside time. We choose
task 3 since 3.6 > 3.0, which crates 0 idle time instead of task 4, which would have
crated 3.0−2.8 = 0.2 units of idle time, even though the difference between 3.8 and 3
is larger than 3 and 2.8. In some other problem, we may have to try both alternatives.

Jobs are assigned to robots from the sequence in alternate manner till the cycle
for each robot repeats. In our example, the assignments are as follows.

Robot I: 1 3 7 4 2 9 6 8 5 1 Repeat
Robot II: 9 6 8 5 1 3 7 4 2 9 Repeat

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 509 — #13

Scheduling in Flexible Manufacturing 509

17.2.2 MORE THAN TWO ROBOTS

In case we have n multiple robots to perform the assembly, the same procedure that
was illustrated for two robots can be applied with few variations. Apply only the
forward phase. For the next task, the outside task time, needs to be less than or equal
to sum of (n− 1) inside times of previously assigned sequential tasks.

For example, suppose we have three robots to perform an assembly. There are
many sequences can be made, but just to examine if the previous sequence is optimum,
check the following. The outside time for task 3, 4.2, should be greater than the
sum of inside times of previous two elements, namely 1 and 9. In this case, it is
2.9+ 4.2 > 4.2. A similar analysis shows the sequence is optimum.

Start of Sequence End of Sequence

Task 1 9 3 6 7 8 4 5 2 1
Inside time 2.9 4.2 6.3 4.2 5.0 4.0 2.8 1.3 3.6 2.9
Outside time 3.0 2.8 4.2 4.6 3.2 1.5 3.8 2.0 1.2 3.0
Idle time 0 0 0 0 0 0 0 0 0

The task assignments are as follows:

Robot I 1 6 4 1 Repeat the sequence
Robot II 9 7 5 9 Repeat the sequence
Robot III 3 8 2 3 Repeat the sequence

EXERCISE

17.1 For a three-machine, two-group problem, develop the optimum
schedule.

Machines

Job j 1 2 3

Group I 1 0 0 0
2 25 70 14
3 0 58 9

Group II 1 56 32 0
2 1 98 95
3 66 74 98
4 0 10 0
5 0 0 0

Setup time per group Group I 2 20 2
Group II 40 54 58

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 510 — #14

510 Production Planning and Industrial Scheduling

17.2 For five-machine, three-group problem, develop the optimum sequence.

Machine

Job j 1 2 3 4 5

Group I 1 0 0 0 24 0
2 50 70 64 69 0

Group II 1 66 42 0 92 33
2 1 98 95 0 0
3 66 94 98 0 0

Group III 1 0 86 52 35 76
2 0 0 0 43 0

Setup time per group Group I 2 20 2 14 27
Group II 45 74 82 80 55
Group III 18 23 38 59 91

17.3 Develop a robot assembly sequence with two robots, and calculate the
cycle time.

Task 1 2 3 4 5 6 7 8 9
Inside time 2.6 4.2 5.2 3.8 1.7 5.1 5.7 4.6 5.0
Outside time 4.1 1.9 5.1 4.4 2.7 5.3 4.0 2.2 2.3

17.4 Develop a robot assembly sequence with 3 robots. Also determine the
cycle time.

Task 1 2 3 4 5 6 7 8
Inside time 3.5 4.6 3.8 4.7 5.4 6.6 7.3 5.3
Outside time 4.2 3.1 5.6 4.5 5.8 4.2 3.8 6.3

Task 9 10 11 12 13 14 15
Inside time 7.2 3.8 6.3 2.4 1.5 3.6 7.6
Outside time 7.2 6.4 6.2 2.4 5.3 4.2 2.8

REFERENCES AND SUGGESTED READINGS

Nawaz, M., E.E. Enscore Jr., and I. Ham. 1983. “A Heuristic Algorithm for the m-Machine,
n-Job Flow-shop Sequencing Problem” Omega, 11(1): 91–95.

Schaller, J. 2000. “A Comparison of Heuristics for Family and Job Scheduling in a
Flow-Line Manufacturing Cell” International Journal of Production Research, 38(2):
287–308.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 511 — #15

Scheduling in Flexible Manufacturing 511

Skorin-Kapov, J. and A.J. Vakharia. 1993.“Scheduling a Flow-Line Manufacturing Cell:
A Tabu Search Approach” International Journal of Production Research, 31(7):
1721–1734.

Wemmerlov, U. and A.J. Vakharia. 1991. “Job and Family Scheduling of a Flow-Line
Manufacturing Cell: A Simulation Study” IIE Transactions, 23(4): 383–393.

Yang, D.-L. and M.-S. Chern. 2000 “Two-Machine Flowshop Group Scheduling Problem”
Computers and Operations Research, 27: 975–985.

Dileep: “44206_c017” — 2007/9/17 — 15:18 — page 512 — #16

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 513 — #1

Appendix: Computer
Program Description

This chapter gives a brief description about the computer programs that have been
distributed along with this book in the diskette. The title of the programs and their
executable file names are given, followed by the program description. All text in italics
are messages displayed by the programs and all text in bold are user inputs. All the
programs can be run by typing the executable file names followed by the ENTER key
at the DOS command prompt. For example, to run single-machine common due date
problem, type,

C:> COMMON.EXE

All the single-machine problem programs use the Menu format as shown in
Figure A.1. As soon as the single-machine programs are run, the title of the program
is displayed in the center, and the following message appears at the bottom,

Press Enter to continue...

The user should respond by pressing the ENTER key. Once the user responds by
pressing the ENTER key, the Menu as shown in Figure A.1 appears. Option 1 is used
to Input a new set of data, option 2, to Execute the program, option 3, to Load a
set of data from a file (already saved), option 4, to Save the set of data currently in
memory onto a file, option 5, for Data correction, that, is, for making changes to the
data currently in memory, and option 6, to Exit or quit the program. Choosing option
6 will take the user back to the DOS prompt.

The first nine programs deal with single-machine problems. The name of the
executable files are shown within parentheses.

Main Menu

1. Input new data
2. Execute program
3. Load data from a file
4. Save data to a file
5. Data correction routine
6. Exit

FIGURE A.1 Main Menu for all single-machine problem programs.

513

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 514 — #2

514 Production Planning and Industrial Scheduling

1. Single-machine problem with early and late penalties (SINGLE.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. For
example, if the user enters 3, the following screen appears.

JOB PROC. TIME DUE DATE LATE PENALTY EARLY PENALTY

1
2
3

Here, each row will contain information pertaining to a job. The numbers in
the left-most column represent the job numbers. Each job will require the following
information to be entered in separate columns. The time taken for the job to be
processed on the machine, its due date (date of shipment), the penalty incurred for
every time unit of delay, that is, the late penalty, and the penalty incurred for every
time unit on early completion (storage cost, etc.), that is, the early penalty.

The cursor is initially positioned at the column for the first job’s processing time.
The user should respond by entering the processing time followed by the Enter key.
If the value entered is a proper integer value, it will be accepted and the cursor will
move to the next column for this job, that is, the due date and so on. If the value
entered is not proper, the cursor stays at the same position for the user to reenter the
value. Once all the information for this job is accepted, the cursor moves to the next
row for the next job, and the same process is repeated.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers, and the process repeats
until the information for all the jobs are accepted. If the user responds with a “n” for
a no, the following message appears,

Enter the job #, p/d/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date), l (for late penalty), or e (for early
penalty). The cursor is then positioned at the corresponding row as given by the job
number and the corresponding column as given by either the processing time, due
date, and late or early penalty. The user is allowed to make changes here. Once the
change has been made, the user is again prompted whether the information entered
on this page is correct (y) or not (n). This process is repeated until the user responds
with a “y.”

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 515 — #3

Appendix: Computer Program Description 515

Once all the information is entered, the Main Menu is displayed again.

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <SINGLE.OUT>:

The user can respond by pressing the Enter key, in which case by default the output
of the program is stored in the file SINGLE.OUT. The user can also enter a different
file name for storing the output of the program. The program is then executed, the
output is stored in the corresponding file, and the main menu is displayed again. This
option works only when a set of data is already in memory.

c. When option 3 is chosen, that is, Load from file, the user is prompted to enter a
file name to load a set of data to the memory. Once the data is loaded, the main menu
is displayed again.

d. When option 4 is chosen, that is, Save to a file, the user is prompted to enter a
file name to save the set of data currently in memory. Once the data is saved, the
main menu is displayed again. This option works only when a set of data is already
in memory.

e. When option 5 is chosen, that is, Data correction, the next screen appears with the
information about the first nine jobs. This option works only when a set of data is
already in memory.

The user is prompted whether the information displayed on this page is correct
(y) or not (n). The user should respond with either “y” for yes or “n” for no. If the
users’ response is “y,” the next screen appears with the next set of nine job numbers,
and the process repeats until the information for all the jobs are verified. If the user
responds with an “n” for a no, the following message appears,

Enter the job #, p/d/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date), l (for late penalty), or e (for early
penalty). The cursor is positioned at the corresponding row as given by the job number
and the corresponding column as given by either the processing time, due date, late,
or early penalty. The user is allowed to make changes here. Once the change has
been made the user is again prompted whether the information entered on this page
is correct “y” or not “n.” This process is repeated until the user responds with a “y.”

Once all the information is entered, the main menu is displayed again.

f. When option 6 is chosen, that is, Exit, the execution of the program is stopped.

2. Common due date problem (COMMON.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears.

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 516 — #4

516 Production Planning and Industrial Scheduling

The following screen contains information pertaining to job number 1. Information
for job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE LATE PENALTY EARLY PENALTY

1 10 ? 3 1
2

Since an optimum due date is to be determined the column DUE DATE is skipped
and a question mark is placed as soon as the user enters the processing time. The
cursor then moves to the next column that is, LATE PENALTY, and so on.

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <COMMON.OUT>:

The user can respond by pressing the Enter key in which case by default the output
of the program is stored in the file COMMON.OUT. The user can also enter a different
file name for storing the output of the program. The program is then executed, and the
output stored in the corresponding file and the Main menu is displayed again. This
option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond with either “y” for yes or “n” for no. If the users’ response
is “y,” the next screen appears with the next set of nine job numbers and the process
repeats until the information for all the jobs are accepted. If the user responds with
an “n” for a no, the following message appears,

Enter the job #, p/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), l (for late penalty), or e (for early penalty). The
cursor is then positioned at the corresponding row as given by the job number and
the corresponding column. The user is allowed to make changes here. Once the
change has been made, the user is again prompted whether the information entered
on this page is correct (y) or not (n). This process is repeated until the user responds
with a “y.”

3. Early and late due dates problem (DUAL.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears.

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 517 — #5

Appendix: Computer Program Description 517

The following screen contains information pertaining to job number 1. Information
for job number 2 is yet to be fed.

JOB PROC. TIME EARLY DUE LATE DUE LATE PENALTY EARLY PENALTY

1 10 15 20 4 1
2

EARLY DUE is the early due date, that is, if a job is completed before this date
it will incur an early penalty and LATE DUE is the late due date, that is, if a job is
completed after this date then it will incur a late penalty.

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <DUAL.OUT>:

The user can respond by pressing the Enter key in which case by default the output
of the program is stored in the file DUAL.OUT. The user can also enter a different
file name for storing the output of the program. The program is then executed and the
output stored in the corresponding file and the Main menu is displayed again. This
option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers, and the process repeats
until the information for all the jobs are accepted. If the user responds with an “n” for
a no, the following message appears,

Enter the job #, p/d/u/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for early due date), u (for late due date), l (for late
penalty), or e (for early penalty). The cursor is then positioned at the corresponding
row as given by the job number and the corresponding column. The user is allowed
to make changes here. Once the change has been made the user is again prompted
whether the information entered on this page is correct “y” or not “n.” This process
is repeated until the user responds with a “y.”

4. Minimization of average delay (MTARDY.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears.

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 518 — #6

518 Production Planning and Industrial Scheduling

The following screen contains information pertaining to job number 1. Information
for job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE

1 10 15
2

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <MTARDY.OUT>:

The user can respond by pressing the Enter key, in which case by default the
output of the program is stored in the file MTARDY.OUT. The user can also enter a
different file name for storing the output of the program. The program is then executed
and the output stored in the corresponding file and the Main menu is displayed again.
This option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers and the process repeats
until the information for all the jobs are accepted. If the user responds with an “n” for
a no, the following message appears,

Enter the job #, p/d:

The user should respond by entering the job number followed by a comma and
either a p (for processing time) or a d (for due date). The cursor is then positioned
at the corresponding row as given by the job number and the corresponding column.
The user is allowed to make changes here. Once the change has been made, the user
is again prompted whether the information entered on this page is correct (y) or not
(n). This process is repeated until the user responds with a “y.”

5. Minimization of maximum delay (TMAX.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. The
following screen contains information pertaining to job number 1. Information for
job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE LATE PENALTY EARLY PENALTY

1 10 20 3 1
2

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 519 — #7

Appendix: Computer Program Description 519

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <TMAX.OUT>:

The user can respond by pressing the Enter key, in which case by default the output
of the program is stored in the file TMAX.OUT. The user can also enter a different
file name for storing the output of the program. The program is then executed and the
output stored in the corresponding file and the Main menu is displayed again. This
option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem, with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers, and the process repeats
until the information for all the jobs are accepted. If the user responds with an “n” for
a no, the following message appears,

Enter the job #, p/d/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date), l (for late penalty), and e (for early
penalty). The cursor is then positioned at the corresponding row as given by the job
number and the corresponding column. The user is allowed to make changes here.
Once the change has been made, the user is again prompted whether the information
entered on this page is correct (y) or not (n). This process is repeated until the user
responds with a “y.”

6. Minimize maximum number of tardy jobs (NTARDY.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. The
following screen contains information pertaining to job number 1. Information for
job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE

1 10 2
2

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <NTARDY.OUT>:

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 520 — #8

520 Production Planning and Industrial Scheduling

The user can respond by pressing the Enter key, in which case by default the
output of the program is stored in the file NTARDY.OUT. The user can also enter a
different file name for storing the output of the program. The program is then executed
and the output stored in the corresponding file and the Main menu is displayed again.
This option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers, and the process repeats
until the information for all the jobs are accepted. If the user responds with an “n” for
a no, the following message appears,

Enter the job #, p/d:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date). The cursor is then positioned at the
corresponding row as given by the job number and the corresponding column. The
user is allowed to make changes here. Once the change has been made, the user is
again prompted whether the information entered on this page is correct “y” or not
“n.” This process is repeated until the user responds with a “y.”

7. Slack Introduction (SLACK.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. The
following screen contains information pertaining to job number 1. Information for
job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE LATE PENALTY EARLY PENALTY

1 10 20 3 1
2

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <SLACK.OUT>:

The user can respond by pressing the Enter key, in which case by default the
output of the program is stored in the file SLACK.OUT. The user can also enter a
different file name for storing the output of the program. The program is then executed
and the output stored in the corresponding file and the Main menu is displayed again.
This option works only when a set of data is already in memory.

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 521 — #9

Appendix: Computer Program Description 521

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond with either “y” for yes or “n” for no. If the users’ response
is “y,” the next screen appears with the next set of nine job numbers, and the process
repeats until the information for all the jobs are accepted. If the user responds with
an “n” for a no, the following message appears,

Enter the job #, p/d/l/e:

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date), l (for late penalty), and e (for early
penalty). The cursor is then positioned at the corresponding row as given by the job
number and the corresponding column. The user is allowed to make changes here.
Once the change has been made, the user is again prompted whether the information
entered on this page is correct (y) or not (n). This process is repeated until the user
responds with a “y.”

8. Minimizing penalty for Jobs arriving at different times (ARRPENAL.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. The
following screen contains information pertaining to job number 1. Information for
job number 2 is yet to be fed.

JOB PROC. TIME ARR. TIME DUE DATE LATE PENALTY EARLY PENALTY

1 10 0 21 3 1
2

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <ARRPENAL.OUT>:

The user can respond by pressing the Enter key, in which case by default the
output of the program is stored in the file ARRPENAL.OUT. The user can also
enter a different file name for storing the output of the program. The program is
then executed and the output stored in the corresponding file and the main menu is
displayed again. This option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond with either “y” for yes or “n” for no. If the users’ response

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 522 — #10

522 Production Planning and Industrial Scheduling

is “y,” the next screen appears with the next set of nine job numbers, and the process
repeats until the information for all the jobs are accepted. If the user responds with
an “n” for a no, the following message appears,

Enter the job #, p/a/d/l/e:

The user should respond by entering the job number, followed by a comma and
either a p (for processing time), a (for arrival time), d (for due date), l (for late
penalty), and e (for early penalty). The cursor is then positioned at the corresponding
row as given by the job number and the corresponding column. The user is allowed
to make changes here. Once the change has been made, the user is again prompted
whether the information entered on this page is correct (y) or not (n). This process is
repeated until the user responds with a “y.”

9. Batch sequencing with sequence dependent setup times (BATCH.EXE)

a. When option 1 is chosen, that is, Input data, the user is prompted for the number
of jobs.

Enter the number of jobs:

The user should respond by entering the number of jobs to be processed on the
machine. Once the user responds with an integer value, the next screen appears. The
following screen contains information pertaining to job number 1. Information for
job number 2 is yet to be fed.

JOB PROC. TIME DUE DATE JOB TYPE SETUP TIME

1 10 20 1 3
2

b. When option 2 is chosen, that is, Execute program, the user is prompted with the
following message,

Give name of the output file <BATCH.OUT>:

The user can respond by pressing the Enter key, in which case by default the
output of the program is stored in the file BATCH.OUT. The user can also enter a
different file name for storing the output of the program. The program is then executed
and the output stored in the corresponding file, and the Main menu is displayed again.
This option works only when a set of data is already in memory.

Options c, d, e, and f remain the same as in single-machine problem with early
and late penalties.

If the number of jobs exceed 9 (maximum allowable rows in one screen), the user
is prompted whether the information entered on this page is correct (y) or not (n).
The user should respond either “y” for yes or “n” for no. If the users’ response is “y,”
the next screen appears with the next set of nine job numbers, and the process repeats
until the information for all the jobs are accepted. If the user responds with an “n” for
a no, the following message appears,

Enter the job #, p/d/j/s:

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 523 — #11

Appendix: Computer Program Description 523

The user should respond by entering the job number followed by a comma and
either a p (for processing time), d (for due date), j (for job type), and s (for setup
time). The cursor is then positioned at the corresponding row as given by the job
number and the corresponding column. The user is allowed to make changes here.
Once the change has been made, the user is again prompted whether the information
entered on this page is correct (y) or not (n). This process is repeated until the user
responds with a “y.”

The programs that are discussed from now on do not follow the same Menu format
as discussed before.

10. Minimum tool changeover problem (FLEX.EXE)
As soon as this program is run, the following message appears,

Do you want to give an input interactively or from a file?

1. Input Interactively from Keyboard
2. Input from a file

Enter your choice by typing ‘1’ or ‘2’:

If the user selects option ‘1’, the following messages appear. The user should
enter appropriate values for each as follows,

Enter the maximum magazine capacity: 2
Enter the total number of jobs: 2
Enter the total number of tools: 3
Enter the tools required for job 1: 1 2 3
Enter the tools required for job 2: 1 2
Is this OK? Y/N:

If the user selects “n” for no, then he/she is allowed to make changes to the data.
If the user selects “y” for yes the following message appears.

Do you want to save it in a file? y/n:

If the user chooses “y” then the following message appears:

Enter the filename with path for saving input: /scheduling/flex.inp

Finally the percent value is prompted. The user should enter a value between 0
and 1.

Enter the percent value: 0.5

If the user chooses option ‘2’ in the beginning, that is, input from a file, then the
following messages appear.

Enter the maximum magazine capacity: 3
Enter the input file name with path: /scheduling/flex.inp

The data is read from the file and displayed. The following message then appears.

Is this OK? Y/N:

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 524 — #12

524 Production Planning and Industrial Scheduling

If the user chooses “n” for no, then the user is allowed to make changes to the
data. The following messages then follow,

Do you want to save it in a file? y/n:

If the user chooses “y,” then the following message appears:

Enter the filename with path for saving input: /scheduling/flex.inp

Finally the percent value is prompted. The user should enter a value between
0 and 1.

Enter the percent value: 0.5

The output of this program is stored in the file specified by the user (/schedul-
ing/flex.inp), and the program is terminated.

11. Shifting Bottleneck Job Shop problem for Makespan Minimization
(MKBOTTLE.EXE)

As soon as this program is run, the following message appears,

Enter the number of jobs: 3
Enter the number of m/cs: 2
Enter the machine sequence for job 1
Example - Machine sequence 3,2,1 should be entered as 3-2-1
Enter here -> 1-2
Enter proc. time for job 1 on machine 1: 11
Enter proc. time for job 1 on machine 2: 6
Enter the machine sequence for job 2
Example - Machine sequence 3,2,1 should be entered as 3-2-1
Enter here -> 2-1
Enter proc. time for job 2 on machine 2: 7
Enter proc. time for job 2 on machine 1: 5
Enter the name of the output file: /scheduling/job_shop.out

The output of the program is stored in the file specified by the user (/schedul-
ing/job_shop.out), and the program is terminated.

12. Shifting Bottleneck Job Shop problem for Penalty Minimization
(MKBOTTLE.EXE)

As soon as this program is run, the following message appears,

Enter the number of jobs: 2
Enter the number of m/cs: 2
Enter Due date for job 1: 32
Enter Late penalty for job 1: 5
Enter Early penalty for job 1: 1
Enter the machine sequence for job 1
Example - Machine sequence 3,2,1 should be entered as 3-2-1
Enter here -> 1-2
Enter proc. time for job 1 on machine 1: 11
Enter proc. time for job 1 on machine 2: 6

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 525 — #13

Appendix: Computer Program Description 525

Enter Due date for job 2: 23
Enter Late penalty for job 2: 2
Enter Early penalty for job 2: 0
Enter the machine sequence for job 2
Example - Machine sequence 3,2,1 should be entered as 3-2-1
Enter here -> 2-1
Enter proc. time for job 2 on machine 2: 7
Enter proc. time for job 2 on machine 1: 5
Enter the name of the output file: /scheduling/job_shop.out

The output of the program is stored in the file specified by the user (/schedul-
ing/job_shop.out), and the program is terminated

13. Shifting Bottleneck for Optimizing makespan as well as penalty
(OPT_MIX.EXE)

This program has the same user interface as that of Shifting Bottleneck for penalty
minimization.

14. CEXSPT Job Shop problem with due date constraints (CEXSPT.EXE)
This program has the same user interface as that of Shifting Bottleneck for penalty

minimization. The only difference being that this method does not consider late and
early penalties for the jobs, and so these information are not asked for.

15. Open Shop problem for makespan minimization (OPENSHOP.EXE)
The following messages appear when this program is run.

Enter no. of jobs: 2
Enter no. of machines: 2
Do you want to make changes in the data you just entered (y/n):

If the user responds with a “y,” he/she is allowed to make changes to the number
of jobs are machine entered. If the user responds with an “n,” the following message
appears.

Enter the processing time for job 1 on machine 1: 3
Enter the processing time for job 1 on machine 2: 4
Enter the processing time for job 2 on machine 1: 6

Enter the processing time for job 2 on machine 2: 3
Do you want make changes in the processing times (y/n):

If the user responds with a “n,” then the following message appears.

Enter the name of the output file: /scheduling/openshop.out

The output of the program is stored in the user-specified file (/schedul-
ing/openshop.out)

If the user responds with a “y,” then the following message appears.

Enter the job# for which processing time has to be changed: 2
Enter the machine# for which processing time has to be changed: 1
Enter the new processing time for job 2 on machine 1: 5
Do you want to make any changes (y/n):

Dileep: “44206_c018” — 2007/8/27 — 20:16 — page 526 — #14

526 Production Planning and Industrial Scheduling

If the user responds with a “y,” the entire process is repeated again; otherwise,
the output file name is prompted as follows.

Enter the name of the output file: /scheduling/openshop.out

The output of the program is stored in the user-specified file (/scheduling/
openshop.out), and the program is terminated.

Additional programs under development are listed here.

1. Monroe’s algorithm
2. Parallel processing

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 527 — #1

Index

A
Activity, 281
Adaptive forecasting

moving average method, 50
weighted moving average, 50

Aggregate planning, 4, 57–68
capacity constraints, 63
changing demand in, 66
human factors in, 66
inventory balance, 63
overtime constraint, 63
problem description, 60–66
spreadsheet approach, 67–68
strategies, 58–60

chase strategy, 58
flexible strategy, 59
level strategy, 58

workforce, hiring and layoff constraints, 62
Algorithms, for schedules generation, 9
All unit quantity discount, 107–109
Alternate variables (AT), 22
Assemble-to-order (ATO) environment, 76
Assembly line balancing, 12, 296–301

cycle time less than task time, 301
largest candidate rule (LCR), 296–299
ranked positional weighted (RPW) method,

296, 299–300
Automatic guided vehicle (AGV), 219
Automatic insertion process, 475–476
Automatic tool changer (ATC), 435
Available excess capacity (AEC), 127, 129
Available-to-promise (ATP) chart, 82
Average delay, in single-machine scheduling

minimization, 178–179
Average inventory, 100

B
Backward pass, 127
Backward phase, in heuristic procedure,

156–157
Balancing, 302
Batch scheduling

for limited-capacity fixed-period process
problem, 262–267

heuristic approach, 265–266
integer programming model,

263–265

in sequence with varying job
requirements, 267–271

improvement routine, 269–271
Batch sequencing, in parallel processing,

271–275
application, 273–275
procedure and analysis, 272–273

Branch-and-bound algorithm, 149–150
Burns and Carter algorithm, 401–402
Buyback policy, 121

C
Campbell Dudek Smith (CDS)-based

algorithm, 223, 229
for group scheduling, 497–505

heuristic, 497–498
makespan reduction by minimizing the

machine idle time, 498
preliminary sequence, 497

Capacity bills, 136–138
Capacity bucket chart, 10
Capacity determination

plant locations and, 15–42; see also Plant
locations

Capacity planning, 99–145
in scheduling procedures, 8

Carrying cost, in inventory planning, 99
Casual forecasting, 46
Cellular manufacturing, 3
CEXSPT (conditionally expedited by SPT)

rule, 327, 347–349
application, 348–349
daily schedule using, 350

Changing demand in aggregate planning, 66
Chase strategy, in aggregate planning, 58
Combinatorial optimization, 149
Common due date, 171–174

specified by a customer, 174
Component tape assembly, sequencing feeder

for, 475–494
heuristic procedure, 478–494

basic component assignments to slots,
developing, 478

improving the assignment, 488–492
initial assignment, developing, 483–486

location assignments, 483–486
priorities calculation, 483

527

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 528 — #2

528 Index

Component tape assembly, sequencing feeder
for (continued)

smoothing the assignment, 487–488
problem description, 476–478

Consecutive days-off scheduling, 398–401
three consecutive days off, 416–423

Consumption during production, 124
Control system

production planning and, 2–3
Cost minimization, 21–22
Cost over time (COVERT) rule, 152
COVERT rule, 326
Critical path method (CPM), 281–284

time elements in, 282
earliest start time (ETi), 282
expected project completion time (CE),

282
latest start time from node I, (LTi), 282
slack (S), 283
slack in the activity I-j (Si-j), 283

Critical ratio (CR) rule, 153–156
COVERT, 154
EDD rule, 153
largest WT and LPUL, 155
LPUL rule, 155
SPT rule, 155
SWPT rule, 155

Cross-dock distribution strategy, 125

D
Dependent shop, 12, 325
Direct distribution strategy, 125
Discrete order quantity, 117–119
Dispatching tables, 9
Dispenser, feeding mechanism, 458
Distribution network

with existing production facilities, 15–18
limitation on number of facilities, 18–21
response time consideration, 18

Distribution requirement planning (DRP), 93
Distribution strategy, 125–134

types, 125, 126
cross-dock, 125
direct, 125
milk-run (peddling), 125

Drum, Buffer, Rope system, 140
Dual criteria, in single-machine scheduling,

187–188
Dynamic rule, 326
Dynamic time series forecasting method, 47

E
Earliest due date (EDD) rule, 152
Earliest start time (ETi), 282
Earliness/tardiness penalties with machine

activation cost, 248–254
Early and late due dates, 174–177

Early completing jobs, delay of, 188–198
optimal sequence search (phase II), 191,

195–198
slack introduction (phase I), 189–191

Economic order quantity (EOQ) principle, 78,
99–102

total cost (TC), 100
with uniform demand, 100

Electronic assemblies
component tape assemblies on a sequencer,

457–471; see also Tape assemblies
Enterprise resource planning (ERP), 2, 92–93
Event, 281
Excel

for LP problem solving, 25–28
Exhaustive enumeration, 148–149
Existing production facilities, 15–21

distribution network with, 15–18; see also
Distribution network

Expected project completion time (CE), 282
Exponential smoothing, 50–52

F
Fixed order quantity (FOQ), 77–79

fixed order quantity-varying cycle system,
104, 105

Flexible manufacturing, 3
scheduling in, 497–510

CDS-based two-phase algorithm
for group scheduling, 497–505;

see also Campbell Dudek Smith
(CDS)-based algorithm
multiple robot in assembly operations,

505–510
Flexible strategy, in aggregate planning, 59
Flow shop scheduling, 10, 325
Flow time variation, single-machine

scheduling
minimization, 185–186

Flowshop problems, 213–233
makespan calculations, relationships for,

220–221
n JOBS/m-machines problem, 222–229; see

also separate entry
setup/processing and removal times

separated, 218–219
three-machine problem, 216–218
two-machine flowshop with travel time

between machines, 219–222
two-machine problem, 213–216

Forecasting, 45–74
adaptive forecasting, 50
error plot for, 56
errors in, 45
exponential smoothing, 50–52
forecasting errors

analysis, 53–57

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 529 — #3

Index 529

Holt’s Model, 52–53
qualitative forecasting, 45–46
quantitative forecasting, 46–47

casual forecasting, 46
time series analysis, 46–47

seasonal correction, 48–50
ways of, 45
Winter’s Model, 52–53

Forward phase, in heuristic procedure, 158
steps of, 158

G
Gantt chart, 9

for a daily schedule using SPT, 330
for MODSB penalty minimization, 359

Group forming, tabular approach in, 429–435
steps in, 429

closeness ratio, calculation, 431
elemental value examination, 431
machine duplication, 431
machine-to-machine relationship table,

development, 429
value of minimum percentage, 431
value of relationship counter, 431

H
Heterogeneous workforce, 397
Heuristics/Heuristic approach

for component tape assembly, 478–494; see
also under Component tape
assembly

for group scheduling, 497–498; see also
under Campbell Dudek Smith
(CDS)-based algorithm

in limited-capacity fixed-period process
problem, 265–266

to minimize throughput time on NC
machine, 442–453

scheduling techniques, 222; see also under
n JOBS/m-machines problem

in single machine scheduling, 150–156
for tape assembling on a sequencer,

458–471
Holt’s Model, 52–53, 54
Homogeneous workforce, 397
Human factors in aggregate planning, 66

I
Improvement routine, in batch scheduling,

269–271
Incremental cost analysis (ICA), 80–82
Industrial sequencing, 429–453; see also

Component tape assembly; Electronic
assemblies; Flexible manufacturing;
NC machines, scheduling on

Insertion through-hole technology, 457
Integer programming model, 263–265

Inter-quartile range (IQR), 46
Inventory carrying cost, 100
Inventory planning, 99–102

basic costs in
order cost, 99
carrying cost, 99

economic order quantity, 99–102
in production, 6

J
Job sequencing

tool changeovers minimization, 435–442
Job shop, 3, 10, 325
Job shop scheduling, 325–360

dependent shop, 325
dynamic rule, 326
flow shop, 325 job shop, 325–327

dispatching rules, 326 static rule, 326
to minimize makespan, 327–329
to minimize tardiness, 346–360
network approach to, 329–346

Gantt chart, 330
modified shifting bottleneck heuristic,

331–340
open or general shop, 325
static rule, 326
two-stage job shop scheduling heuristic,

340–346
Jobs

arriving at different times, 198–206
backward phase, 198–201

application, 202–204
forward phase, 202

application, 204–206
with due dates, 241–248
with equal weight and no due dates,

237–240
procedure, 237–238

with priorities ranked by weights, 240–241
in single-machine scheduling

minimization, 179–180
Johnson’s algorithm, 218–219
Just-in-Time (JIT) inventory system, 6,

124–135, 163
backward check, 134
distribution strategy, 125–134

K
Knowledge-based approach, for schedules

generation, 9

L
Labor, 3–4
Largest candidate rule (LCR), 296–299
Largest penalty per unit length (LPUL) rule,

152
Largest weight (WT) and LPUL rule, 153

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 530 — #4

530 Index

Latest start time from node I, (LTi), 282
Lead time, see Response time, in production

planning
Least total cost (LTC), 79–80
Least unit cost (LUC) policy, 87–91
Level strategy, in aggregate planning, 58
Limited-capacity fixed-period process problem

batch scheduling for, 262–267; see also
Batch scheduling

LINDO, LP software, 15–24
Linear programming (LP), 15–17

variables in, 22–24
Loading table, 464
Longest alternate processing time (LAPT)

rule, 367
steps for, 369–371

Lot for lot (L4L), 79

M
Machine schedule, 9
Makespan

calculations, 222
relationships for, 220–221

job shop scheduling to minimize, 327–329
shortest processing rule, 328–329
two-machine problem, 367–368

minimization
multiple-machine problem, 368–378
two-machine problem, 367–368

Make-to-order (MTO) environment, 76
Make-to-stock (MTS) environment, 75
Manpower planning models, 12
Manpower scheduling, 397–423

assigning nonconsecutive days off, 411
consecutive days-off scheduling, 398–401

procedure, 399
heterogeneous workforce, 397
homogeneous workforce, 397
increasing the workforce, 410–411
Monroe’s algorithm, 406–411
realignment of worker, 409–410
rotating days (weekends) off, 401–406
three consecutive days off, 416–423
tour scheduling, 412–416

Manufacturing
cellular manufacturing, 3
flexible manufacturing, 3
issues in, 1; see also Scheduling

Marginal unit quantity discount, 107, 109–111
Marketplace demand, 2
Master production scheduling (MPS), 2, 75–97

available-to-promise (ATP) chart, 82
economic order quantity (EOQ) principle,

78
fixed order quantity (FOQ), 77–79
incremental cost analysis (ICA), 80–82
least unit cost (LUC) policy, 87–91

lot for lot (L4L), 79
periodic order quantity (POQ), 79

Material requirement planning (MRP), 2,
75–97, 83–84

general considerations, 91–93
planning period, 91
product structure, 92

Maximum daily demand constraint (L3), 402
Maximum delay, in single-machine scheduling

minimization, 179
Mean absolute percentage error (MAPE), 55
Milk-run (peddling) distribution strategy, 125
Minimization of total tardiness-open shop

(MTT-OP), 378–388
initial assignment, 378–379
solution procedure, 378
special cases, 380, 385–388
subsequent assignments, 380

Minimization of total weighted tardiness
penalties-open shop (MTWT-OP),
388–394

initial assignment, 388–389
subsequent assignments, 389–390

Minimize machine idle time method, 222,
223–227

procedure, 224
Minimum slack rule (MINSLK), 317

assignments based on, 319
scheduling based on, 318

Mixed model assembly (MMA) line
balancing, 302–308

advantages, 308
grouping, 307
to minimize stations, 308–312
parameters, 308
procedure, 302–307
stages, 302

balancing, 302
scheduling, 302

Mixed-mode assembly line, 12
Modified shifting bottleneck heuristic

(MODSB), 331–340
advantage of, 332
minimizing penalty using, 349–359
procedure for, 332
total penalty and makespan, optimizing

using, 359–360
Gantt chart for, 359

Monroe’s algorithm, 406–411
Moving average method, 50
Multiple products order jointly, 113–117
Multiple resources, 317–319
Multiple-machine problem, 368–378

N
n JOBS/m-machines problem, 222–229

each job scheduled on p machines, 293–296

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 531 — #5

Index 531

solution procedure, 293–294
heuristic scheduling techniques, 222

Campbell, Dudek, and Smith (CDS)
procedure, 223, 229

jobs arriving at different time, 229–233
minimize machine idle time method, 222
Nawaz’s method, 223, 227–229
Palmer’s method, 222, 227

Nawaz’s heuristic, 223, 227–229
steps, 227–228

NC machines, scheduling on, 429–453
flexible manufacturing systems

tool change overs minimization in,
435–442

assumptions and problem statement,
435–437

solution procedure, 437–439
tabular approach in group forming, 429–435
throughput time, heuristic to minimize,

442–453
alternative 1

largest demand job, starting with,
446–452

alternative 2
external tool changes, minimization,

452
problem definition and assumptions,

444–445
procedure and application, 445–446

Network approach
to job shop scheduling, 329–346; see also

under Job shop scheduling
Network-based due date (NBD), 359
Network-based scheduling, 281–319

activity, 281
assembly line balancing, 296–301
critical path method (CPM), 281–284
event, 281
mixed model assembly (MMA) line

balancing, 302–308
for n jobs on m parallel machines

with each job scheduled on p machines,
293–296

of parallel processors, 284–292
solution procedure, 285–292

steps of, 286–287
with resource constraint, 312–319

Nonconsecutive days off, assigning, 411,
421–422

Nonidentical parallel processors, 254–259
procedure, 254

O
One-time unit price discount, 111–113
Open or general shop, 325
Open-shop scheduling, 12, 367–394

minimization of total tardiness-open shop
(MTT-OP), 378–388

minimization of total weighted tardiness
penalties-open shop (MTWT-OP),
388–394

minimize makespan
two-machine problem, 367–368

Order cost, in inventory planning, 99

P
Palmer’s method, 222, 227
Parallel machines, 10

in a flowshop, 259–262
batch scheduling

for limited-capacity fixed-period
process problem, 262–267;
see also Batch scheduling

Parallel processing, 237–275; see also
Nonidentical parallel processors

batch sequencing, 271–275
jobs with due dates, 241–248

Combination I, 247–248
jobs with equal weight and no due dates,

237–240
procedure, 237–238

jobs with priorities ranked by weights,
240–241

network-based scheduling for, 284–292;
see also under Network-based
scheduling

parallel machines in a flowshop, 259–262
penalty table, 244–245
setup, 238
single operation job

earliness/tardiness penalties with machine
activation cost, 248–254

single machine, 250–252
three machines, 253–254
two machines, 252–254

Penalty minimization
using modified shifting bottleneck

procedure, 349–359
Penalty table, 244–245
Periodic order quantity (POQ), 79
Periodic review system, 104–105
Planning

capacity planning, 99–145
inventory planning, 99–102
planning period, in MRP, 91

Plant locations, 15–42
large plant, decision tree for, 34
large plant evaluation, 35–36

expected profit, 366
new plant locations, 21–32

new facilities with capacity
determination, 21–22

single sourcing, 28–30

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 532 — #6

532 Index

Plant locations (continued)
spreadsheet approach using solver tool,

25–28
time constraints, 30–32

revenue evaluation, 37–38
small plant

decision tree for, 38
evaluation, 36
expansion, 38–39

uncertainty in demand, 32–39
Printed circuit board (PCB), 457

securing components on board in, 457
insertion through-hole technology, 457
surface mount technology, 457

Product structure, in MRP, 92
Production/Production systems, see also

Master production scheduling
assemble-to-order (ATO) environment, 76
characteristics, 4
consumption during, 124
environment, 75
facilities, existing, see Existing production

facilities
make-to-order (MTO) environment, 76
make-to-stock (MTS) environment, 75
planning, 1–6

basic concepts in, 3–6
inventory, 6
production systems, 3–4
response time, 4–5
supply chain, 5–6

control system and, 2–3
ways, 75

Push system, 5

Q
Quadratic or nonlinear penalty function,

177–178
Qualitative forecasting, 45–46
Quantitative forecasting, 46–47
Quantity discounts, 106–117

all unit quantity discount, 107–109
marginal unit quantity discount, 107,

109–111
multiple products order jointly, 113–117
one-time unit price discount, 111–113
types, 107
unit quantity discount, 107

R
Ranked positional weighted (RPW) method,

296, 299–300
Recourse center capacity planning, 135–139

capacity bills, 136–138
number of machines needed, 138–139
rough cut planning, 135–136

Resource scheduling, 312–319
heuristic rules for, 314
multiple resources, 317–319

Response time, in production planning, 4–5
controlling, 5

Robotic assembly operations, 505–510
more than two robots, 509–510

Robotic insertion process, 475
Rotating days (weekends) off, 401–406

maximum daily demand constraint (L3),
402

procedure, 402
additional off-day pairs, determination,

402–403
minimum workforce, computation, 402
off-day pairs in week 1, assigning, 403
weekends off, scheduling, 402

total demand constraint (L2), 402
weekend constraint (L1), 401

Rough cut planning, 135–136

S
Safety stock

definition, 103
determination, 102–106

fixed order quantity-varying cycle
system, 104

periodic review system, 104–105
requirements, 103
with substitute products, 105–106

Scheduling, 6–13, 302; see also Manpower
scheduling; Network-based
scheduling; Single machine scheduling

capacity planning in, 8
definition, 6
in flexible manufacturing, 497–510; see

also Flexible manufacturing
generation, 9

algorithms, 9
knowledge-based approach, 9

machine schedule, 9
in modern industries, 7–8
on NC machines, 429–453; see also NC

machines, scheduling on
scheduling information, 9

display, 9; see also Gantt chart
scheduling models, 10–12

assembly line, 12
batch processing, 12
dependent shop, 12
flow shop, 10
job shop, 10
manpower planning models, 12
mixed-mode assembly line, 12
open shop, 12
parallel machines, 10

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 533 — #7

Index 533

in production planning terminology, 10
sequence-dependent setup times, 12
single machine, 10

on shop floor, 8–13
Seasonal correction, forecasting, 48–50

static forecasting with, 49
Sequence-dependent jobs, in single-machine

scheduling, 182–184
forward phase, 184
with minimum/maximum separations,

184–185
Sequence-dependent setup times, 12, 186–187
Shifting bottleneck heuristic, modified, see

Modified shifting bottleneck heuristic
(MODSB)

Shop floor planning
scheduling role in, 8

Shortest processing time (SPT) rule, 152, 326,
328–329, 347

LPUL rule and, 153
Shortest weighted processing time (SWPT)

rule, 153
Single machine scheduling, 147–168

heuristic rules, commonly used, 150–156
cost over time (COVERT) rule, 152
critical ratio (CR) rule, 153–156
earliest due date (EDD) rule, 152
efficient heuristic, 156–162

backward phase, 156–157
forward phase, 158

largest penalty per unit length (LPUL)
rule, 152

largest weight (WT) and LPUL rule, 153
shortest processing time (SPT) rule, 152
shortest processing time and LPUL rule,

153
shortest weighted processing time

(SWPT) rule, 153
validity of, 160–162, 166–167

problem with early and late penalties,
162–167

backward phase, 163–166
modified backward phase, 164–166

problem, methods for, 148–450
branch-and-bound algorithm, 149–150
exhaustive enumeration, 148–149

setup, 147
tardiness problem, 148
theorems, 167–168

Single period planning, 117–124
buyback policy, 121
discrete order quantity, 117–119
effect of reduction in σ , 121–124
single period ordering with continuous

demand, 119–121
Single sourcing, in new plant locations, 28–30
Single-machine scheduling

objectives in, 171–206
average delay

minimization of, 178–179
common due date, 171–174
dual criteria, 187–188
early and late due dates, 174–177
early completing jobs, delay of, 188–198
flow time variation

minimization, 185–186
jobs arriving at different times, 198–206;

see also under Jobs
maximum delay

minimization, 179
number of jobs

maximization, 181–182
minimization, 179–180

quadratic or nonlinear penalty function,
177–178

sequence-dependent jobs, 182–184
sequence-dependent setup times,

186–187
Single-machine sequencing algorithms, 443
Slack (S), 283

slack in the activity I-j (Si-j), 283
Smallest processing time (SPT), 327
Spreadsheet approach

aggregate planning, 67–68
using solver tool, in new plant locations,

25–28
Static forecasting

with seasonal corrections, 49
Static rule, in job shop, 326
Static time series forecasting method, 47–48
Supply chain, in production planning, 5–6
Surface mount technology, 457

T
Tape assemblies

component tape assemblies on a sequencer,
457–471

heuristic procedure for, 458–471
group based scheduling, 465
load based scheduling, 464–468
planning table development, 462–463,

467
problem statement, 459
scheduling, 462–466
scheduling table development, 462–463
solution procedure, 459–462

Tardiness minimization, job shop scheduling
for, 346–360

CEXSPT (conditionally expedited by SPT)
approach, 347–349

MOD rule synonym, 347
six-rule, 347
SPT rule, 347

Dileep: “44206_c019” — 2007/8/27 — 20:17 — page 534 — #8

534 Index

Tardiness problem, 148
Theory of constraints, 139–140
Three-machine problem, 216–218
Throughput charts, 10
Time constraints, in new plant locations, 30–32
Time series forecasting methods, 46–47

dynamic techniques, 47
static method, 47–48

Total absolute difference in completion
(TADC), 185

Total cost (TC), 100
Total demand constraint (L2), 402
Total unit purchase cost per year, 100
Tour scheduling, 412–416

procedure, 412–413
daily schedule (Phase 1), 412–413
weekly schedule (Phase II), 413

Two-machine problem, 213–216, 367–368
two-machine flowshop with travel time

between machines, 219–222
Two-stage job shop scheduling heuristic,

340–346

Phase 1, 341
Phase 2, 341–346

U
Uncertainty in demand, 32–39
Unit quantity discount, 107

V
Variables

definition, 23
in linear programming initial formulation

and alternate formulation, 22–24

B
Weekend constraint (L1), 401
Weighted moving average, 50
Winter’s Model, 52–53, 54
Workforce, see also Manpower scheduling

homogeneous, 397
heterogeneous, 397

Work-in-process (WIP) inventory, 125

